xref: /linux/fs/btrfs/relocation.c (revision 73aea586d6c58f55799f6130e19321ff7b574c3d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2009 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/pagemap.h>
8 #include <linux/writeback.h>
9 #include <linux/blkdev.h>
10 #include <linux/rbtree.h>
11 #include <linux/slab.h>
12 #include <linux/error-injection.h>
13 #include "ctree.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "volumes.h"
17 #include "locking.h"
18 #include "btrfs_inode.h"
19 #include "async-thread.h"
20 #include "free-space-cache.h"
21 #include "qgroup.h"
22 #include "print-tree.h"
23 #include "delalloc-space.h"
24 #include "block-group.h"
25 #include "backref.h"
26 #include "misc.h"
27 #include "subpage.h"
28 #include "zoned.h"
29 #include "inode-item.h"
30 #include "space-info.h"
31 #include "fs.h"
32 #include "accessors.h"
33 #include "extent-tree.h"
34 #include "root-tree.h"
35 #include "file-item.h"
36 #include "relocation.h"
37 #include "super.h"
38 #include "tree-checker.h"
39 
40 /*
41  * Relocation overview
42  *
43  * [What does relocation do]
44  *
45  * The objective of relocation is to relocate all extents of the target block
46  * group to other block groups.
47  * This is utilized by resize (shrink only), profile converting, compacting
48  * space, or balance routine to spread chunks over devices.
49  *
50  * 		Before		|		After
51  * ------------------------------------------------------------------
52  *  BG A: 10 data extents	| BG A: deleted
53  *  BG B:  2 data extents	| BG B: 10 data extents (2 old + 8 relocated)
54  *  BG C:  1 extents		| BG C:  3 data extents (1 old + 2 relocated)
55  *
56  * [How does relocation work]
57  *
58  * 1.   Mark the target block group read-only
59  *      New extents won't be allocated from the target block group.
60  *
61  * 2.1  Record each extent in the target block group
62  *      To build a proper map of extents to be relocated.
63  *
64  * 2.2  Build data reloc tree and reloc trees
65  *      Data reloc tree will contain an inode, recording all newly relocated
66  *      data extents.
67  *      There will be only one data reloc tree for one data block group.
68  *
69  *      Reloc tree will be a special snapshot of its source tree, containing
70  *      relocated tree blocks.
71  *      Each tree referring to a tree block in target block group will get its
72  *      reloc tree built.
73  *
74  * 2.3  Swap source tree with its corresponding reloc tree
75  *      Each involved tree only refers to new extents after swap.
76  *
77  * 3.   Cleanup reloc trees and data reloc tree.
78  *      As old extents in the target block group are still referenced by reloc
79  *      trees, we need to clean them up before really freeing the target block
80  *      group.
81  *
82  * The main complexity is in steps 2.2 and 2.3.
83  *
84  * The entry point of relocation is relocate_block_group() function.
85  */
86 
87 #define RELOCATION_RESERVED_NODES	256
88 /*
89  * map address of tree root to tree
90  */
91 struct mapping_node {
92 	struct {
93 		struct rb_node rb_node;
94 		u64 bytenr;
95 	}; /* Use rb_simle_node for search/insert */
96 	void *data;
97 };
98 
99 struct mapping_tree {
100 	struct rb_root rb_root;
101 	spinlock_t lock;
102 };
103 
104 /*
105  * present a tree block to process
106  */
107 struct tree_block {
108 	struct {
109 		struct rb_node rb_node;
110 		u64 bytenr;
111 	}; /* Use rb_simple_node for search/insert */
112 	u64 owner;
113 	struct btrfs_key key;
114 	u8 level;
115 	bool key_ready;
116 };
117 
118 #define MAX_EXTENTS 128
119 
120 struct file_extent_cluster {
121 	u64 start;
122 	u64 end;
123 	u64 boundary[MAX_EXTENTS];
124 	unsigned int nr;
125 	u64 owning_root;
126 };
127 
128 /* Stages of data relocation. */
129 enum reloc_stage {
130 	MOVE_DATA_EXTENTS,
131 	UPDATE_DATA_PTRS
132 };
133 
134 struct reloc_control {
135 	/* block group to relocate */
136 	struct btrfs_block_group *block_group;
137 	/* extent tree */
138 	struct btrfs_root *extent_root;
139 	/* inode for moving data */
140 	struct inode *data_inode;
141 
142 	struct btrfs_block_rsv *block_rsv;
143 
144 	struct btrfs_backref_cache backref_cache;
145 
146 	struct file_extent_cluster cluster;
147 	/* tree blocks have been processed */
148 	struct extent_io_tree processed_blocks;
149 	/* map start of tree root to corresponding reloc tree */
150 	struct mapping_tree reloc_root_tree;
151 	/* list of reloc trees */
152 	struct list_head reloc_roots;
153 	/* list of subvolume trees that get relocated */
154 	struct list_head dirty_subvol_roots;
155 	/* size of metadata reservation for merging reloc trees */
156 	u64 merging_rsv_size;
157 	/* size of relocated tree nodes */
158 	u64 nodes_relocated;
159 	/* reserved size for block group relocation*/
160 	u64 reserved_bytes;
161 
162 	u64 search_start;
163 	u64 extents_found;
164 
165 	enum reloc_stage stage;
166 	bool create_reloc_tree;
167 	bool merge_reloc_tree;
168 	bool found_file_extent;
169 };
170 
171 static void mark_block_processed(struct reloc_control *rc,
172 				 struct btrfs_backref_node *node)
173 {
174 	u32 blocksize;
175 
176 	if (node->level == 0 ||
177 	    in_range(node->bytenr, rc->block_group->start,
178 		     rc->block_group->length)) {
179 		blocksize = rc->extent_root->fs_info->nodesize;
180 		set_extent_bit(&rc->processed_blocks, node->bytenr,
181 			       node->bytenr + blocksize - 1, EXTENT_DIRTY, NULL);
182 	}
183 	node->processed = 1;
184 }
185 
186 /*
187  * walk up backref nodes until reach node presents tree root
188  */
189 static struct btrfs_backref_node *walk_up_backref(
190 		struct btrfs_backref_node *node,
191 		struct btrfs_backref_edge *edges[], int *index)
192 {
193 	struct btrfs_backref_edge *edge;
194 	int idx = *index;
195 
196 	while (!list_empty(&node->upper)) {
197 		edge = list_entry(node->upper.next,
198 				  struct btrfs_backref_edge, list[LOWER]);
199 		edges[idx++] = edge;
200 		node = edge->node[UPPER];
201 	}
202 	BUG_ON(node->detached);
203 	*index = idx;
204 	return node;
205 }
206 
207 /*
208  * walk down backref nodes to find start of next reference path
209  */
210 static struct btrfs_backref_node *walk_down_backref(
211 		struct btrfs_backref_edge *edges[], int *index)
212 {
213 	struct btrfs_backref_edge *edge;
214 	struct btrfs_backref_node *lower;
215 	int idx = *index;
216 
217 	while (idx > 0) {
218 		edge = edges[idx - 1];
219 		lower = edge->node[LOWER];
220 		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
221 			idx--;
222 			continue;
223 		}
224 		edge = list_entry(edge->list[LOWER].next,
225 				  struct btrfs_backref_edge, list[LOWER]);
226 		edges[idx - 1] = edge;
227 		*index = idx;
228 		return edge->node[UPPER];
229 	}
230 	*index = 0;
231 	return NULL;
232 }
233 
234 static void update_backref_node(struct btrfs_backref_cache *cache,
235 				struct btrfs_backref_node *node, u64 bytenr)
236 {
237 	struct rb_node *rb_node;
238 	rb_erase(&node->rb_node, &cache->rb_root);
239 	node->bytenr = bytenr;
240 	rb_node = rb_simple_insert(&cache->rb_root, node->bytenr, &node->rb_node);
241 	if (rb_node)
242 		btrfs_backref_panic(cache->fs_info, bytenr, -EEXIST);
243 }
244 
245 /*
246  * update backref cache after a transaction commit
247  */
248 static int update_backref_cache(struct btrfs_trans_handle *trans,
249 				struct btrfs_backref_cache *cache)
250 {
251 	struct btrfs_backref_node *node;
252 	int level = 0;
253 
254 	if (cache->last_trans == 0) {
255 		cache->last_trans = trans->transid;
256 		return 0;
257 	}
258 
259 	if (cache->last_trans == trans->transid)
260 		return 0;
261 
262 	/*
263 	 * detached nodes are used to avoid unnecessary backref
264 	 * lookup. transaction commit changes the extent tree.
265 	 * so the detached nodes are no longer useful.
266 	 */
267 	while (!list_empty(&cache->detached)) {
268 		node = list_entry(cache->detached.next,
269 				  struct btrfs_backref_node, list);
270 		btrfs_backref_cleanup_node(cache, node);
271 	}
272 
273 	while (!list_empty(&cache->changed)) {
274 		node = list_entry(cache->changed.next,
275 				  struct btrfs_backref_node, list);
276 		list_del_init(&node->list);
277 		BUG_ON(node->pending);
278 		update_backref_node(cache, node, node->new_bytenr);
279 	}
280 
281 	/*
282 	 * some nodes can be left in the pending list if there were
283 	 * errors during processing the pending nodes.
284 	 */
285 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
286 		list_for_each_entry(node, &cache->pending[level], list) {
287 			BUG_ON(!node->pending);
288 			if (node->bytenr == node->new_bytenr)
289 				continue;
290 			update_backref_node(cache, node, node->new_bytenr);
291 		}
292 	}
293 
294 	cache->last_trans = 0;
295 	return 1;
296 }
297 
298 static bool reloc_root_is_dead(const struct btrfs_root *root)
299 {
300 	/*
301 	 * Pair with set_bit/clear_bit in clean_dirty_subvols and
302 	 * btrfs_update_reloc_root. We need to see the updated bit before
303 	 * trying to access reloc_root
304 	 */
305 	smp_rmb();
306 	if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state))
307 		return true;
308 	return false;
309 }
310 
311 /*
312  * Check if this subvolume tree has valid reloc tree.
313  *
314  * Reloc tree after swap is considered dead, thus not considered as valid.
315  * This is enough for most callers, as they don't distinguish dead reloc root
316  * from no reloc root.  But btrfs_should_ignore_reloc_root() below is a
317  * special case.
318  */
319 static bool have_reloc_root(const struct btrfs_root *root)
320 {
321 	if (reloc_root_is_dead(root))
322 		return false;
323 	if (!root->reloc_root)
324 		return false;
325 	return true;
326 }
327 
328 bool btrfs_should_ignore_reloc_root(const struct btrfs_root *root)
329 {
330 	struct btrfs_root *reloc_root;
331 
332 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
333 		return false;
334 
335 	/* This root has been merged with its reloc tree, we can ignore it */
336 	if (reloc_root_is_dead(root))
337 		return true;
338 
339 	reloc_root = root->reloc_root;
340 	if (!reloc_root)
341 		return false;
342 
343 	if (btrfs_header_generation(reloc_root->commit_root) ==
344 	    root->fs_info->running_transaction->transid)
345 		return false;
346 	/*
347 	 * If there is reloc tree and it was created in previous transaction
348 	 * backref lookup can find the reloc tree, so backref node for the fs
349 	 * tree root is useless for relocation.
350 	 */
351 	return true;
352 }
353 
354 /*
355  * find reloc tree by address of tree root
356  */
357 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr)
358 {
359 	struct reloc_control *rc = fs_info->reloc_ctl;
360 	struct rb_node *rb_node;
361 	struct mapping_node *node;
362 	struct btrfs_root *root = NULL;
363 
364 	ASSERT(rc);
365 	spin_lock(&rc->reloc_root_tree.lock);
366 	rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr);
367 	if (rb_node) {
368 		node = rb_entry(rb_node, struct mapping_node, rb_node);
369 		root = node->data;
370 	}
371 	spin_unlock(&rc->reloc_root_tree.lock);
372 	return btrfs_grab_root(root);
373 }
374 
375 /*
376  * For useless nodes, do two major clean ups:
377  *
378  * - Cleanup the children edges and nodes
379  *   If child node is also orphan (no parent) during cleanup, then the child
380  *   node will also be cleaned up.
381  *
382  * - Freeing up leaves (level 0), keeps nodes detached
383  *   For nodes, the node is still cached as "detached"
384  *
385  * Return false if @node is not in the @useless_nodes list.
386  * Return true if @node is in the @useless_nodes list.
387  */
388 static bool handle_useless_nodes(struct reloc_control *rc,
389 				 struct btrfs_backref_node *node)
390 {
391 	struct btrfs_backref_cache *cache = &rc->backref_cache;
392 	struct list_head *useless_node = &cache->useless_node;
393 	bool ret = false;
394 
395 	while (!list_empty(useless_node)) {
396 		struct btrfs_backref_node *cur;
397 
398 		cur = list_first_entry(useless_node, struct btrfs_backref_node,
399 				 list);
400 		list_del_init(&cur->list);
401 
402 		/* Only tree root nodes can be added to @useless_nodes */
403 		ASSERT(list_empty(&cur->upper));
404 
405 		if (cur == node)
406 			ret = true;
407 
408 		/* The node is the lowest node */
409 		if (cur->lowest) {
410 			list_del_init(&cur->lower);
411 			cur->lowest = 0;
412 		}
413 
414 		/* Cleanup the lower edges */
415 		while (!list_empty(&cur->lower)) {
416 			struct btrfs_backref_edge *edge;
417 			struct btrfs_backref_node *lower;
418 
419 			edge = list_entry(cur->lower.next,
420 					struct btrfs_backref_edge, list[UPPER]);
421 			list_del(&edge->list[UPPER]);
422 			list_del(&edge->list[LOWER]);
423 			lower = edge->node[LOWER];
424 			btrfs_backref_free_edge(cache, edge);
425 
426 			/* Child node is also orphan, queue for cleanup */
427 			if (list_empty(&lower->upper))
428 				list_add(&lower->list, useless_node);
429 		}
430 		/* Mark this block processed for relocation */
431 		mark_block_processed(rc, cur);
432 
433 		/*
434 		 * Backref nodes for tree leaves are deleted from the cache.
435 		 * Backref nodes for upper level tree blocks are left in the
436 		 * cache to avoid unnecessary backref lookup.
437 		 */
438 		if (cur->level > 0) {
439 			list_add(&cur->list, &cache->detached);
440 			cur->detached = 1;
441 		} else {
442 			rb_erase(&cur->rb_node, &cache->rb_root);
443 			btrfs_backref_free_node(cache, cur);
444 		}
445 	}
446 	return ret;
447 }
448 
449 /*
450  * Build backref tree for a given tree block. Root of the backref tree
451  * corresponds the tree block, leaves of the backref tree correspond roots of
452  * b-trees that reference the tree block.
453  *
454  * The basic idea of this function is check backrefs of a given block to find
455  * upper level blocks that reference the block, and then check backrefs of
456  * these upper level blocks recursively. The recursion stops when tree root is
457  * reached or backrefs for the block is cached.
458  *
459  * NOTE: if we find that backrefs for a block are cached, we know backrefs for
460  * all upper level blocks that directly/indirectly reference the block are also
461  * cached.
462  */
463 static noinline_for_stack struct btrfs_backref_node *build_backref_tree(
464 			struct btrfs_trans_handle *trans,
465 			struct reloc_control *rc, struct btrfs_key *node_key,
466 			int level, u64 bytenr)
467 {
468 	struct btrfs_backref_iter *iter;
469 	struct btrfs_backref_cache *cache = &rc->backref_cache;
470 	/* For searching parent of TREE_BLOCK_REF */
471 	struct btrfs_path *path;
472 	struct btrfs_backref_node *cur;
473 	struct btrfs_backref_node *node = NULL;
474 	struct btrfs_backref_edge *edge;
475 	int ret;
476 	int err = 0;
477 
478 	iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info);
479 	if (!iter)
480 		return ERR_PTR(-ENOMEM);
481 	path = btrfs_alloc_path();
482 	if (!path) {
483 		err = -ENOMEM;
484 		goto out;
485 	}
486 
487 	node = btrfs_backref_alloc_node(cache, bytenr, level);
488 	if (!node) {
489 		err = -ENOMEM;
490 		goto out;
491 	}
492 
493 	node->lowest = 1;
494 	cur = node;
495 
496 	/* Breadth-first search to build backref cache */
497 	do {
498 		ret = btrfs_backref_add_tree_node(trans, cache, path, iter,
499 						  node_key, cur);
500 		if (ret < 0) {
501 			err = ret;
502 			goto out;
503 		}
504 		edge = list_first_entry_or_null(&cache->pending_edge,
505 				struct btrfs_backref_edge, list[UPPER]);
506 		/*
507 		 * The pending list isn't empty, take the first block to
508 		 * process
509 		 */
510 		if (edge) {
511 			list_del_init(&edge->list[UPPER]);
512 			cur = edge->node[UPPER];
513 		}
514 	} while (edge);
515 
516 	/* Finish the upper linkage of newly added edges/nodes */
517 	ret = btrfs_backref_finish_upper_links(cache, node);
518 	if (ret < 0) {
519 		err = ret;
520 		goto out;
521 	}
522 
523 	if (handle_useless_nodes(rc, node))
524 		node = NULL;
525 out:
526 	btrfs_backref_iter_free(iter);
527 	btrfs_free_path(path);
528 	if (err) {
529 		btrfs_backref_error_cleanup(cache, node);
530 		return ERR_PTR(err);
531 	}
532 	ASSERT(!node || !node->detached);
533 	ASSERT(list_empty(&cache->useless_node) &&
534 	       list_empty(&cache->pending_edge));
535 	return node;
536 }
537 
538 /*
539  * helper to add backref node for the newly created snapshot.
