xref: /linux/fs/btrfs/relocation.c (revision a1c3be890440a1769ed6f822376a3e3ab0d42994)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2009 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/pagemap.h>
8 #include <linux/writeback.h>
9 #include <linux/blkdev.h>
10 #include <linux/rbtree.h>
11 #include <linux/slab.h>
12 #include <linux/error-injection.h>
13 #include "ctree.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "volumes.h"
17 #include "locking.h"
18 #include "btrfs_inode.h"
19 #include "async-thread.h"
20 #include "free-space-cache.h"
21 #include "qgroup.h"
22 #include "print-tree.h"
23 #include "delalloc-space.h"
24 #include "block-group.h"
25 #include "backref.h"
26 #include "misc.h"
27 
28 /*
29  * Relocation overview
30  *
31  * [What does relocation do]
32  *
33  * The objective of relocation is to relocate all extents of the target block
34  * group to other block groups.
35  * This is utilized by resize (shrink only), profile converting, compacting
36  * space, or balance routine to spread chunks over devices.
37  *
38  * 		Before		|		After
39  * ------------------------------------------------------------------
40  *  BG A: 10 data extents	| BG A: deleted
41  *  BG B:  2 data extents	| BG B: 10 data extents (2 old + 8 relocated)
42  *  BG C:  1 extents		| BG C:  3 data extents (1 old + 2 relocated)
43  *
44  * [How does relocation work]
45  *
46  * 1.   Mark the target block group read-only
47  *      New extents won't be allocated from the target block group.
48  *
49  * 2.1  Record each extent in the target block group
50  *      To build a proper map of extents to be relocated.
51  *
52  * 2.2  Build data reloc tree and reloc trees
53  *      Data reloc tree will contain an inode, recording all newly relocated
54  *      data extents.
55  *      There will be only one data reloc tree for one data block group.
56  *
57  *      Reloc tree will be a special snapshot of its source tree, containing
58  *      relocated tree blocks.
59  *      Each tree referring to a tree block in target block group will get its
60  *      reloc tree built.
61  *
62  * 2.3  Swap source tree with its corresponding reloc tree
63  *      Each involved tree only refers to new extents after swap.
64  *
65  * 3.   Cleanup reloc trees and data reloc tree.
66  *      As old extents in the target block group are still referenced by reloc
67  *      trees, we need to clean them up before really freeing the target block
68  *      group.
69  *
70  * The main complexity is in steps 2.2 and 2.3.
71  *
72  * The entry point of relocation is relocate_block_group() function.
73  */
74 
75 #define RELOCATION_RESERVED_NODES	256
76 /*
77  * map address of tree root to tree
78  */
79 struct mapping_node {
80 	struct {
81 		struct rb_node rb_node;
82 		u64 bytenr;
83 	}; /* Use rb_simle_node for search/insert */
84 	void *data;
85 };
86 
87 struct mapping_tree {
88 	struct rb_root rb_root;
89 	spinlock_t lock;
90 };
91 
92 /*
93  * present a tree block to process
94  */
95 struct tree_block {
96 	struct {
97 		struct rb_node rb_node;
98 		u64 bytenr;
99 	}; /* Use rb_simple_node for search/insert */
100 	u64 owner;
101 	struct btrfs_key key;
102 	unsigned int level:8;
103 	unsigned int key_ready:1;
104 };
105 
106 #define MAX_EXTENTS 128
107 
108 struct file_extent_cluster {
109 	u64 start;
110 	u64 end;
111 	u64 boundary[MAX_EXTENTS];
112 	unsigned int nr;
113 };
114 
115 struct reloc_control {
116 	/* block group to relocate */
117 	struct btrfs_block_group *block_group;
118 	/* extent tree */
119 	struct btrfs_root *extent_root;
120 	/* inode for moving data */
121 	struct inode *data_inode;
122 
123 	struct btrfs_block_rsv *block_rsv;
124 
125 	struct btrfs_backref_cache backref_cache;
126 
127 	struct file_extent_cluster cluster;
128 	/* tree blocks have been processed */
129 	struct extent_io_tree processed_blocks;
130 	/* map start of tree root to corresponding reloc tree */
131 	struct mapping_tree reloc_root_tree;
132 	/* list of reloc trees */
133 	struct list_head reloc_roots;
134 	/* list of subvolume trees that get relocated */
135 	struct list_head dirty_subvol_roots;
136 	/* size of metadata reservation for merging reloc trees */
137 	u64 merging_rsv_size;
138 	/* size of relocated tree nodes */
139 	u64 nodes_relocated;
140 	/* reserved size for block group relocation*/
141 	u64 reserved_bytes;
142 
143 	u64 search_start;
144 	u64 extents_found;
145 
146 	unsigned int stage:8;
147 	unsigned int create_reloc_tree:1;
148 	unsigned int merge_reloc_tree:1;
149 	unsigned int found_file_extent:1;
150 };
151 
152 /* stages of data relocation */
153 #define MOVE_DATA_EXTENTS	0
154 #define UPDATE_DATA_PTRS	1
155 
156 static void mark_block_processed(struct reloc_control *rc,
157 				 struct btrfs_backref_node *node)
158 {
159 	u32 blocksize;
160 
161 	if (node->level == 0 ||
162 	    in_range(node->bytenr, rc->block_group->start,
163 		     rc->block_group->length)) {
164 		blocksize = rc->extent_root->fs_info->nodesize;
165 		set_extent_bits(&rc->processed_blocks, node->bytenr,
166 				node->bytenr + blocksize - 1, EXTENT_DIRTY);
167 	}
168 	node->processed = 1;
169 }
170 
171 
172 static void mapping_tree_init(struct mapping_tree *tree)
173 {
174 	tree->rb_root = RB_ROOT;
175 	spin_lock_init(&tree->lock);
176 }
177 
178 /*
179  * walk up backref nodes until reach node presents tree root
180  */
181 static struct btrfs_backref_node *walk_up_backref(
182 		struct btrfs_backref_node *node,
183 		struct btrfs_backref_edge *edges[], int *index)
184 {
185 	struct btrfs_backref_edge *edge;
186 	int idx = *index;
187 
188 	while (!list_empty(&node->upper)) {
189 		edge = list_entry(node->upper.next,
190 				  struct btrfs_backref_edge, list[LOWER]);
191 		edges[idx++] = edge;
192 		node = edge->node[UPPER];
193 	}
194 	BUG_ON(node->detached);
195 	*index = idx;
196 	return node;
197 }
198 
199 /*
200  * walk down backref nodes to find start of next reference path
201  */
202 static struct btrfs_backref_node *walk_down_backref(
203 		struct btrfs_backref_edge *edges[], int *index)
204 {
205 	struct btrfs_backref_edge *edge;
206 	struct btrfs_backref_node *lower;
207 	int idx = *index;
208 
209 	while (idx > 0) {
210 		edge = edges[idx - 1];
211 		lower = edge->node[LOWER];
212 		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
213 			idx--;
214 			continue;
215 		}
216 		edge = list_entry(edge->list[LOWER].next,
217 				  struct btrfs_backref_edge, list[LOWER]);
218 		edges[idx - 1] = edge;
219 		*index = idx;
220 		return edge->node[UPPER];
221 	}
222 	*index = 0;
223 	return NULL;
224 }
225 
226 static void update_backref_node(struct btrfs_backref_cache *cache,
227 				struct btrfs_backref_node *node, u64 bytenr)
228 {
229 	struct rb_node *rb_node;
230 	rb_erase(&node->rb_node, &cache->rb_root);
231 	node->bytenr = bytenr;
232 	rb_node = rb_simple_insert(&cache->rb_root, node->bytenr, &node->rb_node);
233 	if (rb_node)
234 		btrfs_backref_panic(cache->fs_info, bytenr, -EEXIST);
235 }
236 
237 /*
238  * update backref cache after a transaction commit
239  */
240 static int update_backref_cache(struct btrfs_trans_handle *trans,
241 				struct btrfs_backref_cache *cache)
242 {
243 	struct btrfs_backref_node *node;
244 	int level = 0;
245 
246 	if (cache->last_trans == 0) {
247 		cache->last_trans = trans->transid;
248 		return 0;
249 	}
250 
251 	if (cache->last_trans == trans->transid)
252 		return 0;
253 
254 	/*
255 	 * detached nodes are used to avoid unnecessary backref
256 	 * lookup. transaction commit changes the extent tree.
257 	 * so the detached nodes are no longer useful.
258 	 */
259 	while (!list_empty(&cache->detached)) {
260 		node = list_entry(cache->detached.next,
261 				  struct btrfs_backref_node, list);
262 		btrfs_backref_cleanup_node(cache, node);
263 	}
264 
265 	while (!list_empty(&cache->changed)) {
266 		node = list_entry(cache->changed.next,
267 				  struct btrfs_backref_node, list);
268 		list_del_init(&node->list);
269 		BUG_ON(node->pending);
270 		update_backref_node(cache, node, node->new_bytenr);
271 	}
272 
273 	/*
274 	 * some nodes can be left in the pending list if there were
275 	 * errors during processing the pending nodes.
276 	 */
277 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
278 		list_for_each_entry(node, &cache->pending[level], list) {
279 			BUG_ON(!node->pending);
280 			if (node->bytenr == node->new_bytenr)
281 				continue;
282 			update_backref_node(cache, node, node->new_bytenr);
283 		}
284 	}
285 
286 	cache->last_trans = 0;
287 	return 1;
288 }
289 
290 static bool reloc_root_is_dead(struct btrfs_root *root)
291 {
292 	/*
293 	 * Pair with set_bit/clear_bit in clean_dirty_subvols and
294 	 * btrfs_update_reloc_root. We need to see the updated bit before
295 	 * trying to access reloc_root
296 	 */
297 	smp_rmb();
298 	if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state))
299 		return true;
300 	return false;
301 }
302 
303 /*
304  * Check if this subvolume tree has valid reloc tree.
305  *
306  * Reloc tree after swap is considered dead, thus not considered as valid.
307  * This is enough for most callers, as they don't distinguish dead reloc root
308  * from no reloc root.  But btrfs_should_ignore_reloc_root() below is a
309  * special case.
310  */
311 static bool have_reloc_root(struct btrfs_root *root)
312 {
313 	if (reloc_root_is_dead(root))
314 		return false;
315 	if (!root->reloc_root)
316 		return false;
317 	return true;
318 }
319 
320 int btrfs_should_ignore_reloc_root(struct btrfs_root *root)
321 {
322 	struct btrfs_root *reloc_root;
323 
324 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
325 		return 0;
326 
327 	/* This root has been merged with its reloc tree, we can ignore it */
328 	if (reloc_root_is_dead(root))
329 		return 1;
330 
331 	reloc_root = root->reloc_root;
332 	if (!reloc_root)
333 		return 0;
334 
335 	if (btrfs_header_generation(reloc_root->commit_root) ==
336 	    root->fs_info->running_transaction->transid)
337 		return 0;
338 	/*
339 	 * if there is reloc tree and it was created in previous
340 	 * transaction backref lookup can find the reloc tree,
341 	 * so backref node for the fs tree root is useless for
342 	 * relocation.
343 	 */
344 	return 1;
345 }
346 
347 /*
348  * find reloc tree by address of tree root
349  */
350 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr)
351 {
352 	struct reloc_control *rc = fs_info->reloc_ctl;
353 	struct rb_node *rb_node;
354 	struct mapping_node *node;
355 	struct btrfs_root *root = NULL;
356 
357 	ASSERT(rc);
358 	spin_lock(&rc->reloc_root_tree.lock);
359 	rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr);
360 	if (rb_node) {
361 		node = rb_entry(rb_node, struct mapping_node, rb_node);
362 		root = (struct btrfs_root *)node->data;
363 	}
364 	spin_unlock(&rc->reloc_root_tree.lock);
365 	return btrfs_grab_root(root);
366 }
367 
368 /*
369  * For useless nodes, do two major clean ups:
370  *
371  * - Cleanup the children edges and nodes
372  *   If child node is also orphan (no parent) during cleanup, then the child
373  *   node will also be cleaned up.
374  *
375  * - Freeing up leaves (level 0), keeps nodes detached
376  *   For nodes, the node is still cached as "detached"
377  *
378  * Return false if @node is not in the @useless_nodes list.
379  * Return true if @node is in the @useless_nodes list.
380  */
381 static bool handle_useless_nodes(struct reloc_control *rc,
382 				 struct btrfs_backref_node *node)
383 {
384 	struct btrfs_backref_cache *cache = &rc->backref_cache;
385 	struct list_head *useless_node = &cache->useless_node;
386 	bool ret = false;
387 
388 	while (!list_empty(useless_node)) {
389 		struct btrfs_backref_node *cur;
390 
391 		cur = list_first_entry(useless_node, struct btrfs_backref_node,
392 				 list);
393 		list_del_init(&cur->list);
394 
395 		/* Only tree root nodes can be added to @useless_nodes */
396 		ASSERT(list_empty(&cur->upper));
397 
398 		if (cur == node)
399 			ret = true;
400 
401 		/* The node is the lowest node */
402 		if (cur->lowest) {
403 			list_del_init(&cur->lower);
404 			cur->lowest = 0;
405 		}
406 
407 		/* Cleanup the lower edges */
408 		while (!list_empty(&cur->lower)) {
409 			struct btrfs_backref_edge *edge;
410 			struct btrfs_backref_node *lower;
411 
412 			edge = list_entry(cur->lower.next,
413 					struct btrfs_backref_edge, list[UPPER]);
414 			list_del(&edge->list[UPPER]);
415 			list_del(&edge->list[LOWER]);
416 			lower = edge->node[LOWER];
417 			btrfs_backref_free_edge(cache, edge);
418 
419 			/* Child node is also orphan, queue for cleanup */
420 			if (list_empty(&lower->upper))
421 				list_add(&lower->list, useless_node);
422 		}
423 		/* Mark this block processed for relocation */
424 		mark_block_processed(rc, cur);
425 
426 		/*
427 		 * Backref nodes for tree leaves are deleted from the cache.
428 		 * Backref nodes for upper level tree blocks are left in the
429 		 * cache to avoid unnecessary backref lookup.
430 		 */
431 		if (cur->level > 0) {
432 			list_add(&cur->list, &cache->detached);
433 			cur->detached = 1;
434 		} else {
435 			rb_erase(&cur->rb_node, &cache->rb_root);
436 			btrfs_backref_free_node(cache, cur);
437 		}
438 	}
439 	return ret;
440 }
441 
442 /*
443  * Build backref tree for a given tree block. Root of the backref tree
444  * corresponds the tree block, leaves of the backref tree correspond roots of
445  * b-trees that reference the tree block.
446  *
447  * The basic idea of this function is check backrefs of a given block to find
448  * upper level blocks that reference the block, and then check backrefs of
449  * these upper level blocks recursively. The recursion stops when tree root is
450  * reached or backrefs for the block is cached.
451  *
452  * NOTE: if we find that backrefs for a block are cached, we know backrefs for
453  * all upper level blocks that directly/indirectly reference the block are also
454  * cached.
455  */
456 static noinline_for_stack struct btrfs_backref_node *build_backref_tree(
457 			struct reloc_control *rc, struct btrfs_key *node_key,
458 			int level, u64 bytenr)
459 {
460 	struct btrfs_backref_iter *iter;
461 	struct btrfs_backref_cache *cache = &rc->backref_cache;
462 	/* For searching parent of TREE_BLOCK_REF */
463 	struct btrfs_path *path;
464 	struct btrfs_backref_node *cur;
465 	struct btrfs_backref_node *node = NULL;
466 	struct btrfs_backref_edge *edge;
467 	int ret;
468 	int err = 0;
469 
470 	iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info, GFP_NOFS);
471 	if (!iter)
472 		return ERR_PTR(-ENOMEM);
473 	path = btrfs_alloc_path();
474 	if (!path) {
475 		err = -ENOMEM;
476 		goto out;
477 	}
478 
479 	node = btrfs_backref_alloc_node(cache, bytenr, level);
480 	if (!node) {
481 		err = -ENOMEM;
482 		goto out;
483 	}
484 
485 	node->lowest = 1;
486 	cur = node;
487 
488 	/* Breadth-first search to build backref cache */
489 	do {
490 		ret = btrfs_backref_add_tree_node(cache, path, iter, node_key,
491 						  cur);
492 		if (ret < 0) {
493 			err = ret;
494 			goto out;
495 		}
496 		edge = list_first_entry_or_null(&cache->pending_edge,
497 				struct btrfs_backref_edge, list[UPPER]);
498 		/*
499 		 * The pending list isn't empty, take the first block to
500 		 * process
501 		 */
502 		if (edge) {
503 			list_del_init(&edge->list[UPPER]);
504 			cur = edge->node[UPPER];
505 		}
506 	} while (edge);
507 
508 	/* Finish the upper linkage of newly added edges/nodes */
509 	ret = btrfs_backref_finish_upper_links(cache, node);
510 	if (ret < 0) {
511 		err = ret;
512 		goto out;
513 	}
514 
515 	if (handle_useless_nodes(rc, node))
516 		node = NULL;
517 out:
518 	btrfs_backref_iter_free(iter);
519 	btrfs_free_path(path);
520 	if (err) {
521 		btrfs_backref_error_cleanup(cache, node);
522 		return ERR_PTR(err);
523 	}
524 	ASSERT(!node || !node->detached);
525 	ASSERT(list_empty(&cache->useless_node) &&
526 	       list_empty(&cache->pending_edge));
527 	return node;
528 }
529 
530 /*
531  * helper to add backref node for the newly created snapshot.
