1 /* 2 * Copyright (C) 2009 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/sched.h> 20 #include <linux/pagemap.h> 21 #include <linux/writeback.h> 22 #include <linux/blkdev.h> 23 #include <linux/rbtree.h> 24 #include <linux/slab.h> 25 #include "ctree.h" 26 #include "disk-io.h" 27 #include "transaction.h" 28 #include "volumes.h" 29 #include "locking.h" 30 #include "btrfs_inode.h" 31 #include "async-thread.h" 32 #include "free-space-cache.h" 33 #include "inode-map.h" 34 #include "qgroup.h" 35 36 /* 37 * backref_node, mapping_node and tree_block start with this 38 */ 39 struct tree_entry { 40 struct rb_node rb_node; 41 u64 bytenr; 42 }; 43 44 /* 45 * present a tree block in the backref cache 46 */ 47 struct backref_node { 48 struct rb_node rb_node; 49 u64 bytenr; 50 51 u64 new_bytenr; 52 /* objectid of tree block owner, can be not uptodate */ 53 u64 owner; 54 /* link to pending, changed or detached list */ 55 struct list_head list; 56 /* list of upper level blocks reference this block */ 57 struct list_head upper; 58 /* list of child blocks in the cache */ 59 struct list_head lower; 60 /* NULL if this node is not tree root */ 61 struct btrfs_root *root; 62 /* extent buffer got by COW the block */ 63 struct extent_buffer *eb; 64 /* level of tree block */ 65 unsigned int level:8; 66 /* is the block in non-reference counted tree */ 67 unsigned int cowonly:1; 68 /* 1 if no child node in the cache */ 69 unsigned int lowest:1; 70 /* is the extent buffer locked */ 71 unsigned int locked:1; 72 /* has the block been processed */ 73 unsigned int processed:1; 74 /* have backrefs of this block been checked */ 75 unsigned int checked:1; 76 /* 77 * 1 if corresponding block has been cowed but some upper 78 * level block pointers may not point to the new location 79 */ 80 unsigned int pending:1; 81 /* 82 * 1 if the backref node isn't connected to any other 83 * backref node. 84 */ 85 unsigned int detached:1; 86 }; 87 88 /* 89 * present a block pointer in the backref cache 90 */ 91 struct backref_edge { 92 struct list_head list[2]; 93 struct backref_node *node[2]; 94 }; 95 96 #define LOWER 0 97 #define UPPER 1 98 #define RELOCATION_RESERVED_NODES 256 99 100 struct backref_cache { 101 /* red black tree of all backref nodes in the cache */ 102 struct rb_root rb_root; 103 /* for passing backref nodes to btrfs_reloc_cow_block */ 104 struct backref_node *path[BTRFS_MAX_LEVEL]; 105 /* 106 * list of blocks that have been cowed but some block 107 * pointers in upper level blocks may not reflect the 108 * new location 109 */ 110 struct list_head pending[BTRFS_MAX_LEVEL]; 111 /* list of backref nodes with no child node */ 112 struct list_head leaves; 113 /* list of blocks that have been cowed in current transaction */ 114 struct list_head changed; 115 /* list of detached backref node. */ 116 struct list_head detached; 117 118 u64 last_trans; 119 120 int nr_nodes; 121 int nr_edges; 122 }; 123 124 /* 125 * map address of tree root to tree 126 */ 127 struct mapping_node { 128 struct rb_node rb_node; 129 u64 bytenr; 130 void *data; 131 }; 132 133 struct mapping_tree { 134 struct rb_root rb_root; 135 spinlock_t lock; 136 }; 137 138 /* 139 * present a tree block to process 140 */ 141 struct tree_block { 142 struct rb_node rb_node; 143 u64 bytenr; 144 struct btrfs_key key; 145 unsigned int level:8; 146 unsigned int key_ready:1; 147 }; 148 149 #define MAX_EXTENTS 128 150 151 struct file_extent_cluster { 152 u64 start; 153 u64 end; 154 u64 boundary[MAX_EXTENTS]; 155 unsigned int nr; 156 }; 157 158 struct reloc_control { 159 /* block group to relocate */ 160 struct btrfs_block_group_cache *block_group; 161 /* extent tree */ 162 struct btrfs_root *extent_root; 163 /* inode for moving data */ 164 struct inode *data_inode; 165 166 struct btrfs_block_rsv *block_rsv; 167 168 struct backref_cache backref_cache; 169 170 struct file_extent_cluster cluster; 171 /* tree blocks have been processed */ 172 struct extent_io_tree processed_blocks; 173 /* map start of tree root to corresponding reloc tree */ 174 struct mapping_tree reloc_root_tree; 175 /* list of reloc trees */ 176 struct list_head reloc_roots; 177 /* size of metadata reservation for merging reloc trees */ 178 u64 merging_rsv_size; 179 /* size of relocated tree nodes */ 180 u64 nodes_relocated; 181 /* reserved size for block group relocation*/ 182 u64 reserved_bytes; 183 184 u64 search_start; 185 u64 extents_found; 186 187 unsigned int stage:8; 188 unsigned int create_reloc_tree:1; 189 unsigned int merge_reloc_tree:1; 190 unsigned int found_file_extent:1; 191 }; 192 193 /* stages of data relocation */ 194 #define MOVE_DATA_EXTENTS 0 195 #define UPDATE_DATA_PTRS 1 196 197 static void remove_backref_node(struct backref_cache *cache, 198 struct backref_node *node); 199 static void __mark_block_processed(struct reloc_control *rc, 200 struct backref_node *node); 201 202 static void mapping_tree_init(struct mapping_tree *tree) 203 { 204 tree->rb_root = RB_ROOT; 205 spin_lock_init(&tree->lock); 206 } 207 208 static void backref_cache_init(struct backref_cache *cache) 209 { 210 int i; 211 cache->rb_root = RB_ROOT; 212 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 213 INIT_LIST_HEAD(&cache->pending[i]); 214 INIT_LIST_HEAD(&cache->changed); 215 INIT_LIST_HEAD(&cache->detached); 216 INIT_LIST_HEAD(&cache->leaves); 217 } 218 219 static void backref_cache_cleanup(struct backref_cache *cache) 220 { 221 struct backref_node *node; 222 int i; 223 224 while (!list_empty(&cache->detached)) { 225 node = list_entry(cache->detached.next, 226 struct backref_node, list); 227 remove_backref_node(cache, node); 228 } 229 230 while (!list_empty(&cache->leaves)) { 231 node = list_entry(cache->leaves.next, 232 struct backref_node, lower); 233 remove_backref_node(cache, node); 234 } 235 236 cache->last_trans = 0; 237 238 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 239 ASSERT(list_empty(&cache->pending[i])); 240 ASSERT(list_empty(&cache->changed)); 241 ASSERT(list_empty(&cache->detached)); 242 ASSERT(RB_EMPTY_ROOT(&cache->rb_root)); 243 ASSERT(!cache->nr_nodes); 244 ASSERT(!cache->nr_edges); 245 } 246 247 static struct backref_node *alloc_backref_node(struct backref_cache *cache) 248 { 249 struct backref_node *node; 250 251 node = kzalloc(sizeof(*node), GFP_NOFS); 252 if (node) { 253 INIT_LIST_HEAD(&node->list); 254 INIT_LIST_HEAD(&node->upper); 255 INIT_LIST_HEAD(&node->lower); 256 RB_CLEAR_NODE(&node->rb_node); 257 cache->nr_nodes++; 258 } 259 return node; 260 } 261 262 static void free_backref_node(struct backref_cache *cache, 263 struct backref_node *node) 264 { 265 if (node) { 266 cache->nr_nodes--; 267 kfree(node); 268 } 269 } 270 271 static struct backref_edge *alloc_backref_edge(struct backref_cache *cache) 272 { 273 struct backref_edge *edge; 274 275 edge = kzalloc(sizeof(*edge), GFP_NOFS); 276 if (edge) 277 cache->nr_edges++; 278 return edge; 279 } 280 281 static void free_backref_edge(struct backref_cache *cache, 282 struct backref_edge *edge) 283 { 284 if (edge) { 285 cache->nr_edges--; 286 kfree(edge); 287 } 288 } 289 290 static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr, 291 struct rb_node *node) 292 { 293 struct rb_node **p = &root->rb_node; 294 struct rb_node *parent = NULL; 295 struct tree_entry *entry; 296 297 while (*p) { 298 parent = *p; 299 entry = rb_entry(parent, struct tree_entry, rb_node); 300 301 if (bytenr < entry->bytenr) 302 p = &(*p)->rb_left; 303 else if (bytenr > entry->bytenr) 304 p = &(*p)->rb_right; 305 else 306 return parent; 307 } 308 309 rb_link_node(node, parent, p); 310 rb_insert_color(node, root); 311 return NULL; 312 } 313 314 static struct rb_node *tree_search(struct rb_root *root, u64 bytenr) 315 { 316 struct rb_node *n = root->rb_node; 317 struct tree_entry *entry; 318 319 while (n) { 320 entry = rb_entry(n, struct tree_entry, rb_node); 321 322 if (bytenr < entry->bytenr) 323 n = n->rb_left; 324 else if (bytenr > entry->bytenr) 325 n = n->rb_right; 326 else 327 return n; 328 } 329 return NULL; 330 } 331 332 static void backref_tree_panic(struct rb_node *rb_node, int errno, u64 bytenr) 333 { 334 335 struct btrfs_fs_info *fs_info = NULL; 336 struct backref_node *bnode = rb_entry(rb_node, struct backref_node, 337 rb_node); 338 if (bnode->root) 339 fs_info = bnode->root->fs_info; 340 btrfs_panic(fs_info, errno, 341 "Inconsistency in backref cache found at offset %llu", 342 bytenr); 343 } 344 345 /* 346 * walk up backref nodes until reach node presents tree root 347 */ 348 static struct backref_node *walk_up_backref(struct backref_node *node, 349 struct backref_edge *edges[], 350 int *index) 351 { 352 struct backref_edge *edge; 353 int idx = *index; 354 355 while (!list_empty(&node->upper)) { 356 edge = list_entry(node->upper.next, 357 struct backref_edge, list[LOWER]); 358 edges[idx++] = edge; 359 node = edge->node[UPPER]; 360 } 361 BUG_ON(node->detached); 362 *index = idx; 363 return node; 364 } 365 366 /* 367 * walk down backref nodes to find start of next reference path 368 */ 369 static struct backref_node *walk_down_backref(struct backref_edge *edges[], 370 int *index) 371 { 372 struct backref_edge *edge; 373 struct backref_node *lower; 374 int idx = *index; 375 376 while (idx > 0) { 377 edge = edges[idx - 1]; 378 lower = edge->node[LOWER]; 379 if (list_is_last(&edge->list[LOWER], &lower->upper)) { 380 idx--; 381 continue; 382 } 383 edge = list_entry(edge->list[LOWER].next, 384 struct backref_edge, list[LOWER]); 385 edges[idx - 1] = edge; 386 *index = idx; 387 return edge->node[UPPER]; 388 } 389 *index = 0; 390 return NULL; 391 } 392 393 static void unlock_node_buffer(struct backref_node *node) 394 { 395 if (node->locked) { 396 btrfs_tree_unlock(node->eb); 397 node->locked = 0; 398 } 399 } 400 401 static void drop_node_buffer(struct backref_node *node) 402 { 403 if (node->eb) { 404 unlock_node_buffer(node); 405 free_extent_buffer(node->eb); 406 node->eb = NULL; 407 } 408 } 409 410 static void drop_backref_node(struct backref_cache *tree, 411 struct backref_node *node) 412 { 413 BUG_ON(!list_empty(&node->upper)); 414 415 drop_node_buffer(node); 416 list_del(&node->list); 417 list_del(&node->lower); 418 if (!RB_EMPTY_NODE(&node->rb_node)) 419 rb_erase(&node->rb_node, &tree->rb_root); 420 free_backref_node(tree, node); 421 } 422 423 /* 424 * remove a backref node from the backref cache 425 */ 426 static void remove_backref_node(struct backref_cache *cache, 427 struct backref_node *node) 428 { 429 struct backref_node *upper; 430 struct backref_edge *edge; 431 432 if (!node) 433 return; 434 435 BUG_ON(!node->lowest && !node->detached); 436 while (!list_empty(&node->upper)) { 437 edge = list_entry(node->upper.next, struct backref_edge, 438 list[LOWER]); 439 upper = edge->node[UPPER]; 440 list_del(&edge->list[LOWER]); 441 list_del(&edge->list[UPPER]); 442 free_backref_edge(cache, edge); 443 444 if (RB_EMPTY_NODE(&upper->rb_node)) { 445 BUG_ON(!list_empty(&node->upper)); 446 drop_backref_node(cache, node); 447 node = upper; 448 node->lowest = 1; 449 continue; 450 } 451 /* 452 * add the node to leaf node list if no other 453 * child block cached. 454 */ 455 if (list_empty(&upper->lower)) { 456 list_add_tail(&upper->lower, &cache->leaves); 457 upper->lowest = 1; 458 } 459 } 460 461 drop_backref_node(cache, node); 462 } 463 464 static void update_backref_node(struct backref_cache *cache, 465 struct backref_node *node, u64 bytenr) 466 { 467 struct rb_node *rb_node; 468 rb_erase(&node->rb_node, &cache->rb_root); 469 node->bytenr = bytenr; 470 rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node); 471 if (rb_node) 472 backref_tree_panic(rb_node, -EEXIST, bytenr); 473 } 474 475 /* 476 * update backref cache after a transaction commit 477 */ 478 static int update_backref_cache(struct btrfs_trans_handle *trans, 479 struct backref_cache *cache) 480 { 481 struct backref_node *node; 482 int level = 0; 483 484 if (cache->last_trans == 0) { 485 cache->last_trans = trans->transid; 486 return 0; 487 } 488 489 if (cache->last_trans == trans->transid) 490 return 0; 491 492 /* 493 * detached nodes are used to avoid unnecessary backref 494 * lookup. transaction commit changes the extent tree. 495 * so the detached nodes are no longer useful. 496 */ 497 while (!list_empty(&cache->detached)) { 498 node = list_entry(cache->detached.next, 499 struct backref_node, list); 500 remove_backref_node(cache, node); 501 } 502 503 while (!list_empty(&cache->changed)) { 504 node = list_entry(cache->changed.next, 505 struct backref_node, list); 506 list_del_init(&node->list); 507 BUG_ON(node->pending); 508 update_backref_node(cache, node, node->new_bytenr); 509 } 510 511 /* 512 * some nodes can be left in the pending list if there were 513 * errors during processing the pending nodes. 514 */ 515 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 516 list_for_each_entry(node, &cache->pending[level], list) { 517 BUG_ON(!node->pending); 518 if (node->bytenr == node->new_bytenr) 519 continue; 520 update_backref_node(cache, node, node->new_bytenr); 521 } 522 } 523 524 cache->last_trans = 0; 525 return 1; 526 } 527 528 529 static int should_ignore_root(struct btrfs_root *root) 530 { 531 struct btrfs_root *reloc_root; 532 533 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 534 return 0; 535 536 reloc_root = root->reloc_root; 537 if (!reloc_root) 538 return 0; 539 540 if (btrfs_root_last_snapshot(&reloc_root->root_item) == 541 root->fs_info->running_transaction->transid - 1) 542 return 0; 543 /* 544 * if there is reloc tree and it was created in previous 545 * transaction backref lookup can find the reloc tree, 546 * so backref node for the fs tree root is useless for 547 * relocation. 548 */ 549 return 1; 550 } 551 /* 552 * find reloc tree by address of tree root 553 */ 554 static struct btrfs_root *find_reloc_root(struct reloc_control *rc, 555 u64 bytenr) 556 { 557 struct rb_node *rb_node; 558 struct mapping_node *node; 559 struct btrfs_root *root = NULL; 560 561 spin_lock(&rc->reloc_root_tree.lock); 562 rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr); 563 if (rb_node) { 564 node = rb_entry(rb_node, struct mapping_node, rb_node); 565 root = (struct btrfs_root *)node->data; 566 } 567 spin_unlock(&rc->reloc_root_tree.lock); 568 return root; 569 } 570 571 static int is_cowonly_root(u64 root_objectid) 572 { 573 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID || 574 root_objectid == BTRFS_EXTENT_TREE_OBJECTID || 575 root_objectid == BTRFS_CHUNK_TREE_OBJECTID || 576 root_objectid == BTRFS_DEV_TREE_OBJECTID || 577 root_objectid == BTRFS_TREE_LOG_OBJECTID || 578 root_objectid == BTRFS_CSUM_TREE_OBJECTID || 579 root_objectid == BTRFS_UUID_TREE_OBJECTID || 580 root_objectid == BTRFS_QUOTA_TREE_OBJECTID || 581 root_objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) 582 return 1; 583 return 0; 584 } 585 586 static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info, 587 u64 root_objectid) 588 { 589 struct btrfs_key key; 590 591 key.objectid = root_objectid; 592 key.type = BTRFS_ROOT_ITEM_KEY; 593 if (is_cowonly_root(root_objectid)) 594 key.offset = 0; 595 else 596 key.offset = (u64)-1; 597 598 return btrfs_get_fs_root(fs_info, &key, false); 599 } 600 601 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 602 static noinline_for_stack 603 struct btrfs_root *find_tree_root(struct reloc_control *rc, 604 struct extent_buffer *leaf, 605 struct btrfs_extent_ref_v0 *ref0) 606 { 607 struct btrfs_root *root; 608 u64 root_objectid = btrfs_ref_root_v0(leaf, ref0); 609 u64 generation = btrfs_ref_generation_v0(leaf, ref0); 610 611 BUG_ON(root_objectid == BTRFS_TREE_RELOC_OBJECTID); 612 613 root = read_fs_root(rc->extent_root->fs_info, root_objectid); 614 BUG_ON(IS_ERR(root)); 615 616 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 617 generation != btrfs_root_generation(&root->root_item)) 618 return NULL; 619 620 return root; 621 } 622 #endif 623 624 static noinline_for_stack 625 int find_inline_backref(struct extent_buffer *leaf, int slot, 626 unsigned long *ptr, unsigned long *end) 627 { 628 struct btrfs_key key; 629 struct btrfs_extent_item *ei; 630 struct btrfs_tree_block_info *bi; 631 u32 item_size; 632 633 btrfs_item_key_to_cpu(leaf, &key, slot); 634 635 item_size = btrfs_item_size_nr(leaf, slot); 636 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 637 if (item_size < sizeof(*ei)) { 638 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 639 return 1; 640 } 641 #endif 642 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 643 WARN_ON(!