1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2009 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/pagemap.h> 8 #include <linux/writeback.h> 9 #include <linux/blkdev.h> 10 #include <linux/rbtree.h> 11 #include <linux/slab.h> 12 #include <linux/error-injection.h> 13 #include "ctree.h" 14 #include "disk-io.h" 15 #include "transaction.h" 16 #include "volumes.h" 17 #include "locking.h" 18 #include "btrfs_inode.h" 19 #include "async-thread.h" 20 #include "free-space-cache.h" 21 #include "qgroup.h" 22 #include "print-tree.h" 23 #include "delalloc-space.h" 24 #include "block-group.h" 25 #include "backref.h" 26 #include "misc.h" 27 #include "subpage.h" 28 #include "zoned.h" 29 #include "inode-item.h" 30 #include "space-info.h" 31 #include "fs.h" 32 #include "accessors.h" 33 #include "extent-tree.h" 34 #include "root-tree.h" 35 #include "file-item.h" 36 #include "relocation.h" 37 #include "super.h" 38 #include "tree-checker.h" 39 40 /* 41 * Relocation overview 42 * 43 * [What does relocation do] 44 * 45 * The objective of relocation is to relocate all extents of the target block 46 * group to other block groups. 47 * This is utilized by resize (shrink only), profile converting, compacting 48 * space, or balance routine to spread chunks over devices. 49 * 50 * Before | After 51 * ------------------------------------------------------------------ 52 * BG A: 10 data extents | BG A: deleted 53 * BG B: 2 data extents | BG B: 10 data extents (2 old + 8 relocated) 54 * BG C: 1 extents | BG C: 3 data extents (1 old + 2 relocated) 55 * 56 * [How does relocation work] 57 * 58 * 1. Mark the target block group read-only 59 * New extents won't be allocated from the target block group. 60 * 61 * 2.1 Record each extent in the target block group 62 * To build a proper map of extents to be relocated. 63 * 64 * 2.2 Build data reloc tree and reloc trees 65 * Data reloc tree will contain an inode, recording all newly relocated 66 * data extents. 67 * There will be only one data reloc tree for one data block group. 68 * 69 * Reloc tree will be a special snapshot of its source tree, containing 70 * relocated tree blocks. 71 * Each tree referring to a tree block in target block group will get its 72 * reloc tree built. 73 * 74 * 2.3 Swap source tree with its corresponding reloc tree 75 * Each involved tree only refers to new extents after swap. 76 * 77 * 3. Cleanup reloc trees and data reloc tree. 78 * As old extents in the target block group are still referenced by reloc 79 * trees, we need to clean them up before really freeing the target block 80 * group. 81 * 82 * The main complexity is in steps 2.2 and 2.3. 83 * 84 * The entry point of relocation is relocate_block_group() function. 85 */ 86 87 #define RELOCATION_RESERVED_NODES 256 88 /* 89 * map address of tree root to tree 90 */ 91 struct mapping_node { 92 struct { 93 struct rb_node rb_node; 94 u64 bytenr; 95 }; /* Use rb_simle_node for search/insert */ 96 void *data; 97 }; 98 99 struct mapping_tree { 100 struct rb_root rb_root; 101 spinlock_t lock; 102 }; 103 104 /* 105 * present a tree block to process 106 */ 107 struct tree_block { 108 struct { 109 struct rb_node rb_node; 110 u64 bytenr; 111 }; /* Use rb_simple_node for search/insert */ 112 u64 owner; 113 struct btrfs_key key; 114 u8 level; 115 bool key_ready; 116 }; 117 118 #define MAX_EXTENTS 128 119 120 struct file_extent_cluster { 121 u64 start; 122 u64 end; 123 u64 boundary[MAX_EXTENTS]; 124 unsigned int nr; 125 u64 owning_root; 126 }; 127 128 /* Stages of data relocation. */ 129 enum reloc_stage { 130 MOVE_DATA_EXTENTS, 131 UPDATE_DATA_PTRS 132 }; 133 134 struct reloc_control { 135 /* block group to relocate */ 136 struct btrfs_block_group *block_group; 137 /* extent tree */ 138 struct btrfs_root *extent_root; 139 /* inode for moving data */ 140 struct inode *data_inode; 141 142 struct btrfs_block_rsv *block_rsv; 143 144 struct btrfs_backref_cache backref_cache; 145 146 struct file_extent_cluster cluster; 147 /* tree blocks have been processed */ 148 struct extent_io_tree processed_blocks; 149 /* map start of tree root to corresponding reloc tree */ 150 struct mapping_tree reloc_root_tree; 151 /* list of reloc trees */ 152 struct list_head reloc_roots; 153 /* list of subvolume trees that get relocated */ 154 struct list_head dirty_subvol_roots; 155 /* size of metadata reservation for merging reloc trees */ 156 u64 merging_rsv_size; 157 /* size of relocated tree nodes */ 158 u64 nodes_relocated; 159 /* reserved size for block group relocation*/ 160 u64 reserved_bytes; 161 162 u64 search_start; 163 u64 extents_found; 164 165 enum reloc_stage stage; 166 bool create_reloc_tree; 167 bool merge_reloc_tree; 168 bool found_file_extent; 169 }; 170 171 static void mark_block_processed(struct reloc_control *rc, 172 struct btrfs_backref_node *node) 173 { 174 u32 blocksize; 175 176 if (node->level == 0 || 177 in_range(node->bytenr, rc->block_group->start, 178 rc->block_group->length)) { 179 blocksize = rc->extent_root->fs_info->nodesize; 180 set_extent_bit(&rc->processed_blocks, node->bytenr, 181 node->bytenr + blocksize - 1, EXTENT_DIRTY, NULL); 182 } 183 node->processed = 1; 184 } 185 186 /* 187 * walk up backref nodes until reach node presents tree root 188 */ 189 static struct btrfs_backref_node *walk_up_backref( 190 struct btrfs_backref_node *node, 191 struct btrfs_backref_edge *edges[], int *index) 192 { 193 struct btrfs_backref_edge *edge; 194 int idx = *index; 195 196 while (!list_empty(&node->upper)) { 197 edge = list_entry(node->upper.next, 198 struct btrfs_backref_edge, list[LOWER]); 199 edges[idx++] = edge; 200 node = edge->node[UPPER]; 201 } 202 BUG_ON(node->detached); 203 *index = idx; 204 return node; 205 } 206 207 /* 208 * walk down backref nodes to find start of next reference path 209 */ 210 static struct btrfs_backref_node *walk_down_backref( 211 struct btrfs_backref_edge *edges[], int *index) 212 { 213 struct btrfs_backref_edge *edge; 214 struct btrfs_backref_node *lower; 215 int idx = *index; 216 217 while (idx > 0) { 218 edge = edges[idx - 1]; 219 lower = edge->node[LOWER]; 220 if (list_is_last(&edge->list[LOWER], &lower->upper)) { 221 idx--; 222 continue; 223 } 224 edge = list_entry(edge->list[LOWER].next, 225 struct btrfs_backref_edge, list[LOWER]); 226 edges[idx - 1] = edge; 227 *index = idx; 228 return edge->node[UPPER]; 229 } 230 *index = 0; 231 return NULL; 232 } 233 234 static void update_backref_node(struct btrfs_backref_cache *cache, 235 struct btrfs_backref_node *node, u64 bytenr) 236 { 237 struct rb_node *rb_node; 238 rb_erase(&node->rb_node, &cache->rb_root); 239 node->bytenr = bytenr; 240 rb_node = rb_simple_insert(&cache->rb_root, node->bytenr, &node->rb_node); 241 if (rb_node) 242 btrfs_backref_panic(cache->fs_info, bytenr, -EEXIST); 243 } 244 245 /* 246 * update backref cache after a transaction commit 247 */ 248 static int update_backref_cache(struct btrfs_trans_handle *trans, 249 struct btrfs_backref_cache *cache) 250 { 251 struct btrfs_backref_node *node; 252 int level = 0; 253 254 if (cache->last_trans == 0) { 255 cache->last_trans = trans->transid; 256 return 0; 257 } 258 259 if (cache->last_trans == trans->transid) 260 return 0; 261 262 /* 263 * detached nodes are used to avoid unnecessary backref 264 * lookup. transaction commit changes the extent tree. 265 * so the detached nodes are no longer useful. 266 */ 267 while (!list_empty(&cache->detached)) { 268 node = list_entry(cache->detached.next, 269 struct btrfs_backref_node, list); 270 btrfs_backref_cleanup_node(cache, node); 271 } 272 273 while (!list_empty(&cache->changed)) { 274 node = list_entry(cache->changed.next, 275 struct btrfs_backref_node, list); 276 list_del_init(&node->list); 277 BUG_ON(node->pending); 278 update_backref_node(cache, node, node->new_bytenr); 279 } 280 281 /* 282 * some nodes can be left in the pending list if there were 283 * errors during processing the pending nodes. 284 */ 285 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 286 list_for_each_entry(node, &cache->pending[level], list) { 287 BUG_ON(!node->pending); 288 if (node->bytenr == node->new_bytenr) 289 continue; 290 update_backref_node(cache, node, node->new_bytenr); 291 } 292 } 293 294 cache->last_trans = 0; 295 return 1; 296 } 297 298 static bool reloc_root_is_dead(const struct btrfs_root *root) 299 { 300 /* 301 * Pair with set_bit/clear_bit in clean_dirty_subvols and 302 * btrfs_update_reloc_root. We need to see the updated bit before 303 * trying to access reloc_root 304 */ 305 smp_rmb(); 306 if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state)) 307 return true; 308 return false; 309 } 310 311 /* 312 * Check if this subvolume tree has valid reloc tree. 313 * 314 * Reloc tree after swap is considered dead, thus not considered as valid. 315 * This is enough for most callers, as they don't distinguish dead reloc root 316 * from no reloc root. But btrfs_should_ignore_reloc_root() below is a 317 * special case. 318 */ 319 static bool have_reloc_root(const struct btrfs_root *root) 320 { 321 if (reloc_root_is_dead(root)) 322 return false; 323 if (!root->reloc_root) 324 return false; 325 return true; 326 } 327 328 bool btrfs_should_ignore_reloc_root(const struct btrfs_root *root) 329 { 330 struct btrfs_root *reloc_root; 331 332 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 333 return false; 334 335 /* This root has been merged with its reloc tree, we can ignore it */ 336 if (reloc_root_is_dead(root)) 337 return true; 338 339 reloc_root = root->reloc_root; 340 if (!reloc_root) 341 return false; 342 343 if (btrfs_header_generation(reloc_root->commit_root) == 344 root->fs_info->running_transaction->transid) 345 return false; 346 /* 347 * If there is reloc tree and it was created in previous transaction 348 * backref lookup can find the reloc tree, so backref node for the fs 349 * tree root is useless for relocation. 350 */ 351 return true; 352 } 353 354 /* 355 * find reloc tree by address of tree root 356 */ 357 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr) 358 { 359 struct reloc_control *rc = fs_info->reloc_ctl; 360 struct rb_node *rb_node; 361 struct mapping_node *node; 362 struct btrfs_root *root = NULL; 363 364 ASSERT(rc); 365 spin_lock(&rc->reloc_root_tree.lock); 366 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr); 367 if (rb_node) { 368 node = rb_entry(rb_node, struct mapping_node, rb_node); 369 root = node->data; 370 } 371 spin_unlock(&rc->reloc_root_tree.lock); 372 return btrfs_grab_root(root); 373 } 374 375 /* 376 * For useless nodes, do two major clean ups: 377 * 378 * - Cleanup the children edges and nodes 379 * If child node is also orphan (no parent) during cleanup, then the child 380 * node will also be cleaned up. 381 * 382 * - Freeing up leaves (level 0), keeps nodes detached 383 * For nodes, the node is still cached as "detached" 384 * 385 * Return false if @node is not in the @useless_nodes list. 386 * Return true if @node is in the @useless_nodes list. 387 */ 388 static bool handle_useless_nodes(struct reloc_control *rc, 389 struct btrfs_backref_node *node) 390 { 391 struct btrfs_backref_cache *cache = &rc->backref_cache; 392 struct list_head *useless_node = &cache->useless_node; 393 bool ret = false; 394 395 while (!list_empty(useless_node)) { 396 struct btrfs_backref_node *cur; 397 398 cur = list_first_entry(useless_node, struct btrfs_backref_node, 399 list); 400 list_del_init(&cur->list); 401 402 /* Only tree root nodes can be added to @useless_nodes */ 403 ASSERT(list_empty(&cur->upper)); 404 405 if (cur == node) 406 ret = true; 407 408 /* The node is the lowest node */ 409 if (cur->lowest) { 410 list_del_init(&cur->lower); 411 cur->lowest = 0; 412 } 413 414 /* Cleanup the lower edges */ 415 while (!list_empty(&cur->lower)) { 416 struct btrfs_backref_edge *edge; 417 struct btrfs_backref_node *lower; 418 419 edge = list_entry(cur->lower.next, 420 struct btrfs_backref_edge, list[UPPER]); 421 list_del(&edge->list[UPPER]); 422 list_del(&edge->list[LOWER]); 423 lower = edge->node[LOWER]; 424 btrfs_backref_free_edge(cache, edge); 425 426 /* Child node is also orphan, queue for cleanup */ 427 if (list_empty(&lower->upper)) 428 list_add(&lower->list, useless_node); 429 } 430 /* Mark this block processed for relocation */ 431 mark_block_processed(rc, cur); 432 433 /* 434 * Backref nodes for tree leaves are deleted from the cache. 435 * Backref nodes for upper level tree blocks are left in the 436 * cache to avoid unnecessary backref lookup. 437 */ 438 if (cur->level > 0) { 439 list_add(&cur->list, &cache->detached); 440 cur->detached = 1; 441 } else { 442 rb_erase(&cur->rb_node, &cache->rb_root); 443 btrfs_backref_free_node(cache, cur); 444 } 445 } 446 return ret; 447 } 448 449 /* 450 * Build backref tree for a given tree block. Root of the backref tree 451 * corresponds the tree block, leaves of the backref tree correspond roots of 452 * b-trees that reference the tree block. 453 * 454 * The basic idea of this function is check backrefs of a given block to find 455 * upper level blocks that reference the block, and then check backrefs of 456 * these upper level blocks recursively. The recursion stops when tree root is 457 * reached or backrefs for the block is cached. 458 * 459 * NOTE: if we find that backrefs for a block are cached, we know backrefs for 460 * all upper level blocks that directly/indirectly reference the block are also 461 * cached. 462 */ 463 static noinline_for_stack struct btrfs_backref_node *build_backref_tree( 464 struct btrfs_trans_handle *trans, 465 struct reloc_control *rc, struct btrfs_key *node_key, 466 int level, u64 bytenr) 467 { 468 struct btrfs_backref_iter *iter; 469 struct btrfs_backref_cache *cache = &rc->backref_cache; 470 /* For searching parent of TREE_BLOCK_REF */ 471 struct btrfs_path *path; 472 struct btrfs_backref_node *cur; 473 struct btrfs_backref_node *node = NULL; 474 struct btrfs_backref_edge *edge; 475 int ret; 476 int err = 0; 477 478 iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info); 479 if (!iter) 480 return ERR_PTR(-ENOMEM); 481 path = btrfs_alloc_path(); 482 if (!path) { 483 err = -ENOMEM; 484 goto out; 485 } 486 487 node = btrfs_backref_alloc_node(cache, bytenr, level); 488 if (!node) { 489 err = -ENOMEM; 490 goto out; 491 } 492 493 node->lowest = 1; 494 cur = node; 495 496 /* Breadth-first search to build backref cache */ 497 do { 498 ret = btrfs_backref_add_tree_node(trans, cache, path, iter, 499 node_key, cur); 500 if (ret < 0) { 501 err = ret; 502 goto out; 503 } 504 edge = list_first_entry_or_null(&cache->pending_edge, 505 struct btrfs_backref_edge, list[UPPER]); 506 /* 507 * The pending list isn't empty, take the first block to 508 * process 509 */ 510 if (edge) { 511 list_del_init(&edge->list[UPPER]); 512 cur = edge->node[UPPER]; 513 } 514 } while (edge); 515 516 /* Finish the upper linkage of newly added edges/nodes */ 517 ret = btrfs_backref_finish_upper_links(cache, node); 518 if (ret < 0) { 519 err = ret; 520 goto out; 521 } 522 523 if (handle_useless_nodes(rc, node)) 524 node = NULL; 525 out: 526 btrfs_backref_iter_free(iter); 527 btrfs_free_path(path); 528 if (err) { 529 btrfs_backref_error_cleanup(cache, node); 530 return ERR_PTR(err); 531 } 532 ASSERT(!node || !node->detached); 533 ASSERT(list_empty(&cache->useless_node) && 534 list_empty(&cache->pending_edge)); 535 return node; 536 } 537 538 /* 539 * helper to add backref node for the newly created snapshot. 