540  * the backref node is created by cloning backref node that
541  * corresponds to root of source tree
542  */
543 static int clone_backref_node(struct btrfs_trans_handle *trans,
544 			      struct reloc_control *rc,
545 			      const struct btrfs_root *src,
546 			      struct btrfs_root *dest)
547 {
548 	struct btrfs_root *reloc_root = src->reloc_root;
549 	struct btrfs_backref_cache *cache = &rc->backref_cache;
550 	struct btrfs_backref_node *node = NULL;
551 	struct btrfs_backref_node *new_node;
552 	struct btrfs_backref_edge *edge;
553 	struct btrfs_backref_edge *new_edge;
554 	struct rb_node *rb_node;
555 
556 	if (cache->last_trans > 0)
557 		update_backref_cache(trans, cache);
558 
559 	rb_node = rb_simple_search(&cache->rb_root, src->commit_root->start);
560 	if (rb_node) {
561 		node = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
562 		if (node->detached)
563 			node = NULL;
564 		else
565 			BUG_ON(node->new_bytenr != reloc_root->node->start);
566 	}
567 
568 	if (!node) {
569 		rb_node = rb_simple_search(&cache->rb_root,
570 					   reloc_root->commit_root->start);
571 		if (rb_node) {
572 			node = rb_entry(rb_node, struct btrfs_backref_node,
573 					rb_node);
574 			BUG_ON(node->detached);
575 		}
576 	}
577 
578 	if (!node)
579 		return 0;
580 
581 	new_node = btrfs_backref_alloc_node(cache, dest->node->start,
582 					    node->level);
583 	if (!new_node)
584 		return -ENOMEM;
585 
586 	new_node->lowest = node->lowest;
587 	new_node->checked = 1;
588 	new_node->root = btrfs_grab_root(dest);
589 	ASSERT(new_node->root);
590 
591 	if (!node->lowest) {
592 		list_for_each_entry(edge, &node->lower, list[UPPER]) {
593 			new_edge = btrfs_backref_alloc_edge(cache);
594 			if (!new_edge)
595 				goto fail;
596 
597 			btrfs_backref_link_edge(new_edge, edge->node[LOWER],
598 						new_node, LINK_UPPER);
599 		}
600 	} else {
601 		list_add_tail(&new_node->lower, &cache->leaves);
602 	}
603 
604 	rb_node = rb_simple_insert(&cache->rb_root, new_node->bytenr,
605 				   &new_node->rb_node);
606 	if (rb_node)
607 		btrfs_backref_panic(trans->fs_info, new_node->bytenr, -EEXIST);
608 
609 	if (!new_node->lowest) {
610 		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
611 			list_add_tail(&new_edge->list[LOWER],
612 				      &new_edge->node[LOWER]->upper);
613 		}
614 	}
615 	return 0;
616 fail:
617 	while (!list_empty(&new_node->lower)) {
618 		new_edge = list_entry(new_node->lower.next,
619 				      struct btrfs_backref_edge, list[UPPER]);
620 		list_del(&new_edge->list[UPPER]);
621 		btrfs_backref_free_edge(cache, new_edge);
622 	}
623 	btrfs_backref_free_node(cache, new_node);
624 	return -ENOMEM;
625 }
626 
627 /*
628  * helper to add 'address of tree root -> reloc tree' mapping
629  */
630 static int __add_reloc_root(struct btrfs_root *root)
631 {
632 	struct btrfs_fs_info *fs_info = root->fs_info;
633 	struct rb_node *rb_node;
634 	struct mapping_node *node;
635 	struct reloc_control *rc = fs_info->reloc_ctl;
636 
637 	node = kmalloc(sizeof(*node), GFP_NOFS);
638 	if (!node)
639 		return -ENOMEM;
640 
641 	node->bytenr = root->commit_root->start;
642 	node->data = root;
643 
644 	spin_lock(&rc->reloc_root_tree.lock);
645 	rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
646 				   node->bytenr, &node->rb_node);
647 	spin_unlock(&rc->reloc_root_tree.lock);
648 	if (rb_node) {
649 		btrfs_err(fs_info,
650 			    "Duplicate root found for start=%llu while inserting into relocation tree",
651 			    node->bytenr);
652 		return -EEXIST;
653 	}
654 
655 	list_add_tail(&root->root_list, &rc->reloc_roots);
656 	return 0;
657 }
658 
659 /*
660  * helper to delete the 'address of tree root -> reloc tree'
661  * mapping
662  */
663 static void __del_reloc_root(struct btrfs_root *root)
664 {
665 	struct btrfs_fs_info *fs_info = root->fs_info;
666 	struct rb_node *rb_node;
667 	struct mapping_node *node = NULL;
668 	struct reloc_control *rc = fs_info->reloc_ctl;
669 	bool put_ref = false;
670 
671 	if (rc && root->node) {
672 		spin_lock(&rc->reloc_root_tree.lock);
673 		rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
674 					   root->commit_root->start);
675 		if (rb_node) {
676 			node = rb_entry(rb_node, struct mapping_node, rb_node);
677 			rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
678 			RB_CLEAR_NODE(&node->rb_node);
679 		}
680 		spin_unlock(&rc->reloc_root_tree.lock);
681 		ASSERT(!node || (struct btrfs_root *)node->data == root);
682 	}
683 
684 	/*
685 	 * We only put the reloc root here if it's on the list.  There's a lot
686 	 * of places where the pattern is to splice the rc->reloc_roots, process
687 	 * the reloc roots, and then add the reloc root back onto
688 	 * rc->reloc_roots.  If we call __del_reloc_root while it's off of the
689 	 * list we don't want the reference being dropped, because the guy
690 	 * messing with the list is in charge of the reference.
691 	 */
692 	spin_lock(&fs_info->trans_lock);
693 	if (!list_empty(&root->root_list)) {
694 		put_ref = true;
695 		list_del_init(&root->root_list);
696 	}
697 	spin_unlock(&fs_info->trans_lock);
698 	if (put_ref)
699 		btrfs_put_root(root);
700 	kfree(node);
701 }
702 
703 /*
704  * helper to update the 'address of tree root -> reloc tree'
705  * mapping
706  */
707 static int __update_reloc_root(struct btrfs_root *root)
708 {
709 	struct btrfs_fs_info *fs_info = root->fs_info;
710 	struct rb_node *rb_node;
711 	struct mapping_node *node = NULL;
712 	struct reloc_control *rc = fs_info->reloc_ctl;
713 
714 	spin_lock(&rc->reloc_root_tree.lock);
715 	rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
716 				   root->commit_root->start);
717 	if (rb_node) {
718 		node = rb_entry(rb_node, struct mapping_node, rb_node);
719 		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
720 	}
721 	spin_unlock(&rc->reloc_root_tree.lock);
722 
723 	if (!node)
724 		return 0;
725 	BUG_ON((struct btrfs_root *)node->data != root);
726 
727 	spin_lock(&rc->reloc_root_tree.lock);
728 	node->bytenr = root->node->start;
729 	rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
730 				   node->bytenr, &node->rb_node);
731 	spin_unlock(&rc->reloc_root_tree.lock);
732 	if (rb_node)
733 		btrfs_backref_panic(fs_info, node->bytenr, -EEXIST);
734 	return 0;
735 }
736 
737 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
738 					struct btrfs_root *root, u64 objectid)
739 {
740 	struct btrfs_fs_info *fs_info = root->fs_info;
741 	struct btrfs_root *reloc_root;
742 	struct extent_buffer *eb;
743 	struct btrfs_root_item *root_item;
744 	struct btrfs_key root_key;
745 	int ret = 0;
746 	bool must_abort = false;
747 
748 	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
749 	if (!root_item)
750 		return ERR_PTR(-ENOMEM);
751 
752 	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
753 	root_key.type = BTRFS_ROOT_ITEM_KEY;
754 	root_key.offset = objectid;
755 
756 	if (root->root_key.objectid == objectid) {
757 		u64 commit_root_gen;
758 
759 		/* called by btrfs_init_reloc_root */
760 		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
761 				      BTRFS_TREE_RELOC_OBJECTID);
762 		if (ret)
763 			goto fail;
764 
765 		/*
766 		 * Set the last_snapshot field to the generation of the commit
767 		 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
768 		 * correctly (returns true) when the relocation root is created
769 		 * either inside the critical section of a transaction commit
770 		 * (through transaction.c:qgroup_account_snapshot()) and when
771 		 * it's created before the transaction commit is started.
772 		 */
773 		commit_root_gen = btrfs_header_generation(root->commit_root);
774 		btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
775 	} else {
776 		/*
777 		 * called by btrfs_reloc_post_snapshot_hook.
778 		 * the source tree is a reloc tree, all tree blocks
779 		 * modified after it was created have RELOC flag
780 		 * set in their headers. so it's OK to not update
781 		 * the 'last_snapshot'.
782 		 */
783 		ret = btrfs_copy_root(trans, root, root->node, &eb,
784 				      BTRFS_TREE_RELOC_OBJECTID);
785 		if (ret)
786 			goto fail;
787 	}
788 
789 	/*
790 	 * We have changed references at this point, we must abort the
791 	 * transaction if anything fails.
792 	 */
793 	must_abort = true;
794 
795 	memcpy(root_item, &root->root_item, sizeof(*root_item));
796 	btrfs_set_root_bytenr(root_item, eb->start);
797 	btrfs_set_root_level(root_item, btrfs_header_level(eb));
798 	btrfs_set_root_generation(root_item, trans->transid);
799 
800 	if (root->root_key.objectid == objectid) {
801 		btrfs_set_root_refs(root_item, 0);
802 		memset(&root_item->drop_progress, 0,
803 		       sizeof(struct btrfs_disk_key));
804 		btrfs_set_root_drop_level(root_item, 0);
805 	}
806 
807 	btrfs_tree_unlock(eb);
808 	free_extent_buffer(eb);
809 
810 	ret = btrfs_insert_root(trans, fs_info->tree_root,
811 				&root_key, root_item);
812 	if (ret)
813 		goto fail;
814 
815 	kfree(root_item);
816 
817 	reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key);
818 	if (IS_ERR(reloc_root)) {
819 		ret = PTR_ERR(reloc_root);
820 		goto abort;
821 	}
822 	set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
823 	reloc_root->last_trans = trans->transid;
824 	return reloc_root;
825 fail:
826 	kfree(root_item);
827 abort:
828 	if (must_abort)
829 		btrfs_abort_transaction(trans, ret);
830 	return ERR_PTR(ret);
831 }
832 
833 /*
834  * create reloc tree for a given fs tree. reloc tree is just a
835  * snapshot of the fs tree with special root objectid.
836  *
837  * The reloc_root comes out of here with two references, one for
838  * root->reloc_root, and another for being on the rc->reloc_roots list.
839  */
840 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
841 			  struct btrfs_root *root)
842 {
843 	struct btrfs_fs_info *fs_info = root->fs_info;
844 	struct btrfs_root *reloc_root;
845 	struct reloc_control *rc = fs_info->reloc_ctl;
846 	struct btrfs_block_rsv *rsv;
847 	int clear_rsv = 0;
848 	int ret;
849 
850 	if (!rc)
851 		return 0;
852 
853 	/*
854 	 * The subvolume has reloc tree but the swap is finished, no need to
855 	 * create/update the dead reloc tree
856 	 */
857 	if (reloc_root_is_dead(root))
858 		return 0;
859 
860 	/*
861 	 * This is subtle but important.  We do not do
862 	 * record_root_in_transaction for reloc roots, instead we record their
863 	 * corresponding fs root, and then here we update the last trans for the
864 	 * reloc root.  This means that we have to do this for the entire life
865 	 * of the reloc root, regardless of which stage of the relocation we are
866 	 * in.
867 	 */
868 	if (root->reloc_root) {
869 		reloc_root = root->reloc_root;
870 		reloc_root->last_trans = trans->transid;
871 		return 0;
872 	}
873 
874 	/*
875 	 * We are merging reloc roots, we do not need new reloc trees.  Also
876 	 * reloc trees never need their own reloc tree.
877 	 */
878 	if (!rc->create_reloc_tree ||
879 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
880 		return 0;
881 
882 	if (!trans->reloc_reserved) {
883 		rsv = trans->block_rsv;
884 		trans->block_rsv = rc->block_rsv;
885 		clear_rsv = 1;
886 	}
887 	reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
888 	if (clear_rsv)
889 		trans->block_rsv = rsv;
890 	if (IS_ERR(reloc_root))
891 		return PTR_ERR(reloc_root);
892 
893 	ret = __add_reloc_root(reloc_root);
894 	ASSERT(ret != -EEXIST);
895 	if (ret) {
896 		/* Pairs with create_reloc_root */
897 		btrfs_put_root(reloc_root);
898 		return ret;
899 	}
900 	root->reloc_root = btrfs_grab_root(reloc_root);
901 	return 0;
902 }
903 
904 /*
905  * update root item of reloc tree
906  */
907 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
908 			    struct btrfs_root *root)
909 {
910 	struct btrfs_fs_info *fs_info = root->fs_info;
911 	struct btrfs_root *reloc_root;
912 	struct btrfs_root_item *root_item;
913 	int ret;
914 
915 	if (!have_reloc_root(root))
916 		return 0;
917 
918 	reloc_root = root->reloc_root;
919 	root_item = &reloc_root->root_item;
920 
921 	/*
922 	 * We are probably ok here, but __del_reloc_root() will drop its ref of
923 	 * the root.  We have the ref for root->reloc_root, but just in case
924 	 * hold it while we update the reloc root.
925 	 */
926 	btrfs_grab_root(reloc_root);
927 
928 	/* root->reloc_root will stay until current relocation finished */
929 	if (fs_info->reloc_ctl->merge_reloc_tree &&
930 	    btrfs_root_refs(root_item) == 0) {
931 		set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
932 		/*
933 		 * Mark the tree as dead before we change reloc_root so
934 		 * have_reloc_root will not touch it from now on.
935 		 */
936 		smp_wmb();
937 		__del_reloc_root(reloc_root);
938 	}
939 
940 	if (reloc_root->commit_root != reloc_root->node) {
941 		__update_reloc_root(reloc_root);
942 		btrfs_set_root_node(root_item, reloc_root->node);
943 		free_extent_buffer(reloc_root->commit_root);
944 		reloc_root->commit_root = btrfs_root_node(reloc_root);
945 	}
946 
947 	ret = btrfs_update_root(trans, fs_info->tree_root,
948 				&reloc_root->root_key, root_item);
949 	btrfs_put_root(reloc_root);
950 	return ret;
951 }
952 
953 /*
954  * helper to find first cached inode with inode number >= objectid
955  * in a subvolume
956  */
957 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
958 {
959 	struct rb_node *node;
960 	struct rb_node *prev;
961 	struct btrfs_inode *entry;
962 	struct inode *inode;
963 
964 	spin_lock(&root->inode_lock);
965 again:
966 	node = root->inode_tree.rb_node;
967 	prev = NULL;
968 	while (node) {
969 		prev = node;
970 		entry = rb_entry(node, struct btrfs_inode, rb_node);
971 
972 		if (objectid < btrfs_ino(entry))
973 			node = node->rb_left;
974 		else if (objectid > btrfs_ino(entry))
975 			node = node->rb_right;
976 		else
977 			break;
978 	}
979 	if (!node) {
980 		while (prev) {
981 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
982 			if (objectid <= btrfs_ino(entry)) {
983 				node = prev;
984 				break;
985 			}
986 			prev = rb_next(prev);
987 		}
988 	}
989 	while (node) {
990 		entry = rb_entry(node, struct btrfs_inode, rb_node);
991 		inode = igrab(&entry->vfs_inode);
992 		if (inode) {
993 			spin_unlock(&root->inode_lock);
994 			return inode;
995 		}
996 
997 		objectid = btrfs_ino(entry) + 1;
998 		if (cond_resched_lock(&root->inode_lock))
999 			goto again;
1000 
1001 		node = rb_next(node);
1002 	}
1003 	spin_unlock(&root->inode_lock);
1004 	return NULL;
1005 }
1006 
1007 /*
1008  * get new location of data
1009  */
1010 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1011 			    u64 bytenr, u64 num_bytes)
1012 {
1013 	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1014 	struct btrfs_path *path;
1015 	struct btrfs_file_extent_item *fi;
1016 	struct extent_buffer *leaf;
1017 	int ret;
1018 
1019 	path = btrfs_alloc_path();
1020 	if (!path)
1021 		return -ENOMEM;
1022 
1023 	bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1024 	ret = btrfs_lookup_file_extent(NULL, root, path,
1025 			btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
1026 	if (ret < 0)
1027 		goto out;
1028 	if (ret > 0) {
1029 		ret = -ENOENT;
1030 		goto out;
1031 	}
1032 
1033 	leaf = path->nodes[0];
1034 	fi = btrfs_item_ptr(leaf, path->slots[0],
1035 			    struct btrfs_file_extent_item);
1036 
1037 	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1038 	       btrfs_file_extent_compression(leaf, fi) ||
1039 	       btrfs_file_extent_encryption(leaf, fi) ||
1040 	       btrfs_file_extent_other_encoding(leaf, fi));
1041 
1042 	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1043 		ret = -EINVAL;
1044 		goto out;
1045 	}
1046 
1047 	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1048 	ret = 0;
1049 out:
1050 	btrfs_free_path(path);
1051 	return ret;
1052 }
1053 
1054 /*
1055  * update file extent items in the tree leaf to point to
1056  * the new locations.
1057  */
1058 static noinline_for_stack
1059 int replace_file_extents(struct btrfs_trans_handle *trans,
1060 			 struct reloc_control *rc,
1061 			 struct btrfs_root *root,
1062 			 struct extent_buffer *leaf)
1063 {
1064 	struct btrfs_fs_info *fs_info = root->fs_info;
1065 	struct btrfs_key key;
1066 	struct btrfs_file_extent_item *fi;
1067 	struct inode *inode = NULL;
1068 	u64 parent;
1069 	u64 bytenr;
1070 	u64 new_bytenr = 0;
1071 	u64 num_bytes;
1072 	u64 end;
1073 	u32 nritems;
1074 	u32 i;
1075 	int ret = 0;
1076 	int first = 1;
1077 	int dirty = 0;
1078 
1079 	if (rc->stage != UPDATE_DATA_PTRS)
1080 		return 0;
1081 
1082 	/* reloc trees always use full backref */
1083 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1084 		parent = leaf->start;
1085 	else
1086 		parent = 0;
1087 
1088 	nritems = btrfs_header_nritems(leaf);
1089 	for (i = 0; i < nritems; i++) {
1090 		struct btrfs_ref ref = { 0 };
1091 
1092 		cond_resched();
1093 		btrfs_item_key_to_cpu(leaf, &key, i);
1094 		if (key.type != BTRFS_EXTENT_DATA_KEY)
1095 			continue;
1096 		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1097 		if (btrfs_file_extent_type(leaf, fi) ==
1098 		    BTRFS_FILE_EXTENT_INLINE)
1099 			continue;
1100 		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1101 		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1102 		if (bytenr == 0)
1103 			continue;
1104 		if (!in_range(bytenr, rc->block_group->start,
1105 			      rc->block_group->length))
1106 			continue;
1107 
1108 		/*
1109 		 * if we are modifying block in fs tree, wait for read_folio
1110 		 * to complete and drop the extent cache
1111 		 */
1112 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1113 			if (first) {
1114 				inode = find_next_inode(root, key.objectid);
1115 				first = 0;
1116 			} else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) {
1117 				btrfs_add_delayed_iput(BTRFS_I(inode));
1118 				inode = find_next_inode(root, key.objectid);
1119 			}
1120 			if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) {
1121 				struct extent_state *cached_state = NULL;
1122 
1123 				end = key.offset +
1124 				      btrfs_file_extent_num_bytes(leaf, fi);
1125 				WARN_ON(!IS_ALIGNED(key.offset,
1126 						    fs_info->sectorsize));
1127 				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1128 				end--;
1129 				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1130 						      key.offset, end,
1131 						      &cached_state);
1132 				if (!ret)
1133 					continue;
1134 
1135 				btrfs_drop_extent_map_range(BTRFS_I(inode),
1136 							    key.offset, end, true);
1137 				unlock_extent(&BTRFS_I(inode)->io_tree,
1138 					      key.offset, end, &cached_state);
1139 			}
1140 		}
1141 
1142 		ret = get_new_location(rc->data_inode, &new_bytenr,
1143 				       bytenr, num_bytes);
1144 		if (ret) {
1145 			/*
1146 			 * Don't have to abort since we've not changed anything
1147 			 * in the file extent yet.
1148 			 */
1149 			break;
1150 		}
1151 
1152 		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1153 		dirty = 1;
1154 
1155 		key.offset -= btrfs_file_extent_offset(leaf, fi);
1156 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1157 				       num_bytes, parent, root->root_key.objectid);
1158 		btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1159 				    key.objectid, key.offset,
1160 				    root->root_key.objectid, false);
1161 		ret = btrfs_inc_extent_ref(trans, &ref);
1162 		if (ret) {
1163 			btrfs_abort_transaction(trans, ret);
1164 			break;
1165 		}
1166 
1167 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1168 				       num_bytes, parent, root->root_key.objectid);
1169 		btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1170 				    key.objectid, key.offset,
1171 				    root->root_key.objectid, false);
1172 		ret = btrfs_free_extent(trans, &ref);
1173 		if (ret) {
1174 			btrfs_abort_transaction(trans, ret);
1175 			break;
1176 		}
1177 	}
1178 	if (dirty)
1179 		btrfs_mark_buffer_dirty(trans, leaf);
1180 	if (inode)
1181 		btrfs_add_delayed_iput(BTRFS_I(inode));
1182 	return ret;
1183 }
1184 
1185 static noinline_for_stack int memcmp_node_keys(const struct extent_buffer *eb,
1186 					       int slot, const struct btrfs_path *path,
1187 					       int level)
1188 {
1189 	struct btrfs_disk_key key1;
1190 	struct btrfs_disk_key key2;
1191 	btrfs_node_key(eb, &key1, slot);
1192 	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1193 	return memcmp(&key1, &key2, sizeof(key1));
1194 }
1195 
1196 /*
1197  * try to replace tree blocks in fs tree with the new blocks
1198  * in reloc tree. tree blocks haven't been modified since the
1199  * reloc tree was create can be replaced.
