1 /* 2 * Copyright (C) 2009 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/sched.h> 20 #include <linux/pagemap.h> 21 #include <linux/writeback.h> 22 #include <linux/blkdev.h> 23 #include <linux/rbtree.h> 24 #include <linux/slab.h> 25 #include "ctree.h" 26 #include "disk-io.h" 27 #include "transaction.h" 28 #include "volumes.h" 29 #include "locking.h" 30 #include "btrfs_inode.h" 31 #include "async-thread.h" 32 #include "free-space-cache.h" 33 #include "inode-map.h" 34 35 /* 36 * backref_node, mapping_node and tree_block start with this 37 */ 38 struct tree_entry { 39 struct rb_node rb_node; 40 u64 bytenr; 41 }; 42 43 /* 44 * present a tree block in the backref cache 45 */ 46 struct backref_node { 47 struct rb_node rb_node; 48 u64 bytenr; 49 50 u64 new_bytenr; 51 /* objectid of tree block owner, can be not uptodate */ 52 u64 owner; 53 /* link to pending, changed or detached list */ 54 struct list_head list; 55 /* list of upper level blocks reference this block */ 56 struct list_head upper; 57 /* list of child blocks in the cache */ 58 struct list_head lower; 59 /* NULL if this node is not tree root */ 60 struct btrfs_root *root; 61 /* extent buffer got by COW the block */ 62 struct extent_buffer *eb; 63 /* level of tree block */ 64 unsigned int level:8; 65 /* is the block in non-reference counted tree */ 66 unsigned int cowonly:1; 67 /* 1 if no child node in the cache */ 68 unsigned int lowest:1; 69 /* is the extent buffer locked */ 70 unsigned int locked:1; 71 /* has the block been processed */ 72 unsigned int processed:1; 73 /* have backrefs of this block been checked */ 74 unsigned int checked:1; 75 /* 76 * 1 if corresponding block has been cowed but some upper 77 * level block pointers may not point to the new location 78 */ 79 unsigned int pending:1; 80 /* 81 * 1 if the backref node isn't connected to any other 82 * backref node. 83 */ 84 unsigned int detached:1; 85 }; 86 87 /* 88 * present a block pointer in the backref cache 89 */ 90 struct backref_edge { 91 struct list_head list[2]; 92 struct backref_node *node[2]; 93 }; 94 95 #define LOWER 0 96 #define UPPER 1 97 98 struct backref_cache { 99 /* red black tree of all backref nodes in the cache */ 100 struct rb_root rb_root; 101 /* for passing backref nodes to btrfs_reloc_cow_block */ 102 struct backref_node *path[BTRFS_MAX_LEVEL]; 103 /* 104 * list of blocks that have been cowed but some block 105 * pointers in upper level blocks may not reflect the 106 * new location 107 */ 108 struct list_head pending[BTRFS_MAX_LEVEL]; 109 /* list of backref nodes with no child node */ 110 struct list_head leaves; 111 /* list of blocks that have been cowed in current transaction */ 112 struct list_head changed; 113 /* list of detached backref node. */ 114 struct list_head detached; 115 116 u64 last_trans; 117 118 int nr_nodes; 119 int nr_edges; 120 }; 121 122 /* 123 * map address of tree root to tree 124 */ 125 struct mapping_node { 126 struct rb_node rb_node; 127 u64 bytenr; 128 void *data; 129 }; 130 131 struct mapping_tree { 132 struct rb_root rb_root; 133 spinlock_t lock; 134 }; 135 136 /* 137 * present a tree block to process 138 */ 139 struct tree_block { 140 struct rb_node rb_node; 141 u64 bytenr; 142 struct btrfs_key key; 143 unsigned int level:8; 144 unsigned int key_ready:1; 145 }; 146 147 #define MAX_EXTENTS 128 148 149 struct file_extent_cluster { 150 u64 start; 151 u64 end; 152 u64 boundary[MAX_EXTENTS]; 153 unsigned int nr; 154 }; 155 156 struct reloc_control { 157 /* block group to relocate */ 158 struct btrfs_block_group_cache *block_group; 159 /* extent tree */ 160 struct btrfs_root *extent_root; 161 /* inode for moving data */ 162 struct inode *data_inode; 163 164 struct btrfs_block_rsv *block_rsv; 165 166 struct backref_cache backref_cache; 167 168 struct file_extent_cluster cluster; 169 /* tree blocks have been processed */ 170 struct extent_io_tree processed_blocks; 171 /* map start of tree root to corresponding reloc tree */ 172 struct mapping_tree reloc_root_tree; 173 /* list of reloc trees */ 174 struct list_head reloc_roots; 175 /* size of metadata reservation for merging reloc trees */ 176 u64 merging_rsv_size; 177 /* size of relocated tree nodes */ 178 u64 nodes_relocated; 179 180 u64 search_start; 181 u64 extents_found; 182 183 unsigned int stage:8; 184 unsigned int create_reloc_tree:1; 185 unsigned int merge_reloc_tree:1; 186 unsigned int found_file_extent:1; 187 unsigned int commit_transaction:1; 188 }; 189 190 /* stages of data relocation */ 191 #define MOVE_DATA_EXTENTS 0 192 #define UPDATE_DATA_PTRS 1 193 194 static void remove_backref_node(struct backref_cache *cache, 195 struct backref_node *node); 196 static void __mark_block_processed(struct reloc_control *rc, 197 struct backref_node *node); 198 199 static void mapping_tree_init(struct mapping_tree *tree) 200 { 201 tree->rb_root = RB_ROOT; 202 spin_lock_init(&tree->lock); 203 } 204 205 static void backref_cache_init(struct backref_cache *cache) 206 { 207 int i; 208 cache->rb_root = RB_ROOT; 209 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 210 INIT_LIST_HEAD(&cache->pending[i]); 211 INIT_LIST_HEAD(&cache->changed); 212 INIT_LIST_HEAD(&cache->detached); 213 INIT_LIST_HEAD(&cache->leaves); 214 } 215 216 static void backref_cache_cleanup(struct backref_cache *cache) 217 { 218 struct backref_node *node; 219 int i; 220 221 while (!list_empty(&cache->detached)) { 222 node = list_entry(cache->detached.next, 223 struct backref_node, list); 224 remove_backref_node(cache, node); 225 } 226 227 while (!list_empty(&cache->leaves)) { 228 node = list_entry(cache->leaves.next, 229 struct backref_node, lower); 230 remove_backref_node(cache, node); 231 } 232 233 cache->last_trans = 0; 234 235 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 236 BUG_ON(!list_empty(&cache->pending[i])); 237 BUG_ON(!list_empty(&cache->changed)); 238 BUG_ON(!list_empty(&cache->detached)); 239 BUG_ON(!RB_EMPTY_ROOT(&cache->rb_root)); 240 BUG_ON(cache->nr_nodes); 241 BUG_ON(cache->nr_edges); 242 } 243 244 static struct backref_node *alloc_backref_node(struct backref_cache *cache) 245 { 246 struct backref_node *node; 247 248 node = kzalloc(sizeof(*node), GFP_NOFS); 249 if (node) { 250 INIT_LIST_HEAD(&node->list); 251 INIT_LIST_HEAD(&node->upper); 252 INIT_LIST_HEAD(&node->lower); 253 RB_CLEAR_NODE(&node->rb_node); 254 cache->nr_nodes++; 255 } 256 return node; 257 } 258 259 static void free_backref_node(struct backref_cache *cache, 260 struct backref_node *node) 261 { 262 if (node) { 263 cache->nr_nodes--; 264 kfree(node); 265 } 266 } 267 268 static struct backref_edge *alloc_backref_edge(struct backref_cache *cache) 269 { 270 struct backref_edge *edge; 271 272 edge = kzalloc(sizeof(*edge), GFP_NOFS); 273 if (edge) 274 cache->nr_edges++; 275 return edge; 276 } 277 278 static void free_backref_edge(struct backref_cache *cache, 279 struct backref_edge *edge) 280 { 281 if (edge) { 282 cache->nr_edges--; 283 kfree(edge); 284 } 285 } 286 287 static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr, 288 struct rb_node *node) 289 { 290 struct rb_node **p = &root->rb_node; 291 struct rb_node *parent = NULL; 292 struct tree_entry *entry; 293 294 while (*p) { 295 parent = *p; 296 entry = rb_entry(parent, struct tree_entry, rb_node); 297 298 if (bytenr < entry->bytenr) 299 p = &(*p)->rb_left; 300 else if (bytenr > entry->bytenr) 301 p = &(*p)->rb_right; 302 else 303 return parent; 304 } 305 306 rb_link_node(node, parent, p); 307 rb_insert_color(node, root); 308 return NULL; 309 } 310 311 static struct rb_node *tree_search(struct rb_root *root, u64 bytenr) 312 { 313 struct rb_node *n = root->rb_node; 314 struct tree_entry *entry; 315 316 while (n) { 317 entry = rb_entry(n, struct tree_entry, rb_node); 318 319 if (bytenr < entry->bytenr) 320 n = n->rb_left; 321 else if (bytenr > entry->bytenr) 322 n = n->rb_right; 323 else 324 return n; 325 } 326 return NULL; 327 } 328 329 void backref_tree_panic(struct rb_node *rb_node, int errno, 330 u64 bytenr) 331 { 332 333 struct btrfs_fs_info *fs_info = NULL; 334 struct backref_node *bnode = rb_entry(rb_node, struct backref_node, 335 rb_node); 336 if (bnode->root) 337 fs_info = bnode->root->fs_info; 338 btrfs_panic(fs_info, errno, "Inconsistency in backref cache " 339 "found at offset %llu\n", (unsigned long long)bytenr); 340 } 341 342 /* 343 * walk up backref nodes until reach node presents tree root 344 */ 345 static struct backref_node *walk_up_backref(struct backref_node *node, 346 struct backref_edge *edges[], 347 int *index) 348 { 349 struct backref_edge *edge; 350 int idx = *index; 351 352 while (!list_empty(&node->upper)) { 353 edge = list_entry(node->upper.next, 354 struct backref_edge, list[LOWER]); 355 edges[idx++] = edge; 356 node = edge->node[UPPER]; 357 } 358 BUG_ON(node->detached); 359 *index = idx; 360 return node; 361 } 362 363 /* 364 * walk down backref nodes to find start of next reference path 365 */ 366 static struct backref_node *walk_down_backref(struct backref_edge *edges[], 367 int *index) 368 { 369 struct backref_edge *edge; 370 struct backref_node *lower; 371 int idx = *index; 372 373 while (idx > 0) { 374 edge = edges[idx - 1]; 375 lower = edge->node[LOWER]; 376 if (list_is_last(&edge->list[LOWER], &lower->upper)) { 377 idx--; 378 continue; 379 } 380 edge = list_entry(edge->list[LOWER].next, 381 struct backref_edge, list[LOWER]); 382 edges[idx - 1] = edge; 383 *index = idx; 384 return edge->node[UPPER]; 385 } 386 *index = 0; 387 return NULL; 388 } 389 390 static void unlock_node_buffer(struct backref_node *node) 391 { 392 if (node->locked) { 393 btrfs_tree_unlock(node->eb); 394 node->locked = 0; 395 } 396 } 397 398 static void drop_node_buffer(struct backref_node *node) 399 { 400 if (node->eb) { 401 unlock_node_buffer(node); 402 free_extent_buffer(node->eb); 403 node->eb = NULL; 404 } 405 } 406 407 static void drop_backref_node(struct backref_cache *tree, 408 struct backref_node *node) 409 { 410 BUG_ON(!list_empty(&node->upper)); 411 412 drop_node_buffer(node); 413 list_del(&node->list); 414 list_del(&node->lower); 415 if (!RB_EMPTY_NODE(&node->rb_node)) 416 rb_erase(&node->rb_node, &tree->rb_root); 417 free_backref_node(tree, node); 418 } 419 420 /* 421 * remove a backref node from the backref cache 422 */ 423 static void remove_backref_node(struct backref_cache *cache, 424 struct backref_node *node) 425 { 426 struct backref_node *upper; 427 struct backref_edge *edge; 428 429 if (!node) 430 return; 431 432 BUG_ON(!node->lowest && !node->detached); 433 while (!list_empty(&node->upper)) { 434 edge = list_entry(node->upper.next, struct backref_edge, 435 list[LOWER]); 436 upper = edge->node[UPPER]; 437 list_del(&edge->list[LOWER]); 438 list_del(&edge->list[UPPER]); 439 free_backref_edge(cache, edge); 440 441 if (RB_EMPTY_NODE(&upper->rb_node)) { 442 BUG_ON(!list_empty(&node->upper)); 443 drop_backref_node(cache, node); 444 node = upper; 445 node->lowest = 1; 446 continue; 447 } 448 /* 449 * add the node to leaf node list if no other 450 * child block cached. 451 */ 452 if (list_empty(&upper->lower)) { 453 list_add_tail(&upper->lower, &cache->leaves); 454 upper->lowest = 1; 455 } 456 } 457 458 drop_backref_node(cache, node); 459 } 460 461 static void update_backref_node(struct backref_cache *cache, 462 struct backref_node *node, u64 bytenr) 463 { 464 struct rb_node *rb_node; 465 rb_erase(&node->rb_node, &cache->rb_root); 466 node->bytenr = bytenr; 467 rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node); 468 if (rb_node) 469 backref_tree_panic(rb_node, -EEXIST, bytenr); 470 } 471 472 /* 473 * update backref cache after a transaction commit 474 */ 475 static int update_backref_cache(struct btrfs_trans_handle *trans, 476 struct backref_cache *cache) 477 { 478 struct backref_node *node; 479 int level = 0; 480 481 if (cache->last_trans == 0) { 482 cache->last_trans = trans->transid; 483 return 0; 484 } 485 486 if (cache->last_trans == trans->transid) 487 return 0; 488 489 /* 490 * detached nodes are used to avoid unnecessary backref 491 * lookup. transaction commit changes the extent tree. 492 * so the detached nodes are no longer useful. 