xref: /linux/fs/btrfs/relocation.c (revision 9cfc5c90ad38c8fc11bfd39de42a107da00871ba)
1 /*
2  * Copyright (C) 2009 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/rbtree.h>
24 #include <linux/slab.h>
25 #include "ctree.h"
26 #include "disk-io.h"
27 #include "transaction.h"
28 #include "volumes.h"
29 #include "locking.h"
30 #include "btrfs_inode.h"
31 #include "async-thread.h"
32 #include "free-space-cache.h"
33 #include "inode-map.h"
34 
35 /*
36  * backref_node, mapping_node and tree_block start with this
37  */
38 struct tree_entry {
39 	struct rb_node rb_node;
40 	u64 bytenr;
41 };
42 
43 /*
44  * present a tree block in the backref cache
45  */
46 struct backref_node {
47 	struct rb_node rb_node;
48 	u64 bytenr;
49 
50 	u64 new_bytenr;
51 	/* objectid of tree block owner, can be not uptodate */
52 	u64 owner;
53 	/* link to pending, changed or detached list */
54 	struct list_head list;
55 	/* list of upper level blocks reference this block */
56 	struct list_head upper;
57 	/* list of child blocks in the cache */
58 	struct list_head lower;
59 	/* NULL if this node is not tree root */
60 	struct btrfs_root *root;
61 	/* extent buffer got by COW the block */
62 	struct extent_buffer *eb;
63 	/* level of tree block */
64 	unsigned int level:8;
65 	/* is the block in non-reference counted tree */
66 	unsigned int cowonly:1;
67 	/* 1 if no child node in the cache */
68 	unsigned int lowest:1;
69 	/* is the extent buffer locked */
70 	unsigned int locked:1;
71 	/* has the block been processed */
72 	unsigned int processed:1;
73 	/* have backrefs of this block been checked */
74 	unsigned int checked:1;
75 	/*
76 	 * 1 if corresponding block has been cowed but some upper
77 	 * level block pointers may not point to the new location
78 	 */
79 	unsigned int pending:1;
80 	/*
81 	 * 1 if the backref node isn't connected to any other
82 	 * backref node.
83 	 */
84 	unsigned int detached:1;
85 };
86 
87 /*
88  * present a block pointer in the backref cache
89  */
90 struct backref_edge {
91 	struct list_head list[2];
92 	struct backref_node *node[2];
93 };
94 
95 #define LOWER	0
96 #define UPPER	1
97 #define RELOCATION_RESERVED_NODES	256
98 
99 struct backref_cache {
100 	/* red black tree of all backref nodes in the cache */
101 	struct rb_root rb_root;
102 	/* for passing backref nodes to btrfs_reloc_cow_block */
103 	struct backref_node *path[BTRFS_MAX_LEVEL];
104 	/*
105 	 * list of blocks that have been cowed but some block
106 	 * pointers in upper level blocks may not reflect the
107 	 * new location
108 	 */
109 	struct list_head pending[BTRFS_MAX_LEVEL];
110 	/* list of backref nodes with no child node */
111 	struct list_head leaves;
112 	/* list of blocks that have been cowed in current transaction */
113 	struct list_head changed;
114 	/* list of detached backref node. */
115 	struct list_head detached;
116 
117 	u64 last_trans;
118 
119 	int nr_nodes;
120 	int nr_edges;
121 };
122 
123 /*
124  * map address of tree root to tree
125  */
126 struct mapping_node {
127 	struct rb_node rb_node;
128 	u64 bytenr;
129 	void *data;
130 };
131 
132 struct mapping_tree {
133 	struct rb_root rb_root;
134 	spinlock_t lock;
135 };
136 
137 /*
138  * present a tree block to process
139  */
140 struct tree_block {
141 	struct rb_node rb_node;
142 	u64 bytenr;
143 	struct btrfs_key key;
144 	unsigned int level:8;
145 	unsigned int key_ready:1;
146 };
147 
148 #define MAX_EXTENTS 128
149 
150 struct file_extent_cluster {
151 	u64 start;
152 	u64 end;
153 	u64 boundary[MAX_EXTENTS];
154 	unsigned int nr;
155 };
156 
157 struct reloc_control {
158 	/* block group to relocate */
159 	struct btrfs_block_group_cache *block_group;
160 	/* extent tree */
161 	struct btrfs_root *extent_root;
162 	/* inode for moving data */
163 	struct inode *data_inode;
164 
165 	struct btrfs_block_rsv *block_rsv;
166 
167 	struct backref_cache backref_cache;
168 
169 	struct file_extent_cluster cluster;
170 	/* tree blocks have been processed */
171 	struct extent_io_tree processed_blocks;
172 	/* map start of tree root to corresponding reloc tree */
173 	struct mapping_tree reloc_root_tree;
174 	/* list of reloc trees */
175 	struct list_head reloc_roots;
176 	/* size of metadata reservation for merging reloc trees */
177 	u64 merging_rsv_size;
178 	/* size of relocated tree nodes */
179 	u64 nodes_relocated;
180 	/* reserved size for block group relocation*/
181 	u64 reserved_bytes;
182 
183 	u64 search_start;
184 	u64 extents_found;
185 
186 	unsigned int stage:8;
187 	unsigned int create_reloc_tree:1;
188 	unsigned int merge_reloc_tree:1;
189 	unsigned int found_file_extent:1;
190 };
191 
192 /* stages of data relocation */
193 #define MOVE_DATA_EXTENTS	0
194 #define UPDATE_DATA_PTRS	1
195 
196 static void remove_backref_node(struct backref_cache *cache,
197 				struct backref_node *node);
198 static void __mark_block_processed(struct reloc_control *rc,
199 				   struct backref_node *node);
200 
201 static void mapping_tree_init(struct mapping_tree *tree)
202 {
203 	tree->rb_root = RB_ROOT;
204 	spin_lock_init(&tree->lock);
205 }
206 
207 static void backref_cache_init(struct backref_cache *cache)
208 {
209 	int i;
210 	cache->rb_root = RB_ROOT;
211 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
212 		INIT_LIST_HEAD(&cache->pending[i]);
213 	INIT_LIST_HEAD(&cache->changed);
214 	INIT_LIST_HEAD(&cache->detached);
215 	INIT_LIST_HEAD(&cache->leaves);
216 }
217 
218 static void backref_cache_cleanup(struct backref_cache *cache)
219 {
220 	struct backref_node *node;
221 	int i;
222 
223 	while (!list_empty(&cache->detached)) {
224 		node = list_entry(cache->detached.next,
225 				  struct backref_node, list);
226 		remove_backref_node(cache, node);
227 	}
228 
229 	while (!list_empty(&cache->leaves)) {
230 		node = list_entry(cache->leaves.next,
231 				  struct backref_node, lower);
232 		remove_backref_node(cache, node);
233 	}
234 
235 	cache->last_trans = 0;
236 
237 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
238 		BUG_ON(!list_empty(&cache->pending[i]));
239 	BUG_ON(!list_empty(&cache->changed));
240 	BUG_ON(!list_empty(&cache->detached));
241 	BUG_ON(!RB_EMPTY_ROOT(&cache->rb_root));
242 	BUG_ON(cache->nr_nodes);
243 	BUG_ON(cache->nr_edges);
244 }
245 
246 static struct backref_node *alloc_backref_node(struct backref_cache *cache)
247 {
248 	struct backref_node *node;
249 
250 	node = kzalloc(sizeof(*node), GFP_NOFS);
251 	if (node) {
252 		INIT_LIST_HEAD(&node->list);
253 		INIT_LIST_HEAD(&node->upper);
254 		INIT_LIST_HEAD(&node->lower);
255 		RB_CLEAR_NODE(&node->rb_node);
256 		cache->nr_nodes++;
257 	}
258 	return node;
259 }
260 
261 static void free_backref_node(struct backref_cache *cache,
262 			      struct backref_node *node)
263 {
264 	if (node) {
265 		cache->nr_nodes--;
266 		kfree(node);
267 	}
268 }
269 
270 static struct backref_edge *alloc_backref_edge(struct backref_cache *cache)
271 {
272 	struct backref_edge *edge;
273 
274 	edge = kzalloc(sizeof(*edge), GFP_NOFS);
275 	if (edge)
276 		cache->nr_edges++;
277 	return edge;
278 }
279 
280 static void free_backref_edge(struct backref_cache *cache,
281 			      struct backref_edge *edge)
282 {
283 	if (edge) {
284 		cache->nr_edges--;
285 		kfree(edge);
286 	}
287 }
288 
289 static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr,
290 				   struct rb_node *node)
291 {
292 	struct rb_node **p = &root->rb_node;
293 	struct rb_node *parent = NULL;
294 	struct tree_entry *entry;
295 
296 	while (*p) {
297 		parent = *p;
298 		entry = rb_entry(parent, struct tree_entry, rb_node);
299 
300 		if (bytenr < entry->bytenr)
301 			p = &(*p)->rb_left;
302 		else if (bytenr > entry->bytenr)
303 			p = &(*p)->rb_right;
304 		else
305 			return parent;
306 	}
307 
308 	rb_link_node(node, parent, p);
309 	rb_insert_color(node, root);
310 	return NULL;
311 }
312 
313 static struct rb_node *tree_search(struct rb_root *root, u64 bytenr)
314 {
315 	struct rb_node *n = root->rb_node;
316 	struct tree_entry *entry;
317 
318 	while (n) {
319 		entry = rb_entry(n, struct tree_entry, rb_node);
320 
321 		if (bytenr < entry->bytenr)
322 			n = n->rb_left;
323 		else if (bytenr > entry->bytenr)
324 			n = n->rb_right;
325 		else
326 			return n;
327 	}
328 	return NULL;
329 }
330 
331 static void backref_tree_panic(struct rb_node *rb_node, int errno, u64 bytenr)
332 {
333 
334 	struct btrfs_fs_info *fs_info = NULL;
335 	struct backref_node *bnode = rb_entry(rb_node, struct backref_node,
336 					      rb_node);
337 	if (bnode->root)
338 		fs_info = bnode->root->fs_info;
339 	btrfs_panic(fs_info, errno, "Inconsistency in backref cache "
340 		    "found at offset %llu", bytenr);
341 }
342 
343 /*
344  * walk up backref nodes until reach node presents tree root
345  */
346 static struct backref_node *walk_up_backref(struct backref_node *node,
347 					    struct backref_edge *edges[],
348 					    int *index)
349 {
350 	struct backref_edge *edge;
351 	int idx = *index;
352 
353 	while (!list_empty(&node->upper)) {
354 		edge = list_entry(node->upper.next,
355 				  struct backref_edge, list[LOWER]);
356 		edges[idx++] = edge;
357 		node = edge->node[UPPER];
358 	}
359 	BUG_ON(node->detached);
360 	*index = idx;
361 	return node;
362 }
363 
364 /*
365  * walk down backref nodes to find start of next reference path
366  */
367 static struct backref_node *walk_down_backref(struct backref_edge *edges[],
368 					      int *index)
369 {
370 	struct backref_edge *edge;
371 	struct backref_node *lower;
372 	int idx = *index;
373 
374 	while (idx > 0) {
375 		edge = edges[idx - 1];
376 		lower = edge->node[LOWER];
377 		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
378 			idx--;
379 			continue;
380 		}
381 		edge = list_entry(edge->list[LOWER].next,
382 				  struct backref_edge, list[LOWER]);
383 		edges[idx - 1] = edge;
384 		*index = idx;
385 		return edge->node[UPPER];
386 	}
387 	*index = 0;
388 	return NULL;
389 }
390 
391 static void unlock_node_buffer(struct backref_node *node)
392 {
393 	if (node->locked) {
394 		btrfs_tree_unlock(node->eb);
395 		node->locked = 0;
396 	}
397 }
398 
399 static void drop_node_buffer(struct backref_node *node)
400 {
401 	if (node->eb) {
402 		unlock_node_buffer(node);
403 		free_extent_buffer(node->eb);
404 		node->eb = NULL;
405 	}
406 }
407 
408 static void drop_backref_node(struct backref_cache *tree,
409 			      struct backref_node *node)
410 {
411 	BUG_ON(!list_empty(&node->upper));
412 
413 	drop_node_buffer(node);
414 	list_del(&node->list);
415 	list_del(&node->lower);
416 	if (!RB_EMPTY_NODE(&node->rb_node))
417 		rb_erase(&node->rb_node, &tree->rb_root);
418 	free_backref_node(tree, node);
419 }
420 
421 /*
422  * remove a backref node from the backref cache
423  */
424 static void remove_backref_node(struct backref_cache *cache,
425 				struct backref_node *node)
426 {
427 	struct backref_node *upper;
428 	struct backref_edge *edge;
429 
430 	if (!node)
431 		return;
432 
433 	BUG_ON(!node->lowest && !node->detached);
434 	while (!list_empty(&node->upper)) {
435 		edge = list_entry(node->upper.next, struct backref_edge,
436 				  list[LOWER]);
437 		upper = edge->node[UPPER];
438 		list_del(&edge->list[LOWER]);
439 		list_del(&edge->list[UPPER]);
440 		free_backref_edge(cache, edge);
441 
442 		if (RB_EMPTY_NODE(&upper->rb_node)) {
443 			BUG_ON(!list_empty(&node->upper));
444 			drop_backref_node(cache, node);
445 			node = upper;
446 			node->lowest = 1;
447 			continue;
448 		}
449 		/*
450 		 * add the node to leaf node list if no other
451 		 * child block cached.
452 		 */
453 		if (list_empty(&upper->lower)) {
454 			list_add_tail(&upper->lower, &cache->leaves);
455 			upper->lowest = 1;
456 		}
457 	}
458 
459 	drop_backref_node(cache, node);
460 }
461 
462 static void update_backref_node(struct backref_cache *cache,
463 				struct backref_node *node, u64 bytenr)
464 {
465 	struct rb_node *rb_node;
466 	rb_erase(&node->rb_node, &cache->rb_root);
467 	node->bytenr = bytenr;
468 	rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node);
469 	if (rb_node)
470 		backref_tree_panic(rb_node, -EEXIST, bytenr);
471 }
472 
473 /*
474  * update backref cache after a transaction commit
475  */
476 static int update_backref_cache(struct btrfs_trans_handle *trans,
477 				struct backref_cache *cache)
478 {
479 	struct backref_node *node;
480 	int level = 0;
481 
482 	if (cache->last_trans == 0) {
483 		cache->last_trans = trans->transid;
484 		return 0;
485 	}
486 
487 	if (cache->last_trans == trans->transid)
488 		return 0;
489 
490 	/*
491 	 * detached nodes are used to avoid unnecessary backref
492 	 * lookup. transaction commit changes the extent tree.
493 	 * so the detached nodes are no longer useful.
494 	 */
495 	while (!list_empty(&cache->detached)) {
496 		node = list_entry(cache->detached.next,
497 				  struct backref_node, list);
498 		remove_backref_node(cache, node);
499 	}
500 
501 	while (!list_empty(&cache->changed)) {
502 		node = list_entry(cache->changed.next,
503 				  struct backref_node, list);
504 		list_del_init(&node->list);
505 		BUG_ON(node->pending);
506 		update_backref_node(cache, node, node->new_bytenr);
507 	}
508 
509 	/*
510 	 * some nodes can be left in the pending list if there were
511 	 * errors during processing the pending nodes.
512 	 */
513 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
514 		list_for_each_entry(node, &cache->pending[level], list) {
515 			BUG_ON(!node->pending);
516 			if (node->bytenr == node->new_bytenr)
517 				continue;
518 			update_backref_node(cache, node, node->new_bytenr);
519 		}
520 	}
521 
522 	cache->last_trans = 0;
523 	return 1;
524 }
525 
526 
527 static int should_ignore_root(struct btrfs_root *root)
528 {
529 	struct btrfs_root *reloc_root;
530 
531 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
532 		return 0;
533 
534 	reloc_root = root->reloc_root;
535 	if (!reloc_root)
536 		return 0;
537 
538 	if (btrfs_root_last_snapshot(&reloc_root->root_item) ==
539 	    root->fs_info->running_transaction->transid - 1)
540 		return 0;
541 	/*
542 	 * if there is reloc tree and it was created in previous
543 	 * transaction backref lookup can find the reloc tree,
544 	 * so backref node for the fs tree root is useless for
545 	 * relocation.
546 	 */
547 	return 1;
548 }
549 /*
550  * find reloc tree by address of tree root
551  */
552 static struct btrfs_root *find_reloc_root(struct reloc_control *rc,
553 					  u64 bytenr)
554 {
555 	struct rb_node *rb_node;
556 	struct mapping_node *node;
557 	struct btrfs_root *root = NULL;
558 
559 	spin_lock(&rc->reloc_root_tree.lock);
560 	rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr);
561 	if (rb_node) {
562 		node = rb_entry(rb_node, struct mapping_node, rb_node);
563 		root = (struct btrfs_root *)node->data;
564 	}
565 	spin_unlock(&rc->reloc_root_tree.lock);
566 	return root;
567 }
568 
569 static int is_cowonly_root(u64 root_objectid)
570 {
571 	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
572 	    root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
573 	    root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
574 	    root_objectid == BTRFS_DEV_TREE_OBJECTID ||
575 	    root_objectid == BTRFS_TREE_LOG_OBJECTID ||
576 	    root_objectid == BTRFS_CSUM_TREE_OBJECTID ||
577 	    root_objectid == BTRFS_UUID_TREE_OBJECTID ||
578 	    root_objectid == BTRFS_QUOTA_TREE_OBJECTID)
579 		return 1;
580 	return 0;
581 }
582 
583 static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info,
584 					u64 root_objectid)
585 {
586 	struct btrfs_key key;
587 
588 	key.objectid = root_objectid;
589 	key.type = BTRFS_ROOT_ITEM_KEY;
590 	if (is_cowonly_root(root_objectid))
591 		key.offset = 0;
592 	else
593 		key.offset = (u64)-1;
594 
595 	return btrfs_get_fs_root(fs_info, &key, false);
596 }
597 
598 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
599 static noinline_for_stack
600 struct btrfs_root *find_tree_root(struct reloc_control *rc,
601 				  struct extent_buffer *leaf,
602 				  struct btrfs_extent_ref_v0 *ref0)
603 {
604 	struct btrfs_root *root;
605 	u64 root_objectid = btrfs_ref_root_v0(leaf, ref0);
606 	u64 generation = btrfs_ref_generation_v0(leaf, ref0);
607 
608 	BUG_ON(root_objectid == BTRFS_TREE_RELOC_OBJECTID);
609 
610 	root = read_fs_root(rc->extent_root->fs_info, root_objectid);
611 	BUG_ON(IS_ERR(root));
612 
613 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
614 	    generation != btrfs_root_generation(&root->root_item))
615 		return NULL;
616 
617 	return root;
618 }
619 #endif
620 
621 static noinline_for_stack
622 int find_inline_backref(struct extent_buffer *leaf, int slot,
623 			unsigned long *ptr, unsigned long *end)
624 {
625 	struct btrfs_key key;
626 	struct btrfs_extent_item *ei;
627 	struct btrfs_tree_block_info *bi;
628 	u32 item_size;
629 
630 	btrfs_item_key_to_cpu(leaf, &key, slot);
631 
632 	item_size = btrfs_item_size_nr(leaf, slot);
633 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
634 	if (item_size < sizeof(*ei)) {
635 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
636 		return 1;
637 	}
638 #endif
639 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
640 	WARN_ON(!(btrfs_extent_flags(leaf, ei) &
641 		  BTRFS_EXTENT_FLAG_TREE_BLOCK));
642 
643 	if (key.type == BTRFS_EXTENT_ITEM_KEY &&
644 	    item_size <= sizeof(*ei) + sizeof(*bi)) {
645 		WARN_ON(item_size < sizeof(*ei) + sizeof(*bi));
646 		return 1;
647 	}
648 	if (key.type == BTRFS_METADATA_ITEM_KEY &&
649 	    item_size <= sizeof(*ei)) {
650 		WARN_ON(item_size < sizeof(*ei));
651 		return 1;
652 	}
653 
654 	if (key.type == BTRFS_EXTENT_ITEM_KEY) {
655 		bi = (struct btrfs_tree_block_info *)(ei + 1);
656 		*ptr = (unsigned long)(bi + 1);
657 	} else {
658 		*ptr = (unsigned long)(ei + 1);
659 	}
660 	*end = (unsigned long)ei + item_size;
661 	return 0;
662 }
663 
664 /*
665  * build backref tree for a given tree block. root of the backref tree
666  * corresponds the tree block, leaves of the backref tree correspond
667  * roots of b-trees that reference the tree block.