540 * the backref node is created by cloning backref node that 541 * corresponds to root of source tree 542 */ 543 static int clone_backref_node(struct btrfs_trans_handle *trans, 544 struct reloc_control *rc, 545 const struct btrfs_root *src, 546 struct btrfs_root *dest) 547 { 548 struct btrfs_root *reloc_root = src->reloc_root; 549 struct btrfs_backref_cache *cache = &rc->backref_cache; 550 struct btrfs_backref_node *node = NULL; 551 struct btrfs_backref_node *new_node; 552 struct btrfs_backref_edge *edge; 553 struct btrfs_backref_edge *new_edge; 554 struct rb_node *rb_node; 555 556 if (cache->last_trans > 0) 557 update_backref_cache(trans, cache); 558 559 rb_node = rb_simple_search(&cache->rb_root, src->commit_root->start); 560 if (rb_node) { 561 node = rb_entry(rb_node, struct btrfs_backref_node, rb_node); 562 if (node->detached) 563 node = NULL; 564 else 565 BUG_ON(node->new_bytenr != reloc_root->node->start); 566 } 567 568 if (!node) { 569 rb_node = rb_simple_search(&cache->rb_root, 570 reloc_root->commit_root->start); 571 if (rb_node) { 572 node = rb_entry(rb_node, struct btrfs_backref_node, 573 rb_node); 574 BUG_ON(node->detached); 575 } 576 } 577 578 if (!node) 579 return 0; 580 581 new_node = btrfs_backref_alloc_node(cache, dest->node->start, 582 node->level); 583 if (!new_node) 584 return -ENOMEM; 585 586 new_node->lowest = node->lowest; 587 new_node->checked = 1; 588 new_node->root = btrfs_grab_root(dest); 589 ASSERT(new_node->root); 590 591 if (!node->lowest) { 592 list_for_each_entry(edge, &node->lower, list[UPPER]) { 593 new_edge = btrfs_backref_alloc_edge(cache); 594 if (!new_edge) 595 goto fail; 596 597 btrfs_backref_link_edge(new_edge, edge->node[LOWER], 598 new_node, LINK_UPPER); 599 } 600 } else { 601 list_add_tail(&new_node->lower, &cache->leaves); 602 } 603 604 rb_node = rb_simple_insert(&cache->rb_root, new_node->bytenr, 605 &new_node->rb_node); 606 if (rb_node) 607 btrfs_backref_panic(trans->fs_info, new_node->bytenr, -EEXIST); 608 609 if (!new_node->lowest) { 610 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) { 611 list_add_tail(&new_edge->list[LOWER], 612 &new_edge->node[LOWER]->upper); 613 } 614 } 615 return 0; 616 fail: 617 while (!list_empty(&new_node->lower)) { 618 new_edge = list_entry(new_node->lower.next, 619 struct btrfs_backref_edge, list[UPPER]); 620 list_del(&new_edge->list[UPPER]); 621 btrfs_backref_free_edge(cache, new_edge); 622 } 623 btrfs_backref_free_node(cache, new_node); 624 return -ENOMEM; 625 } 626 627 /* 628 * helper to add 'address of tree root -> reloc tree' mapping 629 */ 630 static int __add_reloc_root(struct btrfs_root *root) 631 { 632 struct btrfs_fs_info *fs_info = root->fs_info; 633 struct rb_node *rb_node; 634 struct mapping_node *node; 635 struct reloc_control *rc = fs_info->reloc_ctl; 636 637 node = kmalloc(sizeof(*node), GFP_NOFS); 638 if (!node) 639 return -ENOMEM; 640 641 node->bytenr = root->commit_root->start; 642 node->data = root; 643 644 spin_lock(&rc->reloc_root_tree.lock); 645 rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root, 646 node->bytenr, &node->rb_node); 647 spin_unlock(&rc->reloc_root_tree.lock); 648 if (rb_node) { 649 btrfs_err(fs_info, 650 "Duplicate root found for start=%llu while inserting into relocation tree", 651 node->bytenr); 652 return -EEXIST; 653 } 654 655 list_add_tail(&root->root_list, &rc->reloc_roots); 656 return 0; 657 } 658 659 /* 660 * helper to delete the 'address of tree root -> reloc tree' 661 * mapping 662 */ 663 static void __del_reloc_root(struct btrfs_root *root) 664 { 665 struct btrfs_fs_info *fs_info = root->fs_info; 666 struct rb_node *rb_node; 667 struct mapping_node *node = NULL; 668 struct reloc_control *rc = fs_info->reloc_ctl; 669 bool put_ref = false; 670 671 if (rc && root->node) { 672 spin_lock(&rc->reloc_root_tree.lock); 673 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, 674 root->commit_root->start); 675 if (rb_node) { 676 node = rb_entry(rb_node, struct mapping_node, rb_node); 677 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); 678 RB_CLEAR_NODE(&node->rb_node); 679 } 680 spin_unlock(&rc->reloc_root_tree.lock); 681 ASSERT(!node || (struct btrfs_root *)node->data == root); 682 } 683 684 /* 685 * We only put the reloc root here if it's on the list. There's a lot 686 * of places where the pattern is to splice the rc->reloc_roots, process 687 * the reloc roots, and then add the reloc root back onto 688 * rc->reloc_roots. If we call __del_reloc_root while it's off of the 689 * list we don't want the reference being dropped, because the guy 690 * messing with the list is in charge of the reference. 691 */ 692 spin_lock(&fs_info->trans_lock); 693 if (!list_empty(&root->root_list)) { 694 put_ref = true; 695 list_del_init(&root->root_list); 696 } 697 spin_unlock(&fs_info->trans_lock); 698 if (put_ref) 699 btrfs_put_root(root); 700 kfree(node); 701 } 702 703 /* 704 * helper to update the 'address of tree root -> reloc tree' 705 * mapping 706 */ 707 static int __update_reloc_root(struct btrfs_root *root) 708 { 709 struct btrfs_fs_info *fs_info = root->fs_info; 710 struct rb_node *rb_node; 711 struct mapping_node *node = NULL; 712 struct reloc_control *rc = fs_info->reloc_ctl; 713 714 spin_lock(&rc->reloc_root_tree.lock); 715 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, 716 root->commit_root->start); 717 if (rb_node) { 718 node = rb_entry(rb_node, struct mapping_node, rb_node); 719 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); 720 } 721 spin_unlock(&rc->reloc_root_tree.lock); 722 723 if (!node) 724 return 0; 725 BUG_ON((struct btrfs_root *)node->data != root); 726 727 spin_lock(&rc->reloc_root_tree.lock); 728 node->bytenr = root->node->start; 729 rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root, 730 node->bytenr, &node->rb_node); 731 spin_unlock(&rc->reloc_root_tree.lock); 732 if (rb_node) 733 btrfs_backref_panic(fs_info, node->bytenr, -EEXIST); 734 return 0; 735 } 736 737 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans, 738 struct btrfs_root *root, u64 objectid) 739 { 740 struct btrfs_fs_info *fs_info = root->fs_info; 741 struct btrfs_root *reloc_root; 742 struct extent_buffer *eb; 743 struct btrfs_root_item *root_item; 744 struct btrfs_key root_key; 745 int ret = 0; 746 bool must_abort = false; 747 748 root_item = kmalloc(sizeof(*root_item), GFP_NOFS); 749 if (!root_item) 750 return ERR_PTR(-ENOMEM); 751 752 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID; 753 root_key.type = BTRFS_ROOT_ITEM_KEY; 754 root_key.offset = objectid; 755 756 if (root->root_key.objectid == objectid) { 757 u64 commit_root_gen; 758 759 /* called by btrfs_init_reloc_root */ 760 ret = btrfs_copy_root(trans, root, root->commit_root, &eb, 761 BTRFS_TREE_RELOC_OBJECTID); 762 if (ret) 763 goto fail; 764 765 /* 766 * Set the last_snapshot field to the generation of the commit 767 * root - like this ctree.c:btrfs_block_can_be_shared() behaves 768 * correctly (returns true) when the relocation root is created 769 * either inside the critical section of a transaction commit 770 * (through transaction.c:qgroup_account_snapshot()) and when 771 * it's created before the transaction commit is started. 772 */ 773 commit_root_gen = btrfs_header_generation(root->commit_root); 774 btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen); 775 } else { 776 /* 777 * called by btrfs_reloc_post_snapshot_hook. 778 * the source tree is a reloc tree, all tree blocks 779 * modified after it was created have RELOC flag 780 * set in their headers. so it's OK to not update 781 * the 'last_snapshot'. 782 */ 783 ret = btrfs_copy_root(trans, root, root->node, &eb, 784 BTRFS_TREE_RELOC_OBJECTID); 785 if (ret) 786 goto fail; 787 } 788 789 /* 790 * We have changed references at this point, we must abort the 791 * transaction if anything fails. 792 */ 793 must_abort = true; 794 795 memcpy(root_item, &root->root_item, sizeof(*root_item)); 796 btrfs_set_root_bytenr(root_item, eb->start); 797 btrfs_set_root_level(root_item, btrfs_header_level(eb)); 798 btrfs_set_root_generation(root_item, trans->transid); 799 800 if (root->root_key.objectid == objectid) { 801 btrfs_set_root_refs(root_item, 0); 802 memset(&root_item->drop_progress, 0, 803 sizeof(struct btrfs_disk_key)); 804 btrfs_set_root_drop_level(root_item, 0); 805 } 806 807 btrfs_tree_unlock(eb); 808 free_extent_buffer(eb); 809 810 ret = btrfs_insert_root(trans, fs_info->tree_root, 811 &root_key, root_item); 812 if (ret) 813 goto fail; 814 815 kfree(root_item); 816 817 reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key); 818 if (IS_ERR(reloc_root)) { 819 ret = PTR_ERR(reloc_root); 820 goto abort; 821 } 822 set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state); 823 reloc_root->last_trans = trans->transid; 824 return reloc_root; 825 fail: 826 kfree(root_item); 827 abort: 828 if (must_abort) 829 btrfs_abort_transaction(trans, ret); 830 return ERR_PTR(ret); 831 } 832 833 /* 834 * create reloc tree for a given fs tree. reloc tree is just a 835 * snapshot of the fs tree with special root objectid. 836 * 837 * The reloc_root comes out of here with two references, one for 838 * root->reloc_root, and another for being on the rc->reloc_roots list. 839 */ 840 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans, 841 struct btrfs_root *root) 842 { 843 struct btrfs_fs_info *fs_info = root->fs_info; 844 struct btrfs_root *reloc_root; 845 struct reloc_control *rc = fs_info->reloc_ctl; 846 struct btrfs_block_rsv *rsv; 847 int clear_rsv = 0; 848 int ret; 849 850 if (!rc) 851 return 0; 852 853 /* 854 * The subvolume has reloc tree but the swap is finished, no need to 855 * create/update the dead reloc tree 856 */ 857 if (reloc_root_is_dead(root)) 858 return 0; 859 860 /* 861 * This is subtle but important. We do not do 862 * record_root_in_transaction for reloc roots, instead we record their 863 * corresponding fs root, and then here we update the last trans for the 864 * reloc root. This means that we have to do this for the entire life 865 * of the reloc root, regardless of which stage of the relocation we are 866 * in. 867 */ 868 if (root->reloc_root) { 869 reloc_root = root->reloc_root; 870 reloc_root->last_trans = trans->transid; 871 return 0; 872 } 873 874 /* 875 * We are merging reloc roots, we do not need new reloc trees. Also 876 * reloc trees never need their own reloc tree. 877 */ 878 if (!rc->create_reloc_tree || 879 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 880 return 0; 881 882 if (!trans->reloc_reserved) { 883 rsv = trans->block_rsv; 884 trans->block_rsv = rc->block_rsv; 885 clear_rsv = 1; 886 } 887 reloc_root = create_reloc_root(trans, root, root->root_key.objectid); 888 if (clear_rsv) 889 trans->block_rsv = rsv; 890 if (IS_ERR(reloc_root)) 891 return PTR_ERR(reloc_root); 892 893 ret = __add_reloc_root(reloc_root); 894 ASSERT(ret != -EEXIST); 895 if (ret) { 896 /* Pairs with create_reloc_root */ 897 btrfs_put_root(reloc_root); 898 return ret; 899 } 900 root->reloc_root = btrfs_grab_root(reloc_root); 901 return 0; 902 } 903 904 /* 905 * update root item of reloc tree 906 */ 907 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans, 908 struct btrfs_root *root) 909 { 910 struct btrfs_fs_info *fs_info = root->fs_info; 911 struct btrfs_root *reloc_root; 912 struct btrfs_root_item *root_item; 913 int ret; 914 915 if (!have_reloc_root(root)) 916 return 0; 917 918 reloc_root = root->reloc_root; 919 root_item = &reloc_root->root_item; 920 921 /* 922 * We are probably ok here, but __del_reloc_root() will drop its ref of 923 * the root. We have the ref for root->reloc_root, but just in case 924 * hold it while we update the reloc root. 925 */ 926 btrfs_grab_root(reloc_root); 927 928 /* root->reloc_root will stay until current relocation finished */ 929 if (fs_info->reloc_ctl->merge_reloc_tree && 930 btrfs_root_refs(root_item) == 0) { 931 set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state); 932 /* 933 * Mark the tree as dead before we change reloc_root so 934 * have_reloc_root will not touch it from now on. 935 */ 936 smp_wmb(); 937 __del_reloc_root(reloc_root); 938 } 939 940 if (reloc_root->commit_root != reloc_root->node) { 941 __update_reloc_root(reloc_root); 942 btrfs_set_root_node(root_item, reloc_root->node); 943 free_extent_buffer(reloc_root->commit_root); 944 reloc_root->commit_root = btrfs_root_node(reloc_root); 945 } 946 947 ret = btrfs_update_root(trans, fs_info->tree_root, 948 &reloc_root->root_key, root_item); 949 btrfs_put_root(reloc_root); 950 return ret; 951 } 952 953 /* 954 * helper to find first cached inode with inode number >= objectid 955 * in a subvolume 956 */ 957 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid) 958 { 959 struct rb_node *node; 960 struct rb_node *prev; 961 struct btrfs_inode *entry; 962 struct inode *inode; 963 964 spin_lock(&root->inode_lock); 965 again: 966 node = root->inode_tree.rb_node; 967 prev = NULL; 968 while (node) { 969 prev = node; 970 entry = rb_entry(node, struct btrfs_inode, rb_node); 971 972 if (objectid < btrfs_ino(entry)) 973 node = node->rb_left; 974 else if (objectid > btrfs_ino(entry)) 975 node = node->rb_right; 976 else 977 break; 978 } 979 if (!node) { 980 while (prev) { 981 entry = rb_entry(prev, struct btrfs_inode, rb_node); 982 if (objectid <= btrfs_ino(entry)) { 983 node = prev; 984 break; 985 } 986 prev = rb_next(prev); 987 } 988 } 989 while (node) { 990 entry = rb_entry(node, struct btrfs_inode, rb_node); 991 inode = igrab(&entry->vfs_inode); 992 if (inode) { 993 spin_unlock(&root->inode_lock); 994 return inode; 995 } 996 997 objectid = btrfs_ino(entry) + 1; 998 if (cond_resched_lock(&root->inode_lock)) 999 goto again; 1000 1001 node = rb_next(node); 1002 } 1003 spin_unlock(&root->inode_lock); 1004 return NULL; 1005 } 1006 1007 /* 1008 * get new location of data 1009 */ 1010 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr, 1011 u64 bytenr, u64 num_bytes) 1012 { 1013 struct btrfs_root *root = BTRFS_I(reloc_inode)->root; 1014 struct btrfs_path *path; 1015 struct btrfs_file_extent_item *fi; 1016 struct extent_buffer *leaf; 1017 int ret; 1018 1019 path = btrfs_alloc_path(); 1020 if (!path) 1021 return -ENOMEM; 1022 1023 bytenr -= BTRFS_I(reloc_inode)->index_cnt; 1024 ret = btrfs_lookup_file_extent(NULL, root, path, 1025 btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0); 1026 if (ret < 0) 1027 goto out; 1028 if (ret > 0) { 1029 ret = -ENOENT; 1030 goto out; 1031 } 1032 1033 leaf = path->nodes[0]; 1034 fi = btrfs_item_ptr(leaf, path->slots[0], 1035 struct btrfs_file_extent_item); 1036 1037 BUG_ON(btrfs_file_extent_offset(leaf, fi) || 1038 btrfs_file_extent_compression(leaf, fi) || 1039 btrfs_file_extent_encryption(leaf, fi) || 1040 btrfs_file_extent_other_encoding(leaf, fi)); 1041 1042 if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) { 1043 ret = -EINVAL; 1044 goto out; 1045 } 1046 1047 *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1048 ret = 0; 1049 out: 1050 btrfs_free_path(path); 1051 return ret; 1052 } 1053 1054 /* 1055 * update file extent items in the tree leaf to point to 1056 * the new locations. 1057 */ 1058 static noinline_for_stack 1059 int replace_file_extents(struct btrfs_trans_handle *trans, 1060 struct reloc_control *rc, 1061 struct btrfs_root *root, 1062 struct extent_buffer *leaf) 1063 { 1064 struct btrfs_fs_info *fs_info = root->fs_info; 1065 struct btrfs_key key; 1066 struct btrfs_file_extent_item *fi; 1067 struct inode *inode = NULL; 1068 u64 parent; 1069 u64 bytenr; 1070 u64 new_bytenr = 0; 1071 u64 num_bytes; 1072 u64 end; 1073 u32 nritems; 1074 u32 i; 1075 int ret = 0; 1076 int first = 1; 1077 int dirty = 0; 1078 1079 if (rc->stage != UPDATE_DATA_PTRS) 1080 return 0; 1081 1082 /* reloc trees always use full backref */ 1083 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1084 parent = leaf->start; 1085 else 1086 parent = 0; 1087 1088 nritems = btrfs_header_nritems(leaf); 1089 for (i = 0; i < nritems; i++) { 1090 struct btrfs_ref ref = { 0 }; 1091 1092 cond_resched(); 1093 btrfs_item_key_to_cpu(leaf, &key, i); 1094 if (key.type != BTRFS_EXTENT_DATA_KEY) 1095 continue; 1096 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); 1097 if (btrfs_file_extent_type(leaf, fi) == 1098 BTRFS_FILE_EXTENT_INLINE) 1099 continue; 1100 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1101 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1102 if (bytenr == 0) 1103 continue; 1104 if (!in_range(bytenr, rc->block_group->start, 1105 rc->block_group->length)) 1106 continue; 1107 1108 /* 1109 * if we are modifying block in fs tree, wait for read_folio 1110 * to complete and drop the extent cache 1111 */ 1112 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 1113 if (first) { 1114 inode = find_next_inode(root, key.objectid); 1115 first = 0; 1116 } else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) { 1117 btrfs_add_delayed_iput(BTRFS_I(inode)); 1118 inode = find_next_inode(root, key.objectid); 1119 } 1120 if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) { 1121 struct extent_state *cached_state = NULL; 1122 1123 end = key.offset + 1124 btrfs_file_extent_num_bytes(leaf, fi); 1125 WARN_ON(!IS_ALIGNED(key.offset, 1126 fs_info->sectorsize)); 1127 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize)); 1128 end--; 1129 ret = try_lock_extent(&BTRFS_I(inode)->io_tree, 1130 key.offset, end, 1131 &cached_state); 1132 if (!ret) 1133 continue; 1134 1135 btrfs_drop_extent_map_range(BTRFS_I(inode), 1136 key.offset, end, true); 1137 unlock_extent(&BTRFS_I(inode)->io_tree, 1138 key.offset, end, &cached_state); 1139 } 1140 } 1141 1142 ret = get_new_location(rc->data_inode, &new_bytenr, 1143 bytenr, num_bytes); 1144 if (ret) { 1145 /* 1146 * Don't have to abort since we've not changed anything 1147 * in the file extent yet. 1148 */ 1149 break; 1150 } 1151 1152 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr); 1153 dirty = 1; 1154 1155 key.offset -= btrfs_file_extent_offset(leaf, fi); 1156 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr, 1157 num_bytes, parent, root->root_key.objectid); 1158 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf), 1159 key.objectid, key.offset, 1160 root->root_key.objectid, false); 1161 ret = btrfs_inc_extent_ref(trans, &ref); 1162 if (ret) { 1163 btrfs_abort_transaction(trans, ret); 1164 break; 1165 } 1166 1167 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 1168 num_bytes, parent, root->root_key.objectid); 1169 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf), 1170 key.objectid, key.offset, 1171 root->root_key.objectid, false); 1172 ret = btrfs_free_extent(trans, &ref); 1173 if (ret) { 1174 btrfs_abort_transaction(trans, ret); 1175 break; 1176 } 1177 } 1178 if (dirty) 1179 btrfs_mark_buffer_dirty(trans, leaf); 1180 if (inode) 1181 btrfs_add_delayed_iput(BTRFS_I(inode)); 1182 return ret; 1183 } 1184 1185 static noinline_for_stack int memcmp_node_keys(const struct extent_buffer *eb, 1186 int slot, const struct btrfs_path *path, 1187 int level) 1188 { 1189 struct btrfs_disk_key key1; 1190 struct btrfs_disk_key key2; 1191 btrfs_node_key(eb, &key1, slot); 1192 btrfs_node_key(path->nodes[level], &key2, path->slots[level]); 1193 return memcmp(&key1, &key2, sizeof(key1)); 1194 } 1195 1196 /* 1197 * try to replace tree blocks in fs tree with the new blocks 1198 * in reloc tree. tree blocks haven't been modified since the 1199 * reloc tree was create can be replaced. 