493 */ 494 while (!list_empty(&cache->detached)) { 495 node = list_entry(cache->detached.next, 496 struct backref_node, list); 497 remove_backref_node(cache, node); 498 } 499 500 while (!list_empty(&cache->changed)) { 501 node = list_entry(cache->changed.next, 502 struct backref_node, list); 503 list_del_init(&node->list); 504 BUG_ON(node->pending); 505 update_backref_node(cache, node, node->new_bytenr); 506 } 507 508 /* 509 * some nodes can be left in the pending list if there were 510 * errors during processing the pending nodes. 511 */ 512 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 513 list_for_each_entry(node, &cache->pending[level], list) { 514 BUG_ON(!node->pending); 515 if (node->bytenr == node->new_bytenr) 516 continue; 517 update_backref_node(cache, node, node->new_bytenr); 518 } 519 } 520 521 cache->last_trans = 0; 522 return 1; 523 } 524 525 526 static int should_ignore_root(struct btrfs_root *root) 527 { 528 struct btrfs_root *reloc_root; 529 530 if (!root->ref_cows) 531 return 0; 532 533 reloc_root = root->reloc_root; 534 if (!reloc_root) 535 return 0; 536 537 if (btrfs_root_last_snapshot(&reloc_root->root_item) == 538 root->fs_info->running_transaction->transid - 1) 539 return 0; 540 /* 541 * if there is reloc tree and it was created in previous 542 * transaction backref lookup can find the reloc tree, 543 * so backref node for the fs tree root is useless for 544 * relocation. 545 */ 546 return 1; 547 } 548 /* 549 * find reloc tree by address of tree root 550 */ 551 static struct btrfs_root *find_reloc_root(struct reloc_control *rc, 552 u64 bytenr) 553 { 554 struct rb_node *rb_node; 555 struct mapping_node *node; 556 struct btrfs_root *root = NULL; 557 558 spin_lock(&rc->reloc_root_tree.lock); 559 rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr); 560 if (rb_node) { 561 node = rb_entry(rb_node, struct mapping_node, rb_node); 562 root = (struct btrfs_root *)node->data; 563 } 564 spin_unlock(&rc->reloc_root_tree.lock); 565 return root; 566 } 567 568 static int is_cowonly_root(u64 root_objectid) 569 { 570 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID || 571 root_objectid == BTRFS_EXTENT_TREE_OBJECTID || 572 root_objectid == BTRFS_CHUNK_TREE_OBJECTID || 573 root_objectid == BTRFS_DEV_TREE_OBJECTID || 574 root_objectid == BTRFS_TREE_LOG_OBJECTID || 575 root_objectid == BTRFS_CSUM_TREE_OBJECTID) 576 return 1; 577 return 0; 578 } 579 580 static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info, 581 u64 root_objectid) 582 { 583 struct btrfs_key key; 584 585 key.objectid = root_objectid; 586 key.type = BTRFS_ROOT_ITEM_KEY; 587 if (is_cowonly_root(root_objectid)) 588 key.offset = 0; 589 else 590 key.offset = (u64)-1; 591 592 return btrfs_read_fs_root_no_name(fs_info, &key); 593 } 594 595 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 596 static noinline_for_stack 597 struct btrfs_root *find_tree_root(struct reloc_control *rc, 598 struct extent_buffer *leaf, 599 struct btrfs_extent_ref_v0 *ref0) 600 { 601 struct btrfs_root *root; 602 u64 root_objectid = btrfs_ref_root_v0(leaf, ref0); 603 u64 generation = btrfs_ref_generation_v0(leaf, ref0); 604 605 BUG_ON(root_objectid == BTRFS_TREE_RELOC_OBJECTID); 606 607 root = read_fs_root(rc->extent_root->fs_info, root_objectid); 608 BUG_ON(IS_ERR(root)); 609 610 if (root->ref_cows && 611 generation != btrfs_root_generation(&root->root_item)) 612 return NULL; 613 614 return root; 615 } 616 #endif 617 618 static noinline_for_stack 619 int find_inline_backref(struct extent_buffer *leaf, int slot, 620 unsigned long *ptr, unsigned long *end) 621 { 622 struct btrfs_extent_item *ei; 623 struct btrfs_tree_block_info *bi; 624 u32 item_size; 625 626 item_size = btrfs_item_size_nr(leaf, slot); 627 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 628 if (item_size < sizeof(*ei)) { 629 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 630 return 1; 631 } 632 #endif 633 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 634 WARN_ON(!(btrfs_extent_flags(leaf, ei) & 635 BTRFS_EXTENT_FLAG_TREE_BLOCK)); 636 637 if (item_size <= sizeof(*ei) + sizeof(*bi)) { 638 WARN_ON(item_size < sizeof(*ei) + sizeof(*bi)); 639 return 1; 640 } 641 642 bi = (struct btrfs_tree_block_info *)(ei + 1); 643 *ptr = (unsigned long)(bi + 1); 644 *end = (unsigned long)ei + item_size; 645 return 0; 646 } 647 648 /* 649 * build backref tree for a given tree block. root of the backref tree 650 * corresponds the tree block, leaves of the backref tree correspond 651 * roots of b-trees that reference the tree block. 652 * 653 * the basic idea of this function is check backrefs of a given block 654 * to find upper level blocks that refernece the block, and then check 655 * bakcrefs of these upper level blocks recursively. the recursion stop 656 * when tree root is reached or backrefs for the block is cached. 657 * 658 * NOTE: if we find backrefs for a block are cached, we know backrefs 659 * for all upper level blocks that directly/indirectly reference the 660 * block are also cached. 661 */ 662 static noinline_for_stack 663 struct backref_node *build_backref_tree(struct reloc_control *rc, 664 struct btrfs_key *node_key, 665 int level, u64 bytenr) 666 { 667 struct backref_cache *cache = &rc->backref_cache; 668 struct btrfs_path *path1; 669 struct btrfs_path *path2; 670 struct extent_buffer *eb; 671 struct btrfs_root *root; 672 struct backref_node *cur; 673 struct backref_node *upper; 674 struct backref_node *lower; 675 struct backref_node *node = NULL; 676 struct backref_node *exist = NULL; 677 struct backref_edge *edge; 678 struct rb_node *rb_node; 679 struct btrfs_key key; 680 unsigned long end; 681 unsigned long ptr; 682 LIST_HEAD(list); 683 LIST_HEAD(useless); 684 int cowonly; 685 int ret; 686 int err = 0; 687 688 path1 = btrfs_alloc_path(); 689 path2 = btrfs_alloc_path(); 690 if (!path1 || !path2) { 691 err = -ENOMEM; 692 goto out; 693 } 694 path1->reada = 1; 695 path2->reada = 2; 696 697 node = alloc_backref_node(cache); 698 if (!node) { 699 err = -ENOMEM; 700 goto out; 701 } 702 703 node->bytenr = bytenr; 704 node->level = level; 705 node->lowest = 1; 706 cur = node; 707 again: 708 end = 0; 709 ptr = 0; 710 key.objectid = cur->bytenr; 711 key.type = BTRFS_EXTENT_ITEM_KEY; 712 key.offset = (u64)-1; 713 714 path1->search_commit_root = 1; 715 path1->skip_locking = 1; 716 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1, 717 0, 0); 718 if (ret < 0) { 719 err = ret; 720 goto out; 721 } 722 BUG_ON(!ret || !path1->slots[0]); 723 724 path1->slots[0]--; 725 726 WARN_ON(cur->checked); 727 if (!list_empty(&cur->upper)) { 728 /* 729 * the backref was added previously when processing 730 * backref of type BTRFS_TREE_BLOCK_REF_KEY 731 */ 732 BUG_ON(!list_is_singular(&cur->upper)); 733 edge = list_entry(cur->upper.next, struct backref_edge, 734 list[LOWER]); 735 BUG_ON(!list_empty(&edge->list[UPPER])); 736 exist = edge->node[UPPER]; 737 /* 738 * add the upper level block to pending list if we need 739 * check its backrefs 740 */ 741 if (!exist->checked) 742 list_add_tail(&edge->list[UPPER], &list); 743 } else { 744 exist = NULL; 745 } 746 747 while (1) { 748 cond_resched(); 749 eb = path1->nodes[0]; 750 751 if (ptr >= end) { 752 if (path1->slots[0] >= btrfs_header_nritems(eb)) { 753 ret = btrfs_next_leaf(rc->extent_root, path1); 754 if (ret < 0) { 755 err = ret; 756 goto out; 757 } 758 if (ret > 0) 759 break; 760 eb = path1->nodes[0]; 761 } 762 763 btrfs_item_key_to_cpu(eb, &key, path1->slots[0]); 764 if (key.objectid != cur->bytenr) { 765 WARN_ON(exist); 766 break; 767 } 768 769 if (key.type == BTRFS_EXTENT_ITEM_KEY) { 770 ret = find_inline_backref(eb, path1->slots[0], 771 &ptr, &end); 772 if (ret) 773 goto next; 774 } 775 } 776 777 if (ptr < end) { 778 /* update key for inline back ref */ 779 struct btrfs_extent_inline_ref *iref; 780 iref = (struct btrfs_extent_inline_ref *)ptr; 781 key.type = btrfs_extent_inline_ref_type(eb, iref); 782 key.offset = btrfs_extent_inline_ref_offset(eb, iref); 783 WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY && 784 key.type != BTRFS_SHARED_BLOCK_REF_KEY); 785 } 786 787 if (exist && 788 ((key.type == BTRFS_TREE_BLOCK_REF_KEY && 789 exist->owner == key.offset) || 790 (key.type == BTRFS_SHARED_BLOCK_REF_KEY && 791 exist->bytenr == key.offset))) { 792 exist = NULL; 793 goto next; 794 } 795 796 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 797 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY || 798 key.type == BTRFS_EXTENT_REF_V0_KEY) { 799 if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 800 struct btrfs_extent_ref_v0 *ref0; 801 ref0 = btrfs_item_ptr(eb, path1->slots[0], 802 struct btrfs_extent_ref_v0); 803 if (key.objectid == key.offset) { 804 root = find_tree_root(rc, eb, ref0); 805 if (root && !should_ignore_root(root)) 806 cur->root = root; 807 else 808 list_add(&cur->list, &useless); 809 break; 810 } 811 if (is_cowonly_root(btrfs_ref_root_v0(eb, 812 ref0))) 813 cur->cowonly = 1; 814 } 815 #else 816 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY); 817 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) { 818 #endif 819 if (key.objectid == key.offset) { 820 /* 821 * only root blocks of reloc trees use 822 * backref of this type. 823 */ 824 root = find_reloc_root(rc, cur->bytenr); 825 BUG_ON(!root); 826 cur->root = root; 827 break; 828 } 829 830 edge = alloc_backref_edge(cache); 831 if (!edge) { 832 err = -ENOMEM; 833 goto out; 834 } 835 rb_node = tree_search(&cache->rb_root, key.offset); 836 if (!rb_node) { 837 upper = alloc_backref_node(cache); 838 if (!upper) { 839 free_backref_edge(cache, edge); 840 err = -ENOMEM; 841 goto out; 842 } 843 upper->bytenr = key.offset; 844 upper->level = cur->level + 1; 845 /* 846 * backrefs for the upper level block isn't 847 * cached, add the block to pending list 848 */ 849 list_add_tail(&edge->list[UPPER], &list); 850 } else { 851 upper = rb_entry(rb_node, struct backref_node, 852 rb_node); 853 BUG_ON(!upper->checked); 854 INIT_LIST_HEAD(&edge->list[UPPER]); 855 } 856 list_add_tail(&edge->list[LOWER], &cur->upper); 857 edge->node[LOWER] = cur; 858 edge->node[UPPER] = upper; 859 860 goto next; 861 } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) { 862 goto next; 863 } 864 865 /* key.type == BTRFS_TREE_BLOCK_REF_KEY */ 866 root = read_fs_root(rc->extent_root->fs_info, key.offset); 867 if (IS_ERR(root)) { 868 err = PTR_ERR(root); 869 goto out; 870 } 871 872 if (!root->ref_cows) 873 cur->cowonly = 1; 874 875 if (btrfs_root_level(&root->root_item) == cur->level) { 876 /* tree root */ 877 BUG_ON(btrfs_root_bytenr(&root->root_item) != 878 cur->bytenr); 879 if (should_ignore_root(root)) 880 list_add(&cur->list, &useless); 881 else 882 cur->root = root; 883 break; 884 } 885 886 level = cur->level + 1; 887 888 /* 889 * searching the tree to find upper level blocks 890 * reference the block. 