(btrfs_extent_flags(leaf, ei) & 644 BTRFS_EXTENT_FLAG_TREE_BLOCK)); 645 646 if (key.type == BTRFS_EXTENT_ITEM_KEY && 647 item_size <= sizeof(*ei) + sizeof(*bi)) { 648 WARN_ON(item_size < sizeof(*ei) + sizeof(*bi)); 649 return 1; 650 } 651 if (key.type == BTRFS_METADATA_ITEM_KEY && 652 item_size <= sizeof(*ei)) { 653 WARN_ON(item_size < sizeof(*ei)); 654 return 1; 655 } 656 657 if (key.type == BTRFS_EXTENT_ITEM_KEY) { 658 bi = (struct btrfs_tree_block_info *)(ei + 1); 659 *ptr = (unsigned long)(bi + 1); 660 } else { 661 *ptr = (unsigned long)(ei + 1); 662 } 663 *end = (unsigned long)ei + item_size; 664 return 0; 665 } 666 667 /* 668 * build backref tree for a given tree block. root of the backref tree 669 * corresponds the tree block, leaves of the backref tree correspond 670 * roots of b-trees that reference the tree block. 671 * 672 * the basic idea of this function is check backrefs of a given block 673 * to find upper level blocks that reference the block, and then check 674 * backrefs of these upper level blocks recursively. the recursion stop 675 * when tree root is reached or backrefs for the block is cached. 676 * 677 * NOTE: if we find backrefs for a block are cached, we know backrefs 678 * for all upper level blocks that directly/indirectly reference the 679 * block are also cached. 680 */ 681 static noinline_for_stack 682 struct backref_node *build_backref_tree(struct reloc_control *rc, 683 struct btrfs_key *node_key, 684 int level, u64 bytenr) 685 { 686 struct backref_cache *cache = &rc->backref_cache; 687 struct btrfs_path *path1; 688 struct btrfs_path *path2; 689 struct extent_buffer *eb; 690 struct btrfs_root *root; 691 struct backref_node *cur; 692 struct backref_node *upper; 693 struct backref_node *lower; 694 struct backref_node *node = NULL; 695 struct backref_node *exist = NULL; 696 struct backref_edge *edge; 697 struct rb_node *rb_node; 698 struct btrfs_key key; 699 unsigned long end; 700 unsigned long ptr; 701 LIST_HEAD(list); 702 LIST_HEAD(useless); 703 int cowonly; 704 int ret; 705 int err = 0; 706 bool need_check = true; 707 708 path1 = btrfs_alloc_path(); 709 path2 = btrfs_alloc_path(); 710 if (!path1 || !path2) { 711 err = -ENOMEM; 712 goto out; 713 } 714 path1->reada = READA_FORWARD; 715 path2->reada = READA_FORWARD; 716 717 node = alloc_backref_node(cache); 718 if (!node) { 719 err = -ENOMEM; 720 goto out; 721 } 722 723 node->bytenr = bytenr; 724 node->level = level; 725 node->lowest = 1; 726 cur = node; 727 again: 728 end = 0; 729 ptr = 0; 730 key.objectid = cur->bytenr; 731 key.type = BTRFS_METADATA_ITEM_KEY; 732 key.offset = (u64)-1; 733 734 path1->search_commit_root = 1; 735 path1->skip_locking = 1; 736 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1, 737 0, 0); 738 if (ret < 0) { 739 err = ret; 740 goto out; 741 } 742 ASSERT(ret); 743 ASSERT(path1->slots[0]); 744 745 path1->slots[0]--; 746 747 WARN_ON(cur->checked); 748 if (!list_empty(&cur->upper)) { 749 /* 750 * the backref was added previously when processing 751 * backref of type BTRFS_TREE_BLOCK_REF_KEY 752 */ 753 ASSERT(list_is_singular(&cur->upper)); 754 edge = list_entry(cur->upper.next, struct backref_edge, 755 list[LOWER]); 756 ASSERT(list_empty(&edge->list[UPPER])); 757 exist = edge->node[UPPER]; 758 /* 759 * add the upper level block to pending list if we need 760 * check its backrefs 761 */ 762 if (!exist->checked) 763 list_add_tail(&edge->list[UPPER], &list); 764 } else { 765 exist = NULL; 766 } 767 768 while (1) { 769 cond_resched(); 770 eb = path1->nodes[0]; 771 772 if (ptr >= end) { 773 if (path1->slots[0] >= btrfs_header_nritems(eb)) { 774 ret = btrfs_next_leaf(rc->extent_root, path1); 775 if (ret < 0) { 776 err = ret; 777 goto out; 778 } 779 if (ret > 0) 780 break; 781 eb = path1->nodes[0]; 782 } 783 784 btrfs_item_key_to_cpu(eb, &key, path1->slots[0]); 785 if (key.objectid != cur->bytenr) { 786 WARN_ON(exist); 787 break; 788 } 789 790 if (key.type == BTRFS_EXTENT_ITEM_KEY || 791 key.type == BTRFS_METADATA_ITEM_KEY) { 792 ret = find_inline_backref(eb, path1->slots[0], 793 &ptr, &end); 794 if (ret) 795 goto next; 796 } 797 } 798 799 if (ptr < end) { 800 /* update key for inline back ref */ 801 struct btrfs_extent_inline_ref *iref; 802 iref = (struct btrfs_extent_inline_ref *)ptr; 803 key.type = btrfs_extent_inline_ref_type(eb, iref); 804 key.offset = btrfs_extent_inline_ref_offset(eb, iref); 805 WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY && 806 key.type != BTRFS_SHARED_BLOCK_REF_KEY); 807 } 808 809 if (exist && 810 ((key.type == BTRFS_TREE_BLOCK_REF_KEY && 811 exist->owner == key.offset) || 812 (key.type == BTRFS_SHARED_BLOCK_REF_KEY && 813 exist->bytenr == key.offset))) { 814 exist = NULL; 815 goto next; 816 } 817 818 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 819 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY || 820 key.type == BTRFS_EXTENT_REF_V0_KEY) { 821 if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 822 struct btrfs_extent_ref_v0 *ref0; 823 ref0 = btrfs_item_ptr(eb, path1->slots[0], 824 struct btrfs_extent_ref_v0); 825 if (key.objectid == key.offset) { 826 root = find_tree_root(rc, eb, ref0); 827 if (root && !should_ignore_root(root)) 828 cur->root = root; 829 else 830 list_add(&cur->list, &useless); 831 break; 832 } 833 if (is_cowonly_root(btrfs_ref_root_v0(eb, 834 ref0))) 835 cur->cowonly = 1; 836 } 837 #else 838 ASSERT(key.type != BTRFS_EXTENT_REF_V0_KEY); 839 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) { 840 #endif 841 if (key.objectid == key.offset) { 842 /* 843 * only root blocks of reloc trees use 844 * backref of this type. 845 */ 846 root = find_reloc_root(rc, cur->bytenr); 847 ASSERT(root); 848 cur->root = root; 849 break; 850 } 851 852 edge = alloc_backref_edge(cache); 853 if (!edge) { 854 err = -ENOMEM; 855 goto out; 856 } 857 rb_node = tree_search(&cache->rb_root, key.offset); 858 if (!rb_node) { 859 upper = alloc_backref_node(cache); 860 if (!upper) { 861 free_backref_edge(cache, edge); 862 err = -ENOMEM; 863 goto out; 864 } 865 upper->bytenr = key.offset; 866 upper->level = cur->level + 1; 867 /* 868 * backrefs for the upper level block isn't 869 * cached, add the block to pending list 870 */ 871 list_add_tail(&edge->list[UPPER], &list); 872 } else { 873 upper = rb_entry(rb_node, struct backref_node, 874 rb_node); 875 ASSERT(upper->checked); 876 INIT_LIST_HEAD(&edge->list[UPPER]); 877 } 878 list_add_tail(&edge->list[LOWER], &cur->upper); 879 edge->node[LOWER] = cur; 880 edge->node[UPPER] = upper; 881 882 goto next; 883 } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) { 884 goto next; 885 } 886 887 /* key.type == BTRFS_TREE_BLOCK_REF_KEY */ 888 root = read_fs_root(rc->extent_root->fs_info, key.offset); 889 if (IS_ERR(root)) { 890 err = PTR_ERR(root); 891 goto out; 892 } 893 894 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 895 cur->cowonly = 1; 896 897 if (btrfs_root_level(&root->root_item) == cur->level) { 898 /* tree root */ 899 ASSERT(btrfs_root_bytenr(&root->root_item) == 900 cur->bytenr); 901 if (should_ignore_root(root)) 902 list_add(&cur->list, &useless); 903 else 904 cur->root = root; 905 break; 906 } 907 908 level = cur->level + 1; 909 910 /* 911 * searching the tree to find upper level blocks 912 * reference the block. 913 */ 914 path2->search_commit_root = 1; 915 path2->skip_locking = 1; 916 path2->lowest_level = level; 917 ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0); 918 path2->lowest_level = 0; 919 if (ret < 0) { 920 err = ret; 921 goto out; 922 } 923 if (ret > 0 && path2->slots[level] > 0) 924 path2->slots[level]--; 925 926 eb = path2->nodes[level]; 927 if (btrfs_node_blockptr(eb, path2->slots[level]) != 928 cur->bytenr) { 929 btrfs_err(root->fs_info, 930 "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)", 931 cur->bytenr, level - 1, root->objectid, 932 node_key->objectid, node_key->type, 933 node_key->offset); 934 err = -ENOENT; 935 goto out; 936 } 937 lower = cur; 938 need_check = true; 939 for (; level < BTRFS_MAX_LEVEL; level++) { 940 if (!path2->nodes[level]) { 941 ASSERT(btrfs_root_bytenr(&root->root_item) == 942 lower->bytenr); 943 if (should_ignore_root(root)) 944 list_add(&lower->list, &useless); 945 else 946 lower->root = root; 947 break; 948 } 949 950 edge = alloc_backref_edge(cache); 951 if (!edge) { 952 err = -ENOMEM; 953 goto out; 954 } 955 956 eb = path2->nodes[level]; 957 rb_node = tree_search(&cache->rb_root, eb->start); 958 if (!rb_node) { 959 upper = alloc_backref_node(cache); 960 if (!upper) { 961 free_backref_edge(cache, edge); 962 err = -ENOMEM; 963 goto out; 964 } 965 upper->bytenr = eb->start; 966 upper->owner = btrfs_header_owner(eb); 967 upper->level = lower->level + 1; 968 if (!test_bit(BTRFS_ROOT_REF_COWS, 969 &root->state)) 970 upper->cowonly = 1; 971 972 /* 973 * if we know the block isn't shared 974 * we can void checking its backrefs. 975 */ 976 if (btrfs_block_can_be_shared(root, eb)) 977 upper->checked = 0; 978 else 979 upper->checked = 1; 980 981 /* 982 * add the block to pending list if we 983 * need check its backrefs, we only do this once 984 * while walking up a tree as we will catch 985 * anything else later on. 986 */ 987 if (!upper->checked && need_check) { 988 need_check = false; 989 list_add_tail(&edge->list[UPPER], 990 &list); 991 } else { 992 if (upper->checked) 993 need_check = true; 994 INIT_LIST_HEAD(&edge->list[UPPER]); 995 } 996 } else { 997 upper = rb_entry(rb_node, struct backref_node, 998 rb_node); 999 ASSERT(upper->checked); 1000 INIT_LIST_HEAD(&edge->list[UPPER]); 1001 if (!upper->owner) 1002 upper->owner = btrfs_header_owner(eb); 1003 } 1004 list_add_tail(&edge->list[LOWER], &lower->upper); 1005 edge->node[LOWER] = lower; 1006 edge->node[UPPER] = upper; 1007 1008 if (rb_node) 1009 break; 1010 lower = upper; 1011 upper = NULL; 1012 } 1013 btrfs_release_path(path2); 1014 next: 1015 if (ptr < end) { 1016 ptr += btrfs_extent_inline_ref_size(key.type); 1017 if (ptr >= end) { 1018 WARN_ON(ptr > end); 1019 ptr = 0; 1020 end = 0; 1021 } 1022 } 1023 if (ptr >= end) 1024 path1->slots[0]++; 1025 } 1026 btrfs_release_path(path1); 1027 1028 cur->checked = 1; 1029 WARN_ON(exist); 1030 1031 /* the pending list isn't empty, take the first block to process */ 1032 if (!list_empty(&list)) { 1033 edge = list_entry(list.next, struct backref_edge, list[UPPER]); 1034 list_del_init(&edge->list[UPPER]); 1035 cur = edge->node[UPPER]; 1036 goto again; 1037 } 1038 1039 /* 1040 * everything goes well, connect backref nodes and insert backref nodes 1041 * into the cache. 1042 */ 1043 ASSERT(node->checked); 1044 cowonly = node->cowonly; 1045 if (!cowonly) { 1046 rb_node = tree_insert(&cache->rb_root, node->bytenr, 1047 &node->rb_node); 1048 if (rb_node) 1049 backref_tree_panic(rb_node, -EEXIST, node->bytenr); 1050 list_add_tail(&node->lower, &cache->leaves); 1051 } 1052 1053 list_for_each_entry(edge, &node->upper, list[LOWER]) 1054 list_add_tail(&edge->list[UPPER], &list); 1055 1056 while (!list_empty(&list)) { 1057 edge = list_entry(list.next, struct backref_edge, list[UPPER]); 1058 list_del_init(&edge->list[UPPER]); 1059 upper = edge->node[UPPER]; 1060 if (upper->detached) { 1061 list_del(&edge->list[LOWER]); 1062 lower = edge->node[LOWER]; 1063 free_backref_edge(cache, edge); 1064 if (list_empty(&lower->upper)) 1065 list_add(&lower->list, &useless); 1066 continue; 1067 } 1068 1069 if (!RB_EMPTY_NODE(&upper->rb_node)) { 1070 if (upper->lowest) { 1071 list_del_init(&upper->lower); 1072 upper->lowest = 0; 1073 } 1074 1075 list_add_tail(&edge->list[UPPER], &upper->lower); 1076 continue; 1077 } 1078 1079 if (!upper->checked) { 1080 /* 1081 * Still want to blow up for developers since this is a 1082 * logic bug. 1083 */ 1084 ASSERT(0); 1085 err = -EINVAL; 1086 goto out; 1087 } 1088 if (cowonly != upper->cowonly) { 1089 ASSERT(0); 1090 err = -EINVAL; 1091 goto out; 1092 } 1093 1094 if (!cowonly) { 1095 rb_node = tree_insert(&cache->rb_root, upper->bytenr, 1096 &upper->rb_node); 1097 if (rb_node) 1098 backref_tree_panic(rb_node, -EEXIST, 1099 upper->bytenr); 1100 } 1101 1102 list_add_tail(&edge->list[UPPER], &upper->lower); 1103 1104 list_for_each_entry(edge, &upper->upper, list[LOWER]) 1105 list_add_tail(&edge->list[UPPER], &list); 1106 } 1107 /* 1108 * process useless backref nodes. backref nodes for tree leaves 1109 * are deleted from the cache. backref nodes for upper level 1110 * tree blocks are left in the cache to avoid unnecessary backref 1111 * lookup. 1112 */ 1113 while (!list_empty(&useless)) { 1114 upper = list_entry(useless.next, struct backref_node, list); 1115 list_del_init(&upper->list); 1116 ASSERT(list_empty(&upper->upper)); 1117 if (upper == node) 1118 node = NULL; 1119 if (upper->lowest) { 1120 list_del_init(&upper->lower); 1121 upper->lowest = 0; 1122 } 1123 while (!list_empty(&upper->lower)) { 1124 edge = list_entry(upper->lower.next, 1125 struct backref_edge, list[UPPER]); 1126 list_del(&edge->list[UPPER]); 1127 list_del(&edge->list[LOWER]); 1128 lower = edge->node[LOWER]; 1129 free_backref_edge(cache, edge); 1130 1131 if (list_empty(&lower->upper)) 1132 list_add(&lower->list, &useless); 1133 } 1134 __mark_block_processed(rc, upper); 1135 if (upper->level > 0) { 1136 list_add(&upper->list, &cache->detached); 1137 upper->detached = 1; 1138 } else { 1139 rb_erase(&upper->rb_node, &cache->rb_root); 1140 free_backref_node(cache, upper); 1141 } 1142 } 1143 out: 1144 btrfs_free_path(path1); 1145 btrfs_free_path(path2); 1146 if (err) { 1147 while (!list_empty(&useless)) { 1148 lower = list_entry(useless.next, 1149 struct backref_node, list); 1150 list_del_init(&lower->list); 1151 } 1152 while (!list_empty(&list)) { 1153 edge = list_first_entry(&list, struct backref_edge, 1154 list[UPPER]); 1155 list_del(&edge->list[UPPER]); 1156 list_del(&edge->list[LOWER]); 1157 lower = edge->node[LOWER]; 1158 upper = edge->node[UPPER]; 1159 free_backref_edge(cache, edge); 1160 1161 /* 1162 * Lower is no longer linked to any upper backref nodes 1163 * and isn't in the cache, we can free it ourselves. 1164 */ 1165 if (list_empty(&lower->upper) && 1166 RB_EMPTY_NODE(&lower->rb_node)) 1167 list_add(&lower->list, &useless); 1168 1169 if (!RB_EMPTY_NODE(&upper->rb_node)) 1170 continue; 1171 1172 /* Add this guy's upper edges to the list to process */ 1173 list_for_each_entry(edge, &upper->upper, list[LOWER]) 1174 list_add_tail(&edge->list[UPPER], &list); 1175 if (list_empty(&upper->upper)) 1176 list_add(&upper->list, &useless); 1177 } 1178 1179 while (!list_empty(&useless)) { 1180 lower = list_entry(useless.next, 1181 struct backref_node, list); 1182 list_del_init(&lower->list); 1183 if (lower == node) 1184 node = NULL; 1185 free_backref_node(cache, lower); 1186 } 1187 1188 free_backref_node(cache, node); 1189 return ERR_PTR(err); 1190 } 1191 ASSERT(!node || !node->detached); 1192 return node; 1193 } 1194 1195 /* 1196 * helper to add backref node for the newly created snapshot. 