668  *
669  * the basic idea of this function is check backrefs of a given block
670  * to find upper level blocks that refernece the block, and then check
671  * bakcrefs of these upper level blocks recursively. the recursion stop
672  * when tree root is reached or backrefs for the block is cached.
673  *
674  * NOTE: if we find backrefs for a block are cached, we know backrefs
675  * for all upper level blocks that directly/indirectly reference the
676  * block are also cached.
677  */
678 static noinline_for_stack
679 struct backref_node *build_backref_tree(struct reloc_control *rc,
680 					struct btrfs_key *node_key,
681 					int level, u64 bytenr)
682 {
683 	struct backref_cache *cache = &rc->backref_cache;
684 	struct btrfs_path *path1;
685 	struct btrfs_path *path2;
686 	struct extent_buffer *eb;
687 	struct btrfs_root *root;
688 	struct backref_node *cur;
689 	struct backref_node *upper;
690 	struct backref_node *lower;
691 	struct backref_node *node = NULL;
692 	struct backref_node *exist = NULL;
693 	struct backref_edge *edge;
694 	struct rb_node *rb_node;
695 	struct btrfs_key key;
696 	unsigned long end;
697 	unsigned long ptr;
698 	LIST_HEAD(list);
699 	LIST_HEAD(useless);
700 	int cowonly;
701 	int ret;
702 	int err = 0;
703 	bool need_check = true;
704 
705 	path1 = btrfs_alloc_path();
706 	path2 = btrfs_alloc_path();
707 	if (!path1 || !path2) {
708 		err = -ENOMEM;
709 		goto out;
710 	}
711 	path1->reada = 1;
712 	path2->reada = 2;
713 
714 	node = alloc_backref_node(cache);
715 	if (!node) {
716 		err = -ENOMEM;
717 		goto out;
718 	}
719 
720 	node->bytenr = bytenr;
721 	node->level = level;
722 	node->lowest = 1;
723 	cur = node;
724 again:
725 	end = 0;
726 	ptr = 0;
727 	key.objectid = cur->bytenr;
728 	key.type = BTRFS_METADATA_ITEM_KEY;
729 	key.offset = (u64)-1;
730 
731 	path1->search_commit_root = 1;
732 	path1->skip_locking = 1;
733 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1,
734 				0, 0);
735 	if (ret < 0) {
736 		err = ret;
737 		goto out;
738 	}
739 	ASSERT(ret);
740 	ASSERT(path1->slots[0]);
741 
742 	path1->slots[0]--;
743 
744 	WARN_ON(cur->checked);
745 	if (!list_empty(&cur->upper)) {
746 		/*
747 		 * the backref was added previously when processing
748 		 * backref of type BTRFS_TREE_BLOCK_REF_KEY
749 		 */
750 		ASSERT(list_is_singular(&cur->upper));
751 		edge = list_entry(cur->upper.next, struct backref_edge,
752 				  list[LOWER]);
753 		ASSERT(list_empty(&edge->list[UPPER]));
754 		exist = edge->node[UPPER];
755 		/*
756 		 * add the upper level block to pending list if we need
757 		 * check its backrefs
758 		 */
759 		if (!exist->checked)
760 			list_add_tail(&edge->list[UPPER], &list);
761 	} else {
762 		exist = NULL;
763 	}
764 
765 	while (1) {
766 		cond_resched();
767 		eb = path1->nodes[0];
768 
769 		if (ptr >= end) {
770 			if (path1->slots[0] >= btrfs_header_nritems(eb)) {
771 				ret = btrfs_next_leaf(rc->extent_root, path1);
772 				if (ret < 0) {
773 					err = ret;
774 					goto out;
775 				}
776 				if (ret > 0)
777 					break;
778 				eb = path1->nodes[0];
779 			}
780 
781 			btrfs_item_key_to_cpu(eb, &key, path1->slots[0]);
782 			if (key.objectid != cur->bytenr) {
783 				WARN_ON(exist);
784 				break;
785 			}
786 
787 			if (key.type == BTRFS_EXTENT_ITEM_KEY ||
788 			    key.type == BTRFS_METADATA_ITEM_KEY) {
789 				ret = find_inline_backref(eb, path1->slots[0],
790 							  &ptr, &end);
791 				if (ret)
792 					goto next;
793 			}
794 		}
795 
796 		if (ptr < end) {
797 			/* update key for inline back ref */
798 			struct btrfs_extent_inline_ref *iref;
799 			iref = (struct btrfs_extent_inline_ref *)ptr;
800 			key.type = btrfs_extent_inline_ref_type(eb, iref);
801 			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
802 			WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY &&
803 				key.type != BTRFS_SHARED_BLOCK_REF_KEY);
804 		}
805 
806 		if (exist &&
807 		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
808 		      exist->owner == key.offset) ||
809 		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
810 		      exist->bytenr == key.offset))) {
811 			exist = NULL;
812 			goto next;
813 		}
814 
815 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
816 		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY ||
817 		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
818 			if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
819 				struct btrfs_extent_ref_v0 *ref0;
820 				ref0 = btrfs_item_ptr(eb, path1->slots[0],
821 						struct btrfs_extent_ref_v0);
822 				if (key.objectid == key.offset) {
823 					root = find_tree_root(rc, eb, ref0);
824 					if (root && !should_ignore_root(root))
825 						cur->root = root;
826 					else
827 						list_add(&cur->list, &useless);
828 					break;
829 				}
830 				if (is_cowonly_root(btrfs_ref_root_v0(eb,
831 								      ref0)))
832 					cur->cowonly = 1;
833 			}
834 #else
835 		ASSERT(key.type != BTRFS_EXTENT_REF_V0_KEY);
836 		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
837 #endif
838 			if (key.objectid == key.offset) {
839 				/*
840 				 * only root blocks of reloc trees use
841 				 * backref of this type.
842 				 */
843 				root = find_reloc_root(rc, cur->bytenr);
844 				ASSERT(root);
845 				cur->root = root;
846 				break;
847 			}
848 
849 			edge = alloc_backref_edge(cache);
850 			if (!edge) {
851 				err = -ENOMEM;
852 				goto out;
853 			}
854 			rb_node = tree_search(&cache->rb_root, key.offset);
855 			if (!rb_node) {
856 				upper = alloc_backref_node(cache);
857 				if (!upper) {
858 					free_backref_edge(cache, edge);
859 					err = -ENOMEM;
860 					goto out;
861 				}
862 				upper->bytenr = key.offset;
863 				upper->level = cur->level + 1;
864 				/*
865 				 *  backrefs for the upper level block isn't
866 				 *  cached, add the block to pending list
867 				 */
868 				list_add_tail(&edge->list[UPPER], &list);
869 			} else {
870 				upper = rb_entry(rb_node, struct backref_node,
871 						 rb_node);
872 				ASSERT(upper->checked);
873 				INIT_LIST_HEAD(&edge->list[UPPER]);
874 			}
875 			list_add_tail(&edge->list[LOWER], &cur->upper);
876 			edge->node[LOWER] = cur;
877 			edge->node[UPPER] = upper;
878 
879 			goto next;
880 		} else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
881 			goto next;
882 		}
883 
884 		/* key.type == BTRFS_TREE_BLOCK_REF_KEY */
885 		root = read_fs_root(rc->extent_root->fs_info, key.offset);
886 		if (IS_ERR(root)) {
887 			err = PTR_ERR(root);
888 			goto out;
889 		}
890 
891 		if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
892 			cur->cowonly = 1;
893 
894 		if (btrfs_root_level(&root->root_item) == cur->level) {
895 			/* tree root */
896 			ASSERT(btrfs_root_bytenr(&root->root_item) ==
897 			       cur->bytenr);
898 			if (should_ignore_root(root))
899 				list_add(&cur->list, &useless);
900 			else
901 				cur->root = root;
902 			break;
903 		}
904 
905 		level = cur->level + 1;
906 
907 		/*
908 		 * searching the tree to find upper level blocks
909 		 * reference the block.
910 		 */
911 		path2->search_commit_root = 1;
912 		path2->skip_locking = 1;
913 		path2->lowest_level = level;
914 		ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0);
915 		path2->lowest_level = 0;
916 		if (ret < 0) {
917 			err = ret;
918 			goto out;
919 		}
920 		if (ret > 0 && path2->slots[level] > 0)
921 			path2->slots[level]--;
922 
923 		eb = path2->nodes[level];
924 		WARN_ON(btrfs_node_blockptr(eb, path2->slots[level]) !=
925 			cur->bytenr);
926 
927 		lower = cur;
928 		need_check = true;
929 		for (; level < BTRFS_MAX_LEVEL; level++) {
930 			if (!path2->nodes[level]) {
931 				ASSERT(btrfs_root_bytenr(&root->root_item) ==
932 				       lower->bytenr);
933 				if (should_ignore_root(root))
934 					list_add(&lower->list, &useless);
935 				else
936 					lower->root = root;
937 				break;
938 			}
939 
940 			edge = alloc_backref_edge(cache);
941 			if (!edge) {
942 				err = -ENOMEM;
943 				goto out;
944 			}
945 
946 			eb = path2->nodes[level];
947 			rb_node = tree_search(&cache->rb_root, eb->start);
948 			if (!rb_node) {
949 				upper = alloc_backref_node(cache);
950 				if (!upper) {
951 					free_backref_edge(cache, edge);
952 					err = -ENOMEM;
953 					goto out;
954 				}
955 				upper->bytenr = eb->start;
956 				upper->owner = btrfs_header_owner(eb);
957 				upper->level = lower->level + 1;
958 				if (!test_bit(BTRFS_ROOT_REF_COWS,
959 					      &root->state))
960 					upper->cowonly = 1;
961 
962 				/*
963 				 * if we know the block isn't shared
964 				 * we can void checking its backrefs.
965 				 */
966 				if (btrfs_block_can_be_shared(root, eb))
967 					upper->checked = 0;
968 				else
969 					upper->checked = 1;
970 
971 				/*
972 				 * add the block to pending list if we
973 				 * need check its backrefs, we only do this once
974 				 * while walking up a tree as we will catch
975 				 * anything else later on.
976 				 */
977 				if (!upper->checked && need_check) {
978 					need_check = false;
979 					list_add_tail(&edge->list[UPPER],
980 						      &list);
981 				} else {
982 					if (upper->checked)
983 						need_check = true;
984 					INIT_LIST_HEAD(&edge->list[UPPER]);
985 				}
986 			} else {
987 				upper = rb_entry(rb_node, struct backref_node,
988 						 rb_node);
989 				ASSERT(upper->checked);
990 				INIT_LIST_HEAD(&edge->list[UPPER]);
991 				if (!upper->owner)
992 					upper->owner = btrfs_header_owner(eb);
993 			}
994 			list_add_tail(&edge->list[LOWER], &lower->upper);
995 			edge->node[LOWER] = lower;
996 			edge->node[UPPER] = upper;
997 
998 			if (rb_node)
999 				break;
1000 			lower = upper;
1001 			upper = NULL;
1002 		}
1003 		btrfs_release_path(path2);
1004 next:
1005 		if (ptr < end) {
1006 			ptr += btrfs_extent_inline_ref_size(key.type);
1007 			if (ptr >= end) {
1008 				WARN_ON(ptr > end);
1009 				ptr = 0;
1010 				end = 0;
1011 			}
1012 		}
1013 		if (ptr >= end)
1014 			path1->slots[0]++;
1015 	}
1016 	btrfs_release_path(path1);
1017 
1018 	cur->checked = 1;
1019 	WARN_ON(exist);
1020 
1021 	/* the pending list isn't empty, take the first block to process */
1022 	if (!list_empty(&list)) {
1023 		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1024 		list_del_init(&edge->list[UPPER]);
1025 		cur = edge->node[UPPER];
1026 		goto again;
1027 	}
1028 
1029 	/*
1030 	 * everything goes well, connect backref nodes and insert backref nodes
1031 	 * into the cache.
1032 	 */
1033 	ASSERT(node->checked);
1034 	cowonly = node->cowonly;
1035 	if (!cowonly) {
1036 		rb_node = tree_insert(&cache->rb_root, node->bytenr,
1037 				      &node->rb_node);
1038 		if (rb_node)
1039 			backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1040 		list_add_tail(&node->lower, &cache->leaves);
1041 	}
1042 
1043 	list_for_each_entry(edge, &node->upper, list[LOWER])
1044 		list_add_tail(&edge->list[UPPER], &list);
1045 
1046 	while (!list_empty(&list)) {
1047 		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1048 		list_del_init(&edge->list[UPPER]);
1049 		upper = edge->node[UPPER];
1050 		if (upper->detached) {
1051 			list_del(&edge->list[LOWER]);
1052 			lower = edge->node[LOWER];
1053 			free_backref_edge(cache, edge);
1054 			if (list_empty(&lower->upper))
1055 				list_add(&lower->list, &useless);
1056 			continue;
1057 		}
1058 
1059 		if (!RB_EMPTY_NODE(&upper->rb_node)) {
1060 			if (upper->lowest) {
1061 				list_del_init(&upper->lower);
1062 				upper->lowest = 0;
1063 			}
1064 
1065 			list_add_tail(&edge->list[UPPER], &upper->lower);
1066 			continue;
1067 		}
1068 
1069 		if (!upper->checked) {
1070 			/*
1071 			 * Still want to blow up for developers since this is a
1072 			 * logic bug.
1073 			 */
1074 			ASSERT(0);
1075 			err = -EINVAL;
1076 			goto out;
1077 		}
1078 		if (cowonly != upper->cowonly) {
1079 			ASSERT(0);
1080 			err = -EINVAL;
1081 			goto out;
1082 		}
1083 
1084 		if (!cowonly) {
1085 			rb_node = tree_insert(&cache->rb_root, upper->bytenr,
1086 					      &upper->rb_node);
1087 			if (rb_node)
1088 				backref_tree_panic(rb_node, -EEXIST,
1089 						   upper->bytenr);
1090 		}
1091 
1092 		list_add_tail(&edge->list[UPPER], &upper->lower);
1093 
1094 		list_for_each_entry(edge, &upper->upper, list[LOWER])
1095 			list_add_tail(&edge->list[UPPER], &list);
1096 	}
1097 	/*
1098 	 * process useless backref nodes. backref nodes for tree leaves
1099 	 * are deleted from the cache. backref nodes for upper level
1100 	 * tree blocks are left in the cache to avoid unnecessary backref
1101 	 * lookup.
1102 	 */
1103 	while (!list_empty(&useless)) {
1104 		upper = list_entry(useless.next, struct backref_node, list);
1105 		list_del_init(&upper->list);
1106 		ASSERT(list_empty(&upper->upper));
1107 		if (upper == node)
1108 			node = NULL;
1109 		if (upper->lowest) {
1110 			list_del_init(&upper->lower);
1111 			upper->lowest = 0;
1112 		}
1113 		while (!list_empty(&upper->lower)) {
1114 			edge = list_entry(upper->lower.next,
1115 					  struct backref_edge, list[UPPER]);
1116 			list_del(&edge->list[UPPER]);
1117 			list_del(&edge->list[LOWER]);
1118 			lower = edge->node[LOWER];
1119 			free_backref_edge(cache, edge);
1120 
1121 			if (list_empty(&lower->upper))
1122 				list_add(&lower->list, &useless);
1123 		}
1124 		__mark_block_processed(rc, upper);
1125 		if (upper->level > 0) {
1126 			list_add(&upper->list, &cache->detached);
1127 			upper->detached = 1;
1128 		} else {
1129 			rb_erase(&upper->rb_node, &cache->rb_root);
1130 			free_backref_node(cache, upper);
1131 		}
1132 	}
1133 out:
1134 	btrfs_free_path(path1);
1135 	btrfs_free_path(path2);
1136 	if (err) {
1137 		while (!list_empty(&useless)) {
1138 			lower = list_entry(useless.next,
1139 					   struct backref_node, list);
1140 			list_del_init(&lower->list);
1141 		}
1142 		while (!list_empty(&list)) {
1143 			edge = list_first_entry(&list, struct backref_edge,
1144 						list[UPPER]);
1145 			list_del(&edge->list[UPPER]);
1146 			list_del(&edge->list[LOWER]);
1147 			lower = edge->node[LOWER];
1148 			upper = edge->node[UPPER];
1149 			free_backref_edge(cache, edge);
1150 
1151 			/*
1152 			 * Lower is no longer linked to any upper backref nodes
1153 			 * and isn't in the cache, we can free it ourselves.
1154 			 */
1155 			if (list_empty(&lower->upper) &&
1156 			    RB_EMPTY_NODE(&lower->rb_node))
1157 				list_add(&lower->list, &useless);
1158 
1159 			if (!RB_EMPTY_NODE(&upper->rb_node))
1160 				continue;
1161 
1162 			/* Add this guy's upper edges to the list to proces */
1163 			list_for_each_entry(edge, &upper->upper, list[LOWER])
1164 				list_add_tail(&edge->list[UPPER], &list);
1165 			if (list_empty(&upper->upper))
1166 				list_add(&upper->list, &useless);
1167 		}
1168 
1169 		while (!list_empty(&useless)) {
1170 			lower = list_entry(useless.next,
1171 					   struct backref_node, list);
1172 			list_del_init(&lower->list);
1173 			free_backref_node(cache, lower);
1174 		}
1175 		return ERR_PTR(err);
1176 	}
1177 	ASSERT(!node || !node->detached);
1178 	return node;
1179 }
1180 
1181 /*
1182  * helper to add backref node for the newly created snapshot.