891 */ 892 path2->search_commit_root = 1; 893 path2->skip_locking = 1; 894 path2->lowest_level = level; 895 ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0); 896 path2->lowest_level = 0; 897 if (ret < 0) { 898 err = ret; 899 goto out; 900 } 901 if (ret > 0 && path2->slots[level] > 0) 902 path2->slots[level]--; 903 904 eb = path2->nodes[level]; 905 WARN_ON(btrfs_node_blockptr(eb, path2->slots[level]) != 906 cur->bytenr); 907 908 lower = cur; 909 for (; level < BTRFS_MAX_LEVEL; level++) { 910 if (!path2->nodes[level]) { 911 BUG_ON(btrfs_root_bytenr(&root->root_item) != 912 lower->bytenr); 913 if (should_ignore_root(root)) 914 list_add(&lower->list, &useless); 915 else 916 lower->root = root; 917 break; 918 } 919 920 edge = alloc_backref_edge(cache); 921 if (!edge) { 922 err = -ENOMEM; 923 goto out; 924 } 925 926 eb = path2->nodes[level]; 927 rb_node = tree_search(&cache->rb_root, eb->start); 928 if (!rb_node) { 929 upper = alloc_backref_node(cache); 930 if (!upper) { 931 free_backref_edge(cache, edge); 932 err = -ENOMEM; 933 goto out; 934 } 935 upper->bytenr = eb->start; 936 upper->owner = btrfs_header_owner(eb); 937 upper->level = lower->level + 1; 938 if (!root->ref_cows) 939 upper->cowonly = 1; 940 941 /* 942 * if we know the block isn't shared 943 * we can void checking its backrefs. 944 */ 945 if (btrfs_block_can_be_shared(root, eb)) 946 upper->checked = 0; 947 else 948 upper->checked = 1; 949 950 /* 951 * add the block to pending list if we 952 * need check its backrefs. only block 953 * at 'cur->level + 1' is added to the 954 * tail of pending list. this guarantees 955 * we check backrefs from lower level 956 * blocks to upper level blocks. 957 */ 958 if (!upper->checked && 959 level == cur->level + 1) { 960 list_add_tail(&edge->list[UPPER], 961 &list); 962 } else 963 INIT_LIST_HEAD(&edge->list[UPPER]); 964 } else { 965 upper = rb_entry(rb_node, struct backref_node, 966 rb_node); 967 BUG_ON(!upper->checked); 968 INIT_LIST_HEAD(&edge->list[UPPER]); 969 if (!upper->owner) 970 upper->owner = btrfs_header_owner(eb); 971 } 972 list_add_tail(&edge->list[LOWER], &lower->upper); 973 edge->node[LOWER] = lower; 974 edge->node[UPPER] = upper; 975 976 if (rb_node) 977 break; 978 lower = upper; 979 upper = NULL; 980 } 981 btrfs_release_path(path2); 982 next: 983 if (ptr < end) { 984 ptr += btrfs_extent_inline_ref_size(key.type); 985 if (ptr >= end) { 986 WARN_ON(ptr > end); 987 ptr = 0; 988 end = 0; 989 } 990 } 991 if (ptr >= end) 992 path1->slots[0]++; 993 } 994 btrfs_release_path(path1); 995 996 cur->checked = 1; 997 WARN_ON(exist); 998 999 /* the pending list isn't empty, take the first block to process */ 1000 if (!list_empty(&list)) { 1001 edge = list_entry(list.next, struct backref_edge, list[UPPER]); 1002 list_del_init(&edge->list[UPPER]); 1003 cur = edge->node[UPPER]; 1004 goto again; 1005 } 1006 1007 /* 1008 * everything goes well, connect backref nodes and insert backref nodes 1009 * into the cache. 1010 */ 1011 BUG_ON(!node->checked); 1012 cowonly = node->cowonly; 1013 if (!cowonly) { 1014 rb_node = tree_insert(&cache->rb_root, node->bytenr, 1015 &node->rb_node); 1016 if (rb_node) 1017 backref_tree_panic(rb_node, -EEXIST, node->bytenr); 1018 list_add_tail(&node->lower, &cache->leaves); 1019 } 1020 1021 list_for_each_entry(edge, &node->upper, list[LOWER]) 1022 list_add_tail(&edge->list[UPPER], &list); 1023 1024 while (!list_empty(&list)) { 1025 edge = list_entry(list.next, struct backref_edge, list[UPPER]); 1026 list_del_init(&edge->list[UPPER]); 1027 upper = edge->node[UPPER]; 1028 if (upper->detached) { 1029 list_del(&edge->list[LOWER]); 1030 lower = edge->node[LOWER]; 1031 free_backref_edge(cache, edge); 1032 if (list_empty(&lower->upper)) 1033 list_add(&lower->list, &useless); 1034 continue; 1035 } 1036 1037 if (!RB_EMPTY_NODE(&upper->rb_node)) { 1038 if (upper->lowest) { 1039 list_del_init(&upper->lower); 1040 upper->lowest = 0; 1041 } 1042 1043 list_add_tail(&edge->list[UPPER], &upper->lower); 1044 continue; 1045 } 1046 1047 BUG_ON(!upper->checked); 1048 BUG_ON(cowonly != upper->cowonly); 1049 if (!cowonly) { 1050 rb_node = tree_insert(&cache->rb_root, upper->bytenr, 1051 &upper->rb_node); 1052 if (rb_node) 1053 backref_tree_panic(rb_node, -EEXIST, 1054 upper->bytenr); 1055 } 1056 1057 list_add_tail(&edge->list[UPPER], &upper->lower); 1058 1059 list_for_each_entry(edge, &upper->upper, list[LOWER]) 1060 list_add_tail(&edge->list[UPPER], &list); 1061 } 1062 /* 1063 * process useless backref nodes. backref nodes for tree leaves 1064 * are deleted from the cache. backref nodes for upper level 1065 * tree blocks are left in the cache to avoid unnecessary backref 1066 * lookup. 1067 */ 1068 while (!list_empty(&useless)) { 1069 upper = list_entry(useless.next, struct backref_node, list); 1070 list_del_init(&upper->list); 1071 BUG_ON(!list_empty(&upper->upper)); 1072 if (upper == node) 1073 node = NULL; 1074 if (upper->lowest) { 1075 list_del_init(&upper->lower); 1076 upper->lowest = 0; 1077 } 1078 while (!list_empty(&upper->lower)) { 1079 edge = list_entry(upper->lower.next, 1080 struct backref_edge, list[UPPER]); 1081 list_del(&edge->list[UPPER]); 1082 list_del(&edge->list[LOWER]); 1083 lower = edge->node[LOWER]; 1084 free_backref_edge(cache, edge); 1085 1086 if (list_empty(&lower->upper)) 1087 list_add(&lower->list, &useless); 1088 } 1089 __mark_block_processed(rc, upper); 1090 if (upper->level > 0) { 1091 list_add(&upper->list, &cache->detached); 1092 upper->detached = 1; 1093 } else { 1094 rb_erase(&upper->rb_node, &cache->rb_root); 1095 free_backref_node(cache, upper); 1096 } 1097 } 1098 out: 1099 btrfs_free_path(path1); 1100 btrfs_free_path(path2); 1101 if (err) { 1102 while (!list_empty(&useless)) { 1103 lower = list_entry(useless.next, 1104 struct backref_node, upper); 1105 list_del_init(&lower->upper); 1106 } 1107 upper = node; 1108 INIT_LIST_HEAD(&list); 1109 while (upper) { 1110 if (RB_EMPTY_NODE(&upper->rb_node)) { 1111 list_splice_tail(&upper->upper, &list); 1112 free_backref_node(cache, upper); 1113 } 1114 1115 if (list_empty(&list)) 1116 break; 1117 1118 edge = list_entry(list.next, struct backref_edge, 1119 list[LOWER]); 1120 list_del(&edge->list[LOWER]); 1121 upper = edge->node[UPPER]; 1122 free_backref_edge(cache, edge); 1123 } 1124 return ERR_PTR(err); 1125 } 1126 BUG_ON(node && node->detached); 1127 return node; 1128 } 1129 1130 /* 1131 * helper to add backref node for the newly created snapshot. 1132 * the backref node is created by cloning backref node that 1133 * corresponds to root of source tree 1134 */ 1135 static int clone_backref_node(struct btrfs_trans_handle *trans, 1136 struct reloc_control *rc, 1137 struct btrfs_root *src, 1138 struct btrfs_root *dest) 1139 { 1140 struct btrfs_root *reloc_root = src->reloc_root; 1141 struct backref_cache *cache = &rc->backref_cache; 1142 struct backref_node *node = NULL; 1143 struct backref_node *new_node; 1144 struct backref_edge *edge; 1145 struct backref_edge *new_edge; 1146 struct rb_node *rb_node; 1147 1148 if (cache->last_trans > 0) 1149 update_backref_cache(trans, cache); 1150 1151 rb_node = tree_search(&cache->rb_root, src->commit_root->start); 1152 if (rb_node) { 1153 node = rb_entry(rb_node, struct backref_node, rb_node); 1154 if (node->detached) 1155 node = NULL; 1156 else 1157 BUG_ON(node->new_bytenr != reloc_root->node->start); 1158 } 1159 1160 if (!node) { 1161 rb_node = tree_search(&cache->rb_root, 1162 reloc_root->commit_root->start); 1163 if (rb_node) { 1164 node = rb_entry(rb_node, struct backref_node, 1165 rb_node); 1166 BUG_ON(node->detached); 1167 } 1168 } 1169 1170 if (!node) 1171 return 0; 1172 1173 new_node = alloc_backref_node(cache); 1174 if (!new_node) 1175 return -ENOMEM; 1176 1177 new_node->bytenr = dest->node->start; 1178 new_node->level = node->level; 1179 new_node->lowest = node->lowest; 1180 new_node->checked = 1; 1181 new_node->root = dest; 1182 1183 if (!node->lowest) { 1184 list_for_each_entry(edge, &node->lower, list[UPPER]) { 1185 new_edge = alloc_backref_edge(cache); 1186 if (!new_edge) 1187 goto fail; 1188 1189 new_edge->node[UPPER] = new_node; 1190 new_edge->node[LOWER] = edge->node[LOWER]; 1191 list_add_tail(&new_edge->list[UPPER], 1192 &new_node->lower); 1193 } 1194 } else { 1195 list_add_tail(&new_node->lower, &cache->leaves); 1196 } 1197 1198 rb_node = tree_insert(&cache->rb_root, new_node->bytenr, 1199 &new_node->rb_node); 1200 if (rb_node) 1201 backref_tree_panic(rb_node, -EEXIST, new_node->bytenr); 1202 1203 if (!new_node->lowest) { 1204 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) { 1205 list_add_tail(&new_edge->list[LOWER], 1206 &new_edge->node[LOWER]->upper); 1207 } 1208 } 1209 return 0; 1210 fail: 1211 while (!list_empty(&new_node->lower)) { 1212 new_edge = list_entry(new_node->lower.next, 1213 struct backref_edge, list[UPPER]); 1214 list_del(&new_edge->list[UPPER]); 1215 free_backref_edge(cache, new_edge); 1216 } 1217 free_backref_node(cache, new_node); 1218 return -ENOMEM; 1219 } 1220 1221 /* 1222 * helper to add 'address of tree root -> reloc tree' mapping 1223 */ 1224 static int __must_check __add_reloc_root(struct btrfs_root *root) 1225 { 1226 struct rb_node *rb_node; 1227 struct mapping_node *node; 1228 struct reloc_control *rc = root->fs_info->reloc_ctl; 1229 1230 node = kmalloc(sizeof(*node), GFP_NOFS); 1231 if (!node) 1232 return -ENOMEM; 1233 1234 node->bytenr = root->node->start; 1235 node->data = root; 1236 1237 spin_lock(&rc->reloc_root_tree.lock); 1238 rb_node = tree_insert(&rc->reloc_root_tree.rb_root, 1239 node->bytenr, &node->rb_node); 1240 spin_unlock(&rc->reloc_root_tree.lock); 1241 if (rb_node) { 1242 btrfs_panic(root->fs_info, -EEXIST, "Duplicate root found " 1243 "for start=%llu while inserting into relocation " 1244 "tree\n", node->bytenr); 1245 kfree(node); 1246 return -EEXIST; 1247 } 1248 1249 list_add_tail(&root->root_list, &rc->reloc_roots); 1250 return 0; 1251 } 1252 1253 /* 1254 * helper to update/delete the 'address of tree root -> reloc tree' 1255 * mapping 1256 */ 1257 static int __update_reloc_root(struct btrfs_root *root, int del) 1258 { 1259 struct rb_node *rb_node; 1260 struct mapping_node *node = NULL; 1261 struct reloc_control *rc = root->fs_info->reloc_ctl; 1262 1263 spin_lock(&rc->reloc_root_tree.lock); 1264 rb_node = tree_search(&rc->reloc_root_tree.rb_root, 1265 root->commit_root->start); 1266 if (rb_node) { 1267 node = rb_entry(rb_node, struct mapping_node, rb_node); 1268 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); 1269 } 1270 spin_unlock(&rc->reloc_root_tree.lock); 1271 1272 BUG_ON((struct btrfs_root *)node->data != root); 1273 1274 if (!del) { 1275 spin_lock(&rc->reloc_root_tree.lock); 1276 node->bytenr = root->node->start; 1277 rb_node = tree_insert(&rc->reloc_root_tree.rb_root, 1278 node->bytenr, &node->rb_node); 1279 spin_unlock(&rc->reloc_root_tree.lock); 1280 if (rb_node) 1281 backref_tree_panic(rb_node, -EEXIST, node->bytenr); 1282 } else { 1283 spin_lock(&root->fs_info->trans_lock); 1284 list_del_init(&root->root_list); 1285 spin_unlock(&root->fs_info->trans_lock); 1286 kfree(node); 1287 } 1288 return 0; 1289 } 1290 1291 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans, 1292 struct btrfs_root *root, u64 objectid) 1293 { 1294 struct btrfs_root *reloc_root; 1295 struct extent_buffer *eb; 1296 struct btrfs_root_item *root_item; 1297 struct btrfs_key root_key; 1298 int ret; 1299 1300 root_item = kmalloc(sizeof(*root_item), GFP_NOFS); 1301 BUG_ON(!root_item); 1302 1303 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID; 1304 root_key.type = BTRFS_ROOT_ITEM_KEY; 1305 root_key.offset = objectid; 1306 1307 if (root->root_key.objectid == objectid) { 1308 /* called by btrfs_init_reloc_root */ 1309 ret = btrfs_copy_root(trans, root, root->commit_root, &eb, 1310 BTRFS_TREE_RELOC_OBJECTID); 1311 BUG_ON(ret); 1312 1313 btrfs_set_root_last_snapshot(&root->root_item, 1314 trans->transid - 1); 1315 } else { 1316 /* 1317 * called by btrfs_reloc_post_snapshot_hook. 1318 * the source tree is a reloc tree, all tree blocks 1319 * modified after it was created have RELOC flag 1320 * set in their headers. so it's OK to not update 1321 * the 'last_snapshot'. 