1200 * 1201 * if a block was replaced, level of the block + 1 is returned. 1202 * if no block got replaced, 0 is returned. if there are other 1203 * errors, a negative error number is returned. 1204 */ 1205 static noinline_for_stack 1206 int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc, 1207 struct btrfs_root *dest, struct btrfs_root *src, 1208 struct btrfs_path *path, struct btrfs_key *next_key, 1209 int lowest_level, int max_level) 1210 { 1211 struct btrfs_fs_info *fs_info = dest->fs_info; 1212 struct extent_buffer *eb; 1213 struct extent_buffer *parent; 1214 struct btrfs_ref ref = { 0 }; 1215 struct btrfs_key key; 1216 u64 old_bytenr; 1217 u64 new_bytenr; 1218 u64 old_ptr_gen; 1219 u64 new_ptr_gen; 1220 u64 last_snapshot; 1221 u32 blocksize; 1222 int cow = 0; 1223 int level; 1224 int ret; 1225 int slot; 1226 1227 ASSERT(src->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID); 1228 ASSERT(dest->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 1229 1230 last_snapshot = btrfs_root_last_snapshot(&src->root_item); 1231 again: 1232 slot = path->slots[lowest_level]; 1233 btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot); 1234 1235 eb = btrfs_lock_root_node(dest); 1236 level = btrfs_header_level(eb); 1237 1238 if (level < lowest_level) { 1239 btrfs_tree_unlock(eb); 1240 free_extent_buffer(eb); 1241 return 0; 1242 } 1243 1244 if (cow) { 1245 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb, 1246 BTRFS_NESTING_COW); 1247 if (ret) { 1248 btrfs_tree_unlock(eb); 1249 free_extent_buffer(eb); 1250 return ret; 1251 } 1252 } 1253 1254 if (next_key) { 1255 next_key->objectid = (u64)-1; 1256 next_key->type = (u8)-1; 1257 next_key->offset = (u64)-1; 1258 } 1259 1260 parent = eb; 1261 while (1) { 1262 level = btrfs_header_level(parent); 1263 ASSERT(level >= lowest_level); 1264 1265 ret = btrfs_bin_search(parent, 0, &key, &slot); 1266 if (ret < 0) 1267 break; 1268 if (ret && slot > 0) 1269 slot--; 1270 1271 if (next_key && slot + 1 < btrfs_header_nritems(parent)) 1272 btrfs_node_key_to_cpu(parent, next_key, slot + 1); 1273 1274 old_bytenr = btrfs_node_blockptr(parent, slot); 1275 blocksize = fs_info->nodesize; 1276 old_ptr_gen = btrfs_node_ptr_generation(parent, slot); 1277 1278 if (level <= max_level) { 1279 eb = path->nodes[level]; 1280 new_bytenr = btrfs_node_blockptr(eb, 1281 path->slots[level]); 1282 new_ptr_gen = btrfs_node_ptr_generation(eb, 1283 path->slots[level]); 1284 } else { 1285 new_bytenr = 0; 1286 new_ptr_gen = 0; 1287 } 1288 1289 if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) { 1290 ret = level; 1291 break; 1292 } 1293 1294 if (new_bytenr == 0 || old_ptr_gen > last_snapshot || 1295 memcmp_node_keys(parent, slot, path, level)) { 1296 if (level <= lowest_level) { 1297 ret = 0; 1298 break; 1299 } 1300 1301 eb = btrfs_read_node_slot(parent, slot); 1302 if (IS_ERR(eb)) { 1303 ret = PTR_ERR(eb); 1304 break; 1305 } 1306 btrfs_tree_lock(eb); 1307 if (cow) { 1308 ret = btrfs_cow_block(trans, dest, eb, parent, 1309 slot, &eb, 1310 BTRFS_NESTING_COW); 1311 if (ret) { 1312 btrfs_tree_unlock(eb); 1313 free_extent_buffer(eb); 1314 break; 1315 } 1316 } 1317 1318 btrfs_tree_unlock(parent); 1319 free_extent_buffer(parent); 1320 1321 parent = eb; 1322 continue; 1323 } 1324 1325 if (!cow) { 1326 btrfs_tree_unlock(parent); 1327 free_extent_buffer(parent); 1328 cow = 1; 1329 goto again; 1330 } 1331 1332 btrfs_node_key_to_cpu(path->nodes[level], &key, 1333 path->slots[level]); 1334 btrfs_release_path(path); 1335 1336 path->lowest_level = level; 1337 set_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state); 1338 ret = btrfs_search_slot(trans, src, &key, path, 0, 1); 1339 clear_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state); 1340 path->lowest_level = 0; 1341 if (ret) { 1342 if (ret > 0) 1343 ret = -ENOENT; 1344 break; 1345 } 1346 1347 /* 1348 * Info qgroup to trace both subtrees. 1349 * 1350 * We must trace both trees. 1351 * 1) Tree reloc subtree 1352 * If not traced, we will leak data numbers 1353 * 2) Fs subtree 1354 * If not traced, we will double count old data 1355 * 1356 * We don't scan the subtree right now, but only record 1357 * the swapped tree blocks. 1358 * The real subtree rescan is delayed until we have new 1359 * CoW on the subtree root node before transaction commit. 1360 */ 1361 ret = btrfs_qgroup_add_swapped_blocks(trans, dest, 1362 rc->block_group, parent, slot, 1363 path->nodes[level], path->slots[level], 1364 last_snapshot); 1365 if (ret < 0) 1366 break; 1367 /* 1368 * swap blocks in fs tree and reloc tree. 1369 */ 1370 btrfs_set_node_blockptr(parent, slot, new_bytenr); 1371 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen); 1372 btrfs_mark_buffer_dirty(trans, parent); 1373 1374 btrfs_set_node_blockptr(path->nodes[level], 1375 path->slots[level], old_bytenr); 1376 btrfs_set_node_ptr_generation(path->nodes[level], 1377 path->slots[level], old_ptr_gen); 1378 btrfs_mark_buffer_dirty(trans, path->nodes[level]); 1379 1380 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr, 1381 blocksize, path->nodes[level]->start, 1382 src->root_key.objectid); 1383 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid, 1384 0, true); 1385 ret = btrfs_inc_extent_ref(trans, &ref); 1386 if (ret) { 1387 btrfs_abort_transaction(trans, ret); 1388 break; 1389 } 1390 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr, 1391 blocksize, 0, dest->root_key.objectid); 1392 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid, 0, 1393 true); 1394 ret = btrfs_inc_extent_ref(trans, &ref); 1395 if (ret) { 1396 btrfs_abort_transaction(trans, ret); 1397 break; 1398 } 1399 1400 /* We don't know the real owning_root, use 0. */ 1401 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr, 1402 blocksize, path->nodes[level]->start, 0); 1403 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid, 1404 0, true); 1405 ret = btrfs_free_extent(trans, &ref); 1406 if (ret) { 1407 btrfs_abort_transaction(trans, ret); 1408 break; 1409 } 1410 1411 /* We don't know the real owning_root, use 0. */ 1412 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr, 1413 blocksize, 0, 0); 1414 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid, 1415 0, true); 1416 ret = btrfs_free_extent(trans, &ref); 1417 if (ret) { 1418 btrfs_abort_transaction(trans, ret); 1419 break; 1420 } 1421 1422 btrfs_unlock_up_safe(path, 0); 1423 1424 ret = level; 1425 break; 1426 } 1427 btrfs_tree_unlock(parent); 1428 free_extent_buffer(parent); 1429 return ret; 1430 } 1431 1432 /* 1433 * helper to find next relocated block in reloc tree 1434 */ 1435 static noinline_for_stack 1436 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 1437 int *level) 1438 { 1439 struct extent_buffer *eb; 1440 int i; 1441 u64 last_snapshot; 1442 u32 nritems; 1443 1444 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 1445 1446 for (i = 0; i < *level; i++) { 1447 free_extent_buffer(path->nodes[i]); 1448 path->nodes[i] = NULL; 1449 } 1450 1451 for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) { 1452 eb = path->nodes[i]; 1453 nritems = btrfs_header_nritems(eb); 1454 while (path->slots[i] + 1 < nritems) { 1455 path->slots[i]++; 1456 if (btrfs_node_ptr_generation(eb, path->slots[i]) <= 1457 last_snapshot) 1458 continue; 1459 1460 *level = i; 1461 return 0; 1462 } 1463 free_extent_buffer(path->nodes[i]); 1464 path->nodes[i] = NULL; 1465 } 1466 return 1; 1467 } 1468 1469 /* 1470 * walk down reloc tree to find relocated block of lowest level 1471 */ 1472 static noinline_for_stack 1473 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 1474 int *level) 1475 { 1476 struct extent_buffer *eb = NULL; 1477 int i; 1478 u64 ptr_gen = 0; 1479 u64 last_snapshot; 1480 u32 nritems; 1481 1482 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 1483 1484 for (i = *level; i > 0; i--) { 1485 eb = path->nodes[i]; 1486 nritems = btrfs_header_nritems(eb); 1487 while (path->slots[i] < nritems) { 1488 ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]); 1489 if (ptr_gen > last_snapshot) 1490 break; 1491 path->slots[i]++; 1492 } 1493 if (path->slots[i] >= nritems) { 1494 if (i == *level) 1495 break; 1496 *level = i + 1; 1497 return 0; 1498 } 1499 if (i == 1) { 1500 *level = i; 1501 return 0; 1502 } 1503 1504 eb = btrfs_read_node_slot(eb, path->slots[i]); 1505 if (IS_ERR(eb)) 1506 return PTR_ERR(eb); 1507 BUG_ON(btrfs_header_level(eb) != i - 1); 1508 path->nodes[i - 1] = eb; 1509 path->slots[i - 1] = 0; 1510 } 1511 return 1; 1512 } 1513 1514 /* 1515 * invalidate extent cache for file extents whose key in range of 1516 * [min_key, max_key) 1517 */ 1518 static int invalidate_extent_cache(struct btrfs_root *root, 1519 const struct btrfs_key *min_key, 1520 const struct btrfs_key *max_key) 1521 { 1522 struct btrfs_fs_info *fs_info = root->fs_info; 1523 struct inode *inode = NULL; 1524 u64 objectid; 1525 u64 start, end; 1526 u64 ino; 1527 1528 objectid = min_key->objectid; 1529 while (1) { 1530 struct extent_state *cached_state = NULL; 1531 1532 cond_resched(); 1533 iput(inode); 1534 1535 if (objectid > max_key->objectid) 1536 break; 1537 1538 inode = find_next_inode(root, objectid); 1539 if (!inode) 1540 break; 1541 ino = btrfs_ino(BTRFS_I(inode)); 1542 1543 if (ino > max_key->objectid) { 1544 iput(inode); 1545 break; 1546 } 1547 1548 objectid = ino + 1; 1549 if (!S_ISREG(inode->i_mode)) 1550 continue; 1551 1552 if (unlikely(min_key->objectid == ino)) { 1553 if (min_key->type > BTRFS_EXTENT_DATA_KEY) 1554 continue; 1555 if (min_key->type < BTRFS_EXTENT_DATA_KEY) 1556 start = 0; 1557 else { 1558 start = min_key->offset; 1559 WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize)); 1560 } 1561 } else { 1562 start = 0; 1563 } 1564 1565 if (unlikely(max_key->objectid == ino)) { 1566 if (max_key->type < BTRFS_EXTENT_DATA_KEY) 1567 continue; 1568 if (max_key->type > BTRFS_EXTENT_DATA_KEY) { 1569 end = (u64)-1; 1570 } else { 1571 if (max_key->offset == 0) 1572 continue; 1573 end = max_key->offset; 1574 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize)); 1575 end--; 1576 } 1577 } else { 1578 end = (u64)-1; 1579 } 1580 1581 /* the lock_extent waits for read_folio to complete */ 1582 lock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state); 1583 btrfs_drop_extent_map_range(BTRFS_I(inode), start, end, true); 1584 unlock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state); 1585 } 1586 return 0; 1587 } 1588 1589 static int find_next_key(struct btrfs_path *path, int level, 1590 struct btrfs_key *key) 1591 1592 { 1593 while (level < BTRFS_MAX_LEVEL) { 1594 if (!path->nodes[level]) 1595 break; 1596 if (path->slots[level] + 1 < 1597 btrfs_header_nritems(path->nodes[level])) { 1598 btrfs_node_key_to_cpu(path->nodes[level], key, 1599 path->slots[level] + 1); 1600 return 0; 1601 } 1602 level++; 1603 } 1604 return 1; 1605 } 1606 1607 /* 1608 * Insert current subvolume into reloc_control::dirty_subvol_roots 1609 */ 1610 static int insert_dirty_subvol(struct btrfs_trans_handle *trans, 1611 struct reloc_control *rc, 1612 struct btrfs_root *root) 1613 { 1614 struct btrfs_root *reloc_root = root->reloc_root; 1615 struct btrfs_root_item *reloc_root_item; 1616 int ret; 1617 1618 /* @root must be a subvolume tree root with a valid reloc tree */ 1619 ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 1620 ASSERT(reloc_root); 1621 1622 reloc_root_item = &reloc_root->root_item; 1623 memset(&reloc_root_item->drop_progress, 0, 1624 sizeof(reloc_root_item->drop_progress)); 1625 btrfs_set_root_drop_level(reloc_root_item, 0); 1626 btrfs_set_root_refs(reloc_root_item, 0); 1627 ret = btrfs_update_reloc_root(trans, root); 1628 if (ret) 1629 return ret; 1630 1631 if (list_empty(&root->reloc_dirty_list)) { 1632 btrfs_grab_root(root); 1633 list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots); 1634 } 1635 1636 return 0; 1637 } 1638 1639 static int clean_dirty_subvols(struct reloc_control *rc) 1640 { 1641 struct btrfs_root *root; 1642 struct btrfs_root *next; 1643 int ret = 0; 1644 int ret2; 1645 1646 list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots, 1647 reloc_dirty_list) { 1648 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 1649 /* Merged subvolume, cleanup its reloc root */ 1650 struct btrfs_root *reloc_root = root->reloc_root; 1651 1652 list_del_init(&root->reloc_dirty_list); 1653 root->reloc_root = NULL; 1654 /* 1655 * Need barrier to ensure clear_bit() only happens after 1656 * root->reloc_root = NULL. Pairs with have_reloc_root. 1657 */ 1658 smp_wmb(); 1659 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state); 1660 if (reloc_root) { 1661 /* 1662 * btrfs_drop_snapshot drops our ref we hold for 1663 * ->reloc_root. If it fails however we must 1664 * drop the ref ourselves. 1665 */ 1666 ret2 = btrfs_drop_snapshot(reloc_root, 0, 1); 1667 if (ret2 < 0) { 1668 btrfs_put_root(reloc_root); 1669 if (!ret) 1670 ret = ret2; 1671 } 1672 } 1673 btrfs_put_root(root); 1674 } else { 1675 /* Orphan reloc tree, just clean it up */ 1676 ret2 = btrfs_drop_snapshot(root, 0, 1); 1677 if (ret2 < 0) { 1678 btrfs_put_root(root); 1679 if (!ret) 1680 ret = ret2; 1681 } 1682 } 1683 } 1684 return ret; 1685 } 1686 1687 /* 1688 * merge the relocated tree blocks in reloc tree with corresponding 1689 * fs tree. 1690 */ 1691 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc, 1692 struct btrfs_root *root) 1693 { 1694 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 1695 struct btrfs_key key; 1696 struct btrfs_key next_key; 1697 struct btrfs_trans_handle *trans = NULL; 1698 struct btrfs_root *reloc_root; 1699 struct btrfs_root_item *root_item; 1700 struct btrfs_path *path; 1701 struct extent_buffer *leaf; 1702 int reserve_level; 1703 int level; 1704 int max_level; 1705 int replaced = 0; 1706 int ret = 0; 1707 u32 min_reserved; 1708 1709 path = btrfs_alloc_path(); 1710 if (!path) 1711 return -ENOMEM; 1712 path->reada = READA_FORWARD; 1713 1714 reloc_root = root->reloc_root; 1715 root_item = &reloc_root->root_item; 1716 1717 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 1718 level = btrfs_root_level(root_item); 1719 atomic_inc(&reloc_root->node->refs); 1720 path->nodes[level] = reloc_root->node; 1721 path->slots[level] = 0; 1722 } else { 1723 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 1724 1725 level = btrfs_root_drop_level(root_item); 1726 BUG_ON(level == 0); 1727 path->lowest_level = level; 1728 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0); 1729 path->lowest_level = 0; 1730 if (ret < 0) { 1731 btrfs_free_path(path); 1732 return ret; 1733 } 1734 1735 btrfs_node_key_to_cpu(path->nodes[level], &next_key, 1736 path->slots[level]); 1737 WARN_ON(memcmp(&key, &next_key, sizeof(key))); 1738 1739 btrfs_unlock_up_safe(path, 0); 1740 } 1741 1742 /* 1743 * In merge_reloc_root(), we modify the upper level pointer to swap the 1744 * tree blocks between reloc tree and subvolume tree. Thus for tree 1745 * block COW, we COW at most from level 1 to root level for each tree. 1746 * 1747 * Thus the needed metadata size is at most root_level * nodesize, 1748 * and * 2 since we have two trees to COW. 1749 */ 1750 reserve_level = max_t(int, 1, btrfs_root_level(root_item)); 1751 min_reserved = fs_info->nodesize * reserve_level * 2; 1752 memset(&next_key, 0, sizeof(next_key)); 1753 1754 while (1) { 1755 ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv, 1756 min_reserved, 1757 BTRFS_RESERVE_FLUSH_LIMIT); 1758 if (ret) 1759 goto out; 1760 trans = btrfs_start_transaction(root, 0); 1761 if (IS_ERR(trans)) { 1762 ret = PTR_ERR(trans); 1763 trans = NULL; 1764 goto out; 1765 } 1766 1767 /* 1768 * At this point we no longer have a reloc_control, so we can't 1769 * depend on btrfs_init_reloc_root to update our last_trans. 