532  * the backref node is created by cloning backref node that
533  * corresponds to root of source tree
534  */
535 static int clone_backref_node(struct btrfs_trans_handle *trans,
536 			      struct reloc_control *rc,
537 			      struct btrfs_root *src,
538 			      struct btrfs_root *dest)
539 {
540 	struct btrfs_root *reloc_root = src->reloc_root;
541 	struct btrfs_backref_cache *cache = &rc->backref_cache;
542 	struct btrfs_backref_node *node = NULL;
543 	struct btrfs_backref_node *new_node;
544 	struct btrfs_backref_edge *edge;
545 	struct btrfs_backref_edge *new_edge;
546 	struct rb_node *rb_node;
547 
548 	if (cache->last_trans > 0)
549 		update_backref_cache(trans, cache);
550 
551 	rb_node = rb_simple_search(&cache->rb_root, src->commit_root->start);
552 	if (rb_node) {
553 		node = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
554 		if (node->detached)
555 			node = NULL;
556 		else
557 			BUG_ON(node->new_bytenr != reloc_root->node->start);
558 	}
559 
560 	if (!node) {
561 		rb_node = rb_simple_search(&cache->rb_root,
562 					   reloc_root->commit_root->start);
563 		if (rb_node) {
564 			node = rb_entry(rb_node, struct btrfs_backref_node,
565 					rb_node);
566 			BUG_ON(node->detached);
567 		}
568 	}
569 
570 	if (!node)
571 		return 0;
572 
573 	new_node = btrfs_backref_alloc_node(cache, dest->node->start,
574 					    node->level);
575 	if (!new_node)
576 		return -ENOMEM;
577 
578 	new_node->lowest = node->lowest;
579 	new_node->checked = 1;
580 	new_node->root = btrfs_grab_root(dest);
581 	ASSERT(new_node->root);
582 
583 	if (!node->lowest) {
584 		list_for_each_entry(edge, &node->lower, list[UPPER]) {
585 			new_edge = btrfs_backref_alloc_edge(cache);
586 			if (!new_edge)
587 				goto fail;
588 
589 			btrfs_backref_link_edge(new_edge, edge->node[LOWER],
590 						new_node, LINK_UPPER);
591 		}
592 	} else {
593 		list_add_tail(&new_node->lower, &cache->leaves);
594 	}
595 
596 	rb_node = rb_simple_insert(&cache->rb_root, new_node->bytenr,
597 				   &new_node->rb_node);
598 	if (rb_node)
599 		btrfs_backref_panic(trans->fs_info, new_node->bytenr, -EEXIST);
600 
601 	if (!new_node->lowest) {
602 		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
603 			list_add_tail(&new_edge->list[LOWER],
604 				      &new_edge->node[LOWER]->upper);
605 		}
606 	}
607 	return 0;
608 fail:
609 	while (!list_empty(&new_node->lower)) {
610 		new_edge = list_entry(new_node->lower.next,
611 				      struct btrfs_backref_edge, list[UPPER]);
612 		list_del(&new_edge->list[UPPER]);
613 		btrfs_backref_free_edge(cache, new_edge);
614 	}
615 	btrfs_backref_free_node(cache, new_node);
616 	return -ENOMEM;
617 }
618 
619 /*
620  * helper to add 'address of tree root -> reloc tree' mapping
621  */
622 static int __must_check __add_reloc_root(struct btrfs_root *root)
623 {
624 	struct btrfs_fs_info *fs_info = root->fs_info;
625 	struct rb_node *rb_node;
626 	struct mapping_node *node;
627 	struct reloc_control *rc = fs_info->reloc_ctl;
628 
629 	node = kmalloc(sizeof(*node), GFP_NOFS);
630 	if (!node)
631 		return -ENOMEM;
632 
633 	node->bytenr = root->commit_root->start;
634 	node->data = root;
635 
636 	spin_lock(&rc->reloc_root_tree.lock);
637 	rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
638 				   node->bytenr, &node->rb_node);
639 	spin_unlock(&rc->reloc_root_tree.lock);
640 	if (rb_node) {
641 		btrfs_panic(fs_info, -EEXIST,
642 			    "Duplicate root found for start=%llu while inserting into relocation tree",
643 			    node->bytenr);
644 	}
645 
646 	list_add_tail(&root->root_list, &rc->reloc_roots);
647 	return 0;
648 }
649 
650 /*
651  * helper to delete the 'address of tree root -> reloc tree'
652  * mapping
653  */
654 static void __del_reloc_root(struct btrfs_root *root)
655 {
656 	struct btrfs_fs_info *fs_info = root->fs_info;
657 	struct rb_node *rb_node;
658 	struct mapping_node *node = NULL;
659 	struct reloc_control *rc = fs_info->reloc_ctl;
660 	bool put_ref = false;
661 
662 	if (rc && root->node) {
663 		spin_lock(&rc->reloc_root_tree.lock);
664 		rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
665 					   root->commit_root->start);
666 		if (rb_node) {
667 			node = rb_entry(rb_node, struct mapping_node, rb_node);
668 			rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
669 			RB_CLEAR_NODE(&node->rb_node);
670 		}
671 		spin_unlock(&rc->reloc_root_tree.lock);
672 		ASSERT(!node || (struct btrfs_root *)node->data == root);
673 	}
674 
675 	/*
676 	 * We only put the reloc root here if it's on the list.  There's a lot
677 	 * of places where the pattern is to splice the rc->reloc_roots, process
678 	 * the reloc roots, and then add the reloc root back onto
679 	 * rc->reloc_roots.  If we call __del_reloc_root while it's off of the
680 	 * list we don't want the reference being dropped, because the guy
681 	 * messing with the list is in charge of the reference.
682 	 */
683 	spin_lock(&fs_info->trans_lock);
684 	if (!list_empty(&root->root_list)) {
685 		put_ref = true;
686 		list_del_init(&root->root_list);
687 	}
688 	spin_unlock(&fs_info->trans_lock);
689 	if (put_ref)
690 		btrfs_put_root(root);
691 	kfree(node);
692 }
693 
694 /*
695  * helper to update the 'address of tree root -> reloc tree'
696  * mapping
697  */
698 static int __update_reloc_root(struct btrfs_root *root)
699 {
700 	struct btrfs_fs_info *fs_info = root->fs_info;
701 	struct rb_node *rb_node;
702 	struct mapping_node *node = NULL;
703 	struct reloc_control *rc = fs_info->reloc_ctl;
704 
705 	spin_lock(&rc->reloc_root_tree.lock);
706 	rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
707 				   root->commit_root->start);
708 	if (rb_node) {
709 		node = rb_entry(rb_node, struct mapping_node, rb_node);
710 		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
711 	}
712 	spin_unlock(&rc->reloc_root_tree.lock);
713 
714 	if (!node)
715 		return 0;
716 	BUG_ON((struct btrfs_root *)node->data != root);
717 
718 	spin_lock(&rc->reloc_root_tree.lock);
719 	node->bytenr = root->node->start;
720 	rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
721 				   node->bytenr, &node->rb_node);
722 	spin_unlock(&rc->reloc_root_tree.lock);
723 	if (rb_node)
724 		btrfs_backref_panic(fs_info, node->bytenr, -EEXIST);
725 	return 0;
726 }
727 
728 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
729 					struct btrfs_root *root, u64 objectid)
730 {
731 	struct btrfs_fs_info *fs_info = root->fs_info;
732 	struct btrfs_root *reloc_root;
733 	struct extent_buffer *eb;
734 	struct btrfs_root_item *root_item;
735 	struct btrfs_key root_key;
736 	int ret;
737 
738 	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
739 	BUG_ON(!root_item);
740 
741 	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
742 	root_key.type = BTRFS_ROOT_ITEM_KEY;
743 	root_key.offset = objectid;
744 
745 	if (root->root_key.objectid == objectid) {
746 		u64 commit_root_gen;
747 
748 		/* called by btrfs_init_reloc_root */
749 		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
750 				      BTRFS_TREE_RELOC_OBJECTID);
751 		BUG_ON(ret);
752 		/*
753 		 * Set the last_snapshot field to the generation of the commit
754 		 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
755 		 * correctly (returns true) when the relocation root is created
756 		 * either inside the critical section of a transaction commit
757 		 * (through transaction.c:qgroup_account_snapshot()) and when
758 		 * it's created before the transaction commit is started.
759 		 */
760 		commit_root_gen = btrfs_header_generation(root->commit_root);
761 		btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
762 	} else {
763 		/*
764 		 * called by btrfs_reloc_post_snapshot_hook.
765 		 * the source tree is a reloc tree, all tree blocks
766 		 * modified after it was created have RELOC flag
767 		 * set in their headers. so it's OK to not update
768 		 * the 'last_snapshot'.
769 		 */
770 		ret = btrfs_copy_root(trans, root, root->node, &eb,
771 				      BTRFS_TREE_RELOC_OBJECTID);
772 		BUG_ON(ret);
773 	}
774 
775 	memcpy(root_item, &root->root_item, sizeof(*root_item));
776 	btrfs_set_root_bytenr(root_item, eb->start);
777 	btrfs_set_root_level(root_item, btrfs_header_level(eb));
778 	btrfs_set_root_generation(root_item, trans->transid);
779 
780 	if (root->root_key.objectid == objectid) {
781 		btrfs_set_root_refs(root_item, 0);
782 		memset(&root_item->drop_progress, 0,
783 		       sizeof(struct btrfs_disk_key));
784 		btrfs_set_root_drop_level(root_item, 0);
785 	}
786 
787 	btrfs_tree_unlock(eb);
788 	free_extent_buffer(eb);
789 
790 	ret = btrfs_insert_root(trans, fs_info->tree_root,
791 				&root_key, root_item);
792 	BUG_ON(ret);
793 	kfree(root_item);
794 
795 	reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key);
796 	BUG_ON(IS_ERR(reloc_root));
797 	set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
798 	reloc_root->last_trans = trans->transid;
799 	return reloc_root;
800 }
801 
802 /*
803  * create reloc tree for a given fs tree. reloc tree is just a
804  * snapshot of the fs tree with special root objectid.
805  *
806  * The reloc_root comes out of here with two references, one for
807  * root->reloc_root, and another for being on the rc->reloc_roots list.
808  */
809 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
810 			  struct btrfs_root *root)
811 {
812 	struct btrfs_fs_info *fs_info = root->fs_info;
813 	struct btrfs_root *reloc_root;
814 	struct reloc_control *rc = fs_info->reloc_ctl;
815 	struct btrfs_block_rsv *rsv;
816 	int clear_rsv = 0;
817 	int ret;
818 
819 	if (!rc)
820 		return 0;
821 
822 	/*
823 	 * The subvolume has reloc tree but the swap is finished, no need to
824 	 * create/update the dead reloc tree
825 	 */
826 	if (reloc_root_is_dead(root))
827 		return 0;
828 
829 	/*
830 	 * This is subtle but important.  We do not do
831 	 * record_root_in_transaction for reloc roots, instead we record their
832 	 * corresponding fs root, and then here we update the last trans for the
833 	 * reloc root.  This means that we have to do this for the entire life
834 	 * of the reloc root, regardless of which stage of the relocation we are
835 	 * in.
836 	 */
837 	if (root->reloc_root) {
838 		reloc_root = root->reloc_root;
839 		reloc_root->last_trans = trans->transid;
840 		return 0;
841 	}
842 
843 	/*
844 	 * We are merging reloc roots, we do not need new reloc trees.  Also
845 	 * reloc trees never need their own reloc tree.
846 	 */
847 	if (!rc->create_reloc_tree ||
848 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
849 		return 0;
850 
851 	if (!trans->reloc_reserved) {
852 		rsv = trans->block_rsv;
853 		trans->block_rsv = rc->block_rsv;
854 		clear_rsv = 1;
855 	}
856 	reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
857 	if (clear_rsv)
858 		trans->block_rsv = rsv;
859 
860 	ret = __add_reloc_root(reloc_root);
861 	BUG_ON(ret < 0);
862 	root->reloc_root = btrfs_grab_root(reloc_root);
863 	return 0;
864 }
865 
866 /*
867  * update root item of reloc tree
868  */
869 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
870 			    struct btrfs_root *root)
871 {
872 	struct btrfs_fs_info *fs_info = root->fs_info;
873 	struct btrfs_root *reloc_root;
874 	struct btrfs_root_item *root_item;
875 	int ret;
876 
877 	if (!have_reloc_root(root))
878 		goto out;
879 
880 	reloc_root = root->reloc_root;
881 	root_item = &reloc_root->root_item;
882 
883 	/*
884 	 * We are probably ok here, but __del_reloc_root() will drop its ref of
885 	 * the root.  We have the ref for root->reloc_root, but just in case
886 	 * hold it while we update the reloc root.
887 	 */
888 	btrfs_grab_root(reloc_root);
889 
890 	/* root->reloc_root will stay until current relocation finished */
891 	if (fs_info->reloc_ctl->merge_reloc_tree &&
892 	    btrfs_root_refs(root_item) == 0) {
893 		set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
894 		/*
895 		 * Mark the tree as dead before we change reloc_root so
896 		 * have_reloc_root will not touch it from now on.
897 		 */
898 		smp_wmb();
899 		__del_reloc_root(reloc_root);
900 	}
901 
902 	if (reloc_root->commit_root != reloc_root->node) {
903 		__update_reloc_root(reloc_root);
904 		btrfs_set_root_node(root_item, reloc_root->node);
905 		free_extent_buffer(reloc_root->commit_root);
906 		reloc_root->commit_root = btrfs_root_node(reloc_root);
907 	}
908 
909 	ret = btrfs_update_root(trans, fs_info->tree_root,
910 				&reloc_root->root_key, root_item);
911 	BUG_ON(ret);
912 	btrfs_put_root(reloc_root);
913 out:
914 	return 0;
915 }
916 
917 /*
918  * helper to find first cached inode with inode number >= objectid
919  * in a subvolume
920  */
921 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
922 {
923 	struct rb_node *node;
924 	struct rb_node *prev;
925 	struct btrfs_inode *entry;
926 	struct inode *inode;
927 
928 	spin_lock(&root->inode_lock);
929 again:
930 	node = root->inode_tree.rb_node;
931 	prev = NULL;
932 	while (node) {
933 		prev = node;
934 		entry = rb_entry(node, struct btrfs_inode, rb_node);
935 
936 		if (objectid < btrfs_ino(entry))
937 			node = node->rb_left;
938 		else if (objectid > btrfs_ino(entry))
939 			node = node->rb_right;
940 		else
941 			break;
942 	}
943 	if (!node) {
944 		while (prev) {
945 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
946 			if (objectid <= btrfs_ino(entry)) {
947 				node = prev;
948 				break;
949 			}
950 			prev = rb_next(prev);
951 		}
952 	}
953 	while (node) {
954 		entry = rb_entry(node, struct btrfs_inode, rb_node);
955 		inode = igrab(&entry->vfs_inode);
956 		if (inode) {
957 			spin_unlock(&root->inode_lock);
958 			return inode;
959 		}
960 
961 		objectid = btrfs_ino(entry) + 1;
962 		if (cond_resched_lock(&root->inode_lock))
963 			goto again;
964 
965 		node = rb_next(node);
966 	}
967 	spin_unlock(&root->inode_lock);
968 	return NULL;
969 }
970 
971 /*
972  * get new location of data
973  */
974 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
975 			    u64 bytenr, u64 num_bytes)
976 {
977 	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
978 	struct btrfs_path *path;
979 	struct btrfs_file_extent_item *fi;
980 	struct extent_buffer *leaf;
981 	int ret;
982 
983 	path = btrfs_alloc_path();
984 	if (!path)
985 		return -ENOMEM;
986 
987 	bytenr -= BTRFS_I(reloc_inode)->index_cnt;
988 	ret = btrfs_lookup_file_extent(NULL, root, path,
989 			btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
990 	if (ret < 0)
991 		goto out;
992 	if (ret > 0) {
993 		ret = -ENOENT;
994 		goto out;
995 	}
996 
997 	leaf = path->nodes[0];
998 	fi = btrfs_item_ptr(leaf, path->slots[0],
999 			    struct btrfs_file_extent_item);
1000 
1001 	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1002 	       btrfs_file_extent_compression(leaf, fi) ||
1003 	       btrfs_file_extent_encryption(leaf, fi) ||
1004 	       btrfs_file_extent_other_encoding(leaf, fi));
1005 
1006 	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1007 		ret = -EINVAL;
1008 		goto out;
1009 	}
1010 
1011 	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1012 	ret = 0;
1013 out:
1014 	btrfs_free_path(path);
1015 	return ret;
1016 }
1017 
1018 /*
1019  * update file extent items in the tree leaf to point to
1020  * the new locations.