1322 */ 1323 ret = btrfs_copy_root(trans, root, root->node, &eb, 1324 BTRFS_TREE_RELOC_OBJECTID); 1325 BUG_ON(ret); 1326 } 1327 1328 memcpy(root_item, &root->root_item, sizeof(*root_item)); 1329 btrfs_set_root_bytenr(root_item, eb->start); 1330 btrfs_set_root_level(root_item, btrfs_header_level(eb)); 1331 btrfs_set_root_generation(root_item, trans->transid); 1332 1333 if (root->root_key.objectid == objectid) { 1334 btrfs_set_root_refs(root_item, 0); 1335 memset(&root_item->drop_progress, 0, 1336 sizeof(struct btrfs_disk_key)); 1337 root_item->drop_level = 0; 1338 } 1339 1340 btrfs_tree_unlock(eb); 1341 free_extent_buffer(eb); 1342 1343 ret = btrfs_insert_root(trans, root->fs_info->tree_root, 1344 &root_key, root_item); 1345 BUG_ON(ret); 1346 kfree(root_item); 1347 1348 reloc_root = btrfs_read_fs_root_no_radix(root->fs_info->tree_root, 1349 &root_key); 1350 BUG_ON(IS_ERR(reloc_root)); 1351 reloc_root->last_trans = trans->transid; 1352 return reloc_root; 1353 } 1354 1355 /* 1356 * create reloc tree for a given fs tree. reloc tree is just a 1357 * snapshot of the fs tree with special root objectid. 1358 */ 1359 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans, 1360 struct btrfs_root *root) 1361 { 1362 struct btrfs_root *reloc_root; 1363 struct reloc_control *rc = root->fs_info->reloc_ctl; 1364 int clear_rsv = 0; 1365 int ret; 1366 1367 if (root->reloc_root) { 1368 reloc_root = root->reloc_root; 1369 reloc_root->last_trans = trans->transid; 1370 return 0; 1371 } 1372 1373 if (!rc || !rc->create_reloc_tree || 1374 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1375 return 0; 1376 1377 if (!trans->block_rsv) { 1378 trans->block_rsv = rc->block_rsv; 1379 clear_rsv = 1; 1380 } 1381 reloc_root = create_reloc_root(trans, root, root->root_key.objectid); 1382 if (clear_rsv) 1383 trans->block_rsv = NULL; 1384 1385 ret = __add_reloc_root(reloc_root); 1386 BUG_ON(ret < 0); 1387 root->reloc_root = reloc_root; 1388 return 0; 1389 } 1390 1391 /* 1392 * update root item of reloc tree 1393 */ 1394 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans, 1395 struct btrfs_root *root) 1396 { 1397 struct btrfs_root *reloc_root; 1398 struct btrfs_root_item *root_item; 1399 int del = 0; 1400 int ret; 1401 1402 if (!root->reloc_root) 1403 goto out; 1404 1405 reloc_root = root->reloc_root; 1406 root_item = &reloc_root->root_item; 1407 1408 if (root->fs_info->reloc_ctl->merge_reloc_tree && 1409 btrfs_root_refs(root_item) == 0) { 1410 root->reloc_root = NULL; 1411 del = 1; 1412 } 1413 1414 __update_reloc_root(reloc_root, del); 1415 1416 if (reloc_root->commit_root != reloc_root->node) { 1417 btrfs_set_root_node(root_item, reloc_root->node); 1418 free_extent_buffer(reloc_root->commit_root); 1419 reloc_root->commit_root = btrfs_root_node(reloc_root); 1420 } 1421 1422 ret = btrfs_update_root(trans, root->fs_info->tree_root, 1423 &reloc_root->root_key, root_item); 1424 BUG_ON(ret); 1425 1426 out: 1427 return 0; 1428 } 1429 1430 /* 1431 * helper to find first cached inode with inode number >= objectid 1432 * in a subvolume 1433 */ 1434 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid) 1435 { 1436 struct rb_node *node; 1437 struct rb_node *prev; 1438 struct btrfs_inode *entry; 1439 struct inode *inode; 1440 1441 spin_lock(&root->inode_lock); 1442 again: 1443 node = root->inode_tree.rb_node; 1444 prev = NULL; 1445 while (node) { 1446 prev = node; 1447 entry = rb_entry(node, struct btrfs_inode, rb_node); 1448 1449 if (objectid < btrfs_ino(&entry->vfs_inode)) 1450 node = node->rb_left; 1451 else if (objectid > btrfs_ino(&entry->vfs_inode)) 1452 node = node->rb_right; 1453 else 1454 break; 1455 } 1456 if (!node) { 1457 while (prev) { 1458 entry = rb_entry(prev, struct btrfs_inode, rb_node); 1459 if (objectid <= btrfs_ino(&entry->vfs_inode)) { 1460 node = prev; 1461 break; 1462 } 1463 prev = rb_next(prev); 1464 } 1465 } 1466 while (node) { 1467 entry = rb_entry(node, struct btrfs_inode, rb_node); 1468 inode = igrab(&entry->vfs_inode); 1469 if (inode) { 1470 spin_unlock(&root->inode_lock); 1471 return inode; 1472 } 1473 1474 objectid = btrfs_ino(&entry->vfs_inode) + 1; 1475 if (cond_resched_lock(&root->inode_lock)) 1476 goto again; 1477 1478 node = rb_next(node); 1479 } 1480 spin_unlock(&root->inode_lock); 1481 return NULL; 1482 } 1483 1484 static int in_block_group(u64 bytenr, 1485 struct btrfs_block_group_cache *block_group) 1486 { 1487 if (bytenr >= block_group->key.objectid && 1488 bytenr < block_group->key.objectid + block_group->key.offset) 1489 return 1; 1490 return 0; 1491 } 1492 1493 /* 1494 * get new location of data 1495 */ 1496 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr, 1497 u64 bytenr, u64 num_bytes) 1498 { 1499 struct btrfs_root *root = BTRFS_I(reloc_inode)->root; 1500 struct btrfs_path *path; 1501 struct btrfs_file_extent_item *fi; 1502 struct extent_buffer *leaf; 1503 int ret; 1504 1505 path = btrfs_alloc_path(); 1506 if (!path) 1507 return -ENOMEM; 1508 1509 bytenr -= BTRFS_I(reloc_inode)->index_cnt; 1510 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(reloc_inode), 1511 bytenr, 0); 1512 if (ret < 0) 1513 goto out; 1514 if (ret > 0) { 1515 ret = -ENOENT; 1516 goto out; 1517 } 1518 1519 leaf = path->nodes[0]; 1520 fi = btrfs_item_ptr(leaf, path->slots[0], 1521 struct btrfs_file_extent_item); 1522 1523 BUG_ON(btrfs_file_extent_offset(leaf, fi) || 1524 btrfs_file_extent_compression(leaf, fi) || 1525 btrfs_file_extent_encryption(leaf, fi) || 1526 btrfs_file_extent_other_encoding(leaf, fi)); 1527 1528 if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) { 1529 ret = 1; 1530 goto out; 1531 } 1532 1533 *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1534 ret = 0; 1535 out: 1536 btrfs_free_path(path); 1537 return ret; 1538 } 1539 1540 /* 1541 * update file extent items in the tree leaf to point to 1542 * the new locations. 1543 */ 1544 static noinline_for_stack 1545 int replace_file_extents(struct btrfs_trans_handle *trans, 1546 struct reloc_control *rc, 1547 struct btrfs_root *root, 1548 struct extent_buffer *leaf) 1549 { 1550 struct btrfs_key key; 1551 struct btrfs_file_extent_item *fi; 1552 struct inode *inode = NULL; 1553 u64 parent; 1554 u64 bytenr; 1555 u64 new_bytenr = 0; 1556 u64 num_bytes; 1557 u64 end; 1558 u32 nritems; 1559 u32 i; 1560 int ret; 1561 int first = 1; 1562 int dirty = 0; 1563 1564 if (rc->stage != UPDATE_DATA_PTRS) 1565 return 0; 1566 1567 /* reloc trees always use full backref */ 1568 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1569 parent = leaf->start; 1570 else 1571 parent = 0; 1572 1573 nritems = btrfs_header_nritems(leaf); 1574 for (i = 0; i < nritems; i++) { 1575 cond_resched(); 1576 btrfs_item_key_to_cpu(leaf, &key, i); 1577 if (key.type != BTRFS_EXTENT_DATA_KEY) 1578 continue; 1579 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); 1580 if (btrfs_file_extent_type(leaf, fi) == 1581 BTRFS_FILE_EXTENT_INLINE) 1582 continue; 1583 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1584 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1585 if (bytenr == 0) 1586 continue; 1587 if (!in_block_group(bytenr, rc->block_group)) 1588 continue; 1589 1590 /* 1591 * if we are modifying block in fs tree, wait for readpage 1592 * to complete and drop the extent cache 1593 */ 1594 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 1595 if (first) { 1596 inode = find_next_inode(root, key.objectid); 1597 first = 0; 1598 } else if (inode && btrfs_ino(inode) < key.objectid) { 1599 btrfs_add_delayed_iput(inode); 1600 inode = find_next_inode(root, key.objectid); 1601 } 1602 if (inode && btrfs_ino(inode) == key.objectid) { 1603 end = key.offset + 1604 btrfs_file_extent_num_bytes(leaf, fi); 1605 WARN_ON(!IS_ALIGNED(key.offset, 1606 root->sectorsize)); 1607 WARN_ON(!IS_ALIGNED(end, root->sectorsize)); 1608 end--; 1609 ret = try_lock_extent(&BTRFS_I(inode)->io_tree, 1610 key.offset, end); 1611 if (!ret) 1612 continue; 1613 1614 btrfs_drop_extent_cache(inode, key.offset, end, 1615 1); 1616 unlock_extent(&BTRFS_I(inode)->io_tree, 1617 key.offset, end); 1618 } 1619 } 1620 1621 ret = get_new_location(rc->data_inode, &new_bytenr, 1622 bytenr, num_bytes); 1623 if (ret > 0) { 1624 WARN_ON(1); 1625 continue; 1626 } 1627 BUG_ON(ret < 0); 1628 1629 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr); 1630 dirty = 1; 1631 1632 key.offset -= btrfs_file_extent_offset(leaf, fi); 1633 ret = btrfs_inc_extent_ref(trans, root, new_bytenr, 1634 num_bytes, parent, 1635 btrfs_header_owner(leaf), 1636 key.objectid, key.offset, 1); 1637 BUG_ON(ret); 1638 1639 ret = btrfs_free_extent(trans, root, bytenr, num_bytes, 1640 parent, btrfs_header_owner(leaf), 1641 key.objectid, key.offset, 1); 1642 BUG_ON(ret); 1643 } 1644 if (dirty) 1645 btrfs_mark_buffer_dirty(leaf); 1646 if (inode) 1647 btrfs_add_delayed_iput(inode); 1648 return 0; 1649 } 1650 1651 static noinline_for_stack 1652 int memcmp_node_keys(struct extent_buffer *eb, int slot, 1653 struct btrfs_path *path, int level) 1654 { 1655 struct btrfs_disk_key key1; 1656 struct btrfs_disk_key key2; 1657 btrfs_node_key(eb, &key1, slot); 1658 btrfs_node_key(path->nodes[level], &key2, path->slots[level]); 1659 return memcmp(&key1, &key2, sizeof(key1)); 1660 } 1661 1662 /* 1663 * try to replace tree blocks in fs tree with the new blocks 1664 * in reloc tree. tree blocks haven't been modified since the 1665 * reloc tree was create can be replaced. 1666 * 1667 * if a block was replaced, level of the block + 1 is returned. 1668 * if no block got replaced, 0 is returned. if there are other 1669 * errors, a negative error number is returned. 1670 */ 1671 static noinline_for_stack 1672 int replace_path(struct btrfs_trans_handle *trans, 1673 struct btrfs_root *dest, struct btrfs_root *src, 1674 struct btrfs_path *path, struct btrfs_key *next_key, 1675 int lowest_level, int max_level) 1676 { 1677 struct extent_buffer *eb; 1678 struct extent_buffer *parent; 1679 struct btrfs_key key; 1680 u64 old_bytenr; 1681 u64 new_bytenr; 1682 u64 old_ptr_gen; 1683 u64 new_ptr_gen; 1684 u64 last_snapshot; 1685 u32 blocksize; 1686 int cow = 0; 1687 int level; 1688 int ret; 1689 int slot; 1690 1691 BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 1692 BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID); 1693 1694 last_snapshot = btrfs_root_last_snapshot(&src->root_item); 1695 again: 1696 slot = path->slots[lowest_level]; 1697 btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot); 1698 1699 eb = btrfs_lock_root_node(dest); 1700 btrfs_set_lock_blocking(eb); 1701 level = btrfs_header_level(eb); 1702 1703 if (level < lowest_level) { 1704 btrfs_tree_unlock(eb); 1705 free_extent_buffer(eb); 1706 return 0; 1707 } 1708 1709 if (cow) { 1710 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb); 1711 BUG_ON(ret); 1712 } 1713 btrfs_set_lock_blocking(eb); 1714 1715 if (next_key) { 1716 next_key->objectid = (u64)-1; 1717 next_key->type = (u8)-1; 1718 next_key->offset = (u64)-1; 1719 } 1720 1721 parent = eb; 1722 while (1) { 1723 level = btrfs_header_level(parent); 1724 BUG_ON(level < lowest_level); 1725 1726 ret = btrfs_bin_search(parent, &key, level, &slot); 1727 if (ret && slot > 0) 1728 slot--; 1729 1730 if (next_key && slot + 1 < btrfs_header_nritems(parent)) 1731 btrfs_node_key_to_cpu(parent, next_key, slot + 1); 1732 1733 old_bytenr = btrfs_node_blockptr(parent, slot); 1734 blocksize = btrfs_level_size(dest, level - 1); 1735 old_ptr_gen = btrfs_node_ptr_generation(parent, slot); 1736 1737 if (level <= max_level) { 1738 eb = path->nodes[level]; 1739 new_bytenr = btrfs_node_blockptr(eb, 1740 path->slots[level]); 1741 new_ptr_gen = btrfs_node_ptr_generation(eb, 1742 path->slots[level]); 1743 } else { 1744 new_bytenr = 0; 1745 new_ptr_gen = 0; 1746 } 1747 1748 if (new_bytenr > 0 && new_bytenr == old_bytenr) { 1749 WARN_ON(1); 1750 ret = level; 1751 break; 1752 } 1753 1754 if (new_bytenr == 0 || old_ptr_gen > last_snapshot || 1755 memcmp_node_keys(parent, slot, path, level)) { 1756 if (level <= lowest_level) { 1757 ret = 0; 1758 break; 1759 } 1760 1761 eb = read_tree_block(dest, old_bytenr, blocksize, 1762 old_ptr_gen); 1763 BUG_ON(!eb); 1764 btrfs_tree_lock(eb); 1765 if (cow) { 1766 ret = btrfs_cow_block(trans, dest, eb, parent, 1767 slot, &eb); 1768 BUG_ON(ret); 1769 } 1770 btrfs_set_lock_blocking(eb); 1771 1772 btrfs_tree_unlock(parent); 1773 free_extent_buffer(parent); 1774 1775 parent = eb; 1776 continue; 1777 } 1778 1779 if (!cow) { 1780 btrfs_tree_unlock(parent); 1781 free_extent_buffer(parent); 1782 cow = 1; 1783 goto again; 1784 } 1785 1786 btrfs_node_key_to_cpu(path->nodes[level], &key, 1787 path->slots[level]); 1788 btrfs_release_path(path); 1789 1790 path->lowest_level = level; 1791 ret = btrfs_search_slot(trans, src, &key, path, 0, 1); 1792 path->lowest_level = 0; 1793 BUG_ON(ret); 1794 1795 /* 1796 * swap blocks in fs tree and reloc tree. 1797 */ 1798 btrfs_set_node_blockptr(parent, slot, new_bytenr); 1799 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen); 1800 btrfs_mark_buffer_dirty(parent); 1801 1802 btrfs_set_node_blockptr(path->nodes[level], 1803 path->slots[level], old_bytenr); 1804 btrfs_set_node_ptr_generation(path->nodes[level], 1805 path->slots[level], old_ptr_gen); 1806 btrfs_mark_buffer_dirty(path->nodes[level]); 1807 1808 ret = btrfs_inc_extent_ref(trans, src, old_bytenr, blocksize, 1809 path->nodes[level]->start, 1810 src->root_key.objectid, level - 1, 0, 1811 1); 1812 BUG_ON(ret); 1813 ret = btrfs_inc_extent_ref(trans, dest, new_bytenr, blocksize, 1814 0, dest->root_key.objectid, level - 1, 1815 0, 1); 1816 BUG_ON(ret); 1817 1818 ret = btrfs_free_extent(trans, src, new_bytenr, blocksize, 1819 path->nodes[level]->start, 1820 src->root_key.objectid, level - 1, 0, 1821 1); 1822 BUG_ON(ret); 1823 1824 ret = btrfs_free_extent(trans, dest, old_bytenr, blocksize, 1825 0, dest->root_key.objectid, level - 1, 1826 0, 1); 1827 BUG_ON(ret); 1828 1829 btrfs_unlock_up_safe(path, 0); 1830 1831 ret = level; 1832 break; 1833 } 1834 btrfs_tree_unlock(parent); 1835 free_extent_buffer(parent); 1836 return ret; 1837 } 1838 1839 /* 1840 * helper to find next relocated block in reloc tree 1841 */ 1842 static noinline_for_stack 1843 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 1844 int *level) 1845 { 1846 struct extent_buffer *eb; 1847 int i; 1848 u64 last_snapshot; 1849 u32 nritems; 1850 1851 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 1852 1853 for (i = 0; i < *level; i++) { 1854 free_extent_buffer(path->nodes[i]); 1855 path->nodes[i] = NULL; 1856 } 1857 1858 for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) { 1859 eb = path->nodes[i]; 1860 nritems = btrfs_header_nritems(eb); 1861 while (path->slots[i] + 1 < nritems) { 1862 path->slots[i]++; 1863 if (btrfs_node_ptr_generation(eb, path->slots[i]) <= 1864 last_snapshot) 1865 continue; 1866 1867 *level = i; 1868 return 0; 1869 } 1870 free_extent_buffer(path->nodes[i]); 1871 path->nodes[i] = NULL; 1872 } 1873 return 1; 1874 } 1875 1876 /* 1877 * walk down reloc tree to find relocated block of lowest level 1878 */ 1879 static noinline_for_stack 1880 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 1881 int *level) 1882 { 1883 struct extent_buffer *eb = NULL; 1884 int i; 1885 u64 bytenr; 1886 u64 ptr_gen = 0; 1887 u64 last_snapshot; 1888 u32 blocksize; 1889 u32 nritems; 1890 1891 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 1892 1893 for (i = *level; i > 0; i--) { 1894 eb = path->nodes[i]; 1895 nritems = btrfs_header_nritems(eb); 1896 while (path->slots[i] < nritems) { 1897 ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]); 1898 if (ptr_gen > last_snapshot) 1899 break; 1900 path->slots[i]++; 1901 } 1902 if (path->slots[i] >= nritems) { 1903 if (i == *level) 1904 break; 1905 *level = i + 1; 1906 return 0; 1907 } 1908 if (i == 1) { 1909 *level = i; 1910 return 0; 1911 } 1912 1913 bytenr = btrfs_node_blockptr(eb, path->slots[i]); 1914 blocksize = btrfs_level_size(root, i - 1); 1915 eb = read_tree_block(root, bytenr, blocksize, ptr_gen); 1916 BUG_ON(btrfs_header_level(eb) != i - 1); 1917 path->nodes[i - 1] = eb; 1918 path->slots[i - 1] = 0; 1919 } 1920 return 1; 1921 } 1922 1923 /* 1924 * invalidate extent cache for file extents whose key in range of 1925 * [min_key, max_key) 1926 */ 1927 static int invalidate_extent_cache(struct btrfs_root *root, 1928 struct btrfs_key *min_key, 1929 struct btrfs_key *max_key) 1930 { 1931 struct inode *inode = NULL; 1932 u64 objectid; 1933 u64 start, end; 1934 u64 ino; 1935 1936 objectid = min_key->objectid; 1937 while (1) { 1938 cond_resched(); 1939 iput(inode); 1940 1941 if (objectid > max_key->objectid) 1942 break; 1943 1944 inode = find_next_inode(root, objectid); 1945 if (!inode) 1946 break; 1947 ino = btrfs_ino(inode); 1948 1949 if (ino > max_key->objectid) { 1950 iput(inode); 1951 break; 1952 } 1953 1954 objectid = ino + 1; 1955 if (!S_ISREG(inode->i_mode)) 1956 continue; 1957 1958 if (unlikely(min_key->objectid == ino)) { 1959 if (min_key->type > BTRFS_EXTENT_DATA_KEY) 1960 continue; 1961 if (min_key->type < BTRFS_EXTENT_DATA_KEY) 1962 start = 0; 1963 else { 1964 start = min_key->offset; 1965 WARN_ON(!IS_ALIGNED(start, root->sectorsize)); 1966 } 1967 } else { 1968 start = 0; 1969 } 1970 1971 if (unlikely(max_key->objectid == ino)) { 1972 if (max_key->type < BTRFS_EXTENT_DATA_KEY) 1973 continue; 1974 if (max_key->type > BTRFS_EXTENT_DATA_KEY) { 1975 end = (u64)-1; 1976 } else { 1977 if (max_key->offset == 0) 1978 continue; 1979 end = max_key->offset; 1980 WARN_ON(!IS_ALIGNED(end, root->sectorsize)); 1981 end--; 1982 } 1983 } else { 1984 end = (u64)-1; 1985 } 1986 1987 /* the lock_extent waits for readpage to complete */ 1988 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 1989 btrfs_drop_extent_cache(inode, start, end, 1); 1990 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 1991 } 1992 return 0; 1993 } 1994 1995 static int find_next_key(struct btrfs_path *path, int level, 1996 struct btrfs_key *key) 1997 1998 { 1999 while (level < BTRFS_MAX_LEVEL) { 2000 if (!path->nodes[level]) 2001 break; 2002 if (path->slots[level] + 1 < 2003 btrfs_header_nritems(path->nodes[level])) { 2004 btrfs_node_key_to_cpu(path->nodes[level], key, 2005 path->slots[level] + 1); 2006 return 0; 2007 } 2008 level++; 2009 } 2010 return 1; 2011 } 2012 2013 /* 2014 * merge the relocated tree blocks in reloc tree with corresponding 2015 * fs tree. 2016 */ 2017 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc, 2018 struct btrfs_root *root) 2019 { 2020 LIST_HEAD(inode_list); 2021 struct btrfs_key key; 2022 struct btrfs_key next_key; 2023 struct btrfs_trans_handle *trans; 2024 struct btrfs_root *reloc_root; 2025 struct btrfs_root_item *root_item; 2026 struct btrfs_path *path; 2027 struct extent_buffer *leaf; 2028 unsigned long nr; 2029 int level; 2030 int max_level; 2031 int replaced = 0; 2032 int ret; 2033 int err = 0; 2034 u32 min_reserved; 2035 2036 path = btrfs_alloc_path(); 2037 if (!path) 2038 return -ENOMEM; 2039 path->reada = 1; 2040 2041 reloc_root = root->reloc_root; 2042 root_item = &reloc_root->root_item; 2043 2044 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 2045 level = btrfs_root_level(root_item); 2046 extent_buffer_get(reloc_root->node); 2047 path->nodes[level] = reloc_root->node; 2048 path->slots[level] = 0; 2049 } else { 2050 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 2051 2052 level = root_item->drop_level; 2053 BUG_ON(level == 0); 2054 path->lowest_level = level; 2055 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0); 2056 path->lowest_level = 0; 2057 if (ret < 0) { 2058 btrfs_free_path(path); 2059 return ret; 2060 } 2061 2062 btrfs_node_key_to_cpu(path->nodes[level], &next_key, 2063 path->slots[level]); 2064 WARN_ON(memcmp(&key, &next_key, sizeof(key))); 2065 2066 btrfs_unlock_up_safe(path, 0); 2067 } 2068 2069 min_reserved = root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2; 2070 memset(&next_key, 0, sizeof(next_key)); 2071 2072 while (1) { 2073 trans = btrfs_start_transaction(root, 0); 2074 BUG_ON(IS_ERR(trans)); 2075 trans->block_rsv = rc->block_rsv; 2076 2077 ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved); 2078 if (ret) { 2079 BUG_ON(ret != -EAGAIN); 2080 ret = btrfs_commit_transaction(trans, root); 2081 BUG_ON(ret); 2082 continue; 2083 } 2084 2085 replaced = 0; 2086 max_level = level; 2087 2088 ret = walk_down_reloc_tree(reloc_root, path, &level); 2089 if (ret < 0) { 2090 err = ret; 2091 goto out; 2092 } 2093 if (ret > 0) 2094 break; 2095 2096 if (!find_next_key(path, level, &key) && 2097 btrfs_comp_cpu_keys(&next_key, &key) >= 0) { 2098 ret = 0; 2099 } else { 2100 ret = replace_path(trans, root, reloc_root, path, 2101 &next_key, level, max_level); 2102 } 2103 if (ret < 0) { 2104 err = ret; 2105 goto out; 2106 } 2107 2108 if (ret > 0) { 2109 level = ret; 2110 btrfs_node_key_to_cpu(path->nodes[level], &key, 2111 path->slots[level]); 2112 replaced = 1; 2113 } 2114 2115 ret = walk_up_reloc_tree(reloc_root, path, &level); 2116 if (ret > 0) 2117 break; 2118 2119 BUG_ON(level == 0); 2120 /* 2121 * save the merging progress in the drop_progress. 2122 * this is OK since root refs == 1 in this case. 2123 */ 2124 btrfs_node_key(path->nodes[level], &root_item->drop_progress, 2125 path->slots[level]); 2126 root_item->drop_level = level; 2127 2128 nr = trans->blocks_used; 2129 btrfs_end_transaction_throttle(trans, root); 2130 2131 btrfs_btree_balance_dirty(root, nr); 2132 2133 if (replaced && rc->stage == UPDATE_DATA_PTRS) 2134 invalidate_extent_cache(root, &key, &next_key); 2135 } 2136 2137 /* 2138 * handle the case only one block in the fs tree need to be 2139 * relocated and the block is tree root. 2140 */ 2141 leaf = btrfs_lock_root_node(root); 2142 ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf); 2143 btrfs_tree_unlock(leaf); 2144 free_extent_buffer(leaf); 2145 if (ret < 0) 2146 err = ret; 2147 out: 2148 btrfs_free_path(path); 2149 2150 if (err == 0) { 2151 memset(&root_item->drop_progress, 0, 2152 sizeof(root_item->drop_progress)); 2153 root_item->drop_level = 0; 2154 btrfs_set_root_refs(root_item, 0); 2155 btrfs_update_reloc_root(trans, root); 2156 } 2157 2158 nr = trans->blocks_used; 2159 btrfs_end_transaction_throttle(trans, root); 2160 2161 btrfs_btree_balance_dirty(root, nr); 2162 2163 if (replaced && rc->stage == UPDATE_DATA_PTRS) 2164 invalidate_extent_cache(root, &key, &next_key); 2165 2166 return err; 2167 } 2168 2169 static noinline_for_stack 2170 int prepare_to_merge(struct reloc_control *rc, int err) 2171 { 2172 struct btrfs_root *root = rc->extent_root; 2173 struct btrfs_root *reloc_root; 2174 struct btrfs_trans_handle *trans; 2175 LIST_HEAD(reloc_roots); 2176 u64 num_bytes = 0; 2177 int ret; 2178 2179 mutex_lock(&root->fs_info->reloc_mutex); 2180 rc->merging_rsv_size += root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2; 2181 rc->merging_rsv_size += rc->nodes_relocated * 2; 2182 mutex_unlock(&root->fs_info->reloc_mutex); 2183 2184 again: 2185 if (!err) { 2186 num_bytes = rc->merging_rsv_size; 2187 ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes); 2188 if (ret) 2189 err = ret; 2190 } 2191 2192 trans = btrfs_join_transaction(rc->extent_root); 2193 if (IS_ERR(trans)) { 2194 if (!err) 2195 btrfs_block_rsv_release(rc->extent_root, 2196 rc->block_rsv, num_bytes); 2197 return PTR_ERR(trans); 2198 } 2199 2200 if (!err) { 2201 if (num_bytes != rc->merging_rsv_size) { 2202 btrfs_end_transaction(trans, rc->extent_root); 2203 btrfs_block_rsv_release(rc->extent_root, 