1770 * 1771 * But that's ok, we started the trans handle on our 1772 * corresponding fs_root, which means it's been added to the 1773 * dirty list. At commit time we'll still call 1774 * btrfs_update_reloc_root() and update our root item 1775 * appropriately. 1776 */ 1777 reloc_root->last_trans = trans->transid; 1778 trans->block_rsv = rc->block_rsv; 1779 1780 replaced = 0; 1781 max_level = level; 1782 1783 ret = walk_down_reloc_tree(reloc_root, path, &level); 1784 if (ret < 0) 1785 goto out; 1786 if (ret > 0) 1787 break; 1788 1789 if (!find_next_key(path, level, &key) && 1790 btrfs_comp_cpu_keys(&next_key, &key) >= 0) { 1791 ret = 0; 1792 } else { 1793 ret = replace_path(trans, rc, root, reloc_root, path, 1794 &next_key, level, max_level); 1795 } 1796 if (ret < 0) 1797 goto out; 1798 if (ret > 0) { 1799 level = ret; 1800 btrfs_node_key_to_cpu(path->nodes[level], &key, 1801 path->slots[level]); 1802 replaced = 1; 1803 } 1804 1805 ret = walk_up_reloc_tree(reloc_root, path, &level); 1806 if (ret > 0) 1807 break; 1808 1809 BUG_ON(level == 0); 1810 /* 1811 * save the merging progress in the drop_progress. 1812 * this is OK since root refs == 1 in this case. 1813 */ 1814 btrfs_node_key(path->nodes[level], &root_item->drop_progress, 1815 path->slots[level]); 1816 btrfs_set_root_drop_level(root_item, level); 1817 1818 btrfs_end_transaction_throttle(trans); 1819 trans = NULL; 1820 1821 btrfs_btree_balance_dirty(fs_info); 1822 1823 if (replaced && rc->stage == UPDATE_DATA_PTRS) 1824 invalidate_extent_cache(root, &key, &next_key); 1825 } 1826 1827 /* 1828 * handle the case only one block in the fs tree need to be 1829 * relocated and the block is tree root. 1830 */ 1831 leaf = btrfs_lock_root_node(root); 1832 ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf, 1833 BTRFS_NESTING_COW); 1834 btrfs_tree_unlock(leaf); 1835 free_extent_buffer(leaf); 1836 out: 1837 btrfs_free_path(path); 1838 1839 if (ret == 0) { 1840 ret = insert_dirty_subvol(trans, rc, root); 1841 if (ret) 1842 btrfs_abort_transaction(trans, ret); 1843 } 1844 1845 if (trans) 1846 btrfs_end_transaction_throttle(trans); 1847 1848 btrfs_btree_balance_dirty(fs_info); 1849 1850 if (replaced && rc->stage == UPDATE_DATA_PTRS) 1851 invalidate_extent_cache(root, &key, &next_key); 1852 1853 return ret; 1854 } 1855 1856 static noinline_for_stack 1857 int prepare_to_merge(struct reloc_control *rc, int err) 1858 { 1859 struct btrfs_root *root = rc->extent_root; 1860 struct btrfs_fs_info *fs_info = root->fs_info; 1861 struct btrfs_root *reloc_root; 1862 struct btrfs_trans_handle *trans; 1863 LIST_HEAD(reloc_roots); 1864 u64 num_bytes = 0; 1865 int ret; 1866 1867 mutex_lock(&fs_info->reloc_mutex); 1868 rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2; 1869 rc->merging_rsv_size += rc->nodes_relocated * 2; 1870 mutex_unlock(&fs_info->reloc_mutex); 1871 1872 again: 1873 if (!err) { 1874 num_bytes = rc->merging_rsv_size; 1875 ret = btrfs_block_rsv_add(fs_info, rc->block_rsv, num_bytes, 1876 BTRFS_RESERVE_FLUSH_ALL); 1877 if (ret) 1878 err = ret; 1879 } 1880 1881 trans = btrfs_join_transaction(rc->extent_root); 1882 if (IS_ERR(trans)) { 1883 if (!err) 1884 btrfs_block_rsv_release(fs_info, rc->block_rsv, 1885 num_bytes, NULL); 1886 return PTR_ERR(trans); 1887 } 1888 1889 if (!err) { 1890 if (num_bytes != rc->merging_rsv_size) { 1891 btrfs_end_transaction(trans); 1892 btrfs_block_rsv_release(fs_info, rc->block_rsv, 1893 num_bytes, NULL); 1894 goto again; 1895 } 1896 } 1897 1898 rc->merge_reloc_tree = true; 1899 1900 while (!list_empty(&rc->reloc_roots)) { 1901 reloc_root = list_entry(rc->reloc_roots.next, 1902 struct btrfs_root, root_list); 1903 list_del_init(&reloc_root->root_list); 1904 1905 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, 1906 false); 1907 if (IS_ERR(root)) { 1908 /* 1909 * Even if we have an error we need this reloc root 1910 * back on our list so we can clean up properly. 1911 */ 1912 list_add(&reloc_root->root_list, &reloc_roots); 1913 btrfs_abort_transaction(trans, (int)PTR_ERR(root)); 1914 if (!err) 1915 err = PTR_ERR(root); 1916 break; 1917 } 1918 1919 if (unlikely(root->reloc_root != reloc_root)) { 1920 if (root->reloc_root) { 1921 btrfs_err(fs_info, 1922 "reloc tree mismatch, root %lld has reloc root key (%lld %u %llu) gen %llu, expect reloc root key (%lld %u %llu) gen %llu", 1923 root->root_key.objectid, 1924 root->reloc_root->root_key.objectid, 1925 root->reloc_root->root_key.type, 1926 root->reloc_root->root_key.offset, 1927 btrfs_root_generation( 1928 &root->reloc_root->root_item), 1929 reloc_root->root_key.objectid, 1930 reloc_root->root_key.type, 1931 reloc_root->root_key.offset, 1932 btrfs_root_generation( 1933 &reloc_root->root_item)); 1934 } else { 1935 btrfs_err(fs_info, 1936 "reloc tree mismatch, root %lld has no reloc root, expect reloc root key (%lld %u %llu) gen %llu", 1937 root->root_key.objectid, 1938 reloc_root->root_key.objectid, 1939 reloc_root->root_key.type, 1940 reloc_root->root_key.offset, 1941 btrfs_root_generation( 1942 &reloc_root->root_item)); 1943 } 1944 list_add(&reloc_root->root_list, &reloc_roots); 1945 btrfs_put_root(root); 1946 btrfs_abort_transaction(trans, -EUCLEAN); 1947 if (!err) 1948 err = -EUCLEAN; 1949 break; 1950 } 1951 1952 /* 1953 * set reference count to 1, so btrfs_recover_relocation 1954 * knows it should resumes merging 1955 */ 1956 if (!err) 1957 btrfs_set_root_refs(&reloc_root->root_item, 1); 1958 ret = btrfs_update_reloc_root(trans, root); 1959 1960 /* 1961 * Even if we have an error we need this reloc root back on our 1962 * list so we can clean up properly. 1963 */ 1964 list_add(&reloc_root->root_list, &reloc_roots); 1965 btrfs_put_root(root); 1966 1967 if (ret) { 1968 btrfs_abort_transaction(trans, ret); 1969 if (!err) 1970 err = ret; 1971 break; 1972 } 1973 } 1974 1975 list_splice(&reloc_roots, &rc->reloc_roots); 1976 1977 if (!err) 1978 err = btrfs_commit_transaction(trans); 1979 else 1980 btrfs_end_transaction(trans); 1981 return err; 1982 } 1983 1984 static noinline_for_stack 1985 void free_reloc_roots(struct list_head *list) 1986 { 1987 struct btrfs_root *reloc_root, *tmp; 1988 1989 list_for_each_entry_safe(reloc_root, tmp, list, root_list) 1990 __del_reloc_root(reloc_root); 1991 } 1992 1993 static noinline_for_stack 1994 void merge_reloc_roots(struct reloc_control *rc) 1995 { 1996 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 1997 struct btrfs_root *root; 1998 struct btrfs_root *reloc_root; 1999 LIST_HEAD(reloc_roots); 2000 int found = 0; 2001 int ret = 0; 2002 again: 2003 root = rc->extent_root; 2004 2005 /* 2006 * this serializes us with btrfs_record_root_in_transaction, 2007 * we have to make sure nobody is in the middle of 2008 * adding their roots to the list while we are 2009 * doing this splice 2010 */ 2011 mutex_lock(&fs_info->reloc_mutex); 2012 list_splice_init(&rc->reloc_roots, &reloc_roots); 2013 mutex_unlock(&fs_info->reloc_mutex); 2014 2015 while (!list_empty(&reloc_roots)) { 2016 found = 1; 2017 reloc_root = list_entry(reloc_roots.next, 2018 struct btrfs_root, root_list); 2019 2020 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, 2021 false); 2022 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 2023 if (WARN_ON(IS_ERR(root))) { 2024 /* 2025 * For recovery we read the fs roots on mount, 2026 * and if we didn't find the root then we marked 2027 * the reloc root as a garbage root. For normal 2028 * relocation obviously the root should exist in 2029 * memory. However there's no reason we can't 2030 * handle the error properly here just in case. 2031 */ 2032 ret = PTR_ERR(root); 2033 goto out; 2034 } 2035 if (WARN_ON(root->reloc_root != reloc_root)) { 2036 /* 2037 * This can happen if on-disk metadata has some 2038 * corruption, e.g. bad reloc tree key offset. 2039 */ 2040 ret = -EINVAL; 2041 goto out; 2042 } 2043 ret = merge_reloc_root(rc, root); 2044 btrfs_put_root(root); 2045 if (ret) { 2046 if (list_empty(&reloc_root->root_list)) 2047 list_add_tail(&reloc_root->root_list, 2048 &reloc_roots); 2049 goto out; 2050 } 2051 } else { 2052 if (!IS_ERR(root)) { 2053 if (root->reloc_root == reloc_root) { 2054 root->reloc_root = NULL; 2055 btrfs_put_root(reloc_root); 2056 } 2057 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, 2058 &root->state); 2059 btrfs_put_root(root); 2060 } 2061 2062 list_del_init(&reloc_root->root_list); 2063 /* Don't forget to queue this reloc root for cleanup */ 2064 list_add_tail(&reloc_root->reloc_dirty_list, 2065 &rc->dirty_subvol_roots); 2066 } 2067 } 2068 2069 if (found) { 2070 found = 0; 2071 goto again; 2072 } 2073 out: 2074 if (ret) { 2075 btrfs_handle_fs_error(fs_info, ret, NULL); 2076 free_reloc_roots(&reloc_roots); 2077 2078 /* new reloc root may be added */ 2079 mutex_lock(&fs_info->reloc_mutex); 2080 list_splice_init(&rc->reloc_roots, &reloc_roots); 2081 mutex_unlock(&fs_info->reloc_mutex); 2082 free_reloc_roots(&reloc_roots); 2083 } 2084 2085 /* 2086 * We used to have 2087 * 2088 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root)); 2089 * 2090 * here, but it's wrong. If we fail to start the transaction in 2091 * prepare_to_merge() we will have only 0 ref reloc roots, none of which 2092 * have actually been removed from the reloc_root_tree rb tree. This is 2093 * fine because we're bailing here, and we hold a reference on the root 2094 * for the list that holds it, so these roots will be cleaned up when we 2095 * do the reloc_dirty_list afterwards. Meanwhile the root->reloc_root 2096 * will be cleaned up on unmount. 2097 * 2098 * The remaining nodes will be cleaned up by free_reloc_control. 2099 */ 2100 } 2101 2102 static void free_block_list(struct rb_root *blocks) 2103 { 2104 struct tree_block *block; 2105 struct rb_node *rb_node; 2106 while ((rb_node = rb_first(blocks))) { 2107 block = rb_entry(rb_node, struct tree_block, rb_node); 2108 rb_erase(rb_node, blocks); 2109 kfree(block); 2110 } 2111 } 2112 2113 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans, 2114 struct btrfs_root *reloc_root) 2115 { 2116 struct btrfs_fs_info *fs_info = reloc_root->fs_info; 2117 struct btrfs_root *root; 2118 int ret; 2119 2120 if (reloc_root->last_trans == trans->transid) 2121 return 0; 2122 2123 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false); 2124 2125 /* 2126 * This should succeed, since we can't have a reloc root without having 2127 * already looked up the actual root and created the reloc root for this 2128 * root. 2129 * 2130 * However if there's some sort of corruption where we have a ref to a 2131 * reloc root without a corresponding root this could return ENOENT. 2132 */ 2133 if (IS_ERR(root)) { 2134 ASSERT(0); 2135 return PTR_ERR(root); 2136 } 2137 if (root->reloc_root != reloc_root) { 2138 ASSERT(0); 2139 btrfs_err(fs_info, 2140 "root %llu has two reloc roots associated with it", 2141 reloc_root->root_key.offset); 2142 btrfs_put_root(root); 2143 return -EUCLEAN; 2144 } 2145 ret = btrfs_record_root_in_trans(trans, root); 2146 btrfs_put_root(root); 2147 2148 return ret; 2149 } 2150 2151 static noinline_for_stack 2152 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans, 2153 struct reloc_control *rc, 2154 struct btrfs_backref_node *node, 2155 struct btrfs_backref_edge *edges[]) 2156 { 2157 struct btrfs_backref_node *next; 2158 struct btrfs_root *root; 2159 int index = 0; 2160 int ret; 2161 2162 next = node; 2163 while (1) { 2164 cond_resched(); 2165 next = walk_up_backref(next, edges, &index); 2166 root = next->root; 2167 2168 /* 2169 * If there is no root, then our references for this block are 2170 * incomplete, as we should be able to walk all the way up to a 2171 * block that is owned by a root. 2172 * 2173 * This path is only for SHAREABLE roots, so if we come upon a 2174 * non-SHAREABLE root then we have backrefs that resolve 2175 * improperly. 2176 * 2177 * Both of these cases indicate file system corruption, or a bug 2178 * in the backref walking code. 2179 */ 2180 if (!root) { 2181 ASSERT(0); 2182 btrfs_err(trans->fs_info, 2183 "bytenr %llu doesn't have a backref path ending in a root", 2184 node->bytenr); 2185 return ERR_PTR(-EUCLEAN); 2186 } 2187 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) { 2188 ASSERT(0); 2189 btrfs_err(trans->fs_info, 2190 "bytenr %llu has multiple refs with one ending in a non-shareable root", 2191 node->bytenr); 2192 return ERR_PTR(-EUCLEAN); 2193 } 2194 2195 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 2196 ret = record_reloc_root_in_trans(trans, root); 2197 if (ret) 2198 return ERR_PTR(ret); 2199 break; 2200 } 2201 2202 ret = btrfs_record_root_in_trans(trans, root); 2203 if (ret) 2204 return ERR_PTR(ret); 2205 root = root->reloc_root; 2206 2207 /* 2208 * We could have raced with another thread which failed, so 2209 * root->reloc_root may not be set, return ENOENT in this case. 2210 */ 2211 if (!root) 2212 return ERR_PTR(-ENOENT); 2213 2214 if (next->new_bytenr != root->node->start) { 2215 /* 2216 * We just created the reloc root, so we shouldn't have 2217 * ->new_bytenr set and this shouldn't be in the changed 2218 * list. If it is then we have multiple roots pointing 2219 * at the same bytenr which indicates corruption, or 2220 * we've made a mistake in the backref walking code. 2221 */ 2222 ASSERT(next->new_bytenr == 0); 2223 ASSERT(list_empty(&next->list)); 2224 if (next->new_bytenr || !list_empty(&next->list)) { 2225 btrfs_err(trans->fs_info, 2226 "bytenr %llu possibly has multiple roots pointing at the same bytenr %llu", 2227 node->bytenr, next->bytenr); 2228 return ERR_PTR(-EUCLEAN); 2229 } 2230 2231 next->new_bytenr = root->node->start; 2232 btrfs_put_root(next->root); 2233 next->root = btrfs_grab_root(root); 2234 ASSERT(next->root); 2235 list_add_tail(&next->list, 2236 &rc->backref_cache.changed); 2237 mark_block_processed(rc, next); 2238 break; 2239 } 2240 2241 WARN_ON(1); 2242 root = NULL; 2243 next = walk_down_backref(edges, &index); 2244 if (!next || next->level <= node->level) 2245 break; 2246 } 2247 if (!root) { 2248 /* 2249 * This can happen if there's fs corruption or if there's a bug 2250 * in the backref lookup code. 2251 */ 2252 ASSERT(0); 2253 return ERR_PTR(-ENOENT); 2254 } 2255 2256 next = node; 2257 /* setup backref node path for btrfs_reloc_cow_block */ 2258 while (1) { 2259 rc->backref_cache.path[next->level] = next; 2260 if (--index < 0) 2261 break; 2262 next = edges[index]->node[UPPER]; 2263 } 2264 return root; 2265 } 2266 2267 /* 2268 * Select a tree root for relocation. 2269 * 2270 * Return NULL if the block is not shareable. We should use do_relocation() in 2271 * this case. 2272 * 2273 * Return a tree root pointer if the block is shareable. 2274 * Return -ENOENT if the block is root of reloc tree. 2275 */ 2276 static noinline_for_stack 2277 struct btrfs_root *select_one_root(struct btrfs_backref_node *node) 2278 { 2279 struct btrfs_backref_node *next; 2280 struct btrfs_root *root; 2281 struct btrfs_root *fs_root = NULL; 2282 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2283 int index = 0; 2284 2285 next = node; 2286 while (1) { 2287 cond_resched(); 2288 next = walk_up_backref(next, edges, &index); 2289 root = next->root; 2290 2291 /* 2292 * This can occur if we have incomplete extent refs leading all 2293 * the way up a particular path, in this case return -EUCLEAN. 