1021  */
1022 static noinline_for_stack
1023 int replace_file_extents(struct btrfs_trans_handle *trans,
1024 			 struct reloc_control *rc,
1025 			 struct btrfs_root *root,
1026 			 struct extent_buffer *leaf)
1027 {
1028 	struct btrfs_fs_info *fs_info = root->fs_info;
1029 	struct btrfs_key key;
1030 	struct btrfs_file_extent_item *fi;
1031 	struct inode *inode = NULL;
1032 	u64 parent;
1033 	u64 bytenr;
1034 	u64 new_bytenr = 0;
1035 	u64 num_bytes;
1036 	u64 end;
1037 	u32 nritems;
1038 	u32 i;
1039 	int ret = 0;
1040 	int first = 1;
1041 	int dirty = 0;
1042 
1043 	if (rc->stage != UPDATE_DATA_PTRS)
1044 		return 0;
1045 
1046 	/* reloc trees always use full backref */
1047 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1048 		parent = leaf->start;
1049 	else
1050 		parent = 0;
1051 
1052 	nritems = btrfs_header_nritems(leaf);
1053 	for (i = 0; i < nritems; i++) {
1054 		struct btrfs_ref ref = { 0 };
1055 
1056 		cond_resched();
1057 		btrfs_item_key_to_cpu(leaf, &key, i);
1058 		if (key.type != BTRFS_EXTENT_DATA_KEY)
1059 			continue;
1060 		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1061 		if (btrfs_file_extent_type(leaf, fi) ==
1062 		    BTRFS_FILE_EXTENT_INLINE)
1063 			continue;
1064 		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1065 		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1066 		if (bytenr == 0)
1067 			continue;
1068 		if (!in_range(bytenr, rc->block_group->start,
1069 			      rc->block_group->length))
1070 			continue;
1071 
1072 		/*
1073 		 * if we are modifying block in fs tree, wait for readpage
1074 		 * to complete and drop the extent cache
1075 		 */
1076 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1077 			if (first) {
1078 				inode = find_next_inode(root, key.objectid);
1079 				first = 0;
1080 			} else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) {
1081 				btrfs_add_delayed_iput(inode);
1082 				inode = find_next_inode(root, key.objectid);
1083 			}
1084 			if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) {
1085 				end = key.offset +
1086 				      btrfs_file_extent_num_bytes(leaf, fi);
1087 				WARN_ON(!IS_ALIGNED(key.offset,
1088 						    fs_info->sectorsize));
1089 				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1090 				end--;
1091 				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1092 						      key.offset, end);
1093 				if (!ret)
1094 					continue;
1095 
1096 				btrfs_drop_extent_cache(BTRFS_I(inode),
1097 						key.offset,	end, 1);
1098 				unlock_extent(&BTRFS_I(inode)->io_tree,
1099 					      key.offset, end);
1100 			}
1101 		}
1102 
1103 		ret = get_new_location(rc->data_inode, &new_bytenr,
1104 				       bytenr, num_bytes);
1105 		if (ret) {
1106 			/*
1107 			 * Don't have to abort since we've not changed anything
1108 			 * in the file extent yet.
1109 			 */
1110 			break;
1111 		}
1112 
1113 		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1114 		dirty = 1;
1115 
1116 		key.offset -= btrfs_file_extent_offset(leaf, fi);
1117 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1118 				       num_bytes, parent);
1119 		ref.real_root = root->root_key.objectid;
1120 		btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1121 				    key.objectid, key.offset);
1122 		ret = btrfs_inc_extent_ref(trans, &ref);
1123 		if (ret) {
1124 			btrfs_abort_transaction(trans, ret);
1125 			break;
1126 		}
1127 
1128 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1129 				       num_bytes, parent);
1130 		ref.real_root = root->root_key.objectid;
1131 		btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1132 				    key.objectid, key.offset);
1133 		ret = btrfs_free_extent(trans, &ref);
1134 		if (ret) {
1135 			btrfs_abort_transaction(trans, ret);
1136 			break;
1137 		}
1138 	}
1139 	if (dirty)
1140 		btrfs_mark_buffer_dirty(leaf);
1141 	if (inode)
1142 		btrfs_add_delayed_iput(inode);
1143 	return ret;
1144 }
1145 
1146 static noinline_for_stack
1147 int memcmp_node_keys(struct extent_buffer *eb, int slot,
1148 		     struct btrfs_path *path, int level)
1149 {
1150 	struct btrfs_disk_key key1;
1151 	struct btrfs_disk_key key2;
1152 	btrfs_node_key(eb, &key1, slot);
1153 	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1154 	return memcmp(&key1, &key2, sizeof(key1));
1155 }
1156 
1157 /*
1158  * try to replace tree blocks in fs tree with the new blocks
1159  * in reloc tree. tree blocks haven't been modified since the
1160  * reloc tree was create can be replaced.
1161  *
1162  * if a block was replaced, level of the block + 1 is returned.
1163  * if no block got replaced, 0 is returned. if there are other
1164  * errors, a negative error number is returned.
1165  */
1166 static noinline_for_stack
1167 int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
1168 		 struct btrfs_root *dest, struct btrfs_root *src,
1169 		 struct btrfs_path *path, struct btrfs_key *next_key,
1170 		 int lowest_level, int max_level)
1171 {
1172 	struct btrfs_fs_info *fs_info = dest->fs_info;
1173 	struct extent_buffer *eb;
1174 	struct extent_buffer *parent;
1175 	struct btrfs_ref ref = { 0 };
1176 	struct btrfs_key key;
1177 	u64 old_bytenr;
1178 	u64 new_bytenr;
1179 	u64 old_ptr_gen;
1180 	u64 new_ptr_gen;
1181 	u64 last_snapshot;
1182 	u32 blocksize;
1183 	int cow = 0;
1184 	int level;
1185 	int ret;
1186 	int slot;
1187 
1188 	BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1189 	BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1190 
1191 	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1192 again:
1193 	slot = path->slots[lowest_level];
1194 	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1195 
1196 	eb = btrfs_lock_root_node(dest);
1197 	level = btrfs_header_level(eb);
1198 
1199 	if (level < lowest_level) {
1200 		btrfs_tree_unlock(eb);
1201 		free_extent_buffer(eb);
1202 		return 0;
1203 	}
1204 
1205 	if (cow) {
1206 		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb,
1207 				      BTRFS_NESTING_COW);
1208 		BUG_ON(ret);
1209 	}
1210 
1211 	if (next_key) {
1212 		next_key->objectid = (u64)-1;
1213 		next_key->type = (u8)-1;
1214 		next_key->offset = (u64)-1;
1215 	}
1216 
1217 	parent = eb;
1218 	while (1) {
1219 		level = btrfs_header_level(parent);
1220 		BUG_ON(level < lowest_level);
1221 
1222 		ret = btrfs_bin_search(parent, &key, &slot);
1223 		if (ret < 0)
1224 			break;
1225 		if (ret && slot > 0)
1226 			slot--;
1227 
1228 		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1229 			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1230 
1231 		old_bytenr = btrfs_node_blockptr(parent, slot);
1232 		blocksize = fs_info->nodesize;
1233 		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1234 
1235 		if (level <= max_level) {
1236 			eb = path->nodes[level];
1237 			new_bytenr = btrfs_node_blockptr(eb,
1238 							path->slots[level]);
1239 			new_ptr_gen = btrfs_node_ptr_generation(eb,
1240 							path->slots[level]);
1241 		} else {
1242 			new_bytenr = 0;
1243 			new_ptr_gen = 0;
1244 		}
1245 
1246 		if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1247 			ret = level;
1248 			break;
1249 		}
1250 
1251 		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1252 		    memcmp_node_keys(parent, slot, path, level)) {
1253 			if (level <= lowest_level) {
1254 				ret = 0;
1255 				break;
1256 			}
1257 
1258 			eb = btrfs_read_node_slot(parent, slot);
1259 			if (IS_ERR(eb)) {
1260 				ret = PTR_ERR(eb);
1261 				break;
1262 			}
1263 			btrfs_tree_lock(eb);
1264 			if (cow) {
1265 				ret = btrfs_cow_block(trans, dest, eb, parent,
1266 						      slot, &eb,
1267 						      BTRFS_NESTING_COW);
1268 				BUG_ON(ret);
1269 			}
1270 
1271 			btrfs_tree_unlock(parent);
1272 			free_extent_buffer(parent);
1273 
1274 			parent = eb;
1275 			continue;
1276 		}
1277 
1278 		if (!cow) {
1279 			btrfs_tree_unlock(parent);
1280 			free_extent_buffer(parent);
1281 			cow = 1;
1282 			goto again;
1283 		}
1284 
1285 		btrfs_node_key_to_cpu(path->nodes[level], &key,
1286 				      path->slots[level]);
1287 		btrfs_release_path(path);
1288 
1289 		path->lowest_level = level;
1290 		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1291 		path->lowest_level = 0;
1292 		BUG_ON(ret);
1293 
1294 		/*
1295 		 * Info qgroup to trace both subtrees.
1296 		 *
1297 		 * We must trace both trees.
1298 		 * 1) Tree reloc subtree
1299 		 *    If not traced, we will leak data numbers
1300 		 * 2) Fs subtree
1301 		 *    If not traced, we will double count old data
1302 		 *
1303 		 * We don't scan the subtree right now, but only record
1304 		 * the swapped tree blocks.
1305 		 * The real subtree rescan is delayed until we have new
1306 		 * CoW on the subtree root node before transaction commit.
1307 		 */
1308 		ret = btrfs_qgroup_add_swapped_blocks(trans, dest,
1309 				rc->block_group, parent, slot,
1310 				path->nodes[level], path->slots[level],
1311 				last_snapshot);
1312 		if (ret < 0)
1313 			break;
1314 		/*
1315 		 * swap blocks in fs tree and reloc tree.
1316 		 */
1317 		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1318 		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1319 		btrfs_mark_buffer_dirty(parent);
1320 
1321 		btrfs_set_node_blockptr(path->nodes[level],
1322 					path->slots[level], old_bytenr);
1323 		btrfs_set_node_ptr_generation(path->nodes[level],
1324 					      path->slots[level], old_ptr_gen);
1325 		btrfs_mark_buffer_dirty(path->nodes[level]);
1326 
1327 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr,
1328 				       blocksize, path->nodes[level]->start);
1329 		ref.skip_qgroup = true;
1330 		btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid);
1331 		ret = btrfs_inc_extent_ref(trans, &ref);
1332 		BUG_ON(ret);
1333 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1334 				       blocksize, 0);
1335 		ref.skip_qgroup = true;
1336 		btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid);
1337 		ret = btrfs_inc_extent_ref(trans, &ref);
1338 		BUG_ON(ret);
1339 
1340 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr,
1341 				       blocksize, path->nodes[level]->start);
1342 		btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid);
1343 		ref.skip_qgroup = true;
1344 		ret = btrfs_free_extent(trans, &ref);
1345 		BUG_ON(ret);
1346 
1347 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr,
1348 				       blocksize, 0);
1349 		btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid);
1350 		ref.skip_qgroup = true;
1351 		ret = btrfs_free_extent(trans, &ref);
1352 		BUG_ON(ret);
1353 
1354 		btrfs_unlock_up_safe(path, 0);
1355 
1356 		ret = level;
1357 		break;
1358 	}
1359 	btrfs_tree_unlock(parent);
1360 	free_extent_buffer(parent);
1361 	return ret;
1362 }
1363 
1364 /*
1365  * helper to find next relocated block in reloc tree
1366  */
1367 static noinline_for_stack
1368 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1369 		       int *level)
1370 {
1371 	struct extent_buffer *eb;
1372 	int i;
1373 	u64 last_snapshot;
1374 	u32 nritems;
1375 
1376 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1377 
1378 	for (i = 0; i < *level; i++) {
1379 		free_extent_buffer(path->nodes[i]);
1380 		path->nodes[i] = NULL;
1381 	}
1382 
1383 	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1384 		eb = path->nodes[i];
1385 		nritems = btrfs_header_nritems(eb);
1386 		while (path->slots[i] + 1 < nritems) {
1387 			path->slots[i]++;
1388 			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1389 			    last_snapshot)
1390 				continue;
1391 
1392 			*level = i;
1393 			return 0;
1394 		}
1395 		free_extent_buffer(path->nodes[i]);
1396 		path->nodes[i] = NULL;
1397 	}
1398 	return 1;
1399 }
1400 
1401 /*
1402  * walk down reloc tree to find relocated block of lowest level
1403  */
1404 static noinline_for_stack
1405 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1406 			 int *level)
1407 {
1408 	struct extent_buffer *eb = NULL;
1409 	int i;
1410 	u64 ptr_gen = 0;
1411 	u64 last_snapshot;
1412 	u32 nritems;
1413 
1414 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1415 
1416 	for (i = *level; i > 0; i--) {
1417 		eb = path->nodes[i];
1418 		nritems = btrfs_header_nritems(eb);
1419 		while (path->slots[i] < nritems) {
1420 			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1421 			if (ptr_gen > last_snapshot)
1422 				break;
1423 			path->slots[i]++;
1424 		}
1425 		if (path->slots[i] >= nritems) {
1426 			if (i == *level)
1427 				break;
1428 			*level = i + 1;
1429 			return 0;
1430 		}
1431 		if (i == 1) {
1432 			*level = i;
1433 			return 0;
1434 		}
1435 
1436 		eb = btrfs_read_node_slot(eb, path->slots[i]);
1437 		if (IS_ERR(eb))
1438 			return PTR_ERR(eb);
1439 		BUG_ON(btrfs_header_level(eb) != i - 1);
1440 		path->nodes[i - 1] = eb;
1441 		path->slots[i - 1] = 0;
1442 	}
1443 	return 1;
1444 }
1445 
1446 /*
1447  * invalidate extent cache for file extents whose key in range of
1448  * [min_key, max_key)
1449  */
1450 static int invalidate_extent_cache(struct btrfs_root *root,
1451 				   struct btrfs_key *min_key,
1452 				   struct btrfs_key *max_key)
1453 {
1454 	struct btrfs_fs_info *fs_info = root->fs_info;
1455 	struct inode *inode = NULL;
1456 	u64 objectid;
1457 	u64 start, end;
1458 	u64 ino;
1459 
1460 	objectid = min_key->objectid;
1461 	while (1) {
1462 		cond_resched();
1463 		iput(inode);
1464 
1465 		if (objectid > max_key->objectid)
1466 			break;
1467 
1468 		inode = find_next_inode(root, objectid);
1469 		if (!inode)
1470 			break;
1471 		ino = btrfs_ino(BTRFS_I(inode));
1472 
1473 		if (ino > max_key->objectid) {
1474 			iput(inode);
1475 			break;
1476 		}
1477 
1478 		objectid = ino + 1;
1479 		if (!S_ISREG(inode->i_mode))
1480 			continue;
1481 
1482 		if (unlikely(min_key->objectid == ino)) {
1483 			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1484 				continue;
1485 			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1486 				start = 0;
1487 			else {
1488 				start = min_key->offset;
1489 				WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
1490 			}
1491 		} else {
1492 			start = 0;
1493 		}
1494 
1495 		if (unlikely(max_key->objectid == ino)) {
1496 			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1497 				continue;
1498 			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1499 				end = (u64)-1;
1500 			} else {
1501 				if (max_key->offset == 0)
1502 					continue;
1503 				end = max_key->offset;
1504 				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1505 				end--;
1506 			}
1507 		} else {
1508 			end = (u64)-1;
1509 		}
1510 
1511 		/* the lock_extent waits for readpage to complete */
1512 		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
1513 		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1);
1514 		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
1515 	}
1516 	return 0;
1517 }
1518 
1519 static int find_next_key(struct btrfs_path *path, int level,
1520 			 struct btrfs_key *key)
1521 
1522 {
1523 	while (level < BTRFS_MAX_LEVEL) {
1524 		if (!path->nodes[level])
1525 			break;
1526 		if (path->slots[level] + 1 <
1527 		    btrfs_header_nritems(path->nodes[level])) {
1528 			btrfs_node_key_to_cpu(path->nodes[level], key,
1529 					      path->slots[level] + 1);
1530 			return 0;
1531 		}
1532 		level++;
1533 	}
1534 	return 1;
1535 }
1536 
1537 /*
1538  * Insert current subvolume into reloc_control::dirty_subvol_roots
1539  */
1540 static void insert_dirty_subvol(struct btrfs_trans_handle *trans,
1541 				struct reloc_control *rc,
1542 				struct btrfs_root *root)
1543 {
1544 	struct btrfs_root *reloc_root = root->reloc_root;
1545 	struct btrfs_root_item *reloc_root_item;
1546 
1547 	/* @root must be a subvolume tree root with a valid reloc tree */
1548 	ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1549 	ASSERT(reloc_root);
1550 
1551 	reloc_root_item = &reloc_root->root_item;
1552 	memset(&reloc_root_item->drop_progress, 0,
1553 		sizeof(reloc_root_item->drop_progress));
1554 	btrfs_set_root_drop_level(reloc_root_item, 0);
1555 	btrfs_set_root_refs(reloc_root_item, 0);
1556 	btrfs_update_reloc_root(trans, root);
1557 
1558 	if (list_empty(&root->reloc_dirty_list)) {
1559 		btrfs_grab_root(root);
1560 		list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots);
1561 	}
1562 }
1563 
1564 static int clean_dirty_subvols(struct reloc_control *rc)
1565 {
1566 	struct btrfs_root *root;
1567 	struct btrfs_root *next;
1568 	int ret = 0;
1569 	int ret2;
1570 
1571 	list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots,
1572 				 reloc_dirty_list) {
1573 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1574 			/* Merged subvolume, cleanup its reloc root */
1575 			struct btrfs_root *reloc_root = root->reloc_root;
1576 
1577 			list_del_init(&root->reloc_dirty_list);
1578 			root->reloc_root = NULL;
1579 			/*
1580 			 * Need barrier to ensure clear_bit() only happens after
1581 			 * root->reloc_root = NULL. Pairs with have_reloc_root.