1200  *
1201  * if a block was replaced, level of the block + 1 is returned.
1202  * if no block got replaced, 0 is returned. if there are other
1203  * errors, a negative error number is returned.
1204  */
1205 static noinline_for_stack
1206 int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
1207 		 struct btrfs_root *dest, struct btrfs_root *src,
1208 		 struct btrfs_path *path, struct btrfs_key *next_key,
1209 		 int lowest_level, int max_level)
1210 {
1211 	struct btrfs_fs_info *fs_info = dest->fs_info;
1212 	struct extent_buffer *eb;
1213 	struct extent_buffer *parent;
1214 	struct btrfs_ref ref = { 0 };
1215 	struct btrfs_key key;
1216 	u64 old_bytenr;
1217 	u64 new_bytenr;
1218 	u64 old_ptr_gen;
1219 	u64 new_ptr_gen;
1220 	u64 last_snapshot;
1221 	u32 blocksize;
1222 	int cow = 0;
1223 	int level;
1224 	int ret;
1225 	int slot;
1226 
1227 	ASSERT(src->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1228 	ASSERT(dest->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1229 
1230 	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1231 again:
1232 	slot = path->slots[lowest_level];
1233 	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1234 
1235 	eb = btrfs_lock_root_node(dest);
1236 	level = btrfs_header_level(eb);
1237 
1238 	if (level < lowest_level) {
1239 		btrfs_tree_unlock(eb);
1240 		free_extent_buffer(eb);
1241 		return 0;
1242 	}
1243 
1244 	if (cow) {
1245 		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb,
1246 				      BTRFS_NESTING_COW);
1247 		if (ret) {
1248 			btrfs_tree_unlock(eb);
1249 			free_extent_buffer(eb);
1250 			return ret;
1251 		}
1252 	}
1253 
1254 	if (next_key) {
1255 		next_key->objectid = (u64)-1;
1256 		next_key->type = (u8)-1;
1257 		next_key->offset = (u64)-1;
1258 	}
1259 
1260 	parent = eb;
1261 	while (1) {
1262 		level = btrfs_header_level(parent);
1263 		ASSERT(level >= lowest_level);
1264 
1265 		ret = btrfs_bin_search(parent, 0, &key, &slot);
1266 		if (ret < 0)
1267 			break;
1268 		if (ret && slot > 0)
1269 			slot--;
1270 
1271 		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1272 			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1273 
1274 		old_bytenr = btrfs_node_blockptr(parent, slot);
1275 		blocksize = fs_info->nodesize;
1276 		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1277 
1278 		if (level <= max_level) {
1279 			eb = path->nodes[level];
1280 			new_bytenr = btrfs_node_blockptr(eb,
1281 							path->slots[level]);
1282 			new_ptr_gen = btrfs_node_ptr_generation(eb,
1283 							path->slots[level]);
1284 		} else {
1285 			new_bytenr = 0;
1286 			new_ptr_gen = 0;
1287 		}
1288 
1289 		if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1290 			ret = level;
1291 			break;
1292 		}
1293 
1294 		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1295 		    memcmp_node_keys(parent, slot, path, level)) {
1296 			if (level <= lowest_level) {
1297 				ret = 0;
1298 				break;
1299 			}
1300 
1301 			eb = btrfs_read_node_slot(parent, slot);
1302 			if (IS_ERR(eb)) {
1303 				ret = PTR_ERR(eb);
1304 				break;
1305 			}
1306 			btrfs_tree_lock(eb);
1307 			if (cow) {
1308 				ret = btrfs_cow_block(trans, dest, eb, parent,
1309 						      slot, &eb,
1310 						      BTRFS_NESTING_COW);
1311 				if (ret) {
1312 					btrfs_tree_unlock(eb);
1313 					free_extent_buffer(eb);
1314 					break;
1315 				}
1316 			}
1317 
1318 			btrfs_tree_unlock(parent);
1319 			free_extent_buffer(parent);
1320 
1321 			parent = eb;
1322 			continue;
1323 		}
1324 
1325 		if (!cow) {
1326 			btrfs_tree_unlock(parent);
1327 			free_extent_buffer(parent);
1328 			cow = 1;
1329 			goto again;
1330 		}
1331 
1332 		btrfs_node_key_to_cpu(path->nodes[level], &key,
1333 				      path->slots[level]);
1334 		btrfs_release_path(path);
1335 
1336 		path->lowest_level = level;
1337 		set_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state);
1338 		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1339 		clear_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state);
1340 		path->lowest_level = 0;
1341 		if (ret) {
1342 			if (ret > 0)
1343 				ret = -ENOENT;
1344 			break;
1345 		}
1346 
1347 		/*
1348 		 * Info qgroup to trace both subtrees.
1349 		 *
1350 		 * We must trace both trees.
1351 		 * 1) Tree reloc subtree
1352 		 *    If not traced, we will leak data numbers
1353 		 * 2) Fs subtree
1354 		 *    If not traced, we will double count old data
1355 		 *
1356 		 * We don't scan the subtree right now, but only record
1357 		 * the swapped tree blocks.
1358 		 * The real subtree rescan is delayed until we have new
1359 		 * CoW on the subtree root node before transaction commit.
1360 		 */
1361 		ret = btrfs_qgroup_add_swapped_blocks(trans, dest,
1362 				rc->block_group, parent, slot,
1363 				path->nodes[level], path->slots[level],
1364 				last_snapshot);
1365 		if (ret < 0)
1366 			break;
1367 		/*
1368 		 * swap blocks in fs tree and reloc tree.
1369 		 */
1370 		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1371 		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1372 		btrfs_mark_buffer_dirty(trans, parent);
1373 
1374 		btrfs_set_node_blockptr(path->nodes[level],
1375 					path->slots[level], old_bytenr);
1376 		btrfs_set_node_ptr_generation(path->nodes[level],
1377 					      path->slots[level], old_ptr_gen);
1378 		btrfs_mark_buffer_dirty(trans, path->nodes[level]);
1379 
1380 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr,
1381 				       blocksize, path->nodes[level]->start,
1382 				       src->root_key.objectid);
1383 		btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid,
1384 				    0, true);
1385 		ret = btrfs_inc_extent_ref(trans, &ref);
1386 		if (ret) {
1387 			btrfs_abort_transaction(trans, ret);
1388 			break;
1389 		}
1390 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1391 				       blocksize, 0, dest->root_key.objectid);
1392 		btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid, 0,
1393 				    true);
1394 		ret = btrfs_inc_extent_ref(trans, &ref);
1395 		if (ret) {
1396 			btrfs_abort_transaction(trans, ret);
1397 			break;
1398 		}
1399 
1400 		/* We don't know the real owning_root, use 0. */
1401 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr,
1402 				       blocksize, path->nodes[level]->start, 0);
1403 		btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid,
1404 				    0, true);
1405 		ret = btrfs_free_extent(trans, &ref);
1406 		if (ret) {
1407 			btrfs_abort_transaction(trans, ret);
1408 			break;
1409 		}
1410 
1411 		/* We don't know the real owning_root, use 0. */
1412 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr,
1413 				       blocksize, 0, 0);
1414 		btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid,
1415 				    0, true);
1416 		ret = btrfs_free_extent(trans, &ref);
1417 		if (ret) {
1418 			btrfs_abort_transaction(trans, ret);
1419 			break;
1420 		}
1421 
1422 		btrfs_unlock_up_safe(path, 0);
1423 
1424 		ret = level;
1425 		break;
1426 	}
1427 	btrfs_tree_unlock(parent);
1428 	free_extent_buffer(parent);
1429 	return ret;
1430 }
1431 
1432 /*
1433  * helper to find next relocated block in reloc tree
1434  */
1435 static noinline_for_stack
1436 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1437 		       int *level)
1438 {
1439 	struct extent_buffer *eb;
1440 	int i;
1441 	u64 last_snapshot;
1442 	u32 nritems;
1443 
1444 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1445 
1446 	for (i = 0; i < *level; i++) {
1447 		free_extent_buffer(path->nodes[i]);
1448 		path->nodes[i] = NULL;
1449 	}
1450 
1451 	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1452 		eb = path->nodes[i];
1453 		nritems = btrfs_header_nritems(eb);
1454 		while (path->slots[i] + 1 < nritems) {
1455 			path->slots[i]++;
1456 			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1457 			    last_snapshot)
1458 				continue;
1459 
1460 			*level = i;
1461 			return 0;
1462 		}
1463 		free_extent_buffer(path->nodes[i]);
1464 		path->nodes[i] = NULL;
1465 	}
1466 	return 1;
1467 }
1468 
1469 /*
1470  * walk down reloc tree to find relocated block of lowest level
1471  */
1472 static noinline_for_stack
1473 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1474 			 int *level)
1475 {
1476 	struct extent_buffer *eb = NULL;
1477 	int i;
1478 	u64 ptr_gen = 0;
1479 	u64 last_snapshot;
1480 	u32 nritems;
1481 
1482 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1483 
1484 	for (i = *level; i > 0; i--) {
1485 		eb = path->nodes[i];
1486 		nritems = btrfs_header_nritems(eb);
1487 		while (path->slots[i] < nritems) {
1488 			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1489 			if (ptr_gen > last_snapshot)
1490 				break;
1491 			path->slots[i]++;
1492 		}
1493 		if (path->slots[i] >= nritems) {
1494 			if (i == *level)
1495 				break;
1496 			*level = i + 1;
1497 			return 0;
1498 		}
1499 		if (i == 1) {
1500 			*level = i;
1501 			return 0;
1502 		}
1503 
1504 		eb = btrfs_read_node_slot(eb, path->slots[i]);
1505 		if (IS_ERR(eb))
1506 			return PTR_ERR(eb);
1507 		BUG_ON(btrfs_header_level(eb) != i - 1);
1508 		path->nodes[i - 1] = eb;
1509 		path->slots[i - 1] = 0;
1510 	}
1511 	return 1;
1512 }
1513 
1514 /*
1515  * invalidate extent cache for file extents whose key in range of
1516  * [min_key, max_key)
1517  */
1518 static int invalidate_extent_cache(struct btrfs_root *root,
1519 				   const struct btrfs_key *min_key,
1520 				   const struct btrfs_key *max_key)
1521 {
1522 	struct btrfs_fs_info *fs_info = root->fs_info;
1523 	struct inode *inode = NULL;
1524 	u64 objectid;
1525 	u64 start, end;
1526 	u64 ino;
1527 
1528 	objectid = min_key->objectid;
1529 	while (1) {
1530 		struct extent_state *cached_state = NULL;
1531 
1532 		cond_resched();
1533 		iput(inode);
1534 
1535 		if (objectid > max_key->objectid)
1536 			break;
1537 
1538 		inode = find_next_inode(root, objectid);
1539 		if (!inode)
1540 			break;
1541 		ino = btrfs_ino(BTRFS_I(inode));
1542 
1543 		if (ino > max_key->objectid) {
1544 			iput(inode);
1545 			break;
1546 		}
1547 
1548 		objectid = ino + 1;
1549 		if (!S_ISREG(inode->i_mode))
1550 			continue;
1551 
1552 		if (unlikely(min_key->objectid == ino)) {
1553 			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1554 				continue;
1555 			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1556 				start = 0;
1557 			else {
1558 				start = min_key->offset;
1559 				WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
1560 			}
1561 		} else {
1562 			start = 0;
1563 		}
1564 
1565 		if (unlikely(max_key->objectid == ino)) {
1566 			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1567 				continue;
1568 			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1569 				end = (u64)-1;
1570 			} else {
1571 				if (max_key->offset == 0)
1572 					continue;
1573 				end = max_key->offset;
1574 				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1575 				end--;
1576 			}
1577 		} else {
1578 			end = (u64)-1;
1579 		}
1580 
1581 		/* the lock_extent waits for read_folio to complete */
1582 		lock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state);
1583 		btrfs_drop_extent_map_range(BTRFS_I(inode), start, end, true);
1584 		unlock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state);
1585 	}
1586 	return 0;
1587 }
1588 
1589 static int find_next_key(struct btrfs_path *path, int level,
1590 			 struct btrfs_key *key)
1591 
1592 {
1593 	while (level < BTRFS_MAX_LEVEL) {
1594 		if (!path->nodes[level])
1595 			break;
1596 		if (path->slots[level] + 1 <
1597 		    btrfs_header_nritems(path->nodes[level])) {
1598 			btrfs_node_key_to_cpu(path->nodes[level], key,
1599 					      path->slots[level] + 1);
1600 			return 0;
1601 		}
1602 		level++;
1603 	}
1604 	return 1;
1605 }
1606 
1607 /*
1608  * Insert current subvolume into reloc_control::dirty_subvol_roots
1609  */
1610 static int insert_dirty_subvol(struct btrfs_trans_handle *trans,
1611 			       struct reloc_control *rc,
1612 			       struct btrfs_root *root)
1613 {
1614 	struct btrfs_root *reloc_root = root->reloc_root;
1615 	struct btrfs_root_item *reloc_root_item;
1616 	int ret;
1617 
1618 	/* @root must be a subvolume tree root with a valid reloc tree */
1619 	ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1620 	ASSERT(reloc_root);
1621 
1622 	reloc_root_item = &reloc_root->root_item;
1623 	memset(&reloc_root_item->drop_progress, 0,
1624 		sizeof(reloc_root_item->drop_progress));
1625 	btrfs_set_root_drop_level(reloc_root_item, 0);
1626 	btrfs_set_root_refs(reloc_root_item, 0);
1627 	ret = btrfs_update_reloc_root(trans, root);
1628 	if (ret)
1629 		return ret;
1630 
1631 	if (list_empty(&root->reloc_dirty_list)) {
1632 		btrfs_grab_root(root);
1633 		list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots);
1634 	}
1635 
1636 	return 0;
1637 }
1638 
1639 static int clean_dirty_subvols(struct reloc_control *rc)
1640 {
1641 	struct btrfs_root *root;
1642 	struct btrfs_root *next;
1643 	int ret = 0;
1644 	int ret2;
1645 
1646 	list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots,
1647 				 reloc_dirty_list) {
1648 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1649 			/* Merged subvolume, cleanup its reloc root */
1650 			struct btrfs_root *reloc_root = root->reloc_root;
1651 
1652 			list_del_init(&root->reloc_dirty_list);
1653 			root->reloc_root = NULL;
1654 			/*
1655 			 * Need barrier to ensure clear_bit() only happens after
1656 			 * root->reloc_root = NULL. Pairs with have_reloc_root.
1657 			 */
1658 			smp_wmb();
1659 			clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
1660 			if (reloc_root) {
1661 				/*
1662 				 * btrfs_drop_snapshot drops our ref we hold for
1663 				 * ->reloc_root.  If it fails however we must
1664 				 * drop the ref ourselves.
1665 				 */
1666 				ret2 = btrfs_drop_snapshot(reloc_root, 0, 1);
1667 				if (ret2 < 0) {
1668 					btrfs_put_root(reloc_root);
1669 					if (!ret)
1670 						ret = ret2;
1671 				}
1672 			}
1673 			btrfs_put_root(root);
1674 		} else {
1675 			/* Orphan reloc tree, just clean it up */
1676 			ret2 = btrfs_drop_snapshot(root, 0, 1);
1677 			if (ret2 < 0) {
1678 				btrfs_put_root(root);
1679 				if (!ret)
1680 					ret = ret2;
1681 			}
1682 		}
1683 	}
1684 	return ret;
1685 }
1686 
1687 /*
1688  * merge the relocated tree blocks in reloc tree with corresponding
1689  * fs tree.
1690  */
1691 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
1692 					       struct btrfs_root *root)
1693 {
1694 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1695 	struct btrfs_key key;
1696 	struct btrfs_key next_key;
1697 	struct btrfs_trans_handle *trans = NULL;
1698 	struct btrfs_root *reloc_root;
1699 	struct btrfs_root_item *root_item;
1700 	struct btrfs_path *path;
1701 	struct extent_buffer *leaf;
1702 	int reserve_level;
1703 	int level;
1704 	int max_level;
1705 	int replaced = 0;
1706 	int ret = 0;
1707 	u32 min_reserved;
1708 
1709 	path = btrfs_alloc_path();
1710 	if (!path)
1711 		return -ENOMEM;
1712 	path->reada = READA_FORWARD;
1713 
1714 	reloc_root = root->reloc_root;
1715 	root_item = &reloc_root->root_item;
1716 
1717 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
1718 		level = btrfs_root_level(root_item);
1719 		atomic_inc(&reloc_root->node->refs);
1720 		path->nodes[level] = reloc_root->node;
1721 		path->slots[level] = 0;
1722 	} else {
1723 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
1724 
1725 		level = btrfs_root_drop_level(root_item);
1726 		BUG_ON(level == 0);
1727 		path->lowest_level = level;
1728 		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
1729 		path->lowest_level = 0;
1730 		if (ret < 0) {
1731 			btrfs_free_path(path);
1732 			return ret;
1733 		}
1734 
1735 		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
1736 				      path->slots[level]);
1737 		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
1738 
1739 		btrfs_unlock_up_safe(path, 0);
1740 	}
1741 
1742 	/*
1743 	 * In merge_reloc_root(), we modify the upper level pointer to swap the
1744 	 * tree blocks between reloc tree and subvolume tree.  Thus for tree
1745 	 * block COW, we COW at most from level 1 to root level for each tree.
1746 	 *
1747 	 * Thus the needed metadata size is at most root_level * nodesize,
1748 	 * and * 2 since we have two trees to COW.
1749 	 */
1750 	reserve_level = max_t(int, 1, btrfs_root_level(root_item));
1751 	min_reserved = fs_info->nodesize * reserve_level * 2;
1752 	memset(&next_key, 0, sizeof(next_key));
1753 
1754 	while (1) {
1755 		ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv,
1756 					     min_reserved,
1757 					     BTRFS_RESERVE_FLUSH_LIMIT);
1758 		if (ret)
1759 			goto out;
1760 		trans = btrfs_start_transaction(root, 0);
1761 		if (IS_ERR(trans)) {
1762 			ret = PTR_ERR(trans);
1763 			trans = NULL;
1764 			goto out;
1765 		}
1766 
1767 		/*
1768 		 * At this point we no longer have a reloc_control, so we can't
1769 		 * depend on btrfs_init_reloc_root to update our last_trans.
1770 		 *
1771 		 * But that's ok, we started the trans handle on our
1772 		 * corresponding fs_root, which means it's been added to the
1773 		 * dirty list.  At commit time we'll still call
1774 		 * btrfs_update_reloc_root() and update our root item
1775 		 * appropriately.
1776 		 */
1777 		reloc_root->last_trans = trans->transid;
1778 		trans->block_rsv = rc->block_rsv;
1779 
1780 		replaced = 0;
1781 		max_level = level;
1782 
1783 		ret = walk_down_reloc_tree(reloc_root, path, &level);
1784 		if (ret < 0)
1785 			goto out;
1786 		if (ret > 0)
1787 			break;
1788 
1789 		if (!find_next_key(path, level, &key) &&
1790 		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
1791 			ret = 0;
1792 		} else {
1793 			ret = replace_path(trans, rc, root, reloc_root, path,
1794 					   &next_key, level, max_level);
1795 		}
1796 		if (ret < 0)
1797 			goto out;
1798 		if (ret > 0) {
1799 			level = ret;
1800 			btrfs_node_key_to_cpu(path->nodes[level], &key,
1801 					      path->slots[level]);
1802 			replaced = 1;
1803 		}
1804 
1805 		ret = walk_up_reloc_tree(reloc_root, path, &level);
1806 		if (ret > 0)
1807 			break;
1808 
1809 		BUG_ON(level == 0);
1810 		/*
1811 		 * save the merging progress in the drop_progress.
1812 		 * this is OK since root refs == 1 in this case.