2294 */ 2295 if (!root) 2296 return ERR_PTR(-EUCLEAN); 2297 2298 /* No other choice for non-shareable tree */ 2299 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 2300 return root; 2301 2302 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) 2303 fs_root = root; 2304 2305 if (next != node) 2306 return NULL; 2307 2308 next = walk_down_backref(edges, &index); 2309 if (!next || next->level <= node->level) 2310 break; 2311 } 2312 2313 if (!fs_root) 2314 return ERR_PTR(-ENOENT); 2315 return fs_root; 2316 } 2317 2318 static noinline_for_stack 2319 u64 calcu_metadata_size(struct reloc_control *rc, 2320 struct btrfs_backref_node *node, int reserve) 2321 { 2322 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2323 struct btrfs_backref_node *next = node; 2324 struct btrfs_backref_edge *edge; 2325 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2326 u64 num_bytes = 0; 2327 int index = 0; 2328 2329 BUG_ON(reserve && node->processed); 2330 2331 while (next) { 2332 cond_resched(); 2333 while (1) { 2334 if (next->processed && (reserve || next != node)) 2335 break; 2336 2337 num_bytes += fs_info->nodesize; 2338 2339 if (list_empty(&next->upper)) 2340 break; 2341 2342 edge = list_entry(next->upper.next, 2343 struct btrfs_backref_edge, list[LOWER]); 2344 edges[index++] = edge; 2345 next = edge->node[UPPER]; 2346 } 2347 next = walk_down_backref(edges, &index); 2348 } 2349 return num_bytes; 2350 } 2351 2352 static int reserve_metadata_space(struct btrfs_trans_handle *trans, 2353 struct reloc_control *rc, 2354 struct btrfs_backref_node *node) 2355 { 2356 struct btrfs_root *root = rc->extent_root; 2357 struct btrfs_fs_info *fs_info = root->fs_info; 2358 u64 num_bytes; 2359 int ret; 2360 u64 tmp; 2361 2362 num_bytes = calcu_metadata_size(rc, node, 1) * 2; 2363 2364 trans->block_rsv = rc->block_rsv; 2365 rc->reserved_bytes += num_bytes; 2366 2367 /* 2368 * We are under a transaction here so we can only do limited flushing. 2369 * If we get an enospc just kick back -EAGAIN so we know to drop the 2370 * transaction and try to refill when we can flush all the things. 2371 */ 2372 ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv, num_bytes, 2373 BTRFS_RESERVE_FLUSH_LIMIT); 2374 if (ret) { 2375 tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES; 2376 while (tmp <= rc->reserved_bytes) 2377 tmp <<= 1; 2378 /* 2379 * only one thread can access block_rsv at this point, 2380 * so we don't need hold lock to protect block_rsv. 2381 * we expand more reservation size here to allow enough 2382 * space for relocation and we will return earlier in 2383 * enospc case. 2384 */ 2385 rc->block_rsv->size = tmp + fs_info->nodesize * 2386 RELOCATION_RESERVED_NODES; 2387 return -EAGAIN; 2388 } 2389 2390 return 0; 2391 } 2392 2393 /* 2394 * relocate a block tree, and then update pointers in upper level 2395 * blocks that reference the block to point to the new location. 2396 * 2397 * if called by link_to_upper, the block has already been relocated. 2398 * in that case this function just updates pointers. 2399 */ 2400 static int do_relocation(struct btrfs_trans_handle *trans, 2401 struct reloc_control *rc, 2402 struct btrfs_backref_node *node, 2403 struct btrfs_key *key, 2404 struct btrfs_path *path, int lowest) 2405 { 2406 struct btrfs_backref_node *upper; 2407 struct btrfs_backref_edge *edge; 2408 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2409 struct btrfs_root *root; 2410 struct extent_buffer *eb; 2411 u32 blocksize; 2412 u64 bytenr; 2413 int slot; 2414 int ret = 0; 2415 2416 /* 2417 * If we are lowest then this is the first time we're processing this 2418 * block, and thus shouldn't have an eb associated with it yet. 2419 */ 2420 ASSERT(!lowest || !node->eb); 2421 2422 path->lowest_level = node->level + 1; 2423 rc->backref_cache.path[node->level] = node; 2424 list_for_each_entry(edge, &node->upper, list[LOWER]) { 2425 struct btrfs_ref ref = { 0 }; 2426 2427 cond_resched(); 2428 2429 upper = edge->node[UPPER]; 2430 root = select_reloc_root(trans, rc, upper, edges); 2431 if (IS_ERR(root)) { 2432 ret = PTR_ERR(root); 2433 goto next; 2434 } 2435 2436 if (upper->eb && !upper->locked) { 2437 if (!lowest) { 2438 ret = btrfs_bin_search(upper->eb, 0, key, &slot); 2439 if (ret < 0) 2440 goto next; 2441 BUG_ON(ret); 2442 bytenr = btrfs_node_blockptr(upper->eb, slot); 2443 if (node->eb->start == bytenr) 2444 goto next; 2445 } 2446 btrfs_backref_drop_node_buffer(upper); 2447 } 2448 2449 if (!upper->eb) { 2450 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2451 if (ret) { 2452 if (ret > 0) 2453 ret = -ENOENT; 2454 2455 btrfs_release_path(path); 2456 break; 2457 } 2458 2459 if (!upper->eb) { 2460 upper->eb = path->nodes[upper->level]; 2461 path->nodes[upper->level] = NULL; 2462 } else { 2463 BUG_ON(upper->eb != path->nodes[upper->level]); 2464 } 2465 2466 upper->locked = 1; 2467 path->locks[upper->level] = 0; 2468 2469 slot = path->slots[upper->level]; 2470 btrfs_release_path(path); 2471 } else { 2472 ret = btrfs_bin_search(upper->eb, 0, key, &slot); 2473 if (ret < 0) 2474 goto next; 2475 BUG_ON(ret); 2476 } 2477 2478 bytenr = btrfs_node_blockptr(upper->eb, slot); 2479 if (lowest) { 2480 if (bytenr != node->bytenr) { 2481 btrfs_err(root->fs_info, 2482 "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu", 2483 bytenr, node->bytenr, slot, 2484 upper->eb->start); 2485 ret = -EIO; 2486 goto next; 2487 } 2488 } else { 2489 if (node->eb->start == bytenr) 2490 goto next; 2491 } 2492 2493 blocksize = root->fs_info->nodesize; 2494 eb = btrfs_read_node_slot(upper->eb, slot); 2495 if (IS_ERR(eb)) { 2496 ret = PTR_ERR(eb); 2497 goto next; 2498 } 2499 btrfs_tree_lock(eb); 2500 2501 if (!node->eb) { 2502 ret = btrfs_cow_block(trans, root, eb, upper->eb, 2503 slot, &eb, BTRFS_NESTING_COW); 2504 btrfs_tree_unlock(eb); 2505 free_extent_buffer(eb); 2506 if (ret < 0) 2507 goto next; 2508 /* 2509 * We've just COWed this block, it should have updated 2510 * the correct backref node entry. 2511 */ 2512 ASSERT(node->eb == eb); 2513 } else { 2514 btrfs_set_node_blockptr(upper->eb, slot, 2515 node->eb->start); 2516 btrfs_set_node_ptr_generation(upper->eb, slot, 2517 trans->transid); 2518 btrfs_mark_buffer_dirty(trans, upper->eb); 2519 2520 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, 2521 node->eb->start, blocksize, 2522 upper->eb->start, 2523 btrfs_header_owner(upper->eb)); 2524 btrfs_init_tree_ref(&ref, node->level, 2525 btrfs_header_owner(upper->eb), 2526 root->root_key.objectid, false); 2527 ret = btrfs_inc_extent_ref(trans, &ref); 2528 if (!ret) 2529 ret = btrfs_drop_subtree(trans, root, eb, 2530 upper->eb); 2531 if (ret) 2532 btrfs_abort_transaction(trans, ret); 2533 } 2534 next: 2535 if (!upper->pending) 2536 btrfs_backref_drop_node_buffer(upper); 2537 else 2538 btrfs_backref_unlock_node_buffer(upper); 2539 if (ret) 2540 break; 2541 } 2542 2543 if (!ret && node->pending) { 2544 btrfs_backref_drop_node_buffer(node); 2545 list_move_tail(&node->list, &rc->backref_cache.changed); 2546 node->pending = 0; 2547 } 2548 2549 path->lowest_level = 0; 2550 2551 /* 2552 * We should have allocated all of our space in the block rsv and thus 2553 * shouldn't ENOSPC. 2554 */ 2555 ASSERT(ret != -ENOSPC); 2556 return ret; 2557 } 2558 2559 static int link_to_upper(struct btrfs_trans_handle *trans, 2560 struct reloc_control *rc, 2561 struct btrfs_backref_node *node, 2562 struct btrfs_path *path) 2563 { 2564 struct btrfs_key key; 2565 2566 btrfs_node_key_to_cpu(node->eb, &key, 0); 2567 return do_relocation(trans, rc, node, &key, path, 0); 2568 } 2569 2570 static int finish_pending_nodes(struct btrfs_trans_handle *trans, 2571 struct reloc_control *rc, 2572 struct btrfs_path *path, int err) 2573 { 2574 LIST_HEAD(list); 2575 struct btrfs_backref_cache *cache = &rc->backref_cache; 2576 struct btrfs_backref_node *node; 2577 int level; 2578 int ret; 2579 2580 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 2581 while (!list_empty(&cache->pending[level])) { 2582 node = list_entry(cache->pending[level].next, 2583 struct btrfs_backref_node, list); 2584 list_move_tail(&node->list, &list); 2585 BUG_ON(!node->pending); 2586 2587 if (!err) { 2588 ret = link_to_upper(trans, rc, node, path); 2589 if (ret < 0) 2590 err = ret; 2591 } 2592 } 2593 list_splice_init(&list, &cache->pending[level]); 2594 } 2595 return err; 2596 } 2597 2598 /* 2599 * mark a block and all blocks directly/indirectly reference the block 2600 * as processed. 2601 */ 2602 static void update_processed_blocks(struct reloc_control *rc, 2603 struct btrfs_backref_node *node) 2604 { 2605 struct btrfs_backref_node *next = node; 2606 struct btrfs_backref_edge *edge; 2607 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2608 int index = 0; 2609 2610 while (next) { 2611 cond_resched(); 2612 while (1) { 2613 if (next->processed) 2614 break; 2615 2616 mark_block_processed(rc, next); 2617 2618 if (list_empty(&next->upper)) 2619 break; 2620 2621 edge = list_entry(next->upper.next, 2622 struct btrfs_backref_edge, list[LOWER]); 2623 edges[index++] = edge; 2624 next = edge->node[UPPER]; 2625 } 2626 next = walk_down_backref(edges, &index); 2627 } 2628 } 2629 2630 static int tree_block_processed(u64 bytenr, struct reloc_control *rc) 2631 { 2632 u32 blocksize = rc->extent_root->fs_info->nodesize; 2633 2634 if (test_range_bit(&rc->processed_blocks, bytenr, 2635 bytenr + blocksize - 1, EXTENT_DIRTY, NULL)) 2636 return 1; 2637 return 0; 2638 } 2639 2640 static int get_tree_block_key(struct btrfs_fs_info *fs_info, 2641 struct tree_block *block) 2642 { 2643 struct btrfs_tree_parent_check check = { 2644 .level = block->level, 2645 .owner_root = block->owner, 2646 .transid = block->key.offset 2647 }; 2648 struct extent_buffer *eb; 2649 2650 eb = read_tree_block(fs_info, block->bytenr, &check); 2651 if (IS_ERR(eb)) 2652 return PTR_ERR(eb); 2653 if (!extent_buffer_uptodate(eb)) { 2654 free_extent_buffer(eb); 2655 return -EIO; 2656 } 2657 if (block->level == 0) 2658 btrfs_item_key_to_cpu(eb, &block->key, 0); 2659 else 2660 btrfs_node_key_to_cpu(eb, &block->key, 0); 2661 free_extent_buffer(eb); 2662 block->key_ready = true; 2663 return 0; 2664 } 2665 2666 /* 2667 * helper function to relocate a tree block 2668 */ 2669 static int relocate_tree_block(struct btrfs_trans_handle *trans, 2670 struct reloc_control *rc, 2671 struct btrfs_backref_node *node, 2672 struct btrfs_key *key, 2673 struct btrfs_path *path) 2674 { 2675 struct btrfs_root *root; 2676 int ret = 0; 2677 2678 if (!node) 2679 return 0; 2680 2681 /* 2682 * If we fail here we want to drop our backref_node because we are going 2683 * to start over and regenerate the tree for it. 2684 */ 2685 ret = reserve_metadata_space(trans, rc, node); 2686 if (ret) 2687 goto out; 2688 2689 BUG_ON(node->processed); 2690 root = select_one_root(node); 2691 if (IS_ERR(root)) { 2692 ret = PTR_ERR(root); 2693 2694 /* See explanation in select_one_root for the -EUCLEAN case. */ 2695 ASSERT(ret == -ENOENT); 2696 if (ret == -ENOENT) { 2697 ret = 0; 2698 update_processed_blocks(rc, node); 2699 } 2700 goto out; 2701 } 2702 2703 if (root) { 2704 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) { 2705 /* 2706 * This block was the root block of a root, and this is 2707 * the first time we're processing the block and thus it 2708 * should not have had the ->new_bytenr modified and 2709 * should have not been included on the changed list. 2710 * 2711 * However in the case of corruption we could have 2712 * multiple refs pointing to the same block improperly, 2713 * and thus we would trip over these checks. ASSERT() 2714 * for the developer case, because it could indicate a 2715 * bug in the backref code, however error out for a 2716 * normal user in the case of corruption. 2717 */ 2718 ASSERT(node->new_bytenr == 0); 2719 ASSERT(list_empty(&node->list)); 2720 if (node->new_bytenr || !list_empty(&node->list)) { 2721 btrfs_err(root->fs_info, 2722 "bytenr %llu has improper references to it", 2723 node->bytenr); 2724 ret = -EUCLEAN; 2725 goto out; 2726 } 2727 ret = btrfs_record_root_in_trans(trans, root); 2728 if (ret) 2729 goto out; 2730 /* 2731 * Another thread could have failed, need to check if we 2732 * have reloc_root actually set. 2733 */ 2734 if (!root->reloc_root) { 2735 ret = -ENOENT; 2736 goto out; 2737 } 2738 root = root->reloc_root; 2739 node->new_bytenr = root->node->start; 2740 btrfs_put_root(node->root); 2741 node->root = btrfs_grab_root(root); 2742 ASSERT(node->root); 2743 list_add_tail(&node->list, &rc->backref_cache.changed); 2744 } else { 2745 path->lowest_level = node->level; 2746 if (root == root->fs_info->chunk_root) 2747 btrfs_reserve_chunk_metadata(trans, false); 2748 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2749 btrfs_release_path(path); 2750 if (root == root->fs_info->chunk_root) 2751 btrfs_trans_release_chunk_metadata(trans); 2752 if (ret > 0) 2753 ret = 0; 2754 } 2755 if (!ret) 2756 update_processed_blocks(rc, node); 2757 } else { 2758 ret = do_relocation(trans, rc, node, key, path, 1); 2759 } 2760 out: 2761 if (ret || node->level == 0 || node->cowonly) 2762 btrfs_backref_cleanup_node(&rc->backref_cache, node); 2763 return ret; 2764 } 2765 2766 /* 2767 * relocate a list of blocks 2768 */ 2769 static noinline_for_stack 2770 int relocate_tree_blocks(struct btrfs_trans_handle *trans, 2771 struct reloc_control *rc, struct rb_root *blocks) 2772 { 2773 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2774 struct btrfs_backref_node *node; 2775 struct btrfs_path *path; 2776 struct tree_block *block; 2777 struct tree_block *next; 2778 int ret; 2779 int err = 0; 2780 2781 path = btrfs_alloc_path(); 2782 if (!path) { 2783 err = -ENOMEM; 2784 goto out_free_blocks; 2785 } 2786 2787 /* Kick in readahead for tree blocks with missing keys */ 2788 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { 2789 if (!block->key_ready) 2790 btrfs_readahead_tree_block(fs_info, block->bytenr, 2791 block->owner, 0, 2792 block->level); 2793 } 2794 2795 /* Get first keys */ 2796 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { 2797 if (!block->key_ready) { 2798 err = get_tree_block_key(fs_info, block); 2799 if (err) 2800 goto out_free_path; 2801 } 2802 } 2803 2804 /* Do tree relocation */ 2805 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { 2806 node = build_backref_tree(trans, rc, &block->key, 2807 block->level, block->bytenr); 2808 if (IS_ERR(node)) { 2809 err = PTR_ERR(node); 2810 goto out; 2811 } 2812 2813 ret = relocate_tree_block(trans, rc, node, &block->key, 2814 path); 2815 if (ret < 0) { 2816 err = ret; 2817 break; 2818 } 2819 } 2820 out: 2821 err = finish_pending_nodes(trans, rc, path, err); 2822 2823 out_free_path: 2824 btrfs_free_path(path); 2825 out_free_blocks: 2826 free_block_list(blocks); 2827 return err; 2828 } 2829 2830 static noinline_for_stack int prealloc_file_extent_cluster( 2831 struct btrfs_inode *inode, 2832 const struct file_extent_cluster *cluster) 2833 { 2834 u64 alloc_hint = 0; 2835 u64 start; 2836 u64 end; 2837 u64 offset = inode->index_cnt; 2838 u64 num_bytes; 2839 int nr; 2840 int ret = 0; 2841 u64 i_size = i_size_read(&inode->vfs_inode); 2842 u64 prealloc_start = cluster->start - offset; 2843 u64 prealloc_end = cluster->end - offset; 2844 u64 cur_offset = prealloc_start; 2845 2846 /* 2847 * For subpage case, previous i_size may not be aligned to PAGE_SIZE. 2848 * This means the range [i_size, PAGE_END + 1) is filled with zeros by 2849 * btrfs_do_readpage() call of previously relocated file cluster. 2850 * 2851 * If the current cluster starts in the above range, btrfs_do_readpage() 2852 * will skip the read, and relocate_one_page() will later writeback 2853 * the padding zeros as new data, causing data corruption. 2854 * 2855 * Here we have to manually invalidate the range (i_size, PAGE_END + 1). 2856 */ 2857 if (!PAGE_ALIGNED(i_size)) { 2858 struct address_space *mapping = inode->vfs_inode.i_mapping; 2859 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2860 const u32 sectorsize = fs_info->sectorsize; 2861 struct page *page; 2862 2863 ASSERT(sectorsize < PAGE_SIZE); 2864 ASSERT(IS_ALIGNED(i_size, sectorsize)); 2865 2866 /* 2867 * Subpage can't handle page with DIRTY but without UPTODATE 2868 * bit as it can lead to the following deadlock: 2869 * 2870 * btrfs_read_folio() 2871 * | Page already *locked* 2872 * |- btrfs_lock_and_flush_ordered_range() 2873 * |- btrfs_start_ordered_extent() 2874 * |- extent_write_cache_pages() 2875 * |- lock_page() 2876 * We try to lock the page we already hold. 2877 * 2878 * Here we just writeback the whole data reloc inode, so that 2879 * we will be ensured to have no dirty range in the page, and 2880 * are safe to clear the uptodate bits. 2881 * 2882 * This shouldn't cause too much overhead, as we need to write 2883 * the data back anyway. 