1183  * the backref node is created by cloning backref node that
1184  * corresponds to root of source tree
1185  */
1186 static int clone_backref_node(struct btrfs_trans_handle *trans,
1187 			      struct reloc_control *rc,
1188 			      struct btrfs_root *src,
1189 			      struct btrfs_root *dest)
1190 {
1191 	struct btrfs_root *reloc_root = src->reloc_root;
1192 	struct backref_cache *cache = &rc->backref_cache;
1193 	struct backref_node *node = NULL;
1194 	struct backref_node *new_node;
1195 	struct backref_edge *edge;
1196 	struct backref_edge *new_edge;
1197 	struct rb_node *rb_node;
1198 
1199 	if (cache->last_trans > 0)
1200 		update_backref_cache(trans, cache);
1201 
1202 	rb_node = tree_search(&cache->rb_root, src->commit_root->start);
1203 	if (rb_node) {
1204 		node = rb_entry(rb_node, struct backref_node, rb_node);
1205 		if (node->detached)
1206 			node = NULL;
1207 		else
1208 			BUG_ON(node->new_bytenr != reloc_root->node->start);
1209 	}
1210 
1211 	if (!node) {
1212 		rb_node = tree_search(&cache->rb_root,
1213 				      reloc_root->commit_root->start);
1214 		if (rb_node) {
1215 			node = rb_entry(rb_node, struct backref_node,
1216 					rb_node);
1217 			BUG_ON(node->detached);
1218 		}
1219 	}
1220 
1221 	if (!node)
1222 		return 0;
1223 
1224 	new_node = alloc_backref_node(cache);
1225 	if (!new_node)
1226 		return -ENOMEM;
1227 
1228 	new_node->bytenr = dest->node->start;
1229 	new_node->level = node->level;
1230 	new_node->lowest = node->lowest;
1231 	new_node->checked = 1;
1232 	new_node->root = dest;
1233 
1234 	if (!node->lowest) {
1235 		list_for_each_entry(edge, &node->lower, list[UPPER]) {
1236 			new_edge = alloc_backref_edge(cache);
1237 			if (!new_edge)
1238 				goto fail;
1239 
1240 			new_edge->node[UPPER] = new_node;
1241 			new_edge->node[LOWER] = edge->node[LOWER];
1242 			list_add_tail(&new_edge->list[UPPER],
1243 				      &new_node->lower);
1244 		}
1245 	} else {
1246 		list_add_tail(&new_node->lower, &cache->leaves);
1247 	}
1248 
1249 	rb_node = tree_insert(&cache->rb_root, new_node->bytenr,
1250 			      &new_node->rb_node);
1251 	if (rb_node)
1252 		backref_tree_panic(rb_node, -EEXIST, new_node->bytenr);
1253 
1254 	if (!new_node->lowest) {
1255 		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
1256 			list_add_tail(&new_edge->list[LOWER],
1257 				      &new_edge->node[LOWER]->upper);
1258 		}
1259 	}
1260 	return 0;
1261 fail:
1262 	while (!list_empty(&new_node->lower)) {
1263 		new_edge = list_entry(new_node->lower.next,
1264 				      struct backref_edge, list[UPPER]);
1265 		list_del(&new_edge->list[UPPER]);
1266 		free_backref_edge(cache, new_edge);
1267 	}
1268 	free_backref_node(cache, new_node);
1269 	return -ENOMEM;
1270 }
1271 
1272 /*
1273  * helper to add 'address of tree root -> reloc tree' mapping
1274  */
1275 static int __must_check __add_reloc_root(struct btrfs_root *root)
1276 {
1277 	struct rb_node *rb_node;
1278 	struct mapping_node *node;
1279 	struct reloc_control *rc = root->fs_info->reloc_ctl;
1280 
1281 	node = kmalloc(sizeof(*node), GFP_NOFS);
1282 	if (!node)
1283 		return -ENOMEM;
1284 
1285 	node->bytenr = root->node->start;
1286 	node->data = root;
1287 
1288 	spin_lock(&rc->reloc_root_tree.lock);
1289 	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1290 			      node->bytenr, &node->rb_node);
1291 	spin_unlock(&rc->reloc_root_tree.lock);
1292 	if (rb_node) {
1293 		btrfs_panic(root->fs_info, -EEXIST, "Duplicate root found "
1294 			    "for start=%llu while inserting into relocation "
1295 			    "tree", node->bytenr);
1296 		kfree(node);
1297 		return -EEXIST;
1298 	}
1299 
1300 	list_add_tail(&root->root_list, &rc->reloc_roots);
1301 	return 0;
1302 }
1303 
1304 /*
1305  * helper to delete the 'address of tree root -> reloc tree'
1306  * mapping
1307  */
1308 static void __del_reloc_root(struct btrfs_root *root)
1309 {
1310 	struct rb_node *rb_node;
1311 	struct mapping_node *node = NULL;
1312 	struct reloc_control *rc = root->fs_info->reloc_ctl;
1313 
1314 	spin_lock(&rc->reloc_root_tree.lock);
1315 	rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1316 			      root->node->start);
1317 	if (rb_node) {
1318 		node = rb_entry(rb_node, struct mapping_node, rb_node);
1319 		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1320 	}
1321 	spin_unlock(&rc->reloc_root_tree.lock);
1322 
1323 	if (!node)
1324 		return;
1325 	BUG_ON((struct btrfs_root *)node->data != root);
1326 
1327 	spin_lock(&root->fs_info->trans_lock);
1328 	list_del_init(&root->root_list);
1329 	spin_unlock(&root->fs_info->trans_lock);
1330 	kfree(node);
1331 }
1332 
1333 /*
1334  * helper to update the 'address of tree root -> reloc tree'
1335  * mapping
1336  */
1337 static int __update_reloc_root(struct btrfs_root *root, u64 new_bytenr)
1338 {
1339 	struct rb_node *rb_node;
1340 	struct mapping_node *node = NULL;
1341 	struct reloc_control *rc = root->fs_info->reloc_ctl;
1342 
1343 	spin_lock(&rc->reloc_root_tree.lock);
1344 	rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1345 			      root->node->start);
1346 	if (rb_node) {
1347 		node = rb_entry(rb_node, struct mapping_node, rb_node);
1348 		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1349 	}
1350 	spin_unlock(&rc->reloc_root_tree.lock);
1351 
1352 	if (!node)
1353 		return 0;
1354 	BUG_ON((struct btrfs_root *)node->data != root);
1355 
1356 	spin_lock(&rc->reloc_root_tree.lock);
1357 	node->bytenr = new_bytenr;
1358 	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1359 			      node->bytenr, &node->rb_node);
1360 	spin_unlock(&rc->reloc_root_tree.lock);
1361 	if (rb_node)
1362 		backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1363 	return 0;
1364 }
1365 
1366 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
1367 					struct btrfs_root *root, u64 objectid)
1368 {
1369 	struct btrfs_root *reloc_root;
1370 	struct extent_buffer *eb;
1371 	struct btrfs_root_item *root_item;
1372 	struct btrfs_key root_key;
1373 	u64 last_snap = 0;
1374 	int ret;
1375 
1376 	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
1377 	BUG_ON(!root_item);
1378 
1379 	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
1380 	root_key.type = BTRFS_ROOT_ITEM_KEY;
1381 	root_key.offset = objectid;
1382 
1383 	if (root->root_key.objectid == objectid) {
1384 		/* called by btrfs_init_reloc_root */
1385 		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
1386 				      BTRFS_TREE_RELOC_OBJECTID);
1387 		BUG_ON(ret);
1388 
1389 		last_snap = btrfs_root_last_snapshot(&root->root_item);
1390 		btrfs_set_root_last_snapshot(&root->root_item,
1391 					     trans->transid - 1);
1392 	} else {
1393 		/*
1394 		 * called by btrfs_reloc_post_snapshot_hook.
1395 		 * the source tree is a reloc tree, all tree blocks
1396 		 * modified after it was created have RELOC flag
1397 		 * set in their headers. so it's OK to not update
1398 		 * the 'last_snapshot'.
1399 		 */
1400 		ret = btrfs_copy_root(trans, root, root->node, &eb,
1401 				      BTRFS_TREE_RELOC_OBJECTID);
1402 		BUG_ON(ret);
1403 	}
1404 
1405 	memcpy(root_item, &root->root_item, sizeof(*root_item));
1406 	btrfs_set_root_bytenr(root_item, eb->start);
1407 	btrfs_set_root_level(root_item, btrfs_header_level(eb));
1408 	btrfs_set_root_generation(root_item, trans->transid);
1409 
1410 	if (root->root_key.objectid == objectid) {
1411 		btrfs_set_root_refs(root_item, 0);
1412 		memset(&root_item->drop_progress, 0,
1413 		       sizeof(struct btrfs_disk_key));
1414 		root_item->drop_level = 0;
1415 		/*
1416 		 * abuse rtransid, it is safe because it is impossible to
1417 		 * receive data into a relocation tree.
1418 		 */
1419 		btrfs_set_root_rtransid(root_item, last_snap);
1420 		btrfs_set_root_otransid(root_item, trans->transid);
1421 	}
1422 
1423 	btrfs_tree_unlock(eb);
1424 	free_extent_buffer(eb);
1425 
1426 	ret = btrfs_insert_root(trans, root->fs_info->tree_root,
1427 				&root_key, root_item);
1428 	BUG_ON(ret);
1429 	kfree(root_item);
1430 
1431 	reloc_root = btrfs_read_fs_root(root->fs_info->tree_root, &root_key);
1432 	BUG_ON(IS_ERR(reloc_root));
1433 	reloc_root->last_trans = trans->transid;
1434 	return reloc_root;
1435 }
1436 
1437 /*
1438  * create reloc tree for a given fs tree. reloc tree is just a
1439  * snapshot of the fs tree with special root objectid.
1440  */
1441 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
1442 			  struct btrfs_root *root)
1443 {
1444 	struct btrfs_root *reloc_root;
1445 	struct reloc_control *rc = root->fs_info->reloc_ctl;
1446 	struct btrfs_block_rsv *rsv;
1447 	int clear_rsv = 0;
1448 	int ret;
1449 
1450 	if (root->reloc_root) {
1451 		reloc_root = root->reloc_root;
1452 		reloc_root->last_trans = trans->transid;
1453 		return 0;
1454 	}
1455 
1456 	if (!rc || !rc->create_reloc_tree ||
1457 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1458 		return 0;
1459 
1460 	if (!trans->reloc_reserved) {
1461 		rsv = trans->block_rsv;
1462 		trans->block_rsv = rc->block_rsv;
1463 		clear_rsv = 1;
1464 	}
1465 	reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
1466 	if (clear_rsv)
1467 		trans->block_rsv = rsv;
1468 
1469 	ret = __add_reloc_root(reloc_root);
1470 	BUG_ON(ret < 0);
1471 	root->reloc_root = reloc_root;
1472 	return 0;
1473 }
1474 
1475 /*
1476  * update root item of reloc tree
1477  */
1478 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
1479 			    struct btrfs_root *root)
1480 {
1481 	struct btrfs_root *reloc_root;
1482 	struct btrfs_root_item *root_item;
1483 	int ret;
1484 
1485 	if (!root->reloc_root)
1486 		goto out;
1487 
1488 	reloc_root = root->reloc_root;
1489 	root_item = &reloc_root->root_item;
1490 
1491 	if (root->fs_info->reloc_ctl->merge_reloc_tree &&
1492 	    btrfs_root_refs(root_item) == 0) {
1493 		root->reloc_root = NULL;
1494 		__del_reloc_root(reloc_root);
1495 	}
1496 
1497 	if (reloc_root->commit_root != reloc_root->node) {
1498 		btrfs_set_root_node(root_item, reloc_root->node);
1499 		free_extent_buffer(reloc_root->commit_root);
1500 		reloc_root->commit_root = btrfs_root_node(reloc_root);
1501 	}
1502 
1503 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
1504 				&reloc_root->root_key, root_item);
1505 	BUG_ON(ret);
1506 
1507 out:
1508 	return 0;
1509 }
1510 
1511 /*
1512  * helper to find first cached inode with inode number >= objectid
1513  * in a subvolume
1514  */
1515 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
1516 {
1517 	struct rb_node *node;
1518 	struct rb_node *prev;
1519 	struct btrfs_inode *entry;
1520 	struct inode *inode;
1521 
1522 	spin_lock(&root->inode_lock);
1523 again:
1524 	node = root->inode_tree.rb_node;
1525 	prev = NULL;
1526 	while (node) {
1527 		prev = node;
1528 		entry = rb_entry(node, struct btrfs_inode, rb_node);
1529 
1530 		if (objectid < btrfs_ino(&entry->vfs_inode))
1531 			node = node->rb_left;
1532 		else if (objectid > btrfs_ino(&entry->vfs_inode))
1533 			node = node->rb_right;
1534 		else
1535 			break;
1536 	}
1537 	if (!node) {
1538 		while (prev) {
1539 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
1540 			if (objectid <= btrfs_ino(&entry->vfs_inode)) {
1541 				node = prev;
1542 				break;
1543 			}
1544 			prev = rb_next(prev);
1545 		}
1546 	}
1547 	while (node) {
1548 		entry = rb_entry(node, struct btrfs_inode, rb_node);
1549 		inode = igrab(&entry->vfs_inode);
1550 		if (inode) {
1551 			spin_unlock(&root->inode_lock);
1552 			return inode;
1553 		}
1554 
1555 		objectid = btrfs_ino(&entry->vfs_inode) + 1;
1556 		if (cond_resched_lock(&root->inode_lock))
1557 			goto again;
1558 
1559 		node = rb_next(node);
1560 	}
1561 	spin_unlock(&root->inode_lock);
1562 	return NULL;
1563 }
1564 
1565 static int in_block_group(u64 bytenr,
1566 			  struct btrfs_block_group_cache *block_group)
1567 {
1568 	if (bytenr >= block_group->key.objectid &&
1569 	    bytenr < block_group->key.objectid + block_group->key.offset)
1570 		return 1;
1571 	return 0;
1572 }
1573 
1574 /*
1575  * get new location of data
1576  */
1577 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1578 			    u64 bytenr, u64 num_bytes)
1579 {
1580 	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1581 	struct btrfs_path *path;
1582 	struct btrfs_file_extent_item *fi;
1583 	struct extent_buffer *leaf;
1584 	int ret;
1585 
1586 	path = btrfs_alloc_path();
1587 	if (!path)
1588 		return -ENOMEM;
1589 
1590 	bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1591 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(reloc_inode),
1592 				       bytenr, 0);
1593 	if (ret < 0)
1594 		goto out;
1595 	if (ret > 0) {
1596 		ret = -ENOENT;
1597 		goto out;
1598 	}
1599 
1600 	leaf = path->nodes[0];
1601 	fi = btrfs_item_ptr(leaf, path->slots[0],
1602 			    struct btrfs_file_extent_item);
1603 
1604 	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1605 	       btrfs_file_extent_compression(leaf, fi) ||
1606 	       btrfs_file_extent_encryption(leaf, fi) ||
1607 	       btrfs_file_extent_other_encoding(leaf, fi));
1608 
1609 	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1610 		ret = -EINVAL;
1611 		goto out;
1612 	}
1613 
1614 	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1615 	ret = 0;
1616 out:
1617 	btrfs_free_path(path);
1618 	return ret;
1619 }
1620 
1621 /*
1622  * update file extent items in the tree leaf to point to
1623  * the new locations.
1624  */
1625 static noinline_for_stack
1626 int replace_file_extents(struct btrfs_trans_handle *trans,
1627 			 struct reloc_control *rc,
1628 			 struct btrfs_root *root,
1629 			 struct extent_buffer *leaf)
1630 {
1631 	struct btrfs_key key;
1632 	struct btrfs_file_extent_item *fi;
1633 	struct inode *inode = NULL;
1634 	u64 parent;
1635 	u64 bytenr;
1636 	u64 new_bytenr = 0;
1637 	u64 num_bytes;
1638 	u64 end;
1639 	u32 nritems;
1640 	u32 i;
1641 	int ret = 0;
1642 	int first = 1;
1643 	int dirty = 0;
1644 
1645 	if (rc->stage != UPDATE_DATA_PTRS)
1646 		return 0;
1647 
1648 	/* reloc trees always use full backref */
1649 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1650 		parent = leaf->start;
1651 	else
1652 		parent = 0;
1653 
1654 	nritems = btrfs_header_nritems(leaf);
1655 	for (i = 0; i < nritems; i++) {
1656 		cond_resched();
1657 		btrfs_item_key_to_cpu(leaf, &key, i);
1658 		if (key.type != BTRFS_EXTENT_DATA_KEY)
1659 			continue;
1660 		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1661 		if (btrfs_file_extent_type(leaf, fi) ==
1662 		    BTRFS_FILE_EXTENT_INLINE)
1663 			continue;
1664 		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1665 		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1666 		if (bytenr == 0)
1667 			continue;
1668 		if (!in_block_group(bytenr, rc->block_group))
1669 			continue;
1670 
1671 		/*
1672 		 * if we are modifying block in fs tree, wait for readpage
1673 		 * to complete and drop the extent cache
1674 		 */
1675 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1676 			if (first) {
1677 				inode = find_next_inode(root, key.objectid);
1678 				first = 0;
1679 			} else if (inode && btrfs_ino(inode) < key.objectid) {
1680 				btrfs_add_delayed_iput(inode);
1681 				inode = find_next_inode(root, key.objectid);
1682 			}
1683 			if (inode && btrfs_ino(inode) == key.objectid) {
1684 				end = key.offset +
1685 				      btrfs_file_extent_num_bytes(leaf, fi);
1686 				WARN_ON(!IS_ALIGNED(key.offset,
1687 						    root->sectorsize));
1688 				WARN_ON(!IS_ALIGNED(end, root->sectorsize));
1689 				end--;
1690 				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1691 						      key.offset, end);
1692 				if (!ret)
1693 					continue;
1694 
1695 				btrfs_drop_extent_cache(inode, key.offset, end,
1696 							1);
1697 				unlock_extent(&BTRFS_I(inode)->io_tree,
1698 					      key.offset, end);
1699 			}
1700 		}
1701 
1702 		ret = get_new_location(rc->data_inode, &new_bytenr,
1703 				       bytenr, num_bytes);
1704 		if (ret) {
1705 			/*
1706 			 * Don't have to abort since we've not changed anything
1707 			 * in the file extent yet.
1708 			 */
1709 			break;
1710 		}
1711 
1712 		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1713 		dirty = 1;
1714 
1715 		key.offset -= btrfs_file_extent_offset(leaf, fi);
1716 		ret = btrfs_inc_extent_ref(trans, root, new_bytenr,
1717 					   num_bytes, parent,
1718 					   btrfs_header_owner(leaf),
1719 					   key.objectid, key.offset);
1720 		if (ret) {
1721 			btrfs_abort_transaction(trans, root, ret);
1722 			break;
1723 		}
1724 
1725 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1726 					parent, btrfs_header_owner(leaf),
1727 					key.objectid, key.offset);
1728 		if (ret) {
1729 			btrfs_abort_transaction(trans, root, ret);
1730 			break;
1731 		}
1732 	}
1733 	if (dirty)
1734 		btrfs_mark_buffer_dirty(leaf);
1735 	if (inode)
1736 		btrfs_add_delayed_iput(inode);
1737 	return ret;
1738 }
1739 
1740 static noinline_for_stack
1741 int memcmp_node_keys(struct extent_buffer *eb, int slot,
1742 		     struct btrfs_path *path, int level)
1743 {
1744 	struct btrfs_disk_key key1;
1745 	struct btrfs_disk_key key2;
1746 	btrfs_node_key(eb, &key1, slot);
1747 	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1748 	return memcmp(&key1, &key2, sizeof(key1));
1749 }
1750 
1751 /*
1752  * try to replace tree blocks in fs tree with the new blocks
1753  * in reloc tree. tree blocks haven't been modified since the
1754  * reloc tree was create can be replaced.