1813 		 */
1814 		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
1815 			       path->slots[level]);
1816 		btrfs_set_root_drop_level(root_item, level);
1817 
1818 		btrfs_end_transaction_throttle(trans);
1819 		trans = NULL;
1820 
1821 		btrfs_btree_balance_dirty(fs_info);
1822 
1823 		if (replaced && rc->stage == UPDATE_DATA_PTRS)
1824 			invalidate_extent_cache(root, &key, &next_key);
1825 	}
1826 
1827 	/*
1828 	 * handle the case only one block in the fs tree need to be
1829 	 * relocated and the block is tree root.
1830 	 */
1831 	leaf = btrfs_lock_root_node(root);
1832 	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf,
1833 			      BTRFS_NESTING_COW);
1834 	btrfs_tree_unlock(leaf);
1835 	free_extent_buffer(leaf);
1836 out:
1837 	btrfs_free_path(path);
1838 
1839 	if (ret == 0) {
1840 		ret = insert_dirty_subvol(trans, rc, root);
1841 		if (ret)
1842 			btrfs_abort_transaction(trans, ret);
1843 	}
1844 
1845 	if (trans)
1846 		btrfs_end_transaction_throttle(trans);
1847 
1848 	btrfs_btree_balance_dirty(fs_info);
1849 
1850 	if (replaced && rc->stage == UPDATE_DATA_PTRS)
1851 		invalidate_extent_cache(root, &key, &next_key);
1852 
1853 	return ret;
1854 }
1855 
1856 static noinline_for_stack
1857 int prepare_to_merge(struct reloc_control *rc, int err)
1858 {
1859 	struct btrfs_root *root = rc->extent_root;
1860 	struct btrfs_fs_info *fs_info = root->fs_info;
1861 	struct btrfs_root *reloc_root;
1862 	struct btrfs_trans_handle *trans;
1863 	LIST_HEAD(reloc_roots);
1864 	u64 num_bytes = 0;
1865 	int ret;
1866 
1867 	mutex_lock(&fs_info->reloc_mutex);
1868 	rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
1869 	rc->merging_rsv_size += rc->nodes_relocated * 2;
1870 	mutex_unlock(&fs_info->reloc_mutex);
1871 
1872 again:
1873 	if (!err) {
1874 		num_bytes = rc->merging_rsv_size;
1875 		ret = btrfs_block_rsv_add(fs_info, rc->block_rsv, num_bytes,
1876 					  BTRFS_RESERVE_FLUSH_ALL);
1877 		if (ret)
1878 			err = ret;
1879 	}
1880 
1881 	trans = btrfs_join_transaction(rc->extent_root);
1882 	if (IS_ERR(trans)) {
1883 		if (!err)
1884 			btrfs_block_rsv_release(fs_info, rc->block_rsv,
1885 						num_bytes, NULL);
1886 		return PTR_ERR(trans);
1887 	}
1888 
1889 	if (!err) {
1890 		if (num_bytes != rc->merging_rsv_size) {
1891 			btrfs_end_transaction(trans);
1892 			btrfs_block_rsv_release(fs_info, rc->block_rsv,
1893 						num_bytes, NULL);
1894 			goto again;
1895 		}
1896 	}
1897 
1898 	rc->merge_reloc_tree = true;
1899 
1900 	while (!list_empty(&rc->reloc_roots)) {
1901 		reloc_root = list_entry(rc->reloc_roots.next,
1902 					struct btrfs_root, root_list);
1903 		list_del_init(&reloc_root->root_list);
1904 
1905 		root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1906 				false);
1907 		if (IS_ERR(root)) {
1908 			/*
1909 			 * Even if we have an error we need this reloc root
1910 			 * back on our list so we can clean up properly.
1911 			 */
1912 			list_add(&reloc_root->root_list, &reloc_roots);
1913 			btrfs_abort_transaction(trans, (int)PTR_ERR(root));
1914 			if (!err)
1915 				err = PTR_ERR(root);
1916 			break;
1917 		}
1918 
1919 		if (unlikely(root->reloc_root != reloc_root)) {
1920 			if (root->reloc_root) {
1921 				btrfs_err(fs_info,
1922 "reloc tree mismatch, root %lld has reloc root key (%lld %u %llu) gen %llu, expect reloc root key (%lld %u %llu) gen %llu",
1923 					  root->root_key.objectid,
1924 					  root->reloc_root->root_key.objectid,
1925 					  root->reloc_root->root_key.type,
1926 					  root->reloc_root->root_key.offset,
1927 					  btrfs_root_generation(
1928 						  &root->reloc_root->root_item),
1929 					  reloc_root->root_key.objectid,
1930 					  reloc_root->root_key.type,
1931 					  reloc_root->root_key.offset,
1932 					  btrfs_root_generation(
1933 						  &reloc_root->root_item));
1934 			} else {
1935 				btrfs_err(fs_info,
1936 "reloc tree mismatch, root %lld has no reloc root, expect reloc root key (%lld %u %llu) gen %llu",
1937 					  root->root_key.objectid,
1938 					  reloc_root->root_key.objectid,
1939 					  reloc_root->root_key.type,
1940 					  reloc_root->root_key.offset,
1941 					  btrfs_root_generation(
1942 						  &reloc_root->root_item));
1943 			}
1944 			list_add(&reloc_root->root_list, &reloc_roots);
1945 			btrfs_put_root(root);
1946 			btrfs_abort_transaction(trans, -EUCLEAN);
1947 			if (!err)
1948 				err = -EUCLEAN;
1949 			break;
1950 		}
1951 
1952 		/*
1953 		 * set reference count to 1, so btrfs_recover_relocation
1954 		 * knows it should resumes merging
1955 		 */
1956 		if (!err)
1957 			btrfs_set_root_refs(&reloc_root->root_item, 1);
1958 		ret = btrfs_update_reloc_root(trans, root);
1959 
1960 		/*
1961 		 * Even if we have an error we need this reloc root back on our
1962 		 * list so we can clean up properly.
1963 		 */
1964 		list_add(&reloc_root->root_list, &reloc_roots);
1965 		btrfs_put_root(root);
1966 
1967 		if (ret) {
1968 			btrfs_abort_transaction(trans, ret);
1969 			if (!err)
1970 				err = ret;
1971 			break;
1972 		}
1973 	}
1974 
1975 	list_splice(&reloc_roots, &rc->reloc_roots);
1976 
1977 	if (!err)
1978 		err = btrfs_commit_transaction(trans);
1979 	else
1980 		btrfs_end_transaction(trans);
1981 	return err;
1982 }
1983 
1984 static noinline_for_stack
1985 void free_reloc_roots(struct list_head *list)
1986 {
1987 	struct btrfs_root *reloc_root, *tmp;
1988 
1989 	list_for_each_entry_safe(reloc_root, tmp, list, root_list)
1990 		__del_reloc_root(reloc_root);
1991 }
1992 
1993 static noinline_for_stack
1994 void merge_reloc_roots(struct reloc_control *rc)
1995 {
1996 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1997 	struct btrfs_root *root;
1998 	struct btrfs_root *reloc_root;
1999 	LIST_HEAD(reloc_roots);
2000 	int found = 0;
2001 	int ret = 0;
2002 again:
2003 	root = rc->extent_root;
2004 
2005 	/*
2006 	 * this serializes us with btrfs_record_root_in_transaction,
2007 	 * we have to make sure nobody is in the middle of
2008 	 * adding their roots to the list while we are
2009 	 * doing this splice
2010 	 */
2011 	mutex_lock(&fs_info->reloc_mutex);
2012 	list_splice_init(&rc->reloc_roots, &reloc_roots);
2013 	mutex_unlock(&fs_info->reloc_mutex);
2014 
2015 	while (!list_empty(&reloc_roots)) {
2016 		found = 1;
2017 		reloc_root = list_entry(reloc_roots.next,
2018 					struct btrfs_root, root_list);
2019 
2020 		root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
2021 					 false);
2022 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
2023 			if (WARN_ON(IS_ERR(root))) {
2024 				/*
2025 				 * For recovery we read the fs roots on mount,
2026 				 * and if we didn't find the root then we marked
2027 				 * the reloc root as a garbage root.  For normal
2028 				 * relocation obviously the root should exist in
2029 				 * memory.  However there's no reason we can't
2030 				 * handle the error properly here just in case.
2031 				 */
2032 				ret = PTR_ERR(root);
2033 				goto out;
2034 			}
2035 			if (WARN_ON(root->reloc_root != reloc_root)) {
2036 				/*
2037 				 * This can happen if on-disk metadata has some
2038 				 * corruption, e.g. bad reloc tree key offset.
2039 				 */
2040 				ret = -EINVAL;
2041 				goto out;
2042 			}
2043 			ret = merge_reloc_root(rc, root);
2044 			btrfs_put_root(root);
2045 			if (ret) {
2046 				if (list_empty(&reloc_root->root_list))
2047 					list_add_tail(&reloc_root->root_list,
2048 						      &reloc_roots);
2049 				goto out;
2050 			}
2051 		} else {
2052 			if (!IS_ERR(root)) {
2053 				if (root->reloc_root == reloc_root) {
2054 					root->reloc_root = NULL;
2055 					btrfs_put_root(reloc_root);
2056 				}
2057 				clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE,
2058 					  &root->state);
2059 				btrfs_put_root(root);
2060 			}
2061 
2062 			list_del_init(&reloc_root->root_list);
2063 			/* Don't forget to queue this reloc root for cleanup */
2064 			list_add_tail(&reloc_root->reloc_dirty_list,
2065 				      &rc->dirty_subvol_roots);
2066 		}
2067 	}
2068 
2069 	if (found) {
2070 		found = 0;
2071 		goto again;
2072 	}
2073 out:
2074 	if (ret) {
2075 		btrfs_handle_fs_error(fs_info, ret, NULL);
2076 		free_reloc_roots(&reloc_roots);
2077 
2078 		/* new reloc root may be added */
2079 		mutex_lock(&fs_info->reloc_mutex);
2080 		list_splice_init(&rc->reloc_roots, &reloc_roots);
2081 		mutex_unlock(&fs_info->reloc_mutex);
2082 		free_reloc_roots(&reloc_roots);
2083 	}
2084 
2085 	/*
2086 	 * We used to have
2087 	 *
2088 	 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2089 	 *
2090 	 * here, but it's wrong.  If we fail to start the transaction in
2091 	 * prepare_to_merge() we will have only 0 ref reloc roots, none of which
2092 	 * have actually been removed from the reloc_root_tree rb tree.  This is
2093 	 * fine because we're bailing here, and we hold a reference on the root
2094 	 * for the list that holds it, so these roots will be cleaned up when we
2095 	 * do the reloc_dirty_list afterwards.  Meanwhile the root->reloc_root
2096 	 * will be cleaned up on unmount.
2097 	 *
2098 	 * The remaining nodes will be cleaned up by free_reloc_control.
2099 	 */
2100 }
2101 
2102 static void free_block_list(struct rb_root *blocks)
2103 {
2104 	struct tree_block *block;
2105 	struct rb_node *rb_node;
2106 	while ((rb_node = rb_first(blocks))) {
2107 		block = rb_entry(rb_node, struct tree_block, rb_node);
2108 		rb_erase(rb_node, blocks);
2109 		kfree(block);
2110 	}
2111 }
2112 
2113 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2114 				      struct btrfs_root *reloc_root)
2115 {
2116 	struct btrfs_fs_info *fs_info = reloc_root->fs_info;
2117 	struct btrfs_root *root;
2118 	int ret;
2119 
2120 	if (reloc_root->last_trans == trans->transid)
2121 		return 0;
2122 
2123 	root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false);
2124 
2125 	/*
2126 	 * This should succeed, since we can't have a reloc root without having
2127 	 * already looked up the actual root and created the reloc root for this
2128 	 * root.
2129 	 *
2130 	 * However if there's some sort of corruption where we have a ref to a
2131 	 * reloc root without a corresponding root this could return ENOENT.
2132 	 */
2133 	if (IS_ERR(root)) {
2134 		ASSERT(0);
2135 		return PTR_ERR(root);
2136 	}
2137 	if (root->reloc_root != reloc_root) {
2138 		ASSERT(0);
2139 		btrfs_err(fs_info,
2140 			  "root %llu has two reloc roots associated with it",
2141 			  reloc_root->root_key.offset);
2142 		btrfs_put_root(root);
2143 		return -EUCLEAN;
2144 	}
2145 	ret = btrfs_record_root_in_trans(trans, root);
2146 	btrfs_put_root(root);
2147 
2148 	return ret;
2149 }
2150 
2151 static noinline_for_stack
2152 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2153 				     struct reloc_control *rc,
2154 				     struct btrfs_backref_node *node,
2155 				     struct btrfs_backref_edge *edges[])
2156 {
2157 	struct btrfs_backref_node *next;
2158 	struct btrfs_root *root;
2159 	int index = 0;
2160 	int ret;
2161 
2162 	next = node;
2163 	while (1) {
2164 		cond_resched();
2165 		next = walk_up_backref(next, edges, &index);
2166 		root = next->root;
2167 
2168 		/*
2169 		 * If there is no root, then our references for this block are
2170 		 * incomplete, as we should be able to walk all the way up to a
2171 		 * block that is owned by a root.
2172 		 *
2173 		 * This path is only for SHAREABLE roots, so if we come upon a
2174 		 * non-SHAREABLE root then we have backrefs that resolve
2175 		 * improperly.
2176 		 *
2177 		 * Both of these cases indicate file system corruption, or a bug
2178 		 * in the backref walking code.
2179 		 */
2180 		if (!root) {
2181 			ASSERT(0);
2182 			btrfs_err(trans->fs_info,
2183 		"bytenr %llu doesn't have a backref path ending in a root",
2184 				  node->bytenr);
2185 			return ERR_PTR(-EUCLEAN);
2186 		}
2187 		if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2188 			ASSERT(0);
2189 			btrfs_err(trans->fs_info,
2190 	"bytenr %llu has multiple refs with one ending in a non-shareable root",
2191 				  node->bytenr);
2192 			return ERR_PTR(-EUCLEAN);
2193 		}
2194 
2195 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2196 			ret = record_reloc_root_in_trans(trans, root);
2197 			if (ret)
2198 				return ERR_PTR(ret);
2199 			break;
2200 		}
2201 
2202 		ret = btrfs_record_root_in_trans(trans, root);
2203 		if (ret)
2204 			return ERR_PTR(ret);
2205 		root = root->reloc_root;
2206 
2207 		/*
2208 		 * We could have raced with another thread which failed, so
2209 		 * root->reloc_root may not be set, return ENOENT in this case.
2210 		 */
2211 		if (!root)
2212 			return ERR_PTR(-ENOENT);
2213 
2214 		if (next->new_bytenr != root->node->start) {
2215 			/*
2216 			 * We just created the reloc root, so we shouldn't have
2217 			 * ->new_bytenr set and this shouldn't be in the changed
2218 			 *  list.  If it is then we have multiple roots pointing
2219 			 *  at the same bytenr which indicates corruption, or
2220 			 *  we've made a mistake in the backref walking code.
2221 			 */
2222 			ASSERT(next->new_bytenr == 0);
2223 			ASSERT(list_empty(&next->list));
2224 			if (next->new_bytenr || !list_empty(&next->list)) {
2225 				btrfs_err(trans->fs_info,
2226 	"bytenr %llu possibly has multiple roots pointing at the same bytenr %llu",
2227 					  node->bytenr, next->bytenr);
2228 				return ERR_PTR(-EUCLEAN);
2229 			}
2230 
2231 			next->new_bytenr = root->node->start;
2232 			btrfs_put_root(next->root);
2233 			next->root = btrfs_grab_root(root);
2234 			ASSERT(next->root);
2235 			list_add_tail(&next->list,
2236 				      &rc->backref_cache.changed);
2237 			mark_block_processed(rc, next);
2238 			break;
2239 		}
2240 
2241 		WARN_ON(1);
2242 		root = NULL;
2243 		next = walk_down_backref(edges, &index);
2244 		if (!next || next->level <= node->level)
2245 			break;
2246 	}
2247 	if (!root) {
2248 		/*
2249 		 * This can happen if there's fs corruption or if there's a bug
2250 		 * in the backref lookup code.
2251 		 */
2252 		ASSERT(0);
2253 		return ERR_PTR(-ENOENT);
2254 	}
2255 
2256 	next = node;
2257 	/* setup backref node path for btrfs_reloc_cow_block */
2258 	while (1) {
2259 		rc->backref_cache.path[next->level] = next;
2260 		if (--index < 0)
2261 			break;
2262 		next = edges[index]->node[UPPER];
2263 	}
2264 	return root;
2265 }
2266 
2267 /*
2268  * Select a tree root for relocation.
2269  *
2270  * Return NULL if the block is not shareable. We should use do_relocation() in
2271  * this case.
2272  *
2273  * Return a tree root pointer if the block is shareable.
2274  * Return -ENOENT if the block is root of reloc tree.
2275  */
2276 static noinline_for_stack
2277 struct btrfs_root *select_one_root(struct btrfs_backref_node *node)
2278 {
2279 	struct btrfs_backref_node *next;
2280 	struct btrfs_root *root;
2281 	struct btrfs_root *fs_root = NULL;
2282 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2283 	int index = 0;
2284 
2285 	next = node;
2286 	while (1) {
2287 		cond_resched();
2288 		next = walk_up_backref(next, edges, &index);
2289 		root = next->root;
2290 
2291 		/*
2292 		 * This can occur if we have incomplete extent refs leading all
2293 		 * the way up a particular path, in this case return -EUCLEAN.
2294 		 */
2295 		if (!root)
2296 			return ERR_PTR(-EUCLEAN);
2297 
2298 		/* No other choice for non-shareable tree */
2299 		if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2300 			return root;
2301 
2302 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2303 			fs_root = root;
2304 
2305 		if (next != node)
2306 			return NULL;
2307 
2308 		next = walk_down_backref(edges, &index);
2309 		if (!next || next->level <= node->level)
2310 			break;
2311 	}
2312 
2313 	if (!fs_root)
2314 		return ERR_PTR(-ENOENT);
2315 	return fs_root;
2316 }
2317 
2318 static noinline_for_stack
2319 u64 calcu_metadata_size(struct reloc_control *rc,
2320 			struct btrfs_backref_node *node, int reserve)
2321 {
2322 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2323 	struct btrfs_backref_node *next = node;
2324 	struct btrfs_backref_edge *edge;
2325 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2326 	u64 num_bytes = 0;
2327 	int index = 0;
2328 
2329 	BUG_ON(reserve && node->processed);
2330 
2331 	while (next) {
2332 		cond_resched();
2333 		while (1) {
2334 			if (next->processed && (reserve || next != node))
2335 				break;
2336 
2337 			num_bytes += fs_info->nodesize;
2338 
2339 			if (list_empty(&next->upper))
2340 				break;
2341 
2342 			edge = list_entry(next->upper.next,
2343 					struct btrfs_backref_edge, list[LOWER]);
2344 			edges[index++] = edge;
2345 			next = edge->node[UPPER];
2346 		}
2347 		next = walk_down_backref(edges, &index);
2348 	}
2349 	return num_bytes;
2350 }
2351 
2352 static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2353 				  struct reloc_control *rc,
2354 				  struct btrfs_backref_node *node)
2355 {
2356 	struct btrfs_root *root = rc->extent_root;
2357 	struct btrfs_fs_info *fs_info = root->fs_info;
2358 	u64 num_bytes;
2359 	int ret;
2360 	u64 tmp;
2361 
2362 	num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2363 
2364 	trans->block_rsv = rc->block_rsv;
2365 	rc->reserved_bytes += num_bytes;
2366 
2367 	/*
2368 	 * We are under a transaction here so we can only do limited flushing.
2369 	 * If we get an enospc just kick back -EAGAIN so we know to drop the
2370 	 * transaction and try to refill when we can flush all the things.