1582 			 */
1583 			smp_wmb();
1584 			clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
1585 			if (reloc_root) {
1586 				/*
1587 				 * btrfs_drop_snapshot drops our ref we hold for
1588 				 * ->reloc_root.  If it fails however we must
1589 				 * drop the ref ourselves.
1590 				 */
1591 				ret2 = btrfs_drop_snapshot(reloc_root, 0, 1);
1592 				if (ret2 < 0) {
1593 					btrfs_put_root(reloc_root);
1594 					if (!ret)
1595 						ret = ret2;
1596 				}
1597 			}
1598 			btrfs_put_root(root);
1599 		} else {
1600 			/* Orphan reloc tree, just clean it up */
1601 			ret2 = btrfs_drop_snapshot(root, 0, 1);
1602 			if (ret2 < 0) {
1603 				btrfs_put_root(root);
1604 				if (!ret)
1605 					ret = ret2;
1606 			}
1607 		}
1608 	}
1609 	return ret;
1610 }
1611 
1612 /*
1613  * merge the relocated tree blocks in reloc tree with corresponding
1614  * fs tree.
1615  */
1616 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
1617 					       struct btrfs_root *root)
1618 {
1619 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1620 	struct btrfs_key key;
1621 	struct btrfs_key next_key;
1622 	struct btrfs_trans_handle *trans = NULL;
1623 	struct btrfs_root *reloc_root;
1624 	struct btrfs_root_item *root_item;
1625 	struct btrfs_path *path;
1626 	struct extent_buffer *leaf;
1627 	int reserve_level;
1628 	int level;
1629 	int max_level;
1630 	int replaced = 0;
1631 	int ret = 0;
1632 	u32 min_reserved;
1633 
1634 	path = btrfs_alloc_path();
1635 	if (!path)
1636 		return -ENOMEM;
1637 	path->reada = READA_FORWARD;
1638 
1639 	reloc_root = root->reloc_root;
1640 	root_item = &reloc_root->root_item;
1641 
1642 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
1643 		level = btrfs_root_level(root_item);
1644 		atomic_inc(&reloc_root->node->refs);
1645 		path->nodes[level] = reloc_root->node;
1646 		path->slots[level] = 0;
1647 	} else {
1648 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
1649 
1650 		level = btrfs_root_drop_level(root_item);
1651 		BUG_ON(level == 0);
1652 		path->lowest_level = level;
1653 		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
1654 		path->lowest_level = 0;
1655 		if (ret < 0) {
1656 			btrfs_free_path(path);
1657 			return ret;
1658 		}
1659 
1660 		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
1661 				      path->slots[level]);
1662 		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
1663 
1664 		btrfs_unlock_up_safe(path, 0);
1665 	}
1666 
1667 	/*
1668 	 * In merge_reloc_root(), we modify the upper level pointer to swap the
1669 	 * tree blocks between reloc tree and subvolume tree.  Thus for tree
1670 	 * block COW, we COW at most from level 1 to root level for each tree.
1671 	 *
1672 	 * Thus the needed metadata size is at most root_level * nodesize,
1673 	 * and * 2 since we have two trees to COW.
1674 	 */
1675 	reserve_level = max_t(int, 1, btrfs_root_level(root_item));
1676 	min_reserved = fs_info->nodesize * reserve_level * 2;
1677 	memset(&next_key, 0, sizeof(next_key));
1678 
1679 	while (1) {
1680 		ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
1681 					     BTRFS_RESERVE_FLUSH_LIMIT);
1682 		if (ret)
1683 			goto out;
1684 		trans = btrfs_start_transaction(root, 0);
1685 		if (IS_ERR(trans)) {
1686 			ret = PTR_ERR(trans);
1687 			trans = NULL;
1688 			goto out;
1689 		}
1690 
1691 		/*
1692 		 * At this point we no longer have a reloc_control, so we can't
1693 		 * depend on btrfs_init_reloc_root to update our last_trans.
1694 		 *
1695 		 * But that's ok, we started the trans handle on our
1696 		 * corresponding fs_root, which means it's been added to the
1697 		 * dirty list.  At commit time we'll still call
1698 		 * btrfs_update_reloc_root() and update our root item
1699 		 * appropriately.
1700 		 */
1701 		reloc_root->last_trans = trans->transid;
1702 		trans->block_rsv = rc->block_rsv;
1703 
1704 		replaced = 0;
1705 		max_level = level;
1706 
1707 		ret = walk_down_reloc_tree(reloc_root, path, &level);
1708 		if (ret < 0)
1709 			goto out;
1710 		if (ret > 0)
1711 			break;
1712 
1713 		if (!find_next_key(path, level, &key) &&
1714 		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
1715 			ret = 0;
1716 		} else {
1717 			ret = replace_path(trans, rc, root, reloc_root, path,
1718 					   &next_key, level, max_level);
1719 		}
1720 		if (ret < 0)
1721 			goto out;
1722 		if (ret > 0) {
1723 			level = ret;
1724 			btrfs_node_key_to_cpu(path->nodes[level], &key,
1725 					      path->slots[level]);
1726 			replaced = 1;
1727 		}
1728 
1729 		ret = walk_up_reloc_tree(reloc_root, path, &level);
1730 		if (ret > 0)
1731 			break;
1732 
1733 		BUG_ON(level == 0);
1734 		/*
1735 		 * save the merging progress in the drop_progress.
1736 		 * this is OK since root refs == 1 in this case.
1737 		 */
1738 		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
1739 			       path->slots[level]);
1740 		btrfs_set_root_drop_level(root_item, level);
1741 
1742 		btrfs_end_transaction_throttle(trans);
1743 		trans = NULL;
1744 
1745 		btrfs_btree_balance_dirty(fs_info);
1746 
1747 		if (replaced && rc->stage == UPDATE_DATA_PTRS)
1748 			invalidate_extent_cache(root, &key, &next_key);
1749 	}
1750 
1751 	/*
1752 	 * handle the case only one block in the fs tree need to be
1753 	 * relocated and the block is tree root.
1754 	 */
1755 	leaf = btrfs_lock_root_node(root);
1756 	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf,
1757 			      BTRFS_NESTING_COW);
1758 	btrfs_tree_unlock(leaf);
1759 	free_extent_buffer(leaf);
1760 out:
1761 	btrfs_free_path(path);
1762 
1763 	if (ret == 0)
1764 		insert_dirty_subvol(trans, rc, root);
1765 
1766 	if (trans)
1767 		btrfs_end_transaction_throttle(trans);
1768 
1769 	btrfs_btree_balance_dirty(fs_info);
1770 
1771 	if (replaced && rc->stage == UPDATE_DATA_PTRS)
1772 		invalidate_extent_cache(root, &key, &next_key);
1773 
1774 	return ret;
1775 }
1776 
1777 static noinline_for_stack
1778 int prepare_to_merge(struct reloc_control *rc, int err)
1779 {
1780 	struct btrfs_root *root = rc->extent_root;
1781 	struct btrfs_fs_info *fs_info = root->fs_info;
1782 	struct btrfs_root *reloc_root;
1783 	struct btrfs_trans_handle *trans;
1784 	LIST_HEAD(reloc_roots);
1785 	u64 num_bytes = 0;
1786 	int ret;
1787 
1788 	mutex_lock(&fs_info->reloc_mutex);
1789 	rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
1790 	rc->merging_rsv_size += rc->nodes_relocated * 2;
1791 	mutex_unlock(&fs_info->reloc_mutex);
1792 
1793 again:
1794 	if (!err) {
1795 		num_bytes = rc->merging_rsv_size;
1796 		ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
1797 					  BTRFS_RESERVE_FLUSH_ALL);
1798 		if (ret)
1799 			err = ret;
1800 	}
1801 
1802 	trans = btrfs_join_transaction(rc->extent_root);
1803 	if (IS_ERR(trans)) {
1804 		if (!err)
1805 			btrfs_block_rsv_release(fs_info, rc->block_rsv,
1806 						num_bytes, NULL);
1807 		return PTR_ERR(trans);
1808 	}
1809 
1810 	if (!err) {
1811 		if (num_bytes != rc->merging_rsv_size) {
1812 			btrfs_end_transaction(trans);
1813 			btrfs_block_rsv_release(fs_info, rc->block_rsv,
1814 						num_bytes, NULL);
1815 			goto again;
1816 		}
1817 	}
1818 
1819 	rc->merge_reloc_tree = 1;
1820 
1821 	while (!list_empty(&rc->reloc_roots)) {
1822 		reloc_root = list_entry(rc->reloc_roots.next,
1823 					struct btrfs_root, root_list);
1824 		list_del_init(&reloc_root->root_list);
1825 
1826 		root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1827 				false);
1828 		BUG_ON(IS_ERR(root));
1829 		BUG_ON(root->reloc_root != reloc_root);
1830 
1831 		/*
1832 		 * set reference count to 1, so btrfs_recover_relocation
1833 		 * knows it should resumes merging
1834 		 */
1835 		if (!err)
1836 			btrfs_set_root_refs(&reloc_root->root_item, 1);
1837 		btrfs_update_reloc_root(trans, root);
1838 
1839 		list_add(&reloc_root->root_list, &reloc_roots);
1840 		btrfs_put_root(root);
1841 	}
1842 
1843 	list_splice(&reloc_roots, &rc->reloc_roots);
1844 
1845 	if (!err)
1846 		btrfs_commit_transaction(trans);
1847 	else
1848 		btrfs_end_transaction(trans);
1849 	return err;
1850 }
1851 
1852 static noinline_for_stack
1853 void free_reloc_roots(struct list_head *list)
1854 {
1855 	struct btrfs_root *reloc_root, *tmp;
1856 
1857 	list_for_each_entry_safe(reloc_root, tmp, list, root_list)
1858 		__del_reloc_root(reloc_root);
1859 }
1860 
1861 static noinline_for_stack
1862 void merge_reloc_roots(struct reloc_control *rc)
1863 {
1864 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1865 	struct btrfs_root *root;
1866 	struct btrfs_root *reloc_root;
1867 	LIST_HEAD(reloc_roots);
1868 	int found = 0;
1869 	int ret = 0;
1870 again:
1871 	root = rc->extent_root;
1872 
1873 	/*
1874 	 * this serializes us with btrfs_record_root_in_transaction,
1875 	 * we have to make sure nobody is in the middle of
1876 	 * adding their roots to the list while we are
1877 	 * doing this splice
1878 	 */
1879 	mutex_lock(&fs_info->reloc_mutex);
1880 	list_splice_init(&rc->reloc_roots, &reloc_roots);
1881 	mutex_unlock(&fs_info->reloc_mutex);
1882 
1883 	while (!list_empty(&reloc_roots)) {
1884 		found = 1;
1885 		reloc_root = list_entry(reloc_roots.next,
1886 					struct btrfs_root, root_list);
1887 
1888 		root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1889 					 false);
1890 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
1891 			BUG_ON(IS_ERR(root));
1892 			BUG_ON(root->reloc_root != reloc_root);
1893 			ret = merge_reloc_root(rc, root);
1894 			btrfs_put_root(root);
1895 			if (ret) {
1896 				if (list_empty(&reloc_root->root_list))
1897 					list_add_tail(&reloc_root->root_list,
1898 						      &reloc_roots);
1899 				goto out;
1900 			}
1901 		} else {
1902 			if (!IS_ERR(root)) {
1903 				if (root->reloc_root == reloc_root) {
1904 					root->reloc_root = NULL;
1905 					btrfs_put_root(reloc_root);
1906 				}
1907 				clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE,
1908 					  &root->state);
1909 				btrfs_put_root(root);
1910 			}
1911 
1912 			list_del_init(&reloc_root->root_list);
1913 			/* Don't forget to queue this reloc root for cleanup */
1914 			list_add_tail(&reloc_root->reloc_dirty_list,
1915 				      &rc->dirty_subvol_roots);
1916 		}
1917 	}
1918 
1919 	if (found) {
1920 		found = 0;
1921 		goto again;
1922 	}
1923 out:
1924 	if (ret) {
1925 		btrfs_handle_fs_error(fs_info, ret, NULL);
1926 		free_reloc_roots(&reloc_roots);
1927 
1928 		/* new reloc root may be added */
1929 		mutex_lock(&fs_info->reloc_mutex);
1930 		list_splice_init(&rc->reloc_roots, &reloc_roots);
1931 		mutex_unlock(&fs_info->reloc_mutex);
1932 		free_reloc_roots(&reloc_roots);
1933 	}
1934 
1935 	/*
1936 	 * We used to have
1937 	 *
1938 	 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
1939 	 *
1940 	 * here, but it's wrong.  If we fail to start the transaction in
1941 	 * prepare_to_merge() we will have only 0 ref reloc roots, none of which
1942 	 * have actually been removed from the reloc_root_tree rb tree.  This is
1943 	 * fine because we're bailing here, and we hold a reference on the root
1944 	 * for the list that holds it, so these roots will be cleaned up when we
1945 	 * do the reloc_dirty_list afterwards.  Meanwhile the root->reloc_root
1946 	 * will be cleaned up on unmount.
1947 	 *
1948 	 * The remaining nodes will be cleaned up by free_reloc_control.
1949 	 */
1950 }
1951 
1952 static void free_block_list(struct rb_root *blocks)
1953 {
1954 	struct tree_block *block;
1955 	struct rb_node *rb_node;
1956 	while ((rb_node = rb_first(blocks))) {
1957 		block = rb_entry(rb_node, struct tree_block, rb_node);
1958 		rb_erase(rb_node, blocks);
1959 		kfree(block);
1960 	}
1961 }
1962 
1963 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
1964 				      struct btrfs_root *reloc_root)
1965 {
1966 	struct btrfs_fs_info *fs_info = reloc_root->fs_info;
1967 	struct btrfs_root *root;
1968 	int ret;
1969 
1970 	if (reloc_root->last_trans == trans->transid)
1971 		return 0;
1972 
1973 	root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false);
1974 	BUG_ON(IS_ERR(root));
1975 	BUG_ON(root->reloc_root != reloc_root);
1976 	ret = btrfs_record_root_in_trans(trans, root);
1977 	btrfs_put_root(root);
1978 
1979 	return ret;
1980 }
1981 
1982 static noinline_for_stack
1983 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
1984 				     struct reloc_control *rc,
1985 				     struct btrfs_backref_node *node,
1986 				     struct btrfs_backref_edge *edges[])
1987 {
1988 	struct btrfs_backref_node *next;
1989 	struct btrfs_root *root;
1990 	int index = 0;
1991 
1992 	next = node;
1993 	while (1) {
1994 		cond_resched();
1995 		next = walk_up_backref(next, edges, &index);
1996 		root = next->root;
1997 		BUG_ON(!root);
1998 		BUG_ON(!test_bit(BTRFS_ROOT_SHAREABLE, &root->state));
1999 
2000 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2001 			record_reloc_root_in_trans(trans, root);
2002 			break;
2003 		}
2004 
2005 		btrfs_record_root_in_trans(trans, root);
2006 		root = root->reloc_root;
2007 
2008 		if (next->new_bytenr != root->node->start) {
2009 			BUG_ON(next->new_bytenr);
2010 			BUG_ON(!list_empty(&next->list));
2011 			next->new_bytenr = root->node->start;
2012 			btrfs_put_root(next->root);
2013 			next->root = btrfs_grab_root(root);
2014 			ASSERT(next->root);
2015 			list_add_tail(&next->list,
2016 				      &rc->backref_cache.changed);
2017 			mark_block_processed(rc, next);
2018 			break;
2019 		}
2020 
2021 		WARN_ON(1);
2022 		root = NULL;
2023 		next = walk_down_backref(edges, &index);
2024 		if (!next || next->level <= node->level)
2025 			break;
2026 	}
2027 	if (!root)
2028 		return NULL;
2029 
2030 	next = node;
2031 	/* setup backref node path for btrfs_reloc_cow_block */
2032 	while (1) {
2033 		rc->backref_cache.path[next->level] = next;
2034 		if (--index < 0)
2035 			break;
2036 		next = edges[index]->node[UPPER];
2037 	}
2038 	return root;
2039 }
2040 
2041 /*
2042  * Select a tree root for relocation.
2043  *
2044  * Return NULL if the block is not shareable. We should use do_relocation() in
2045  * this case.