1755  *
1756  * if a block was replaced, level of the block + 1 is returned.
1757  * if no block got replaced, 0 is returned. if there are other
1758  * errors, a negative error number is returned.
1759  */
1760 static noinline_for_stack
1761 int replace_path(struct btrfs_trans_handle *trans,
1762 		 struct btrfs_root *dest, struct btrfs_root *src,
1763 		 struct btrfs_path *path, struct btrfs_key *next_key,
1764 		 int lowest_level, int max_level)
1765 {
1766 	struct extent_buffer *eb;
1767 	struct extent_buffer *parent;
1768 	struct btrfs_key key;
1769 	u64 old_bytenr;
1770 	u64 new_bytenr;
1771 	u64 old_ptr_gen;
1772 	u64 new_ptr_gen;
1773 	u64 last_snapshot;
1774 	u32 blocksize;
1775 	int cow = 0;
1776 	int level;
1777 	int ret;
1778 	int slot;
1779 
1780 	BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1781 	BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1782 
1783 	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1784 again:
1785 	slot = path->slots[lowest_level];
1786 	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1787 
1788 	eb = btrfs_lock_root_node(dest);
1789 	btrfs_set_lock_blocking(eb);
1790 	level = btrfs_header_level(eb);
1791 
1792 	if (level < lowest_level) {
1793 		btrfs_tree_unlock(eb);
1794 		free_extent_buffer(eb);
1795 		return 0;
1796 	}
1797 
1798 	if (cow) {
1799 		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
1800 		BUG_ON(ret);
1801 	}
1802 	btrfs_set_lock_blocking(eb);
1803 
1804 	if (next_key) {
1805 		next_key->objectid = (u64)-1;
1806 		next_key->type = (u8)-1;
1807 		next_key->offset = (u64)-1;
1808 	}
1809 
1810 	parent = eb;
1811 	while (1) {
1812 		level = btrfs_header_level(parent);
1813 		BUG_ON(level < lowest_level);
1814 
1815 		ret = btrfs_bin_search(parent, &key, level, &slot);
1816 		if (ret && slot > 0)
1817 			slot--;
1818 
1819 		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1820 			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1821 
1822 		old_bytenr = btrfs_node_blockptr(parent, slot);
1823 		blocksize = dest->nodesize;
1824 		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1825 
1826 		if (level <= max_level) {
1827 			eb = path->nodes[level];
1828 			new_bytenr = btrfs_node_blockptr(eb,
1829 							path->slots[level]);
1830 			new_ptr_gen = btrfs_node_ptr_generation(eb,
1831 							path->slots[level]);
1832 		} else {
1833 			new_bytenr = 0;
1834 			new_ptr_gen = 0;
1835 		}
1836 
1837 		if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1838 			ret = level;
1839 			break;
1840 		}
1841 
1842 		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1843 		    memcmp_node_keys(parent, slot, path, level)) {
1844 			if (level <= lowest_level) {
1845 				ret = 0;
1846 				break;
1847 			}
1848 
1849 			eb = read_tree_block(dest, old_bytenr, old_ptr_gen);
1850 			if (IS_ERR(eb)) {
1851 				ret = PTR_ERR(eb);
1852 			} else if (!extent_buffer_uptodate(eb)) {
1853 				ret = -EIO;
1854 				free_extent_buffer(eb);
1855 				break;
1856 			}
1857 			btrfs_tree_lock(eb);
1858 			if (cow) {
1859 				ret = btrfs_cow_block(trans, dest, eb, parent,
1860 						      slot, &eb);
1861 				BUG_ON(ret);
1862 			}
1863 			btrfs_set_lock_blocking(eb);
1864 
1865 			btrfs_tree_unlock(parent);
1866 			free_extent_buffer(parent);
1867 
1868 			parent = eb;
1869 			continue;
1870 		}
1871 
1872 		if (!cow) {
1873 			btrfs_tree_unlock(parent);
1874 			free_extent_buffer(parent);
1875 			cow = 1;
1876 			goto again;
1877 		}
1878 
1879 		btrfs_node_key_to_cpu(path->nodes[level], &key,
1880 				      path->slots[level]);
1881 		btrfs_release_path(path);
1882 
1883 		path->lowest_level = level;
1884 		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1885 		path->lowest_level = 0;
1886 		BUG_ON(ret);
1887 
1888 		/*
1889 		 * swap blocks in fs tree and reloc tree.
1890 		 */
1891 		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1892 		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1893 		btrfs_mark_buffer_dirty(parent);
1894 
1895 		btrfs_set_node_blockptr(path->nodes[level],
1896 					path->slots[level], old_bytenr);
1897 		btrfs_set_node_ptr_generation(path->nodes[level],
1898 					      path->slots[level], old_ptr_gen);
1899 		btrfs_mark_buffer_dirty(path->nodes[level]);
1900 
1901 		ret = btrfs_inc_extent_ref(trans, src, old_bytenr, blocksize,
1902 					path->nodes[level]->start,
1903 					src->root_key.objectid, level - 1, 0);
1904 		BUG_ON(ret);
1905 		ret = btrfs_inc_extent_ref(trans, dest, new_bytenr, blocksize,
1906 					0, dest->root_key.objectid, level - 1,
1907 					0);
1908 		BUG_ON(ret);
1909 
1910 		ret = btrfs_free_extent(trans, src, new_bytenr, blocksize,
1911 					path->nodes[level]->start,
1912 					src->root_key.objectid, level - 1, 0);
1913 		BUG_ON(ret);
1914 
1915 		ret = btrfs_free_extent(trans, dest, old_bytenr, blocksize,
1916 					0, dest->root_key.objectid, level - 1,
1917 					0);
1918 		BUG_ON(ret);
1919 
1920 		btrfs_unlock_up_safe(path, 0);
1921 
1922 		ret = level;
1923 		break;
1924 	}
1925 	btrfs_tree_unlock(parent);
1926 	free_extent_buffer(parent);
1927 	return ret;
1928 }
1929 
1930 /*
1931  * helper to find next relocated block in reloc tree
1932  */
1933 static noinline_for_stack
1934 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1935 		       int *level)
1936 {
1937 	struct extent_buffer *eb;
1938 	int i;
1939 	u64 last_snapshot;
1940 	u32 nritems;
1941 
1942 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1943 
1944 	for (i = 0; i < *level; i++) {
1945 		free_extent_buffer(path->nodes[i]);
1946 		path->nodes[i] = NULL;
1947 	}
1948 
1949 	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1950 		eb = path->nodes[i];
1951 		nritems = btrfs_header_nritems(eb);
1952 		while (path->slots[i] + 1 < nritems) {
1953 			path->slots[i]++;
1954 			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1955 			    last_snapshot)
1956 				continue;
1957 
1958 			*level = i;
1959 			return 0;
1960 		}
1961 		free_extent_buffer(path->nodes[i]);
1962 		path->nodes[i] = NULL;
1963 	}
1964 	return 1;
1965 }
1966 
1967 /*
1968  * walk down reloc tree to find relocated block of lowest level
1969  */
1970 static noinline_for_stack
1971 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1972 			 int *level)
1973 {
1974 	struct extent_buffer *eb = NULL;
1975 	int i;
1976 	u64 bytenr;
1977 	u64 ptr_gen = 0;
1978 	u64 last_snapshot;
1979 	u32 nritems;
1980 
1981 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1982 
1983 	for (i = *level; i > 0; i--) {
1984 		eb = path->nodes[i];
1985 		nritems = btrfs_header_nritems(eb);
1986 		while (path->slots[i] < nritems) {
1987 			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1988 			if (ptr_gen > last_snapshot)
1989 				break;
1990 			path->slots[i]++;
1991 		}
1992 		if (path->slots[i] >= nritems) {
1993 			if (i == *level)
1994 				break;
1995 			*level = i + 1;
1996 			return 0;
1997 		}
1998 		if (i == 1) {
1999 			*level = i;
2000 			return 0;
2001 		}
2002 
2003 		bytenr = btrfs_node_blockptr(eb, path->slots[i]);
2004 		eb = read_tree_block(root, bytenr, ptr_gen);
2005 		if (IS_ERR(eb)) {
2006 			return PTR_ERR(eb);
2007 		} else if (!extent_buffer_uptodate(eb)) {
2008 			free_extent_buffer(eb);
2009 			return -EIO;
2010 		}
2011 		BUG_ON(btrfs_header_level(eb) != i - 1);
2012 		path->nodes[i - 1] = eb;
2013 		path->slots[i - 1] = 0;
2014 	}
2015 	return 1;
2016 }
2017 
2018 /*
2019  * invalidate extent cache for file extents whose key in range of
2020  * [min_key, max_key)
2021  */
2022 static int invalidate_extent_cache(struct btrfs_root *root,
2023 				   struct btrfs_key *min_key,
2024 				   struct btrfs_key *max_key)
2025 {
2026 	struct inode *inode = NULL;
2027 	u64 objectid;
2028 	u64 start, end;
2029 	u64 ino;
2030 
2031 	objectid = min_key->objectid;
2032 	while (1) {
2033 		cond_resched();
2034 		iput(inode);
2035 
2036 		if (objectid > max_key->objectid)
2037 			break;
2038 
2039 		inode = find_next_inode(root, objectid);
2040 		if (!inode)
2041 			break;
2042 		ino = btrfs_ino(inode);
2043 
2044 		if (ino > max_key->objectid) {
2045 			iput(inode);
2046 			break;
2047 		}
2048 
2049 		objectid = ino + 1;
2050 		if (!S_ISREG(inode->i_mode))
2051 			continue;
2052 
2053 		if (unlikely(min_key->objectid == ino)) {
2054 			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
2055 				continue;
2056 			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
2057 				start = 0;
2058 			else {
2059 				start = min_key->offset;
2060 				WARN_ON(!IS_ALIGNED(start, root->sectorsize));
2061 			}
2062 		} else {
2063 			start = 0;
2064 		}
2065 
2066 		if (unlikely(max_key->objectid == ino)) {
2067 			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
2068 				continue;
2069 			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
2070 				end = (u64)-1;
2071 			} else {
2072 				if (max_key->offset == 0)
2073 					continue;
2074 				end = max_key->offset;
2075 				WARN_ON(!IS_ALIGNED(end, root->sectorsize));
2076 				end--;
2077 			}
2078 		} else {
2079 			end = (u64)-1;
2080 		}
2081 
2082 		/* the lock_extent waits for readpage to complete */
2083 		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2084 		btrfs_drop_extent_cache(inode, start, end, 1);
2085 		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2086 	}
2087 	return 0;
2088 }
2089 
2090 static int find_next_key(struct btrfs_path *path, int level,
2091 			 struct btrfs_key *key)
2092 
2093 {
2094 	while (level < BTRFS_MAX_LEVEL) {
2095 		if (!path->nodes[level])
2096 			break;
2097 		if (path->slots[level] + 1 <
2098 		    btrfs_header_nritems(path->nodes[level])) {
2099 			btrfs_node_key_to_cpu(path->nodes[level], key,
2100 					      path->slots[level] + 1);
2101 			return 0;
2102 		}
2103 		level++;
2104 	}
2105 	return 1;
2106 }
2107 
2108 /*
2109  * merge the relocated tree blocks in reloc tree with corresponding
2110  * fs tree.
2111  */
2112 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
2113 					       struct btrfs_root *root)
2114 {
2115 	LIST_HEAD(inode_list);
2116 	struct btrfs_key key;
2117 	struct btrfs_key next_key;
2118 	struct btrfs_trans_handle *trans = NULL;
2119 	struct btrfs_root *reloc_root;
2120 	struct btrfs_root_item *root_item;
2121 	struct btrfs_path *path;
2122 	struct extent_buffer *leaf;
2123 	int level;
2124 	int max_level;
2125 	int replaced = 0;
2126 	int ret;
2127 	int err = 0;
2128 	u32 min_reserved;
2129 
2130 	path = btrfs_alloc_path();
2131 	if (!path)
2132 		return -ENOMEM;
2133 	path->reada = 1;
2134 
2135 	reloc_root = root->reloc_root;
2136 	root_item = &reloc_root->root_item;
2137 
2138 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2139 		level = btrfs_root_level(root_item);
2140 		extent_buffer_get(reloc_root->node);
2141 		path->nodes[level] = reloc_root->node;
2142 		path->slots[level] = 0;
2143 	} else {
2144 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2145 
2146 		level = root_item->drop_level;
2147 		BUG_ON(level == 0);
2148 		path->lowest_level = level;
2149 		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
2150 		path->lowest_level = 0;
2151 		if (ret < 0) {
2152 			btrfs_free_path(path);
2153 			return ret;
2154 		}
2155 
2156 		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
2157 				      path->slots[level]);
2158 		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
2159 
2160 		btrfs_unlock_up_safe(path, 0);
2161 	}
2162 
2163 	min_reserved = root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2164 	memset(&next_key, 0, sizeof(next_key));
2165 
2166 	while (1) {
2167 		ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
2168 					     BTRFS_RESERVE_FLUSH_ALL);
2169 		if (ret) {
2170 			err = ret;
2171 			goto out;
2172 		}
2173 		trans = btrfs_start_transaction(root, 0);
2174 		if (IS_ERR(trans)) {
2175 			err = PTR_ERR(trans);
2176 			trans = NULL;
2177 			goto out;
2178 		}
2179 		trans->block_rsv = rc->block_rsv;
2180 
2181 		replaced = 0;
2182 		max_level = level;
2183 
2184 		ret = walk_down_reloc_tree(reloc_root, path, &level);
2185 		if (ret < 0) {
2186 			err = ret;
2187 			goto out;
2188 		}
2189 		if (ret > 0)
2190 			break;
2191 
2192 		if (!find_next_key(path, level, &key) &&
2193 		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
2194 			ret = 0;
2195 		} else {
2196 			ret = replace_path(trans, root, reloc_root, path,
2197 					   &next_key, level, max_level);
2198 		}
2199 		if (ret < 0) {
2200 			err = ret;
2201 			goto out;
2202 		}
2203 
2204 		if (ret > 0) {
2205 			level = ret;
2206 			btrfs_node_key_to_cpu(path->nodes[level], &key,
2207 					      path->slots[level]);
2208 			replaced = 1;
2209 		}
2210 
2211 		ret = walk_up_reloc_tree(reloc_root, path, &level);
2212 		if (ret > 0)
2213 			break;
2214 
2215 		BUG_ON(level == 0);
2216 		/*
2217 		 * save the merging progress in the drop_progress.
2218 		 * this is OK since root refs == 1 in this case.
2219 		 */
2220 		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
2221 			       path->slots[level]);
2222 		root_item->drop_level = level;
2223 
2224 		btrfs_end_transaction_throttle(trans, root);
2225 		trans = NULL;
2226 
2227 		btrfs_btree_balance_dirty(root);
2228 
2229 		if (replaced && rc->stage == UPDATE_DATA_PTRS)
2230 			invalidate_extent_cache(root, &key, &next_key);
2231 	}
2232 
2233 	/*
2234 	 * handle the case only one block in the fs tree need to be
2235 	 * relocated and the block is tree root.
2236 	 */
2237 	leaf = btrfs_lock_root_node(root);
2238 	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
2239 	btrfs_tree_unlock(leaf);
2240 	free_extent_buffer(leaf);
2241 	if (ret < 0)
2242 		err = ret;
2243 out:
2244 	btrfs_free_path(path);
2245 
2246 	if (err == 0) {
2247 		memset(&root_item->drop_progress, 0,
2248 		       sizeof(root_item->drop_progress));
2249 		root_item->drop_level = 0;
2250 		btrfs_set_root_refs(root_item, 0);
2251 		btrfs_update_reloc_root(trans, root);
2252 	}
2253 
2254 	if (trans)
2255 		btrfs_end_transaction_throttle(trans, root);
2256 
2257 	btrfs_btree_balance_dirty(root);
2258 
2259 	if (replaced && rc->stage == UPDATE_DATA_PTRS)
2260 		invalidate_extent_cache(root, &key, &next_key);
2261 
2262 	return err;
2263 }
2264 
2265 static noinline_for_stack
2266 int prepare_to_merge(struct reloc_control *rc, int err)
2267 {
2268 	struct btrfs_root *root = rc->extent_root;
2269 	struct btrfs_root *reloc_root;
2270 	struct btrfs_trans_handle *trans;
2271 	LIST_HEAD(reloc_roots);
2272 	u64 num_bytes = 0;
2273 	int ret;
2274 
2275 	mutex_lock(&root->fs_info->reloc_mutex);
2276 	rc->merging_rsv_size += root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2277 	rc->merging_rsv_size += rc->nodes_relocated * 2;
2278 	mutex_unlock(&root->fs_info->reloc_mutex);
2279 
2280 again:
2281 	if (!err) {
2282 		num_bytes = rc->merging_rsv_size;
2283 		ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
2284 					  BTRFS_RESERVE_FLUSH_ALL);
2285 		if (ret)
2286 			err = ret;
2287 	}
2288 
2289 	trans = btrfs_join_transaction(rc->extent_root);
2290 	if (IS_ERR(trans)) {
2291 		if (!err)
2292 			btrfs_block_rsv_release(rc->extent_root,
2293 						rc->block_rsv, num_bytes);
2294 		return PTR_ERR(trans);
2295 	}
2296 
2297 	if (!err) {
2298 		if (num_bytes != rc->merging_rsv_size) {
2299 			btrfs_end_transaction(trans, rc->extent_root);
2300 			btrfs_block_rsv_release(rc->extent_root,
2301 						rc->block_rsv, num_bytes);
2302 			goto again;
2303 		}
2304 	}
2305 
2306 	rc->merge_reloc_tree = 1;
2307 
2308 	while (!list_empty(&rc->reloc_roots)) {
2309 		reloc_root = list_entry(rc->reloc_roots.next,
2310 					struct btrfs_root, root_list);
2311 		list_del_init(&reloc_root->root_list);
2312 
2313 		root = read_fs_root(reloc_root->fs_info,
2314 				    reloc_root->root_key.offset);
2315 		BUG_ON(IS_ERR(root));
2316 		BUG_ON(root->reloc_root != reloc_root);
2317 
2318 		/*
2319 		 * set reference count to 1, so btrfs_recover_relocation
2320 		 * knows it should resumes merging
2321 		 */
2322 		if (!err)
2323 			btrfs_set_root_refs(&reloc_root->root_item, 1);
2324 		btrfs_update_reloc_root(trans, root);
2325 
2326 		list_add(&reloc_root->root_list, &reloc_roots);
2327 	}
2328 
2329 	list_splice(&reloc_roots, &rc->reloc_roots);
2330 
2331 	if (!err)
2332 		btrfs_commit_transaction(trans, rc->extent_root);
2333 	else
2334 		btrfs_end_transaction(trans, rc->extent_root);
2335 	return err;
2336 }
2337 
2338 static noinline_for_stack
2339 void free_reloc_roots(struct list_head *list)
2340 {
2341 	struct btrfs_root *reloc_root;
2342 
2343 	while (!list_empty(list)) {
2344 		reloc_root = list_entry(list->next, struct btrfs_root,
2345 					root_list);
2346 		__del_reloc_root(reloc_root);
2347 	}
2348 }
2349 
2350 static noinline_for_stack
2351 void merge_reloc_roots(struct reloc_control *rc)
2352 {
2353 	struct btrfs_root *root;
2354 	struct btrfs_root *reloc_root;
2355 	u64 last_snap;
2356 	u64 otransid;
2357 	u64 objectid;
2358 	LIST_HEAD(reloc_roots);
2359 	int found = 0;
2360 	int ret = 0;
2361 again:
2362 	root = rc->extent_root;
2363 
2364 	/*
2365 	 * this serializes us with btrfs_record_root_in_transaction,
2366 	 * we have to make sure nobody is in the middle of
2367 	 * adding their roots to the list while we are
2368 	 * doing this splice
2369 	 */
2370 	mutex_lock(&root->fs_info->reloc_mutex);
2371 	list_splice_init(&rc->reloc_roots, &reloc_roots);
2372 	mutex_unlock(&root->fs_info->reloc_mutex);
2373 
2374 	while (!list_empty(&reloc_roots)) {
2375 		found = 1;
2376 		reloc_root = list_entry(reloc_roots.next,
2377 					struct btrfs_root, root_list);
2378 
2379 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
2380 			root = read_fs_root(reloc_root->fs_info,
2381 					    reloc_root->root_key.offset);
2382 			BUG_ON(IS_ERR(root));
2383 			BUG_ON(root->reloc_root != reloc_root);
2384 
2385 			ret = merge_reloc_root(rc, root);
2386 			if (ret) {
2387 				if (list_empty(&reloc_root->root_list))
2388 					list_add_tail(&reloc_root->root_list,
2389 						      &reloc_roots);
2390 				goto out;
2391 			}
2392 		} else {
2393 			list_del_init(&reloc_root->root_list);
2394 		}
2395 
2396 		/*
2397 		 * we keep the old last snapshod transid in rtranid when we
2398 		 * created the relocation tree.