2371 	 */
2372 	ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv, num_bytes,
2373 				     BTRFS_RESERVE_FLUSH_LIMIT);
2374 	if (ret) {
2375 		tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2376 		while (tmp <= rc->reserved_bytes)
2377 			tmp <<= 1;
2378 		/*
2379 		 * only one thread can access block_rsv at this point,
2380 		 * so we don't need hold lock to protect block_rsv.
2381 		 * we expand more reservation size here to allow enough
2382 		 * space for relocation and we will return earlier in
2383 		 * enospc case.
2384 		 */
2385 		rc->block_rsv->size = tmp + fs_info->nodesize *
2386 				      RELOCATION_RESERVED_NODES;
2387 		return -EAGAIN;
2388 	}
2389 
2390 	return 0;
2391 }
2392 
2393 /*
2394  * relocate a block tree, and then update pointers in upper level
2395  * blocks that reference the block to point to the new location.
2396  *
2397  * if called by link_to_upper, the block has already been relocated.
2398  * in that case this function just updates pointers.
2399  */
2400 static int do_relocation(struct btrfs_trans_handle *trans,
2401 			 struct reloc_control *rc,
2402 			 struct btrfs_backref_node *node,
2403 			 struct btrfs_key *key,
2404 			 struct btrfs_path *path, int lowest)
2405 {
2406 	struct btrfs_backref_node *upper;
2407 	struct btrfs_backref_edge *edge;
2408 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2409 	struct btrfs_root *root;
2410 	struct extent_buffer *eb;
2411 	u32 blocksize;
2412 	u64 bytenr;
2413 	int slot;
2414 	int ret = 0;
2415 
2416 	/*
2417 	 * If we are lowest then this is the first time we're processing this
2418 	 * block, and thus shouldn't have an eb associated with it yet.
2419 	 */
2420 	ASSERT(!lowest || !node->eb);
2421 
2422 	path->lowest_level = node->level + 1;
2423 	rc->backref_cache.path[node->level] = node;
2424 	list_for_each_entry(edge, &node->upper, list[LOWER]) {
2425 		struct btrfs_ref ref = { 0 };
2426 
2427 		cond_resched();
2428 
2429 		upper = edge->node[UPPER];
2430 		root = select_reloc_root(trans, rc, upper, edges);
2431 		if (IS_ERR(root)) {
2432 			ret = PTR_ERR(root);
2433 			goto next;
2434 		}
2435 
2436 		if (upper->eb && !upper->locked) {
2437 			if (!lowest) {
2438 				ret = btrfs_bin_search(upper->eb, 0, key, &slot);
2439 				if (ret < 0)
2440 					goto next;
2441 				BUG_ON(ret);
2442 				bytenr = btrfs_node_blockptr(upper->eb, slot);
2443 				if (node->eb->start == bytenr)
2444 					goto next;
2445 			}
2446 			btrfs_backref_drop_node_buffer(upper);
2447 		}
2448 
2449 		if (!upper->eb) {
2450 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2451 			if (ret) {
2452 				if (ret > 0)
2453 					ret = -ENOENT;
2454 
2455 				btrfs_release_path(path);
2456 				break;
2457 			}
2458 
2459 			if (!upper->eb) {
2460 				upper->eb = path->nodes[upper->level];
2461 				path->nodes[upper->level] = NULL;
2462 			} else {
2463 				BUG_ON(upper->eb != path->nodes[upper->level]);
2464 			}
2465 
2466 			upper->locked = 1;
2467 			path->locks[upper->level] = 0;
2468 
2469 			slot = path->slots[upper->level];
2470 			btrfs_release_path(path);
2471 		} else {
2472 			ret = btrfs_bin_search(upper->eb, 0, key, &slot);
2473 			if (ret < 0)
2474 				goto next;
2475 			BUG_ON(ret);
2476 		}
2477 
2478 		bytenr = btrfs_node_blockptr(upper->eb, slot);
2479 		if (lowest) {
2480 			if (bytenr != node->bytenr) {
2481 				btrfs_err(root->fs_info,
2482 		"lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2483 					  bytenr, node->bytenr, slot,
2484 					  upper->eb->start);
2485 				ret = -EIO;
2486 				goto next;
2487 			}
2488 		} else {
2489 			if (node->eb->start == bytenr)
2490 				goto next;
2491 		}
2492 
2493 		blocksize = root->fs_info->nodesize;
2494 		eb = btrfs_read_node_slot(upper->eb, slot);
2495 		if (IS_ERR(eb)) {
2496 			ret = PTR_ERR(eb);
2497 			goto next;
2498 		}
2499 		btrfs_tree_lock(eb);
2500 
2501 		if (!node->eb) {
2502 			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2503 					      slot, &eb, BTRFS_NESTING_COW);
2504 			btrfs_tree_unlock(eb);
2505 			free_extent_buffer(eb);
2506 			if (ret < 0)
2507 				goto next;
2508 			/*
2509 			 * We've just COWed this block, it should have updated
2510 			 * the correct backref node entry.
2511 			 */
2512 			ASSERT(node->eb == eb);
2513 		} else {
2514 			btrfs_set_node_blockptr(upper->eb, slot,
2515 						node->eb->start);
2516 			btrfs_set_node_ptr_generation(upper->eb, slot,
2517 						      trans->transid);
2518 			btrfs_mark_buffer_dirty(trans, upper->eb);
2519 
2520 			btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2521 					       node->eb->start, blocksize,
2522 					       upper->eb->start,
2523 					       btrfs_header_owner(upper->eb));
2524 			btrfs_init_tree_ref(&ref, node->level,
2525 					    btrfs_header_owner(upper->eb),
2526 					    root->root_key.objectid, false);
2527 			ret = btrfs_inc_extent_ref(trans, &ref);
2528 			if (!ret)
2529 				ret = btrfs_drop_subtree(trans, root, eb,
2530 							 upper->eb);
2531 			if (ret)
2532 				btrfs_abort_transaction(trans, ret);
2533 		}
2534 next:
2535 		if (!upper->pending)
2536 			btrfs_backref_drop_node_buffer(upper);
2537 		else
2538 			btrfs_backref_unlock_node_buffer(upper);
2539 		if (ret)
2540 			break;
2541 	}
2542 
2543 	if (!ret && node->pending) {
2544 		btrfs_backref_drop_node_buffer(node);
2545 		list_move_tail(&node->list, &rc->backref_cache.changed);
2546 		node->pending = 0;
2547 	}
2548 
2549 	path->lowest_level = 0;
2550 
2551 	/*
2552 	 * We should have allocated all of our space in the block rsv and thus
2553 	 * shouldn't ENOSPC.
2554 	 */
2555 	ASSERT(ret != -ENOSPC);
2556 	return ret;
2557 }
2558 
2559 static int link_to_upper(struct btrfs_trans_handle *trans,
2560 			 struct reloc_control *rc,
2561 			 struct btrfs_backref_node *node,
2562 			 struct btrfs_path *path)
2563 {
2564 	struct btrfs_key key;
2565 
2566 	btrfs_node_key_to_cpu(node->eb, &key, 0);
2567 	return do_relocation(trans, rc, node, &key, path, 0);
2568 }
2569 
2570 static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2571 				struct reloc_control *rc,
2572 				struct btrfs_path *path, int err)
2573 {
2574 	LIST_HEAD(list);
2575 	struct btrfs_backref_cache *cache = &rc->backref_cache;
2576 	struct btrfs_backref_node *node;
2577 	int level;
2578 	int ret;
2579 
2580 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2581 		while (!list_empty(&cache->pending[level])) {
2582 			node = list_entry(cache->pending[level].next,
2583 					  struct btrfs_backref_node, list);
2584 			list_move_tail(&node->list, &list);
2585 			BUG_ON(!node->pending);
2586 
2587 			if (!err) {
2588 				ret = link_to_upper(trans, rc, node, path);
2589 				if (ret < 0)
2590 					err = ret;
2591 			}
2592 		}
2593 		list_splice_init(&list, &cache->pending[level]);
2594 	}
2595 	return err;
2596 }
2597 
2598 /*
2599  * mark a block and all blocks directly/indirectly reference the block
2600  * as processed.
2601  */
2602 static void update_processed_blocks(struct reloc_control *rc,
2603 				    struct btrfs_backref_node *node)
2604 {
2605 	struct btrfs_backref_node *next = node;
2606 	struct btrfs_backref_edge *edge;
2607 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2608 	int index = 0;
2609 
2610 	while (next) {
2611 		cond_resched();
2612 		while (1) {
2613 			if (next->processed)
2614 				break;
2615 
2616 			mark_block_processed(rc, next);
2617 
2618 			if (list_empty(&next->upper))
2619 				break;
2620 
2621 			edge = list_entry(next->upper.next,
2622 					struct btrfs_backref_edge, list[LOWER]);
2623 			edges[index++] = edge;
2624 			next = edge->node[UPPER];
2625 		}
2626 		next = walk_down_backref(edges, &index);
2627 	}
2628 }
2629 
2630 static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2631 {
2632 	u32 blocksize = rc->extent_root->fs_info->nodesize;
2633 
2634 	if (test_range_bit(&rc->processed_blocks, bytenr,
2635 			   bytenr + blocksize - 1, EXTENT_DIRTY, NULL))
2636 		return 1;
2637 	return 0;
2638 }
2639 
2640 static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2641 			      struct tree_block *block)
2642 {
2643 	struct btrfs_tree_parent_check check = {
2644 		.level = block->level,
2645 		.owner_root = block->owner,
2646 		.transid = block->key.offset
2647 	};
2648 	struct extent_buffer *eb;
2649 
2650 	eb = read_tree_block(fs_info, block->bytenr, &check);
2651 	if (IS_ERR(eb))
2652 		return PTR_ERR(eb);
2653 	if (!extent_buffer_uptodate(eb)) {
2654 		free_extent_buffer(eb);
2655 		return -EIO;
2656 	}
2657 	if (block->level == 0)
2658 		btrfs_item_key_to_cpu(eb, &block->key, 0);
2659 	else
2660 		btrfs_node_key_to_cpu(eb, &block->key, 0);
2661 	free_extent_buffer(eb);
2662 	block->key_ready = true;
2663 	return 0;
2664 }
2665 
2666 /*
2667  * helper function to relocate a tree block
2668  */
2669 static int relocate_tree_block(struct btrfs_trans_handle *trans,
2670 				struct reloc_control *rc,
2671 				struct btrfs_backref_node *node,
2672 				struct btrfs_key *key,
2673 				struct btrfs_path *path)
2674 {
2675 	struct btrfs_root *root;
2676 	int ret = 0;
2677 
2678 	if (!node)
2679 		return 0;
2680 
2681 	/*
2682 	 * If we fail here we want to drop our backref_node because we are going
2683 	 * to start over and regenerate the tree for it.
2684 	 */
2685 	ret = reserve_metadata_space(trans, rc, node);
2686 	if (ret)
2687 		goto out;
2688 
2689 	BUG_ON(node->processed);
2690 	root = select_one_root(node);
2691 	if (IS_ERR(root)) {
2692 		ret = PTR_ERR(root);
2693 
2694 		/* See explanation in select_one_root for the -EUCLEAN case. */
2695 		ASSERT(ret == -ENOENT);
2696 		if (ret == -ENOENT) {
2697 			ret = 0;
2698 			update_processed_blocks(rc, node);
2699 		}
2700 		goto out;
2701 	}
2702 
2703 	if (root) {
2704 		if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2705 			/*
2706 			 * This block was the root block of a root, and this is
2707 			 * the first time we're processing the block and thus it
2708 			 * should not have had the ->new_bytenr modified and
2709 			 * should have not been included on the changed list.
2710 			 *
2711 			 * However in the case of corruption we could have
2712 			 * multiple refs pointing to the same block improperly,
2713 			 * and thus we would trip over these checks.  ASSERT()
2714 			 * for the developer case, because it could indicate a
2715 			 * bug in the backref code, however error out for a
2716 			 * normal user in the case of corruption.
2717 			 */
2718 			ASSERT(node->new_bytenr == 0);
2719 			ASSERT(list_empty(&node->list));
2720 			if (node->new_bytenr || !list_empty(&node->list)) {
2721 				btrfs_err(root->fs_info,
2722 				  "bytenr %llu has improper references to it",
2723 					  node->bytenr);
2724 				ret = -EUCLEAN;
2725 				goto out;
2726 			}
2727 			ret = btrfs_record_root_in_trans(trans, root);
2728 			if (ret)
2729 				goto out;
2730 			/*
2731 			 * Another thread could have failed, need to check if we
2732 			 * have reloc_root actually set.
2733 			 */
2734 			if (!root->reloc_root) {
2735 				ret = -ENOENT;
2736 				goto out;
2737 			}
2738 			root = root->reloc_root;
2739 			node->new_bytenr = root->node->start;
2740 			btrfs_put_root(node->root);
2741 			node->root = btrfs_grab_root(root);
2742 			ASSERT(node->root);
2743 			list_add_tail(&node->list, &rc->backref_cache.changed);
2744 		} else {
2745 			path->lowest_level = node->level;
2746 			if (root == root->fs_info->chunk_root)
2747 				btrfs_reserve_chunk_metadata(trans, false);
2748 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2749 			btrfs_release_path(path);
2750 			if (root == root->fs_info->chunk_root)
2751 				btrfs_trans_release_chunk_metadata(trans);
2752 			if (ret > 0)
2753 				ret = 0;
2754 		}
2755 		if (!ret)
2756 			update_processed_blocks(rc, node);
2757 	} else {
2758 		ret = do_relocation(trans, rc, node, key, path, 1);
2759 	}
2760 out:
2761 	if (ret || node->level == 0 || node->cowonly)
2762 		btrfs_backref_cleanup_node(&rc->backref_cache, node);
2763 	return ret;
2764 }
2765 
2766 /*
2767  * relocate a list of blocks
2768  */
2769 static noinline_for_stack
2770 int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2771 			 struct reloc_control *rc, struct rb_root *blocks)
2772 {
2773 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2774 	struct btrfs_backref_node *node;
2775 	struct btrfs_path *path;
2776 	struct tree_block *block;
2777 	struct tree_block *next;
2778 	int ret;
2779 	int err = 0;
2780 
2781 	path = btrfs_alloc_path();
2782 	if (!path) {
2783 		err = -ENOMEM;
2784 		goto out_free_blocks;
2785 	}
2786 
2787 	/* Kick in readahead for tree blocks with missing keys */
2788 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2789 		if (!block->key_ready)
2790 			btrfs_readahead_tree_block(fs_info, block->bytenr,
2791 						   block->owner, 0,
2792 						   block->level);
2793 	}
2794 
2795 	/* Get first keys */
2796 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2797 		if (!block->key_ready) {
2798 			err = get_tree_block_key(fs_info, block);
2799 			if (err)
2800 				goto out_free_path;
2801 		}
2802 	}
2803 
2804 	/* Do tree relocation */
2805 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2806 		node = build_backref_tree(trans, rc, &block->key,
2807 					  block->level, block->bytenr);
2808 		if (IS_ERR(node)) {
2809 			err = PTR_ERR(node);
2810 			goto out;
2811 		}
2812 
2813 		ret = relocate_tree_block(trans, rc, node, &block->key,
2814 					  path);
2815 		if (ret < 0) {
2816 			err = ret;
2817 			break;
2818 		}
2819 	}
2820 out:
2821 	err = finish_pending_nodes(trans, rc, path, err);
2822 
2823 out_free_path:
2824 	btrfs_free_path(path);
2825 out_free_blocks:
2826 	free_block_list(blocks);
2827 	return err;
2828 }
2829 
2830 static noinline_for_stack int prealloc_file_extent_cluster(
2831 				struct btrfs_inode *inode,
2832 				const struct file_extent_cluster *cluster)
2833 {
2834 	u64 alloc_hint = 0;
2835 	u64 start;
2836 	u64 end;
2837 	u64 offset = inode->index_cnt;
2838 	u64 num_bytes;
2839 	int nr;
2840 	int ret = 0;
2841 	u64 i_size = i_size_read(&inode->vfs_inode);
2842 	u64 prealloc_start = cluster->start - offset;
2843 	u64 prealloc_end = cluster->end - offset;
2844 	u64 cur_offset = prealloc_start;
2845 
2846 	/*
2847 	 * For subpage case, previous i_size may not be aligned to PAGE_SIZE.
2848 	 * This means the range [i_size, PAGE_END + 1) is filled with zeros by
2849 	 * btrfs_do_readpage() call of previously relocated file cluster.
2850 	 *
2851 	 * If the current cluster starts in the above range, btrfs_do_readpage()
2852 	 * will skip the read, and relocate_one_page() will later writeback
2853 	 * the padding zeros as new data, causing data corruption.
2854 	 *
2855 	 * Here we have to manually invalidate the range (i_size, PAGE_END + 1).
2856 	 */
2857 	if (!PAGE_ALIGNED(i_size)) {
2858 		struct address_space *mapping = inode->vfs_inode.i_mapping;
2859 		struct btrfs_fs_info *fs_info = inode->root->fs_info;
2860 		const u32 sectorsize = fs_info->sectorsize;
2861 		struct page *page;
2862 
2863 		ASSERT(sectorsize < PAGE_SIZE);
2864 		ASSERT(IS_ALIGNED(i_size, sectorsize));
2865 
2866 		/*
2867 		 * Subpage can't handle page with DIRTY but without UPTODATE
2868 		 * bit as it can lead to the following deadlock:
2869 		 *
2870 		 * btrfs_read_folio()
2871 		 * | Page already *locked*
2872 		 * |- btrfs_lock_and_flush_ordered_range()
2873 		 *    |- btrfs_start_ordered_extent()
2874 		 *       |- extent_write_cache_pages()
2875 		 *          |- lock_page()
2876 		 *             We try to lock the page we already hold.
2877 		 *
2878 		 * Here we just writeback the whole data reloc inode, so that
2879 		 * we will be ensured to have no dirty range in the page, and
2880 		 * are safe to clear the uptodate bits.
2881 		 *
2882 		 * This shouldn't cause too much overhead, as we need to write
2883 		 * the data back anyway.
2884 		 */
2885 		ret = filemap_write_and_wait(mapping);
2886 		if (ret < 0)
2887 			return ret;
2888 
2889 		clear_extent_bits(&inode->io_tree, i_size,
2890 				  round_up(i_size, PAGE_SIZE) - 1,
2891 				  EXTENT_UPTODATE);
2892 		page = find_lock_page(mapping, i_size >> PAGE_SHIFT);
2893 		/*
2894 		 * If page is freed we don't need to do anything then, as we
2895 		 * will re-read the whole page anyway.