2046  *
2047  * Return a tree root pointer if the block is shareable.
2048  * Return -ENOENT if the block is root of reloc tree.
2049  */
2050 static noinline_for_stack
2051 struct btrfs_root *select_one_root(struct btrfs_backref_node *node)
2052 {
2053 	struct btrfs_backref_node *next;
2054 	struct btrfs_root *root;
2055 	struct btrfs_root *fs_root = NULL;
2056 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2057 	int index = 0;
2058 
2059 	next = node;
2060 	while (1) {
2061 		cond_resched();
2062 		next = walk_up_backref(next, edges, &index);
2063 		root = next->root;
2064 		BUG_ON(!root);
2065 
2066 		/* No other choice for non-shareable tree */
2067 		if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2068 			return root;
2069 
2070 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2071 			fs_root = root;
2072 
2073 		if (next != node)
2074 			return NULL;
2075 
2076 		next = walk_down_backref(edges, &index);
2077 		if (!next || next->level <= node->level)
2078 			break;
2079 	}
2080 
2081 	if (!fs_root)
2082 		return ERR_PTR(-ENOENT);
2083 	return fs_root;
2084 }
2085 
2086 static noinline_for_stack
2087 u64 calcu_metadata_size(struct reloc_control *rc,
2088 			struct btrfs_backref_node *node, int reserve)
2089 {
2090 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2091 	struct btrfs_backref_node *next = node;
2092 	struct btrfs_backref_edge *edge;
2093 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2094 	u64 num_bytes = 0;
2095 	int index = 0;
2096 
2097 	BUG_ON(reserve && node->processed);
2098 
2099 	while (next) {
2100 		cond_resched();
2101 		while (1) {
2102 			if (next->processed && (reserve || next != node))
2103 				break;
2104 
2105 			num_bytes += fs_info->nodesize;
2106 
2107 			if (list_empty(&next->upper))
2108 				break;
2109 
2110 			edge = list_entry(next->upper.next,
2111 					struct btrfs_backref_edge, list[LOWER]);
2112 			edges[index++] = edge;
2113 			next = edge->node[UPPER];
2114 		}
2115 		next = walk_down_backref(edges, &index);
2116 	}
2117 	return num_bytes;
2118 }
2119 
2120 static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2121 				  struct reloc_control *rc,
2122 				  struct btrfs_backref_node *node)
2123 {
2124 	struct btrfs_root *root = rc->extent_root;
2125 	struct btrfs_fs_info *fs_info = root->fs_info;
2126 	u64 num_bytes;
2127 	int ret;
2128 	u64 tmp;
2129 
2130 	num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2131 
2132 	trans->block_rsv = rc->block_rsv;
2133 	rc->reserved_bytes += num_bytes;
2134 
2135 	/*
2136 	 * We are under a transaction here so we can only do limited flushing.
2137 	 * If we get an enospc just kick back -EAGAIN so we know to drop the
2138 	 * transaction and try to refill when we can flush all the things.
2139 	 */
2140 	ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
2141 				BTRFS_RESERVE_FLUSH_LIMIT);
2142 	if (ret) {
2143 		tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2144 		while (tmp <= rc->reserved_bytes)
2145 			tmp <<= 1;
2146 		/*
2147 		 * only one thread can access block_rsv at this point,
2148 		 * so we don't need hold lock to protect block_rsv.
2149 		 * we expand more reservation size here to allow enough
2150 		 * space for relocation and we will return earlier in
2151 		 * enospc case.
2152 		 */
2153 		rc->block_rsv->size = tmp + fs_info->nodesize *
2154 				      RELOCATION_RESERVED_NODES;
2155 		return -EAGAIN;
2156 	}
2157 
2158 	return 0;
2159 }
2160 
2161 /*
2162  * relocate a block tree, and then update pointers in upper level
2163  * blocks that reference the block to point to the new location.
2164  *
2165  * if called by link_to_upper, the block has already been relocated.
2166  * in that case this function just updates pointers.
2167  */
2168 static int do_relocation(struct btrfs_trans_handle *trans,
2169 			 struct reloc_control *rc,
2170 			 struct btrfs_backref_node *node,
2171 			 struct btrfs_key *key,
2172 			 struct btrfs_path *path, int lowest)
2173 {
2174 	struct btrfs_backref_node *upper;
2175 	struct btrfs_backref_edge *edge;
2176 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2177 	struct btrfs_root *root;
2178 	struct extent_buffer *eb;
2179 	u32 blocksize;
2180 	u64 bytenr;
2181 	int slot;
2182 	int ret = 0;
2183 
2184 	BUG_ON(lowest && node->eb);
2185 
2186 	path->lowest_level = node->level + 1;
2187 	rc->backref_cache.path[node->level] = node;
2188 	list_for_each_entry(edge, &node->upper, list[LOWER]) {
2189 		struct btrfs_ref ref = { 0 };
2190 
2191 		cond_resched();
2192 
2193 		upper = edge->node[UPPER];
2194 		root = select_reloc_root(trans, rc, upper, edges);
2195 		BUG_ON(!root);
2196 
2197 		if (upper->eb && !upper->locked) {
2198 			if (!lowest) {
2199 				ret = btrfs_bin_search(upper->eb, key, &slot);
2200 				if (ret < 0)
2201 					goto next;
2202 				BUG_ON(ret);
2203 				bytenr = btrfs_node_blockptr(upper->eb, slot);
2204 				if (node->eb->start == bytenr)
2205 					goto next;
2206 			}
2207 			btrfs_backref_drop_node_buffer(upper);
2208 		}
2209 
2210 		if (!upper->eb) {
2211 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2212 			if (ret) {
2213 				if (ret > 0)
2214 					ret = -ENOENT;
2215 
2216 				btrfs_release_path(path);
2217 				break;
2218 			}
2219 
2220 			if (!upper->eb) {
2221 				upper->eb = path->nodes[upper->level];
2222 				path->nodes[upper->level] = NULL;
2223 			} else {
2224 				BUG_ON(upper->eb != path->nodes[upper->level]);
2225 			}
2226 
2227 			upper->locked = 1;
2228 			path->locks[upper->level] = 0;
2229 
2230 			slot = path->slots[upper->level];
2231 			btrfs_release_path(path);
2232 		} else {
2233 			ret = btrfs_bin_search(upper->eb, key, &slot);
2234 			if (ret < 0)
2235 				goto next;
2236 			BUG_ON(ret);
2237 		}
2238 
2239 		bytenr = btrfs_node_blockptr(upper->eb, slot);
2240 		if (lowest) {
2241 			if (bytenr != node->bytenr) {
2242 				btrfs_err(root->fs_info,
2243 		"lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2244 					  bytenr, node->bytenr, slot,
2245 					  upper->eb->start);
2246 				ret = -EIO;
2247 				goto next;
2248 			}
2249 		} else {
2250 			if (node->eb->start == bytenr)
2251 				goto next;
2252 		}
2253 
2254 		blocksize = root->fs_info->nodesize;
2255 		eb = btrfs_read_node_slot(upper->eb, slot);
2256 		if (IS_ERR(eb)) {
2257 			ret = PTR_ERR(eb);
2258 			goto next;
2259 		}
2260 		btrfs_tree_lock(eb);
2261 
2262 		if (!node->eb) {
2263 			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2264 					      slot, &eb, BTRFS_NESTING_COW);
2265 			btrfs_tree_unlock(eb);
2266 			free_extent_buffer(eb);
2267 			if (ret < 0)
2268 				goto next;
2269 			BUG_ON(node->eb != eb);
2270 		} else {
2271 			btrfs_set_node_blockptr(upper->eb, slot,
2272 						node->eb->start);
2273 			btrfs_set_node_ptr_generation(upper->eb, slot,
2274 						      trans->transid);
2275 			btrfs_mark_buffer_dirty(upper->eb);
2276 
2277 			btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2278 					       node->eb->start, blocksize,
2279 					       upper->eb->start);
2280 			ref.real_root = root->root_key.objectid;
2281 			btrfs_init_tree_ref(&ref, node->level,
2282 					    btrfs_header_owner(upper->eb));
2283 			ret = btrfs_inc_extent_ref(trans, &ref);
2284 			BUG_ON(ret);
2285 
2286 			ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2287 			BUG_ON(ret);
2288 		}
2289 next:
2290 		if (!upper->pending)
2291 			btrfs_backref_drop_node_buffer(upper);
2292 		else
2293 			btrfs_backref_unlock_node_buffer(upper);
2294 		if (ret)
2295 			break;
2296 	}
2297 
2298 	if (!ret && node->pending) {
2299 		btrfs_backref_drop_node_buffer(node);
2300 		list_move_tail(&node->list, &rc->backref_cache.changed);
2301 		node->pending = 0;
2302 	}
2303 
2304 	path->lowest_level = 0;
2305 	BUG_ON(ret == -ENOSPC);
2306 	return ret;
2307 }
2308 
2309 static int link_to_upper(struct btrfs_trans_handle *trans,
2310 			 struct reloc_control *rc,
2311 			 struct btrfs_backref_node *node,
2312 			 struct btrfs_path *path)
2313 {
2314 	struct btrfs_key key;
2315 
2316 	btrfs_node_key_to_cpu(node->eb, &key, 0);
2317 	return do_relocation(trans, rc, node, &key, path, 0);
2318 }
2319 
2320 static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2321 				struct reloc_control *rc,
2322 				struct btrfs_path *path, int err)
2323 {
2324 	LIST_HEAD(list);
2325 	struct btrfs_backref_cache *cache = &rc->backref_cache;
2326 	struct btrfs_backref_node *node;
2327 	int level;
2328 	int ret;
2329 
2330 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2331 		while (!list_empty(&cache->pending[level])) {
2332 			node = list_entry(cache->pending[level].next,
2333 					  struct btrfs_backref_node, list);
2334 			list_move_tail(&node->list, &list);
2335 			BUG_ON(!node->pending);
2336 
2337 			if (!err) {
2338 				ret = link_to_upper(trans, rc, node, path);
2339 				if (ret < 0)
2340 					err = ret;
2341 			}
2342 		}
2343 		list_splice_init(&list, &cache->pending[level]);
2344 	}
2345 	return err;
2346 }
2347 
2348 /*
2349  * mark a block and all blocks directly/indirectly reference the block
2350  * as processed.
2351  */
2352 static void update_processed_blocks(struct reloc_control *rc,
2353 				    struct btrfs_backref_node *node)
2354 {
2355 	struct btrfs_backref_node *next = node;
2356 	struct btrfs_backref_edge *edge;
2357 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2358 	int index = 0;
2359 
2360 	while (next) {
2361 		cond_resched();
2362 		while (1) {
2363 			if (next->processed)
2364 				break;
2365 
2366 			mark_block_processed(rc, next);
2367 
2368 			if (list_empty(&next->upper))
2369 				break;
2370 
2371 			edge = list_entry(next->upper.next,
2372 					struct btrfs_backref_edge, list[LOWER]);
2373 			edges[index++] = edge;
2374 			next = edge->node[UPPER];
2375 		}
2376 		next = walk_down_backref(edges, &index);
2377 	}
2378 }
2379 
2380 static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2381 {
2382 	u32 blocksize = rc->extent_root->fs_info->nodesize;
2383 
2384 	if (test_range_bit(&rc->processed_blocks, bytenr,
2385 			   bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2386 		return 1;
2387 	return 0;
2388 }
2389 
2390 static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2391 			      struct tree_block *block)
2392 {
2393 	struct extent_buffer *eb;
2394 
2395 	eb = read_tree_block(fs_info, block->bytenr, block->owner,
2396 			     block->key.offset, block->level, NULL);
2397 	if (IS_ERR(eb)) {
2398 		return PTR_ERR(eb);
2399 	} else if (!extent_buffer_uptodate(eb)) {
2400 		free_extent_buffer(eb);
2401 		return -EIO;
2402 	}
2403 	if (block->level == 0)
2404 		btrfs_item_key_to_cpu(eb, &block->key, 0);
2405 	else
2406 		btrfs_node_key_to_cpu(eb, &block->key, 0);
2407 	free_extent_buffer(eb);
2408 	block->key_ready = 1;
2409 	return 0;
2410 }
2411 
2412 /*
2413  * helper function to relocate a tree block
2414  */
2415 static int relocate_tree_block(struct btrfs_trans_handle *trans,
2416 				struct reloc_control *rc,
2417 				struct btrfs_backref_node *node,
2418 				struct btrfs_key *key,
2419 				struct btrfs_path *path)
2420 {
2421 	struct btrfs_root *root;
2422 	int ret = 0;
2423 
2424 	if (!node)
2425 		return 0;
2426 
2427 	/*
2428 	 * If we fail here we want to drop our backref_node because we are going
2429 	 * to start over and regenerate the tree for it.
2430 	 */
2431 	ret = reserve_metadata_space(trans, rc, node);
2432 	if (ret)
2433 		goto out;
2434 
2435 	BUG_ON(node->processed);
2436 	root = select_one_root(node);
2437 	if (root == ERR_PTR(-ENOENT)) {
2438 		update_processed_blocks(rc, node);
2439 		goto out;
2440 	}
2441 
2442 	if (root) {
2443 		if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2444 			BUG_ON(node->new_bytenr);
2445 			BUG_ON(!list_empty(&node->list));
2446 			btrfs_record_root_in_trans(trans, root);
2447 			root = root->reloc_root;
2448 			node->new_bytenr = root->node->start;
2449 			btrfs_put_root(node->root);
2450 			node->root = btrfs_grab_root(root);
2451 			ASSERT(node->root);
2452 			list_add_tail(&node->list, &rc->backref_cache.changed);
2453 		} else {
2454 			path->lowest_level = node->level;
2455 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2456 			btrfs_release_path(path);
2457 			if (ret > 0)
2458 				ret = 0;
2459 		}
2460 		if (!ret)
2461 			update_processed_blocks(rc, node);
2462 	} else {
2463 		ret = do_relocation(trans, rc, node, key, path, 1);
2464 	}
2465 out:
2466 	if (ret || node->level == 0 || node->cowonly)
2467 		btrfs_backref_cleanup_node(&rc->backref_cache, node);
2468 	return ret;
2469 }
2470 
2471 /*
2472  * relocate a list of blocks
2473  */
2474 static noinline_for_stack
2475 int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2476 			 struct reloc_control *rc, struct rb_root *blocks)
2477 {
2478 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2479 	struct btrfs_backref_node *node;
2480 	struct btrfs_path *path;
2481 	struct tree_block *block;
2482 	struct tree_block *next;
2483 	int ret;
2484 	int err = 0;
2485 
2486 	path = btrfs_alloc_path();
2487 	if (!path) {
2488 		err = -ENOMEM;
2489 		goto out_free_blocks;
2490 	}
2491 
2492 	/* Kick in readahead for tree blocks with missing keys */
2493 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2494 		if (!block->key_ready)
2495 			btrfs_readahead_tree_block(fs_info, block->bytenr,
2496 						   block->owner, 0,
2497 						   block->level);
2498 	}
2499 
2500 	/* Get first keys */
2501 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2502 		if (!block->key_ready) {
2503 			err = get_tree_block_key(fs_info, block);
2504 			if (err)
2505 				goto out_free_path;
2506 		}
2507 	}
2508 
2509 	/* Do tree relocation */
2510 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2511 		node = build_backref_tree(rc, &block->key,
2512 					  block->level, block->bytenr);
2513 		if (IS_ERR(node)) {
2514 			err = PTR_ERR(node);
2515 			goto out;
2516 		}
2517 
2518 		ret = relocate_tree_block(trans, rc, node, &block->key,
2519 					  path);
2520 		if (ret < 0) {
2521 			err = ret;
2522 			break;
2523 		}
2524 	}
2525 out:
2526 	err = finish_pending_nodes(trans, rc, path, err);
2527 
2528 out_free_path:
2529 	btrfs_free_path(path);
2530 out_free_blocks:
2531 	free_block_list(blocks);
2532 	return err;
2533 }
2534 
2535 static noinline_for_stack int prealloc_file_extent_cluster(
2536 				struct btrfs_inode *inode,
2537 				struct file_extent_cluster *cluster)
2538 {
2539 	u64 alloc_hint = 0;
2540 	u64 start;
2541 	u64 end;
2542 	u64 offset = inode->index_cnt;
2543 	u64 num_bytes;
2544 	int nr;
2545 	int ret = 0;
2546 	u64 prealloc_start = cluster->start - offset;
2547 	u64 prealloc_end = cluster->end - offset;
2548 	u64 cur_offset = prealloc_start;
2549 
2550 	BUG_ON(cluster->start != cluster->boundary[0]);
2551 	ret = btrfs_alloc_data_chunk_ondemand(inode,
2552 					      prealloc_end + 1 - prealloc_start);
2553 	if (ret)
2554 		return ret;
2555 
2556 	/*
2557 	 * On a zoned filesystem, we cannot preallocate the file region.
2558 	 * Instead, we dirty and fiemap_write the region.