2204 rc->block_rsv, num_bytes); 2205 goto again; 2206 } 2207 } 2208 2209 rc->merge_reloc_tree = 1; 2210 2211 while (!list_empty(&rc->reloc_roots)) { 2212 reloc_root = list_entry(rc->reloc_roots.next, 2213 struct btrfs_root, root_list); 2214 list_del_init(&reloc_root->root_list); 2215 2216 root = read_fs_root(reloc_root->fs_info, 2217 reloc_root->root_key.offset); 2218 BUG_ON(IS_ERR(root)); 2219 BUG_ON(root->reloc_root != reloc_root); 2220 2221 /* 2222 * set reference count to 1, so btrfs_recover_relocation 2223 * knows it should resumes merging 2224 */ 2225 if (!err) 2226 btrfs_set_root_refs(&reloc_root->root_item, 1); 2227 btrfs_update_reloc_root(trans, root); 2228 2229 list_add(&reloc_root->root_list, &reloc_roots); 2230 } 2231 2232 list_splice(&reloc_roots, &rc->reloc_roots); 2233 2234 if (!err) 2235 btrfs_commit_transaction(trans, rc->extent_root); 2236 else 2237 btrfs_end_transaction(trans, rc->extent_root); 2238 return err; 2239 } 2240 2241 static noinline_for_stack 2242 int merge_reloc_roots(struct reloc_control *rc) 2243 { 2244 struct btrfs_root *root; 2245 struct btrfs_root *reloc_root; 2246 LIST_HEAD(reloc_roots); 2247 int found = 0; 2248 int ret; 2249 again: 2250 root = rc->extent_root; 2251 2252 /* 2253 * this serializes us with btrfs_record_root_in_transaction, 2254 * we have to make sure nobody is in the middle of 2255 * adding their roots to the list while we are 2256 * doing this splice 2257 */ 2258 mutex_lock(&root->fs_info->reloc_mutex); 2259 list_splice_init(&rc->reloc_roots, &reloc_roots); 2260 mutex_unlock(&root->fs_info->reloc_mutex); 2261 2262 while (!list_empty(&reloc_roots)) { 2263 found = 1; 2264 reloc_root = list_entry(reloc_roots.next, 2265 struct btrfs_root, root_list); 2266 2267 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 2268 root = read_fs_root(reloc_root->fs_info, 2269 reloc_root->root_key.offset); 2270 BUG_ON(IS_ERR(root)); 2271 BUG_ON(root->reloc_root != reloc_root); 2272 2273 ret = merge_reloc_root(rc, root); 2274 BUG_ON(ret); 2275 } else { 2276 list_del_init(&reloc_root->root_list); 2277 } 2278 ret = btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0, 1); 2279 BUG_ON(ret < 0); 2280 } 2281 2282 if (found) { 2283 found = 0; 2284 goto again; 2285 } 2286 BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root)); 2287 return 0; 2288 } 2289 2290 static void free_block_list(struct rb_root *blocks) 2291 { 2292 struct tree_block *block; 2293 struct rb_node *rb_node; 2294 while ((rb_node = rb_first(blocks))) { 2295 block = rb_entry(rb_node, struct tree_block, rb_node); 2296 rb_erase(rb_node, blocks); 2297 kfree(block); 2298 } 2299 } 2300 2301 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans, 2302 struct btrfs_root *reloc_root) 2303 { 2304 struct btrfs_root *root; 2305 2306 if (reloc_root->last_trans == trans->transid) 2307 return 0; 2308 2309 root = read_fs_root(reloc_root->fs_info, reloc_root->root_key.offset); 2310 BUG_ON(IS_ERR(root)); 2311 BUG_ON(root->reloc_root != reloc_root); 2312 2313 return btrfs_record_root_in_trans(trans, root); 2314 } 2315 2316 static noinline_for_stack 2317 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans, 2318 struct reloc_control *rc, 2319 struct backref_node *node, 2320 struct backref_edge *edges[], int *nr) 2321 { 2322 struct backref_node *next; 2323 struct btrfs_root *root; 2324 int index = 0; 2325 2326 next = node; 2327 while (1) { 2328 cond_resched(); 2329 next = walk_up_backref(next, edges, &index); 2330 root = next->root; 2331 BUG_ON(!root); 2332 BUG_ON(!root->ref_cows); 2333 2334 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 2335 record_reloc_root_in_trans(trans, root); 2336 break; 2337 } 2338 2339 btrfs_record_root_in_trans(trans, root); 2340 root = root->reloc_root; 2341 2342 if (next->new_bytenr != root->node->start) { 2343 BUG_ON(next->new_bytenr); 2344 BUG_ON(!list_empty(&next->list)); 2345 next->new_bytenr = root->node->start; 2346 next->root = root; 2347 list_add_tail(&next->list, 2348 &rc->backref_cache.changed); 2349 __mark_block_processed(rc, next); 2350 break; 2351 } 2352 2353 WARN_ON(1); 2354 root = NULL; 2355 next = walk_down_backref(edges, &index); 2356 if (!next || next->level <= node->level) 2357 break; 2358 } 2359 if (!root) 2360 return NULL; 2361 2362 *nr = index; 2363 next = node; 2364 /* setup backref node path for btrfs_reloc_cow_block */ 2365 while (1) { 2366 rc->backref_cache.path[next->level] = next; 2367 if (--index < 0) 2368 break; 2369 next = edges[index]->node[UPPER]; 2370 } 2371 return root; 2372 } 2373 2374 /* 2375 * select a tree root for relocation. return NULL if the block 2376 * is reference counted. we should use do_relocation() in this 2377 * case. return a tree root pointer if the block isn't reference 2378 * counted. return -ENOENT if the block is root of reloc tree. 2379 */ 2380 static noinline_for_stack 2381 struct btrfs_root *select_one_root(struct btrfs_trans_handle *trans, 2382 struct backref_node *node) 2383 { 2384 struct backref_node *next; 2385 struct btrfs_root *root; 2386 struct btrfs_root *fs_root = NULL; 2387 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2388 int index = 0; 2389 2390 next = node; 2391 while (1) { 2392 cond_resched(); 2393 next = walk_up_backref(next, edges, &index); 2394 root = next->root; 2395 BUG_ON(!root); 2396 2397 /* no other choice for non-references counted tree */ 2398 if (!root->ref_cows) 2399 return root; 2400 2401 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) 2402 fs_root = root; 2403 2404 if (next != node) 2405 return NULL; 2406 2407 next = walk_down_backref(edges, &index); 2408 if (!next || next->level <= node->level) 2409 break; 2410 } 2411 2412 if (!fs_root) 2413 return ERR_PTR(-ENOENT); 2414 return fs_root; 2415 } 2416 2417 static noinline_for_stack 2418 u64 calcu_metadata_size(struct reloc_control *rc, 2419 struct backref_node *node, int reserve) 2420 { 2421 struct backref_node *next = node; 2422 struct backref_edge *edge; 2423 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2424 u64 num_bytes = 0; 2425 int index = 0; 2426 2427 BUG_ON(reserve && node->processed); 2428 2429 while (next) { 2430 cond_resched(); 2431 while (1) { 2432 if (next->processed && (reserve || next != node)) 2433 break; 2434 2435 num_bytes += btrfs_level_size(rc->extent_root, 2436 next->level); 2437 2438 if (list_empty(&next->upper)) 2439 break; 2440 2441 edge = list_entry(next->upper.next, 2442 struct backref_edge, list[LOWER]); 2443 edges[index++] = edge; 2444 next = edge->node[UPPER]; 2445 } 2446 next = walk_down_backref(edges, &index); 2447 } 2448 return num_bytes; 2449 } 2450 2451 static int reserve_metadata_space(struct btrfs_trans_handle *trans, 2452 struct reloc_control *rc, 2453 struct backref_node *node) 2454 { 2455 struct btrfs_root *root = rc->extent_root; 2456 u64 num_bytes; 2457 int ret; 2458 2459 num_bytes = calcu_metadata_size(rc, node, 1) * 2; 2460 2461 trans->block_rsv = rc->block_rsv; 2462 ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes); 2463 if (ret) { 2464 if (ret == -EAGAIN) 2465 rc->commit_transaction = 1; 2466 return ret; 2467 } 2468 2469 return 0; 2470 } 2471 2472 static void release_metadata_space(struct reloc_control *rc, 2473 struct backref_node *node) 2474 { 2475 u64 num_bytes = calcu_metadata_size(rc, node, 0) * 2; 2476 btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, num_bytes); 2477 } 2478 2479 /* 2480 * relocate a block tree, and then update pointers in upper level 2481 * blocks that reference the block to point to the new location. 2482 * 2483 * if called by link_to_upper, the block has already been relocated. 2484 * in that case this function just updates pointers. 2485 */ 2486 static int do_relocation(struct btrfs_trans_handle *trans, 2487 struct reloc_control *rc, 2488 struct backref_node *node, 2489 struct btrfs_key *key, 2490 struct btrfs_path *path, int lowest) 2491 { 2492 struct backref_node *upper; 2493 struct backref_edge *edge; 2494 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2495 struct btrfs_root *root; 2496 struct extent_buffer *eb; 2497 u32 blocksize; 2498 u64 bytenr; 2499 u64 generation; 2500 int nr; 2501 int slot; 2502 int ret; 2503 int err = 0; 2504 2505 BUG_ON(lowest && node->eb); 2506 2507 path->lowest_level = node->level + 1; 2508 rc->backref_cache.path[node->level] = node; 2509 list_for_each_entry(edge, &node->upper, list[LOWER]) { 2510 cond_resched(); 2511 2512 upper = edge->node[UPPER]; 2513 root = select_reloc_root(trans, rc, upper, edges, &nr); 2514 BUG_ON(!root); 2515 2516 if (upper->eb && !upper->locked) { 2517 if (!lowest) { 2518 ret = btrfs_bin_search(upper->eb, key, 2519 upper->level, &slot); 2520 BUG_ON(ret); 2521 bytenr = btrfs_node_blockptr(upper->eb, slot); 2522 if (node->eb->start == bytenr) 2523 goto next; 2524 } 2525 drop_node_buffer(upper); 2526 } 2527 2528 if (!upper->eb) { 2529 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2530 if (ret < 0) { 2531 err = ret; 2532 break; 2533 } 2534 BUG_ON(ret > 0); 2535 2536 if (!upper->eb) { 2537 upper->eb = path->nodes[upper->level]; 2538 path->nodes[upper->level] = NULL; 2539 } else { 2540 BUG_ON(upper->eb != path->nodes[upper->level]); 2541 } 2542 2543 upper->locked = 1; 2544 path->locks[upper->level] = 0; 2545 2546 slot = path->slots[upper->level]; 2547 btrfs_release_path(path); 2548 } else { 2549 ret = btrfs_bin_search(upper->eb, key, upper->level, 2550 &slot); 2551 BUG_ON(ret); 2552 } 2553 2554 bytenr = btrfs_node_blockptr(upper->eb, slot); 2555 if (lowest) { 2556 BUG_ON(bytenr != node->bytenr); 2557 } else { 2558 if (node->eb->start == bytenr) 2559 goto next; 2560 } 2561 2562 blocksize = btrfs_level_size(root, node->level); 2563 generation = btrfs_node_ptr_generation(upper->eb, slot); 2564 eb = read_tree_block(root, bytenr, blocksize, generation); 2565 if (!eb) { 2566 err = -EIO; 2567 goto next; 2568 } 2569 btrfs_tree_lock(eb); 2570 btrfs_set_lock_blocking(eb); 2571 2572 if (!node->eb) { 2573 ret = btrfs_cow_block(trans, root, eb, upper->eb, 2574 slot, &eb); 2575 btrfs_tree_unlock(eb); 2576 free_extent_buffer(eb); 2577 if (ret < 0) { 2578 err = ret; 2579 goto next; 2580 } 2581 BUG_ON(node->eb != eb); 2582 } else { 2583 btrfs_set_node_blockptr(upper->eb, slot, 2584 node->eb->start); 2585 btrfs_set_node_ptr_generation(upper->eb, slot, 2586 trans->transid); 2587 btrfs_mark_buffer_dirty(upper->eb); 2588 2589 ret = btrfs_inc_extent_ref(trans, root, 2590 node->eb->start, blocksize, 2591 upper->eb->start, 2592 btrfs_header_owner(upper->eb), 2593 node->level, 0, 1); 2594 BUG_ON(ret); 2595 2596 ret = btrfs_drop_subtree(trans, root, eb, upper->eb); 2597 BUG_ON(ret); 2598 } 2599 next: 2600 if (!upper->pending) 2601 drop_node_buffer(upper); 2602 else 2603 unlock_node_buffer(upper); 2604 if (err) 2605 break; 2606 } 2607 2608 if (!err && node->pending) { 2609 drop_node_buffer(node); 2610 list_move_tail(&node->list, &rc->backref_cache.changed); 2611 node->pending = 0; 2612 } 2613 2614 path->lowest_level = 0; 2615 BUG_ON(err == -ENOSPC); 2616 return err; 2617 } 2618 2619 static int link_to_upper(struct btrfs_trans_handle *trans, 2620 struct reloc_control *rc, 2621 struct backref_node *node, 2622 struct btrfs_path *path) 2623 { 2624 struct btrfs_key key; 2625 2626 btrfs_node_key_to_cpu(node->eb, &key, 0); 2627 return do_relocation(trans, rc, node, &key, path, 0); 2628 } 2629 2630 static int finish_pending_nodes(struct btrfs_trans_handle *trans, 2631 struct reloc_control *rc, 2632 struct btrfs_path *path, int err) 2633 { 2634 LIST_HEAD(list); 2635 struct backref_cache *cache = &rc->backref_cache; 2636 struct backref_node *node; 2637 int level; 2638 int ret; 2639 2640 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 2641 while (!list_empty(&cache->pending[level])) { 2642 node = list_entry(cache->pending[level].next, 2643 struct backref_node, list); 2644 list_move_tail(&node->list, &list); 2645 BUG_ON(!node->pending); 2646 2647 if (!err) { 2648 ret = link_to_upper(trans, rc, node, path); 2649 if (ret < 0) 2650 err = ret; 2651 } 2652 } 2653 list_splice_init(&list, &cache->pending[level]); 2654 } 2655 return err; 2656 } 2657 2658 static void mark_block_processed(struct reloc_control *rc, 2659 u64 bytenr, u32 blocksize) 2660 { 2661 set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1, 2662 EXTENT_DIRTY, GFP_NOFS); 2663 } 2664 2665 static void __mark_block_processed(struct reloc_control *rc, 2666 struct backref_node *node) 2667 { 2668 u32 blocksize; 2669 if (node->level == 0 || 2670 in_block_group(node->bytenr, rc->block_group)) { 2671 blocksize = btrfs_level_size(rc->extent_root, node->level); 2672 mark_block_processed(rc, node->bytenr, blocksize); 2673 } 2674 node->processed = 1; 2675 } 2676 2677 /* 2678 * mark a block and all blocks directly/indirectly reference the block 2679 * as processed. 