2896 		 */
2897 		if (page) {
2898 			btrfs_subpage_clear_uptodate(fs_info, page, i_size,
2899 					round_up(i_size, PAGE_SIZE) - i_size);
2900 			unlock_page(page);
2901 			put_page(page);
2902 		}
2903 	}
2904 
2905 	BUG_ON(cluster->start != cluster->boundary[0]);
2906 	ret = btrfs_alloc_data_chunk_ondemand(inode,
2907 					      prealloc_end + 1 - prealloc_start);
2908 	if (ret)
2909 		return ret;
2910 
2911 	btrfs_inode_lock(inode, 0);
2912 	for (nr = 0; nr < cluster->nr; nr++) {
2913 		struct extent_state *cached_state = NULL;
2914 
2915 		start = cluster->boundary[nr] - offset;
2916 		if (nr + 1 < cluster->nr)
2917 			end = cluster->boundary[nr + 1] - 1 - offset;
2918 		else
2919 			end = cluster->end - offset;
2920 
2921 		lock_extent(&inode->io_tree, start, end, &cached_state);
2922 		num_bytes = end + 1 - start;
2923 		ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start,
2924 						num_bytes, num_bytes,
2925 						end + 1, &alloc_hint);
2926 		cur_offset = end + 1;
2927 		unlock_extent(&inode->io_tree, start, end, &cached_state);
2928 		if (ret)
2929 			break;
2930 	}
2931 	btrfs_inode_unlock(inode, 0);
2932 
2933 	if (cur_offset < prealloc_end)
2934 		btrfs_free_reserved_data_space_noquota(inode->root->fs_info,
2935 					       prealloc_end + 1 - cur_offset);
2936 	return ret;
2937 }
2938 
2939 static noinline_for_stack int setup_relocation_extent_mapping(struct inode *inode,
2940 				u64 start, u64 end, u64 block_start)
2941 {
2942 	struct extent_map *em;
2943 	struct extent_state *cached_state = NULL;
2944 	int ret = 0;
2945 
2946 	em = alloc_extent_map();
2947 	if (!em)
2948 		return -ENOMEM;
2949 
2950 	em->start = start;
2951 	em->len = end + 1 - start;
2952 	em->block_len = em->len;
2953 	em->block_start = block_start;
2954 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
2955 
2956 	lock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state);
2957 	ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, false);
2958 	unlock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state);
2959 	free_extent_map(em);
2960 
2961 	return ret;
2962 }
2963 
2964 /*
2965  * Allow error injection to test balance/relocation cancellation
2966  */
2967 noinline int btrfs_should_cancel_balance(const struct btrfs_fs_info *fs_info)
2968 {
2969 	return atomic_read(&fs_info->balance_cancel_req) ||
2970 		atomic_read(&fs_info->reloc_cancel_req) ||
2971 		fatal_signal_pending(current);
2972 }
2973 ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE);
2974 
2975 static u64 get_cluster_boundary_end(const struct file_extent_cluster *cluster,
2976 				    int cluster_nr)
2977 {
2978 	/* Last extent, use cluster end directly */
2979 	if (cluster_nr >= cluster->nr - 1)
2980 		return cluster->end;
2981 
2982 	/* Use next boundary start*/
2983 	return cluster->boundary[cluster_nr + 1] - 1;
2984 }
2985 
2986 static int relocate_one_page(struct inode *inode, struct file_ra_state *ra,
2987 			     const struct file_extent_cluster *cluster,
2988 			     int *cluster_nr, unsigned long page_index)
2989 {
2990 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2991 	u64 offset = BTRFS_I(inode)->index_cnt;
2992 	const unsigned long last_index = (cluster->end - offset) >> PAGE_SHIFT;
2993 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
2994 	struct page *page;
2995 	u64 page_start;
2996 	u64 page_end;
2997 	u64 cur;
2998 	int ret;
2999 
3000 	ASSERT(page_index <= last_index);
3001 	page = find_lock_page(inode->i_mapping, page_index);
3002 	if (!page) {
3003 		page_cache_sync_readahead(inode->i_mapping, ra, NULL,
3004 				page_index, last_index + 1 - page_index);
3005 		page = find_or_create_page(inode->i_mapping, page_index, mask);
3006 		if (!page)
3007 			return -ENOMEM;
3008 	}
3009 
3010 	if (PageReadahead(page))
3011 		page_cache_async_readahead(inode->i_mapping, ra, NULL,
3012 				page_folio(page), page_index,
3013 				last_index + 1 - page_index);
3014 
3015 	if (!PageUptodate(page)) {
3016 		btrfs_read_folio(NULL, page_folio(page));
3017 		lock_page(page);
3018 		if (!PageUptodate(page)) {
3019 			ret = -EIO;
3020 			goto release_page;
3021 		}
3022 	}
3023 
3024 	/*
3025 	 * We could have lost page private when we dropped the lock to read the
3026 	 * page above, make sure we set_page_extent_mapped here so we have any
3027 	 * of the subpage blocksize stuff we need in place.
3028 	 */
3029 	ret = set_page_extent_mapped(page);
3030 	if (ret < 0)
3031 		goto release_page;
3032 
3033 	page_start = page_offset(page);
3034 	page_end = page_start + PAGE_SIZE - 1;
3035 
3036 	/*
3037 	 * Start from the cluster, as for subpage case, the cluster can start
3038 	 * inside the page.
3039 	 */
3040 	cur = max(page_start, cluster->boundary[*cluster_nr] - offset);
3041 	while (cur <= page_end) {
3042 		struct extent_state *cached_state = NULL;
3043 		u64 extent_start = cluster->boundary[*cluster_nr] - offset;
3044 		u64 extent_end = get_cluster_boundary_end(cluster,
3045 						*cluster_nr) - offset;
3046 		u64 clamped_start = max(page_start, extent_start);
3047 		u64 clamped_end = min(page_end, extent_end);
3048 		u32 clamped_len = clamped_end + 1 - clamped_start;
3049 
3050 		/* Reserve metadata for this range */
3051 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
3052 						      clamped_len, clamped_len,
3053 						      false);
3054 		if (ret)
3055 			goto release_page;
3056 
3057 		/* Mark the range delalloc and dirty for later writeback */
3058 		lock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end,
3059 			    &cached_state);
3060 		ret = btrfs_set_extent_delalloc(BTRFS_I(inode), clamped_start,
3061 						clamped_end, 0, &cached_state);
3062 		if (ret) {
3063 			clear_extent_bit(&BTRFS_I(inode)->io_tree,
3064 					 clamped_start, clamped_end,
3065 					 EXTENT_LOCKED | EXTENT_BOUNDARY,
3066 					 &cached_state);
3067 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
3068 							clamped_len, true);
3069 			btrfs_delalloc_release_extents(BTRFS_I(inode),
3070 						       clamped_len);
3071 			goto release_page;
3072 		}
3073 		btrfs_page_set_dirty(fs_info, page, clamped_start, clamped_len);
3074 
3075 		/*
3076 		 * Set the boundary if it's inside the page.
3077 		 * Data relocation requires the destination extents to have the
3078 		 * same size as the source.
3079 		 * EXTENT_BOUNDARY bit prevents current extent from being merged
3080 		 * with previous extent.
3081 		 */
3082 		if (in_range(cluster->boundary[*cluster_nr] - offset,
3083 			     page_start, PAGE_SIZE)) {
3084 			u64 boundary_start = cluster->boundary[*cluster_nr] -
3085 						offset;
3086 			u64 boundary_end = boundary_start +
3087 					   fs_info->sectorsize - 1;
3088 
3089 			set_extent_bit(&BTRFS_I(inode)->io_tree,
3090 				       boundary_start, boundary_end,
3091 				       EXTENT_BOUNDARY, NULL);
3092 		}
3093 		unlock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end,
3094 			      &cached_state);
3095 		btrfs_delalloc_release_extents(BTRFS_I(inode), clamped_len);
3096 		cur += clamped_len;
3097 
3098 		/* Crossed extent end, go to next extent */
3099 		if (cur >= extent_end) {
3100 			(*cluster_nr)++;
3101 			/* Just finished the last extent of the cluster, exit. */
3102 			if (*cluster_nr >= cluster->nr)
3103 				break;
3104 		}
3105 	}
3106 	unlock_page(page);
3107 	put_page(page);
3108 
3109 	balance_dirty_pages_ratelimited(inode->i_mapping);
3110 	btrfs_throttle(fs_info);
3111 	if (btrfs_should_cancel_balance(fs_info))
3112 		ret = -ECANCELED;
3113 	return ret;
3114 
3115 release_page:
3116 	unlock_page(page);
3117 	put_page(page);
3118 	return ret;
3119 }
3120 
3121 static int relocate_file_extent_cluster(struct inode *inode,
3122 					const struct file_extent_cluster *cluster)
3123 {
3124 	u64 offset = BTRFS_I(inode)->index_cnt;
3125 	unsigned long index;
3126 	unsigned long last_index;
3127 	struct file_ra_state *ra;
3128 	int cluster_nr = 0;
3129 	int ret = 0;
3130 
3131 	if (!cluster->nr)
3132 		return 0;
3133 
3134 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
3135 	if (!ra)
3136 		return -ENOMEM;
3137 
3138 	ret = prealloc_file_extent_cluster(BTRFS_I(inode), cluster);
3139 	if (ret)
3140 		goto out;
3141 
3142 	file_ra_state_init(ra, inode->i_mapping);
3143 
3144 	ret = setup_relocation_extent_mapping(inode, cluster->start - offset,
3145 				   cluster->end - offset, cluster->start);
3146 	if (ret)
3147 		goto out;
3148 
3149 	last_index = (cluster->end - offset) >> PAGE_SHIFT;
3150 	for (index = (cluster->start - offset) >> PAGE_SHIFT;
3151 	     index <= last_index && !ret; index++)
3152 		ret = relocate_one_page(inode, ra, cluster, &cluster_nr, index);
3153 	if (ret == 0)
3154 		WARN_ON(cluster_nr != cluster->nr);
3155 out:
3156 	kfree(ra);
3157 	return ret;
3158 }
3159 
3160 static noinline_for_stack int relocate_data_extent(struct inode *inode,
3161 				const struct btrfs_key *extent_key,
3162 				struct file_extent_cluster *cluster)
3163 {
3164 	int ret;
3165 	struct btrfs_root *root = BTRFS_I(inode)->root;
3166 
3167 	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3168 		ret = relocate_file_extent_cluster(inode, cluster);
3169 		if (ret)
3170 			return ret;
3171 		cluster->nr = 0;
3172 	}
3173 
3174 	/*
3175 	 * Under simple quotas, we set root->relocation_src_root when we find
3176 	 * the extent. If adjacent extents have different owners, we can't merge
3177 	 * them while relocating. Handle this by storing the owning root that
3178 	 * started a cluster and if we see an extent from a different root break
3179 	 * cluster formation (just like the above case of non-adjacent extents).
3180 	 *
3181 	 * Without simple quotas, relocation_src_root is always 0, so we should
3182 	 * never see a mismatch, and it should have no effect on relocation
3183 	 * clusters.
3184 	 */
3185 	if (cluster->nr > 0 && cluster->owning_root != root->relocation_src_root) {
3186 		u64 tmp = root->relocation_src_root;
3187 
3188 		/*
3189 		 * root->relocation_src_root is the state that actually affects
3190 		 * the preallocation we do here, so set it to the root owning
3191 		 * the cluster we need to relocate.
3192 		 */
3193 		root->relocation_src_root = cluster->owning_root;
3194 		ret = relocate_file_extent_cluster(inode, cluster);
3195 		if (ret)
3196 			return ret;
3197 		cluster->nr = 0;
3198 		/* And reset it back for the current extent's owning root. */
3199 		root->relocation_src_root = tmp;
3200 	}
3201 
3202 	if (!cluster->nr) {
3203 		cluster->start = extent_key->objectid;
3204 		cluster->owning_root = root->relocation_src_root;
3205 	}
3206 	else
3207 		BUG_ON(cluster->nr >= MAX_EXTENTS);
3208 	cluster->end = extent_key->objectid + extent_key->offset - 1;
3209 	cluster->boundary[cluster->nr] = extent_key->objectid;
3210 	cluster->nr++;
3211 
3212 	if (cluster->nr >= MAX_EXTENTS) {
3213 		ret = relocate_file_extent_cluster(inode, cluster);
3214 		if (ret)
3215 			return ret;
3216 		cluster->nr = 0;
3217 	}
3218 	return 0;
3219 }
3220 
3221 /*
3222  * helper to add a tree block to the list.
3223  * the major work is getting the generation and level of the block
3224  */
3225 static int add_tree_block(struct reloc_control *rc,
3226 			  const struct btrfs_key *extent_key,
3227 			  struct btrfs_path *path,
3228 			  struct rb_root *blocks)
3229 {
3230 	struct extent_buffer *eb;
3231 	struct btrfs_extent_item *ei;
3232 	struct btrfs_tree_block_info *bi;
3233 	struct tree_block *block;
3234 	struct rb_node *rb_node;
3235 	u32 item_size;
3236 	int level = -1;
3237 	u64 generation;
3238 	u64 owner = 0;
3239 
3240 	eb =  path->nodes[0];
3241 	item_size = btrfs_item_size(eb, path->slots[0]);
3242 
3243 	if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3244 	    item_size >= sizeof(*ei) + sizeof(*bi)) {
3245 		unsigned long ptr = 0, end;
3246 
3247 		ei = btrfs_item_ptr(eb, path->slots[0],
3248 				struct btrfs_extent_item);
3249 		end = (unsigned long)ei + item_size;
3250 		if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3251 			bi = (struct btrfs_tree_block_info *)(ei + 1);
3252 			level = btrfs_tree_block_level(eb, bi);
3253 			ptr = (unsigned long)(bi + 1);
3254 		} else {
3255 			level = (int)extent_key->offset;
3256 			ptr = (unsigned long)(ei + 1);
3257 		}
3258 		generation = btrfs_extent_generation(eb, ei);
3259 
3260 		/*
3261 		 * We're reading random blocks without knowing their owner ahead
3262 		 * of time.  This is ok most of the time, as all reloc roots and
3263 		 * fs roots have the same lock type.  However normal trees do
3264 		 * not, and the only way to know ahead of time is to read the
3265 		 * inline ref offset.  We know it's an fs root if
3266 		 *
3267 		 * 1. There's more than one ref.
3268 		 * 2. There's a SHARED_DATA_REF_KEY set.
3269 		 * 3. FULL_BACKREF is set on the flags.
3270 		 *
3271 		 * Otherwise it's safe to assume that the ref offset == the
3272 		 * owner of this block, so we can use that when calling
3273 		 * read_tree_block.
3274 		 */
3275 		if (btrfs_extent_refs(eb, ei) == 1 &&
3276 		    !(btrfs_extent_flags(eb, ei) &
3277 		      BTRFS_BLOCK_FLAG_FULL_BACKREF) &&
3278 		    ptr < end) {
3279 			struct btrfs_extent_inline_ref *iref;
3280 			int type;
3281 
3282 			iref = (struct btrfs_extent_inline_ref *)ptr;
3283 			type = btrfs_get_extent_inline_ref_type(eb, iref,
3284 							BTRFS_REF_TYPE_BLOCK);
3285 			if (type == BTRFS_REF_TYPE_INVALID)
3286 				return -EINVAL;
3287 			if (type == BTRFS_TREE_BLOCK_REF_KEY)
3288 				owner = btrfs_extent_inline_ref_offset(eb, iref);
3289 		}
3290 	} else {
3291 		btrfs_print_leaf(eb);
3292 		btrfs_err(rc->block_group->fs_info,
3293 			  "unrecognized tree backref at tree block %llu slot %u",
3294 			  eb->start, path->slots[0]);
3295 		btrfs_release_path(path);
3296 		return -EUCLEAN;
3297 	}
3298 
3299 	btrfs_release_path(path);
3300 
3301 	BUG_ON(level == -1);
3302 
3303 	block = kmalloc(sizeof(*block), GFP_NOFS);
3304 	if (!block)
3305 		return -ENOMEM;
3306 
3307 	block->bytenr = extent_key->objectid;
3308 	block->key.objectid = rc->extent_root->fs_info->nodesize;
3309 	block->key.offset = generation;
3310 	block->level = level;
3311 	block->key_ready = false;
3312 	block->owner = owner;
3313 
3314 	rb_node = rb_simple_insert(blocks, block->bytenr, &block->rb_node);
3315 	if (rb_node)
3316 		btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr,
3317 				    -EEXIST);
3318 
3319 	return 0;
3320 }
3321 
3322 /*
3323  * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3324  */
3325 static int __add_tree_block(struct reloc_control *rc,
3326 			    u64 bytenr, u32 blocksize,
3327 			    struct rb_root *blocks)
3328 {
3329 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3330 	struct btrfs_path *path;
3331 	struct btrfs_key key;
3332 	int ret;
3333 	bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3334 
3335 	if (tree_block_processed(bytenr, rc))
3336 		return 0;
3337 
3338 	if (rb_simple_search(blocks, bytenr))
3339 		return 0;
3340 
3341 	path = btrfs_alloc_path();
3342 	if (!path)
3343 		return -ENOMEM;
3344 again:
3345 	key.objectid = bytenr;
3346 	if (skinny) {
3347 		key.type = BTRFS_METADATA_ITEM_KEY;
3348 		key.offset = (u64)-1;
3349 	} else {
3350 		key.type = BTRFS_EXTENT_ITEM_KEY;
3351 		key.offset = blocksize;
3352 	}
3353 
3354 	path->search_commit_root = 1;
3355 	path->skip_locking = 1;
3356 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3357 	if (ret < 0)
3358 		goto out;
3359 
3360 	if (ret > 0 && skinny) {
3361 		if (path->slots[0]) {
3362 			path->slots[0]--;
3363 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3364 					      path->slots[0]);
3365 			if (key.objectid == bytenr &&
3366 			    (key.type == BTRFS_METADATA_ITEM_KEY ||
3367 			     (key.type == BTRFS_EXTENT_ITEM_KEY &&
3368 			      key.offset == blocksize)))
3369 				ret = 0;
3370 		}
3371 
3372 		if (ret) {
3373 			skinny = false;
3374 			btrfs_release_path(path);
3375 			goto again;
3376 		}
3377 	}
3378 	if (ret) {
3379 		ASSERT(ret == 1);
3380 		btrfs_print_leaf(path->nodes[0]);
3381 		btrfs_err(fs_info,
3382 	     "tree block extent item (%llu) is not found in extent tree",
3383 		     bytenr);
3384 		WARN_ON(1);
3385 		ret = -EINVAL;
3386 		goto out;
3387 	}
3388 
3389 	ret = add_tree_block(rc, &key, path, blocks);
3390 out:
3391 	btrfs_free_path(path);
3392 	return ret;
3393 }
3394 
3395 static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3396 				    struct btrfs_block_group *block_group,
3397 				    struct inode *inode,
3398 				    u64 ino)
3399 {
3400 	struct btrfs_root *root = fs_info->tree_root;
3401 	struct btrfs_trans_handle *trans;
3402 	int ret = 0;
3403 
3404 	if (inode)
3405 		goto truncate;
3406 
3407 	inode = btrfs_iget(fs_info->sb, ino, root);
3408 	if (IS_ERR(inode))
3409 		return -ENOENT;
3410 
3411 truncate:
3412 	ret = btrfs_check_trunc_cache_free_space(fs_info,
3413 						 &fs_info->global_block_rsv);
3414 	if (ret)
3415 		goto out;
3416 
3417 	trans = btrfs_join_transaction(root);
3418 	if (IS_ERR(trans)) {
3419 		ret = PTR_ERR(trans);
3420 		goto out;
3421 	}
3422 
3423 	ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
3424 
3425 	btrfs_end_transaction(trans);
3426 	btrfs_btree_balance_dirty(fs_info);
3427 out:
3428 	iput(inode);
3429 	return ret;
3430 }
3431 
3432 /*
3433  * Locate the free space cache EXTENT_DATA in root tree leaf and delete the
3434  * cache inode, to avoid free space cache data extent blocking data relocation.