2399 		 */
2400 		last_snap = btrfs_root_rtransid(&reloc_root->root_item);
2401 		otransid = btrfs_root_otransid(&reloc_root->root_item);
2402 		objectid = reloc_root->root_key.offset;
2403 
2404 		ret = btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0, 1);
2405 		if (ret < 0) {
2406 			if (list_empty(&reloc_root->root_list))
2407 				list_add_tail(&reloc_root->root_list,
2408 					      &reloc_roots);
2409 			goto out;
2410 		}
2411 	}
2412 
2413 	if (found) {
2414 		found = 0;
2415 		goto again;
2416 	}
2417 out:
2418 	if (ret) {
2419 		btrfs_std_error(root->fs_info, ret, NULL);
2420 		if (!list_empty(&reloc_roots))
2421 			free_reloc_roots(&reloc_roots);
2422 
2423 		/* new reloc root may be added */
2424 		mutex_lock(&root->fs_info->reloc_mutex);
2425 		list_splice_init(&rc->reloc_roots, &reloc_roots);
2426 		mutex_unlock(&root->fs_info->reloc_mutex);
2427 		if (!list_empty(&reloc_roots))
2428 			free_reloc_roots(&reloc_roots);
2429 	}
2430 
2431 	BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2432 }
2433 
2434 static void free_block_list(struct rb_root *blocks)
2435 {
2436 	struct tree_block *block;
2437 	struct rb_node *rb_node;
2438 	while ((rb_node = rb_first(blocks))) {
2439 		block = rb_entry(rb_node, struct tree_block, rb_node);
2440 		rb_erase(rb_node, blocks);
2441 		kfree(block);
2442 	}
2443 }
2444 
2445 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2446 				      struct btrfs_root *reloc_root)
2447 {
2448 	struct btrfs_root *root;
2449 
2450 	if (reloc_root->last_trans == trans->transid)
2451 		return 0;
2452 
2453 	root = read_fs_root(reloc_root->fs_info, reloc_root->root_key.offset);
2454 	BUG_ON(IS_ERR(root));
2455 	BUG_ON(root->reloc_root != reloc_root);
2456 
2457 	return btrfs_record_root_in_trans(trans, root);
2458 }
2459 
2460 static noinline_for_stack
2461 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2462 				     struct reloc_control *rc,
2463 				     struct backref_node *node,
2464 				     struct backref_edge *edges[])
2465 {
2466 	struct backref_node *next;
2467 	struct btrfs_root *root;
2468 	int index = 0;
2469 
2470 	next = node;
2471 	while (1) {
2472 		cond_resched();
2473 		next = walk_up_backref(next, edges, &index);
2474 		root = next->root;
2475 		BUG_ON(!root);
2476 		BUG_ON(!test_bit(BTRFS_ROOT_REF_COWS, &root->state));
2477 
2478 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2479 			record_reloc_root_in_trans(trans, root);
2480 			break;
2481 		}
2482 
2483 		btrfs_record_root_in_trans(trans, root);
2484 		root = root->reloc_root;
2485 
2486 		if (next->new_bytenr != root->node->start) {
2487 			BUG_ON(next->new_bytenr);
2488 			BUG_ON(!list_empty(&next->list));
2489 			next->new_bytenr = root->node->start;
2490 			next->root = root;
2491 			list_add_tail(&next->list,
2492 				      &rc->backref_cache.changed);
2493 			__mark_block_processed(rc, next);
2494 			break;
2495 		}
2496 
2497 		WARN_ON(1);
2498 		root = NULL;
2499 		next = walk_down_backref(edges, &index);
2500 		if (!next || next->level <= node->level)
2501 			break;
2502 	}
2503 	if (!root)
2504 		return NULL;
2505 
2506 	next = node;
2507 	/* setup backref node path for btrfs_reloc_cow_block */
2508 	while (1) {
2509 		rc->backref_cache.path[next->level] = next;
2510 		if (--index < 0)
2511 			break;
2512 		next = edges[index]->node[UPPER];
2513 	}
2514 	return root;
2515 }
2516 
2517 /*
2518  * select a tree root for relocation. return NULL if the block
2519  * is reference counted. we should use do_relocation() in this
2520  * case. return a tree root pointer if the block isn't reference
2521  * counted. return -ENOENT if the block is root of reloc tree.
2522  */
2523 static noinline_for_stack
2524 struct btrfs_root *select_one_root(struct backref_node *node)
2525 {
2526 	struct backref_node *next;
2527 	struct btrfs_root *root;
2528 	struct btrfs_root *fs_root = NULL;
2529 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2530 	int index = 0;
2531 
2532 	next = node;
2533 	while (1) {
2534 		cond_resched();
2535 		next = walk_up_backref(next, edges, &index);
2536 		root = next->root;
2537 		BUG_ON(!root);
2538 
2539 		/* no other choice for non-references counted tree */
2540 		if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
2541 			return root;
2542 
2543 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2544 			fs_root = root;
2545 
2546 		if (next != node)
2547 			return NULL;
2548 
2549 		next = walk_down_backref(edges, &index);
2550 		if (!next || next->level <= node->level)
2551 			break;
2552 	}
2553 
2554 	if (!fs_root)
2555 		return ERR_PTR(-ENOENT);
2556 	return fs_root;
2557 }
2558 
2559 static noinline_for_stack
2560 u64 calcu_metadata_size(struct reloc_control *rc,
2561 			struct backref_node *node, int reserve)
2562 {
2563 	struct backref_node *next = node;
2564 	struct backref_edge *edge;
2565 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2566 	u64 num_bytes = 0;
2567 	int index = 0;
2568 
2569 	BUG_ON(reserve && node->processed);
2570 
2571 	while (next) {
2572 		cond_resched();
2573 		while (1) {
2574 			if (next->processed && (reserve || next != node))
2575 				break;
2576 
2577 			num_bytes += rc->extent_root->nodesize;
2578 
2579 			if (list_empty(&next->upper))
2580 				break;
2581 
2582 			edge = list_entry(next->upper.next,
2583 					  struct backref_edge, list[LOWER]);
2584 			edges[index++] = edge;
2585 			next = edge->node[UPPER];
2586 		}
2587 		next = walk_down_backref(edges, &index);
2588 	}
2589 	return num_bytes;
2590 }
2591 
2592 static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2593 				  struct reloc_control *rc,
2594 				  struct backref_node *node)
2595 {
2596 	struct btrfs_root *root = rc->extent_root;
2597 	u64 num_bytes;
2598 	int ret;
2599 	u64 tmp;
2600 
2601 	num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2602 
2603 	trans->block_rsv = rc->block_rsv;
2604 	rc->reserved_bytes += num_bytes;
2605 	ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
2606 				BTRFS_RESERVE_FLUSH_ALL);
2607 	if (ret) {
2608 		if (ret == -EAGAIN) {
2609 			tmp = rc->extent_root->nodesize *
2610 				RELOCATION_RESERVED_NODES;
2611 			while (tmp <= rc->reserved_bytes)
2612 				tmp <<= 1;
2613 			/*
2614 			 * only one thread can access block_rsv at this point,
2615 			 * so we don't need hold lock to protect block_rsv.
2616 			 * we expand more reservation size here to allow enough
2617 			 * space for relocation and we will return eailer in
2618 			 * enospc case.
2619 			 */
2620 			rc->block_rsv->size = tmp + rc->extent_root->nodesize *
2621 					      RELOCATION_RESERVED_NODES;
2622 		}
2623 		return ret;
2624 	}
2625 
2626 	return 0;
2627 }
2628 
2629 /*
2630  * relocate a block tree, and then update pointers in upper level
2631  * blocks that reference the block to point to the new location.
2632  *
2633  * if called by link_to_upper, the block has already been relocated.
2634  * in that case this function just updates pointers.
2635  */
2636 static int do_relocation(struct btrfs_trans_handle *trans,
2637 			 struct reloc_control *rc,
2638 			 struct backref_node *node,
2639 			 struct btrfs_key *key,
2640 			 struct btrfs_path *path, int lowest)
2641 {
2642 	struct backref_node *upper;
2643 	struct backref_edge *edge;
2644 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2645 	struct btrfs_root *root;
2646 	struct extent_buffer *eb;
2647 	u32 blocksize;
2648 	u64 bytenr;
2649 	u64 generation;
2650 	int slot;
2651 	int ret;
2652 	int err = 0;
2653 
2654 	BUG_ON(lowest && node->eb);
2655 
2656 	path->lowest_level = node->level + 1;
2657 	rc->backref_cache.path[node->level] = node;
2658 	list_for_each_entry(edge, &node->upper, list[LOWER]) {
2659 		cond_resched();
2660 
2661 		upper = edge->node[UPPER];
2662 		root = select_reloc_root(trans, rc, upper, edges);
2663 		BUG_ON(!root);
2664 
2665 		if (upper->eb && !upper->locked) {
2666 			if (!lowest) {
2667 				ret = btrfs_bin_search(upper->eb, key,
2668 						       upper->level, &slot);
2669 				BUG_ON(ret);
2670 				bytenr = btrfs_node_blockptr(upper->eb, slot);
2671 				if (node->eb->start == bytenr)
2672 					goto next;
2673 			}
2674 			drop_node_buffer(upper);
2675 		}
2676 
2677 		if (!upper->eb) {
2678 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2679 			if (ret < 0) {
2680 				err = ret;
2681 				break;
2682 			}
2683 			BUG_ON(ret > 0);
2684 
2685 			if (!upper->eb) {
2686 				upper->eb = path->nodes[upper->level];
2687 				path->nodes[upper->level] = NULL;
2688 			} else {
2689 				BUG_ON(upper->eb != path->nodes[upper->level]);
2690 			}
2691 
2692 			upper->locked = 1;
2693 			path->locks[upper->level] = 0;
2694 
2695 			slot = path->slots[upper->level];
2696 			btrfs_release_path(path);
2697 		} else {
2698 			ret = btrfs_bin_search(upper->eb, key, upper->level,
2699 					       &slot);
2700 			BUG_ON(ret);
2701 		}
2702 
2703 		bytenr = btrfs_node_blockptr(upper->eb, slot);
2704 		if (lowest) {
2705 			BUG_ON(bytenr != node->bytenr);
2706 		} else {
2707 			if (node->eb->start == bytenr)
2708 				goto next;
2709 		}
2710 
2711 		blocksize = root->nodesize;
2712 		generation = btrfs_node_ptr_generation(upper->eb, slot);
2713 		eb = read_tree_block(root, bytenr, generation);
2714 		if (IS_ERR(eb)) {
2715 			err = PTR_ERR(eb);
2716 			goto next;
2717 		} else if (!extent_buffer_uptodate(eb)) {
2718 			free_extent_buffer(eb);
2719 			err = -EIO;
2720 			goto next;
2721 		}
2722 		btrfs_tree_lock(eb);
2723 		btrfs_set_lock_blocking(eb);
2724 
2725 		if (!node->eb) {
2726 			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2727 					      slot, &eb);
2728 			btrfs_tree_unlock(eb);
2729 			free_extent_buffer(eb);
2730 			if (ret < 0) {
2731 				err = ret;
2732 				goto next;
2733 			}
2734 			BUG_ON(node->eb != eb);
2735 		} else {
2736 			btrfs_set_node_blockptr(upper->eb, slot,
2737 						node->eb->start);
2738 			btrfs_set_node_ptr_generation(upper->eb, slot,
2739 						      trans->transid);
2740 			btrfs_mark_buffer_dirty(upper->eb);
2741 
2742 			ret = btrfs_inc_extent_ref(trans, root,
2743 						node->eb->start, blocksize,
2744 						upper->eb->start,
2745 						btrfs_header_owner(upper->eb),
2746 						node->level, 0);
2747 			BUG_ON(ret);
2748 
2749 			ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2750 			BUG_ON(ret);
2751 		}
2752 next:
2753 		if (!upper->pending)
2754 			drop_node_buffer(upper);
2755 		else
2756 			unlock_node_buffer(upper);
2757 		if (err)
2758 			break;
2759 	}
2760 
2761 	if (!err && node->pending) {
2762 		drop_node_buffer(node);
2763 		list_move_tail(&node->list, &rc->backref_cache.changed);
2764 		node->pending = 0;
2765 	}
2766 
2767 	path->lowest_level = 0;
2768 	BUG_ON(err == -ENOSPC);
2769 	return err;
2770 }
2771 
2772 static int link_to_upper(struct btrfs_trans_handle *trans,
2773 			 struct reloc_control *rc,
2774 			 struct backref_node *node,
2775 			 struct btrfs_path *path)
2776 {
2777 	struct btrfs_key key;
2778 
2779 	btrfs_node_key_to_cpu(node->eb, &key, 0);
2780 	return do_relocation(trans, rc, node, &key, path, 0);
2781 }
2782 
2783 static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2784 				struct reloc_control *rc,
2785 				struct btrfs_path *path, int err)
2786 {
2787 	LIST_HEAD(list);
2788 	struct backref_cache *cache = &rc->backref_cache;
2789 	struct backref_node *node;
2790 	int level;
2791 	int ret;
2792 
2793 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2794 		while (!list_empty(&cache->pending[level])) {
2795 			node = list_entry(cache->pending[level].next,
2796 					  struct backref_node, list);
2797 			list_move_tail(&node->list, &list);
2798 			BUG_ON(!node->pending);
2799 
2800 			if (!err) {
2801 				ret = link_to_upper(trans, rc, node, path);
2802 				if (ret < 0)
2803 					err = ret;
2804 			}
2805 		}
2806 		list_splice_init(&list, &cache->pending[level]);
2807 	}
2808 	return err;
2809 }
2810 
2811 static void mark_block_processed(struct reloc_control *rc,
2812 				 u64 bytenr, u32 blocksize)
2813 {
2814 	set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1,
2815 			EXTENT_DIRTY, GFP_NOFS);
2816 }
2817 
2818 static void __mark_block_processed(struct reloc_control *rc,
2819 				   struct backref_node *node)
2820 {
2821 	u32 blocksize;
2822 	if (node->level == 0 ||
2823 	    in_block_group(node->bytenr, rc->block_group)) {
2824 		blocksize = rc->extent_root->nodesize;
2825 		mark_block_processed(rc, node->bytenr, blocksize);
2826 	}
2827 	node->processed = 1;
2828 }
2829 
2830 /*
2831  * mark a block and all blocks directly/indirectly reference the block
2832  * as processed.