1197 * the backref node is created by cloning backref node that 1198 * corresponds to root of source tree 1199 */ 1200 static int clone_backref_node(struct btrfs_trans_handle *trans, 1201 struct reloc_control *rc, 1202 struct btrfs_root *src, 1203 struct btrfs_root *dest) 1204 { 1205 struct btrfs_root *reloc_root = src->reloc_root; 1206 struct backref_cache *cache = &rc->backref_cache; 1207 struct backref_node *node = NULL; 1208 struct backref_node *new_node; 1209 struct backref_edge *edge; 1210 struct backref_edge *new_edge; 1211 struct rb_node *rb_node; 1212 1213 if (cache->last_trans > 0) 1214 update_backref_cache(trans, cache); 1215 1216 rb_node = tree_search(&cache->rb_root, src->commit_root->start); 1217 if (rb_node) { 1218 node = rb_entry(rb_node, struct backref_node, rb_node); 1219 if (node->detached) 1220 node = NULL; 1221 else 1222 BUG_ON(node->new_bytenr != reloc_root->node->start); 1223 } 1224 1225 if (!node) { 1226 rb_node = tree_search(&cache->rb_root, 1227 reloc_root->commit_root->start); 1228 if (rb_node) { 1229 node = rb_entry(rb_node, struct backref_node, 1230 rb_node); 1231 BUG_ON(node->detached); 1232 } 1233 } 1234 1235 if (!node) 1236 return 0; 1237 1238 new_node = alloc_backref_node(cache); 1239 if (!new_node) 1240 return -ENOMEM; 1241 1242 new_node->bytenr = dest->node->start; 1243 new_node->level = node->level; 1244 new_node->lowest = node->lowest; 1245 new_node->checked = 1; 1246 new_node->root = dest; 1247 1248 if (!node->lowest) { 1249 list_for_each_entry(edge, &node->lower, list[UPPER]) { 1250 new_edge = alloc_backref_edge(cache); 1251 if (!new_edge) 1252 goto fail; 1253 1254 new_edge->node[UPPER] = new_node; 1255 new_edge->node[LOWER] = edge->node[LOWER]; 1256 list_add_tail(&new_edge->list[UPPER], 1257 &new_node->lower); 1258 } 1259 } else { 1260 list_add_tail(&new_node->lower, &cache->leaves); 1261 } 1262 1263 rb_node = tree_insert(&cache->rb_root, new_node->bytenr, 1264 &new_node->rb_node); 1265 if (rb_node) 1266 backref_tree_panic(rb_node, -EEXIST, new_node->bytenr); 1267 1268 if (!new_node->lowest) { 1269 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) { 1270 list_add_tail(&new_edge->list[LOWER], 1271 &new_edge->node[LOWER]->upper); 1272 } 1273 } 1274 return 0; 1275 fail: 1276 while (!list_empty(&new_node->lower)) { 1277 new_edge = list_entry(new_node->lower.next, 1278 struct backref_edge, list[UPPER]); 1279 list_del(&new_edge->list[UPPER]); 1280 free_backref_edge(cache, new_edge); 1281 } 1282 free_backref_node(cache, new_node); 1283 return -ENOMEM; 1284 } 1285 1286 /* 1287 * helper to add 'address of tree root -> reloc tree' mapping 1288 */ 1289 static int __must_check __add_reloc_root(struct btrfs_root *root) 1290 { 1291 struct rb_node *rb_node; 1292 struct mapping_node *node; 1293 struct reloc_control *rc = root->fs_info->reloc_ctl; 1294 1295 node = kmalloc(sizeof(*node), GFP_NOFS); 1296 if (!node) 1297 return -ENOMEM; 1298 1299 node->bytenr = root->node->start; 1300 node->data = root; 1301 1302 spin_lock(&rc->reloc_root_tree.lock); 1303 rb_node = tree_insert(&rc->reloc_root_tree.rb_root, 1304 node->bytenr, &node->rb_node); 1305 spin_unlock(&rc->reloc_root_tree.lock); 1306 if (rb_node) { 1307 btrfs_panic(root->fs_info, -EEXIST, 1308 "Duplicate root found for start=%llu while inserting into relocation tree", 1309 node->bytenr); 1310 kfree(node); 1311 return -EEXIST; 1312 } 1313 1314 list_add_tail(&root->root_list, &rc->reloc_roots); 1315 return 0; 1316 } 1317 1318 /* 1319 * helper to delete the 'address of tree root -> reloc tree' 1320 * mapping 1321 */ 1322 static void __del_reloc_root(struct btrfs_root *root) 1323 { 1324 struct rb_node *rb_node; 1325 struct mapping_node *node = NULL; 1326 struct reloc_control *rc = root->fs_info->reloc_ctl; 1327 1328 spin_lock(&rc->reloc_root_tree.lock); 1329 rb_node = tree_search(&rc->reloc_root_tree.rb_root, 1330 root->node->start); 1331 if (rb_node) { 1332 node = rb_entry(rb_node, struct mapping_node, rb_node); 1333 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); 1334 } 1335 spin_unlock(&rc->reloc_root_tree.lock); 1336 1337 if (!node) 1338 return; 1339 BUG_ON((struct btrfs_root *)node->data != root); 1340 1341 spin_lock(&root->fs_info->trans_lock); 1342 list_del_init(&root->root_list); 1343 spin_unlock(&root->fs_info->trans_lock); 1344 kfree(node); 1345 } 1346 1347 /* 1348 * helper to update the 'address of tree root -> reloc tree' 1349 * mapping 1350 */ 1351 static int __update_reloc_root(struct btrfs_root *root, u64 new_bytenr) 1352 { 1353 struct rb_node *rb_node; 1354 struct mapping_node *node = NULL; 1355 struct reloc_control *rc = root->fs_info->reloc_ctl; 1356 1357 spin_lock(&rc->reloc_root_tree.lock); 1358 rb_node = tree_search(&rc->reloc_root_tree.rb_root, 1359 root->node->start); 1360 if (rb_node) { 1361 node = rb_entry(rb_node, struct mapping_node, rb_node); 1362 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); 1363 } 1364 spin_unlock(&rc->reloc_root_tree.lock); 1365 1366 if (!node) 1367 return 0; 1368 BUG_ON((struct btrfs_root *)node->data != root); 1369 1370 spin_lock(&rc->reloc_root_tree.lock); 1371 node->bytenr = new_bytenr; 1372 rb_node = tree_insert(&rc->reloc_root_tree.rb_root, 1373 node->bytenr, &node->rb_node); 1374 spin_unlock(&rc->reloc_root_tree.lock); 1375 if (rb_node) 1376 backref_tree_panic(rb_node, -EEXIST, node->bytenr); 1377 return 0; 1378 } 1379 1380 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans, 1381 struct btrfs_root *root, u64 objectid) 1382 { 1383 struct btrfs_root *reloc_root; 1384 struct extent_buffer *eb; 1385 struct btrfs_root_item *root_item; 1386 struct btrfs_key root_key; 1387 u64 last_snap = 0; 1388 int ret; 1389 1390 root_item = kmalloc(sizeof(*root_item), GFP_NOFS); 1391 BUG_ON(!root_item); 1392 1393 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID; 1394 root_key.type = BTRFS_ROOT_ITEM_KEY; 1395 root_key.offset = objectid; 1396 1397 if (root->root_key.objectid == objectid) { 1398 /* called by btrfs_init_reloc_root */ 1399 ret = btrfs_copy_root(trans, root, root->commit_root, &eb, 1400 BTRFS_TREE_RELOC_OBJECTID); 1401 BUG_ON(ret); 1402 1403 last_snap = btrfs_root_last_snapshot(&root->root_item); 1404 btrfs_set_root_last_snapshot(&root->root_item, 1405 trans->transid - 1); 1406 } else { 1407 /* 1408 * called by btrfs_reloc_post_snapshot_hook. 1409 * the source tree is a reloc tree, all tree blocks 1410 * modified after it was created have RELOC flag 1411 * set in their headers. so it's OK to not update 1412 * the 'last_snapshot'. 1413 */ 1414 ret = btrfs_copy_root(trans, root, root->node, &eb, 1415 BTRFS_TREE_RELOC_OBJECTID); 1416 BUG_ON(ret); 1417 } 1418 1419 memcpy(root_item, &root->root_item, sizeof(*root_item)); 1420 btrfs_set_root_bytenr(root_item, eb->start); 1421 btrfs_set_root_level(root_item, btrfs_header_level(eb)); 1422 btrfs_set_root_generation(root_item, trans->transid); 1423 1424 if (root->root_key.objectid == objectid) { 1425 btrfs_set_root_refs(root_item, 0); 1426 memset(&root_item->drop_progress, 0, 1427 sizeof(struct btrfs_disk_key)); 1428 root_item->drop_level = 0; 1429 /* 1430 * abuse rtransid, it is safe because it is impossible to 1431 * receive data into a relocation tree. 1432 */ 1433 btrfs_set_root_rtransid(root_item, last_snap); 1434 btrfs_set_root_otransid(root_item, trans->transid); 1435 } 1436 1437 btrfs_tree_unlock(eb); 1438 free_extent_buffer(eb); 1439 1440 ret = btrfs_insert_root(trans, root->fs_info->tree_root, 1441 &root_key, root_item); 1442 BUG_ON(ret); 1443 kfree(root_item); 1444 1445 reloc_root = btrfs_read_fs_root(root->fs_info->tree_root, &root_key); 1446 BUG_ON(IS_ERR(reloc_root)); 1447 reloc_root->last_trans = trans->transid; 1448 return reloc_root; 1449 } 1450 1451 /* 1452 * create reloc tree for a given fs tree. reloc tree is just a 1453 * snapshot of the fs tree with special root objectid. 1454 */ 1455 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans, 1456 struct btrfs_root *root) 1457 { 1458 struct btrfs_root *reloc_root; 1459 struct reloc_control *rc = root->fs_info->reloc_ctl; 1460 struct btrfs_block_rsv *rsv; 1461 int clear_rsv = 0; 1462 int ret; 1463 1464 if (root->reloc_root) { 1465 reloc_root = root->reloc_root; 1466 reloc_root->last_trans = trans->transid; 1467 return 0; 1468 } 1469 1470 if (!rc || !rc->create_reloc_tree || 1471 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1472 return 0; 1473 1474 if (!trans->reloc_reserved) { 1475 rsv = trans->block_rsv; 1476 trans->block_rsv = rc->block_rsv; 1477 clear_rsv = 1; 1478 } 1479 reloc_root = create_reloc_root(trans, root, root->root_key.objectid); 1480 if (clear_rsv) 1481 trans->block_rsv = rsv; 1482 1483 ret = __add_reloc_root(reloc_root); 1484 BUG_ON(ret < 0); 1485 root->reloc_root = reloc_root; 1486 return 0; 1487 } 1488 1489 /* 1490 * update root item of reloc tree 1491 */ 1492 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans, 1493 struct btrfs_root *root) 1494 { 1495 struct btrfs_root *reloc_root; 1496 struct btrfs_root_item *root_item; 1497 int ret; 1498 1499 if (!root->reloc_root) 1500 goto out; 1501 1502 reloc_root = root->reloc_root; 1503 root_item = &reloc_root->root_item; 1504 1505 if (root->fs_info->reloc_ctl->merge_reloc_tree && 1506 btrfs_root_refs(root_item) == 0) { 1507 root->reloc_root = NULL; 1508 __del_reloc_root(reloc_root); 1509 } 1510 1511 if (reloc_root->commit_root != reloc_root->node) { 1512 btrfs_set_root_node(root_item, reloc_root->node); 1513 free_extent_buffer(reloc_root->commit_root); 1514 reloc_root->commit_root = btrfs_root_node(reloc_root); 1515 } 1516 1517 ret = btrfs_update_root(trans, root->fs_info->tree_root, 1518 &reloc_root->root_key, root_item); 1519 BUG_ON(ret); 1520 1521 out: 1522 return 0; 1523 } 1524 1525 /* 1526 * helper to find first cached inode with inode number >= objectid 1527 * in a subvolume 1528 */ 1529 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid) 1530 { 1531 struct rb_node *node; 1532 struct rb_node *prev; 1533 struct btrfs_inode *entry; 1534 struct inode *inode; 1535 1536 spin_lock(&root->inode_lock); 1537 again: 1538 node = root->inode_tree.rb_node; 1539 prev = NULL; 1540 while (node) { 1541 prev = node; 1542 entry = rb_entry(node, struct btrfs_inode, rb_node); 1543 1544 if (objectid < btrfs_ino(&entry->vfs_inode)) 1545 node = node->rb_left; 1546 else if (objectid > btrfs_ino(&entry->vfs_inode)) 1547 node = node->rb_right; 1548 else 1549 break; 1550 } 1551 if (!node) { 1552 while (prev) { 1553 entry = rb_entry(prev, struct btrfs_inode, rb_node); 1554 if (objectid <= btrfs_ino(&entry->vfs_inode)) { 1555 node = prev; 1556 break; 1557 } 1558 prev = rb_next(prev); 1559 } 1560 } 1561 while (node) { 1562 entry = rb_entry(node, struct btrfs_inode, rb_node); 1563 inode = igrab(&entry->vfs_inode); 1564 if (inode) { 1565 spin_unlock(&root->inode_lock); 1566 return inode; 1567 } 1568 1569 objectid = btrfs_ino(&entry->vfs_inode) + 1; 1570 if (cond_resched_lock(&root->inode_lock)) 1571 goto again; 1572 1573 node = rb_next(node); 1574 } 1575 spin_unlock(&root->inode_lock); 1576 return NULL; 1577 } 1578 1579 static int in_block_group(u64 bytenr, 1580 struct btrfs_block_group_cache *block_group) 1581 { 1582 if (bytenr >= block_group->key.objectid && 1583 bytenr < block_group->key.objectid + block_group->key.offset) 1584 return 1; 1585 return 0; 1586 } 1587 1588 /* 1589 * get new location of data 1590 */ 1591 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr, 1592 u64 bytenr, u64 num_bytes) 1593 { 1594 struct btrfs_root *root = BTRFS_I(reloc_inode)->root; 1595 struct btrfs_path *path; 1596 struct btrfs_file_extent_item *fi; 1597 struct extent_buffer *leaf; 1598 int ret; 1599 1600 path = btrfs_alloc_path(); 1601 if (!path) 1602 return -ENOMEM; 1603 1604 bytenr -= BTRFS_I(reloc_inode)->index_cnt; 1605 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(reloc_inode), 1606 bytenr, 0); 1607 if (ret < 0) 1608 goto out; 1609 if (ret > 0) { 1610 ret = -ENOENT; 1611 goto out; 1612 } 1613 1614 leaf = path->nodes[0]; 1615 fi = btrfs_item_ptr(leaf, path->slots[0], 1616 struct btrfs_file_extent_item); 1617 1618 BUG_ON(btrfs_file_extent_offset(leaf, fi) || 1619 btrfs_file_extent_compression(leaf, fi) || 1620 btrfs_file_extent_encryption(leaf, fi) || 1621 btrfs_file_extent_other_encoding(leaf, fi)); 1622 1623 if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) { 1624 ret = -EINVAL; 1625 goto out; 1626 } 1627 1628 *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1629 ret = 0; 1630 out: 1631 btrfs_free_path(path); 1632 return ret; 1633 } 1634 1635 /* 1636 * update file extent items in the tree leaf to point to 1637 * the new locations. 1638 */ 1639 static noinline_for_stack 1640 int replace_file_extents(struct btrfs_trans_handle *trans, 1641 struct reloc_control *rc, 1642 struct btrfs_root *root, 1643 struct extent_buffer *leaf) 1644 { 1645 struct btrfs_key key; 1646 struct btrfs_file_extent_item *fi; 1647 struct inode *inode = NULL; 1648 u64 parent; 1649 u64 bytenr; 1650 u64 new_bytenr = 0; 1651 u64 num_bytes; 1652 u64 end; 1653 u32 nritems; 1654 u32 i; 1655 int ret = 0; 1656 int first = 1; 1657 int dirty = 0; 1658 1659 if (rc->stage != UPDATE_DATA_PTRS) 1660 return 0; 1661 1662 /* reloc trees always use full backref */ 1663 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1664 parent = leaf->start; 1665 else 1666 parent = 0; 1667 1668 nritems = btrfs_header_nritems(leaf); 1669 for (i = 0; i < nritems; i++) { 1670 cond_resched(); 1671 btrfs_item_key_to_cpu(leaf, &key, i); 1672 if (key.type != BTRFS_EXTENT_DATA_KEY) 1673 continue; 1674 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); 1675 if (btrfs_file_extent_type(leaf, fi) == 1676 BTRFS_FILE_EXTENT_INLINE) 1677 continue; 1678 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1679 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1680 if (bytenr == 0) 1681 continue; 1682 if (!in_block_group(bytenr, rc->block_group)) 1683 continue; 1684 1685 /* 1686 * if we are modifying block in fs tree, wait for readpage 1687 * to complete and drop the extent cache 1688 */ 1689 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 1690 if (first) { 1691 inode = find_next_inode(root, key.objectid); 1692 first = 0; 1693 } else if (inode && btrfs_ino(inode) < key.objectid) { 1694 btrfs_add_delayed_iput(inode); 1695 inode = find_next_inode(root, key.objectid); 1696 } 1697 if (inode && btrfs_ino(inode) == key.objectid) { 1698 end = key.offset + 1699 btrfs_file_extent_num_bytes(leaf, fi); 1700 WARN_ON(!IS_ALIGNED(key.offset, 1701 root->sectorsize)); 1702 WARN_ON(!IS_ALIGNED(end, root->sectorsize)); 1703 end--; 1704 ret = try_lock_extent(&BTRFS_I(inode)->io_tree, 1705 key.offset, end); 1706 if (!ret) 1707 continue; 1708 1709 btrfs_drop_extent_cache(inode, key.offset, end, 1710 1); 1711 unlock_extent(&BTRFS_I(inode)->io_tree, 1712 key.offset, end); 1713 } 1714 } 1715 1716 ret = get_new_location(rc->data_inode, &new_bytenr, 1717 bytenr, num_bytes); 1718 if (ret) { 1719 /* 1720 * Don't have to abort since we've not changed anything 1721 * in the file extent yet. 1722 */ 1723 break; 1724 } 1725 1726 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr); 1727 dirty = 1; 1728 1729 key.offset -= btrfs_file_extent_offset(leaf, fi); 1730 ret = btrfs_inc_extent_ref(trans, root, new_bytenr, 1731 num_bytes, parent, 1732 btrfs_header_owner(leaf), 1733 key.objectid, key.offset); 1734 if (ret) { 1735 btrfs_abort_transaction(trans, ret); 1736 break; 1737 } 1738 1739 ret = btrfs_free_extent(trans, root, bytenr, num_bytes, 1740 parent, btrfs_header_owner(leaf), 1741 key.objectid, key.offset); 1742 if (ret) { 1743 btrfs_abort_transaction(trans, ret); 1744 break; 1745 } 1746 } 1747 if (dirty) 1748 btrfs_mark_buffer_dirty(leaf); 1749 if (inode) 1750 btrfs_add_delayed_iput(inode); 1751 return ret; 1752 } 1753 1754 static noinline_for_stack 1755 int memcmp_node_keys(struct extent_buffer *eb, int slot, 1756 struct btrfs_path *path, int level) 1757 { 1758 struct btrfs_disk_key key1; 1759 struct btrfs_disk_key key2; 1760 btrfs_node_key(eb, &key1, slot); 1761 btrfs_node_key(path->nodes[level], &key2, path->slots[level]); 1762 return memcmp(&key1, &key2, sizeof(key1)); 1763 } 1764 1765 /* 1766 * try to replace tree blocks in fs tree with the new blocks 1767 * in reloc tree. tree blocks haven't been modified since the 1768 * reloc tree was create can be replaced. 1769 * 1770 * if a block was replaced, level of the block + 1 is returned. 1771 * if no block got replaced, 0 is returned. if there are other 1772 * errors, a negative error number is returned. 