2559 	 */
2560 	if (btrfs_is_zoned(inode->root->fs_info)) {
2561 		struct btrfs_root *root = inode->root;
2562 		struct btrfs_trans_handle *trans;
2563 
2564 		end = cluster->end - offset + 1;
2565 		trans = btrfs_start_transaction(root, 1);
2566 		if (IS_ERR(trans))
2567 			return PTR_ERR(trans);
2568 
2569 		inode->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
2570 		i_size_write(&inode->vfs_inode, end);
2571 		ret = btrfs_update_inode(trans, root, inode);
2572 		if (ret) {
2573 			btrfs_abort_transaction(trans, ret);
2574 			btrfs_end_transaction(trans);
2575 			return ret;
2576 		}
2577 
2578 		return btrfs_end_transaction(trans);
2579 	}
2580 
2581 	inode_lock(&inode->vfs_inode);
2582 	for (nr = 0; nr < cluster->nr; nr++) {
2583 		start = cluster->boundary[nr] - offset;
2584 		if (nr + 1 < cluster->nr)
2585 			end = cluster->boundary[nr + 1] - 1 - offset;
2586 		else
2587 			end = cluster->end - offset;
2588 
2589 		lock_extent(&inode->io_tree, start, end);
2590 		num_bytes = end + 1 - start;
2591 		ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start,
2592 						num_bytes, num_bytes,
2593 						end + 1, &alloc_hint);
2594 		cur_offset = end + 1;
2595 		unlock_extent(&inode->io_tree, start, end);
2596 		if (ret)
2597 			break;
2598 	}
2599 	inode_unlock(&inode->vfs_inode);
2600 
2601 	if (cur_offset < prealloc_end)
2602 		btrfs_free_reserved_data_space_noquota(inode->root->fs_info,
2603 					       prealloc_end + 1 - cur_offset);
2604 	return ret;
2605 }
2606 
2607 static noinline_for_stack
2608 int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
2609 			 u64 block_start)
2610 {
2611 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2612 	struct extent_map *em;
2613 	int ret = 0;
2614 
2615 	em = alloc_extent_map();
2616 	if (!em)
2617 		return -ENOMEM;
2618 
2619 	em->start = start;
2620 	em->len = end + 1 - start;
2621 	em->block_len = em->len;
2622 	em->block_start = block_start;
2623 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
2624 
2625 	lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2626 	while (1) {
2627 		write_lock(&em_tree->lock);
2628 		ret = add_extent_mapping(em_tree, em, 0);
2629 		write_unlock(&em_tree->lock);
2630 		if (ret != -EEXIST) {
2631 			free_extent_map(em);
2632 			break;
2633 		}
2634 		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
2635 	}
2636 	unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2637 	return ret;
2638 }
2639 
2640 /*
2641  * Allow error injection to test balance cancellation
2642  */
2643 noinline int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info)
2644 {
2645 	return atomic_read(&fs_info->balance_cancel_req) ||
2646 		fatal_signal_pending(current);
2647 }
2648 ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE);
2649 
2650 static int relocate_file_extent_cluster(struct inode *inode,
2651 					struct file_extent_cluster *cluster)
2652 {
2653 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2654 	u64 page_start;
2655 	u64 page_end;
2656 	u64 offset = BTRFS_I(inode)->index_cnt;
2657 	unsigned long index;
2658 	unsigned long last_index;
2659 	struct page *page;
2660 	struct file_ra_state *ra;
2661 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
2662 	int nr = 0;
2663 	int ret = 0;
2664 
2665 	if (!cluster->nr)
2666 		return 0;
2667 
2668 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
2669 	if (!ra)
2670 		return -ENOMEM;
2671 
2672 	ret = prealloc_file_extent_cluster(BTRFS_I(inode), cluster);
2673 	if (ret)
2674 		goto out;
2675 
2676 	file_ra_state_init(ra, inode->i_mapping);
2677 
2678 	ret = setup_extent_mapping(inode, cluster->start - offset,
2679 				   cluster->end - offset, cluster->start);
2680 	if (ret)
2681 		goto out;
2682 
2683 	index = (cluster->start - offset) >> PAGE_SHIFT;
2684 	last_index = (cluster->end - offset) >> PAGE_SHIFT;
2685 	while (index <= last_index) {
2686 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
2687 				PAGE_SIZE);
2688 		if (ret)
2689 			goto out;
2690 
2691 		page = find_lock_page(inode->i_mapping, index);
2692 		if (!page) {
2693 			page_cache_sync_readahead(inode->i_mapping,
2694 						  ra, NULL, index,
2695 						  last_index + 1 - index);
2696 			page = find_or_create_page(inode->i_mapping, index,
2697 						   mask);
2698 			if (!page) {
2699 				btrfs_delalloc_release_metadata(BTRFS_I(inode),
2700 							PAGE_SIZE, true);
2701 				btrfs_delalloc_release_extents(BTRFS_I(inode),
2702 							PAGE_SIZE);
2703 				ret = -ENOMEM;
2704 				goto out;
2705 			}
2706 		}
2707 		ret = set_page_extent_mapped(page);
2708 		if (ret < 0) {
2709 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
2710 							PAGE_SIZE, true);
2711 			btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
2712 			unlock_page(page);
2713 			put_page(page);
2714 			goto out;
2715 		}
2716 
2717 		if (PageReadahead(page)) {
2718 			page_cache_async_readahead(inode->i_mapping,
2719 						   ra, NULL, page, index,
2720 						   last_index + 1 - index);
2721 		}
2722 
2723 		if (!PageUptodate(page)) {
2724 			btrfs_readpage(NULL, page);
2725 			lock_page(page);
2726 			if (!PageUptodate(page)) {
2727 				unlock_page(page);
2728 				put_page(page);
2729 				btrfs_delalloc_release_metadata(BTRFS_I(inode),
2730 							PAGE_SIZE, true);
2731 				btrfs_delalloc_release_extents(BTRFS_I(inode),
2732 							       PAGE_SIZE);
2733 				ret = -EIO;
2734 				goto out;
2735 			}
2736 		}
2737 
2738 		page_start = page_offset(page);
2739 		page_end = page_start + PAGE_SIZE - 1;
2740 
2741 		lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
2742 
2743 		if (nr < cluster->nr &&
2744 		    page_start + offset == cluster->boundary[nr]) {
2745 			set_extent_bits(&BTRFS_I(inode)->io_tree,
2746 					page_start, page_end,
2747 					EXTENT_BOUNDARY);
2748 			nr++;
2749 		}
2750 
2751 		ret = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start,
2752 						page_end, 0, NULL);
2753 		if (ret) {
2754 			unlock_page(page);
2755 			put_page(page);
2756 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
2757 							 PAGE_SIZE, true);
2758 			btrfs_delalloc_release_extents(BTRFS_I(inode),
2759 			                               PAGE_SIZE);
2760 
2761 			clear_extent_bits(&BTRFS_I(inode)->io_tree,
2762 					  page_start, page_end,
2763 					  EXTENT_LOCKED | EXTENT_BOUNDARY);
2764 			goto out;
2765 
2766 		}
2767 		set_page_dirty(page);
2768 
2769 		unlock_extent(&BTRFS_I(inode)->io_tree,
2770 			      page_start, page_end);
2771 		unlock_page(page);
2772 		put_page(page);
2773 
2774 		index++;
2775 		btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
2776 		balance_dirty_pages_ratelimited(inode->i_mapping);
2777 		btrfs_throttle(fs_info);
2778 		if (btrfs_should_cancel_balance(fs_info)) {
2779 			ret = -ECANCELED;
2780 			goto out;
2781 		}
2782 	}
2783 	WARN_ON(nr != cluster->nr);
2784 	if (btrfs_is_zoned(fs_info) && !ret)
2785 		ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
2786 out:
2787 	kfree(ra);
2788 	return ret;
2789 }
2790 
2791 static noinline_for_stack
2792 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
2793 			 struct file_extent_cluster *cluster)
2794 {
2795 	int ret;
2796 
2797 	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
2798 		ret = relocate_file_extent_cluster(inode, cluster);
2799 		if (ret)
2800 			return ret;
2801 		cluster->nr = 0;
2802 	}
2803 
2804 	if (!cluster->nr)
2805 		cluster->start = extent_key->objectid;
2806 	else
2807 		BUG_ON(cluster->nr >= MAX_EXTENTS);
2808 	cluster->end = extent_key->objectid + extent_key->offset - 1;
2809 	cluster->boundary[cluster->nr] = extent_key->objectid;
2810 	cluster->nr++;
2811 
2812 	if (cluster->nr >= MAX_EXTENTS) {
2813 		ret = relocate_file_extent_cluster(inode, cluster);
2814 		if (ret)
2815 			return ret;
2816 		cluster->nr = 0;
2817 	}
2818 	return 0;
2819 }
2820 
2821 /*
2822  * helper to add a tree block to the list.
2823  * the major work is getting the generation and level of the block
2824  */
2825 static int add_tree_block(struct reloc_control *rc,
2826 			  struct btrfs_key *extent_key,
2827 			  struct btrfs_path *path,
2828 			  struct rb_root *blocks)
2829 {
2830 	struct extent_buffer *eb;
2831 	struct btrfs_extent_item *ei;
2832 	struct btrfs_tree_block_info *bi;
2833 	struct tree_block *block;
2834 	struct rb_node *rb_node;
2835 	u32 item_size;
2836 	int level = -1;
2837 	u64 generation;
2838 	u64 owner = 0;
2839 
2840 	eb =  path->nodes[0];
2841 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
2842 
2843 	if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
2844 	    item_size >= sizeof(*ei) + sizeof(*bi)) {
2845 		unsigned long ptr = 0, end;
2846 
2847 		ei = btrfs_item_ptr(eb, path->slots[0],
2848 				struct btrfs_extent_item);
2849 		end = (unsigned long)ei + item_size;
2850 		if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
2851 			bi = (struct btrfs_tree_block_info *)(ei + 1);
2852 			level = btrfs_tree_block_level(eb, bi);
2853 			ptr = (unsigned long)(bi + 1);
2854 		} else {
2855 			level = (int)extent_key->offset;
2856 			ptr = (unsigned long)(ei + 1);
2857 		}
2858 		generation = btrfs_extent_generation(eb, ei);
2859 
2860 		/*
2861 		 * We're reading random blocks without knowing their owner ahead
2862 		 * of time.  This is ok most of the time, as all reloc roots and
2863 		 * fs roots have the same lock type.  However normal trees do
2864 		 * not, and the only way to know ahead of time is to read the
2865 		 * inline ref offset.  We know it's an fs root if
2866 		 *
2867 		 * 1. There's more than one ref.
2868 		 * 2. There's a SHARED_DATA_REF_KEY set.
2869 		 * 3. FULL_BACKREF is set on the flags.
2870 		 *
2871 		 * Otherwise it's safe to assume that the ref offset == the
2872 		 * owner of this block, so we can use that when calling
2873 		 * read_tree_block.
2874 		 */
2875 		if (btrfs_extent_refs(eb, ei) == 1 &&
2876 		    !(btrfs_extent_flags(eb, ei) &
2877 		      BTRFS_BLOCK_FLAG_FULL_BACKREF) &&
2878 		    ptr < end) {
2879 			struct btrfs_extent_inline_ref *iref;
2880 			int type;
2881 
2882 			iref = (struct btrfs_extent_inline_ref *)ptr;
2883 			type = btrfs_get_extent_inline_ref_type(eb, iref,
2884 							BTRFS_REF_TYPE_BLOCK);
2885 			if (type == BTRFS_REF_TYPE_INVALID)
2886 				return -EINVAL;
2887 			if (type == BTRFS_TREE_BLOCK_REF_KEY)
2888 				owner = btrfs_extent_inline_ref_offset(eb, iref);
2889 		}
2890 	} else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
2891 		btrfs_print_v0_err(eb->fs_info);
2892 		btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
2893 		return -EINVAL;
2894 	} else {
2895 		BUG();
2896 	}
2897 
2898 	btrfs_release_path(path);
2899 
2900 	BUG_ON(level == -1);
2901 
2902 	block = kmalloc(sizeof(*block), GFP_NOFS);
2903 	if (!block)
2904 		return -ENOMEM;
2905 
2906 	block->bytenr = extent_key->objectid;
2907 	block->key.objectid = rc->extent_root->fs_info->nodesize;
2908 	block->key.offset = generation;
2909 	block->level = level;
2910 	block->key_ready = 0;
2911 	block->owner = owner;
2912 
2913 	rb_node = rb_simple_insert(blocks, block->bytenr, &block->rb_node);
2914 	if (rb_node)
2915 		btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr,
2916 				    -EEXIST);
2917 
2918 	return 0;
2919 }
2920 
2921 /*
2922  * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
2923  */
2924 static int __add_tree_block(struct reloc_control *rc,
2925 			    u64 bytenr, u32 blocksize,
2926 			    struct rb_root *blocks)
2927 {
2928 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2929 	struct btrfs_path *path;
2930 	struct btrfs_key key;
2931 	int ret;
2932 	bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
2933 
2934 	if (tree_block_processed(bytenr, rc))
2935 		return 0;
2936 
2937 	if (rb_simple_search(blocks, bytenr))
2938 		return 0;
2939 
2940 	path = btrfs_alloc_path();
2941 	if (!path)
2942 		return -ENOMEM;
2943 again:
2944 	key.objectid = bytenr;
2945 	if (skinny) {
2946 		key.type = BTRFS_METADATA_ITEM_KEY;
2947 		key.offset = (u64)-1;
2948 	} else {
2949 		key.type = BTRFS_EXTENT_ITEM_KEY;
2950 		key.offset = blocksize;
2951 	}
2952 
2953 	path->search_commit_root = 1;
2954 	path->skip_locking = 1;
2955 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
2956 	if (ret < 0)
2957 		goto out;
2958 
2959 	if (ret > 0 && skinny) {
2960 		if (path->slots[0]) {
2961 			path->slots[0]--;
2962 			btrfs_item_key_to_cpu(path->nodes[0], &key,
2963 					      path->slots[0]);
2964 			if (key.objectid == bytenr &&
2965 			    (key.type == BTRFS_METADATA_ITEM_KEY ||
2966 			     (key.type == BTRFS_EXTENT_ITEM_KEY &&
2967 			      key.offset == blocksize)))
2968 				ret = 0;
2969 		}
2970 
2971 		if (ret) {
2972 			skinny = false;
2973 			btrfs_release_path(path);
2974 			goto again;
2975 		}
2976 	}
2977 	if (ret) {
2978 		ASSERT(ret == 1);
2979 		btrfs_print_leaf(path->nodes[0]);
2980 		btrfs_err(fs_info,
2981 	     "tree block extent item (%llu) is not found in extent tree",
2982 		     bytenr);
2983 		WARN_ON(1);
2984 		ret = -EINVAL;
2985 		goto out;
2986 	}
2987 
2988 	ret = add_tree_block(rc, &key, path, blocks);
2989 out:
2990 	btrfs_free_path(path);
2991 	return ret;
2992 }
2993 
2994 static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
2995 				    struct btrfs_block_group *block_group,
2996 				    struct inode *inode,
2997 				    u64 ino)
2998 {
2999 	struct btrfs_root *root = fs_info->tree_root;
3000 	struct btrfs_trans_handle *trans;
3001 	int ret = 0;
3002 
3003 	if (inode)
3004 		goto truncate;
3005 
3006 	inode = btrfs_iget(fs_info->sb, ino, root);
3007 	if (IS_ERR(inode))
3008 		return -ENOENT;
3009 
3010 truncate:
3011 	ret = btrfs_check_trunc_cache_free_space(fs_info,
3012 						 &fs_info->global_block_rsv);
3013 	if (ret)
3014 		goto out;
3015 
3016 	trans = btrfs_join_transaction(root);
3017 	if (IS_ERR(trans)) {
3018 		ret = PTR_ERR(trans);
3019 		goto out;
3020 	}
3021 
3022 	ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
3023 
3024 	btrfs_end_transaction(trans);
3025 	btrfs_btree_balance_dirty(fs_info);
3026 out:
3027 	iput(inode);
3028 	return ret;
3029 }
3030 
3031 /*
3032  * Locate the free space cache EXTENT_DATA in root tree leaf and delete the
3033  * cache inode, to avoid free space cache data extent blocking data relocation.