2833  */
2834 static void update_processed_blocks(struct reloc_control *rc,
2835 				    struct backref_node *node)
2836 {
2837 	struct backref_node *next = node;
2838 	struct backref_edge *edge;
2839 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2840 	int index = 0;
2841 
2842 	while (next) {
2843 		cond_resched();
2844 		while (1) {
2845 			if (next->processed)
2846 				break;
2847 
2848 			__mark_block_processed(rc, next);
2849 
2850 			if (list_empty(&next->upper))
2851 				break;
2852 
2853 			edge = list_entry(next->upper.next,
2854 					  struct backref_edge, list[LOWER]);
2855 			edges[index++] = edge;
2856 			next = edge->node[UPPER];
2857 		}
2858 		next = walk_down_backref(edges, &index);
2859 	}
2860 }
2861 
2862 static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2863 {
2864 	u32 blocksize = rc->extent_root->nodesize;
2865 
2866 	if (test_range_bit(&rc->processed_blocks, bytenr,
2867 			   bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2868 		return 1;
2869 	return 0;
2870 }
2871 
2872 static int get_tree_block_key(struct reloc_control *rc,
2873 			      struct tree_block *block)
2874 {
2875 	struct extent_buffer *eb;
2876 
2877 	BUG_ON(block->key_ready);
2878 	eb = read_tree_block(rc->extent_root, block->bytenr,
2879 			     block->key.offset);
2880 	if (IS_ERR(eb)) {
2881 		return PTR_ERR(eb);
2882 	} else if (!extent_buffer_uptodate(eb)) {
2883 		free_extent_buffer(eb);
2884 		return -EIO;
2885 	}
2886 	WARN_ON(btrfs_header_level(eb) != block->level);
2887 	if (block->level == 0)
2888 		btrfs_item_key_to_cpu(eb, &block->key, 0);
2889 	else
2890 		btrfs_node_key_to_cpu(eb, &block->key, 0);
2891 	free_extent_buffer(eb);
2892 	block->key_ready = 1;
2893 	return 0;
2894 }
2895 
2896 /*
2897  * helper function to relocate a tree block
2898  */
2899 static int relocate_tree_block(struct btrfs_trans_handle *trans,
2900 				struct reloc_control *rc,
2901 				struct backref_node *node,
2902 				struct btrfs_key *key,
2903 				struct btrfs_path *path)
2904 {
2905 	struct btrfs_root *root;
2906 	int ret = 0;
2907 
2908 	if (!node)
2909 		return 0;
2910 
2911 	BUG_ON(node->processed);
2912 	root = select_one_root(node);
2913 	if (root == ERR_PTR(-ENOENT)) {
2914 		update_processed_blocks(rc, node);
2915 		goto out;
2916 	}
2917 
2918 	if (!root || test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
2919 		ret = reserve_metadata_space(trans, rc, node);
2920 		if (ret)
2921 			goto out;
2922 	}
2923 
2924 	if (root) {
2925 		if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
2926 			BUG_ON(node->new_bytenr);
2927 			BUG_ON(!list_empty(&node->list));
2928 			btrfs_record_root_in_trans(trans, root);
2929 			root = root->reloc_root;
2930 			node->new_bytenr = root->node->start;
2931 			node->root = root;
2932 			list_add_tail(&node->list, &rc->backref_cache.changed);
2933 		} else {
2934 			path->lowest_level = node->level;
2935 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2936 			btrfs_release_path(path);
2937 			if (ret > 0)
2938 				ret = 0;
2939 		}
2940 		if (!ret)
2941 			update_processed_blocks(rc, node);
2942 	} else {
2943 		ret = do_relocation(trans, rc, node, key, path, 1);
2944 	}
2945 out:
2946 	if (ret || node->level == 0 || node->cowonly)
2947 		remove_backref_node(&rc->backref_cache, node);
2948 	return ret;
2949 }
2950 
2951 /*
2952  * relocate a list of blocks
2953  */
2954 static noinline_for_stack
2955 int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2956 			 struct reloc_control *rc, struct rb_root *blocks)
2957 {
2958 	struct backref_node *node;
2959 	struct btrfs_path *path;
2960 	struct tree_block *block;
2961 	struct rb_node *rb_node;
2962 	int ret;
2963 	int err = 0;
2964 
2965 	path = btrfs_alloc_path();
2966 	if (!path) {
2967 		err = -ENOMEM;
2968 		goto out_free_blocks;
2969 	}
2970 
2971 	rb_node = rb_first(blocks);
2972 	while (rb_node) {
2973 		block = rb_entry(rb_node, struct tree_block, rb_node);
2974 		if (!block->key_ready)
2975 			readahead_tree_block(rc->extent_root, block->bytenr);
2976 		rb_node = rb_next(rb_node);
2977 	}
2978 
2979 	rb_node = rb_first(blocks);
2980 	while (rb_node) {
2981 		block = rb_entry(rb_node, struct tree_block, rb_node);
2982 		if (!block->key_ready) {
2983 			err = get_tree_block_key(rc, block);
2984 			if (err)
2985 				goto out_free_path;
2986 		}
2987 		rb_node = rb_next(rb_node);
2988 	}
2989 
2990 	rb_node = rb_first(blocks);
2991 	while (rb_node) {
2992 		block = rb_entry(rb_node, struct tree_block, rb_node);
2993 
2994 		node = build_backref_tree(rc, &block->key,
2995 					  block->level, block->bytenr);
2996 		if (IS_ERR(node)) {
2997 			err = PTR_ERR(node);
2998 			goto out;
2999 		}
3000 
3001 		ret = relocate_tree_block(trans, rc, node, &block->key,
3002 					  path);
3003 		if (ret < 0) {
3004 			if (ret != -EAGAIN || rb_node == rb_first(blocks))
3005 				err = ret;
3006 			goto out;
3007 		}
3008 		rb_node = rb_next(rb_node);
3009 	}
3010 out:
3011 	err = finish_pending_nodes(trans, rc, path, err);
3012 
3013 out_free_path:
3014 	btrfs_free_path(path);
3015 out_free_blocks:
3016 	free_block_list(blocks);
3017 	return err;
3018 }
3019 
3020 static noinline_for_stack
3021 int prealloc_file_extent_cluster(struct inode *inode,
3022 				 struct file_extent_cluster *cluster)
3023 {
3024 	u64 alloc_hint = 0;
3025 	u64 start;
3026 	u64 end;
3027 	u64 offset = BTRFS_I(inode)->index_cnt;
3028 	u64 num_bytes;
3029 	int nr = 0;
3030 	int ret = 0;
3031 
3032 	BUG_ON(cluster->start != cluster->boundary[0]);
3033 	mutex_lock(&inode->i_mutex);
3034 
3035 	ret = btrfs_check_data_free_space(inode, cluster->start,
3036 					  cluster->end + 1 - cluster->start);
3037 	if (ret)
3038 		goto out;
3039 
3040 	while (nr < cluster->nr) {
3041 		start = cluster->boundary[nr] - offset;
3042 		if (nr + 1 < cluster->nr)
3043 			end = cluster->boundary[nr + 1] - 1 - offset;
3044 		else
3045 			end = cluster->end - offset;
3046 
3047 		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3048 		num_bytes = end + 1 - start;
3049 		ret = btrfs_prealloc_file_range(inode, 0, start,
3050 						num_bytes, num_bytes,
3051 						end + 1, &alloc_hint);
3052 		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3053 		if (ret)
3054 			break;
3055 		nr++;
3056 	}
3057 	btrfs_free_reserved_data_space(inode, cluster->start,
3058 				       cluster->end + 1 - cluster->start);
3059 out:
3060 	mutex_unlock(&inode->i_mutex);
3061 	return ret;
3062 }
3063 
3064 static noinline_for_stack
3065 int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
3066 			 u64 block_start)
3067 {
3068 	struct btrfs_root *root = BTRFS_I(inode)->root;
3069 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3070 	struct extent_map *em;
3071 	int ret = 0;
3072 
3073 	em = alloc_extent_map();
3074 	if (!em)
3075 		return -ENOMEM;
3076 
3077 	em->start = start;
3078 	em->len = end + 1 - start;
3079 	em->block_len = em->len;
3080 	em->block_start = block_start;
3081 	em->bdev = root->fs_info->fs_devices->latest_bdev;
3082 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
3083 
3084 	lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3085 	while (1) {
3086 		write_lock(&em_tree->lock);
3087 		ret = add_extent_mapping(em_tree, em, 0);
3088 		write_unlock(&em_tree->lock);
3089 		if (ret != -EEXIST) {
3090 			free_extent_map(em);
3091 			break;
3092 		}
3093 		btrfs_drop_extent_cache(inode, start, end, 0);
3094 	}
3095 	unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3096 	return ret;
3097 }
3098 
3099 static int relocate_file_extent_cluster(struct inode *inode,
3100 					struct file_extent_cluster *cluster)
3101 {
3102 	u64 page_start;
3103 	u64 page_end;
3104 	u64 offset = BTRFS_I(inode)->index_cnt;
3105 	unsigned long index;
3106 	unsigned long last_index;
3107 	struct page *page;
3108 	struct file_ra_state *ra;
3109 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
3110 	int nr = 0;
3111 	int ret = 0;
3112 
3113 	if (!cluster->nr)
3114 		return 0;
3115 
3116 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
3117 	if (!ra)
3118 		return -ENOMEM;
3119 
3120 	ret = prealloc_file_extent_cluster(inode, cluster);
3121 	if (ret)
3122 		goto out;
3123 
3124 	file_ra_state_init(ra, inode->i_mapping);
3125 
3126 	ret = setup_extent_mapping(inode, cluster->start - offset,
3127 				   cluster->end - offset, cluster->start);
3128 	if (ret)
3129 		goto out;
3130 
3131 	index = (cluster->start - offset) >> PAGE_CACHE_SHIFT;
3132 	last_index = (cluster->end - offset) >> PAGE_CACHE_SHIFT;
3133 	while (index <= last_index) {
3134 		ret = btrfs_delalloc_reserve_metadata(inode, PAGE_CACHE_SIZE);
3135 		if (ret)
3136 			goto out;
3137 
3138 		page = find_lock_page(inode->i_mapping, index);
3139 		if (!page) {
3140 			page_cache_sync_readahead(inode->i_mapping,
3141 						  ra, NULL, index,
3142 						  last_index + 1 - index);
3143 			page = find_or_create_page(inode->i_mapping, index,
3144 						   mask);
3145 			if (!page) {
3146 				btrfs_delalloc_release_metadata(inode,
3147 							PAGE_CACHE_SIZE);
3148 				ret = -ENOMEM;
3149 				goto out;
3150 			}
3151 		}
3152 
3153 		if (PageReadahead(page)) {
3154 			page_cache_async_readahead(inode->i_mapping,
3155 						   ra, NULL, page, index,
3156 						   last_index + 1 - index);
3157 		}
3158 
3159 		if (!PageUptodate(page)) {
3160 			btrfs_readpage(NULL, page);
3161 			lock_page(page);
3162 			if (!PageUptodate(page)) {
3163 				unlock_page(page);
3164 				page_cache_release(page);
3165 				btrfs_delalloc_release_metadata(inode,
3166 							PAGE_CACHE_SIZE);
3167 				ret = -EIO;
3168 				goto out;
3169 			}
3170 		}
3171 
3172 		page_start = page_offset(page);
3173 		page_end = page_start + PAGE_CACHE_SIZE - 1;
3174 
3175 		lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
3176 
3177 		set_page_extent_mapped(page);
3178 
3179 		if (nr < cluster->nr &&
3180 		    page_start + offset == cluster->boundary[nr]) {
3181 			set_extent_bits(&BTRFS_I(inode)->io_tree,
3182 					page_start, page_end,
3183 					EXTENT_BOUNDARY, GFP_NOFS);
3184 			nr++;
3185 		}
3186 
3187 		btrfs_set_extent_delalloc(inode, page_start, page_end, NULL);
3188 		set_page_dirty(page);
3189 
3190 		unlock_extent(&BTRFS_I(inode)->io_tree,
3191 			      page_start, page_end);
3192 		unlock_page(page);
3193 		page_cache_release(page);
3194 
3195 		index++;
3196 		balance_dirty_pages_ratelimited(inode->i_mapping);
3197 		btrfs_throttle(BTRFS_I(inode)->root);
3198 	}
3199 	WARN_ON(nr != cluster->nr);
3200 out:
3201 	kfree(ra);
3202 	return ret;
3203 }
3204 
3205 static noinline_for_stack
3206 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3207 			 struct file_extent_cluster *cluster)
3208 {
3209 	int ret;
3210 
3211 	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3212 		ret = relocate_file_extent_cluster(inode, cluster);
3213 		if (ret)
3214 			return ret;
3215 		cluster->nr = 0;
3216 	}
3217 
3218 	if (!cluster->nr)
3219 		cluster->start = extent_key->objectid;
3220 	else
3221 		BUG_ON(cluster->nr >= MAX_EXTENTS);
3222 	cluster->end = extent_key->objectid + extent_key->offset - 1;
3223 	cluster->boundary[cluster->nr] = extent_key->objectid;
3224 	cluster->nr++;
3225 
3226 	if (cluster->nr >= MAX_EXTENTS) {
3227 		ret = relocate_file_extent_cluster(inode, cluster);
3228 		if (ret)
3229 			return ret;
3230 		cluster->nr = 0;
3231 	}
3232 	return 0;
3233 }
3234 
3235 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3236 static int get_ref_objectid_v0(struct reloc_control *rc,
3237 			       struct btrfs_path *path,
3238 			       struct btrfs_key *extent_key,
3239 			       u64 *ref_objectid, int *path_change)
3240 {
3241 	struct btrfs_key key;
3242 	struct extent_buffer *leaf;
3243 	struct btrfs_extent_ref_v0 *ref0;
3244 	int ret;
3245 	int slot;
3246 
3247 	leaf = path->nodes[0];
3248 	slot = path->slots[0];
3249 	while (1) {
3250 		if (slot >= btrfs_header_nritems(leaf)) {
3251 			ret = btrfs_next_leaf(rc->extent_root, path);
3252 			if (ret < 0)
3253 				return ret;
3254 			BUG_ON(ret > 0);
3255 			leaf = path->nodes[0];
3256 			slot = path->slots[0];
3257 			if (path_change)
3258 				*path_change = 1;
3259 		}
3260 		btrfs_item_key_to_cpu(leaf, &key, slot);
3261 		if (key.objectid != extent_key->objectid)
3262 			return -ENOENT;
3263 
3264 		if (key.type != BTRFS_EXTENT_REF_V0_KEY) {
3265 			slot++;
3266 			continue;
3267 		}
3268 		ref0 = btrfs_item_ptr(leaf, slot,
3269 				struct btrfs_extent_ref_v0);
3270 		*ref_objectid = btrfs_ref_objectid_v0(leaf, ref0);
3271 		break;
3272 	}
3273 	return 0;
3274 }
3275 #endif
3276 
3277 /*
3278  * helper to add a tree block to the list.
3279  * the major work is getting the generation and level of the block
3280  */
3281 static int add_tree_block(struct reloc_control *rc,
3282 			  struct btrfs_key *extent_key,
3283 			  struct btrfs_path *path,
3284 			  struct rb_root *blocks)
3285 {
3286 	struct extent_buffer *eb;
3287 	struct btrfs_extent_item *ei;
3288 	struct btrfs_tree_block_info *bi;
3289 	struct tree_block *block;
3290 	struct rb_node *rb_node;
3291 	u32 item_size;
3292 	int level = -1;
3293 	u64 generation;
3294 
3295 	eb =  path->nodes[0];
3296 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
3297 
3298 	if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3299 	    item_size >= sizeof(*ei) + sizeof(*bi)) {
3300 		ei = btrfs_item_ptr(eb, path->slots[0],
3301 				struct btrfs_extent_item);
3302 		if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3303 			bi = (struct btrfs_tree_block_info *)(ei + 1);
3304 			level = btrfs_tree_block_level(eb, bi);
3305 		} else {
3306 			level = (int)extent_key->offset;
3307 		}
3308 		generation = btrfs_extent_generation(eb, ei);
3309 	} else {
3310 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3311 		u64 ref_owner;
3312 		int ret;
3313 
3314 		BUG_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3315 		ret = get_ref_objectid_v0(rc, path, extent_key,
3316 					  &ref_owner, NULL);
3317 		if (ret < 0)
3318 			return ret;
3319 		BUG_ON(ref_owner >= BTRFS_MAX_LEVEL);
3320 		level = (int)ref_owner;
3321 		/* FIXME: get real generation */
3322 		generation = 0;
3323 #else
3324 		BUG();
3325 #endif
3326 	}
3327 
3328 	btrfs_release_path(path);
3329 
3330 	BUG_ON(level == -1);
3331 
3332 	block = kmalloc(sizeof(*block), GFP_NOFS);
3333 	if (!block)
3334 		return -ENOMEM;
3335 
3336 	block->bytenr = extent_key->objectid;
3337 	block->key.objectid = rc->extent_root->nodesize;
3338 	block->key.offset = generation;
3339 	block->level = level;
3340 	block->key_ready = 0;
3341 
3342 	rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
3343 	if (rb_node)
3344 		backref_tree_panic(rb_node, -EEXIST, block->bytenr);
3345 
3346 	return 0;
3347 }
3348 
3349 /*
3350  * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3351  */
3352 static int __add_tree_block(struct reloc_control *rc,
3353 			    u64 bytenr, u32 blocksize,
3354 			    struct rb_root *blocks)
3355 {
3356 	struct btrfs_path *path;
3357 	struct btrfs_key key;
3358 	int ret;
3359 	bool skinny = btrfs_fs_incompat(rc->extent_root->fs_info,
3360 					SKINNY_METADATA);
3361 
3362 	if (tree_block_processed(bytenr, rc))
3363 		return 0;
3364 
3365 	if (tree_search(blocks, bytenr))
3366 		return 0;
3367 
3368 	path = btrfs_alloc_path();
3369 	if (!path)
3370 		return -ENOMEM;
3371 again:
3372 	key.objectid = bytenr;
3373 	if (skinny) {
3374 		key.type = BTRFS_METADATA_ITEM_KEY;
3375 		key.offset = (u64)-1;
3376 	} else {
3377 		key.type = BTRFS_EXTENT_ITEM_KEY;
3378 		key.offset = blocksize;
3379 	}
3380 
3381 	path->search_commit_root = 1;
3382 	path->skip_locking = 1;
3383 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3384 	if (ret < 0)
3385 		goto out;
3386 
3387 	if (ret > 0 && skinny) {
3388 		if (path->slots[0]) {
3389 			path->slots[0]--;
3390 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3391 					      path->slots[0]);
3392 			if (key.objectid == bytenr &&
3393 			    (key.type == BTRFS_METADATA_ITEM_KEY ||
3394 			     (key.type == BTRFS_EXTENT_ITEM_KEY &&
3395 			      key.offset == blocksize)))
3396 				ret = 0;
3397 		}
3398 
3399 		if (ret) {
3400 			skinny = false;
3401 			btrfs_release_path(path);
3402 			goto again;
3403 		}
3404 	}
3405 	BUG_ON(ret);
3406 
3407 	ret = add_tree_block(rc, &key, path, blocks);
3408 out:
3409 	btrfs_free_path(path);
3410 	return ret;
3411 }
3412 
3413 /*
3414  * helper to check if the block use full backrefs for pointers in it
3415  */
3416 static int block_use_full_backref(struct reloc_control *rc,
3417 				  struct extent_buffer *eb)
3418 {
3419 	u64 flags;
3420 	int ret;
3421 
3422 	if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) ||
3423 	    btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV)
3424 		return 1;
3425 
3426 	ret = btrfs_lookup_extent_info(NULL, rc->extent_root,
3427 				       eb->start, btrfs_header_level(eb), 1,
3428 				       NULL, &flags);
3429 	BUG_ON(ret);
3430 
3431 	if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
3432 		ret = 1;
3433 	else
3434 		ret = 0;
3435 	return ret;
3436 }
3437 
3438 static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3439 				    struct btrfs_block_group_cache *block_group,
3440 				    struct inode *inode,
3441 				    u64 ino)
3442 {
3443 	struct btrfs_key key;
3444 	struct btrfs_root *root = fs_info->tree_root;
3445 	struct btrfs_trans_handle *trans;
3446 	int ret = 0;
3447 
3448 	if (inode)
3449 		goto truncate;
3450 
3451 	key.objectid = ino;
3452 	key.type = BTRFS_INODE_ITEM_KEY;
3453 	key.offset = 0;
3454 
3455 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
3456 	if (IS_ERR(inode) || is_bad_inode(inode)) {
3457 		if (!IS_ERR(inode))
3458 			iput(inode);
3459 		return -ENOENT;
3460 	}
3461 
3462 truncate:
3463 	ret = btrfs_check_trunc_cache_free_space(root,
3464 						 &fs_info->global_block_rsv);
3465 	if (ret)
3466 		goto out;
3467 
3468 	trans = btrfs_join_transaction(root);
3469 	if (IS_ERR(trans)) {
3470 		ret = PTR_ERR(trans);
3471 		goto out;
3472 	}
3473 
3474 	ret = btrfs_truncate_free_space_cache(root, trans, block_group, inode);
3475 
3476 	btrfs_end_transaction(trans, root);
3477 	btrfs_btree_balance_dirty(root);
3478 out:
3479 	iput(inode);
3480 	return ret;
3481 }
3482 
3483 /*
3484  * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY
3485  * this function scans fs tree to find blocks reference the data extent
3486  */
3487 static int find_data_references(struct reloc_control *rc,
3488 				struct btrfs_key *extent_key,
3489 				struct extent_buffer *leaf,
3490 				struct btrfs_extent_data_ref *ref,
3491 				struct rb_root *blocks)
3492 {
3493 	struct btrfs_path *path;
3494 	struct tree_block *block;
3495 	struct btrfs_root *root;
3496 	struct btrfs_file_extent_item *fi;
3497 	struct rb_node *rb_node;
3498 	struct btrfs_key key;
3499 	u64 ref_root;
3500 	u64 ref_objectid;
3501 	u64 ref_offset;
3502 	u32 ref_count;
3503 	u32 nritems;
3504 	int err = 0;
3505 	int added = 0;
3506 	int counted;
3507 	int ret;
3508 
3509 	ref_root = btrfs_extent_data_ref_root(leaf, ref);
3510 	ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref);
3511 	ref_offset = btrfs_extent_data_ref_offset(leaf, ref);
3512 	ref_count = btrfs_extent_data_ref_count(leaf, ref);
3513 
3514 	/*
3515 	 * This is an extent belonging to the free space cache, lets just delete
3516 	 * it and redo the search.