1773 */ 1774 static noinline_for_stack 1775 int replace_path(struct btrfs_trans_handle *trans, 1776 struct btrfs_root *dest, struct btrfs_root *src, 1777 struct btrfs_path *path, struct btrfs_key *next_key, 1778 int lowest_level, int max_level) 1779 { 1780 struct extent_buffer *eb; 1781 struct extent_buffer *parent; 1782 struct btrfs_key key; 1783 u64 old_bytenr; 1784 u64 new_bytenr; 1785 u64 old_ptr_gen; 1786 u64 new_ptr_gen; 1787 u64 last_snapshot; 1788 u32 blocksize; 1789 int cow = 0; 1790 int level; 1791 int ret; 1792 int slot; 1793 1794 BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 1795 BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID); 1796 1797 last_snapshot = btrfs_root_last_snapshot(&src->root_item); 1798 again: 1799 slot = path->slots[lowest_level]; 1800 btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot); 1801 1802 eb = btrfs_lock_root_node(dest); 1803 btrfs_set_lock_blocking(eb); 1804 level = btrfs_header_level(eb); 1805 1806 if (level < lowest_level) { 1807 btrfs_tree_unlock(eb); 1808 free_extent_buffer(eb); 1809 return 0; 1810 } 1811 1812 if (cow) { 1813 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb); 1814 BUG_ON(ret); 1815 } 1816 btrfs_set_lock_blocking(eb); 1817 1818 if (next_key) { 1819 next_key->objectid = (u64)-1; 1820 next_key->type = (u8)-1; 1821 next_key->offset = (u64)-1; 1822 } 1823 1824 parent = eb; 1825 while (1) { 1826 level = btrfs_header_level(parent); 1827 BUG_ON(level < lowest_level); 1828 1829 ret = btrfs_bin_search(parent, &key, level, &slot); 1830 if (ret && slot > 0) 1831 slot--; 1832 1833 if (next_key && slot + 1 < btrfs_header_nritems(parent)) 1834 btrfs_node_key_to_cpu(parent, next_key, slot + 1); 1835 1836 old_bytenr = btrfs_node_blockptr(parent, slot); 1837 blocksize = dest->nodesize; 1838 old_ptr_gen = btrfs_node_ptr_generation(parent, slot); 1839 1840 if (level <= max_level) { 1841 eb = path->nodes[level]; 1842 new_bytenr = btrfs_node_blockptr(eb, 1843 path->slots[level]); 1844 new_ptr_gen = btrfs_node_ptr_generation(eb, 1845 path->slots[level]); 1846 } else { 1847 new_bytenr = 0; 1848 new_ptr_gen = 0; 1849 } 1850 1851 if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) { 1852 ret = level; 1853 break; 1854 } 1855 1856 if (new_bytenr == 0 || old_ptr_gen > last_snapshot || 1857 memcmp_node_keys(parent, slot, path, level)) { 1858 if (level <= lowest_level) { 1859 ret = 0; 1860 break; 1861 } 1862 1863 eb = read_tree_block(dest, old_bytenr, old_ptr_gen); 1864 if (IS_ERR(eb)) { 1865 ret = PTR_ERR(eb); 1866 break; 1867 } else if (!extent_buffer_uptodate(eb)) { 1868 ret = -EIO; 1869 free_extent_buffer(eb); 1870 break; 1871 } 1872 btrfs_tree_lock(eb); 1873 if (cow) { 1874 ret = btrfs_cow_block(trans, dest, eb, parent, 1875 slot, &eb); 1876 BUG_ON(ret); 1877 } 1878 btrfs_set_lock_blocking(eb); 1879 1880 btrfs_tree_unlock(parent); 1881 free_extent_buffer(parent); 1882 1883 parent = eb; 1884 continue; 1885 } 1886 1887 if (!cow) { 1888 btrfs_tree_unlock(parent); 1889 free_extent_buffer(parent); 1890 cow = 1; 1891 goto again; 1892 } 1893 1894 btrfs_node_key_to_cpu(path->nodes[level], &key, 1895 path->slots[level]); 1896 btrfs_release_path(path); 1897 1898 path->lowest_level = level; 1899 ret = btrfs_search_slot(trans, src, &key, path, 0, 1); 1900 path->lowest_level = 0; 1901 BUG_ON(ret); 1902 1903 /* 1904 * swap blocks in fs tree and reloc tree. 1905 */ 1906 btrfs_set_node_blockptr(parent, slot, new_bytenr); 1907 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen); 1908 btrfs_mark_buffer_dirty(parent); 1909 1910 btrfs_set_node_blockptr(path->nodes[level], 1911 path->slots[level], old_bytenr); 1912 btrfs_set_node_ptr_generation(path->nodes[level], 1913 path->slots[level], old_ptr_gen); 1914 btrfs_mark_buffer_dirty(path->nodes[level]); 1915 1916 ret = btrfs_inc_extent_ref(trans, src, old_bytenr, blocksize, 1917 path->nodes[level]->start, 1918 src->root_key.objectid, level - 1, 0); 1919 BUG_ON(ret); 1920 ret = btrfs_inc_extent_ref(trans, dest, new_bytenr, blocksize, 1921 0, dest->root_key.objectid, level - 1, 1922 0); 1923 BUG_ON(ret); 1924 1925 ret = btrfs_free_extent(trans, src, new_bytenr, blocksize, 1926 path->nodes[level]->start, 1927 src->root_key.objectid, level - 1, 0); 1928 BUG_ON(ret); 1929 1930 ret = btrfs_free_extent(trans, dest, old_bytenr, blocksize, 1931 0, dest->root_key.objectid, level - 1, 1932 0); 1933 BUG_ON(ret); 1934 1935 btrfs_unlock_up_safe(path, 0); 1936 1937 ret = level; 1938 break; 1939 } 1940 btrfs_tree_unlock(parent); 1941 free_extent_buffer(parent); 1942 return ret; 1943 } 1944 1945 /* 1946 * helper to find next relocated block in reloc tree 1947 */ 1948 static noinline_for_stack 1949 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 1950 int *level) 1951 { 1952 struct extent_buffer *eb; 1953 int i; 1954 u64 last_snapshot; 1955 u32 nritems; 1956 1957 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 1958 1959 for (i = 0; i < *level; i++) { 1960 free_extent_buffer(path->nodes[i]); 1961 path->nodes[i] = NULL; 1962 } 1963 1964 for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) { 1965 eb = path->nodes[i]; 1966 nritems = btrfs_header_nritems(eb); 1967 while (path->slots[i] + 1 < nritems) { 1968 path->slots[i]++; 1969 if (btrfs_node_ptr_generation(eb, path->slots[i]) <= 1970 last_snapshot) 1971 continue; 1972 1973 *level = i; 1974 return 0; 1975 } 1976 free_extent_buffer(path->nodes[i]); 1977 path->nodes[i] = NULL; 1978 } 1979 return 1; 1980 } 1981 1982 /* 1983 * walk down reloc tree to find relocated block of lowest level 1984 */ 1985 static noinline_for_stack 1986 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 1987 int *level) 1988 { 1989 struct extent_buffer *eb = NULL; 1990 int i; 1991 u64 bytenr; 1992 u64 ptr_gen = 0; 1993 u64 last_snapshot; 1994 u32 nritems; 1995 1996 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 1997 1998 for (i = *level; i > 0; i--) { 1999 eb = path->nodes[i]; 2000 nritems = btrfs_header_nritems(eb); 2001 while (path->slots[i] < nritems) { 2002 ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]); 2003 if (ptr_gen > last_snapshot) 2004 break; 2005 path->slots[i]++; 2006 } 2007 if (path->slots[i] >= nritems) { 2008 if (i == *level) 2009 break; 2010 *level = i + 1; 2011 return 0; 2012 } 2013 if (i == 1) { 2014 *level = i; 2015 return 0; 2016 } 2017 2018 bytenr = btrfs_node_blockptr(eb, path->slots[i]); 2019 eb = read_tree_block(root, bytenr, ptr_gen); 2020 if (IS_ERR(eb)) { 2021 return PTR_ERR(eb); 2022 } else if (!extent_buffer_uptodate(eb)) { 2023 free_extent_buffer(eb); 2024 return -EIO; 2025 } 2026 BUG_ON(btrfs_header_level(eb) != i - 1); 2027 path->nodes[i - 1] = eb; 2028 path->slots[i - 1] = 0; 2029 } 2030 return 1; 2031 } 2032 2033 /* 2034 * invalidate extent cache for file extents whose key in range of 2035 * [min_key, max_key) 2036 */ 2037 static int invalidate_extent_cache(struct btrfs_root *root, 2038 struct btrfs_key *min_key, 2039 struct btrfs_key *max_key) 2040 { 2041 struct inode *inode = NULL; 2042 u64 objectid; 2043 u64 start, end; 2044 u64 ino; 2045 2046 objectid = min_key->objectid; 2047 while (1) { 2048 cond_resched(); 2049 iput(inode); 2050 2051 if (objectid > max_key->objectid) 2052 break; 2053 2054 inode = find_next_inode(root, objectid); 2055 if (!inode) 2056 break; 2057 ino = btrfs_ino(inode); 2058 2059 if (ino > max_key->objectid) { 2060 iput(inode); 2061 break; 2062 } 2063 2064 objectid = ino + 1; 2065 if (!S_ISREG(inode->i_mode)) 2066 continue; 2067 2068 if (unlikely(min_key->objectid == ino)) { 2069 if (min_key->type > BTRFS_EXTENT_DATA_KEY) 2070 continue; 2071 if (min_key->type < BTRFS_EXTENT_DATA_KEY) 2072 start = 0; 2073 else { 2074 start = min_key->offset; 2075 WARN_ON(!IS_ALIGNED(start, root->sectorsize)); 2076 } 2077 } else { 2078 start = 0; 2079 } 2080 2081 if (unlikely(max_key->objectid == ino)) { 2082 if (max_key->type < BTRFS_EXTENT_DATA_KEY) 2083 continue; 2084 if (max_key->type > BTRFS_EXTENT_DATA_KEY) { 2085 end = (u64)-1; 2086 } else { 2087 if (max_key->offset == 0) 2088 continue; 2089 end = max_key->offset; 2090 WARN_ON(!IS_ALIGNED(end, root->sectorsize)); 2091 end--; 2092 } 2093 } else { 2094 end = (u64)-1; 2095 } 2096 2097 /* the lock_extent waits for readpage to complete */ 2098 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 2099 btrfs_drop_extent_cache(inode, start, end, 1); 2100 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 2101 } 2102 return 0; 2103 } 2104 2105 static int find_next_key(struct btrfs_path *path, int level, 2106 struct btrfs_key *key) 2107 2108 { 2109 while (level < BTRFS_MAX_LEVEL) { 2110 if (!path->nodes[level]) 2111 break; 2112 if (path->slots[level] + 1 < 2113 btrfs_header_nritems(path->nodes[level])) { 2114 btrfs_node_key_to_cpu(path->nodes[level], key, 2115 path->slots[level] + 1); 2116 return 0; 2117 } 2118 level++; 2119 } 2120 return 1; 2121 } 2122 2123 /* 2124 * merge the relocated tree blocks in reloc tree with corresponding 2125 * fs tree. 2126 */ 2127 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc, 2128 struct btrfs_root *root) 2129 { 2130 LIST_HEAD(inode_list); 2131 struct btrfs_key key; 2132 struct btrfs_key next_key; 2133 struct btrfs_trans_handle *trans = NULL; 2134 struct btrfs_root *reloc_root; 2135 struct btrfs_root_item *root_item; 2136 struct btrfs_path *path; 2137 struct extent_buffer *leaf; 2138 int level; 2139 int max_level; 2140 int replaced = 0; 2141 int ret; 2142 int err = 0; 2143 u32 min_reserved; 2144 2145 path = btrfs_alloc_path(); 2146 if (!path) 2147 return -ENOMEM; 2148 path->reada = READA_FORWARD; 2149 2150 reloc_root = root->reloc_root; 2151 root_item = &reloc_root->root_item; 2152 2153 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 2154 level = btrfs_root_level(root_item); 2155 extent_buffer_get(reloc_root->node); 2156 path->nodes[level] = reloc_root->node; 2157 path->slots[level] = 0; 2158 } else { 2159 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 2160 2161 level = root_item->drop_level; 2162 BUG_ON(level == 0); 2163 path->lowest_level = level; 2164 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0); 2165 path->lowest_level = 0; 2166 if (ret < 0) { 2167 btrfs_free_path(path); 2168 return ret; 2169 } 2170 2171 btrfs_node_key_to_cpu(path->nodes[level], &next_key, 2172 path->slots[level]); 2173 WARN_ON(memcmp(&key, &next_key, sizeof(key))); 2174 2175 btrfs_unlock_up_safe(path, 0); 2176 } 2177 2178 min_reserved = root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2; 2179 memset(&next_key, 0, sizeof(next_key)); 2180 2181 while (1) { 2182 ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved, 2183 BTRFS_RESERVE_FLUSH_ALL); 2184 if (ret) { 2185 err = ret; 2186 goto out; 2187 } 2188 trans = btrfs_start_transaction(root, 0); 2189 if (IS_ERR(trans)) { 2190 err = PTR_ERR(trans); 2191 trans = NULL; 2192 goto out; 2193 } 2194 trans->block_rsv = rc->block_rsv; 2195 2196 replaced = 0; 2197 max_level = level; 2198 2199 ret = walk_down_reloc_tree(reloc_root, path, &level); 2200 if (ret < 0) { 2201 err = ret; 2202 goto out; 2203 } 2204 if (ret > 0) 2205 break; 2206 2207 if (!find_next_key(path, level, &key) && 2208 btrfs_comp_cpu_keys(&next_key, &key) >= 0) { 2209 ret = 0; 2210 } else { 2211 ret = replace_path(trans, root, reloc_root, path, 2212 &next_key, level, max_level); 2213 } 2214 if (ret < 0) { 2215 err = ret; 2216 goto out; 2217 } 2218 2219 if (ret > 0) { 2220 level = ret; 2221 btrfs_node_key_to_cpu(path->nodes[level], &key, 2222 path->slots[level]); 2223 replaced = 1; 2224 } 2225 2226 ret = walk_up_reloc_tree(reloc_root, path, &level); 2227 if (ret > 0) 2228 break; 2229 2230 BUG_ON(level == 0); 2231 /* 2232 * save the merging progress in the drop_progress. 2233 * this is OK since root refs == 1 in this case. 2234 */ 2235 btrfs_node_key(path->nodes[level], &root_item->drop_progress, 2236 path->slots[level]); 2237 root_item->drop_level = level; 2238 2239 btrfs_end_transaction_throttle(trans, root); 2240 trans = NULL; 2241 2242 btrfs_btree_balance_dirty(root); 2243 2244 if (replaced && rc->stage == UPDATE_DATA_PTRS) 2245 invalidate_extent_cache(root, &key, &next_key); 2246 } 2247 2248 /* 2249 * handle the case only one block in the fs tree need to be 2250 * relocated and the block is tree root. 2251 */ 2252 leaf = btrfs_lock_root_node(root); 2253 ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf); 2254 btrfs_tree_unlock(leaf); 2255 free_extent_buffer(leaf); 2256 if (ret < 0) 2257 err = ret; 2258 out: 2259 btrfs_free_path(path); 2260 2261 if (err == 0) { 2262 memset(&root_item->drop_progress, 0, 2263 sizeof(root_item->drop_progress)); 2264 root_item->drop_level = 0; 2265 btrfs_set_root_refs(root_item, 0); 2266 btrfs_update_reloc_root(trans, root); 2267 } 2268 2269 if (trans) 2270 btrfs_end_transaction_throttle(trans, root); 2271 2272 btrfs_btree_balance_dirty(root); 2273 2274 if (replaced && rc->stage == UPDATE_DATA_PTRS) 2275 invalidate_extent_cache(root, &key, &next_key); 2276 2277 return err; 2278 } 2279 2280 static noinline_for_stack 2281 int prepare_to_merge(struct reloc_control *rc, int err) 2282 { 2283 struct btrfs_root *root = rc->extent_root; 2284 struct btrfs_root *reloc_root; 2285 struct btrfs_trans_handle *trans; 2286 LIST_HEAD(reloc_roots); 2287 u64 num_bytes = 0; 2288 int ret; 2289 2290 mutex_lock(&root->fs_info->reloc_mutex); 2291 rc->merging_rsv_size += root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2; 2292 rc->merging_rsv_size += rc->nodes_relocated * 2; 2293 mutex_unlock(&root->fs_info->reloc_mutex); 2294 2295 again: 2296 if (!err) { 2297 num_bytes = rc->merging_rsv_size; 2298 ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes, 2299 BTRFS_RESERVE_FLUSH_ALL); 2300 if (ret) 2301 err = ret; 2302 } 2303 2304 trans = btrfs_join_transaction(rc->extent_root); 2305 if (IS_ERR(trans)) { 2306 if (!err) 2307 btrfs_block_rsv_release(rc->extent_root, 2308 rc->block_rsv, num_bytes); 2309 return PTR_ERR(trans); 2310 } 2311 2312 if (!err) { 2313 if (num_bytes != rc->merging_rsv_size) { 2314 btrfs_end_transaction(trans, rc->extent_root); 2315 btrfs_block_rsv_release(rc->extent_root, 2316 rc->block_rsv, num_bytes); 2317 goto again; 2318 } 2319 } 2320 2321 rc->merge_reloc_tree = 1; 2322 2323 while (!list_empty(&rc->reloc_roots)) { 2324 reloc_root = list_entry(rc->reloc_roots.next, 2325 struct btrfs_root, root_list); 2326 list_del_init(&reloc_root->root_list); 2327 2328 root = read_fs_root(reloc_root->fs_info, 2329 reloc_root->root_key.offset); 2330 BUG_ON(IS_ERR(root)); 2331 BUG_ON(root->reloc_root != reloc_root); 2332 2333 /* 2334 * set reference count to 1, so btrfs_recover_relocation 2335 * knows it should resumes merging 2336 */ 2337 if (!err) 2338 btrfs_set_root_refs(&reloc_root->root_item, 1); 2339 btrfs_update_reloc_root(trans, root); 2340 2341 list_add(&reloc_root->root_list, &reloc_roots); 2342 } 2343 2344 list_splice(&reloc_roots, &rc->reloc_roots); 2345 2346 if (!err) 2347 btrfs_commit_transaction(trans, rc->extent_root); 2348 else 2349 btrfs_end_transaction(trans, rc->extent_root); 2350 return err; 2351 } 2352 2353 static noinline_for_stack 2354 void free_reloc_roots(struct list_head *list) 2355 { 2356 struct btrfs_root *reloc_root; 2357 2358 while (!list_empty(list)) { 2359 reloc_root = list_entry(list->next, struct btrfs_root, 2360 root_list); 2361 free_extent_buffer(reloc_root->node); 2362 free_extent_buffer(reloc_root->commit_root); 2363 reloc_root->node = NULL; 2364 reloc_root->commit_root = NULL; 2365 __del_reloc_root(reloc_root); 2366 } 2367 } 2368 2369 static noinline_for_stack 2370 void merge_reloc_roots(struct reloc_control *rc) 2371 { 2372 struct btrfs_root *root; 2373 struct btrfs_root *reloc_root; 2374 u64 last_snap; 2375 u64 otransid; 2376 u64 objectid; 2377 LIST_HEAD(reloc_roots); 2378 int found = 0; 2379 int ret = 0; 2380 again: 2381 root = rc->extent_root; 2382 2383 /* 2384 * this serializes us with btrfs_record_root_in_transaction, 2385 * we have to make sure nobody is in the middle of 2386 * adding their roots to the list while we are 2387 * doing this splice 2388 */ 2389 mutex_lock(&root->fs_info->reloc_mutex); 2390 list_splice_init(&rc->reloc_roots, &reloc_roots); 2391 mutex_unlock(&root->fs_info->reloc_mutex); 2392 2393 while (!list_empty(&reloc_roots)) { 2394 found = 1; 2395 reloc_root = list_entry(reloc_roots.next, 2396 struct btrfs_root, root_list); 2397 2398 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 2399 root = read_fs_root(reloc_root->fs_info, 2400 reloc_root->root_key.offset); 2401 BUG_ON(IS_ERR(root)); 2402 BUG_ON(root->reloc_root != reloc_root); 2403 