2680 */ 2681 static void update_processed_blocks(struct reloc_control *rc, 2682 struct backref_node *node) 2683 { 2684 struct backref_node *next = node; 2685 struct backref_edge *edge; 2686 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2687 int index = 0; 2688 2689 while (next) { 2690 cond_resched(); 2691 while (1) { 2692 if (next->processed) 2693 break; 2694 2695 __mark_block_processed(rc, next); 2696 2697 if (list_empty(&next->upper)) 2698 break; 2699 2700 edge = list_entry(next->upper.next, 2701 struct backref_edge, list[LOWER]); 2702 edges[index++] = edge; 2703 next = edge->node[UPPER]; 2704 } 2705 next = walk_down_backref(edges, &index); 2706 } 2707 } 2708 2709 static int tree_block_processed(u64 bytenr, u32 blocksize, 2710 struct reloc_control *rc) 2711 { 2712 if (test_range_bit(&rc->processed_blocks, bytenr, 2713 bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL)) 2714 return 1; 2715 return 0; 2716 } 2717 2718 static int get_tree_block_key(struct reloc_control *rc, 2719 struct tree_block *block) 2720 { 2721 struct extent_buffer *eb; 2722 2723 BUG_ON(block->key_ready); 2724 eb = read_tree_block(rc->extent_root, block->bytenr, 2725 block->key.objectid, block->key.offset); 2726 BUG_ON(!eb); 2727 WARN_ON(btrfs_header_level(eb) != block->level); 2728 if (block->level == 0) 2729 btrfs_item_key_to_cpu(eb, &block->key, 0); 2730 else 2731 btrfs_node_key_to_cpu(eb, &block->key, 0); 2732 free_extent_buffer(eb); 2733 block->key_ready = 1; 2734 return 0; 2735 } 2736 2737 static int reada_tree_block(struct reloc_control *rc, 2738 struct tree_block *block) 2739 { 2740 BUG_ON(block->key_ready); 2741 readahead_tree_block(rc->extent_root, block->bytenr, 2742 block->key.objectid, block->key.offset); 2743 return 0; 2744 } 2745 2746 /* 2747 * helper function to relocate a tree block 2748 */ 2749 static int relocate_tree_block(struct btrfs_trans_handle *trans, 2750 struct reloc_control *rc, 2751 struct backref_node *node, 2752 struct btrfs_key *key, 2753 struct btrfs_path *path) 2754 { 2755 struct btrfs_root *root; 2756 int release = 0; 2757 int ret = 0; 2758 2759 if (!node) 2760 return 0; 2761 2762 BUG_ON(node->processed); 2763 root = select_one_root(trans, node); 2764 if (root == ERR_PTR(-ENOENT)) { 2765 update_processed_blocks(rc, node); 2766 goto out; 2767 } 2768 2769 if (!root || root->ref_cows) { 2770 ret = reserve_metadata_space(trans, rc, node); 2771 if (ret) 2772 goto out; 2773 release = 1; 2774 } 2775 2776 if (root) { 2777 if (root->ref_cows) { 2778 BUG_ON(node->new_bytenr); 2779 BUG_ON(!list_empty(&node->list)); 2780 btrfs_record_root_in_trans(trans, root); 2781 root = root->reloc_root; 2782 node->new_bytenr = root->node->start; 2783 node->root = root; 2784 list_add_tail(&node->list, &rc->backref_cache.changed); 2785 } else { 2786 path->lowest_level = node->level; 2787 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2788 btrfs_release_path(path); 2789 if (ret > 0) 2790 ret = 0; 2791 } 2792 if (!ret) 2793 update_processed_blocks(rc, node); 2794 } else { 2795 ret = do_relocation(trans, rc, node, key, path, 1); 2796 } 2797 out: 2798 if (ret || node->level == 0 || node->cowonly) { 2799 if (release) 2800 release_metadata_space(rc, node); 2801 remove_backref_node(&rc->backref_cache, node); 2802 } 2803 return ret; 2804 } 2805 2806 /* 2807 * relocate a list of blocks 2808 */ 2809 static noinline_for_stack 2810 int relocate_tree_blocks(struct btrfs_trans_handle *trans, 2811 struct reloc_control *rc, struct rb_root *blocks) 2812 { 2813 struct backref_node *node; 2814 struct btrfs_path *path; 2815 struct tree_block *block; 2816 struct rb_node *rb_node; 2817 int ret; 2818 int err = 0; 2819 2820 path = btrfs_alloc_path(); 2821 if (!path) 2822 return -ENOMEM; 2823 2824 rb_node = rb_first(blocks); 2825 while (rb_node) { 2826 block = rb_entry(rb_node, struct tree_block, rb_node); 2827 if (!block->key_ready) 2828 reada_tree_block(rc, block); 2829 rb_node = rb_next(rb_node); 2830 } 2831 2832 rb_node = rb_first(blocks); 2833 while (rb_node) { 2834 block = rb_entry(rb_node, struct tree_block, rb_node); 2835 if (!block->key_ready) 2836 get_tree_block_key(rc, block); 2837 rb_node = rb_next(rb_node); 2838 } 2839 2840 rb_node = rb_first(blocks); 2841 while (rb_node) { 2842 block = rb_entry(rb_node, struct tree_block, rb_node); 2843 2844 node = build_backref_tree(rc, &block->key, 2845 block->level, block->bytenr); 2846 if (IS_ERR(node)) { 2847 err = PTR_ERR(node); 2848 goto out; 2849 } 2850 2851 ret = relocate_tree_block(trans, rc, node, &block->key, 2852 path); 2853 if (ret < 0) { 2854 if (ret != -EAGAIN || rb_node == rb_first(blocks)) 2855 err = ret; 2856 goto out; 2857 } 2858 rb_node = rb_next(rb_node); 2859 } 2860 out: 2861 free_block_list(blocks); 2862 err = finish_pending_nodes(trans, rc, path, err); 2863 2864 btrfs_free_path(path); 2865 return err; 2866 } 2867 2868 static noinline_for_stack 2869 int prealloc_file_extent_cluster(struct inode *inode, 2870 struct file_extent_cluster *cluster) 2871 { 2872 u64 alloc_hint = 0; 2873 u64 start; 2874 u64 end; 2875 u64 offset = BTRFS_I(inode)->index_cnt; 2876 u64 num_bytes; 2877 int nr = 0; 2878 int ret = 0; 2879 2880 BUG_ON(cluster->start != cluster->boundary[0]); 2881 mutex_lock(&inode->i_mutex); 2882 2883 ret = btrfs_check_data_free_space(inode, cluster->end + 2884 1 - cluster->start); 2885 if (ret) 2886 goto out; 2887 2888 while (nr < cluster->nr) { 2889 start = cluster->boundary[nr] - offset; 2890 if (nr + 1 < cluster->nr) 2891 end = cluster->boundary[nr + 1] - 1 - offset; 2892 else 2893 end = cluster->end - offset; 2894 2895 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 2896 num_bytes = end + 1 - start; 2897 ret = btrfs_prealloc_file_range(inode, 0, start, 2898 num_bytes, num_bytes, 2899 end + 1, &alloc_hint); 2900 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 2901 if (ret) 2902 break; 2903 nr++; 2904 } 2905 btrfs_free_reserved_data_space(inode, cluster->end + 2906 1 - cluster->start); 2907 out: 2908 mutex_unlock(&inode->i_mutex); 2909 return ret; 2910 } 2911 2912 static noinline_for_stack 2913 int setup_extent_mapping(struct inode *inode, u64 start, u64 end, 2914 u64 block_start) 2915 { 2916 struct btrfs_root *root = BTRFS_I(inode)->root; 2917 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2918 struct extent_map *em; 2919 int ret = 0; 2920 2921 em = alloc_extent_map(); 2922 if (!em) 2923 return -ENOMEM; 2924 2925 em->start = start; 2926 em->len = end + 1 - start; 2927 em->block_len = em->len; 2928 em->block_start = block_start; 2929 em->bdev = root->fs_info->fs_devices->latest_bdev; 2930 set_bit(EXTENT_FLAG_PINNED, &em->flags); 2931 2932 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 2933 while (1) { 2934 write_lock(&em_tree->lock); 2935 ret = add_extent_mapping(em_tree, em); 2936 write_unlock(&em_tree->lock); 2937 if (ret != -EEXIST) { 2938 free_extent_map(em); 2939 break; 2940 } 2941 btrfs_drop_extent_cache(inode, start, end, 0); 2942 } 2943 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 2944 return ret; 2945 } 2946 2947 static int relocate_file_extent_cluster(struct inode *inode, 2948 struct file_extent_cluster *cluster) 2949 { 2950 u64 page_start; 2951 u64 page_end; 2952 u64 offset = BTRFS_I(inode)->index_cnt; 2953 unsigned long index; 2954 unsigned long last_index; 2955 struct page *page; 2956 struct file_ra_state *ra; 2957 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 2958 int nr = 0; 2959 int ret = 0; 2960 2961 if (!cluster->nr) 2962 return 0; 2963 2964 ra = kzalloc(sizeof(*ra), GFP_NOFS); 2965 if (!ra) 2966 return -ENOMEM; 2967 2968 ret = prealloc_file_extent_cluster(inode, cluster); 2969 if (ret) 2970 goto out; 2971 2972 file_ra_state_init(ra, inode->i_mapping); 2973 2974 ret = setup_extent_mapping(inode, cluster->start - offset, 2975 cluster->end - offset, cluster->start); 2976 if (ret) 2977 goto out; 2978 2979 index = (cluster->start - offset) >> PAGE_CACHE_SHIFT; 2980 last_index = (cluster->end - offset) >> PAGE_CACHE_SHIFT; 2981 while (index <= last_index) { 2982 ret = btrfs_delalloc_reserve_metadata(inode, PAGE_CACHE_SIZE); 2983 if (ret) 2984 goto out; 2985 2986 page = find_lock_page(inode->i_mapping, index); 2987 if (!page) { 2988 page_cache_sync_readahead(inode->i_mapping, 2989 ra, NULL, index, 2990 last_index + 1 - index); 2991 page = find_or_create_page(inode->i_mapping, index, 2992 mask); 2993 if (!page) { 2994 btrfs_delalloc_release_metadata(inode, 2995 PAGE_CACHE_SIZE); 2996 ret = -ENOMEM; 2997 goto out; 2998 } 2999 } 3000 3001 if (PageReadahead(page)) { 3002 page_cache_async_readahead(inode->i_mapping, 3003 ra, NULL, page, index, 3004 last_index + 1 - index); 3005 } 3006 3007 if (!PageUptodate(page)) { 3008 btrfs_readpage(NULL, page); 3009 lock_page(page); 3010 if (!PageUptodate(page)) { 3011 unlock_page(page); 3012 page_cache_release(page); 3013 btrfs_delalloc_release_metadata(inode, 3014 PAGE_CACHE_SIZE); 3015 ret = -EIO; 3016 goto out; 3017 } 3018 } 3019 3020 page_start = (u64)page->index << PAGE_CACHE_SHIFT; 3021 page_end = page_start + PAGE_CACHE_SIZE - 1; 3022 3023 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end); 3024 3025 set_page_extent_mapped(page); 3026 3027 if (nr < cluster->nr && 3028 page_start + offset == cluster->boundary[nr]) { 3029 set_extent_bits(&BTRFS_I(inode)->io_tree, 3030 page_start, page_end, 3031 EXTENT_BOUNDARY, GFP_NOFS); 3032 nr++; 3033 } 3034 3035 btrfs_set_extent_delalloc(inode, page_start, page_end, NULL); 3036 set_page_dirty(page); 3037 3038 unlock_extent(&BTRFS_I(inode)->io_tree, 3039 page_start, page_end); 3040 unlock_page(page); 3041 page_cache_release(page); 3042 3043 index++; 3044 balance_dirty_pages_ratelimited(inode->i_mapping); 3045 btrfs_throttle(BTRFS_I(inode)->root); 3046 } 3047 WARN_ON(nr != cluster->nr); 3048 out: 3049 kfree(ra); 3050 return ret; 3051 } 3052 3053 static noinline_for_stack 3054 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key, 3055 struct file_extent_cluster *cluster) 3056 { 3057 int ret; 3058 3059 if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) { 3060 ret = relocate_file_extent_cluster(inode, cluster); 3061 if (ret) 3062 return ret; 3063 cluster->nr = 0; 3064 } 3065 3066 if (!cluster->nr) 3067 cluster->start = extent_key->objectid; 3068 else 3069 BUG_ON(cluster->nr >= MAX_EXTENTS); 3070 cluster->end = extent_key->objectid + extent_key->offset - 1; 3071 cluster->boundary[cluster->nr] = extent_key->objectid; 3072 cluster->nr++; 3073 3074 if (cluster->nr >= MAX_EXTENTS) { 3075 ret = relocate_file_extent_cluster(inode, cluster); 3076 if (ret) 3077 return ret; 3078 cluster->nr = 0; 3079 } 3080 return 0; 3081 } 3082 3083 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3084 static int