3435  */
3436 static int delete_v1_space_cache(struct extent_buffer *leaf,
3437 				 struct btrfs_block_group *block_group,
3438 				 u64 data_bytenr)
3439 {
3440 	u64 space_cache_ino;
3441 	struct btrfs_file_extent_item *ei;
3442 	struct btrfs_key key;
3443 	bool found = false;
3444 	int i;
3445 	int ret;
3446 
3447 	if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID)
3448 		return 0;
3449 
3450 	for (i = 0; i < btrfs_header_nritems(leaf); i++) {
3451 		u8 type;
3452 
3453 		btrfs_item_key_to_cpu(leaf, &key, i);
3454 		if (key.type != BTRFS_EXTENT_DATA_KEY)
3455 			continue;
3456 		ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
3457 		type = btrfs_file_extent_type(leaf, ei);
3458 
3459 		if ((type == BTRFS_FILE_EXTENT_REG ||
3460 		     type == BTRFS_FILE_EXTENT_PREALLOC) &&
3461 		    btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) {
3462 			found = true;
3463 			space_cache_ino = key.objectid;
3464 			break;
3465 		}
3466 	}
3467 	if (!found)
3468 		return -ENOENT;
3469 	ret = delete_block_group_cache(leaf->fs_info, block_group, NULL,
3470 					space_cache_ino);
3471 	return ret;
3472 }
3473 
3474 /*
3475  * helper to find all tree blocks that reference a given data extent
3476  */
3477 static noinline_for_stack int add_data_references(struct reloc_control *rc,
3478 						  const struct btrfs_key *extent_key,
3479 						  struct btrfs_path *path,
3480 						  struct rb_root *blocks)
3481 {
3482 	struct btrfs_backref_walk_ctx ctx = { 0 };
3483 	struct ulist_iterator leaf_uiter;
3484 	struct ulist_node *ref_node = NULL;
3485 	const u32 blocksize = rc->extent_root->fs_info->nodesize;
3486 	int ret = 0;
3487 
3488 	btrfs_release_path(path);
3489 
3490 	ctx.bytenr = extent_key->objectid;
3491 	ctx.skip_inode_ref_list = true;
3492 	ctx.fs_info = rc->extent_root->fs_info;
3493 
3494 	ret = btrfs_find_all_leafs(&ctx);
3495 	if (ret < 0)
3496 		return ret;
3497 
3498 	ULIST_ITER_INIT(&leaf_uiter);
3499 	while ((ref_node = ulist_next(ctx.refs, &leaf_uiter))) {
3500 		struct btrfs_tree_parent_check check = { 0 };
3501 		struct extent_buffer *eb;
3502 
3503 		eb = read_tree_block(ctx.fs_info, ref_node->val, &check);
3504 		if (IS_ERR(eb)) {
3505 			ret = PTR_ERR(eb);
3506 			break;
3507 		}
3508 		ret = delete_v1_space_cache(eb, rc->block_group,
3509 					    extent_key->objectid);
3510 		free_extent_buffer(eb);
3511 		if (ret < 0)
3512 			break;
3513 		ret = __add_tree_block(rc, ref_node->val, blocksize, blocks);
3514 		if (ret < 0)
3515 			break;
3516 	}
3517 	if (ret < 0)
3518 		free_block_list(blocks);
3519 	ulist_free(ctx.refs);
3520 	return ret;
3521 }
3522 
3523 /*
3524  * helper to find next unprocessed extent
3525  */
3526 static noinline_for_stack
3527 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3528 		     struct btrfs_key *extent_key)
3529 {
3530 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3531 	struct btrfs_key key;
3532 	struct extent_buffer *leaf;
3533 	u64 start, end, last;
3534 	int ret;
3535 
3536 	last = rc->block_group->start + rc->block_group->length;
3537 	while (1) {
3538 		bool block_found;
3539 
3540 		cond_resched();
3541 		if (rc->search_start >= last) {
3542 			ret = 1;
3543 			break;
3544 		}
3545 
3546 		key.objectid = rc->search_start;
3547 		key.type = BTRFS_EXTENT_ITEM_KEY;
3548 		key.offset = 0;
3549 
3550 		path->search_commit_root = 1;
3551 		path->skip_locking = 1;
3552 		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3553 					0, 0);
3554 		if (ret < 0)
3555 			break;
3556 next:
3557 		leaf = path->nodes[0];
3558 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3559 			ret = btrfs_next_leaf(rc->extent_root, path);
3560 			if (ret != 0)
3561 				break;
3562 			leaf = path->nodes[0];
3563 		}
3564 
3565 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3566 		if (key.objectid >= last) {
3567 			ret = 1;
3568 			break;
3569 		}
3570 
3571 		if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3572 		    key.type != BTRFS_METADATA_ITEM_KEY) {
3573 			path->slots[0]++;
3574 			goto next;
3575 		}
3576 
3577 		if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3578 		    key.objectid + key.offset <= rc->search_start) {
3579 			path->slots[0]++;
3580 			goto next;
3581 		}
3582 
3583 		if (key.type == BTRFS_METADATA_ITEM_KEY &&
3584 		    key.objectid + fs_info->nodesize <=
3585 		    rc->search_start) {
3586 			path->slots[0]++;
3587 			goto next;
3588 		}
3589 
3590 		block_found = find_first_extent_bit(&rc->processed_blocks,
3591 						    key.objectid, &start, &end,
3592 						    EXTENT_DIRTY, NULL);
3593 
3594 		if (block_found && start <= key.objectid) {
3595 			btrfs_release_path(path);
3596 			rc->search_start = end + 1;
3597 		} else {
3598 			if (key.type == BTRFS_EXTENT_ITEM_KEY)
3599 				rc->search_start = key.objectid + key.offset;
3600 			else
3601 				rc->search_start = key.objectid +
3602 					fs_info->nodesize;
3603 			memcpy(extent_key, &key, sizeof(key));
3604 			return 0;
3605 		}
3606 	}
3607 	btrfs_release_path(path);
3608 	return ret;
3609 }
3610 
3611 static void set_reloc_control(struct reloc_control *rc)
3612 {
3613 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3614 
3615 	mutex_lock(&fs_info->reloc_mutex);
3616 	fs_info->reloc_ctl = rc;
3617 	mutex_unlock(&fs_info->reloc_mutex);
3618 }
3619 
3620 static void unset_reloc_control(struct reloc_control *rc)
3621 {
3622 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3623 
3624 	mutex_lock(&fs_info->reloc_mutex);
3625 	fs_info->reloc_ctl = NULL;
3626 	mutex_unlock(&fs_info->reloc_mutex);
3627 }
3628 
3629 static noinline_for_stack
3630 int prepare_to_relocate(struct reloc_control *rc)
3631 {
3632 	struct btrfs_trans_handle *trans;
3633 	int ret;
3634 
3635 	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3636 					      BTRFS_BLOCK_RSV_TEMP);
3637 	if (!rc->block_rsv)
3638 		return -ENOMEM;
3639 
3640 	memset(&rc->cluster, 0, sizeof(rc->cluster));
3641 	rc->search_start = rc->block_group->start;
3642 	rc->extents_found = 0;
3643 	rc->nodes_relocated = 0;
3644 	rc->merging_rsv_size = 0;
3645 	rc->reserved_bytes = 0;
3646 	rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3647 			      RELOCATION_RESERVED_NODES;
3648 	ret = btrfs_block_rsv_refill(rc->extent_root->fs_info,
3649 				     rc->block_rsv, rc->block_rsv->size,
3650 				     BTRFS_RESERVE_FLUSH_ALL);
3651 	if (ret)
3652 		return ret;
3653 
3654 	rc->create_reloc_tree = true;
3655 	set_reloc_control(rc);
3656 
3657 	trans = btrfs_join_transaction(rc->extent_root);
3658 	if (IS_ERR(trans)) {
3659 		unset_reloc_control(rc);
3660 		/*
3661 		 * extent tree is not a ref_cow tree and has no reloc_root to
3662 		 * cleanup.  And callers are responsible to free the above
3663 		 * block rsv.
3664 		 */
3665 		return PTR_ERR(trans);
3666 	}
3667 
3668 	ret = btrfs_commit_transaction(trans);
3669 	if (ret)
3670 		unset_reloc_control(rc);
3671 
3672 	return ret;
3673 }
3674 
3675 static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3676 {
3677 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3678 	struct rb_root blocks = RB_ROOT;
3679 	struct btrfs_key key;
3680 	struct btrfs_trans_handle *trans = NULL;
3681 	struct btrfs_path *path;
3682 	struct btrfs_extent_item *ei;
3683 	u64 flags;
3684 	int ret;
3685 	int err = 0;
3686 	int progress = 0;
3687 
3688 	path = btrfs_alloc_path();
3689 	if (!path)
3690 		return -ENOMEM;
3691 	path->reada = READA_FORWARD;
3692 
3693 	ret = prepare_to_relocate(rc);
3694 	if (ret) {
3695 		err = ret;
3696 		goto out_free;
3697 	}
3698 
3699 	while (1) {
3700 		rc->reserved_bytes = 0;
3701 		ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv,
3702 					     rc->block_rsv->size,
3703 					     BTRFS_RESERVE_FLUSH_ALL);
3704 		if (ret) {
3705 			err = ret;
3706 			break;
3707 		}
3708 		progress++;
3709 		trans = btrfs_start_transaction(rc->extent_root, 0);
3710 		if (IS_ERR(trans)) {
3711 			err = PTR_ERR(trans);
3712 			trans = NULL;
3713 			break;
3714 		}
3715 restart:
3716 		if (update_backref_cache(trans, &rc->backref_cache)) {
3717 			btrfs_end_transaction(trans);
3718 			trans = NULL;
3719 			continue;
3720 		}
3721 
3722 		ret = find_next_extent(rc, path, &key);
3723 		if (ret < 0)
3724 			err = ret;
3725 		if (ret != 0)
3726 			break;
3727 
3728 		rc->extents_found++;
3729 
3730 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3731 				    struct btrfs_extent_item);
3732 		flags = btrfs_extent_flags(path->nodes[0], ei);
3733 
3734 		/*
3735 		 * If we are relocating a simple quota owned extent item, we
3736 		 * need to note the owner on the reloc data root so that when
3737 		 * we allocate the replacement item, we can attribute it to the
3738 		 * correct eventual owner (rather than the reloc data root).
3739 		 */
3740 		if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE) {
3741 			struct btrfs_root *root = BTRFS_I(rc->data_inode)->root;
3742 			u64 owning_root_id = btrfs_get_extent_owner_root(fs_info,
3743 								 path->nodes[0],
3744 								 path->slots[0]);
3745 
3746 			root->relocation_src_root = owning_root_id;
3747 		}
3748 
3749 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3750 			ret = add_tree_block(rc, &key, path, &blocks);
3751 		} else if (rc->stage == UPDATE_DATA_PTRS &&
3752 			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
3753 			ret = add_data_references(rc, &key, path, &blocks);
3754 		} else {
3755 			btrfs_release_path(path);
3756 			ret = 0;
3757 		}
3758 		if (ret < 0) {
3759 			err = ret;
3760 			break;
3761 		}
3762 
3763 		if (!RB_EMPTY_ROOT(&blocks)) {
3764 			ret = relocate_tree_blocks(trans, rc, &blocks);
3765 			if (ret < 0) {
3766 				if (ret != -EAGAIN) {
3767 					err = ret;
3768 					break;
3769 				}
3770 				rc->extents_found--;
3771 				rc->search_start = key.objectid;
3772 			}
3773 		}
3774 
3775 		btrfs_end_transaction_throttle(trans);
3776 		btrfs_btree_balance_dirty(fs_info);
3777 		trans = NULL;
3778 
3779 		if (rc->stage == MOVE_DATA_EXTENTS &&
3780 		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
3781 			rc->found_file_extent = true;
3782 			ret = relocate_data_extent(rc->data_inode,
3783 						   &key, &rc->cluster);
3784 			if (ret < 0) {
3785 				err = ret;
3786 				break;
3787 			}
3788 		}
3789 		if (btrfs_should_cancel_balance(fs_info)) {
3790 			err = -ECANCELED;
3791 			break;
3792 		}
3793 	}
3794 	if (trans && progress && err == -ENOSPC) {
3795 		ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
3796 		if (ret == 1) {
3797 			err = 0;
3798 			progress = 0;
3799 			goto restart;
3800 		}
3801 	}
3802 
3803 	btrfs_release_path(path);
3804 	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
3805 
3806 	if (trans) {
3807 		btrfs_end_transaction_throttle(trans);
3808 		btrfs_btree_balance_dirty(fs_info);
3809 	}
3810 
3811 	if (!err) {
3812 		ret = relocate_file_extent_cluster(rc->data_inode,
3813 						   &rc->cluster);
3814 		if (ret < 0)
3815 			err = ret;
3816 	}
3817 
3818 	rc->create_reloc_tree = false;
3819 	set_reloc_control(rc);
3820 
3821 	btrfs_backref_release_cache(&rc->backref_cache);
3822 	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3823 
3824 	/*
3825 	 * Even in the case when the relocation is cancelled, we should all go
3826 	 * through prepare_to_merge() and merge_reloc_roots().
3827 	 *
3828 	 * For error (including cancelled balance), prepare_to_merge() will
3829 	 * mark all reloc trees orphan, then queue them for cleanup in
3830 	 * merge_reloc_roots()
3831 	 */
3832 	err = prepare_to_merge(rc, err);
3833 
3834 	merge_reloc_roots(rc);
3835 
3836 	rc->merge_reloc_tree = false;
3837 	unset_reloc_control(rc);
3838 	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3839 
3840 	/* get rid of pinned extents */
3841 	trans = btrfs_join_transaction(rc->extent_root);
3842 	if (IS_ERR(trans)) {
3843 		err = PTR_ERR(trans);
3844 		goto out_free;
3845 	}
3846 	ret = btrfs_commit_transaction(trans);
3847 	if (ret && !err)
3848 		err = ret;
3849 out_free:
3850 	ret = clean_dirty_subvols(rc);
3851 	if (ret < 0 && !err)
3852 		err = ret;
3853 	btrfs_free_block_rsv(fs_info, rc->block_rsv);
3854 	btrfs_free_path(path);
3855 	return err;
3856 }
3857 
3858 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3859 				 struct btrfs_root *root, u64 objectid)
3860 {
3861 	struct btrfs_path *path;
3862 	struct btrfs_inode_item *item;
3863 	struct extent_buffer *leaf;
3864 	int ret;
3865 
3866 	path = btrfs_alloc_path();
3867 	if (!path)
3868 		return -ENOMEM;
3869 
3870 	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
3871 	if (ret)
3872 		goto out;
3873 
3874 	leaf = path->nodes[0];
3875 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3876 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3877 	btrfs_set_inode_generation(leaf, item, 1);
3878 	btrfs_set_inode_size(leaf, item, 0);
3879 	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
3880 	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
3881 					  BTRFS_INODE_PREALLOC);
3882 	btrfs_mark_buffer_dirty(trans, leaf);
3883 out:
3884 	btrfs_free_path(path);
3885 	return ret;
3886 }
3887 
3888 static void delete_orphan_inode(struct btrfs_trans_handle *trans,
3889 				struct btrfs_root *root, u64 objectid)
3890 {
3891 	struct btrfs_path *path;
3892 	struct btrfs_key key;
3893 	int ret = 0;
3894 
3895 	path = btrfs_alloc_path();
3896 	if (!path) {
3897 		ret = -ENOMEM;
3898 		goto out;
3899 	}
3900 
3901 	key.objectid = objectid;
3902 	key.type = BTRFS_INODE_ITEM_KEY;
3903 	key.offset = 0;
3904 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3905 	if (ret) {
3906 		if (ret > 0)
3907 			ret = -ENOENT;
3908 		goto out;
3909 	}
3910 	ret = btrfs_del_item(trans, root, path);
3911 out:
3912 	if (ret)
3913 		btrfs_abort_transaction(trans, ret);
3914 	btrfs_free_path(path);
3915 }
3916 
3917 /*
3918  * helper to create inode for data relocation.
3919  * the inode is in data relocation tree and its link count is 0
3920  */
3921 static noinline_for_stack struct inode *create_reloc_inode(
3922 					struct btrfs_fs_info *fs_info,
3923 					const struct btrfs_block_group *group)
3924 {
3925 	struct inode *inode = NULL;
3926 	struct btrfs_trans_handle *trans;
3927 	struct btrfs_root *root;
3928 	u64 objectid;
3929 	int err = 0;
3930 
3931 	root = btrfs_grab_root(fs_info->data_reloc_root);
3932 	trans = btrfs_start_transaction(root, 6);
3933 	if (IS_ERR(trans)) {
3934 		btrfs_put_root(root);
3935 		return ERR_CAST(trans);
3936 	}
3937 
3938 	err = btrfs_get_free_objectid(root, &objectid);
3939 	if (err)
3940 		goto out;
3941 
3942 	err = __insert_orphan_inode(trans, root, objectid);
3943 	if (err)
3944 		goto out;
3945 
3946 	inode = btrfs_iget(fs_info->sb, objectid, root);
3947 	if (IS_ERR(inode)) {
3948 		delete_orphan_inode(trans, root, objectid);
3949 		err = PTR_ERR(inode);
3950 		inode = NULL;
3951 		goto out;
3952 	}
3953 	BTRFS_I(inode)->index_cnt = group->start;
3954 
3955 	err = btrfs_orphan_add(trans, BTRFS_I(inode));
3956 out:
3957 	btrfs_put_root(root);
3958 	btrfs_end_transaction(trans);
3959 	btrfs_btree_balance_dirty(fs_info);
3960 	if (err) {
3961 		iput(inode);
3962 		inode = ERR_PTR(err);
3963 	}
3964 	return inode;
3965 }
3966 
3967 /*
3968  * Mark start of chunk relocation that is cancellable. Check if the cancellation
3969  * has been requested meanwhile and don't start in that case.
3970  *
3971  * Return:
3972  *   0             success
3973  *   -EINPROGRESS  operation is already in progress, that's probably a bug
3974  *   -ECANCELED    cancellation request was set before the operation started
3975  */
3976 static int reloc_chunk_start(struct btrfs_fs_info *fs_info)
3977 {
3978 	if (test_and_set_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) {
3979 		/* This should not happen */
3980 		btrfs_err(fs_info, "reloc already running, cannot start");
3981 		return -EINPROGRESS;
3982 	}
3983 
3984 	if (atomic_read(&fs_info->reloc_cancel_req) > 0) {
3985 		btrfs_info(fs_info, "chunk relocation canceled on start");
3986 		/*
3987 		 * On cancel, clear all requests but let the caller mark
3988 		 * the end after cleanup operations.
3989 		 */
3990 		atomic_set(&fs_info->reloc_cancel_req, 0);
3991 		return -ECANCELED;
3992 	}
3993 	return 0;
3994 }
3995 
3996 /*
3997  * Mark end of chunk relocation that is cancellable and wake any waiters.
3998  */
3999 static void reloc_chunk_end(struct btrfs_fs_info *fs_info)
4000 {
4001 	/* Requested after start, clear bit first so any waiters can continue */
4002 	if (atomic_read(&fs_info->reloc_cancel_req) > 0)
4003 		btrfs_info(fs_info, "chunk relocation canceled during operation");
4004 	clear_and_wake_up_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags);
4005 	atomic_set(&fs_info->reloc_cancel_req, 0);
4006 }
4007 
4008 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
4009 {
4010 	struct reloc_control *rc;
4011 
4012 	rc = kzalloc(sizeof(*rc), GFP_NOFS);
4013 	if (!rc)
4014 		return NULL;
4015 
4016 	INIT_LIST_HEAD(&rc->reloc_roots);
4017 	INIT_LIST_HEAD(&rc->dirty_subvol_roots);
4018 	btrfs_backref_init_cache(fs_info, &rc->backref_cache, true);
4019 	rc->reloc_root_tree.rb_root = RB_ROOT;
4020 	spin_lock_init(&rc->reloc_root_tree.lock);
4021 	extent_io_tree_init(fs_info, &rc->processed_blocks, IO_TREE_RELOC_BLOCKS);
4022 	return rc;
4023 }
4024 
4025 static void free_reloc_control(struct reloc_control *rc)
4026 {
4027 	struct mapping_node *node, *tmp;
4028 
4029 	free_reloc_roots(&rc->reloc_roots);
4030 	rbtree_postorder_for_each_entry_safe(node, tmp,
4031 			&rc->reloc_root_tree.rb_root, rb_node)
4032 		kfree(node);
4033 
4034 	kfree(rc);
4035 }
4036 
4037 /*
4038  * Print the block group being relocated
4039  */
4040 static void describe_relocation(struct btrfs_fs_info *fs_info,
4041 				struct btrfs_block_group *block_group)
4042 {
4043 	char buf[128] = {'\0'};
4044 
4045 	btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf));
4046 
4047 	btrfs_info(fs_info,
4048 		   "relocating block group %llu flags %s",
4049 		   block_group->start, buf);
4050 }
4051 
4052 static const char *stage_to_string(enum reloc_stage stage)
4053 {
4054 	if (stage == MOVE_DATA_EXTENTS)
4055 		return "move data extents";
4056 	if (stage == UPDATE_DATA_PTRS)
4057 		return "update data pointers";
4058 	return "unknown";
4059 }
4060 
4061 /*
4062  * function to relocate all extents in a block group.