2404 ret = merge_reloc_root(rc, root); 2405 if (ret) { 2406 if (list_empty(&reloc_root->root_list)) 2407 list_add_tail(&reloc_root->root_list, 2408 &reloc_roots); 2409 goto out; 2410 } 2411 } else { 2412 list_del_init(&reloc_root->root_list); 2413 } 2414 2415 /* 2416 * we keep the old last snapshot transid in rtranid when we 2417 * created the relocation tree. 2418 */ 2419 last_snap = btrfs_root_rtransid(&reloc_root->root_item); 2420 otransid = btrfs_root_otransid(&reloc_root->root_item); 2421 objectid = reloc_root->root_key.offset; 2422 2423 ret = btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0, 1); 2424 if (ret < 0) { 2425 if (list_empty(&reloc_root->root_list)) 2426 list_add_tail(&reloc_root->root_list, 2427 &reloc_roots); 2428 goto out; 2429 } 2430 } 2431 2432 if (found) { 2433 found = 0; 2434 goto again; 2435 } 2436 out: 2437 if (ret) { 2438 btrfs_handle_fs_error(root->fs_info, ret, NULL); 2439 if (!list_empty(&reloc_roots)) 2440 free_reloc_roots(&reloc_roots); 2441 2442 /* new reloc root may be added */ 2443 mutex_lock(&root->fs_info->reloc_mutex); 2444 list_splice_init(&rc->reloc_roots, &reloc_roots); 2445 mutex_unlock(&root->fs_info->reloc_mutex); 2446 if (!list_empty(&reloc_roots)) 2447 free_reloc_roots(&reloc_roots); 2448 } 2449 2450 BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root)); 2451 } 2452 2453 static void free_block_list(struct rb_root *blocks) 2454 { 2455 struct tree_block *block; 2456 struct rb_node *rb_node; 2457 while ((rb_node = rb_first(blocks))) { 2458 block = rb_entry(rb_node, struct tree_block, rb_node); 2459 rb_erase(rb_node, blocks); 2460 kfree(block); 2461 } 2462 } 2463 2464 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans, 2465 struct btrfs_root *reloc_root) 2466 { 2467 struct btrfs_root *root; 2468 2469 if (reloc_root->last_trans == trans->transid) 2470 return 0; 2471 2472 root = read_fs_root(reloc_root->fs_info, reloc_root->root_key.offset); 2473 BUG_ON(IS_ERR(root)); 2474 BUG_ON(root->reloc_root != reloc_root); 2475 2476 return btrfs_record_root_in_trans(trans, root); 2477 } 2478 2479 static noinline_for_stack 2480 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans, 2481 struct reloc_control *rc, 2482 struct backref_node *node, 2483 struct backref_edge *edges[]) 2484 { 2485 struct backref_node *next; 2486 struct btrfs_root *root; 2487 int index = 0; 2488 2489 next = node; 2490 while (1) { 2491 cond_resched(); 2492 next = walk_up_backref(next, edges, &index); 2493 root = next->root; 2494 BUG_ON(!root); 2495 BUG_ON(!test_bit(BTRFS_ROOT_REF_COWS, &root->state)); 2496 2497 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 2498 record_reloc_root_in_trans(trans, root); 2499 break; 2500 } 2501 2502 btrfs_record_root_in_trans(trans, root); 2503 root = root->reloc_root; 2504 2505 if (next->new_bytenr != root->node->start) { 2506 BUG_ON(next->new_bytenr); 2507 BUG_ON(!list_empty(&next->list)); 2508 next->new_bytenr = root->node->start; 2509 next->root = root; 2510 list_add_tail(&next->list, 2511 &rc->backref_cache.changed); 2512 __mark_block_processed(rc, next); 2513 break; 2514 } 2515 2516 WARN_ON(1); 2517 root = NULL; 2518 next = walk_down_backref(edges, &index); 2519 if (!next || next->level <= node->level) 2520 break; 2521 } 2522 if (!root) 2523 return NULL; 2524 2525 next = node; 2526 /* setup backref node path for btrfs_reloc_cow_block */ 2527 while (1) { 2528 rc->backref_cache.path[next->level] = next; 2529 if (--index < 0) 2530 break; 2531 next = edges[index]->node[UPPER]; 2532 } 2533 return root; 2534 } 2535 2536 /* 2537 * select a tree root for relocation. return NULL if the block 2538 * is reference counted. we should use do_relocation() in this 2539 * case. return a tree root pointer if the block isn't reference 2540 * counted. return -ENOENT if the block is root of reloc tree. 2541 */ 2542 static noinline_for_stack 2543 struct btrfs_root *select_one_root(struct backref_node *node) 2544 { 2545 struct backref_node *next; 2546 struct btrfs_root *root; 2547 struct btrfs_root *fs_root = NULL; 2548 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2549 int index = 0; 2550 2551 next = node; 2552 while (1) { 2553 cond_resched(); 2554 next = walk_up_backref(next, edges, &index); 2555 root = next->root; 2556 BUG_ON(!root); 2557 2558 /* no other choice for non-references counted tree */ 2559 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 2560 return root; 2561 2562 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) 2563 fs_root = root; 2564 2565 if (next != node) 2566 return NULL; 2567 2568 next = walk_down_backref(edges, &index); 2569 if (!next || next->level <= node->level) 2570 break; 2571 } 2572 2573 if (!fs_root) 2574 return ERR_PTR(-ENOENT); 2575 return fs_root; 2576 } 2577 2578 static noinline_for_stack 2579 u64 calcu_metadata_size(struct reloc_control *rc, 2580 struct backref_node *node, int reserve) 2581 { 2582 struct backref_node *next = node; 2583 struct backref_edge *edge; 2584 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2585 u64 num_bytes = 0; 2586 int index = 0; 2587 2588 BUG_ON(reserve && node->processed); 2589 2590 while (next) { 2591 cond_resched(); 2592 while (1) { 2593 if (next->processed && (reserve || next != node)) 2594 break; 2595 2596 num_bytes += rc->extent_root->nodesize; 2597 2598 if (list_empty(&next->upper)) 2599 break; 2600 2601 edge = list_entry(next->upper.next, 2602 struct backref_edge, list[LOWER]); 2603 edges[index++] = edge; 2604 next = edge->node[UPPER]; 2605 } 2606 next = walk_down_backref(edges, &index); 2607 } 2608 return num_bytes; 2609 } 2610 2611 static int reserve_metadata_space(struct btrfs_trans_handle *trans, 2612 struct reloc_control *rc, 2613 struct backref_node *node) 2614 { 2615 struct btrfs_root *root = rc->extent_root; 2616 u64 num_bytes; 2617 int ret; 2618 u64 tmp; 2619 2620 num_bytes = calcu_metadata_size(rc, node, 1) * 2; 2621 2622 trans->block_rsv = rc->block_rsv; 2623 rc->reserved_bytes += num_bytes; 2624 2625 /* 2626 * We are under a transaction here so we can only do limited flushing. 2627 * If we get an enospc just kick back -EAGAIN so we know to drop the 2628 * transaction and try to refill when we can flush all the things. 2629 */ 2630 ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes, 2631 BTRFS_RESERVE_FLUSH_LIMIT); 2632 if (ret) { 2633 tmp = rc->extent_root->nodesize * RELOCATION_RESERVED_NODES; 2634 while (tmp <= rc->reserved_bytes) 2635 tmp <<= 1; 2636 /* 2637 * only one thread can access block_rsv at this point, 2638 * so we don't need hold lock to protect block_rsv. 2639 * we expand more reservation size here to allow enough 2640 * space for relocation and we will return eailer in 2641 * enospc case. 2642 */ 2643 rc->block_rsv->size = tmp + rc->extent_root->nodesize * 2644 RELOCATION_RESERVED_NODES; 2645 return -EAGAIN; 2646 } 2647 2648 return 0; 2649 } 2650 2651 /* 2652 * relocate a block tree, and then update pointers in upper level 2653 * blocks that reference the block to point to the new location. 2654 * 2655 * if called by link_to_upper, the block has already been relocated. 2656 * in that case this function just updates pointers. 2657 */ 2658 static int do_relocation(struct btrfs_trans_handle *trans, 2659 struct reloc_control *rc, 2660 struct backref_node *node, 2661 struct btrfs_key *key, 2662 struct btrfs_path *path, int lowest) 2663 { 2664 struct backref_node *upper; 2665 struct backref_edge *edge; 2666 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2667 struct btrfs_root *root; 2668 struct extent_buffer *eb; 2669 u32 blocksize; 2670 u64 bytenr; 2671 u64 generation; 2672 int slot; 2673 int ret; 2674 int err = 0; 2675 2676 BUG_ON(lowest && node->eb); 2677 2678 path->lowest_level = node->level + 1; 2679 rc->backref_cache.path[node->level] = node; 2680 list_for_each_entry(edge, &node->upper, list[LOWER]) { 2681 cond_resched(); 2682 2683 upper = edge->node[UPPER]; 2684 root = select_reloc_root(trans, rc, upper, edges); 2685 BUG_ON(!root); 2686 2687 if (upper->eb && !upper->locked) { 2688 if (!lowest) { 2689 ret = btrfs_bin_search(upper->eb, key, 2690 upper->level, &slot); 2691 BUG_ON(ret); 2692 bytenr = btrfs_node_blockptr(upper->eb, slot); 2693 if (node->eb->start == bytenr) 2694 goto next; 2695 } 2696 drop_node_buffer(upper); 2697 } 2698 2699 if (!upper->eb) { 2700 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2701 if (ret) { 2702 if (ret < 0) 2703 err = ret; 2704 else 2705 err = -ENOENT; 2706 2707 btrfs_release_path(path); 2708 break; 2709 } 2710 2711 if (!upper->eb) { 2712 upper->eb = path->nodes[upper->level]; 2713 path->nodes[upper->level] = NULL; 2714 } else { 2715 BUG_ON(upper->eb != path->nodes[upper->level]); 2716 } 2717 2718 upper->locked = 1; 2719 path->locks[upper->level] = 0; 2720 2721 slot = path->slots[upper->level]; 2722 btrfs_release_path(path); 2723 } else { 2724 ret = btrfs_bin_search(upper->eb, key, upper->level, 2725 &slot); 2726 BUG_ON(ret); 2727 } 2728 2729 bytenr = btrfs_node_blockptr(upper->eb, slot); 2730 if (lowest) { 2731 BUG_ON(bytenr != node->bytenr); 2732 } else { 2733 if (node->eb->start == bytenr) 2734 goto next; 2735 } 2736 2737 blocksize = root->nodesize; 2738 generation = btrfs_node_ptr_generation(upper->eb, slot); 2739 eb = read_tree_block(root, bytenr, generation); 2740 if (IS_ERR(eb)) { 2741 err = PTR_ERR(eb); 2742 goto next; 2743 } else if (!extent_buffer_uptodate(eb)) { 2744 free_extent_buffer(eb); 2745 err = -EIO; 2746 goto next; 2747 } 2748 btrfs_tree_lock(eb); 2749 btrfs_set_lock_blocking(eb); 2750 2751 if (!node->eb) { 2752 ret = btrfs_cow_block(trans, root, eb, upper->eb, 2753 slot, &eb); 2754 btrfs_tree_unlock(eb); 2755 free_extent_buffer(eb); 2756 if (ret < 0) { 2757 err = ret; 2758 goto next; 2759 } 2760 BUG_ON(node->eb != eb); 2761 } else { 2762 btrfs_set_node_blockptr(upper->eb, slot, 2763 node->eb->start); 2764 btrfs_set_node_ptr_generation(upper->eb, slot, 2765 trans->transid); 2766 btrfs_mark_buffer_dirty(upper->eb); 2767 2768 ret = btrfs_inc_extent_ref(trans, root, 2769 node->eb->start, blocksize, 2770 upper->eb->start, 2771 btrfs_header_owner(upper->eb), 2772 node->level, 0); 2773 BUG_ON(ret); 2774 2775 ret = btrfs_drop_subtree(trans, root, eb, upper->eb); 2776 BUG_ON(ret); 2777 } 2778 next: 2779 if (!upper->pending) 2780 drop_node_buffer(upper); 2781 else 2782 unlock_node_buffer(upper); 2783 if (err) 2784 break; 2785 } 2786 2787 if (!err && node->pending) { 2788 drop_node_buffer(node); 2789 list_move_tail(&node->list, &rc->backref_cache.changed); 2790 node->pending = 0; 2791 } 2792 2793 path->lowest_level = 0; 2794 BUG_ON(err == -ENOSPC); 2795 return err; 2796 } 2797 2798 static int link_to_upper(struct btrfs_trans_handle *trans, 2799 struct reloc_control *rc, 2800 struct backref_node *node, 2801 struct btrfs_path *path) 2802 { 2803 struct btrfs_key key; 2804 2805 btrfs_node_key_to_cpu(node->eb, &key, 0); 2806 return do_relocation(trans, rc, node, &key, path, 0); 2807 } 2808 2809 static int finish_pending_nodes(struct btrfs_trans_handle *trans, 2810 struct reloc_control *rc, 2811 struct btrfs_path *path, int err) 2812 { 2813 LIST_HEAD(list); 2814 struct backref_cache *cache = &rc->backref_cache; 2815 struct backref_node *node; 2816 int level; 2817 int ret; 2818 2819 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 2820 while (!list_empty(&cache->pending[level])) { 2821 node = list_entry(cache->pending[level].next, 2822 struct backref_node, list); 2823 list_move_tail(&node->list, &list); 2824 BUG_ON(!node->pending); 2825 2826 if (!err) { 2827 ret = link_to_upper(trans, rc, node, path); 2828 if (ret < 0) 2829 err = ret; 2830 } 2831 } 2832 list_splice_init(&list, &cache->pending[level]); 2833 } 2834 return err; 2835 } 2836 2837 static void mark_block_processed(struct reloc_control *rc, 2838 u64 bytenr, u32 blocksize) 2839 { 2840 set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1, 2841 EXTENT_DIRTY); 2842 } 2843 2844 static void __mark_block_processed(struct reloc_control *rc, 2845 struct backref_node *node) 2846 { 2847 u32 blocksize; 2848 if (node->level == 0 || 2849 in_block_group(node->bytenr, rc->block_group)) { 2850 blocksize = rc->extent_root->nodesize; 2851 mark_block_processed(rc, node->bytenr, blocksize); 2852 } 2853 node->processed = 1; 2854 } 2855 2856 /* 2857 * mark a block and all blocks directly/indirectly reference the block 2858 * as processed. 2859 */ 2860 static void update_processed_blocks(struct reloc_control *rc, 2861 struct backref_node *node) 2862 { 2863 struct backref_node *next = node; 2864 struct backref_edge *edge; 2865 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2866 int index = 0; 2867 2868 while (next) { 2869 cond_resched(); 2870 while (1) { 2871 if (next->processed) 2872 break; 2873 2874 __mark_block_processed(rc, next); 2875 2876 if (list_empty(&next->upper)) 2877 break; 2878 2879 edge = list_entry(next->upper.next, 2880 struct backref_edge, list[LOWER]); 2881 edges[index++] = edge; 2882 next = edge->node[UPPER]; 2883 } 2884 next = walk_down_backref(edges, &index); 2885 } 2886 } 2887 2888 static int tree_block_processed(u64 bytenr, struct reloc_control *rc) 2889 { 2890 u32 blocksize = rc->extent_root->nodesize; 2891 2892 if (test_range_bit(&rc->processed_blocks, bytenr, 2893 bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL)) 2894 return 1; 2895 return 0; 2896 } 2897 2898 static int get_tree_block_key(struct reloc_control *rc, 2899 struct tree_block *block) 2900 { 2901 struct extent_buffer *eb; 2902 2903 BUG_ON(block->key_ready); 2904 eb = read_tree_block(rc->extent_root, block->bytenr, 2905 block->key.offset); 2906 if (IS_ERR(eb)) { 2907 return PTR_ERR(eb); 2908 } else if (!extent_buffer_uptodate(eb)) { 2909 free_extent_buffer(eb); 2910 return -EIO; 2911 } 2912 WARN_ON(btrfs_header_level(eb) != block->level); 2913 if (block->level == 0) 2914 btrfs_item_key_to_cpu(eb, &block->key, 0); 2915 else 2916 btrfs_node_key_to_cpu(eb, &block->key, 0); 2917 free_extent_buffer(eb); 2918 block->key_ready = 1; 2919 return 0; 2920 } 2921 2922 /* 2923 * helper function to relocate a tree block 2924 */ 2925 static int relocate_tree_block(struct btrfs_trans_handle *trans, 2926 struct reloc_control *rc, 2927 struct backref_node *node, 2928 struct btrfs_key *key, 2929 struct btrfs_path *path) 2930 { 2931 struct btrfs_root *root; 2932 int ret = 0; 2933 2934 if (!node) 2935 return 0; 2936 2937 BUG_ON(node->processed); 2938 root = select_one_root(node); 2939 if (root == ERR_PTR(-ENOENT)) { 2940 update_processed_blocks(rc, node); 2941 goto out; 2942 } 2943 2944 if (!root || test_bit(BTRFS_ROOT_REF_COWS, &root->state)) { 2945 ret = reserve_metadata_space(trans, rc, node); 2946 if (ret) 2947 goto out; 2948 } 2949 2950 if (root) { 2951 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) { 2952 BUG_ON(node->new_bytenr); 2953 BUG_ON(!list_empty(&node->list)); 2954 btrfs_record_root_in_trans(trans, root); 2955 root = root->reloc_root; 2956 node->new_bytenr = root->node->start; 2957 node->root = root; 2958 list_add_tail(&node->list, &rc->backref_cache.changed); 2959 } else { 2960 path->lowest_level = node->level; 2961 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2962 btrfs_release_path(path); 2963 if (ret > 0) 2964 ret = 0; 2965 } 2966 if (!ret) 2967 update_processed_blocks(rc, node); 2968 } else { 2969 ret = do_relocation(trans, rc, node, key, path, 1); 2970 } 2971 out: 2972 if (ret || node->level == 0 || node->cowonly) 2973 remove_backref_node(&rc->backref_cache, node); 2974 return ret; 2975 } 2976 2977 /* 2978 * relocate a list of blocks 2979 */ 2980 static noinline_for_stack 2981 int relocate_tree_blocks(struct btrfs_trans_handle *trans, 2982 struct reloc_control *rc, struct rb_root *blocks) 2983 { 2984 struct backref_node *node; 2985 struct btrfs_path *path; 2986 struct tree_block *block; 2987 struct rb_node *rb_node; 2988 int ret; 2989 int err = 0; 2990 2991 path = btrfs_alloc_path(); 2992 if (!path) { 2993 err = -ENOMEM; 2994 goto out_free_blocks; 2995 } 2996 2997 rb_node = rb_first(blocks); 2998 while (rb_node) { 2999 block = rb_entry(rb_node, struct tree_block, rb_node); 3000 if (!block->key_ready) 3001 