2884 */ 2885 ret = filemap_write_and_wait(mapping); 2886 if (ret < 0) 2887 return ret; 2888 2889 clear_extent_bits(&inode->io_tree, i_size, 2890 round_up(i_size, PAGE_SIZE) - 1, 2891 EXTENT_UPTODATE); 2892 page = find_lock_page(mapping, i_size >> PAGE_SHIFT); 2893 /* 2894 * If page is freed we don't need to do anything then, as we 2895 * will re-read the whole page anyway. 2896 */ 2897 if (page) { 2898 btrfs_subpage_clear_uptodate(fs_info, page, i_size, 2899 round_up(i_size, PAGE_SIZE) - i_size); 2900 unlock_page(page); 2901 put_page(page); 2902 } 2903 } 2904 2905 BUG_ON(cluster->start != cluster->boundary[0]); 2906 ret = btrfs_alloc_data_chunk_ondemand(inode, 2907 prealloc_end + 1 - prealloc_start); 2908 if (ret) 2909 return ret; 2910 2911 btrfs_inode_lock(inode, 0); 2912 for (nr = 0; nr < cluster->nr; nr++) { 2913 struct extent_state *cached_state = NULL; 2914 2915 start = cluster->boundary[nr] - offset; 2916 if (nr + 1 < cluster->nr) 2917 end = cluster->boundary[nr + 1] - 1 - offset; 2918 else 2919 end = cluster->end - offset; 2920 2921 lock_extent(&inode->io_tree, start, end, &cached_state); 2922 num_bytes = end + 1 - start; 2923 ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start, 2924 num_bytes, num_bytes, 2925 end + 1, &alloc_hint); 2926 cur_offset = end + 1; 2927 unlock_extent(&inode->io_tree, start, end, &cached_state); 2928 if (ret) 2929 break; 2930 } 2931 btrfs_inode_unlock(inode, 0); 2932 2933 if (cur_offset < prealloc_end) 2934 btrfs_free_reserved_data_space_noquota(inode->root->fs_info, 2935 prealloc_end + 1 - cur_offset); 2936 return ret; 2937 } 2938 2939 static noinline_for_stack int setup_relocation_extent_mapping(struct inode *inode, 2940 u64 start, u64 end, u64 block_start) 2941 { 2942 struct extent_map *em; 2943 struct extent_state *cached_state = NULL; 2944 int ret = 0; 2945 2946 em = alloc_extent_map(); 2947 if (!em) 2948 return -ENOMEM; 2949 2950 em->start = start; 2951 em->len = end + 1 - start; 2952 em->block_len = em->len; 2953 em->block_start = block_start; 2954 set_bit(EXTENT_FLAG_PINNED, &em->flags); 2955 2956 lock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state); 2957 ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, false); 2958 unlock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state); 2959 free_extent_map(em); 2960 2961 return ret; 2962 } 2963 2964 /* 2965 * Allow error injection to test balance/relocation cancellation 2966 */ 2967 noinline int btrfs_should_cancel_balance(const struct btrfs_fs_info *fs_info) 2968 { 2969 return atomic_read(&fs_info->balance_cancel_req) || 2970 atomic_read(&fs_info->reloc_cancel_req) || 2971 fatal_signal_pending(current); 2972 } 2973 ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE); 2974 2975 static u64 get_cluster_boundary_end(const struct file_extent_cluster *cluster, 2976 int cluster_nr) 2977 { 2978 /* Last extent, use cluster end directly */ 2979 if (cluster_nr >= cluster->nr - 1) 2980 return cluster->end; 2981 2982 /* Use next boundary start*/ 2983 return cluster->boundary[cluster_nr + 1] - 1; 2984 } 2985 2986 static int relocate_one_page(struct inode *inode, struct file_ra_state *ra, 2987 const struct file_extent_cluster *cluster, 2988 int *cluster_nr, unsigned long page_index) 2989 { 2990 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2991 u64 offset = BTRFS_I(inode)->index_cnt; 2992 const unsigned long last_index = (cluster->end - offset) >> PAGE_SHIFT; 2993 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 2994 struct page *page; 2995 u64 page_start; 2996 u64 page_end; 2997 u64 cur; 2998 int ret; 2999 3000 ASSERT(page_index <= last_index); 3001 page = find_lock_page(inode->i_mapping, page_index); 3002 if (!page) { 3003 page_cache_sync_readahead(inode->i_mapping, ra, NULL, 3004 page_index, last_index + 1 - page_index); 3005 page = find_or_create_page(inode->i_mapping, page_index, mask); 3006 if (!page) 3007 return -ENOMEM; 3008 } 3009 3010 if (PageReadahead(page)) 3011 page_cache_async_readahead(inode->i_mapping, ra, NULL, 3012 page_folio(page), page_index, 3013 last_index + 1 - page_index); 3014 3015 if (!PageUptodate(page)) { 3016 btrfs_read_folio(NULL, page_folio(page)); 3017 lock_page(page); 3018 if (!PageUptodate(page)) { 3019 ret = -EIO; 3020 goto release_page; 3021 } 3022 } 3023 3024 /* 3025 * We could have lost page private when we dropped the lock to read the 3026 * page above, make sure we set_page_extent_mapped here so we have any 3027 * of the subpage blocksize stuff we need in place. 3028 */ 3029 ret = set_page_extent_mapped(page); 3030 if (ret < 0) 3031 goto release_page; 3032 3033 page_start = page_offset(page); 3034 page_end = page_start + PAGE_SIZE - 1; 3035 3036 /* 3037 * Start from the cluster, as for subpage case, the cluster can start 3038 * inside the page. 3039 */ 3040 cur = max(page_start, cluster->boundary[*cluster_nr] - offset); 3041 while (cur <= page_end) { 3042 struct extent_state *cached_state = NULL; 3043 u64 extent_start = cluster->boundary[*cluster_nr] - offset; 3044 u64 extent_end = get_cluster_boundary_end(cluster, 3045 *cluster_nr) - offset; 3046 u64 clamped_start = max(page_start, extent_start); 3047 u64 clamped_end = min(page_end, extent_end); 3048 u32 clamped_len = clamped_end + 1 - clamped_start; 3049 3050 /* Reserve metadata for this range */ 3051 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), 3052 clamped_len, clamped_len, 3053 false); 3054 if (ret) 3055 goto release_page; 3056 3057 /* Mark the range delalloc and dirty for later writeback */ 3058 lock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end, 3059 &cached_state); 3060 ret = btrfs_set_extent_delalloc(BTRFS_I(inode), clamped_start, 3061 clamped_end, 0, &cached_state); 3062 if (ret) { 3063 clear_extent_bit(&BTRFS_I(inode)->io_tree, 3064 clamped_start, clamped_end, 3065 EXTENT_LOCKED | EXTENT_BOUNDARY, 3066 &cached_state); 3067 btrfs_delalloc_release_metadata(BTRFS_I(inode), 3068 clamped_len, true); 3069 btrfs_delalloc_release_extents(BTRFS_I(inode), 3070 clamped_len); 3071 goto release_page; 3072 } 3073 btrfs_page_set_dirty(fs_info, page, clamped_start, clamped_len); 3074 3075 /* 3076 * Set the boundary if it's inside the page. 3077 * Data relocation requires the destination extents to have the 3078 * same size as the source. 3079 * EXTENT_BOUNDARY bit prevents current extent from being merged 3080 * with previous extent. 3081 */ 3082 if (in_range(cluster->boundary[*cluster_nr] - offset, 3083 page_start, PAGE_SIZE)) { 3084 u64 boundary_start = cluster->boundary[*cluster_nr] - 3085 offset; 3086 u64 boundary_end = boundary_start + 3087 fs_info->sectorsize - 1; 3088 3089 set_extent_bit(&BTRFS_I(inode)->io_tree, 3090 boundary_start, boundary_end, 3091 EXTENT_BOUNDARY, NULL); 3092 } 3093 unlock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end, 3094 &cached_state); 3095 btrfs_delalloc_release_extents(BTRFS_I(inode), clamped_len); 3096 cur += clamped_len; 3097 3098 /* Crossed extent end, go to next extent */ 3099 if (cur >= extent_end) { 3100 (*cluster_nr)++; 3101 /* Just finished the last extent of the cluster, exit. */ 3102 if (*cluster_nr >= cluster->nr) 3103 break; 3104 } 3105 } 3106 unlock_page(page); 3107 put_page(page); 3108 3109 balance_dirty_pages_ratelimited(inode->i_mapping); 3110 btrfs_throttle(fs_info); 3111 if (btrfs_should_cancel_balance(fs_info)) 3112 ret = -ECANCELED; 3113 return ret; 3114 3115 release_page: 3116 unlock_page(page); 3117 put_page(page); 3118 return ret; 3119 } 3120 3121 static int relocate_file_extent_cluster(struct inode *inode, 3122 const struct file_extent_cluster *cluster) 3123 { 3124 u64 offset = BTRFS_I(inode)->index_cnt; 3125 unsigned long index; 3126 unsigned long last_index; 3127 struct file_ra_state *ra; 3128 int cluster_nr = 0; 3129 int ret = 0; 3130 3131 if (!cluster->nr) 3132 return 0; 3133 3134 ra = kzalloc(sizeof(*ra), GFP_NOFS); 3135 if (!ra) 3136 return -ENOMEM; 3137 3138 ret = prealloc_file_extent_cluster(BTRFS_I(inode), cluster); 3139 if (ret) 3140 goto out; 3141 3142 file_ra_state_init(ra, inode->i_mapping); 3143 3144 ret = setup_relocation_extent_mapping(inode, cluster->start - offset, 3145 cluster->end - offset, cluster->start); 3146 if (ret) 3147 goto out; 3148 3149 last_index = (cluster->end - offset) >> PAGE_SHIFT; 3150 for (index = (cluster->start - offset) >> PAGE_SHIFT; 3151 index <= last_index && !ret; index++) 3152 ret = relocate_one_page(inode, ra, cluster, &cluster_nr, index); 3153 if (ret == 0) 3154 WARN_ON(cluster_nr != cluster->nr); 3155 out: 3156 kfree(ra); 3157 return ret; 3158 } 3159 3160 static noinline_for_stack int relocate_data_extent(struct inode *inode, 3161 const struct btrfs_key *extent_key, 3162 struct file_extent_cluster *cluster) 3163 { 3164 int ret; 3165 struct btrfs_root *root = BTRFS_I(inode)->root; 3166 3167 if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) { 3168 ret = relocate_file_extent_cluster(inode, cluster); 3169 if (ret) 3170 return ret; 3171 cluster->nr = 0; 3172 } 3173 3174 /* 3175 * Under simple quotas, we set root->relocation_src_root when we find 3176 * the extent. If adjacent extents have different owners, we can't merge 3177 * them while relocating. Handle this by storing the owning root that 3178 * started a cluster and if we see an extent from a different root break 3179 * cluster formation (just like the above case of non-adjacent extents). 3180 * 3181 * Without simple quotas, relocation_src_root is always 0, so we should 3182 * never see a mismatch, and it should have no effect on relocation 3183 * clusters. 3184 */ 3185 if (cluster->nr > 0 && cluster->owning_root != root->relocation_src_root) { 3186 u64 tmp = root->relocation_src_root; 3187 3188 /* 3189 * root->relocation_src_root is the state that actually affects 3190 * the preallocation we do here, so set it to the root owning 3191 * the cluster we need to relocate. 3192 */ 3193 root->relocation_src_root = cluster->owning_root; 3194 ret = relocate_file_extent_cluster(inode, cluster); 3195 if (ret) 3196 return ret; 3197 cluster->nr = 0; 3198 /* And reset it back for the current extent's owning root. */ 3199 root->relocation_src_root = tmp; 3200 } 3201 3202 if (!cluster->nr) { 3203 cluster->start = extent_key->objectid; 3204 cluster->owning_root = root->relocation_src_root; 3205 } 3206 else 3207 BUG_ON(cluster->nr >= MAX_EXTENTS); 3208 cluster->end = extent_key->objectid + extent_key->offset - 1; 3209 cluster->boundary[cluster->nr] = extent_key->objectid; 3210 cluster->nr++; 3211 3212 if (cluster->nr >= MAX_EXTENTS) { 3213 ret = relocate_file_extent_cluster(inode, cluster); 3214 if (ret) 3215 return ret; 3216 cluster->nr = 0; 3217 } 3218 return 0; 3219 } 3220 3221 /* 3222 * helper to add a tree block to the list. 3223 * the major work is getting the generation and level of the block 3224 */ 3225 static int add_tree_block(struct reloc_control *rc, 3226 const struct btrfs_key *extent_key, 3227 struct btrfs_path *path, 3228 struct rb_root *blocks) 3229 { 3230 struct extent_buffer *eb; 3231 struct btrfs_extent_item *ei; 3232 struct btrfs_tree_block_info *bi; 3233 struct tree_block *block; 3234 struct rb_node *rb_node; 3235 u32 item_size; 3236 int level = -1; 3237 u64 generation; 3238 u64 owner = 0; 3239 3240 eb = path->nodes[0]; 3241 item_size = btrfs_item_size(eb, path->slots[0]); 3242 3243 if (extent_key->type == BTRFS_METADATA_ITEM_KEY || 3244 item_size >= sizeof(*ei) + sizeof(*bi)) { 3245 unsigned long ptr = 0, end; 3246 3247 ei = btrfs_item_ptr(eb, path->slots[0], 3248 struct btrfs_extent_item); 3249 end = (unsigned long)ei + item_size; 3250 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) { 3251 bi = (struct btrfs_tree_block_info *)(ei + 1); 3252 level = btrfs_tree_block_level(eb, bi); 3253 ptr = (unsigned long)(bi + 1); 3254 } else { 3255 level = (int)extent_key->offset; 3256 ptr = (unsigned long)(ei + 1); 3257 } 3258 generation = btrfs_extent_generation(eb, ei); 3259 3260 /* 3261 * We're reading random blocks without knowing their owner ahead 3262 * of time. This is ok most of the time, as all reloc roots and 3263 * fs roots have the same lock type. However normal trees do 3264 * not, and the only way to know ahead of time is to read the 3265 * inline ref offset. We know it's an fs root if 3266 * 3267 * 1. There's more than one ref. 3268 * 2. There's a SHARED_DATA_REF_KEY set. 3269 * 3. FULL_BACKREF is set on the flags. 3270 * 3271 * Otherwise it's safe to assume that the ref offset == the 3272 * owner of this block, so we can use that when calling 3273 * read_tree_block. 3274 */ 3275 if (btrfs_extent_refs(eb, ei) == 1 && 3276 !(btrfs_extent_flags(eb, ei) & 3277 BTRFS_BLOCK_FLAG_FULL_BACKREF) && 3278 ptr < end) { 3279 struct btrfs_extent_inline_ref *iref; 3280 int type; 3281 3282 iref = (struct btrfs_extent_inline_ref *)ptr; 3283 type = btrfs_get_extent_inline_ref_type(eb, iref, 3284 BTRFS_REF_TYPE_BLOCK); 3285 if (type == BTRFS_REF_TYPE_INVALID) 3286 return -EINVAL; 3287 if (type == BTRFS_TREE_BLOCK_REF_KEY) 3288 owner = btrfs_extent_inline_ref_offset(eb, iref); 3289 } 3290 } else { 3291 btrfs_print_leaf(eb); 3292 btrfs_err(rc->block_group->fs_info, 3293 "unrecognized tree backref at tree block %llu slot %u", 3294 eb->start, path->slots[0]); 3295 btrfs_release_path(path); 3296 return -EUCLEAN; 3297 } 3298 3299 btrfs_release_path(path); 3300 3301 BUG_ON(level == -1); 3302 3303 block = kmalloc(sizeof(*block), GFP_NOFS); 3304 if (!block) 3305 return -ENOMEM; 3306 3307 block->bytenr = extent_key->objectid; 3308 block->key.objectid = rc->extent_root->fs_info->nodesize; 3309 block->key.offset = generation; 3310 block->level = level; 3311 block->key_ready = false; 3312 block->owner = owner; 3313 3314 rb_node = rb_simple_insert(blocks, block->bytenr, &block->rb_node); 3315 if (rb_node) 3316 btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr, 3317 -EEXIST); 3318 3319 return 0; 3320 } 3321 3322 /* 3323 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY 3324 */ 3325 static int __add_tree_block(struct reloc_control *rc, 3326 u64 bytenr, u32 blocksize, 3327 struct rb_root *blocks) 3328 { 3329 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3330 struct btrfs_path *path; 3331 struct btrfs_key key; 3332 int ret; 3333 bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 3334 3335 if (tree_block_processed(bytenr, rc)) 3336 return 0; 3337 3338 if (rb_simple_search(blocks, bytenr)) 3339 return 0; 3340 3341 path = btrfs_alloc_path(); 3342 if (!path) 3343 return -ENOMEM; 3344 again: 3345 key.objectid = bytenr; 3346 if (skinny) { 3347 key.type = BTRFS_METADATA_ITEM_KEY; 3348 key.offset = (u64)-1; 3349 } else { 3350 key.type = BTRFS_EXTENT_ITEM_KEY; 3351 key.offset = blocksize; 3352 } 3353 3354 path->search_commit_root = 1; 3355 path->skip_locking = 1; 3356 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0); 3357 if (ret < 0) 3358 goto out; 3359 3360 if (ret > 0 && skinny) { 3361 if (path->slots[0]) { 3362 path->slots[0]--; 3363 btrfs_item_key_to_cpu(path->nodes[0], &key, 3364 path->slots[0]); 3365 if (key.objectid == bytenr && 3366 (key.type == BTRFS_METADATA_ITEM_KEY || 3367 (key.type == BTRFS_EXTENT_ITEM_KEY && 3368 key.offset == blocksize))) 3369 ret = 0; 3370 } 3371 3372 if (ret) { 3373 skinny = false; 3374 btrfs_release_path(path); 3375 goto again; 3376 } 3377 } 3378 if (ret) { 3379 ASSERT(ret == 1); 3380 btrfs_print_leaf(path->nodes[0]); 3381 btrfs_err(fs_info, 3382 "tree block extent item (%llu) is not found in extent tree", 3383 bytenr); 3384 WARN_ON(1); 3385 ret = -EINVAL; 3386 goto out; 3387 } 3388 3389 ret = add_tree_block(rc, &key, path, blocks); 3390 out: 3391 btrfs_free_path(path); 3392 return ret; 3393 } 3394 3395 static int delete_block_group_cache(struct btrfs_fs_info *fs_info, 3396 struct btrfs_block_group *block_group, 3397 struct inode *inode, 3398 u64 ino) 3399 { 3400 struct btrfs_root *root = fs_info->tree_root; 3401 struct btrfs_trans_handle *trans; 3402 int ret = 0; 3403 3404 if (inode) 3405 goto truncate; 3406 3407 inode = btrfs_iget(fs_info->sb, ino, root); 3408 if (IS_ERR(inode)) 3409 return -ENOENT; 3410 3411 truncate: 3412 ret = btrfs_check_trunc_cache_free_space(fs_info, 3413 &fs_info->global_block_rsv); 3414 if (ret) 3415 goto out; 3416 3417 trans = btrfs_join_transaction(root); 3418 if (IS_ERR(trans)) { 3419 ret = PTR_ERR(trans); 3420 goto out; 3421 } 3422 3423 ret = btrfs_truncate_free_space_cache(trans, block_group, inode); 3424 3425 btrfs_end_transaction(trans); 3426 btrfs_btree_balance_dirty(fs_info); 3427 out: 3428 iput(inode); 3429 return ret; 3430 } 3431 3432 /* 3433 * Locate the free space cache EXTENT_DATA in root tree leaf and delete the 3434 * cache inode, to avoid free space cache data extent blocking data relocation. 