3517 	 */
3518 	if (ref_root == BTRFS_ROOT_TREE_OBJECTID) {
3519 		ret = delete_block_group_cache(rc->extent_root->fs_info,
3520 					       rc->block_group,
3521 					       NULL, ref_objectid);
3522 		if (ret != -ENOENT)
3523 			return ret;
3524 		ret = 0;
3525 	}
3526 
3527 	path = btrfs_alloc_path();
3528 	if (!path)
3529 		return -ENOMEM;
3530 	path->reada = 1;
3531 
3532 	root = read_fs_root(rc->extent_root->fs_info, ref_root);
3533 	if (IS_ERR(root)) {
3534 		err = PTR_ERR(root);
3535 		goto out;
3536 	}
3537 
3538 	key.objectid = ref_objectid;
3539 	key.type = BTRFS_EXTENT_DATA_KEY;
3540 	if (ref_offset > ((u64)-1 << 32))
3541 		key.offset = 0;
3542 	else
3543 		key.offset = ref_offset;
3544 
3545 	path->search_commit_root = 1;
3546 	path->skip_locking = 1;
3547 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3548 	if (ret < 0) {
3549 		err = ret;
3550 		goto out;
3551 	}
3552 
3553 	leaf = path->nodes[0];
3554 	nritems = btrfs_header_nritems(leaf);
3555 	/*
3556 	 * the references in tree blocks that use full backrefs
3557 	 * are not counted in
3558 	 */
3559 	if (block_use_full_backref(rc, leaf))
3560 		counted = 0;
3561 	else
3562 		counted = 1;
3563 	rb_node = tree_search(blocks, leaf->start);
3564 	if (rb_node) {
3565 		if (counted)
3566 			added = 1;
3567 		else
3568 			path->slots[0] = nritems;
3569 	}
3570 
3571 	while (ref_count > 0) {
3572 		while (path->slots[0] >= nritems) {
3573 			ret = btrfs_next_leaf(root, path);
3574 			if (ret < 0) {
3575 				err = ret;
3576 				goto out;
3577 			}
3578 			if (WARN_ON(ret > 0))
3579 				goto out;
3580 
3581 			leaf = path->nodes[0];
3582 			nritems = btrfs_header_nritems(leaf);
3583 			added = 0;
3584 
3585 			if (block_use_full_backref(rc, leaf))
3586 				counted = 0;
3587 			else
3588 				counted = 1;
3589 			rb_node = tree_search(blocks, leaf->start);
3590 			if (rb_node) {
3591 				if (counted)
3592 					added = 1;
3593 				else
3594 					path->slots[0] = nritems;
3595 			}
3596 		}
3597 
3598 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3599 		if (WARN_ON(key.objectid != ref_objectid ||
3600 		    key.type != BTRFS_EXTENT_DATA_KEY))
3601 			break;
3602 
3603 		fi = btrfs_item_ptr(leaf, path->slots[0],
3604 				    struct btrfs_file_extent_item);
3605 
3606 		if (btrfs_file_extent_type(leaf, fi) ==
3607 		    BTRFS_FILE_EXTENT_INLINE)
3608 			goto next;
3609 
3610 		if (btrfs_file_extent_disk_bytenr(leaf, fi) !=
3611 		    extent_key->objectid)
3612 			goto next;
3613 
3614 		key.offset -= btrfs_file_extent_offset(leaf, fi);
3615 		if (key.offset != ref_offset)
3616 			goto next;
3617 
3618 		if (counted)
3619 			ref_count--;
3620 		if (added)
3621 			goto next;
3622 
3623 		if (!tree_block_processed(leaf->start, rc)) {
3624 			block = kmalloc(sizeof(*block), GFP_NOFS);
3625 			if (!block) {
3626 				err = -ENOMEM;
3627 				break;
3628 			}
3629 			block->bytenr = leaf->start;
3630 			btrfs_item_key_to_cpu(leaf, &block->key, 0);
3631 			block->level = 0;
3632 			block->key_ready = 1;
3633 			rb_node = tree_insert(blocks, block->bytenr,
3634 					      &block->rb_node);
3635 			if (rb_node)
3636 				backref_tree_panic(rb_node, -EEXIST,
3637 						   block->bytenr);
3638 		}
3639 		if (counted)
3640 			added = 1;
3641 		else
3642 			path->slots[0] = nritems;
3643 next:
3644 		path->slots[0]++;
3645 
3646 	}
3647 out:
3648 	btrfs_free_path(path);
3649 	return err;
3650 }
3651 
3652 /*
3653  * helper to find all tree blocks that reference a given data extent
3654  */
3655 static noinline_for_stack
3656 int add_data_references(struct reloc_control *rc,
3657 			struct btrfs_key *extent_key,
3658 			struct btrfs_path *path,
3659 			struct rb_root *blocks)
3660 {
3661 	struct btrfs_key key;
3662 	struct extent_buffer *eb;
3663 	struct btrfs_extent_data_ref *dref;
3664 	struct btrfs_extent_inline_ref *iref;
3665 	unsigned long ptr;
3666 	unsigned long end;
3667 	u32 blocksize = rc->extent_root->nodesize;
3668 	int ret = 0;
3669 	int err = 0;
3670 
3671 	eb = path->nodes[0];
3672 	ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
3673 	end = ptr + btrfs_item_size_nr(eb, path->slots[0]);
3674 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3675 	if (ptr + sizeof(struct btrfs_extent_item_v0) == end)
3676 		ptr = end;
3677 	else
3678 #endif
3679 		ptr += sizeof(struct btrfs_extent_item);
3680 
3681 	while (ptr < end) {
3682 		iref = (struct btrfs_extent_inline_ref *)ptr;
3683 		key.type = btrfs_extent_inline_ref_type(eb, iref);
3684 		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3685 			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3686 			ret = __add_tree_block(rc, key.offset, blocksize,
3687 					       blocks);
3688 		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3689 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
3690 			ret = find_data_references(rc, extent_key,
3691 						   eb, dref, blocks);
3692 		} else {
3693 			BUG();
3694 		}
3695 		if (ret) {
3696 			err = ret;
3697 			goto out;
3698 		}
3699 		ptr += btrfs_extent_inline_ref_size(key.type);
3700 	}
3701 	WARN_ON(ptr > end);
3702 
3703 	while (1) {
3704 		cond_resched();
3705 		eb = path->nodes[0];
3706 		if (path->slots[0] >= btrfs_header_nritems(eb)) {
3707 			ret = btrfs_next_leaf(rc->extent_root, path);
3708 			if (ret < 0) {
3709 				err = ret;
3710 				break;
3711 			}
3712 			if (ret > 0)
3713 				break;
3714 			eb = path->nodes[0];
3715 		}
3716 
3717 		btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
3718 		if (key.objectid != extent_key->objectid)
3719 			break;
3720 
3721 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3722 		if (key.type == BTRFS_SHARED_DATA_REF_KEY ||
3723 		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
3724 #else
3725 		BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
3726 		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3727 #endif
3728 			ret = __add_tree_block(rc, key.offset, blocksize,
3729 					       blocks);
3730 		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3731 			dref = btrfs_item_ptr(eb, path->slots[0],
3732 					      struct btrfs_extent_data_ref);
3733 			ret = find_data_references(rc, extent_key,
3734 						   eb, dref, blocks);
3735 		} else {
3736 			ret = 0;
3737 		}
3738 		if (ret) {
3739 			err = ret;
3740 			break;
3741 		}
3742 		path->slots[0]++;
3743 	}
3744 out:
3745 	btrfs_release_path(path);
3746 	if (err)
3747 		free_block_list(blocks);
3748 	return err;
3749 }
3750 
3751 /*
3752  * helper to find next unprocessed extent
3753  */
3754 static noinline_for_stack
3755 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3756 		     struct btrfs_key *extent_key)
3757 {
3758 	struct btrfs_key key;
3759 	struct extent_buffer *leaf;
3760 	u64 start, end, last;
3761 	int ret;
3762 
3763 	last = rc->block_group->key.objectid + rc->block_group->key.offset;
3764 	while (1) {
3765 		cond_resched();
3766 		if (rc->search_start >= last) {
3767 			ret = 1;
3768 			break;
3769 		}
3770 
3771 		key.objectid = rc->search_start;
3772 		key.type = BTRFS_EXTENT_ITEM_KEY;
3773 		key.offset = 0;
3774 
3775 		path->search_commit_root = 1;
3776 		path->skip_locking = 1;
3777 		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3778 					0, 0);
3779 		if (ret < 0)
3780 			break;
3781 next:
3782 		leaf = path->nodes[0];
3783 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3784 			ret = btrfs_next_leaf(rc->extent_root, path);
3785 			if (ret != 0)
3786 				break;
3787 			leaf = path->nodes[0];
3788 		}
3789 
3790 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3791 		if (key.objectid >= last) {
3792 			ret = 1;
3793 			break;
3794 		}
3795 
3796 		if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3797 		    key.type != BTRFS_METADATA_ITEM_KEY) {
3798 			path->slots[0]++;
3799 			goto next;
3800 		}
3801 
3802 		if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3803 		    key.objectid + key.offset <= rc->search_start) {
3804 			path->slots[0]++;
3805 			goto next;
3806 		}
3807 
3808 		if (key.type == BTRFS_METADATA_ITEM_KEY &&
3809 		    key.objectid + rc->extent_root->nodesize <=
3810 		    rc->search_start) {
3811 			path->slots[0]++;
3812 			goto next;
3813 		}
3814 
3815 		ret = find_first_extent_bit(&rc->processed_blocks,
3816 					    key.objectid, &start, &end,
3817 					    EXTENT_DIRTY, NULL);
3818 
3819 		if (ret == 0 && start <= key.objectid) {
3820 			btrfs_release_path(path);
3821 			rc->search_start = end + 1;
3822 		} else {
3823 			if (key.type == BTRFS_EXTENT_ITEM_KEY)
3824 				rc->search_start = key.objectid + key.offset;
3825 			else
3826 				rc->search_start = key.objectid +
3827 					rc->extent_root->nodesize;
3828 			memcpy(extent_key, &key, sizeof(key));
3829 			return 0;
3830 		}
3831 	}
3832 	btrfs_release_path(path);
3833 	return ret;
3834 }
3835 
3836 static void set_reloc_control(struct reloc_control *rc)
3837 {
3838 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3839 
3840 	mutex_lock(&fs_info->reloc_mutex);
3841 	fs_info->reloc_ctl = rc;
3842 	mutex_unlock(&fs_info->reloc_mutex);
3843 }
3844 
3845 static void unset_reloc_control(struct reloc_control *rc)
3846 {
3847 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3848 
3849 	mutex_lock(&fs_info->reloc_mutex);
3850 	fs_info->reloc_ctl = NULL;
3851 	mutex_unlock(&fs_info->reloc_mutex);
3852 }
3853 
3854 static int check_extent_flags(u64 flags)
3855 {
3856 	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3857 	    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3858 		return 1;
3859 	if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
3860 	    !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3861 		return 1;
3862 	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3863 	    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
3864 		return 1;
3865 	return 0;
3866 }
3867 
3868 static noinline_for_stack
3869 int prepare_to_relocate(struct reloc_control *rc)
3870 {
3871 	struct btrfs_trans_handle *trans;
3872 
3873 	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root,
3874 					      BTRFS_BLOCK_RSV_TEMP);
3875 	if (!rc->block_rsv)
3876 		return -ENOMEM;
3877 
3878 	memset(&rc->cluster, 0, sizeof(rc->cluster));
3879 	rc->search_start = rc->block_group->key.objectid;
3880 	rc->extents_found = 0;
3881 	rc->nodes_relocated = 0;
3882 	rc->merging_rsv_size = 0;
3883 	rc->reserved_bytes = 0;
3884 	rc->block_rsv->size = rc->extent_root->nodesize *
3885 			      RELOCATION_RESERVED_NODES;
3886 
3887 	rc->create_reloc_tree = 1;
3888 	set_reloc_control(rc);
3889 
3890 	trans = btrfs_join_transaction(rc->extent_root);
3891 	if (IS_ERR(trans)) {
3892 		unset_reloc_control(rc);
3893 		/*
3894 		 * extent tree is not a ref_cow tree and has no reloc_root to
3895 		 * cleanup.  And callers are responsible to free the above
3896 		 * block rsv.
3897 		 */
3898 		return PTR_ERR(trans);
3899 	}
3900 	btrfs_commit_transaction(trans, rc->extent_root);
3901 	return 0;
3902 }
3903 
3904 static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3905 {
3906 	struct rb_root blocks = RB_ROOT;
3907 	struct btrfs_key key;
3908 	struct btrfs_trans_handle *trans = NULL;
3909 	struct btrfs_path *path;
3910 	struct btrfs_extent_item *ei;
3911 	u64 flags;
3912 	u32 item_size;
3913 	int ret;
3914 	int err = 0;
3915 	int progress = 0;
3916 
3917 	path = btrfs_alloc_path();
3918 	if (!path)
3919 		return -ENOMEM;
3920 	path->reada = 1;
3921 
3922 	ret = prepare_to_relocate(rc);
3923 	if (ret) {
3924 		err = ret;
3925 		goto out_free;
3926 	}
3927 
3928 	while (1) {
3929 		rc->reserved_bytes = 0;
3930 		ret = btrfs_block_rsv_refill(rc->extent_root,
3931 					rc->block_rsv, rc->block_rsv->size,
3932 					BTRFS_RESERVE_FLUSH_ALL);
3933 		if (ret) {
3934 			err = ret;
3935 			break;
3936 		}
3937 		progress++;
3938 		trans = btrfs_start_transaction(rc->extent_root, 0);
3939 		if (IS_ERR(trans)) {
3940 			err = PTR_ERR(trans);
3941 			trans = NULL;
3942 			break;
3943 		}
3944 restart:
3945 		if (update_backref_cache(trans, &rc->backref_cache)) {
3946 			btrfs_end_transaction(trans, rc->extent_root);
3947 			continue;
3948 		}
3949 
3950 		ret = find_next_extent(rc, path, &key);
3951 		if (ret < 0)
3952 			err = ret;
3953 		if (ret != 0)
3954 			break;
3955 
3956 		rc->extents_found++;
3957 
3958 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3959 				    struct btrfs_extent_item);
3960 		item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
3961 		if (item_size >= sizeof(*ei)) {
3962 			flags = btrfs_extent_flags(path->nodes[0], ei);
3963 			ret = check_extent_flags(flags);
3964 			BUG_ON(ret);
3965 
3966 		} else {
3967 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3968 			u64 ref_owner;
3969 			int path_change = 0;
3970 
3971 			BUG_ON(item_size !=
3972 			       sizeof(struct btrfs_extent_item_v0));
3973 			ret = get_ref_objectid_v0(rc, path, &key, &ref_owner,
3974 						  &path_change);
3975 			if (ret < 0) {
3976 				err = ret;
3977 				break;
3978 			}
3979 			if (ref_owner < BTRFS_FIRST_FREE_OBJECTID)
3980 				flags = BTRFS_EXTENT_FLAG_TREE_BLOCK;
3981 			else
3982 				flags = BTRFS_EXTENT_FLAG_DATA;
3983 
3984 			if (path_change) {
3985 				btrfs_release_path(path);
3986 
3987 				path->search_commit_root = 1;
3988 				path->skip_locking = 1;
3989 				ret = btrfs_search_slot(NULL, rc->extent_root,
3990 							&key, path, 0, 0);
3991 				if (ret < 0) {
3992 					err = ret;
3993 					break;
3994 				}
3995 				BUG_ON(ret > 0);
3996 			}
3997 #else
3998 			BUG();
3999 #endif
4000 		}
4001 
4002 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
4003 			ret = add_tree_block(rc, &key, path, &blocks);
4004 		} else if (rc->stage == UPDATE_DATA_PTRS &&
4005 			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
4006 			ret = add_data_references(rc, &key, path, &blocks);
4007 		} else {
4008 			btrfs_release_path(path);
4009 			ret = 0;
4010 		}
4011 		if (ret < 0) {
4012 			err = ret;
4013 			break;
4014 		}
4015 
4016 		if (!RB_EMPTY_ROOT(&blocks)) {
4017 			ret = relocate_tree_blocks(trans, rc, &blocks);
4018 			if (ret < 0) {
4019 				/*
4020 				 * if we fail to relocate tree blocks, force to update
4021 				 * backref cache when committing transaction.
4022 				 */
4023 				rc->backref_cache.last_trans = trans->transid - 1;
4024 
4025 				if (ret != -EAGAIN) {
4026 					err = ret;
4027 					break;
4028 				}
4029 				rc->extents_found--;
4030 				rc->search_start = key.objectid;
4031 			}
4032 		}
4033 
4034 		btrfs_end_transaction_throttle(trans, rc->extent_root);
4035 		btrfs_btree_balance_dirty(rc->extent_root);
4036 		trans = NULL;
4037 
4038 		if (rc->stage == MOVE_DATA_EXTENTS &&
4039 		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
4040 			rc->found_file_extent = 1;
4041 			ret = relocate_data_extent(rc->data_inode,
4042 						   &key, &rc->cluster);
4043 			if (ret < 0) {
4044 				err = ret;
4045 				break;
4046 			}
4047 		}
4048 	}
4049 	if (trans && progress && err == -ENOSPC) {
4050 		ret = btrfs_force_chunk_alloc(trans, rc->extent_root,
4051 					      rc->block_group->flags);
4052 		if (ret == 1) {
4053 			err = 0;
4054 			progress = 0;
4055 			goto restart;
4056 		}
4057 	}
4058 
4059 	btrfs_release_path(path);
4060 	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY,
4061 			  GFP_NOFS);
4062 
4063 	if (trans) {
4064 		btrfs_end_transaction_throttle(trans, rc->extent_root);
4065 		btrfs_btree_balance_dirty(rc->extent_root);
4066 	}
4067 
4068 	if (!err) {
4069 		ret = relocate_file_extent_cluster(rc->data_inode,
4070 						   &rc->cluster);
4071 		if (ret < 0)
4072 			err = ret;
4073 	}
4074 
4075 	rc->create_reloc_tree = 0;
4076 	set_reloc_control(rc);
4077 
4078 	backref_cache_cleanup(&rc->backref_cache);
4079 	btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1);
4080 
4081 	err = prepare_to_merge(rc, err);
4082 
4083 	merge_reloc_roots(rc);
4084 
4085 	rc->merge_reloc_tree = 0;
4086 	unset_reloc_control(rc);
4087 	btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1);
4088 
4089 	/* get rid of pinned extents */
4090 	trans = btrfs_join_transaction(rc->extent_root);
4091 	if (IS_ERR(trans))
4092 		err = PTR_ERR(trans);
4093 	else
4094 		btrfs_commit_transaction(trans, rc->extent_root);
4095 out_free:
4096 	btrfs_free_block_rsv(rc->extent_root, rc->block_rsv);
4097 	btrfs_free_path(path);
4098 	return err;
4099 }
4100 
4101 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
4102 				 struct btrfs_root *root, u64 objectid)
4103 {
4104 	struct btrfs_path *path;
4105 	struct btrfs_inode_item *item;
4106 	struct extent_buffer *leaf;
4107 	int ret;
4108 
4109 	path = btrfs_alloc_path();
4110 	if (!path)
4111 		return -ENOMEM;
4112 
4113 	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
4114 	if (ret)
4115 		goto out;
4116 
4117 	leaf = path->nodes[0];
4118 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
4119 	memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
4120 	btrfs_set_inode_generation(leaf, item, 1);
4121 	btrfs_set_inode_size(leaf, item, 0);
4122 	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
4123 	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
4124 					  BTRFS_INODE_PREALLOC);
4125 	btrfs_mark_buffer_dirty(leaf);
4126 out:
4127 	btrfs_free_path(path);
4128 	return ret;
4129 }
4130 
4131 /*
4132  * helper to create inode for data relocation.