readahead_tree_block(rc->extent_root, block->bytenr); 3002 rb_node = rb_next(rb_node); 3003 } 3004 3005 rb_node = rb_first(blocks); 3006 while (rb_node) { 3007 block = rb_entry(rb_node, struct tree_block, rb_node); 3008 if (!block->key_ready) { 3009 err = get_tree_block_key(rc, block); 3010 if (err) 3011 goto out_free_path; 3012 } 3013 rb_node = rb_next(rb_node); 3014 } 3015 3016 rb_node = rb_first(blocks); 3017 while (rb_node) { 3018 block = rb_entry(rb_node, struct tree_block, rb_node); 3019 3020 node = build_backref_tree(rc, &block->key, 3021 block->level, block->bytenr); 3022 if (IS_ERR(node)) { 3023 err = PTR_ERR(node); 3024 goto out; 3025 } 3026 3027 ret = relocate_tree_block(trans, rc, node, &block->key, 3028 path); 3029 if (ret < 0) { 3030 if (ret != -EAGAIN || rb_node == rb_first(blocks)) 3031 err = ret; 3032 goto out; 3033 } 3034 rb_node = rb_next(rb_node); 3035 } 3036 out: 3037 err = finish_pending_nodes(trans, rc, path, err); 3038 3039 out_free_path: 3040 btrfs_free_path(path); 3041 out_free_blocks: 3042 free_block_list(blocks); 3043 return err; 3044 } 3045 3046 static noinline_for_stack 3047 int prealloc_file_extent_cluster(struct inode *inode, 3048 struct file_extent_cluster *cluster) 3049 { 3050 u64 alloc_hint = 0; 3051 u64 start; 3052 u64 end; 3053 u64 offset = BTRFS_I(inode)->index_cnt; 3054 u64 num_bytes; 3055 int nr = 0; 3056 int ret = 0; 3057 u64 prealloc_start = cluster->start - offset; 3058 u64 prealloc_end = cluster->end - offset; 3059 u64 cur_offset; 3060 3061 BUG_ON(cluster->start != cluster->boundary[0]); 3062 inode_lock(inode); 3063 3064 ret = btrfs_check_data_free_space(inode, prealloc_start, 3065 prealloc_end + 1 - prealloc_start); 3066 if (ret) 3067 goto out; 3068 3069 cur_offset = prealloc_start; 3070 while (nr < cluster->nr) { 3071 start = cluster->boundary[nr] - offset; 3072 if (nr + 1 < cluster->nr) 3073 end = cluster->boundary[nr + 1] - 1 - offset; 3074 else 3075 end = cluster->end - offset; 3076 3077 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 3078 num_bytes = end + 1 - start; 3079 if (cur_offset < start) 3080 btrfs_free_reserved_data_space(inode, cur_offset, 3081 start - cur_offset); 3082 ret = btrfs_prealloc_file_range(inode, 0, start, 3083 num_bytes, num_bytes, 3084 end + 1, &alloc_hint); 3085 cur_offset = end + 1; 3086 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 3087 if (ret) 3088 break; 3089 nr++; 3090 } 3091 if (cur_offset < prealloc_end) 3092 btrfs_free_reserved_data_space(inode, cur_offset, 3093 prealloc_end + 1 - cur_offset); 3094 out: 3095 inode_unlock(inode); 3096 return ret; 3097 } 3098 3099 static noinline_for_stack 3100 int setup_extent_mapping(struct inode *inode, u64 start, u64 end, 3101 u64 block_start) 3102 { 3103 struct btrfs_root *root = BTRFS_I(inode)->root; 3104 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 3105 struct extent_map *em; 3106 int ret = 0; 3107 3108 em = alloc_extent_map(); 3109 if (!em) 3110 return -ENOMEM; 3111 3112 em->start = start; 3113 em->len = end + 1 - start; 3114 em->block_len = em->len; 3115 em->block_start = block_start; 3116 em->bdev = root->fs_info->fs_devices->latest_bdev; 3117 set_bit(EXTENT_FLAG_PINNED, &em->flags); 3118 3119 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 3120 while (1) { 3121 write_lock(&em_tree->lock); 3122 ret = add_extent_mapping(em_tree, em, 0); 3123 write_unlock(&em_tree->lock); 3124 if (ret != -EEXIST) { 3125 free_extent_map(em); 3126 break; 3127 } 3128 btrfs_drop_extent_cache(inode, start, end, 0); 3129 } 3130 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 3131 return ret; 3132 } 3133 3134 static int relocate_file_extent_cluster(struct inode *inode, 3135 struct file_extent_cluster *cluster) 3136 { 3137 u64 page_start; 3138 u64 page_end; 3139 u64 offset = BTRFS_I(inode)->index_cnt; 3140 unsigned long index; 3141 unsigned long last_index; 3142 struct page *page; 3143 struct file_ra_state *ra; 3144 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 3145 int nr = 0; 3146 int ret = 0; 3147 3148 if (!cluster->nr) 3149 return 0; 3150 3151 ra = kzalloc(sizeof(*ra), GFP_NOFS); 3152 if (!ra) 3153 return -ENOMEM; 3154 3155 ret = prealloc_file_extent_cluster(inode, cluster); 3156 if (ret) 3157 goto out; 3158 3159 file_ra_state_init(ra, inode->i_mapping); 3160 3161 ret = setup_extent_mapping(inode, cluster->start - offset, 3162 cluster->end - offset, cluster->start); 3163 if (ret) 3164 goto out; 3165 3166 index = (cluster->start - offset) >> PAGE_SHIFT; 3167 last_index = (cluster->end - offset) >> PAGE_SHIFT; 3168 while (index <= last_index) { 3169 ret = btrfs_delalloc_reserve_metadata(inode, PAGE_SIZE); 3170 if (ret) 3171 goto out; 3172 3173 page = find_lock_page(inode->i_mapping, index); 3174 if (!page) { 3175 page_cache_sync_readahead(inode->i_mapping, 3176 ra, NULL, index, 3177 last_index + 1 - index); 3178 page = find_or_create_page(inode->i_mapping, index, 3179 mask); 3180 if (!page) { 3181 btrfs_delalloc_release_metadata(inode, 3182 PAGE_SIZE); 3183 ret = -ENOMEM; 3184 goto out; 3185 } 3186 } 3187 3188 if (PageReadahead(page)) { 3189 page_cache_async_readahead(inode->i_mapping, 3190 ra, NULL, page, index, 3191 last_index + 1 - index); 3192 } 3193 3194 if (!PageUptodate(page)) { 3195 btrfs_readpage(NULL, page); 3196 lock_page(page); 3197 if (!PageUptodate(page)) { 3198 unlock_page(page); 3199 put_page(page); 3200 btrfs_delalloc_release_metadata(inode, 3201 PAGE_SIZE); 3202 ret = -EIO; 3203 goto out; 3204 } 3205 } 3206 3207 page_start = page_offset(page); 3208 page_end = page_start + PAGE_SIZE - 1; 3209 3210 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end); 3211 3212 set_page_extent_mapped(page); 3213 3214 if (nr < cluster->nr && 3215 page_start + offset == cluster->boundary[nr]) { 3216 set_extent_bits(&BTRFS_I(inode)->io_tree, 3217 page_start, page_end, 3218 EXTENT_BOUNDARY); 3219 nr++; 3220 } 3221 3222 btrfs_set_extent_delalloc(inode, page_start, page_end, NULL, 0); 3223 set_page_dirty(page); 3224 3225 unlock_extent(&BTRFS_I(inode)->io_tree, 3226 page_start, page_end); 3227 unlock_page(page); 3228 put_page(page); 3229 3230 index++; 3231 balance_dirty_pages_ratelimited(inode->i_mapping); 3232 btrfs_throttle(BTRFS_I(inode)->root); 3233 } 3234 WARN_ON(nr != cluster->nr); 3235 out: 3236 kfree(ra); 3237 return ret; 3238 } 3239 3240 static noinline_for_stack 3241 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key, 3242 struct file_extent_cluster *cluster) 3243 { 3244 int ret; 3245 3246 if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) { 3247 ret = relocate_file_extent_cluster(inode, cluster); 3248 if (ret) 3249 return ret; 3250 cluster->nr = 0; 3251 } 3252 3253 if (!cluster->nr) 3254 cluster->start = extent_key->objectid; 3255 else 3256 BUG_ON(cluster->nr >= MAX_EXTENTS); 3257 cluster->end = extent_key->objectid + extent_key->offset - 1; 3258 cluster->boundary[cluster->nr] = extent_key->objectid; 3259 cluster->nr++; 3260 3261 if (cluster->nr >= MAX_EXTENTS) { 3262 ret = relocate_file_extent_cluster(inode, cluster); 3263 if (ret) 3264 return ret; 3265 cluster->nr = 0; 3266 } 3267 return 0; 3268 } 3269 3270 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3271 static int get_ref_objectid_v0(struct reloc_control *rc, 3272 struct btrfs_path *path, 3273 struct btrfs_key *extent_key, 3274 u64 *ref_objectid, int *path_change) 3275 { 3276 struct btrfs_key key; 3277 struct extent_buffer *leaf; 3278 struct btrfs_extent_ref_v0 *ref0; 3279 int ret; 3280 int slot; 3281 3282 leaf = path->nodes[0]; 3283 slot = path->slots[0]; 3284 while (1) { 3285 if (slot >= btrfs_header_nritems(leaf)) { 3286 ret = btrfs_next_leaf(rc->extent_root, path); 3287 if (ret < 0) 3288 return ret; 3289 BUG_ON(ret > 0); 3290 leaf = path->nodes[0]; 3291 slot = path->slots[0]; 3292 if (path_change) 3293 *path_change = 1; 3294 } 3295 btrfs_item_key_to_cpu(leaf, &key, slot); 3296 if (key.objectid != extent_key->objectid) 3297 return -ENOENT; 3298 3299 if (key.type != BTRFS_EXTENT_REF_V0_KEY) { 3300 slot++; 3301 continue; 3302 } 3303 ref0 = btrfs_item_ptr(leaf, slot, 3304 struct btrfs_extent_ref_v0); 3305 *ref_objectid = btrfs_ref_objectid_v0(leaf, ref0); 3306 break; 3307 } 3308 return 0; 3309 } 3310 #endif 3311 3312 /* 3313 * helper to add a tree block to the list. 3314 * the major work is getting the generation and level of the block 3315 */ 3316 static int add_tree_block(struct reloc_control *rc, 3317 struct btrfs_key *extent_key, 3318 struct btrfs_path *path, 3319 struct rb_root *blocks) 3320 { 3321 struct extent_buffer *eb; 3322 struct btrfs_extent_item *ei; 3323 struct btrfs_tree_block_info *bi; 3324 struct tree_block *block; 3325 struct rb_node *rb_node; 3326 u32 item_size; 3327 int level = -1; 3328 u64 generation; 3329 3330 eb = path->nodes[0]; 3331 item_size = btrfs_item_size_nr(eb, path->slots[0]); 3332 3333 if (extent_key->type == BTRFS_METADATA_ITEM_KEY || 3334 item_size >= sizeof(*ei) + sizeof(*bi)) { 3335 ei = btrfs_item_ptr(eb, path->slots[0], 3336 struct btrfs_extent_item); 3337 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) { 3338 bi = (struct btrfs_tree_block_info *)(ei + 1); 3339 level = btrfs_tree_block_level(eb, bi); 3340 } else { 3341 level = (int)extent_key->offset; 3342 } 3343 generation = btrfs_extent_generation(eb, ei); 3344 } else { 3345 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3346 u64 ref_owner; 3347 int ret; 3348 3349 BUG_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 3350 ret = get_ref_objectid_v0(rc, path, extent_key, 3351 &ref_owner, NULL); 3352 if (ret < 0) 3353 return ret; 3354 BUG_ON(ref_owner >= BTRFS_MAX_LEVEL); 3355 level = (int)ref_owner; 3356 /* FIXME: get real generation */ 3357 generation = 0; 3358 #else 3359 BUG(); 3360 #endif 3361 } 3362 3363 btrfs_release_path(path); 3364 3365 BUG_ON(level == -1); 3366 3367 block = kmalloc(sizeof(*block), GFP_NOFS); 3368 if (!block) 3369 return -ENOMEM; 3370 3371 block->bytenr = extent_key->objectid; 3372 block->key.objectid = rc->extent_root->nodesize; 3373 block->key.offset = generation; 3374 block->level = level; 3375 block->key_ready = 0; 3376 3377 rb_node = tree_insert(blocks, block->bytenr, &block->rb_node); 3378 if (rb_node) 3379 backref_tree_panic(rb_node, -EEXIST, block->bytenr); 3380 3381 return 0; 3382 } 3383 3384 /* 3385 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY 3386 */ 3387 static int __add_tree_block(struct reloc_control *rc, 3388 u64 bytenr, u32 blocksize, 3389 struct rb_root *blocks) 3390 { 3391 struct btrfs_path *path; 3392 struct btrfs_key key; 3393 int ret; 3394 bool skinny = btrfs_fs_incompat(rc->extent_root->fs_info, 3395 SKINNY_METADATA); 3396 3397 if (tree_block_processed(bytenr, rc)) 3398 return 0; 3399 3400 if (tree_search(blocks, bytenr)) 3401 return 0; 3402 3403 path = btrfs_alloc_path(); 3404 if (!path) 3405 return -ENOMEM; 3406 again: 3407 key.objectid = bytenr; 3408 if (skinny) { 3409 key.type = BTRFS_METADATA_ITEM_KEY; 3410 key.offset = (u64)-1; 3411 } else { 3412 key.type = BTRFS_EXTENT_ITEM_KEY; 3413 key.offset = blocksize; 3414 } 3415 3416 path->search_commit_root = 1; 3417 path->skip_locking = 1; 3418 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0); 3419 if (ret < 0) 3420 goto out; 3421 3422 if (ret > 0 && skinny) { 3423 if (path->slots[0]) { 3424 path->slots[0]--; 3425 btrfs_item_key_to_cpu(path->nodes[0], &key, 3426 path->slots[0]); 3427 if (key.objectid == bytenr && 3428 (key.type == BTRFS_METADATA_ITEM_KEY || 3429 (key.type == BTRFS_EXTENT_ITEM_KEY && 3430 key.offset == blocksize))) 3431 ret = 0; 3432 } 3433 3434 if (ret) { 3435 skinny = false; 3436 btrfs_release_path(path); 3437 goto again; 3438 } 3439 } 3440 BUG_ON(ret); 3441 3442 ret = add_tree_block(rc, &key, path, blocks); 3443 out: 3444 btrfs_free_path(path); 3445 return ret; 3446 } 3447 3448 /* 3449 * helper to check if the block use full backrefs for pointers in it 3450 */ 3451 static int block_use_full_backref(struct reloc_control *rc, 3452 struct extent_buffer *eb) 3453 { 3454 u64 flags; 3455 int ret; 3456 3457 if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) || 3458 btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV) 3459 return 1; 3460 3461 ret = btrfs_lookup_extent_info(NULL, rc->extent_root, 3462 eb->start, btrfs_header_level(eb), 1, 3463 NULL, &flags); 3464 BUG_ON(ret); 3465 3466 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) 3467 ret = 1; 3468 else 3469 ret = 0; 3470 return ret; 3471 } 3472 3473 static int delete_block_group_cache(struct btrfs_fs_info *fs_info, 3474 struct btrfs_block_group_cache *block_group, 3475 struct inode *inode, 3476 u64 ino) 3477 { 3478 struct btrfs_key key; 3479 struct btrfs_root *root = fs_info->tree_root; 3480 struct btrfs_trans_handle *trans; 3481 int ret = 0; 3482 3483 if (inode) 3484 goto truncate; 3485 3486 key.objectid = ino; 3487 key.type = BTRFS_INODE_ITEM_KEY; 3488 key.offset = 0; 3489 3490 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 3491 if (IS_ERR(inode) || is_bad_inode(inode)) { 3492 if (!IS_ERR(inode)) 3493 iput(inode); 3494 return -ENOENT; 3495 } 3496 3497 truncate: 3498 ret = btrfs_check_trunc_cache_free_space(root, 3499 &fs_info->global_block_rsv); 3500 if (ret) 3501 goto out; 3502 3503 trans = btrfs_join_transaction(root); 3504 if (IS_ERR(trans)) { 3505 ret = PTR_ERR(trans); 3506 goto out; 3507 } 3508 3509 ret = btrfs_truncate_free_space_cache(root, trans, block_group, inode); 3510 3511 btrfs_end_transaction(trans, root); 3512 btrfs_btree_balance_dirty(root); 3513 out: 3514 iput(inode); 3515 return ret; 3516 } 3517 3518 /* 3519 * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY 3520 * this function scans fs tree to find blocks reference the data extent 3521 */ 3522 static int find_data_references(struct reloc_control *rc, 3523 struct btrfs_key *extent_key, 3524 struct extent_buffer *leaf, 3525 struct btrfs_extent_data_ref *ref, 3526 struct rb_root *blocks) 3527 { 3528 struct btrfs_path *path; 3529 struct tree_block *block; 3530 struct btrfs_root *root; 3531 struct btrfs_file_extent_item *fi; 3532 struct rb_node *rb_node; 3533 struct btrfs_key key; 3534 u64 ref_root; 3535 u64 ref_objectid; 3536 u64 ref_offset; 3537 u32 ref_count; 3538 u32 nritems; 3539 int err = 0; 3540 int added = 0; 3541 int counted; 3542 int ret; 3543 3544 ref_root = btrfs_extent_data_ref_root(leaf, ref); 3545 ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref); 3546 ref_offset = btrfs_extent_data_ref_offset(leaf, ref); 3547 ref_count = btrfs_extent_data_ref_count(leaf, ref); 3548 3549 /* 3550 * This is an extent belonging to the free space cache, lets just delete 3551 * it and redo the search. 