3435 */ 3436 static int delete_v1_space_cache(struct extent_buffer *leaf, 3437 struct btrfs_block_group *block_group, 3438 u64 data_bytenr) 3439 { 3440 u64 space_cache_ino; 3441 struct btrfs_file_extent_item *ei; 3442 struct btrfs_key key; 3443 bool found = false; 3444 int i; 3445 int ret; 3446 3447 if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID) 3448 return 0; 3449 3450 for (i = 0; i < btrfs_header_nritems(leaf); i++) { 3451 u8 type; 3452 3453 btrfs_item_key_to_cpu(leaf, &key, i); 3454 if (key.type != BTRFS_EXTENT_DATA_KEY) 3455 continue; 3456 ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); 3457 type = btrfs_file_extent_type(leaf, ei); 3458 3459 if ((type == BTRFS_FILE_EXTENT_REG || 3460 type == BTRFS_FILE_EXTENT_PREALLOC) && 3461 btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) { 3462 found = true; 3463 space_cache_ino = key.objectid; 3464 break; 3465 } 3466 } 3467 if (!found) 3468 return -ENOENT; 3469 ret = delete_block_group_cache(leaf->fs_info, block_group, NULL, 3470 space_cache_ino); 3471 return ret; 3472 } 3473 3474 /* 3475 * helper to find all tree blocks that reference a given data extent 3476 */ 3477 static noinline_for_stack int add_data_references(struct reloc_control *rc, 3478 const struct btrfs_key *extent_key, 3479 struct btrfs_path *path, 3480 struct rb_root *blocks) 3481 { 3482 struct btrfs_backref_walk_ctx ctx = { 0 }; 3483 struct ulist_iterator leaf_uiter; 3484 struct ulist_node *ref_node = NULL; 3485 const u32 blocksize = rc->extent_root->fs_info->nodesize; 3486 int ret = 0; 3487 3488 btrfs_release_path(path); 3489 3490 ctx.bytenr = extent_key->objectid; 3491 ctx.skip_inode_ref_list = true; 3492 ctx.fs_info = rc->extent_root->fs_info; 3493 3494 ret = btrfs_find_all_leafs(&ctx); 3495 if (ret < 0) 3496 return ret; 3497 3498 ULIST_ITER_INIT(&leaf_uiter); 3499 while ((ref_node = ulist_next(ctx.refs, &leaf_uiter))) { 3500 struct btrfs_tree_parent_check check = { 0 }; 3501 struct extent_buffer *eb; 3502 3503 eb = read_tree_block(ctx.fs_info, ref_node->val, &check); 3504 if (IS_ERR(eb)) { 3505 ret = PTR_ERR(eb); 3506 break; 3507 } 3508 ret = delete_v1_space_cache(eb, rc->block_group, 3509 extent_key->objectid); 3510 free_extent_buffer(eb); 3511 if (ret < 0) 3512 break; 3513 ret = __add_tree_block(rc, ref_node->val, blocksize, blocks); 3514 if (ret < 0) 3515 break; 3516 } 3517 if (ret < 0) 3518 free_block_list(blocks); 3519 ulist_free(ctx.refs); 3520 return ret; 3521 } 3522 3523 /* 3524 * helper to find next unprocessed extent 3525 */ 3526 static noinline_for_stack 3527 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path, 3528 struct btrfs_key *extent_key) 3529 { 3530 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3531 struct btrfs_key key; 3532 struct extent_buffer *leaf; 3533 u64 start, end, last; 3534 int ret; 3535 3536 last = rc->block_group->start + rc->block_group->length; 3537 while (1) { 3538 bool block_found; 3539 3540 cond_resched(); 3541 if (rc->search_start >= last) { 3542 ret = 1; 3543 break; 3544 } 3545 3546 key.objectid = rc->search_start; 3547 key.type = BTRFS_EXTENT_ITEM_KEY; 3548 key.offset = 0; 3549 3550 path->search_commit_root = 1; 3551 path->skip_locking = 1; 3552 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 3553 0, 0); 3554 if (ret < 0) 3555 break; 3556 next: 3557 leaf = path->nodes[0]; 3558 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 3559 ret = btrfs_next_leaf(rc->extent_root, path); 3560 if (ret != 0) 3561 break; 3562 leaf = path->nodes[0]; 3563 } 3564 3565 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3566 if (key.objectid >= last) { 3567 ret = 1; 3568 break; 3569 } 3570 3571 if (key.type != BTRFS_EXTENT_ITEM_KEY && 3572 key.type != BTRFS_METADATA_ITEM_KEY) { 3573 path->slots[0]++; 3574 goto next; 3575 } 3576 3577 if (key.type == BTRFS_EXTENT_ITEM_KEY && 3578 key.objectid + key.offset <= rc->search_start) { 3579 path->slots[0]++; 3580 goto next; 3581 } 3582 3583 if (key.type == BTRFS_METADATA_ITEM_KEY && 3584 key.objectid + fs_info->nodesize <= 3585 rc->search_start) { 3586 path->slots[0]++; 3587 goto next; 3588 } 3589 3590 block_found = find_first_extent_bit(&rc->processed_blocks, 3591 key.objectid, &start, &end, 3592 EXTENT_DIRTY, NULL); 3593 3594 if (block_found && start <= key.objectid) { 3595 btrfs_release_path(path); 3596 rc->search_start = end + 1; 3597 } else { 3598 if (key.type == BTRFS_EXTENT_ITEM_KEY) 3599 rc->search_start = key.objectid + key.offset; 3600 else 3601 rc->search_start = key.objectid + 3602 fs_info->nodesize; 3603 memcpy(extent_key, &key, sizeof(key)); 3604 return 0; 3605 } 3606 } 3607 btrfs_release_path(path); 3608 return ret; 3609 } 3610 3611 static void set_reloc_control(struct reloc_control *rc) 3612 { 3613 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3614 3615 mutex_lock(&fs_info->reloc_mutex); 3616 fs_info->reloc_ctl = rc; 3617 mutex_unlock(&fs_info->reloc_mutex); 3618 } 3619 3620 static void unset_reloc_control(struct reloc_control *rc) 3621 { 3622 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3623 3624 mutex_lock(&fs_info->reloc_mutex); 3625 fs_info->reloc_ctl = NULL; 3626 mutex_unlock(&fs_info->reloc_mutex); 3627 } 3628 3629 static noinline_for_stack 3630 int prepare_to_relocate(struct reloc_control *rc) 3631 { 3632 struct btrfs_trans_handle *trans; 3633 int ret; 3634 3635 rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info, 3636 BTRFS_BLOCK_RSV_TEMP); 3637 if (!rc->block_rsv) 3638 return -ENOMEM; 3639 3640 memset(&rc->cluster, 0, sizeof(rc->cluster)); 3641 rc->search_start = rc->block_group->start; 3642 rc->extents_found = 0; 3643 rc->nodes_relocated = 0; 3644 rc->merging_rsv_size = 0; 3645 rc->reserved_bytes = 0; 3646 rc->block_rsv->size = rc->extent_root->fs_info->nodesize * 3647 RELOCATION_RESERVED_NODES; 3648 ret = btrfs_block_rsv_refill(rc->extent_root->fs_info, 3649 rc->block_rsv, rc->block_rsv->size, 3650 BTRFS_RESERVE_FLUSH_ALL); 3651 if (ret) 3652 return ret; 3653 3654 rc->create_reloc_tree = true; 3655 set_reloc_control(rc); 3656 3657 trans = btrfs_join_transaction(rc->extent_root); 3658 if (IS_ERR(trans)) { 3659 unset_reloc_control(rc); 3660 /* 3661 * extent tree is not a ref_cow tree and has no reloc_root to 3662 * cleanup. And callers are responsible to free the above 3663 * block rsv. 3664 */ 3665 return PTR_ERR(trans); 3666 } 3667 3668 ret = btrfs_commit_transaction(trans); 3669 if (ret) 3670 unset_reloc_control(rc); 3671 3672 return ret; 3673 } 3674 3675 static noinline_for_stack int relocate_block_group(struct reloc_control *rc) 3676 { 3677 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3678 struct rb_root blocks = RB_ROOT; 3679 struct btrfs_key key; 3680 struct btrfs_trans_handle *trans = NULL; 3681 struct btrfs_path *path; 3682 struct btrfs_extent_item *ei; 3683 u64 flags; 3684 int ret; 3685 int err = 0; 3686 int progress = 0; 3687 3688 path = btrfs_alloc_path(); 3689 if (!path) 3690 return -ENOMEM; 3691 path->reada = READA_FORWARD; 3692 3693 ret = prepare_to_relocate(rc); 3694 if (ret) { 3695 err = ret; 3696 goto out_free; 3697 } 3698 3699 while (1) { 3700 rc->reserved_bytes = 0; 3701 ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv, 3702 rc->block_rsv->size, 3703 BTRFS_RESERVE_FLUSH_ALL); 3704 if (ret) { 3705 err = ret; 3706 break; 3707 } 3708 progress++; 3709 trans = btrfs_start_transaction(rc->extent_root, 0); 3710 if (IS_ERR(trans)) { 3711 err = PTR_ERR(trans); 3712 trans = NULL; 3713 break; 3714 } 3715 restart: 3716 if (update_backref_cache(trans, &rc->backref_cache)) { 3717 btrfs_end_transaction(trans); 3718 trans = NULL; 3719 continue; 3720 } 3721 3722 ret = find_next_extent(rc, path, &key); 3723 if (ret < 0) 3724 err = ret; 3725 if (ret != 0) 3726 break; 3727 3728 rc->extents_found++; 3729 3730 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 3731 struct btrfs_extent_item); 3732 flags = btrfs_extent_flags(path->nodes[0], ei); 3733 3734 /* 3735 * If we are relocating a simple quota owned extent item, we 3736 * need to note the owner on the reloc data root so that when 3737 * we allocate the replacement item, we can attribute it to the 3738 * correct eventual owner (rather than the reloc data root). 3739 */ 3740 if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE) { 3741 struct btrfs_root *root = BTRFS_I(rc->data_inode)->root; 3742 u64 owning_root_id = btrfs_get_extent_owner_root(fs_info, 3743 path->nodes[0], 3744 path->slots[0]); 3745 3746 root->relocation_src_root = owning_root_id; 3747 } 3748 3749 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 3750 ret = add_tree_block(rc, &key, path, &blocks); 3751 } else if (rc->stage == UPDATE_DATA_PTRS && 3752 (flags & BTRFS_EXTENT_FLAG_DATA)) { 3753 ret = add_data_references(rc, &key, path, &blocks); 3754 } else { 3755 btrfs_release_path(path); 3756 ret = 0; 3757 } 3758 if (ret < 0) { 3759 err = ret; 3760 break; 3761 } 3762 3763 if (!RB_EMPTY_ROOT(&blocks)) { 3764 ret = relocate_tree_blocks(trans, rc, &blocks); 3765 if (ret < 0) { 3766 if (ret != -EAGAIN) { 3767 err = ret; 3768 break; 3769 } 3770 rc->extents_found--; 3771 rc->search_start = key.objectid; 3772 } 3773 } 3774 3775 btrfs_end_transaction_throttle(trans); 3776 btrfs_btree_balance_dirty(fs_info); 3777 trans = NULL; 3778 3779 if (rc->stage == MOVE_DATA_EXTENTS && 3780 (flags & BTRFS_EXTENT_FLAG_DATA)) { 3781 rc->found_file_extent = true; 3782 ret = relocate_data_extent(rc->data_inode, 3783 &key, &rc->cluster); 3784 if (ret < 0) { 3785 err = ret; 3786 break; 3787 } 3788 } 3789 if (btrfs_should_cancel_balance(fs_info)) { 3790 err = -ECANCELED; 3791 break; 3792 } 3793 } 3794 if (trans && progress && err == -ENOSPC) { 3795 ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags); 3796 if (ret == 1) { 3797 err = 0; 3798 progress = 0; 3799 goto restart; 3800 } 3801 } 3802 3803 btrfs_release_path(path); 3804 clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY); 3805 3806 if (trans) { 3807 btrfs_end_transaction_throttle(trans); 3808 btrfs_btree_balance_dirty(fs_info); 3809 } 3810 3811 if (!err) { 3812 ret = relocate_file_extent_cluster(rc->data_inode, 3813 &rc->cluster); 3814 if (ret < 0) 3815 err = ret; 3816 } 3817 3818 rc->create_reloc_tree = false; 3819 set_reloc_control(rc); 3820 3821 btrfs_backref_release_cache(&rc->backref_cache); 3822 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL); 3823 3824 /* 3825 * Even in the case when the relocation is cancelled, we should all go 3826 * through prepare_to_merge() and merge_reloc_roots(). 3827 * 3828 * For error (including cancelled balance), prepare_to_merge() will 3829 * mark all reloc trees orphan, then queue them for cleanup in 3830 * merge_reloc_roots() 3831 */ 3832 err = prepare_to_merge(rc, err); 3833 3834 merge_reloc_roots(rc); 3835 3836 rc->merge_reloc_tree = false; 3837 unset_reloc_control(rc); 3838 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL); 3839 3840 /* get rid of pinned extents */ 3841 trans = btrfs_join_transaction(rc->extent_root); 3842 if (IS_ERR(trans)) { 3843 err = PTR_ERR(trans); 3844 goto out_free; 3845 } 3846 ret = btrfs_commit_transaction(trans); 3847 if (ret && !err) 3848 err = ret; 3849 out_free: 3850 ret = clean_dirty_subvols(rc); 3851 if (ret < 0 && !err) 3852 err = ret; 3853 btrfs_free_block_rsv(fs_info, rc->block_rsv); 3854 btrfs_free_path(path); 3855 return err; 3856 } 3857 3858 static int __insert_orphan_inode(struct btrfs_trans_handle *trans, 3859 struct btrfs_root *root, u64 objectid) 3860 { 3861 struct btrfs_path *path; 3862 struct btrfs_inode_item *item; 3863 struct extent_buffer *leaf; 3864 int ret; 3865 3866 path = btrfs_alloc_path(); 3867 if (!path) 3868 return -ENOMEM; 3869 3870 ret = btrfs_insert_empty_inode(trans, root, path, objectid); 3871 if (ret) 3872 goto out; 3873 3874 leaf = path->nodes[0]; 3875 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item); 3876 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 3877 btrfs_set_inode_generation(leaf, item, 1); 3878 btrfs_set_inode_size(leaf, item, 0); 3879 btrfs_set_inode_mode(leaf, item, S_IFREG | 0600); 3880 btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS | 3881 BTRFS_INODE_PREALLOC); 3882 btrfs_mark_buffer_dirty(trans, leaf); 3883 out: 3884 btrfs_free_path(path); 3885 return ret; 3886 } 3887 3888 static void delete_orphan_inode(struct btrfs_trans_handle *trans, 3889 struct btrfs_root *root, u64 objectid) 3890 { 3891 struct btrfs_path *path; 3892 struct btrfs_key key; 3893 int ret = 0; 3894 3895 path = btrfs_alloc_path(); 3896 if (!path) { 3897 ret = -ENOMEM; 3898 goto out; 3899 } 3900 3901 key.objectid = objectid; 3902 key.type = BTRFS_INODE_ITEM_KEY; 3903 key.offset = 0; 3904 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3905 if (ret) { 3906 if (ret > 0) 3907 ret = -ENOENT; 3908 goto out; 3909 } 3910 ret = btrfs_del_item(trans, root, path); 3911 out: 3912 if (ret) 3913 btrfs_abort_transaction(trans, ret); 3914 btrfs_free_path(path); 3915 } 3916 3917 /* 3918 * helper to create inode for data relocation. 3919 * the inode is in data relocation tree and its link count is 0 3920 */ 3921 static noinline_for_stack struct inode *create_reloc_inode( 3922 struct btrfs_fs_info *fs_info, 3923 const struct btrfs_block_group *group) 3924 { 3925 struct inode *inode = NULL; 3926 struct btrfs_trans_handle *trans; 3927 struct btrfs_root *root; 3928 u64 objectid; 3929 int err = 0; 3930 3931 root = btrfs_grab_root(fs_info->data_reloc_root); 3932 trans = btrfs_start_transaction(root, 6); 3933 if (IS_ERR(trans)) { 3934 btrfs_put_root(root); 3935 return ERR_CAST(trans); 3936 } 3937 3938 err = btrfs_get_free_objectid(root, &objectid); 3939 if (err) 3940 goto out; 3941 3942 err = __insert_orphan_inode(trans, root, objectid); 3943 if (err) 3944 goto out; 3945 3946 inode = btrfs_iget(fs_info->sb, objectid, root); 3947 if (IS_ERR(inode)) { 3948 delete_orphan_inode(trans, root, objectid); 3949 err = PTR_ERR(inode); 3950 inode = NULL; 3951 goto out; 3952 } 3953 BTRFS_I(inode)->index_cnt = group->start; 3954 3955 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 3956 out: 3957 btrfs_put_root(root); 3958 btrfs_end_transaction(trans); 3959 btrfs_btree_balance_dirty(fs_info); 3960 if (err) { 3961 iput(inode); 3962 inode = ERR_PTR(err); 3963 } 3964 return inode; 3965 } 3966 3967 /* 3968 * Mark start of chunk relocation that is cancellable. Check if the cancellation 3969 * has been requested meanwhile and don't start in that case. 3970 * 3971 * Return: 3972 * 0 success 3973 * -EINPROGRESS operation is already in progress, that's probably a bug 3974 * -ECANCELED cancellation request was set before the operation started 3975 */ 3976 static int reloc_chunk_start(struct btrfs_fs_info *fs_info) 3977 { 3978 if (test_and_set_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) { 3979 /* This should not happen */ 3980 btrfs_err(fs_info, "reloc already running, cannot start"); 3981 return -EINPROGRESS; 3982 } 3983 3984 if (atomic_read(&fs_info->reloc_cancel_req) > 0) { 3985 btrfs_info(fs_info, "chunk relocation canceled on start"); 3986 /* 3987 * On cancel, clear all requests but let the caller mark 3988 * the end after cleanup operations. 3989 */ 3990 atomic_set(&fs_info->reloc_cancel_req, 0); 3991 return -ECANCELED; 3992 } 3993 return 0; 3994 } 3995 3996 /* 3997 * Mark end of chunk relocation that is cancellable and wake any waiters. 3998 */ 3999 static void reloc_chunk_end(struct btrfs_fs_info *fs_info) 4000 { 4001 /* Requested after start, clear bit first so any waiters can continue */ 4002 if (atomic_read(&fs_info->reloc_cancel_req) > 0) 4003 btrfs_info(fs_info, "chunk relocation canceled during operation"); 4004 clear_and_wake_up_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags); 4005 atomic_set(&fs_info->reloc_cancel_req, 0); 4006 } 4007 4008 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info) 4009 { 4010 struct reloc_control *rc; 4011 4012 rc = kzalloc(sizeof(*rc), GFP_NOFS); 4013 if (!rc) 4014 return NULL; 4015 4016 INIT_LIST_HEAD(&rc->reloc_roots); 4017 INIT_LIST_HEAD(&rc->dirty_subvol_roots); 4018 btrfs_backref_init_cache(fs_info, &rc->backref_cache, true); 4019 rc->reloc_root_tree.rb_root = RB_ROOT; 4020 spin_lock_init(&rc->reloc_root_tree.lock); 4021 extent_io_tree_init(fs_info, &rc->processed_blocks, IO_TREE_RELOC_BLOCKS); 4022 return rc; 4023 } 4024 4025 static void free_reloc_control(struct reloc_control *rc) 4026 { 4027 struct mapping_node *node, *tmp; 4028 4029 free_reloc_roots(&rc->reloc_roots); 4030 rbtree_postorder_for_each_entry_safe(node, tmp, 4031 &rc->reloc_root_tree.rb_root, rb_node) 4032 kfree(node); 4033 4034 kfree(rc); 4035 } 4036 4037 /* 4038 * Print the block group being relocated 4039 */ 4040 static void describe_relocation(struct btrfs_fs_info *fs_info, 4041 struct btrfs_block_group *block_group) 4042 { 4043 char buf[128] = {'\0'}; 4044 4045 btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf)); 4046 4047 btrfs_info(fs_info, 4048 "relocating block group %llu flags %s", 4049 block_group->start, buf); 4050 } 4051 4052 static const char *stage_to_string(enum reloc_stage stage) 4053 { 4054 if (stage == MOVE_DATA_EXTENTS) 4055 return "move data extents"; 4056 if (stage == UPDATE_DATA_PTRS) 4057 return "update data pointers"; 4058 return "unknown"; 4059 } 4060 4061 /* 4062 * function to relocate all extents in a block group. 