3034  */
3035 static int delete_v1_space_cache(struct extent_buffer *leaf,
3036 				 struct btrfs_block_group *block_group,
3037 				 u64 data_bytenr)
3038 {
3039 	u64 space_cache_ino;
3040 	struct btrfs_file_extent_item *ei;
3041 	struct btrfs_key key;
3042 	bool found = false;
3043 	int i;
3044 	int ret;
3045 
3046 	if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID)
3047 		return 0;
3048 
3049 	for (i = 0; i < btrfs_header_nritems(leaf); i++) {
3050 		u8 type;
3051 
3052 		btrfs_item_key_to_cpu(leaf, &key, i);
3053 		if (key.type != BTRFS_EXTENT_DATA_KEY)
3054 			continue;
3055 		ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
3056 		type = btrfs_file_extent_type(leaf, ei);
3057 
3058 		if ((type == BTRFS_FILE_EXTENT_REG ||
3059 		     type == BTRFS_FILE_EXTENT_PREALLOC) &&
3060 		    btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) {
3061 			found = true;
3062 			space_cache_ino = key.objectid;
3063 			break;
3064 		}
3065 	}
3066 	if (!found)
3067 		return -ENOENT;
3068 	ret = delete_block_group_cache(leaf->fs_info, block_group, NULL,
3069 					space_cache_ino);
3070 	return ret;
3071 }
3072 
3073 /*
3074  * helper to find all tree blocks that reference a given data extent
3075  */
3076 static noinline_for_stack
3077 int add_data_references(struct reloc_control *rc,
3078 			struct btrfs_key *extent_key,
3079 			struct btrfs_path *path,
3080 			struct rb_root *blocks)
3081 {
3082 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3083 	struct ulist *leaves = NULL;
3084 	struct ulist_iterator leaf_uiter;
3085 	struct ulist_node *ref_node = NULL;
3086 	const u32 blocksize = fs_info->nodesize;
3087 	int ret = 0;
3088 
3089 	btrfs_release_path(path);
3090 	ret = btrfs_find_all_leafs(NULL, fs_info, extent_key->objectid,
3091 				   0, &leaves, NULL, true);
3092 	if (ret < 0)
3093 		return ret;
3094 
3095 	ULIST_ITER_INIT(&leaf_uiter);
3096 	while ((ref_node = ulist_next(leaves, &leaf_uiter))) {
3097 		struct extent_buffer *eb;
3098 
3099 		eb = read_tree_block(fs_info, ref_node->val, 0, 0, 0, NULL);
3100 		if (IS_ERR(eb)) {
3101 			ret = PTR_ERR(eb);
3102 			break;
3103 		}
3104 		ret = delete_v1_space_cache(eb, rc->block_group,
3105 					    extent_key->objectid);
3106 		free_extent_buffer(eb);
3107 		if (ret < 0)
3108 			break;
3109 		ret = __add_tree_block(rc, ref_node->val, blocksize, blocks);
3110 		if (ret < 0)
3111 			break;
3112 	}
3113 	if (ret < 0)
3114 		free_block_list(blocks);
3115 	ulist_free(leaves);
3116 	return ret;
3117 }
3118 
3119 /*
3120  * helper to find next unprocessed extent
3121  */
3122 static noinline_for_stack
3123 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3124 		     struct btrfs_key *extent_key)
3125 {
3126 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3127 	struct btrfs_key key;
3128 	struct extent_buffer *leaf;
3129 	u64 start, end, last;
3130 	int ret;
3131 
3132 	last = rc->block_group->start + rc->block_group->length;
3133 	while (1) {
3134 		cond_resched();
3135 		if (rc->search_start >= last) {
3136 			ret = 1;
3137 			break;
3138 		}
3139 
3140 		key.objectid = rc->search_start;
3141 		key.type = BTRFS_EXTENT_ITEM_KEY;
3142 		key.offset = 0;
3143 
3144 		path->search_commit_root = 1;
3145 		path->skip_locking = 1;
3146 		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3147 					0, 0);
3148 		if (ret < 0)
3149 			break;
3150 next:
3151 		leaf = path->nodes[0];
3152 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3153 			ret = btrfs_next_leaf(rc->extent_root, path);
3154 			if (ret != 0)
3155 				break;
3156 			leaf = path->nodes[0];
3157 		}
3158 
3159 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3160 		if (key.objectid >= last) {
3161 			ret = 1;
3162 			break;
3163 		}
3164 
3165 		if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3166 		    key.type != BTRFS_METADATA_ITEM_KEY) {
3167 			path->slots[0]++;
3168 			goto next;
3169 		}
3170 
3171 		if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3172 		    key.objectid + key.offset <= rc->search_start) {
3173 			path->slots[0]++;
3174 			goto next;
3175 		}
3176 
3177 		if (key.type == BTRFS_METADATA_ITEM_KEY &&
3178 		    key.objectid + fs_info->nodesize <=
3179 		    rc->search_start) {
3180 			path->slots[0]++;
3181 			goto next;
3182 		}
3183 
3184 		ret = find_first_extent_bit(&rc->processed_blocks,
3185 					    key.objectid, &start, &end,
3186 					    EXTENT_DIRTY, NULL);
3187 
3188 		if (ret == 0 && start <= key.objectid) {
3189 			btrfs_release_path(path);
3190 			rc->search_start = end + 1;
3191 		} else {
3192 			if (key.type == BTRFS_EXTENT_ITEM_KEY)
3193 				rc->search_start = key.objectid + key.offset;
3194 			else
3195 				rc->search_start = key.objectid +
3196 					fs_info->nodesize;
3197 			memcpy(extent_key, &key, sizeof(key));
3198 			return 0;
3199 		}
3200 	}
3201 	btrfs_release_path(path);
3202 	return ret;
3203 }
3204 
3205 static void set_reloc_control(struct reloc_control *rc)
3206 {
3207 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3208 
3209 	mutex_lock(&fs_info->reloc_mutex);
3210 	fs_info->reloc_ctl = rc;
3211 	mutex_unlock(&fs_info->reloc_mutex);
3212 }
3213 
3214 static void unset_reloc_control(struct reloc_control *rc)
3215 {
3216 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3217 
3218 	mutex_lock(&fs_info->reloc_mutex);
3219 	fs_info->reloc_ctl = NULL;
3220 	mutex_unlock(&fs_info->reloc_mutex);
3221 }
3222 
3223 static int check_extent_flags(u64 flags)
3224 {
3225 	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3226 	    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3227 		return 1;
3228 	if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
3229 	    !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3230 		return 1;
3231 	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3232 	    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
3233 		return 1;
3234 	return 0;
3235 }
3236 
3237 static noinline_for_stack
3238 int prepare_to_relocate(struct reloc_control *rc)
3239 {
3240 	struct btrfs_trans_handle *trans;
3241 	int ret;
3242 
3243 	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3244 					      BTRFS_BLOCK_RSV_TEMP);
3245 	if (!rc->block_rsv)
3246 		return -ENOMEM;
3247 
3248 	memset(&rc->cluster, 0, sizeof(rc->cluster));
3249 	rc->search_start = rc->block_group->start;
3250 	rc->extents_found = 0;
3251 	rc->nodes_relocated = 0;
3252 	rc->merging_rsv_size = 0;
3253 	rc->reserved_bytes = 0;
3254 	rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3255 			      RELOCATION_RESERVED_NODES;
3256 	ret = btrfs_block_rsv_refill(rc->extent_root,
3257 				     rc->block_rsv, rc->block_rsv->size,
3258 				     BTRFS_RESERVE_FLUSH_ALL);
3259 	if (ret)
3260 		return ret;
3261 
3262 	rc->create_reloc_tree = 1;
3263 	set_reloc_control(rc);
3264 
3265 	trans = btrfs_join_transaction(rc->extent_root);
3266 	if (IS_ERR(trans)) {
3267 		unset_reloc_control(rc);
3268 		/*
3269 		 * extent tree is not a ref_cow tree and has no reloc_root to
3270 		 * cleanup.  And callers are responsible to free the above
3271 		 * block rsv.
3272 		 */
3273 		return PTR_ERR(trans);
3274 	}
3275 	btrfs_commit_transaction(trans);
3276 	return 0;
3277 }
3278 
3279 static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3280 {
3281 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3282 	struct rb_root blocks = RB_ROOT;
3283 	struct btrfs_key key;
3284 	struct btrfs_trans_handle *trans = NULL;
3285 	struct btrfs_path *path;
3286 	struct btrfs_extent_item *ei;
3287 	u64 flags;
3288 	u32 item_size;
3289 	int ret;
3290 	int err = 0;
3291 	int progress = 0;
3292 
3293 	path = btrfs_alloc_path();
3294 	if (!path)
3295 		return -ENOMEM;
3296 	path->reada = READA_FORWARD;
3297 
3298 	ret = prepare_to_relocate(rc);
3299 	if (ret) {
3300 		err = ret;
3301 		goto out_free;
3302 	}
3303 
3304 	while (1) {
3305 		rc->reserved_bytes = 0;
3306 		ret = btrfs_block_rsv_refill(rc->extent_root,
3307 					rc->block_rsv, rc->block_rsv->size,
3308 					BTRFS_RESERVE_FLUSH_ALL);
3309 		if (ret) {
3310 			err = ret;
3311 			break;
3312 		}
3313 		progress++;
3314 		trans = btrfs_start_transaction(rc->extent_root, 0);
3315 		if (IS_ERR(trans)) {
3316 			err = PTR_ERR(trans);
3317 			trans = NULL;
3318 			break;
3319 		}
3320 restart:
3321 		if (update_backref_cache(trans, &rc->backref_cache)) {
3322 			btrfs_end_transaction(trans);
3323 			trans = NULL;
3324 			continue;
3325 		}
3326 
3327 		ret = find_next_extent(rc, path, &key);
3328 		if (ret < 0)
3329 			err = ret;
3330 		if (ret != 0)
3331 			break;
3332 
3333 		rc->extents_found++;
3334 
3335 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3336 				    struct btrfs_extent_item);
3337 		item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
3338 		if (item_size >= sizeof(*ei)) {
3339 			flags = btrfs_extent_flags(path->nodes[0], ei);
3340 			ret = check_extent_flags(flags);
3341 			BUG_ON(ret);
3342 		} else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
3343 			err = -EINVAL;
3344 			btrfs_print_v0_err(trans->fs_info);
3345 			btrfs_abort_transaction(trans, err);
3346 			break;
3347 		} else {
3348 			BUG();
3349 		}
3350 
3351 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3352 			ret = add_tree_block(rc, &key, path, &blocks);
3353 		} else if (rc->stage == UPDATE_DATA_PTRS &&
3354 			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
3355 			ret = add_data_references(rc, &key, path, &blocks);
3356 		} else {
3357 			btrfs_release_path(path);
3358 			ret = 0;
3359 		}
3360 		if (ret < 0) {
3361 			err = ret;
3362 			break;
3363 		}
3364 
3365 		if (!RB_EMPTY_ROOT(&blocks)) {
3366 			ret = relocate_tree_blocks(trans, rc, &blocks);
3367 			if (ret < 0) {
3368 				if (ret != -EAGAIN) {
3369 					err = ret;
3370 					break;
3371 				}
3372 				rc->extents_found--;
3373 				rc->search_start = key.objectid;
3374 			}
3375 		}
3376 
3377 		btrfs_end_transaction_throttle(trans);
3378 		btrfs_btree_balance_dirty(fs_info);
3379 		trans = NULL;
3380 
3381 		if (rc->stage == MOVE_DATA_EXTENTS &&
3382 		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
3383 			rc->found_file_extent = 1;
3384 			ret = relocate_data_extent(rc->data_inode,
3385 						   &key, &rc->cluster);
3386 			if (ret < 0) {
3387 				err = ret;
3388 				break;
3389 			}
3390 		}
3391 		if (btrfs_should_cancel_balance(fs_info)) {
3392 			err = -ECANCELED;
3393 			break;
3394 		}
3395 	}
3396 	if (trans && progress && err == -ENOSPC) {
3397 		ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
3398 		if (ret == 1) {
3399 			err = 0;
3400 			progress = 0;
3401 			goto restart;
3402 		}
3403 	}
3404 
3405 	btrfs_release_path(path);
3406 	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
3407 
3408 	if (trans) {
3409 		btrfs_end_transaction_throttle(trans);
3410 		btrfs_btree_balance_dirty(fs_info);
3411 	}
3412 
3413 	if (!err) {
3414 		ret = relocate_file_extent_cluster(rc->data_inode,
3415 						   &rc->cluster);
3416 		if (ret < 0)
3417 			err = ret;
3418 	}
3419 
3420 	rc->create_reloc_tree = 0;
3421 	set_reloc_control(rc);
3422 
3423 	btrfs_backref_release_cache(&rc->backref_cache);
3424 	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3425 
3426 	/*
3427 	 * Even in the case when the relocation is cancelled, we should all go
3428 	 * through prepare_to_merge() and merge_reloc_roots().
3429 	 *
3430 	 * For error (including cancelled balance), prepare_to_merge() will
3431 	 * mark all reloc trees orphan, then queue them for cleanup in
3432 	 * merge_reloc_roots()
3433 	 */
3434 	err = prepare_to_merge(rc, err);
3435 
3436 	merge_reloc_roots(rc);
3437 
3438 	rc->merge_reloc_tree = 0;
3439 	unset_reloc_control(rc);
3440 	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3441 
3442 	/* get rid of pinned extents */
3443 	trans = btrfs_join_transaction(rc->extent_root);
3444 	if (IS_ERR(trans)) {
3445 		err = PTR_ERR(trans);
3446 		goto out_free;
3447 	}
3448 	btrfs_commit_transaction(trans);
3449 out_free:
3450 	ret = clean_dirty_subvols(rc);
3451 	if (ret < 0 && !err)
3452 		err = ret;
3453 	btrfs_free_block_rsv(fs_info, rc->block_rsv);
3454 	btrfs_free_path(path);
3455 	return err;
3456 }
3457 
3458 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3459 				 struct btrfs_root *root, u64 objectid)
3460 {
3461 	struct btrfs_path *path;
3462 	struct btrfs_inode_item *item;
3463 	struct extent_buffer *leaf;
3464 	u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
3465 	int ret;
3466 
3467 	if (btrfs_is_zoned(trans->fs_info))
3468 		flags &= ~BTRFS_INODE_PREALLOC;
3469 
3470 	path = btrfs_alloc_path();
3471 	if (!path)
3472 		return -ENOMEM;
3473 
3474 	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
3475 	if (ret)
3476 		goto out;
3477 
3478 	leaf = path->nodes[0];
3479 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3480 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3481 	btrfs_set_inode_generation(leaf, item, 1);
3482 	btrfs_set_inode_size(leaf, item, 0);
3483 	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
3484 	btrfs_set_inode_flags(leaf, item, flags);
3485 	btrfs_mark_buffer_dirty(leaf);
3486 out:
3487 	btrfs_free_path(path);
3488 	return ret;
3489 }
3490 
3491 /*
3492  * helper to create inode for data relocation.
3493  * the inode is in data relocation tree and its link count is 0
3494  */
3495 static noinline_for_stack
3496 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
3497 				 struct btrfs_block_group *group)
3498 {
3499 	struct inode *inode = NULL;
3500 	struct btrfs_trans_handle *trans;
3501 	struct btrfs_root *root;
3502 	u64 objectid;
3503 	int err = 0;
3504 
3505 	root = btrfs_grab_root(fs_info->data_reloc_root);
3506 	trans = btrfs_start_transaction(root, 6);
3507 	if (IS_ERR(trans)) {
3508 		btrfs_put_root(root);
3509 		return ERR_CAST(trans);
3510 	}
3511 
3512 	err = btrfs_get_free_objectid(root, &objectid);
3513 	if (err)
3514 		goto out;
3515 
3516 	err = __insert_orphan_inode(trans, root, objectid);
3517 	BUG_ON(err);
3518 
3519 	inode = btrfs_iget(fs_info->sb, objectid, root);
3520 	BUG_ON(IS_ERR(inode));
3521 	BTRFS_I(inode)->index_cnt = group->start;
3522 
3523 	err = btrfs_orphan_add(trans, BTRFS_I(inode));
3524 out:
3525 	btrfs_put_root(root);
3526 	btrfs_end_transaction(trans);
3527 	btrfs_btree_balance_dirty(fs_info);
3528 	if (err) {
3529 		if (inode)
3530 			iput(inode);
3531 		inode = ERR_PTR(err);
3532 	}
3533 	return inode;
3534 }
3535 
3536 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
3537 {
3538 	struct reloc_control *rc;
3539 
3540 	rc = kzalloc(sizeof(*rc), GFP_NOFS);
3541 	if (!rc)
3542 		return NULL;
3543 
3544 	INIT_LIST_HEAD(&rc->reloc_roots);
3545 	INIT_LIST_HEAD(&rc->dirty_subvol_roots);
3546 	btrfs_backref_init_cache(fs_info, &rc->backref_cache, 1);
3547 	mapping_tree_init(&rc->reloc_root_tree);
3548 	extent_io_tree_init(fs_info, &rc->processed_blocks,
3549 			    IO_TREE_RELOC_BLOCKS, NULL);
3550 	return rc;
3551 }
3552 
3553 static void free_reloc_control(struct reloc_control *rc)
3554 {
3555 	struct mapping_node *node, *tmp;
3556 
3557 	free_reloc_roots(&rc->reloc_roots);
3558 	rbtree_postorder_for_each_entry_safe(node, tmp,
3559 			&rc->reloc_root_tree.rb_root, rb_node)
3560 		kfree(node);
3561 
3562 	kfree(rc);
3563 }
3564 
3565 /*
3566  * Print the block group being relocated
3567  */
3568 static void describe_relocation(struct btrfs_fs_info *fs_info,
3569 				struct btrfs_block_group *block_group)
3570 {
3571 	char buf[128] = {'\0'};
3572 
3573 	btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf));
3574 
3575 	btrfs_info(fs_info,
3576 		   "relocating block group %llu flags %s",
3577 		   block_group->start, buf);
3578 }
3579 
3580 static const char *stage_to_string(int stage)
3581 {
3582 	if (stage == MOVE_DATA_EXTENTS)
3583 		return "move data extents";
3584 	if (stage == UPDATE_DATA_PTRS)
3585 		return "update data pointers";
3586 	return "unknown";
3587 }
3588 
3589 /*
3590  * function to relocate all extents in a block group.