3552 */ 3553 if (ref_root == BTRFS_ROOT_TREE_OBJECTID) { 3554 ret = delete_block_group_cache(rc->extent_root->fs_info, 3555 rc->block_group, 3556 NULL, ref_objectid); 3557 if (ret != -ENOENT) 3558 return ret; 3559 ret = 0; 3560 } 3561 3562 path = btrfs_alloc_path(); 3563 if (!path) 3564 return -ENOMEM; 3565 path->reada = READA_FORWARD; 3566 3567 root = read_fs_root(rc->extent_root->fs_info, ref_root); 3568 if (IS_ERR(root)) { 3569 err = PTR_ERR(root); 3570 goto out; 3571 } 3572 3573 key.objectid = ref_objectid; 3574 key.type = BTRFS_EXTENT_DATA_KEY; 3575 if (ref_offset > ((u64)-1 << 32)) 3576 key.offset = 0; 3577 else 3578 key.offset = ref_offset; 3579 3580 path->search_commit_root = 1; 3581 path->skip_locking = 1; 3582 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3583 if (ret < 0) { 3584 err = ret; 3585 goto out; 3586 } 3587 3588 leaf = path->nodes[0]; 3589 nritems = btrfs_header_nritems(leaf); 3590 /* 3591 * the references in tree blocks that use full backrefs 3592 * are not counted in 3593 */ 3594 if (block_use_full_backref(rc, leaf)) 3595 counted = 0; 3596 else 3597 counted = 1; 3598 rb_node = tree_search(blocks, leaf->start); 3599 if (rb_node) { 3600 if (counted) 3601 added = 1; 3602 else 3603 path->slots[0] = nritems; 3604 } 3605 3606 while (ref_count > 0) { 3607 while (path->slots[0] >= nritems) { 3608 ret = btrfs_next_leaf(root, path); 3609 if (ret < 0) { 3610 err = ret; 3611 goto out; 3612 } 3613 if (WARN_ON(ret > 0)) 3614 goto out; 3615 3616 leaf = path->nodes[0]; 3617 nritems = btrfs_header_nritems(leaf); 3618 added = 0; 3619 3620 if (block_use_full_backref(rc, leaf)) 3621 counted = 0; 3622 else 3623 counted = 1; 3624 rb_node = tree_search(blocks, leaf->start); 3625 if (rb_node) { 3626 if (counted) 3627 added = 1; 3628 else 3629 path->slots[0] = nritems; 3630 } 3631 } 3632 3633 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3634 if (WARN_ON(key.objectid != ref_objectid || 3635 key.type != BTRFS_EXTENT_DATA_KEY)) 3636 break; 3637 3638 fi = btrfs_item_ptr(leaf, path->slots[0], 3639 struct btrfs_file_extent_item); 3640 3641 if (btrfs_file_extent_type(leaf, fi) == 3642 BTRFS_FILE_EXTENT_INLINE) 3643 goto next; 3644 3645 if (btrfs_file_extent_disk_bytenr(leaf, fi) != 3646 extent_key->objectid) 3647 goto next; 3648 3649 key.offset -= btrfs_file_extent_offset(leaf, fi); 3650 if (key.offset != ref_offset) 3651 goto next; 3652 3653 if (counted) 3654 ref_count--; 3655 if (added) 3656 goto next; 3657 3658 if (!tree_block_processed(leaf->start, rc)) { 3659 block = kmalloc(sizeof(*block), GFP_NOFS); 3660 if (!block) { 3661 err = -ENOMEM; 3662 break; 3663 } 3664 block->bytenr = leaf->start; 3665 btrfs_item_key_to_cpu(leaf, &block->key, 0); 3666 block->level = 0; 3667 block->key_ready = 1; 3668 rb_node = tree_insert(blocks, block->bytenr, 3669 &block->rb_node); 3670 if (rb_node) 3671 backref_tree_panic(rb_node, -EEXIST, 3672 block->bytenr); 3673 } 3674 if (counted) 3675 added = 1; 3676 else 3677 path->slots[0] = nritems; 3678 next: 3679 path->slots[0]++; 3680 3681 } 3682 out: 3683 btrfs_free_path(path); 3684 return err; 3685 } 3686 3687 /* 3688 * helper to find all tree blocks that reference a given data extent 3689 */ 3690 static noinline_for_stack 3691 int add_data_references(struct reloc_control *rc, 3692 struct btrfs_key *extent_key, 3693 struct btrfs_path *path, 3694 struct rb_root *blocks) 3695 { 3696 struct btrfs_key key; 3697 struct extent_buffer *eb; 3698 struct btrfs_extent_data_ref *dref; 3699 struct btrfs_extent_inline_ref *iref; 3700 unsigned long ptr; 3701 unsigned long end; 3702 u32 blocksize = rc->extent_root->nodesize; 3703 int ret = 0; 3704 int err = 0; 3705 3706 eb = path->nodes[0]; 3707 ptr = btrfs_item_ptr_offset(eb, path->slots[0]); 3708 end = ptr + btrfs_item_size_nr(eb, path->slots[0]); 3709 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3710 if (ptr + sizeof(struct btrfs_extent_item_v0) == end) 3711 ptr = end; 3712 else 3713 #endif 3714 ptr += sizeof(struct btrfs_extent_item); 3715 3716 while (ptr < end) { 3717 iref = (struct btrfs_extent_inline_ref *)ptr; 3718 key.type = btrfs_extent_inline_ref_type(eb, iref); 3719 if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 3720 key.offset = btrfs_extent_inline_ref_offset(eb, iref); 3721 ret = __add_tree_block(rc, key.offset, blocksize, 3722 blocks); 3723 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 3724 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 3725 ret = find_data_references(rc, extent_key, 3726 eb, dref, blocks); 3727 } else { 3728 BUG(); 3729 } 3730 if (ret) { 3731 err = ret; 3732 goto out; 3733 } 3734 ptr += btrfs_extent_inline_ref_size(key.type); 3735 } 3736 WARN_ON(ptr > end); 3737 3738 while (1) { 3739 cond_resched(); 3740 eb = path->nodes[0]; 3741 if (path->slots[0] >= btrfs_header_nritems(eb)) { 3742 ret = btrfs_next_leaf(rc->extent_root, path); 3743 if (ret < 0) { 3744 err = ret; 3745 break; 3746 } 3747 if (ret > 0) 3748 break; 3749 eb = path->nodes[0]; 3750 } 3751 3752 btrfs_item_key_to_cpu(eb, &key, path->slots[0]); 3753 if (key.objectid != extent_key->objectid) 3754 break; 3755 3756 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3757 if (key.type == BTRFS_SHARED_DATA_REF_KEY || 3758 key.type == BTRFS_EXTENT_REF_V0_KEY) { 3759 #else 3760 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY); 3761 if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 3762 #endif 3763 ret = __add_tree_block(rc, key.offset, blocksize, 3764 blocks); 3765 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 3766 dref = btrfs_item_ptr(eb, path->slots[0], 3767 struct btrfs_extent_data_ref); 3768 ret = find_data_references(rc, extent_key, 3769 eb, dref, blocks); 3770 } else { 3771 ret = 0; 3772 } 3773 if (ret) { 3774 err = ret; 3775 break; 3776 } 3777 path->slots[0]++; 3778 } 3779 out: 3780 btrfs_release_path(path); 3781 if (err) 3782 free_block_list(blocks); 3783 return err; 3784 } 3785 3786 /* 3787 * helper to find next unprocessed extent 3788 */ 3789 static noinline_for_stack 3790 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path, 3791 struct btrfs_key *extent_key) 3792 { 3793 struct btrfs_key key; 3794 struct extent_buffer *leaf; 3795 u64 start, end, last; 3796 int ret; 3797 3798 last = rc->block_group->key.objectid + rc->block_group->key.offset; 3799 while (1) { 3800 cond_resched(); 3801 if (rc->search_start >= last) { 3802 ret = 1; 3803 break; 3804 } 3805 3806 key.objectid = rc->search_start; 3807 key.type = BTRFS_EXTENT_ITEM_KEY; 3808 key.offset = 0; 3809 3810 path->search_commit_root = 1; 3811 path->skip_locking = 1; 3812 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 3813 0, 0); 3814 if (ret < 0) 3815 break; 3816 next: 3817 leaf = path->nodes[0]; 3818 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 3819 ret = btrfs_next_leaf(rc->extent_root, path); 3820 if (ret != 0) 3821 break; 3822 leaf = path->nodes[0]; 3823 } 3824 3825 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3826 if (key.objectid >= last) { 3827 ret = 1; 3828 break; 3829 } 3830 3831 if (key.type != BTRFS_EXTENT_ITEM_KEY && 3832 key.type != BTRFS_METADATA_ITEM_KEY) { 3833 path->slots[0]++; 3834 goto next; 3835 } 3836 3837 if (key.type == BTRFS_EXTENT_ITEM_KEY && 3838 key.objectid + key.offset <= rc->search_start) { 3839 path->slots[0]++; 3840 goto next; 3841 } 3842 3843 if (key.type == BTRFS_METADATA_ITEM_KEY && 3844 key.objectid + rc->extent_root->nodesize <= 3845 rc->search_start) { 3846 path->slots[0]++; 3847 goto next; 3848 } 3849 3850 ret = find_first_extent_bit(&rc->processed_blocks, 3851 key.objectid, &start, &end, 3852 EXTENT_DIRTY, NULL); 3853 3854 if (ret == 0 && start <= key.objectid) { 3855 btrfs_release_path(path); 3856 rc->search_start = end + 1; 3857 } else { 3858 if (key.type == BTRFS_EXTENT_ITEM_KEY) 3859 rc->search_start = key.objectid + key.offset; 3860 else 3861 rc->search_start = key.objectid + 3862 rc->extent_root->nodesize; 3863 memcpy(extent_key, &key, sizeof(key)); 3864 return 0; 3865 } 3866 } 3867 btrfs_release_path(path); 3868 return ret; 3869 } 3870 3871 static void set_reloc_control(struct reloc_control *rc) 3872 { 3873 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3874 3875 mutex_lock(&fs_info->reloc_mutex); 3876 fs_info->reloc_ctl = rc; 3877 mutex_unlock(&fs_info->reloc_mutex); 3878 } 3879 3880 static void unset_reloc_control(struct reloc_control *rc) 3881 { 3882 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3883 3884 mutex_lock(&fs_info->reloc_mutex); 3885 fs_info->reloc_ctl = NULL; 3886 mutex_unlock(&fs_info->reloc_mutex); 3887 } 3888 3889 static int check_extent_flags(u64 flags) 3890 { 3891 if ((flags & BTRFS_EXTENT_FLAG_DATA) && 3892 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) 3893 return 1; 3894 if (!(flags & BTRFS_EXTENT_FLAG_DATA) && 3895 !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) 3896 return 1; 3897 if ((flags & BTRFS_EXTENT_FLAG_DATA) && 3898 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 3899 return 1; 3900 return 0; 3901 } 3902 3903 static noinline_for_stack 3904 int prepare_to_relocate(struct reloc_control *rc) 3905 { 3906 struct btrfs_trans_handle *trans; 3907 int ret; 3908 3909 rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root, 3910 BTRFS_BLOCK_RSV_TEMP); 3911 if (!rc->block_rsv) 3912 return -ENOMEM; 3913 3914 memset(&rc->cluster, 0, sizeof(rc->cluster)); 3915 rc->search_start = rc->block_group->key.objectid; 3916 rc->extents_found = 0; 3917 rc->nodes_relocated = 0; 3918 rc->merging_rsv_size = 0; 3919 rc->reserved_bytes = 0; 3920 rc->block_rsv->size = rc->extent_root->nodesize * 3921 RELOCATION_RESERVED_NODES; 3922 ret = btrfs_block_rsv_refill(rc->extent_root, 3923 rc->block_rsv, rc->block_rsv->size, 3924 BTRFS_RESERVE_FLUSH_ALL); 3925 if (ret) 3926 return ret; 3927 3928 rc->create_reloc_tree = 1; 3929 set_reloc_control(rc); 3930 3931 trans = btrfs_join_transaction(rc->extent_root); 3932 if (IS_ERR(trans)) { 3933 unset_reloc_control(rc); 3934 /* 3935 * extent tree is not a ref_cow tree and has no reloc_root to 3936 * cleanup. And callers are responsible to free the above 3937 * block rsv. 3938 */ 3939 return PTR_ERR(trans); 3940 } 3941 btrfs_commit_transaction(trans, rc->extent_root); 3942 return 0; 3943 } 3944 3945 /* 3946 * Qgroup fixer for data chunk relocation. 3947 * The data relocation is done in the following steps 3948 * 1) Copy data extents into data reloc tree 3949 * 2) Create tree reloc tree(special snapshot) for related subvolumes 3950 * 3) Modify file extents in tree reloc tree 3951 * 4) Merge tree reloc tree with original fs tree, by swapping tree blocks 3952 * 3953 * The problem is, data and tree reloc tree are not accounted to qgroup, 3954 * and 4) will only info qgroup to track tree blocks change, not file extents 3955 * in the tree blocks. 3956 * 3957 * The good news is, related data extents are all in data reloc tree, so we 3958 * only need to info qgroup to track all file extents in data reloc tree 3959 * before commit trans. 3960 */ 3961 static int qgroup_fix_relocated_data_extents(struct btrfs_trans_handle *trans, 3962 struct reloc_control *rc) 3963 { 3964 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3965 struct inode *inode = rc->data_inode; 3966 struct btrfs_root *data_reloc_root = BTRFS_I(inode)->root; 3967 struct btrfs_path *path; 3968 struct btrfs_key key; 3969 int ret = 0; 3970 3971 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) 3972 return 0; 3973 3974 /* 3975 * Only for stage where we update data pointers the qgroup fix is 3976 * valid. 3977 * For MOVING_DATA stage, we will miss the timing of swapping tree 3978 * blocks, and won't fix it. 3979 */ 3980 if (!(rc->stage == UPDATE_DATA_PTRS && rc->extents_found)) 3981 return 0; 3982 3983 path = btrfs_alloc_path(); 3984 if (!path) 3985 return -ENOMEM; 3986 key.objectid = btrfs_ino(inode); 3987 key.type = BTRFS_EXTENT_DATA_KEY; 3988 key.offset = 0; 3989 3990 ret = btrfs_search_slot(NULL, data_reloc_root, &key, path, 0, 0); 3991 if (ret < 0) 3992 goto out; 3993 3994 lock_extent(&BTRFS_I(inode)->io_tree, 0, (u64)-1); 3995 while (1) { 3996 struct btrfs_file_extent_item *fi; 3997 3998 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 3999 if (key.objectid > btrfs_ino(inode)) 4000 break; 4001 if (key.type != BTRFS_EXTENT_DATA_KEY) 4002 goto next; 4003 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 4004 struct btrfs_file_extent_item); 4005 if (btrfs_file_extent_type(path->nodes[0], fi) != 4006 BTRFS_FILE_EXTENT_REG) 4007 goto next; 4008 ret = btrfs_qgroup_insert_dirty_extent(trans, fs_info, 4009 btrfs_file_extent_disk_bytenr(path->nodes[0], fi), 4010 btrfs_file_extent_disk_num_bytes(path->nodes[0], fi), 4011 GFP_NOFS); 4012 if (ret < 0) 4013 break; 4014 next: 4015 ret = btrfs_next_item(data_reloc_root, path); 4016 if (ret < 0) 4017 break; 4018 if (ret > 0) { 4019 ret = 0; 4020 break; 4021 } 4022 } 4023 unlock_extent(&BTRFS_I(inode)->io_tree, 0 , (u64)-1); 4024 out: 4025 btrfs_free_path(path); 4026 return ret; 4027 } 4028 4029 static noinline_for_stack int relocate_block_group(struct reloc_control *rc) 4030 { 4031 struct rb_root blocks = RB_ROOT; 4032 struct btrfs_key key; 4033 struct btrfs_trans_handle *trans = NULL; 4034 struct btrfs_path *path; 4035 struct btrfs_extent_item *ei; 4036 u64 flags; 4037 u32 item_size; 4038 int ret; 4039 int err = 0; 4040 int progress = 0; 4041 4042 path = btrfs_alloc_path(); 4043 if (!path) 4044 return -ENOMEM; 4045 path->reada = READA_FORWARD; 4046 4047 ret = prepare_to_relocate(rc); 4048 if (ret) { 4049 err = ret; 4050 goto out_free; 4051 } 4052 4053 while (1) { 4054 rc->reserved_bytes = 0; 4055 ret = btrfs_block_rsv_refill(rc->extent_root, 4056 rc->block_rsv, rc->block_rsv->size, 4057 BTRFS_RESERVE_FLUSH_ALL); 4058 if (ret) { 4059 err = ret; 4060 break; 4061 } 4062 progress++; 4063 trans = btrfs_start_transaction(rc->extent_root, 0); 4064 if (IS_ERR(trans)) { 4065 err = PTR_ERR(trans); 4066 trans = NULL; 4067 break; 4068 } 4069 restart: 4070 if (update_backref_cache(trans, &rc->backref_cache)) { 4071 btrfs_end_transaction(trans, rc->extent_root); 4072 continue; 4073 } 4074 4075 ret = find_next_extent(rc, path, &key); 4076 if (ret < 0) 4077 err = ret; 4078 if (ret != 0) 4079 break; 4080 4081 rc->extents_found++; 4082 4083 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 4084 struct btrfs_extent_item); 4085 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]); 4086 if (item_size >= sizeof(*ei)) { 4087 flags = btrfs_extent_flags(path->nodes[0], ei); 4088 ret = check_extent_flags(flags); 4089 BUG_ON(ret); 4090 4091 } else { 4092 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 4093 u64 ref_owner; 4094 int path_change = 0; 4095 4096 BUG_ON(item_size != 4097 sizeof(struct btrfs_extent_item_v0)); 4098 ret = get_ref_objectid_v0(rc, path, &key, &ref_owner, 4099 &path_change); 4100 if (ret < 0) { 4101 err = ret; 4102 break; 4103 } 4104 if (ref_owner < BTRFS_FIRST_FREE_OBJECTID) 4105 flags = BTRFS_EXTENT_FLAG_TREE_BLOCK; 4106 else 4107 flags = BTRFS_EXTENT_FLAG_DATA; 4108 4109 if (path_change) { 4110 btrfs_release_path(path); 4111 4112 path->search_commit_root = 1; 4113 path->skip_locking = 1; 4114 ret = btrfs_search_slot(NULL, rc->extent_root, 4115 &key, path, 0, 0); 4116 if (ret < 0) { 4117 err = ret; 4118 break; 4119 } 4120 BUG_ON(ret > 0); 4121 } 4122 #else 4123 BUG(); 4124 #endif 4125 } 4126 4127 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 4128 ret = add_tree_block(rc, &key, path, &blocks); 4129 } else if (rc->stage == UPDATE_DATA_PTRS && 4130 (flags & BTRFS_EXTENT_FLAG_DATA)) { 4131 ret = add_data_references(rc, &key, path, &blocks); 4132 } else { 4133 btrfs_release_path(path); 4134 ret = 0; 4135 } 4136 if (ret < 0) { 4137 err = ret; 4138 break; 4139 } 4140 4141 if (!RB_EMPTY_ROOT(&blocks)) { 4142 ret = relocate_tree_blocks(trans, rc, &blocks); 4143 if (ret < 0) { 4144 /* 4145 * if we fail to relocate tree blocks, force to update 4146 * backref cache when committing transaction. 4147 */ 4148 rc->backref_cache.last_trans = trans->transid - 1; 4149 4150 if (ret != -EAGAIN) { 4151 err = ret; 4152 break; 4153 } 4154 rc->extents_found--; 4155 rc->search_start = key.objectid; 4156 } 4157 } 4158 4159 btrfs_end_transaction_throttle(trans, rc->extent_root); 4160 btrfs_btree_balance_dirty(rc->extent_root); 4161 trans = NULL; 4162 4163 if (rc->stage == MOVE_DATA_EXTENTS && 4164 (flags & BTRFS_EXTENT_FLAG_DATA)) { 4165 rc->found_file_extent = 1; 4166 ret = relocate_data_extent(rc->data_inode, 4167 &key, &rc->cluster); 4168 if (ret < 0) { 4169 err = ret; 4170 break; 4171 } 4172 } 4173 } 4174 if (trans && progress && err == -ENOSPC) { 4175 ret = btrfs_force_chunk_alloc(trans, rc->extent_root, 4176 rc->block_group->flags); 4177 if (ret == 1) { 4178 err = 0; 4179 progress = 0; 4180 goto restart; 4181 } 4182 } 4183 4184 btrfs_release_path(path); 4185 clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY); 4186 4187 if (trans) { 4188 btrfs_end_transaction_throttle(trans, rc->extent_root); 4189 btrfs_btree_balance_dirty(rc->extent_root); 4190 } 4191 4192 if (!err) { 4193 ret = relocate_file_extent_cluster(rc->data_inode, 4194 &rc->cluster); 4195 if (ret < 0) 4196 err = ret; 4197 } 4198 4199 rc->create_reloc_tree = 0; 4200 set_reloc_control(rc); 4201 4202 backref_cache_cleanup(&rc->backref_cache); 4203 btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1); 4204 4205 err = prepare_to_merge(rc, err); 4206 4207 merge_reloc_roots(rc); 4208 4209 rc->merge_reloc_tree = 0; 4210 unset_reloc_control(rc); 4211 btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1); 4212 4213 /* get rid of pinned extents */ 4214 trans = btrfs_join_transaction(rc->extent_root); 4215 if (IS_ERR(trans)) { 4216 err = PTR_ERR(trans); 4217 goto out_free; 4218 } 4219 ret = qgroup_fix_relocated_data_extents(trans, rc); 4220 if (ret < 0) { 4221 btrfs_abort_transaction(trans, ret); 4222 if (!err) 4223 err = ret; 4224 goto out_free; 4225 } 4226 btrfs_commit_transaction(trans, rc->extent_root); 4227 out_free: 4228 btrfs_free_block_rsv(rc->extent_root, rc->block_rsv); 4229 btrfs_free_path(path); 4230 return err; 4231 } 4232 4233 static int __insert_orphan_inode(struct btrfs_trans_handle *trans, 4234 struct btrfs_root *root, u64 objectid) 4235 { 4236 struct btrfs_path *path; 4237 struct btrfs_inode_item *item; 4238 struct extent_buffer *leaf; 4239 int ret; 4240 4241 path = btrfs_alloc_path(); 4242 if (!path) 4243 return -ENOMEM; 4244 4245 ret = btrfs_insert_empty_inode(trans, root, path, objectid); 4246 if (ret) 4247 goto out; 4248 4249 leaf = path->nodes[0]; 4250 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item); 4251 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item)); 4252 btrfs_set_inode_generation(leaf, item, 1); 4253 btrfs_set_inode_size(leaf, item, 0); 4254 btrfs_set_inode_mode(leaf, item, S_IFREG | 0600); 4255 btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS | 4256 BTRFS_INODE_PREALLOC); 4257 btrfs_mark_buffer_dirty(leaf); 4258 out: 4259 btrfs_free_path(path); 4260 return ret; 4261 } 4262 4263 /* 4264 * helper to create inode for data relocation. 