4133  * the inode is in data relocation tree and its link count is 0
4134  */
4135 static noinline_for_stack
4136 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
4137 				 struct btrfs_block_group_cache *group)
4138 {
4139 	struct inode *inode = NULL;
4140 	struct btrfs_trans_handle *trans;
4141 	struct btrfs_root *root;
4142 	struct btrfs_key key;
4143 	u64 objectid;
4144 	int err = 0;
4145 
4146 	root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
4147 	if (IS_ERR(root))
4148 		return ERR_CAST(root);
4149 
4150 	trans = btrfs_start_transaction(root, 6);
4151 	if (IS_ERR(trans))
4152 		return ERR_CAST(trans);
4153 
4154 	err = btrfs_find_free_objectid(root, &objectid);
4155 	if (err)
4156 		goto out;
4157 
4158 	err = __insert_orphan_inode(trans, root, objectid);
4159 	BUG_ON(err);
4160 
4161 	key.objectid = objectid;
4162 	key.type = BTRFS_INODE_ITEM_KEY;
4163 	key.offset = 0;
4164 	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
4165 	BUG_ON(IS_ERR(inode) || is_bad_inode(inode));
4166 	BTRFS_I(inode)->index_cnt = group->key.objectid;
4167 
4168 	err = btrfs_orphan_add(trans, inode);
4169 out:
4170 	btrfs_end_transaction(trans, root);
4171 	btrfs_btree_balance_dirty(root);
4172 	if (err) {
4173 		if (inode)
4174 			iput(inode);
4175 		inode = ERR_PTR(err);
4176 	}
4177 	return inode;
4178 }
4179 
4180 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
4181 {
4182 	struct reloc_control *rc;
4183 
4184 	rc = kzalloc(sizeof(*rc), GFP_NOFS);
4185 	if (!rc)
4186 		return NULL;
4187 
4188 	INIT_LIST_HEAD(&rc->reloc_roots);
4189 	backref_cache_init(&rc->backref_cache);
4190 	mapping_tree_init(&rc->reloc_root_tree);
4191 	extent_io_tree_init(&rc->processed_blocks,
4192 			    fs_info->btree_inode->i_mapping);
4193 	return rc;
4194 }
4195 
4196 /*
4197  * function to relocate all extents in a block group.
4198  */
4199 int btrfs_relocate_block_group(struct btrfs_root *extent_root, u64 group_start)
4200 {
4201 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
4202 	struct reloc_control *rc;
4203 	struct inode *inode;
4204 	struct btrfs_path *path;
4205 	int ret;
4206 	int rw = 0;
4207 	int err = 0;
4208 
4209 	rc = alloc_reloc_control(fs_info);
4210 	if (!rc)
4211 		return -ENOMEM;
4212 
4213 	rc->extent_root = extent_root;
4214 
4215 	rc->block_group = btrfs_lookup_block_group(fs_info, group_start);
4216 	BUG_ON(!rc->block_group);
4217 
4218 	ret = btrfs_inc_block_group_ro(extent_root, rc->block_group);
4219 	if (ret) {
4220 		err = ret;
4221 		goto out;
4222 	}
4223 	rw = 1;
4224 
4225 	path = btrfs_alloc_path();
4226 	if (!path) {
4227 		err = -ENOMEM;
4228 		goto out;
4229 	}
4230 
4231 	inode = lookup_free_space_inode(fs_info->tree_root, rc->block_group,
4232 					path);
4233 	btrfs_free_path(path);
4234 
4235 	if (!IS_ERR(inode))
4236 		ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
4237 	else
4238 		ret = PTR_ERR(inode);
4239 
4240 	if (ret && ret != -ENOENT) {
4241 		err = ret;
4242 		goto out;
4243 	}
4244 
4245 	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4246 	if (IS_ERR(rc->data_inode)) {
4247 		err = PTR_ERR(rc->data_inode);
4248 		rc->data_inode = NULL;
4249 		goto out;
4250 	}
4251 
4252 	btrfs_info(extent_root->fs_info, "relocating block group %llu flags %llu",
4253 	       rc->block_group->key.objectid, rc->block_group->flags);
4254 
4255 	ret = btrfs_start_delalloc_roots(fs_info, 0, -1);
4256 	if (ret < 0) {
4257 		err = ret;
4258 		goto out;
4259 	}
4260 	btrfs_wait_ordered_roots(fs_info, -1);
4261 
4262 	while (1) {
4263 		mutex_lock(&fs_info->cleaner_mutex);
4264 		ret = relocate_block_group(rc);
4265 		mutex_unlock(&fs_info->cleaner_mutex);
4266 		if (ret < 0) {
4267 			err = ret;
4268 			goto out;
4269 		}
4270 
4271 		if (rc->extents_found == 0)
4272 			break;
4273 
4274 		btrfs_info(extent_root->fs_info, "found %llu extents",
4275 			rc->extents_found);
4276 
4277 		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4278 			ret = btrfs_wait_ordered_range(rc->data_inode, 0,
4279 						       (u64)-1);
4280 			if (ret) {
4281 				err = ret;
4282 				goto out;
4283 			}
4284 			invalidate_mapping_pages(rc->data_inode->i_mapping,
4285 						 0, -1);
4286 			rc->stage = UPDATE_DATA_PTRS;
4287 		}
4288 	}
4289 
4290 	WARN_ON(rc->block_group->pinned > 0);
4291 	WARN_ON(rc->block_group->reserved > 0);
4292 	WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0);
4293 out:
4294 	if (err && rw)
4295 		btrfs_dec_block_group_ro(extent_root, rc->block_group);
4296 	iput(rc->data_inode);
4297 	btrfs_put_block_group(rc->block_group);
4298 	kfree(rc);
4299 	return err;
4300 }
4301 
4302 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4303 {
4304 	struct btrfs_trans_handle *trans;
4305 	int ret, err;
4306 
4307 	trans = btrfs_start_transaction(root->fs_info->tree_root, 0);
4308 	if (IS_ERR(trans))
4309 		return PTR_ERR(trans);
4310 
4311 	memset(&root->root_item.drop_progress, 0,
4312 		sizeof(root->root_item.drop_progress));
4313 	root->root_item.drop_level = 0;
4314 	btrfs_set_root_refs(&root->root_item, 0);
4315 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
4316 				&root->root_key, &root->root_item);
4317 
4318 	err = btrfs_end_transaction(trans, root->fs_info->tree_root);
4319 	if (err)
4320 		return err;
4321 	return ret;
4322 }
4323 
4324 /*
4325  * recover relocation interrupted by system crash.
4326  *
4327  * this function resumes merging reloc trees with corresponding fs trees.
4328  * this is important for keeping the sharing of tree blocks
4329  */
4330 int btrfs_recover_relocation(struct btrfs_root *root)
4331 {
4332 	LIST_HEAD(reloc_roots);
4333 	struct btrfs_key key;
4334 	struct btrfs_root *fs_root;
4335 	struct btrfs_root *reloc_root;
4336 	struct btrfs_path *path;
4337 	struct extent_buffer *leaf;
4338 	struct reloc_control *rc = NULL;
4339 	struct btrfs_trans_handle *trans;
4340 	int ret;
4341 	int err = 0;
4342 
4343 	path = btrfs_alloc_path();
4344 	if (!path)
4345 		return -ENOMEM;
4346 	path->reada = -1;
4347 
4348 	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4349 	key.type = BTRFS_ROOT_ITEM_KEY;
4350 	key.offset = (u64)-1;
4351 
4352 	while (1) {
4353 		ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key,
4354 					path, 0, 0);
4355 		if (ret < 0) {
4356 			err = ret;
4357 			goto out;
4358 		}
4359 		if (ret > 0) {
4360 			if (path->slots[0] == 0)
4361 				break;
4362 			path->slots[0]--;
4363 		}
4364 		leaf = path->nodes[0];
4365 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4366 		btrfs_release_path(path);
4367 
4368 		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4369 		    key.type != BTRFS_ROOT_ITEM_KEY)
4370 			break;
4371 
4372 		reloc_root = btrfs_read_fs_root(root, &key);
4373 		if (IS_ERR(reloc_root)) {
4374 			err = PTR_ERR(reloc_root);
4375 			goto out;
4376 		}
4377 
4378 		list_add(&reloc_root->root_list, &reloc_roots);
4379 
4380 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4381 			fs_root = read_fs_root(root->fs_info,
4382 					       reloc_root->root_key.offset);
4383 			if (IS_ERR(fs_root)) {
4384 				ret = PTR_ERR(fs_root);
4385 				if (ret != -ENOENT) {
4386 					err = ret;
4387 					goto out;
4388 				}
4389 				ret = mark_garbage_root(reloc_root);
4390 				if (ret < 0) {
4391 					err = ret;
4392 					goto out;
4393 				}
4394 			}
4395 		}
4396 
4397 		if (key.offset == 0)
4398 			break;
4399 
4400 		key.offset--;
4401 	}
4402 	btrfs_release_path(path);
4403 
4404 	if (list_empty(&reloc_roots))
4405 		goto out;
4406 
4407 	rc = alloc_reloc_control(root->fs_info);
4408 	if (!rc) {
4409 		err = -ENOMEM;
4410 		goto out;
4411 	}
4412 
4413 	rc->extent_root = root->fs_info->extent_root;
4414 
4415 	set_reloc_control(rc);
4416 
4417 	trans = btrfs_join_transaction(rc->extent_root);
4418 	if (IS_ERR(trans)) {
4419 		unset_reloc_control(rc);
4420 		err = PTR_ERR(trans);
4421 		goto out_free;
4422 	}
4423 
4424 	rc->merge_reloc_tree = 1;
4425 
4426 	while (!list_empty(&reloc_roots)) {
4427 		reloc_root = list_entry(reloc_roots.next,
4428 					struct btrfs_root, root_list);
4429 		list_del(&reloc_root->root_list);
4430 
4431 		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4432 			list_add_tail(&reloc_root->root_list,
4433 				      &rc->reloc_roots);
4434 			continue;
4435 		}
4436 
4437 		fs_root = read_fs_root(root->fs_info,
4438 				       reloc_root->root_key.offset);
4439 		if (IS_ERR(fs_root)) {
4440 			err = PTR_ERR(fs_root);
4441 			goto out_free;
4442 		}
4443 
4444 		err = __add_reloc_root(reloc_root);
4445 		BUG_ON(err < 0); /* -ENOMEM or logic error */
4446 		fs_root->reloc_root = reloc_root;
4447 	}
4448 
4449 	err = btrfs_commit_transaction(trans, rc->extent_root);
4450 	if (err)
4451 		goto out_free;
4452 
4453 	merge_reloc_roots(rc);
4454 
4455 	unset_reloc_control(rc);
4456 
4457 	trans = btrfs_join_transaction(rc->extent_root);
4458 	if (IS_ERR(trans))
4459 		err = PTR_ERR(trans);
4460 	else
4461 		err = btrfs_commit_transaction(trans, rc->extent_root);
4462 out_free:
4463 	kfree(rc);
4464 out:
4465 	if (!list_empty(&reloc_roots))
4466 		free_reloc_roots(&reloc_roots);
4467 
4468 	btrfs_free_path(path);
4469 
4470 	if (err == 0) {
4471 		/* cleanup orphan inode in data relocation tree */
4472 		fs_root = read_fs_root(root->fs_info,
4473 				       BTRFS_DATA_RELOC_TREE_OBJECTID);
4474 		if (IS_ERR(fs_root))
4475 			err = PTR_ERR(fs_root);
4476 		else
4477 			err = btrfs_orphan_cleanup(fs_root);
4478 	}
4479 	return err;
4480 }
4481 
4482 /*
4483  * helper to add ordered checksum for data relocation.
4484  *
4485  * cloning checksum properly handles the nodatasum extents.
4486  * it also saves CPU time to re-calculate the checksum.
4487  */
4488 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
4489 {
4490 	struct btrfs_ordered_sum *sums;
4491 	struct btrfs_ordered_extent *ordered;
4492 	struct btrfs_root *root = BTRFS_I(inode)->root;
4493 	int ret;
4494 	u64 disk_bytenr;
4495 	u64 new_bytenr;
4496 	LIST_HEAD(list);
4497 
4498 	ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4499 	BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
4500 
4501 	disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
4502 	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, disk_bytenr,
4503 				       disk_bytenr + len - 1, &list, 0);
4504 	if (ret)
4505 		goto out;
4506 
4507 	while (!list_empty(&list)) {
4508 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4509 		list_del_init(&sums->list);
4510 
4511 		/*
4512 		 * We need to offset the new_bytenr based on where the csum is.
4513 		 * We need to do this because we will read in entire prealloc
4514 		 * extents but we may have written to say the middle of the
4515 		 * prealloc extent, so we need to make sure the csum goes with
4516 		 * the right disk offset.
4517 		 *
4518 		 * We can do this because the data reloc inode refers strictly
4519 		 * to the on disk bytes, so we don't have to worry about
4520 		 * disk_len vs real len like with real inodes since it's all
4521 		 * disk length.
4522 		 */
4523 		new_bytenr = ordered->start + (sums->bytenr - disk_bytenr);
4524 		sums->bytenr = new_bytenr;
4525 
4526 		btrfs_add_ordered_sum(inode, ordered, sums);
4527 	}
4528 out:
4529 	btrfs_put_ordered_extent(ordered);
4530 	return ret;
4531 }
4532 
4533 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4534 			  struct btrfs_root *root, struct extent_buffer *buf,
4535 			  struct extent_buffer *cow)
4536 {
4537 	struct reloc_control *rc;
4538 	struct backref_node *node;
4539 	int first_cow = 0;
4540 	int level;
4541 	int ret = 0;
4542 
4543 	rc = root->fs_info->reloc_ctl;
4544 	if (!rc)
4545 		return 0;
4546 
4547 	BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
4548 	       root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
4549 
4550 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
4551 		if (buf == root->node)
4552 			__update_reloc_root(root, cow->start);
4553 	}
4554 
4555 	level = btrfs_header_level(buf);
4556 	if (btrfs_header_generation(buf) <=
4557 	    btrfs_root_last_snapshot(&root->root_item))
4558 		first_cow = 1;
4559 
4560 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4561 	    rc->create_reloc_tree) {
4562 		WARN_ON(!first_cow && level == 0);
4563 
4564 		node = rc->backref_cache.path[level];
4565 		BUG_ON(node->bytenr != buf->start &&
4566 		       node->new_bytenr != buf->start);
4567 
4568 		drop_node_buffer(node);
4569 		extent_buffer_get(cow);
4570 		node->eb = cow;
4571 		node->new_bytenr = cow->start;
4572 
4573 		if (!node->pending) {
4574 			list_move_tail(&node->list,
4575 				       &rc->backref_cache.pending[level]);
4576 			node->pending = 1;
4577 		}
4578 
4579 		if (first_cow)
4580 			__mark_block_processed(rc, node);
4581 
4582 		if (first_cow && level > 0)
4583 			rc->nodes_relocated += buf->len;
4584 	}
4585 
4586 	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4587 		ret = replace_file_extents(trans, rc, root, cow);
4588 	return ret;
4589 }
4590 
4591 /*
4592  * called before creating snapshot. it calculates metadata reservation
4593  * requried for relocating tree blocks in the snapshot
4594  */
4595 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4596 			      u64 *bytes_to_reserve)
4597 {
4598 	struct btrfs_root *root;
4599 	struct reloc_control *rc;
4600 
4601 	root = pending->root;
4602 	if (!root->reloc_root)
4603 		return;
4604 
4605 	rc = root->fs_info->reloc_ctl;
4606 	if (!rc->merge_reloc_tree)
4607 		return;
4608 
4609 	root = root->reloc_root;
4610 	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4611 	/*
4612 	 * relocation is in the stage of merging trees. the space
4613 	 * used by merging a reloc tree is twice the size of
4614 	 * relocated tree nodes in the worst case. half for cowing
4615 	 * the reloc tree, half for cowing the fs tree. the space
4616 	 * used by cowing the reloc tree will be freed after the
4617 	 * tree is dropped. if we create snapshot, cowing the fs
4618 	 * tree may use more space than it frees. so we need
4619 	 * reserve extra space.
4620 	 */
4621 	*bytes_to_reserve += rc->nodes_relocated;
4622 }
4623 
4624 /*
4625  * called after snapshot is created. migrate block reservation
4626  * and create reloc root for the newly created snapshot
4627  */
4628 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4629 			       struct btrfs_pending_snapshot *pending)
4630 {
4631 	struct btrfs_root *root = pending->root;
4632 	struct btrfs_root *reloc_root;
4633 	struct btrfs_root *new_root;
4634 	struct reloc_control *rc;
4635 	int ret;
4636 
4637 	if (!root->reloc_root)
4638 		return 0;
4639 
4640 	rc = root->fs_info->reloc_ctl;
4641 	rc->merging_rsv_size += rc->nodes_relocated;
4642 
4643 	if (rc->merge_reloc_tree) {
4644 		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4645 					      rc->block_rsv,
4646 					      rc->nodes_relocated);
4647 		if (ret)
4648 			return ret;
4649 	}
4650 
4651 	new_root = pending->snap;
4652 	reloc_root = create_reloc_root(trans, root->reloc_root,
4653 				       new_root->root_key.objectid);
4654 	if (IS_ERR(reloc_root))
4655 		return PTR_ERR(reloc_root);
4656 
4657 	ret = __add_reloc_root(reloc_root);
4658 	BUG_ON(ret < 0);
4659 	new_root->reloc_root = reloc_root;
4660 
4661 	if (rc->create_reloc_tree)
4662 		ret = clone_backref_node(trans, rc, root, reloc_root);
4663 	return ret;
4664 }
4665