4063  */
4064 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
4065 {
4066 	struct btrfs_block_group *bg;
4067 	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, group_start);
4068 	struct reloc_control *rc;
4069 	struct inode *inode;
4070 	struct btrfs_path *path;
4071 	int ret;
4072 	int rw = 0;
4073 	int err = 0;
4074 
4075 	/*
4076 	 * This only gets set if we had a half-deleted snapshot on mount.  We
4077 	 * cannot allow relocation to start while we're still trying to clean up
4078 	 * these pending deletions.
4079 	 */
4080 	ret = wait_on_bit(&fs_info->flags, BTRFS_FS_UNFINISHED_DROPS, TASK_INTERRUPTIBLE);
4081 	if (ret)
4082 		return ret;
4083 
4084 	/* We may have been woken up by close_ctree, so bail if we're closing. */
4085 	if (btrfs_fs_closing(fs_info))
4086 		return -EINTR;
4087 
4088 	bg = btrfs_lookup_block_group(fs_info, group_start);
4089 	if (!bg)
4090 		return -ENOENT;
4091 
4092 	/*
4093 	 * Relocation of a data block group creates ordered extents.  Without
4094 	 * sb_start_write(), we can freeze the filesystem while unfinished
4095 	 * ordered extents are left. Such ordered extents can cause a deadlock
4096 	 * e.g. when syncfs() is waiting for their completion but they can't
4097 	 * finish because they block when joining a transaction, due to the
4098 	 * fact that the freeze locks are being held in write mode.
4099 	 */
4100 	if (bg->flags & BTRFS_BLOCK_GROUP_DATA)
4101 		ASSERT(sb_write_started(fs_info->sb));
4102 
4103 	if (btrfs_pinned_by_swapfile(fs_info, bg)) {
4104 		btrfs_put_block_group(bg);
4105 		return -ETXTBSY;
4106 	}
4107 
4108 	rc = alloc_reloc_control(fs_info);
4109 	if (!rc) {
4110 		btrfs_put_block_group(bg);
4111 		return -ENOMEM;
4112 	}
4113 
4114 	ret = reloc_chunk_start(fs_info);
4115 	if (ret < 0) {
4116 		err = ret;
4117 		goto out_put_bg;
4118 	}
4119 
4120 	rc->extent_root = extent_root;
4121 	rc->block_group = bg;
4122 
4123 	ret = btrfs_inc_block_group_ro(rc->block_group, true);
4124 	if (ret) {
4125 		err = ret;
4126 		goto out;
4127 	}
4128 	rw = 1;
4129 
4130 	path = btrfs_alloc_path();
4131 	if (!path) {
4132 		err = -ENOMEM;
4133 		goto out;
4134 	}
4135 
4136 	inode = lookup_free_space_inode(rc->block_group, path);
4137 	btrfs_free_path(path);
4138 
4139 	if (!IS_ERR(inode))
4140 		ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
4141 	else
4142 		ret = PTR_ERR(inode);
4143 
4144 	if (ret && ret != -ENOENT) {
4145 		err = ret;
4146 		goto out;
4147 	}
4148 
4149 	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4150 	if (IS_ERR(rc->data_inode)) {
4151 		err = PTR_ERR(rc->data_inode);
4152 		rc->data_inode = NULL;
4153 		goto out;
4154 	}
4155 
4156 	describe_relocation(fs_info, rc->block_group);
4157 
4158 	btrfs_wait_block_group_reservations(rc->block_group);
4159 	btrfs_wait_nocow_writers(rc->block_group);
4160 	btrfs_wait_ordered_roots(fs_info, U64_MAX,
4161 				 rc->block_group->start,
4162 				 rc->block_group->length);
4163 
4164 	ret = btrfs_zone_finish(rc->block_group);
4165 	WARN_ON(ret && ret != -EAGAIN);
4166 
4167 	while (1) {
4168 		enum reloc_stage finishes_stage;
4169 
4170 		mutex_lock(&fs_info->cleaner_mutex);
4171 		ret = relocate_block_group(rc);
4172 		mutex_unlock(&fs_info->cleaner_mutex);
4173 		if (ret < 0)
4174 			err = ret;
4175 
4176 		finishes_stage = rc->stage;
4177 		/*
4178 		 * We may have gotten ENOSPC after we already dirtied some
4179 		 * extents.  If writeout happens while we're relocating a
4180 		 * different block group we could end up hitting the
4181 		 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
4182 		 * btrfs_reloc_cow_block.  Make sure we write everything out
4183 		 * properly so we don't trip over this problem, and then break
4184 		 * out of the loop if we hit an error.
4185 		 */
4186 		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4187 			ret = btrfs_wait_ordered_range(rc->data_inode, 0,
4188 						       (u64)-1);
4189 			if (ret)
4190 				err = ret;
4191 			invalidate_mapping_pages(rc->data_inode->i_mapping,
4192 						 0, -1);
4193 			rc->stage = UPDATE_DATA_PTRS;
4194 		}
4195 
4196 		if (err < 0)
4197 			goto out;
4198 
4199 		if (rc->extents_found == 0)
4200 			break;
4201 
4202 		btrfs_info(fs_info, "found %llu extents, stage: %s",
4203 			   rc->extents_found, stage_to_string(finishes_stage));
4204 	}
4205 
4206 	WARN_ON(rc->block_group->pinned > 0);
4207 	WARN_ON(rc->block_group->reserved > 0);
4208 	WARN_ON(rc->block_group->used > 0);
4209 out:
4210 	if (err && rw)
4211 		btrfs_dec_block_group_ro(rc->block_group);
4212 	iput(rc->data_inode);
4213 out_put_bg:
4214 	btrfs_put_block_group(bg);
4215 	reloc_chunk_end(fs_info);
4216 	free_reloc_control(rc);
4217 	return err;
4218 }
4219 
4220 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4221 {
4222 	struct btrfs_fs_info *fs_info = root->fs_info;
4223 	struct btrfs_trans_handle *trans;
4224 	int ret, err;
4225 
4226 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
4227 	if (IS_ERR(trans))
4228 		return PTR_ERR(trans);
4229 
4230 	memset(&root->root_item.drop_progress, 0,
4231 		sizeof(root->root_item.drop_progress));
4232 	btrfs_set_root_drop_level(&root->root_item, 0);
4233 	btrfs_set_root_refs(&root->root_item, 0);
4234 	ret = btrfs_update_root(trans, fs_info->tree_root,
4235 				&root->root_key, &root->root_item);
4236 
4237 	err = btrfs_end_transaction(trans);
4238 	if (err)
4239 		return err;
4240 	return ret;
4241 }
4242 
4243 /*
4244  * recover relocation interrupted by system crash.
4245  *
4246  * this function resumes merging reloc trees with corresponding fs trees.
4247  * this is important for keeping the sharing of tree blocks
4248  */
4249 int btrfs_recover_relocation(struct btrfs_fs_info *fs_info)
4250 {
4251 	LIST_HEAD(reloc_roots);
4252 	struct btrfs_key key;
4253 	struct btrfs_root *fs_root;
4254 	struct btrfs_root *reloc_root;
4255 	struct btrfs_path *path;
4256 	struct extent_buffer *leaf;
4257 	struct reloc_control *rc = NULL;
4258 	struct btrfs_trans_handle *trans;
4259 	int ret;
4260 	int err = 0;
4261 
4262 	path = btrfs_alloc_path();
4263 	if (!path)
4264 		return -ENOMEM;
4265 	path->reada = READA_BACK;
4266 
4267 	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4268 	key.type = BTRFS_ROOT_ITEM_KEY;
4269 	key.offset = (u64)-1;
4270 
4271 	while (1) {
4272 		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
4273 					path, 0, 0);
4274 		if (ret < 0) {
4275 			err = ret;
4276 			goto out;
4277 		}
4278 		if (ret > 0) {
4279 			if (path->slots[0] == 0)
4280 				break;
4281 			path->slots[0]--;
4282 		}
4283 		leaf = path->nodes[0];
4284 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4285 		btrfs_release_path(path);
4286 
4287 		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4288 		    key.type != BTRFS_ROOT_ITEM_KEY)
4289 			break;
4290 
4291 		reloc_root = btrfs_read_tree_root(fs_info->tree_root, &key);
4292 		if (IS_ERR(reloc_root)) {
4293 			err = PTR_ERR(reloc_root);
4294 			goto out;
4295 		}
4296 
4297 		set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
4298 		list_add(&reloc_root->root_list, &reloc_roots);
4299 
4300 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4301 			fs_root = btrfs_get_fs_root(fs_info,
4302 					reloc_root->root_key.offset, false);
4303 			if (IS_ERR(fs_root)) {
4304 				ret = PTR_ERR(fs_root);
4305 				if (ret != -ENOENT) {
4306 					err = ret;
4307 					goto out;
4308 				}
4309 				ret = mark_garbage_root(reloc_root);
4310 				if (ret < 0) {
4311 					err = ret;
4312 					goto out;
4313 				}
4314 			} else {
4315 				btrfs_put_root(fs_root);
4316 			}
4317 		}
4318 
4319 		if (key.offset == 0)
4320 			break;
4321 
4322 		key.offset--;
4323 	}
4324 	btrfs_release_path(path);
4325 
4326 	if (list_empty(&reloc_roots))
4327 		goto out;
4328 
4329 	rc = alloc_reloc_control(fs_info);
4330 	if (!rc) {
4331 		err = -ENOMEM;
4332 		goto out;
4333 	}
4334 
4335 	ret = reloc_chunk_start(fs_info);
4336 	if (ret < 0) {
4337 		err = ret;
4338 		goto out_end;
4339 	}
4340 
4341 	rc->extent_root = btrfs_extent_root(fs_info, 0);
4342 
4343 	set_reloc_control(rc);
4344 
4345 	trans = btrfs_join_transaction(rc->extent_root);
4346 	if (IS_ERR(trans)) {
4347 		err = PTR_ERR(trans);
4348 		goto out_unset;
4349 	}
4350 
4351 	rc->merge_reloc_tree = true;
4352 
4353 	while (!list_empty(&reloc_roots)) {
4354 		reloc_root = list_entry(reloc_roots.next,
4355 					struct btrfs_root, root_list);
4356 		list_del(&reloc_root->root_list);
4357 
4358 		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4359 			list_add_tail(&reloc_root->root_list,
4360 				      &rc->reloc_roots);
4361 			continue;
4362 		}
4363 
4364 		fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
4365 					    false);
4366 		if (IS_ERR(fs_root)) {
4367 			err = PTR_ERR(fs_root);
4368 			list_add_tail(&reloc_root->root_list, &reloc_roots);
4369 			btrfs_end_transaction(trans);
4370 			goto out_unset;
4371 		}
4372 
4373 		err = __add_reloc_root(reloc_root);
4374 		ASSERT(err != -EEXIST);
4375 		if (err) {
4376 			list_add_tail(&reloc_root->root_list, &reloc_roots);
4377 			btrfs_put_root(fs_root);
4378 			btrfs_end_transaction(trans);
4379 			goto out_unset;
4380 		}
4381 		fs_root->reloc_root = btrfs_grab_root(reloc_root);
4382 		btrfs_put_root(fs_root);
4383 	}
4384 
4385 	err = btrfs_commit_transaction(trans);
4386 	if (err)
4387 		goto out_unset;
4388 
4389 	merge_reloc_roots(rc);
4390 
4391 	unset_reloc_control(rc);
4392 
4393 	trans = btrfs_join_transaction(rc->extent_root);
4394 	if (IS_ERR(trans)) {
4395 		err = PTR_ERR(trans);
4396 		goto out_clean;
4397 	}
4398 	err = btrfs_commit_transaction(trans);
4399 out_clean:
4400 	ret = clean_dirty_subvols(rc);
4401 	if (ret < 0 && !err)
4402 		err = ret;
4403 out_unset:
4404 	unset_reloc_control(rc);
4405 out_end:
4406 	reloc_chunk_end(fs_info);
4407 	free_reloc_control(rc);
4408 out:
4409 	free_reloc_roots(&reloc_roots);
4410 
4411 	btrfs_free_path(path);
4412 
4413 	if (err == 0) {
4414 		/* cleanup orphan inode in data relocation tree */
4415 		fs_root = btrfs_grab_root(fs_info->data_reloc_root);
4416 		ASSERT(fs_root);
4417 		err = btrfs_orphan_cleanup(fs_root);
4418 		btrfs_put_root(fs_root);
4419 	}
4420 	return err;
4421 }
4422 
4423 /*
4424  * helper to add ordered checksum for data relocation.
4425  *
4426  * cloning checksum properly handles the nodatasum extents.
4427  * it also saves CPU time to re-calculate the checksum.
4428  */
4429 int btrfs_reloc_clone_csums(struct btrfs_ordered_extent *ordered)
4430 {
4431 	struct btrfs_inode *inode = BTRFS_I(ordered->inode);
4432 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
4433 	u64 disk_bytenr = ordered->file_offset + inode->index_cnt;
4434 	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, disk_bytenr);
4435 	LIST_HEAD(list);
4436 	int ret;
4437 
4438 	ret = btrfs_lookup_csums_list(csum_root, disk_bytenr,
4439 				      disk_bytenr + ordered->num_bytes - 1,
4440 				      &list, 0, false);
4441 	if (ret)
4442 		return ret;
4443 
4444 	while (!list_empty(&list)) {
4445 		struct btrfs_ordered_sum *sums =
4446 			list_entry(list.next, struct btrfs_ordered_sum, list);
4447 
4448 		list_del_init(&sums->list);
4449 
4450 		/*
4451 		 * We need to offset the new_bytenr based on where the csum is.
4452 		 * We need to do this because we will read in entire prealloc
4453 		 * extents but we may have written to say the middle of the
4454 		 * prealloc extent, so we need to make sure the csum goes with
4455 		 * the right disk offset.
4456 		 *
4457 		 * We can do this because the data reloc inode refers strictly
4458 		 * to the on disk bytes, so we don't have to worry about
4459 		 * disk_len vs real len like with real inodes since it's all
4460 		 * disk length.
4461 		 */
4462 		sums->logical = ordered->disk_bytenr + sums->logical - disk_bytenr;
4463 		btrfs_add_ordered_sum(ordered, sums);
4464 	}
4465 
4466 	return 0;
4467 }
4468 
4469 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4470 			  struct btrfs_root *root,
4471 			  const struct extent_buffer *buf,
4472 			  struct extent_buffer *cow)
4473 {
4474 	struct btrfs_fs_info *fs_info = root->fs_info;
4475 	struct reloc_control *rc;
4476 	struct btrfs_backref_node *node;
4477 	int first_cow = 0;
4478 	int level;
4479 	int ret = 0;
4480 
4481 	rc = fs_info->reloc_ctl;
4482 	if (!rc)
4483 		return 0;
4484 
4485 	BUG_ON(rc->stage == UPDATE_DATA_PTRS && btrfs_is_data_reloc_root(root));
4486 
4487 	level = btrfs_header_level(buf);
4488 	if (btrfs_header_generation(buf) <=
4489 	    btrfs_root_last_snapshot(&root->root_item))
4490 		first_cow = 1;
4491 
4492 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4493 	    rc->create_reloc_tree) {
4494 		WARN_ON(!first_cow && level == 0);
4495 
4496 		node = rc->backref_cache.path[level];
4497 		BUG_ON(node->bytenr != buf->start &&
4498 		       node->new_bytenr != buf->start);
4499 
4500 		btrfs_backref_drop_node_buffer(node);
4501 		atomic_inc(&cow->refs);
4502 		node->eb = cow;
4503 		node->new_bytenr = cow->start;
4504 
4505 		if (!node->pending) {
4506 			list_move_tail(&node->list,
4507 				       &rc->backref_cache.pending[level]);
4508 			node->pending = 1;
4509 		}
4510 
4511 		if (first_cow)
4512 			mark_block_processed(rc, node);
4513 
4514 		if (first_cow && level > 0)
4515 			rc->nodes_relocated += buf->len;
4516 	}
4517 
4518 	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4519 		ret = replace_file_extents(trans, rc, root, cow);
4520 	return ret;
4521 }
4522 
4523 /*
4524  * called before creating snapshot. it calculates metadata reservation
4525  * required for relocating tree blocks in the snapshot
4526  */
4527 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4528 			      u64 *bytes_to_reserve)
4529 {
4530 	struct btrfs_root *root = pending->root;
4531 	struct reloc_control *rc = root->fs_info->reloc_ctl;
4532 
4533 	if (!rc || !have_reloc_root(root))
4534 		return;
4535 
4536 	if (!rc->merge_reloc_tree)
4537 		return;
4538 
4539 	root = root->reloc_root;
4540 	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4541 	/*
4542 	 * relocation is in the stage of merging trees. the space
4543 	 * used by merging a reloc tree is twice the size of
4544 	 * relocated tree nodes in the worst case. half for cowing
4545 	 * the reloc tree, half for cowing the fs tree. the space
4546 	 * used by cowing the reloc tree will be freed after the
4547 	 * tree is dropped. if we create snapshot, cowing the fs
4548 	 * tree may use more space than it frees. so we need
4549 	 * reserve extra space.
4550 	 */
4551 	*bytes_to_reserve += rc->nodes_relocated;
4552 }
4553 
4554 /*
4555  * called after snapshot is created. migrate block reservation
4556  * and create reloc root for the newly created snapshot
4557  *
4558  * This is similar to btrfs_init_reloc_root(), we come out of here with two
4559  * references held on the reloc_root, one for root->reloc_root and one for
4560  * rc->reloc_roots.
4561  */
4562 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4563 			       struct btrfs_pending_snapshot *pending)
4564 {
4565 	struct btrfs_root *root = pending->root;
4566 	struct btrfs_root *reloc_root;
4567 	struct btrfs_root *new_root;
4568 	struct reloc_control *rc = root->fs_info->reloc_ctl;
4569 	int ret;
4570 
4571 	if (!rc || !have_reloc_root(root))
4572 		return 0;
4573 
4574 	rc = root->fs_info->reloc_ctl;
4575 	rc->merging_rsv_size += rc->nodes_relocated;
4576 
4577 	if (rc->merge_reloc_tree) {
4578 		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4579 					      rc->block_rsv,
4580 					      rc->nodes_relocated, true);
4581 		if (ret)
4582 			return ret;
4583 	}
4584 
4585 	new_root = pending->snap;
4586 	reloc_root = create_reloc_root(trans, root->reloc_root,
4587 				       new_root->root_key.objectid);
4588 	if (IS_ERR(reloc_root))
4589 		return PTR_ERR(reloc_root);
4590 
4591 	ret = __add_reloc_root(reloc_root);
4592 	ASSERT(ret != -EEXIST);
4593 	if (ret) {
4594 		/* Pairs with create_reloc_root */
4595 		btrfs_put_root(reloc_root);
4596 		return ret;
4597 	}
4598 	new_root->reloc_root = btrfs_grab_root(reloc_root);
4599 
4600 	if (rc->create_reloc_tree)
4601 		ret = clone_backref_node(trans, rc, root, reloc_root);
4602 	return ret;
4603 }
4604 
4605 /*
4606  * Get the current bytenr for the block group which is being relocated.
4607  *
4608  * Return U64_MAX if no running relocation.
4609  */
4610 u64 btrfs_get_reloc_bg_bytenr(const struct btrfs_fs_info *fs_info)
4611 {
4612 	u64 logical = U64_MAX;
4613 
4614 	lockdep_assert_held(&fs_info->reloc_mutex);
4615 
4616 	if (fs_info->reloc_ctl && fs_info->reloc_ctl->block_group)
4617 		logical = fs_info->reloc_ctl->block_group->start;
4618 	return logical;
4619 }
4620