4265 * the inode is in data relocation tree and its link count is 0 4266 */ 4267 static noinline_for_stack 4268 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info, 4269 struct btrfs_block_group_cache *group) 4270 { 4271 struct inode *inode = NULL; 4272 struct btrfs_trans_handle *trans; 4273 struct btrfs_root *root; 4274 struct btrfs_key key; 4275 u64 objectid; 4276 int err = 0; 4277 4278 root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID); 4279 if (IS_ERR(root)) 4280 return ERR_CAST(root); 4281 4282 trans = btrfs_start_transaction(root, 6); 4283 if (IS_ERR(trans)) 4284 return ERR_CAST(trans); 4285 4286 err = btrfs_find_free_objectid(root, &objectid); 4287 if (err) 4288 goto out; 4289 4290 err = __insert_orphan_inode(trans, root, objectid); 4291 BUG_ON(err); 4292 4293 key.objectid = objectid; 4294 key.type = BTRFS_INODE_ITEM_KEY; 4295 key.offset = 0; 4296 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL); 4297 BUG_ON(IS_ERR(inode) || is_bad_inode(inode)); 4298 BTRFS_I(inode)->index_cnt = group->key.objectid; 4299 4300 err = btrfs_orphan_add(trans, inode); 4301 out: 4302 btrfs_end_transaction(trans, root); 4303 btrfs_btree_balance_dirty(root); 4304 if (err) { 4305 if (inode) 4306 iput(inode); 4307 inode = ERR_PTR(err); 4308 } 4309 return inode; 4310 } 4311 4312 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info) 4313 { 4314 struct reloc_control *rc; 4315 4316 rc = kzalloc(sizeof(*rc), GFP_NOFS); 4317 if (!rc) 4318 return NULL; 4319 4320 INIT_LIST_HEAD(&rc->reloc_roots); 4321 backref_cache_init(&rc->backref_cache); 4322 mapping_tree_init(&rc->reloc_root_tree); 4323 extent_io_tree_init(&rc->processed_blocks, 4324 fs_info->btree_inode->i_mapping); 4325 return rc; 4326 } 4327 4328 /* 4329 * function to relocate all extents in a block group. 4330 */ 4331 int btrfs_relocate_block_group(struct btrfs_root *extent_root, u64 group_start) 4332 { 4333 struct btrfs_fs_info *fs_info = extent_root->fs_info; 4334 struct reloc_control *rc; 4335 struct inode *inode; 4336 struct btrfs_path *path; 4337 int ret; 4338 int rw = 0; 4339 int err = 0; 4340 4341 rc = alloc_reloc_control(fs_info); 4342 if (!rc) 4343 return -ENOMEM; 4344 4345 rc->extent_root = extent_root; 4346 4347 rc->block_group = btrfs_lookup_block_group(fs_info, group_start); 4348 BUG_ON(!rc->block_group); 4349 4350 ret = btrfs_inc_block_group_ro(extent_root, rc->block_group); 4351 if (ret) { 4352 err = ret; 4353 goto out; 4354 } 4355 rw = 1; 4356 4357 path = btrfs_alloc_path(); 4358 if (!path) { 4359 err = -ENOMEM; 4360 goto out; 4361 } 4362 4363 inode = lookup_free_space_inode(fs_info->tree_root, rc->block_group, 4364 path); 4365 btrfs_free_path(path); 4366 4367 if (!IS_ERR(inode)) 4368 ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0); 4369 else 4370 ret = PTR_ERR(inode); 4371 4372 if (ret && ret != -ENOENT) { 4373 err = ret; 4374 goto out; 4375 } 4376 4377 rc->data_inode = create_reloc_inode(fs_info, rc->block_group); 4378 if (IS_ERR(rc->data_inode)) { 4379 err = PTR_ERR(rc->data_inode); 4380 rc->data_inode = NULL; 4381 goto out; 4382 } 4383 4384 btrfs_info(extent_root->fs_info, 4385 "relocating block group %llu flags %llu", 4386 rc->block_group->key.objectid, rc->block_group->flags); 4387 4388 btrfs_wait_block_group_reservations(rc->block_group); 4389 btrfs_wait_nocow_writers(rc->block_group); 4390 btrfs_wait_ordered_roots(fs_info, -1, 4391 rc->block_group->key.objectid, 4392 rc->block_group->key.offset); 4393 4394 while (1) { 4395 mutex_lock(&fs_info->cleaner_mutex); 4396 ret = relocate_block_group(rc); 4397 mutex_unlock(&fs_info->cleaner_mutex); 4398 if (ret < 0) { 4399 err = ret; 4400 goto out; 4401 } 4402 4403 if (rc->extents_found == 0) 4404 break; 4405 4406 btrfs_info(extent_root->fs_info, "found %llu extents", 4407 rc->extents_found); 4408 4409 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) { 4410 ret = btrfs_wait_ordered_range(rc->data_inode, 0, 4411 (u64)-1); 4412 if (ret) { 4413 err = ret; 4414 goto out; 4415 } 4416 invalidate_mapping_pages(rc->data_inode->i_mapping, 4417 0, -1); 4418 rc->stage = UPDATE_DATA_PTRS; 4419 } 4420 } 4421 4422 WARN_ON(rc->block_group->pinned > 0); 4423 WARN_ON(rc->block_group->reserved > 0); 4424 WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0); 4425 out: 4426 if (err && rw) 4427 btrfs_dec_block_group_ro(extent_root, rc->block_group); 4428 iput(rc->data_inode); 4429 btrfs_put_block_group(rc->block_group); 4430 kfree(rc); 4431 return err; 4432 } 4433 4434 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root) 4435 { 4436 struct btrfs_trans_handle *trans; 4437 int ret, err; 4438 4439 trans = btrfs_start_transaction(root->fs_info->tree_root, 0); 4440 if (IS_ERR(trans)) 4441 return PTR_ERR(trans); 4442 4443 memset(&root->root_item.drop_progress, 0, 4444 sizeof(root->root_item.drop_progress)); 4445 root->root_item.drop_level = 0; 4446 btrfs_set_root_refs(&root->root_item, 0); 4447 ret = btrfs_update_root(trans, root->fs_info->tree_root, 4448 &root->root_key, &root->root_item); 4449 4450 err = btrfs_end_transaction(trans, root->fs_info->tree_root); 4451 if (err) 4452 return err; 4453 return ret; 4454 } 4455 4456 /* 4457 * recover relocation interrupted by system crash. 4458 * 4459 * this function resumes merging reloc trees with corresponding fs trees. 4460 * this is important for keeping the sharing of tree blocks 4461 */ 4462 int btrfs_recover_relocation(struct btrfs_root *root) 4463 { 4464 LIST_HEAD(reloc_roots); 4465 struct btrfs_key key; 4466 struct btrfs_root *fs_root; 4467 struct btrfs_root *reloc_root; 4468 struct btrfs_path *path; 4469 struct extent_buffer *leaf; 4470 struct reloc_control *rc = NULL; 4471 struct btrfs_trans_handle *trans; 4472 int ret; 4473 int err = 0; 4474 4475 path = btrfs_alloc_path(); 4476 if (!path) 4477 return -ENOMEM; 4478 path->reada = READA_BACK; 4479 4480 key.objectid = BTRFS_TREE_RELOC_OBJECTID; 4481 key.type = BTRFS_ROOT_ITEM_KEY; 4482 key.offset = (u64)-1; 4483 4484 while (1) { 4485 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, 4486 path, 0, 0); 4487 if (ret < 0) { 4488 err = ret; 4489 goto out; 4490 } 4491 if (ret > 0) { 4492 if (path->slots[0] == 0) 4493 break; 4494 path->slots[0]--; 4495 } 4496 leaf = path->nodes[0]; 4497 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4498 btrfs_release_path(path); 4499 4500 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID || 4501 key.type != BTRFS_ROOT_ITEM_KEY) 4502 break; 4503 4504 reloc_root = btrfs_read_fs_root(root, &key); 4505 if (IS_ERR(reloc_root)) { 4506 err = PTR_ERR(reloc_root); 4507 goto out; 4508 } 4509 4510 list_add(&reloc_root->root_list, &reloc_roots); 4511 4512 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 4513 fs_root = read_fs_root(root->fs_info, 4514 reloc_root->root_key.offset); 4515 if (IS_ERR(fs_root)) { 4516 ret = PTR_ERR(fs_root); 4517 if (ret != -ENOENT) { 4518 err = ret; 4519 goto out; 4520 } 4521 ret = mark_garbage_root(reloc_root); 4522 if (ret < 0) { 4523 err = ret; 4524 goto out; 4525 } 4526 } 4527 } 4528 4529 if (key.offset == 0) 4530 break; 4531 4532 key.offset--; 4533 } 4534 btrfs_release_path(path); 4535 4536 if (list_empty(&reloc_roots)) 4537 goto out; 4538 4539 rc = alloc_reloc_control(root->fs_info); 4540 if (!rc) { 4541 err = -ENOMEM; 4542 goto out; 4543 } 4544 4545 rc->extent_root = root->fs_info->extent_root; 4546 4547 set_reloc_control(rc); 4548 4549 trans = btrfs_join_transaction(rc->extent_root); 4550 if (IS_ERR(trans)) { 4551 unset_reloc_control(rc); 4552 err = PTR_ERR(trans); 4553 goto out_free; 4554 } 4555 4556 rc->merge_reloc_tree = 1; 4557 4558 while (!list_empty(&reloc_roots)) { 4559 reloc_root = list_entry(reloc_roots.next, 4560 struct btrfs_root, root_list); 4561 list_del(&reloc_root->root_list); 4562 4563 if (btrfs_root_refs(&reloc_root->root_item) == 0) { 4564 list_add_tail(&reloc_root->root_list, 4565 &rc->reloc_roots); 4566 continue; 4567 } 4568 4569 fs_root = read_fs_root(root->fs_info, 4570 reloc_root->root_key.offset); 4571 if (IS_ERR(fs_root)) { 4572 err = PTR_ERR(fs_root); 4573 goto out_free; 4574 } 4575 4576 err = __add_reloc_root(reloc_root); 4577 BUG_ON(err < 0); /* -ENOMEM or logic error */ 4578 fs_root->reloc_root = reloc_root; 4579 } 4580 4581 err = btrfs_commit_transaction(trans, rc->extent_root); 4582 if (err) 4583 goto out_free; 4584 4585 merge_reloc_roots(rc); 4586 4587 unset_reloc_control(rc); 4588 4589 trans = btrfs_join_transaction(rc->extent_root); 4590 if (IS_ERR(trans)) { 4591 err = PTR_ERR(trans); 4592 goto out_free; 4593 } 4594 err = qgroup_fix_relocated_data_extents(trans, rc); 4595 if (err < 0) { 4596 btrfs_abort_transaction(trans, err); 4597 goto out_free; 4598 } 4599 err = btrfs_commit_transaction(trans, rc->extent_root); 4600 out_free: 4601 kfree(rc); 4602 out: 4603 if (!list_empty(&reloc_roots)) 4604 free_reloc_roots(&reloc_roots); 4605 4606 btrfs_free_path(path); 4607 4608 if (err == 0) { 4609 /* cleanup orphan inode in data relocation tree */ 4610 fs_root = read_fs_root(root->fs_info, 4611 BTRFS_DATA_RELOC_TREE_OBJECTID); 4612 if (IS_ERR(fs_root)) 4613 err = PTR_ERR(fs_root); 4614 else 4615 err = btrfs_orphan_cleanup(fs_root); 4616 } 4617 return err; 4618 } 4619 4620 /* 4621 * helper to add ordered checksum for data relocation. 4622 * 4623 * cloning checksum properly handles the nodatasum extents. 4624 * it also saves CPU time to re-calculate the checksum. 4625 */ 4626 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len) 4627 { 4628 struct btrfs_ordered_sum *sums; 4629 struct btrfs_ordered_extent *ordered; 4630 struct btrfs_root *root = BTRFS_I(inode)->root; 4631 int ret; 4632 u64 disk_bytenr; 4633 u64 new_bytenr; 4634 LIST_HEAD(list); 4635 4636 ordered = btrfs_lookup_ordered_extent(inode, file_pos); 4637 BUG_ON(ordered->file_offset != file_pos || ordered->len != len); 4638 4639 disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt; 4640 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, disk_bytenr, 4641 disk_bytenr + len - 1, &list, 0); 4642 if (ret) 4643 goto out; 4644 4645 while (!list_empty(&list)) { 4646 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 4647 list_del_init(&sums->list); 4648 4649 /* 4650 * We need to offset the new_bytenr based on where the csum is. 4651 * We need to do this because we will read in entire prealloc 4652 * extents but we may have written to say the middle of the 4653 * prealloc extent, so we need to make sure the csum goes with 4654 * the right disk offset. 4655 * 4656 * We can do this because the data reloc inode refers strictly 4657 * to the on disk bytes, so we don't have to worry about 4658 * disk_len vs real len like with real inodes since it's all 4659 * disk length. 4660 */ 4661 new_bytenr = ordered->start + (sums->bytenr - disk_bytenr); 4662 sums->bytenr = new_bytenr; 4663 4664 btrfs_add_ordered_sum(inode, ordered, sums); 4665 } 4666 out: 4667 btrfs_put_ordered_extent(ordered); 4668 return ret; 4669 } 4670 4671 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans, 4672 struct btrfs_root *root, struct extent_buffer *buf, 4673 struct extent_buffer *cow) 4674 { 4675 struct reloc_control *rc; 4676 struct backref_node *node; 4677 int first_cow = 0; 4678 int level; 4679 int ret = 0; 4680 4681 rc = root->fs_info->reloc_ctl; 4682 if (!rc) 4683 return 0; 4684 4685 BUG_ON(rc->stage == UPDATE_DATA_PTRS && 4686 root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID); 4687 4688 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 4689 if (buf == root->node) 4690 __update_reloc_root(root, cow->start); 4691 } 4692 4693 level = btrfs_header_level(buf); 4694 if (btrfs_header_generation(buf) <= 4695 btrfs_root_last_snapshot(&root->root_item)) 4696 first_cow = 1; 4697 4698 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID && 4699 rc->create_reloc_tree) { 4700 WARN_ON(!first_cow && level == 0); 4701 4702 node = rc->backref_cache.path[level]; 4703 BUG_ON(node->bytenr != buf->start && 4704 node->new_bytenr != buf->start); 4705 4706 drop_node_buffer(node); 4707 extent_buffer_get(cow); 4708 node->eb = cow; 4709 node->new_bytenr = cow->start; 4710 4711 if (!node->pending) { 4712 list_move_tail(&node->list, 4713 &rc->backref_cache.pending[level]); 4714 node->pending = 1; 4715 } 4716 4717 if (first_cow) 4718 __mark_block_processed(rc, node); 4719 4720 if (first_cow && level > 0) 4721 rc->nodes_relocated += buf->len; 4722 } 4723 4724 if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS) 4725 ret = replace_file_extents(trans, rc, root, cow); 4726 return ret; 4727 } 4728 4729 /* 4730 * called before creating snapshot. it calculates metadata reservation 4731 * required for relocating tree blocks in the snapshot 4732 */ 4733 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending, 4734 u64 *bytes_to_reserve) 4735 { 4736 struct btrfs_root *root; 4737 struct reloc_control *rc; 4738 4739 root = pending->root; 4740 if (!root->reloc_root) 4741 return; 4742 4743 rc = root->fs_info->reloc_ctl; 4744 if (!rc->merge_reloc_tree) 4745 return; 4746 4747 root = root->reloc_root; 4748 BUG_ON(btrfs_root_refs(&root->root_item) == 0); 4749 /* 4750 * relocation is in the stage of merging trees. the space 4751 * used by merging a reloc tree is twice the size of 4752 * relocated tree nodes in the worst case. half for cowing 4753 * the reloc tree, half for cowing the fs tree. the space 4754 * used by cowing the reloc tree will be freed after the 4755 * tree is dropped. if we create snapshot, cowing the fs 4756 * tree may use more space than it frees. so we need 4757 * reserve extra space. 4758 */ 4759 *bytes_to_reserve += rc->nodes_relocated; 4760 } 4761 4762 /* 4763 * called after snapshot is created. migrate block reservation 4764 * and create reloc root for the newly created snapshot 4765 */ 4766 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans, 4767 struct btrfs_pending_snapshot *pending) 4768 { 4769 struct btrfs_root *root = pending->root; 4770 struct btrfs_root *reloc_root; 4771 struct btrfs_root *new_root; 4772 struct reloc_control *rc; 4773 int ret; 4774 4775 if (!root->reloc_root) 4776 return 0; 4777 4778 rc = root->fs_info->reloc_ctl; 4779 rc->merging_rsv_size += rc->nodes_relocated; 4780 4781 if (rc->merge_reloc_tree) { 4782 ret = btrfs_block_rsv_migrate(&pending->block_rsv, 4783 rc->block_rsv, 4784 rc->nodes_relocated, 1); 4785 if (ret) 4786 return ret; 4787 } 4788 4789 new_root = pending->snap; 4790 reloc_root = create_reloc_root(trans, root->reloc_root, 4791 new_root->root_key.objectid); 4792 if (IS_ERR(reloc_root)) 4793 return PTR_ERR(reloc_root); 4794 4795 ret = __add_reloc_root(reloc_root); 4796 BUG_ON(ret < 0); 4797 new_root->reloc_root = reloc_root; 4798 4799 if (rc->create_reloc_tree) 4800 ret = clone_backref_node(trans, rc, root, reloc_root); 4801 return ret; 4802 } 4803