3591  */
3592 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
3593 {
3594 	struct btrfs_block_group *bg;
3595 	struct btrfs_root *extent_root = fs_info->extent_root;
3596 	struct reloc_control *rc;
3597 	struct inode *inode;
3598 	struct btrfs_path *path;
3599 	int ret;
3600 	int rw = 0;
3601 	int err = 0;
3602 
3603 	bg = btrfs_lookup_block_group(fs_info, group_start);
3604 	if (!bg)
3605 		return -ENOENT;
3606 
3607 	if (btrfs_pinned_by_swapfile(fs_info, bg)) {
3608 		btrfs_put_block_group(bg);
3609 		return -ETXTBSY;
3610 	}
3611 
3612 	rc = alloc_reloc_control(fs_info);
3613 	if (!rc) {
3614 		btrfs_put_block_group(bg);
3615 		return -ENOMEM;
3616 	}
3617 
3618 	rc->extent_root = extent_root;
3619 	rc->block_group = bg;
3620 
3621 	ret = btrfs_inc_block_group_ro(rc->block_group, true);
3622 	if (ret) {
3623 		err = ret;
3624 		goto out;
3625 	}
3626 	rw = 1;
3627 
3628 	path = btrfs_alloc_path();
3629 	if (!path) {
3630 		err = -ENOMEM;
3631 		goto out;
3632 	}
3633 
3634 	inode = lookup_free_space_inode(rc->block_group, path);
3635 	btrfs_free_path(path);
3636 
3637 	if (!IS_ERR(inode))
3638 		ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
3639 	else
3640 		ret = PTR_ERR(inode);
3641 
3642 	if (ret && ret != -ENOENT) {
3643 		err = ret;
3644 		goto out;
3645 	}
3646 
3647 	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
3648 	if (IS_ERR(rc->data_inode)) {
3649 		err = PTR_ERR(rc->data_inode);
3650 		rc->data_inode = NULL;
3651 		goto out;
3652 	}
3653 
3654 	describe_relocation(fs_info, rc->block_group);
3655 
3656 	btrfs_wait_block_group_reservations(rc->block_group);
3657 	btrfs_wait_nocow_writers(rc->block_group);
3658 	btrfs_wait_ordered_roots(fs_info, U64_MAX,
3659 				 rc->block_group->start,
3660 				 rc->block_group->length);
3661 
3662 	while (1) {
3663 		int finishes_stage;
3664 
3665 		mutex_lock(&fs_info->cleaner_mutex);
3666 		ret = relocate_block_group(rc);
3667 		mutex_unlock(&fs_info->cleaner_mutex);
3668 		if (ret < 0)
3669 			err = ret;
3670 
3671 		finishes_stage = rc->stage;
3672 		/*
3673 		 * We may have gotten ENOSPC after we already dirtied some
3674 		 * extents.  If writeout happens while we're relocating a
3675 		 * different block group we could end up hitting the
3676 		 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
3677 		 * btrfs_reloc_cow_block.  Make sure we write everything out
3678 		 * properly so we don't trip over this problem, and then break
3679 		 * out of the loop if we hit an error.
3680 		 */
3681 		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
3682 			ret = btrfs_wait_ordered_range(rc->data_inode, 0,
3683 						       (u64)-1);
3684 			if (ret)
3685 				err = ret;
3686 			invalidate_mapping_pages(rc->data_inode->i_mapping,
3687 						 0, -1);
3688 			rc->stage = UPDATE_DATA_PTRS;
3689 		}
3690 
3691 		if (err < 0)
3692 			goto out;
3693 
3694 		if (rc->extents_found == 0)
3695 			break;
3696 
3697 		btrfs_info(fs_info, "found %llu extents, stage: %s",
3698 			   rc->extents_found, stage_to_string(finishes_stage));
3699 	}
3700 
3701 	WARN_ON(rc->block_group->pinned > 0);
3702 	WARN_ON(rc->block_group->reserved > 0);
3703 	WARN_ON(rc->block_group->used > 0);
3704 out:
3705 	if (err && rw)
3706 		btrfs_dec_block_group_ro(rc->block_group);
3707 	iput(rc->data_inode);
3708 	btrfs_put_block_group(rc->block_group);
3709 	free_reloc_control(rc);
3710 	return err;
3711 }
3712 
3713 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
3714 {
3715 	struct btrfs_fs_info *fs_info = root->fs_info;
3716 	struct btrfs_trans_handle *trans;
3717 	int ret, err;
3718 
3719 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
3720 	if (IS_ERR(trans))
3721 		return PTR_ERR(trans);
3722 
3723 	memset(&root->root_item.drop_progress, 0,
3724 		sizeof(root->root_item.drop_progress));
3725 	btrfs_set_root_drop_level(&root->root_item, 0);
3726 	btrfs_set_root_refs(&root->root_item, 0);
3727 	ret = btrfs_update_root(trans, fs_info->tree_root,
3728 				&root->root_key, &root->root_item);
3729 
3730 	err = btrfs_end_transaction(trans);
3731 	if (err)
3732 		return err;
3733 	return ret;
3734 }
3735 
3736 /*
3737  * recover relocation interrupted by system crash.
3738  *
3739  * this function resumes merging reloc trees with corresponding fs trees.
3740  * this is important for keeping the sharing of tree blocks
3741  */
3742 int btrfs_recover_relocation(struct btrfs_root *root)
3743 {
3744 	struct btrfs_fs_info *fs_info = root->fs_info;
3745 	LIST_HEAD(reloc_roots);
3746 	struct btrfs_key key;
3747 	struct btrfs_root *fs_root;
3748 	struct btrfs_root *reloc_root;
3749 	struct btrfs_path *path;
3750 	struct extent_buffer *leaf;
3751 	struct reloc_control *rc = NULL;
3752 	struct btrfs_trans_handle *trans;
3753 	int ret;
3754 	int err = 0;
3755 
3756 	path = btrfs_alloc_path();
3757 	if (!path)
3758 		return -ENOMEM;
3759 	path->reada = READA_BACK;
3760 
3761 	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
3762 	key.type = BTRFS_ROOT_ITEM_KEY;
3763 	key.offset = (u64)-1;
3764 
3765 	while (1) {
3766 		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
3767 					path, 0, 0);
3768 		if (ret < 0) {
3769 			err = ret;
3770 			goto out;
3771 		}
3772 		if (ret > 0) {
3773 			if (path->slots[0] == 0)
3774 				break;
3775 			path->slots[0]--;
3776 		}
3777 		leaf = path->nodes[0];
3778 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3779 		btrfs_release_path(path);
3780 
3781 		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
3782 		    key.type != BTRFS_ROOT_ITEM_KEY)
3783 			break;
3784 
3785 		reloc_root = btrfs_read_tree_root(root, &key);
3786 		if (IS_ERR(reloc_root)) {
3787 			err = PTR_ERR(reloc_root);
3788 			goto out;
3789 		}
3790 
3791 		set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
3792 		list_add(&reloc_root->root_list, &reloc_roots);
3793 
3794 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
3795 			fs_root = btrfs_get_fs_root(fs_info,
3796 					reloc_root->root_key.offset, false);
3797 			if (IS_ERR(fs_root)) {
3798 				ret = PTR_ERR(fs_root);
3799 				if (ret != -ENOENT) {
3800 					err = ret;
3801 					goto out;
3802 				}
3803 				ret = mark_garbage_root(reloc_root);
3804 				if (ret < 0) {
3805 					err = ret;
3806 					goto out;
3807 				}
3808 			} else {
3809 				btrfs_put_root(fs_root);
3810 			}
3811 		}
3812 
3813 		if (key.offset == 0)
3814 			break;
3815 
3816 		key.offset--;
3817 	}
3818 	btrfs_release_path(path);
3819 
3820 	if (list_empty(&reloc_roots))
3821 		goto out;
3822 
3823 	rc = alloc_reloc_control(fs_info);
3824 	if (!rc) {
3825 		err = -ENOMEM;
3826 		goto out;
3827 	}
3828 
3829 	rc->extent_root = fs_info->extent_root;
3830 
3831 	set_reloc_control(rc);
3832 
3833 	trans = btrfs_join_transaction(rc->extent_root);
3834 	if (IS_ERR(trans)) {
3835 		err = PTR_ERR(trans);
3836 		goto out_unset;
3837 	}
3838 
3839 	rc->merge_reloc_tree = 1;
3840 
3841 	while (!list_empty(&reloc_roots)) {
3842 		reloc_root = list_entry(reloc_roots.next,
3843 					struct btrfs_root, root_list);
3844 		list_del(&reloc_root->root_list);
3845 
3846 		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
3847 			list_add_tail(&reloc_root->root_list,
3848 				      &rc->reloc_roots);
3849 			continue;
3850 		}
3851 
3852 		fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
3853 					    false);
3854 		if (IS_ERR(fs_root)) {
3855 			err = PTR_ERR(fs_root);
3856 			list_add_tail(&reloc_root->root_list, &reloc_roots);
3857 			btrfs_end_transaction(trans);
3858 			goto out_unset;
3859 		}
3860 
3861 		err = __add_reloc_root(reloc_root);
3862 		BUG_ON(err < 0); /* -ENOMEM or logic error */
3863 		fs_root->reloc_root = btrfs_grab_root(reloc_root);
3864 		btrfs_put_root(fs_root);
3865 	}
3866 
3867 	err = btrfs_commit_transaction(trans);
3868 	if (err)
3869 		goto out_unset;
3870 
3871 	merge_reloc_roots(rc);
3872 
3873 	unset_reloc_control(rc);
3874 
3875 	trans = btrfs_join_transaction(rc->extent_root);
3876 	if (IS_ERR(trans)) {
3877 		err = PTR_ERR(trans);
3878 		goto out_clean;
3879 	}
3880 	err = btrfs_commit_transaction(trans);
3881 out_clean:
3882 	ret = clean_dirty_subvols(rc);
3883 	if (ret < 0 && !err)
3884 		err = ret;
3885 out_unset:
3886 	unset_reloc_control(rc);
3887 	free_reloc_control(rc);
3888 out:
3889 	free_reloc_roots(&reloc_roots);
3890 
3891 	btrfs_free_path(path);
3892 
3893 	if (err == 0) {
3894 		/* cleanup orphan inode in data relocation tree */
3895 		fs_root = btrfs_grab_root(fs_info->data_reloc_root);
3896 		ASSERT(fs_root);
3897 		err = btrfs_orphan_cleanup(fs_root);
3898 		btrfs_put_root(fs_root);
3899 	}
3900 	return err;
3901 }
3902 
3903 /*
3904  * helper to add ordered checksum for data relocation.
3905  *
3906  * cloning checksum properly handles the nodatasum extents.
3907  * it also saves CPU time to re-calculate the checksum.
3908  */
3909 int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len)
3910 {
3911 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3912 	struct btrfs_ordered_sum *sums;
3913 	struct btrfs_ordered_extent *ordered;
3914 	int ret;
3915 	u64 disk_bytenr;
3916 	u64 new_bytenr;
3917 	LIST_HEAD(list);
3918 
3919 	ordered = btrfs_lookup_ordered_extent(inode, file_pos);
3920 	BUG_ON(ordered->file_offset != file_pos || ordered->num_bytes != len);
3921 
3922 	disk_bytenr = file_pos + inode->index_cnt;
3923 	ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr,
3924 				       disk_bytenr + len - 1, &list, 0);
3925 	if (ret)
3926 		goto out;
3927 
3928 	while (!list_empty(&list)) {
3929 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
3930 		list_del_init(&sums->list);
3931 
3932 		/*
3933 		 * We need to offset the new_bytenr based on where the csum is.
3934 		 * We need to do this because we will read in entire prealloc
3935 		 * extents but we may have written to say the middle of the
3936 		 * prealloc extent, so we need to make sure the csum goes with
3937 		 * the right disk offset.
3938 		 *
3939 		 * We can do this because the data reloc inode refers strictly
3940 		 * to the on disk bytes, so we don't have to worry about
3941 		 * disk_len vs real len like with real inodes since it's all
3942 		 * disk length.
3943 		 */
3944 		new_bytenr = ordered->disk_bytenr + sums->bytenr - disk_bytenr;
3945 		sums->bytenr = new_bytenr;
3946 
3947 		btrfs_add_ordered_sum(ordered, sums);
3948 	}
3949 out:
3950 	btrfs_put_ordered_extent(ordered);
3951 	return ret;
3952 }
3953 
3954 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
3955 			  struct btrfs_root *root, struct extent_buffer *buf,
3956 			  struct extent_buffer *cow)
3957 {
3958 	struct btrfs_fs_info *fs_info = root->fs_info;
3959 	struct reloc_control *rc;
3960 	struct btrfs_backref_node *node;
3961 	int first_cow = 0;
3962 	int level;
3963 	int ret = 0;
3964 
3965 	rc = fs_info->reloc_ctl;
3966 	if (!rc)
3967 		return 0;
3968 
3969 	BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
3970 	       root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
3971 
3972 	level = btrfs_header_level(buf);
3973 	if (btrfs_header_generation(buf) <=
3974 	    btrfs_root_last_snapshot(&root->root_item))
3975 		first_cow = 1;
3976 
3977 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
3978 	    rc->create_reloc_tree) {
3979 		WARN_ON(!first_cow && level == 0);
3980 
3981 		node = rc->backref_cache.path[level];
3982 		BUG_ON(node->bytenr != buf->start &&
3983 		       node->new_bytenr != buf->start);
3984 
3985 		btrfs_backref_drop_node_buffer(node);
3986 		atomic_inc(&cow->refs);
3987 		node->eb = cow;
3988 		node->new_bytenr = cow->start;
3989 
3990 		if (!node->pending) {
3991 			list_move_tail(&node->list,
3992 				       &rc->backref_cache.pending[level]);
3993 			node->pending = 1;
3994 		}
3995 
3996 		if (first_cow)
3997 			mark_block_processed(rc, node);
3998 
3999 		if (first_cow && level > 0)
4000 			rc->nodes_relocated += buf->len;
4001 	}
4002 
4003 	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4004 		ret = replace_file_extents(trans, rc, root, cow);
4005 	return ret;
4006 }
4007 
4008 /*
4009  * called before creating snapshot. it calculates metadata reservation
4010  * required for relocating tree blocks in the snapshot
4011  */
4012 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4013 			      u64 *bytes_to_reserve)
4014 {
4015 	struct btrfs_root *root = pending->root;
4016 	struct reloc_control *rc = root->fs_info->reloc_ctl;
4017 
4018 	if (!rc || !have_reloc_root(root))
4019 		return;
4020 
4021 	if (!rc->merge_reloc_tree)
4022 		return;
4023 
4024 	root = root->reloc_root;
4025 	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4026 	/*
4027 	 * relocation is in the stage of merging trees. the space
4028 	 * used by merging a reloc tree is twice the size of
4029 	 * relocated tree nodes in the worst case. half for cowing
4030 	 * the reloc tree, half for cowing the fs tree. the space
4031 	 * used by cowing the reloc tree will be freed after the
4032 	 * tree is dropped. if we create snapshot, cowing the fs
4033 	 * tree may use more space than it frees. so we need
4034 	 * reserve extra space.
4035 	 */
4036 	*bytes_to_reserve += rc->nodes_relocated;
4037 }
4038 
4039 /*
4040  * called after snapshot is created. migrate block reservation
4041  * and create reloc root for the newly created snapshot
4042  *
4043  * This is similar to btrfs_init_reloc_root(), we come out of here with two
4044  * references held on the reloc_root, one for root->reloc_root and one for
4045  * rc->reloc_roots.
4046  */
4047 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4048 			       struct btrfs_pending_snapshot *pending)
4049 {
4050 	struct btrfs_root *root = pending->root;
4051 	struct btrfs_root *reloc_root;
4052 	struct btrfs_root *new_root;
4053 	struct reloc_control *rc = root->fs_info->reloc_ctl;
4054 	int ret;
4055 
4056 	if (!rc || !have_reloc_root(root))
4057 		return 0;
4058 
4059 	rc = root->fs_info->reloc_ctl;
4060 	rc->merging_rsv_size += rc->nodes_relocated;
4061 
4062 	if (rc->merge_reloc_tree) {
4063 		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4064 					      rc->block_rsv,
4065 					      rc->nodes_relocated, true);
4066 		if (ret)
4067 			return ret;
4068 	}
4069 
4070 	new_root = pending->snap;
4071 	reloc_root = create_reloc_root(trans, root->reloc_root,
4072 				       new_root->root_key.objectid);
4073 	if (IS_ERR(reloc_root))
4074 		return PTR_ERR(reloc_root);
4075 
4076 	ret = __add_reloc_root(reloc_root);
4077 	BUG_ON(ret < 0);
4078 	new_root->reloc_root = btrfs_grab_root(reloc_root);
4079 
4080 	if (rc->create_reloc_tree)
4081 		ret = clone_backref_node(trans, rc, root, reloc_root);
4082 	return ret;
4083 }
4084