4063 */ 4064 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start) 4065 { 4066 struct btrfs_block_group *bg; 4067 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, group_start); 4068 struct reloc_control *rc; 4069 struct inode *inode; 4070 struct btrfs_path *path; 4071 int ret; 4072 int rw = 0; 4073 int err = 0; 4074 4075 /* 4076 * This only gets set if we had a half-deleted snapshot on mount. We 4077 * cannot allow relocation to start while we're still trying to clean up 4078 * these pending deletions. 4079 */ 4080 ret = wait_on_bit(&fs_info->flags, BTRFS_FS_UNFINISHED_DROPS, TASK_INTERRUPTIBLE); 4081 if (ret) 4082 return ret; 4083 4084 /* We may have been woken up by close_ctree, so bail if we're closing. */ 4085 if (btrfs_fs_closing(fs_info)) 4086 return -EINTR; 4087 4088 bg = btrfs_lookup_block_group(fs_info, group_start); 4089 if (!bg) 4090 return -ENOENT; 4091 4092 /* 4093 * Relocation of a data block group creates ordered extents. Without 4094 * sb_start_write(), we can freeze the filesystem while unfinished 4095 * ordered extents are left. Such ordered extents can cause a deadlock 4096 * e.g. when syncfs() is waiting for their completion but they can't 4097 * finish because they block when joining a transaction, due to the 4098 * fact that the freeze locks are being held in write mode. 4099 */ 4100 if (bg->flags & BTRFS_BLOCK_GROUP_DATA) 4101 ASSERT(sb_write_started(fs_info->sb)); 4102 4103 if (btrfs_pinned_by_swapfile(fs_info, bg)) { 4104 btrfs_put_block_group(bg); 4105 return -ETXTBSY; 4106 } 4107 4108 rc = alloc_reloc_control(fs_info); 4109 if (!rc) { 4110 btrfs_put_block_group(bg); 4111 return -ENOMEM; 4112 } 4113 4114 ret = reloc_chunk_start(fs_info); 4115 if (ret < 0) { 4116 err = ret; 4117 goto out_put_bg; 4118 } 4119 4120 rc->extent_root = extent_root; 4121 rc->block_group = bg; 4122 4123 ret = btrfs_inc_block_group_ro(rc->block_group, true); 4124 if (ret) { 4125 err = ret; 4126 goto out; 4127 } 4128 rw = 1; 4129 4130 path = btrfs_alloc_path(); 4131 if (!path) { 4132 err = -ENOMEM; 4133 goto out; 4134 } 4135 4136 inode = lookup_free_space_inode(rc->block_group, path); 4137 btrfs_free_path(path); 4138 4139 if (!IS_ERR(inode)) 4140 ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0); 4141 else 4142 ret = PTR_ERR(inode); 4143 4144 if (ret && ret != -ENOENT) { 4145 err = ret; 4146 goto out; 4147 } 4148 4149 rc->data_inode = create_reloc_inode(fs_info, rc->block_group); 4150 if (IS_ERR(rc->data_inode)) { 4151 err = PTR_ERR(rc->data_inode); 4152 rc->data_inode = NULL; 4153 goto out; 4154 } 4155 4156 describe_relocation(fs_info, rc->block_group); 4157 4158 btrfs_wait_block_group_reservations(rc->block_group); 4159 btrfs_wait_nocow_writers(rc->block_group); 4160 btrfs_wait_ordered_roots(fs_info, U64_MAX, 4161 rc->block_group->start, 4162 rc->block_group->length); 4163 4164 ret = btrfs_zone_finish(rc->block_group); 4165 WARN_ON(ret && ret != -EAGAIN); 4166 4167 while (1) { 4168 enum reloc_stage finishes_stage; 4169 4170 mutex_lock(&fs_info->cleaner_mutex); 4171 ret = relocate_block_group(rc); 4172 mutex_unlock(&fs_info->cleaner_mutex); 4173 if (ret < 0) 4174 err = ret; 4175 4176 finishes_stage = rc->stage; 4177 /* 4178 * We may have gotten ENOSPC after we already dirtied some 4179 * extents. If writeout happens while we're relocating a 4180 * different block group we could end up hitting the 4181 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in 4182 * btrfs_reloc_cow_block. Make sure we write everything out 4183 * properly so we don't trip over this problem, and then break 4184 * out of the loop if we hit an error. 4185 */ 4186 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) { 4187 ret = btrfs_wait_ordered_range(rc->data_inode, 0, 4188 (u64)-1); 4189 if (ret) 4190 err = ret; 4191 invalidate_mapping_pages(rc->data_inode->i_mapping, 4192 0, -1); 4193 rc->stage = UPDATE_DATA_PTRS; 4194 } 4195 4196 if (err < 0) 4197 goto out; 4198 4199 if (rc->extents_found == 0) 4200 break; 4201 4202 btrfs_info(fs_info, "found %llu extents, stage: %s", 4203 rc->extents_found, stage_to_string(finishes_stage)); 4204 } 4205 4206 WARN_ON(rc->block_group->pinned > 0); 4207 WARN_ON(rc->block_group->reserved > 0); 4208 WARN_ON(rc->block_group->used > 0); 4209 out: 4210 if (err && rw) 4211 btrfs_dec_block_group_ro(rc->block_group); 4212 iput(rc->data_inode); 4213 out_put_bg: 4214 btrfs_put_block_group(bg); 4215 reloc_chunk_end(fs_info); 4216 free_reloc_control(rc); 4217 return err; 4218 } 4219 4220 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root) 4221 { 4222 struct btrfs_fs_info *fs_info = root->fs_info; 4223 struct btrfs_trans_handle *trans; 4224 int ret, err; 4225 4226 trans = btrfs_start_transaction(fs_info->tree_root, 0); 4227 if (IS_ERR(trans)) 4228 return PTR_ERR(trans); 4229 4230 memset(&root->root_item.drop_progress, 0, 4231 sizeof(root->root_item.drop_progress)); 4232 btrfs_set_root_drop_level(&root->root_item, 0); 4233 btrfs_set_root_refs(&root->root_item, 0); 4234 ret = btrfs_update_root(trans, fs_info->tree_root, 4235 &root->root_key, &root->root_item); 4236 4237 err = btrfs_end_transaction(trans); 4238 if (err) 4239 return err; 4240 return ret; 4241 } 4242 4243 /* 4244 * recover relocation interrupted by system crash. 4245 * 4246 * this function resumes merging reloc trees with corresponding fs trees. 4247 * this is important for keeping the sharing of tree blocks 4248 */ 4249 int btrfs_recover_relocation(struct btrfs_fs_info *fs_info) 4250 { 4251 LIST_HEAD(reloc_roots); 4252 struct btrfs_key key; 4253 struct btrfs_root *fs_root; 4254 struct btrfs_root *reloc_root; 4255 struct btrfs_path *path; 4256 struct extent_buffer *leaf; 4257 struct reloc_control *rc = NULL; 4258 struct btrfs_trans_handle *trans; 4259 int ret; 4260 int err = 0; 4261 4262 path = btrfs_alloc_path(); 4263 if (!path) 4264 return -ENOMEM; 4265 path->reada = READA_BACK; 4266 4267 key.objectid = BTRFS_TREE_RELOC_OBJECTID; 4268 key.type = BTRFS_ROOT_ITEM_KEY; 4269 key.offset = (u64)-1; 4270 4271 while (1) { 4272 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, 4273 path, 0, 0); 4274 if (ret < 0) { 4275 err = ret; 4276 goto out; 4277 } 4278 if (ret > 0) { 4279 if (path->slots[0] == 0) 4280 break; 4281 path->slots[0]--; 4282 } 4283 leaf = path->nodes[0]; 4284 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4285 btrfs_release_path(path); 4286 4287 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID || 4288 key.type != BTRFS_ROOT_ITEM_KEY) 4289 break; 4290 4291 reloc_root = btrfs_read_tree_root(fs_info->tree_root, &key); 4292 if (IS_ERR(reloc_root)) { 4293 err = PTR_ERR(reloc_root); 4294 goto out; 4295 } 4296 4297 set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state); 4298 list_add(&reloc_root->root_list, &reloc_roots); 4299 4300 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 4301 fs_root = btrfs_get_fs_root(fs_info, 4302 reloc_root->root_key.offset, false); 4303 if (IS_ERR(fs_root)) { 4304 ret = PTR_ERR(fs_root); 4305 if (ret != -ENOENT) { 4306 err = ret; 4307 goto out; 4308 } 4309 ret = mark_garbage_root(reloc_root); 4310 if (ret < 0) { 4311 err = ret; 4312 goto out; 4313 } 4314 } else { 4315 btrfs_put_root(fs_root); 4316 } 4317 } 4318 4319 if (key.offset == 0) 4320 break; 4321 4322 key.offset--; 4323 } 4324 btrfs_release_path(path); 4325 4326 if (list_empty(&reloc_roots)) 4327 goto out; 4328 4329 rc = alloc_reloc_control(fs_info); 4330 if (!rc) { 4331 err = -ENOMEM; 4332 goto out; 4333 } 4334 4335 ret = reloc_chunk_start(fs_info); 4336 if (ret < 0) { 4337 err = ret; 4338 goto out_end; 4339 } 4340 4341 rc->extent_root = btrfs_extent_root(fs_info, 0); 4342 4343 set_reloc_control(rc); 4344 4345 trans = btrfs_join_transaction(rc->extent_root); 4346 if (IS_ERR(trans)) { 4347 err = PTR_ERR(trans); 4348 goto out_unset; 4349 } 4350 4351 rc->merge_reloc_tree = true; 4352 4353 while (!list_empty(&reloc_roots)) { 4354 reloc_root = list_entry(reloc_roots.next, 4355 struct btrfs_root, root_list); 4356 list_del(&reloc_root->root_list); 4357 4358 if (btrfs_root_refs(&reloc_root->root_item) == 0) { 4359 list_add_tail(&reloc_root->root_list, 4360 &rc->reloc_roots); 4361 continue; 4362 } 4363 4364 fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, 4365 false); 4366 if (IS_ERR(fs_root)) { 4367 err = PTR_ERR(fs_root); 4368 list_add_tail(&reloc_root->root_list, &reloc_roots); 4369 btrfs_end_transaction(trans); 4370 goto out_unset; 4371 } 4372 4373 err = __add_reloc_root(reloc_root); 4374 ASSERT(err != -EEXIST); 4375 if (err) { 4376 list_add_tail(&reloc_root->root_list, &reloc_roots); 4377 btrfs_put_root(fs_root); 4378 btrfs_end_transaction(trans); 4379 goto out_unset; 4380 } 4381 fs_root->reloc_root = btrfs_grab_root(reloc_root); 4382 btrfs_put_root(fs_root); 4383 } 4384 4385 err = btrfs_commit_transaction(trans); 4386 if (err) 4387 goto out_unset; 4388 4389 merge_reloc_roots(rc); 4390 4391 unset_reloc_control(rc); 4392 4393 trans = btrfs_join_transaction(rc->extent_root); 4394 if (IS_ERR(trans)) { 4395 err = PTR_ERR(trans); 4396 goto out_clean; 4397 } 4398 err = btrfs_commit_transaction(trans); 4399 out_clean: 4400 ret = clean_dirty_subvols(rc); 4401 if (ret < 0 && !err) 4402 err = ret; 4403 out_unset: 4404 unset_reloc_control(rc); 4405 out_end: 4406 reloc_chunk_end(fs_info); 4407 free_reloc_control(rc); 4408 out: 4409 free_reloc_roots(&reloc_roots); 4410 4411 btrfs_free_path(path); 4412 4413 if (err == 0) { 4414 /* cleanup orphan inode in data relocation tree */ 4415 fs_root = btrfs_grab_root(fs_info->data_reloc_root); 4416 ASSERT(fs_root); 4417 err = btrfs_orphan_cleanup(fs_root); 4418 btrfs_put_root(fs_root); 4419 } 4420 return err; 4421 } 4422 4423 /* 4424 * helper to add ordered checksum for data relocation. 4425 * 4426 * cloning checksum properly handles the nodatasum extents. 4427 * it also saves CPU time to re-calculate the checksum. 4428 */ 4429 int btrfs_reloc_clone_csums(struct btrfs_ordered_extent *ordered) 4430 { 4431 struct btrfs_inode *inode = BTRFS_I(ordered->inode); 4432 struct btrfs_fs_info *fs_info = inode->root->fs_info; 4433 u64 disk_bytenr = ordered->file_offset + inode->index_cnt; 4434 struct btrfs_root *csum_root = btrfs_csum_root(fs_info, disk_bytenr); 4435 LIST_HEAD(list); 4436 int ret; 4437 4438 ret = btrfs_lookup_csums_list(csum_root, disk_bytenr, 4439 disk_bytenr + ordered->num_bytes - 1, 4440 &list, 0, false); 4441 if (ret) 4442 return ret; 4443 4444 while (!list_empty(&list)) { 4445 struct btrfs_ordered_sum *sums = 4446 list_entry(list.next, struct btrfs_ordered_sum, list); 4447 4448 list_del_init(&sums->list); 4449 4450 /* 4451 * We need to offset the new_bytenr based on where the csum is. 4452 * We need to do this because we will read in entire prealloc 4453 * extents but we may have written to say the middle of the 4454 * prealloc extent, so we need to make sure the csum goes with 4455 * the right disk offset. 4456 * 4457 * We can do this because the data reloc inode refers strictly 4458 * to the on disk bytes, so we don't have to worry about 4459 * disk_len vs real len like with real inodes since it's all 4460 * disk length. 4461 */ 4462 sums->logical = ordered->disk_bytenr + sums->logical - disk_bytenr; 4463 btrfs_add_ordered_sum(ordered, sums); 4464 } 4465 4466 return 0; 4467 } 4468 4469 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans, 4470 struct btrfs_root *root, 4471 const struct extent_buffer *buf, 4472 struct extent_buffer *cow) 4473 { 4474 struct btrfs_fs_info *fs_info = root->fs_info; 4475 struct reloc_control *rc; 4476 struct btrfs_backref_node *node; 4477 int first_cow = 0; 4478 int level; 4479 int ret = 0; 4480 4481 rc = fs_info->reloc_ctl; 4482 if (!rc) 4483 return 0; 4484 4485 BUG_ON(rc->stage == UPDATE_DATA_PTRS && btrfs_is_data_reloc_root(root)); 4486 4487 level = btrfs_header_level(buf); 4488 if (btrfs_header_generation(buf) <= 4489 btrfs_root_last_snapshot(&root->root_item)) 4490 first_cow = 1; 4491 4492 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID && 4493 rc->create_reloc_tree) { 4494 WARN_ON(!first_cow && level == 0); 4495 4496 node = rc->backref_cache.path[level]; 4497 BUG_ON(node->bytenr != buf->start && 4498 node->new_bytenr != buf->start); 4499 4500 btrfs_backref_drop_node_buffer(node); 4501 atomic_inc(&cow->refs); 4502 node->eb = cow; 4503 node->new_bytenr = cow->start; 4504 4505 if (!node->pending) { 4506 list_move_tail(&node->list, 4507 &rc->backref_cache.pending[level]); 4508 node->pending = 1; 4509 } 4510 4511 if (first_cow) 4512 mark_block_processed(rc, node); 4513 4514 if (first_cow && level > 0) 4515 rc->nodes_relocated += buf->len; 4516 } 4517 4518 if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS) 4519 ret = replace_file_extents(trans, rc, root, cow); 4520 return ret; 4521 } 4522 4523 /* 4524 * called before creating snapshot. it calculates metadata reservation 4525 * required for relocating tree blocks in the snapshot 4526 */ 4527 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending, 4528 u64 *bytes_to_reserve) 4529 { 4530 struct btrfs_root *root = pending->root; 4531 struct reloc_control *rc = root->fs_info->reloc_ctl; 4532 4533 if (!rc || !have_reloc_root(root)) 4534 return; 4535 4536 if (!rc->merge_reloc_tree) 4537 return; 4538 4539 root = root->reloc_root; 4540 BUG_ON(btrfs_root_refs(&root->root_item) == 0); 4541 /* 4542 * relocation is in the stage of merging trees. the space 4543 * used by merging a reloc tree is twice the size of 4544 * relocated tree nodes in the worst case. half for cowing 4545 * the reloc tree, half for cowing the fs tree. the space 4546 * used by cowing the reloc tree will be freed after the 4547 * tree is dropped. if we create snapshot, cowing the fs 4548 * tree may use more space than it frees. so we need 4549 * reserve extra space. 4550 */ 4551 *bytes_to_reserve += rc->nodes_relocated; 4552 } 4553 4554 /* 4555 * called after snapshot is created. migrate block reservation 4556 * and create reloc root for the newly created snapshot 4557 * 4558 * This is similar to btrfs_init_reloc_root(), we come out of here with two 4559 * references held on the reloc_root, one for root->reloc_root and one for 4560 * rc->reloc_roots. 4561 */ 4562 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans, 4563 struct btrfs_pending_snapshot *pending) 4564 { 4565 struct btrfs_root *root = pending->root; 4566 struct btrfs_root *reloc_root; 4567 struct btrfs_root *new_root; 4568 struct reloc_control *rc = root->fs_info->reloc_ctl; 4569 int ret; 4570 4571 if (!rc || !have_reloc_root(root)) 4572 return 0; 4573 4574 rc = root->fs_info->reloc_ctl; 4575 rc->merging_rsv_size += rc->nodes_relocated; 4576 4577 if (rc->merge_reloc_tree) { 4578 ret = btrfs_block_rsv_migrate(&pending->block_rsv, 4579 rc->block_rsv, 4580 rc->nodes_relocated, true); 4581 if (ret) 4582 return ret; 4583 } 4584 4585 new_root = pending->snap; 4586 reloc_root = create_reloc_root(trans, root->reloc_root, 4587 new_root->root_key.objectid); 4588 if (IS_ERR(reloc_root)) 4589 return PTR_ERR(reloc_root); 4590 4591 ret = __add_reloc_root(reloc_root); 4592 ASSERT(ret != -EEXIST); 4593 if (ret) { 4594 /* Pairs with create_reloc_root */ 4595 btrfs_put_root(reloc_root); 4596 return ret; 4597 } 4598 new_root->reloc_root = btrfs_grab_root(reloc_root); 4599 4600 if (rc->create_reloc_tree) 4601 ret = clone_backref_node(trans, rc, root, reloc_root); 4602 return ret; 4603 } 4604 4605 /* 4606 * Get the current bytenr for the block group which is being relocated. 4607 * 4608 * Return U64_MAX if no running relocation. 4609 */ 4610 u64 btrfs_get_reloc_bg_bytenr(const struct btrfs_fs_info *fs_info) 4611 { 4612 u64 logical = U64_MAX; 4613 4614 lockdep_assert_held(&fs_info->reloc_mutex); 4615 4616 if (fs_info->reloc_ctl && fs_info->reloc_ctl->block_group) 4617 logical = fs_info->reloc_ctl->block_group->start; 4618 return logical; 4619 } 4620