get_ref_objectid_v0(struct reloc_control *rc, 3085 struct btrfs_path *path, 3086 struct btrfs_key *extent_key, 3087 u64 *ref_objectid, int *path_change) 3088 { 3089 struct btrfs_key key; 3090 struct extent_buffer *leaf; 3091 struct btrfs_extent_ref_v0 *ref0; 3092 int ret; 3093 int slot; 3094 3095 leaf = path->nodes[0]; 3096 slot = path->slots[0]; 3097 while (1) { 3098 if (slot >= btrfs_header_nritems(leaf)) { 3099 ret = btrfs_next_leaf(rc->extent_root, path); 3100 if (ret < 0) 3101 return ret; 3102 BUG_ON(ret > 0); 3103 leaf = path->nodes[0]; 3104 slot = path->slots[0]; 3105 if (path_change) 3106 *path_change = 1; 3107 } 3108 btrfs_item_key_to_cpu(leaf, &key, slot); 3109 if (key.objectid != extent_key->objectid) 3110 return -ENOENT; 3111 3112 if (key.type != BTRFS_EXTENT_REF_V0_KEY) { 3113 slot++; 3114 continue; 3115 } 3116 ref0 = btrfs_item_ptr(leaf, slot, 3117 struct btrfs_extent_ref_v0); 3118 *ref_objectid = btrfs_ref_objectid_v0(leaf, ref0); 3119 break; 3120 } 3121 return 0; 3122 } 3123 #endif 3124 3125 /* 3126 * helper to add a tree block to the list. 3127 * the major work is getting the generation and level of the block 3128 */ 3129 static int add_tree_block(struct reloc_control *rc, 3130 struct btrfs_key *extent_key, 3131 struct btrfs_path *path, 3132 struct rb_root *blocks) 3133 { 3134 struct extent_buffer *eb; 3135 struct btrfs_extent_item *ei; 3136 struct btrfs_tree_block_info *bi; 3137 struct tree_block *block; 3138 struct rb_node *rb_node; 3139 u32 item_size; 3140 int level = -1; 3141 int generation; 3142 3143 eb = path->nodes[0]; 3144 item_size = btrfs_item_size_nr(eb, path->slots[0]); 3145 3146 if (item_size >= sizeof(*ei) + sizeof(*bi)) { 3147 ei = btrfs_item_ptr(eb, path->slots[0], 3148 struct btrfs_extent_item); 3149 bi = (struct btrfs_tree_block_info *)(ei + 1); 3150 generation = btrfs_extent_generation(eb, ei); 3151 level = btrfs_tree_block_level(eb, bi); 3152 } else { 3153 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3154 u64 ref_owner; 3155 int ret; 3156 3157 BUG_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 3158 ret = get_ref_objectid_v0(rc, path, extent_key, 3159 &ref_owner, NULL); 3160 if (ret < 0) 3161 return ret; 3162 BUG_ON(ref_owner >= BTRFS_MAX_LEVEL); 3163 level = (int)ref_owner; 3164 /* FIXME: get real generation */ 3165 generation = 0; 3166 #else 3167 BUG(); 3168 #endif 3169 } 3170 3171 btrfs_release_path(path); 3172 3173 BUG_ON(level == -1); 3174 3175 block = kmalloc(sizeof(*block), GFP_NOFS); 3176 if (!block) 3177 return -ENOMEM; 3178 3179 block->bytenr = extent_key->objectid; 3180 block->key.objectid = extent_key->offset; 3181 block->key.offset = generation; 3182 block->level = level; 3183 block->key_ready = 0; 3184 3185 rb_node = tree_insert(blocks, block->bytenr, &block->rb_node); 3186 if (rb_node) 3187 backref_tree_panic(rb_node, -EEXIST, block->bytenr); 3188 3189 return 0; 3190 } 3191 3192 /* 3193 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY 3194 */ 3195 static int __add_tree_block(struct reloc_control *rc, 3196 u64 bytenr, u32 blocksize, 3197 struct rb_root *blocks) 3198 { 3199 struct btrfs_path *path; 3200 struct btrfs_key key; 3201 int ret; 3202 3203 if (tree_block_processed(bytenr, blocksize, rc)) 3204 return 0; 3205 3206 if (tree_search(blocks, bytenr)) 3207 return 0; 3208 3209 path = btrfs_alloc_path(); 3210 if (!path) 3211 return -ENOMEM; 3212 3213 key.objectid = bytenr; 3214 key.type = BTRFS_EXTENT_ITEM_KEY; 3215 key.offset = blocksize; 3216 3217 path->search_commit_root = 1; 3218 path->skip_locking = 1; 3219 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0); 3220 if (ret < 0) 3221 goto out; 3222 BUG_ON(ret); 3223 3224 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 3225 ret = add_tree_block(rc, &key, path, blocks); 3226 out: 3227 btrfs_free_path(path); 3228 return ret; 3229 } 3230 3231 /* 3232 * helper to check if the block use full backrefs for pointers in it 3233 */ 3234 static int block_use_full_backref(struct reloc_control *rc, 3235 struct extent_buffer *eb) 3236 { 3237 u64 flags; 3238 int ret; 3239 3240 if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) || 3241 btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV) 3242 return 1; 3243 3244 ret = btrfs_lookup_extent_info(NULL, rc->extent_root, 3245 eb->start, eb->len, NULL, &flags); 3246 BUG_ON(ret); 3247 3248 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) 3249 ret = 1; 3250 else 3251 ret = 0; 3252 return ret; 3253 } 3254 3255 static int delete_block_group_cache(struct btrfs_fs_info *fs_info, 3256 struct inode *inode, u64 ino) 3257 { 3258 struct btrfs_key key; 3259 struct btrfs_path *path; 3260 struct btrfs_root *root = fs_info->tree_root; 3261 struct btrfs_trans_handle *trans; 3262 unsigned long nr; 3263 int ret = 0; 3264 3265 if (inode) 3266 goto truncate; 3267 3268 key.objectid = ino; 3269 key.type = BTRFS_INODE_ITEM_KEY; 3270 key.offset = 0; 3271 3272 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 3273 if (IS_ERR_OR_NULL(inode) || is_bad_inode(inode)) { 3274 if (inode && !IS_ERR(inode)) 3275 iput(inode); 3276 return -ENOENT; 3277 } 3278 3279 truncate: 3280 path = btrfs_alloc_path(); 3281 if (!path) { 3282 ret = -ENOMEM; 3283 goto out; 3284 } 3285 3286 trans = btrfs_join_transaction(root); 3287 if (IS_ERR(trans)) { 3288 btrfs_free_path(path); 3289 ret = PTR_ERR(trans); 3290 goto out; 3291 } 3292 3293 ret = btrfs_truncate_free_space_cache(root, trans, path, inode); 3294 3295 btrfs_free_path(path); 3296 nr = trans->blocks_used; 3297 btrfs_end_transaction(trans, root); 3298 btrfs_btree_balance_dirty(root, nr); 3299 out: 3300 iput(inode); 3301 return ret; 3302 } 3303 3304 /* 3305 * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY 3306 * this function scans fs tree to find blocks reference the data extent 3307 */ 3308 static int find_data_references(struct reloc_control *rc, 3309 struct btrfs_key *extent_key, 3310 struct extent_buffer *leaf, 3311 struct btrfs_extent_data_ref *ref, 3312 struct rb_root *blocks) 3313 { 3314 struct btrfs_path *path; 3315 struct tree_block *block; 3316 struct btrfs_root *root; 3317 struct btrfs_file_extent_item *fi; 3318 struct rb_node *rb_node; 3319 struct btrfs_key key; 3320 u64 ref_root; 3321 u64 ref_objectid; 3322 u64 ref_offset; 3323 u32 ref_count; 3324 u32 nritems; 3325 int err = 0; 3326 int added = 0; 3327 int counted; 3328 int ret; 3329 3330 ref_root = btrfs_extent_data_ref_root(leaf, ref); 3331 ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref); 3332 ref_offset = btrfs_extent_data_ref_offset(leaf, ref); 3333 ref_count = btrfs_extent_data_ref_count(leaf, ref); 3334 3335 /* 3336 * This is an extent belonging to the free space cache, lets just delete 3337 * it and redo the search. 3338 */ 3339 if (ref_root == BTRFS_ROOT_TREE_OBJECTID) { 3340 ret = delete_block_group_cache(rc->extent_root->fs_info, 3341 NULL, ref_objectid); 3342 if (ret != -ENOENT) 3343 return ret; 3344 ret = 0; 3345 } 3346 3347 path = btrfs_alloc_path(); 3348 if (!path) 3349 return -ENOMEM; 3350 path->reada = 1; 3351 3352 root = read_fs_root(rc->extent_root->fs_info, ref_root); 3353 if (IS_ERR(root)) { 3354 err = PTR_ERR(root); 3355 goto out; 3356 } 3357 3358 key.objectid = ref_objectid; 3359 key.type = BTRFS_EXTENT_DATA_KEY; 3360 if (ref_offset > ((u64)-1 << 32)) 3361 key.offset = 0; 3362 else 3363 key.offset = ref_offset; 3364 3365 path->search_commit_root = 1; 3366 path->skip_locking = 1; 3367 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3368 if (ret < 0) { 3369 err = ret; 3370 goto out; 3371 } 3372 3373 leaf = path->nodes[0]; 3374 nritems = btrfs_header_nritems(leaf); 3375 /* 3376 * the references in tree blocks that use full backrefs 3377 * are not counted in 3378 */ 3379 if (block_use_full_backref(rc, leaf)) 3380 counted = 0; 3381 else 3382 counted = 1; 3383 rb_node = tree_search(blocks, leaf->start); 3384 if (rb_node) { 3385 if (counted) 3386 added = 1; 3387 else 3388 path->slots[0] = nritems; 3389 } 3390 3391 while (ref_count > 0) { 3392 while (path->slots[0] >= nritems) { 3393 ret = btrfs_next_leaf(root, path); 3394 if (ret < 0) { 3395 err = ret; 3396 goto out; 3397 } 3398 if (ret > 0) { 3399 WARN_ON(1); 3400 goto out; 3401 } 3402 3403 leaf = path->nodes[0]; 3404 nritems = btrfs_header_nritems(leaf); 3405 added = 0; 3406 3407 if (block_use_full_backref(rc, leaf)) 3408 counted = 0; 3409 else 3410 counted = 1; 3411 rb_node = tree_search(blocks, leaf->start); 3412 if (rb_node) { 3413 if (counted) 3414 added = 1; 3415 else 3416 path->slots[0] = nritems; 3417 } 3418 } 3419 3420 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3421 if (key.objectid != ref_objectid || 3422 key.type != BTRFS_EXTENT_DATA_KEY) { 3423 WARN_ON(1); 3424 break; 3425 } 3426 3427 fi = btrfs_item_ptr(leaf, path->slots[0], 3428 struct btrfs_file_extent_item); 3429 3430 if (btrfs_file_extent_type(leaf, fi) == 3431 BTRFS_FILE_EXTENT_INLINE) 3432 goto next; 3433 3434 if (btrfs_file_extent_disk_bytenr(leaf, fi) != 3435 extent_key->objectid) 3436 goto next; 3437 3438 key.offset -= btrfs_file_extent_offset(leaf, fi); 3439 if (key.offset != ref_offset) 3440 goto next; 3441 3442 if (counted) 3443 ref_count--; 3444 if (added) 3445 goto next; 3446 3447 if (!tree_block_processed(leaf->start, leaf->len, rc)) { 3448 block = kmalloc(sizeof(*block), GFP_NOFS); 3449 if (!block) { 3450 err = -ENOMEM; 3451 break; 3452 } 3453 block->bytenr = leaf->start; 3454 btrfs_item_key_to_cpu(leaf, &block->key, 0); 3455 block->level = 0; 3456 block->key_ready = 1; 3457 rb_node = tree_insert(blocks, block->bytenr, 3458 &block->rb_node); 3459 if (rb_node) 3460 backref_tree_panic(rb_node, -EEXIST, 3461 block->bytenr); 3462 } 3463 if (counted) 3464 added = 1; 3465 else 3466 path->slots[0] = nritems; 3467 next: 3468 path->slots[0]++; 3469 3470 } 3471 out: 3472 btrfs_free_path(path); 3473 return err; 3474 } 3475 3476 /* 3477 * hepler to find all tree blocks that reference a given data extent 3478 */ 3479 static noinline_for_stack 3480 int add_data_references(struct reloc_control *rc, 3481 struct btrfs_key *extent_key, 3482 struct btrfs_path *path, 3483 struct rb_root *blocks) 3484 { 3485 struct btrfs_key key; 3486 struct extent_buffer *eb; 3487 struct btrfs_extent_data_ref *dref; 3488 struct btrfs_extent_inline_ref *iref; 3489 unsigned long ptr; 3490 unsigned long end; 3491 u32 blocksize = btrfs_level_size(rc->extent_root, 0); 3492 int ret; 3493 int err = 0; 3494 3495 eb = path->nodes[0]; 3496 ptr = btrfs_item_ptr_offset(eb, path->slots[0]); 3497 end = ptr + btrfs_item_size_nr(eb, path->slots[0]); 3498 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3499 if (ptr + sizeof(struct btrfs_extent_item_v0) == end) 3500 ptr = end; 3501 else 3502 #endif 3503 ptr += sizeof(struct btrfs_extent_item); 3504 3505 while (ptr < end) { 3506 iref = (struct btrfs_extent_inline_ref *)ptr; 3507 key.type = btrfs_extent_inline_ref_type(eb, iref); 3508 if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 3509 key.offset = btrfs_extent_inline_ref_offset(eb, iref); 3510 ret = __add_tree_block(rc, key.offset, blocksize, 3511 blocks); 3512 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 3513 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 3514 ret = find_data_references(rc, extent_key, 3515 eb, dref, blocks); 3516 } else { 3517 BUG(); 3518 } 3519 ptr += btrfs_extent_inline_ref_size(key.type); 3520 } 3521 WARN_ON(ptr > end); 3522 3523 while (1) { 3524 cond_resched(); 3525 eb = path->nodes[0]; 3526 if (path->slots[0] >= btrfs_header_nritems(eb)) { 3527 ret = btrfs_next_leaf(rc->extent_root, path); 3528 if (ret < 0) { 3529 err = ret; 3530 break; 3531 } 3532 if (ret > 0) 3533 break; 3534 eb = path->nodes[0]; 3535 } 3536 3537 btrfs_item_key_to_cpu(eb, &key, path->slots[0]); 3538 if (key.objectid != extent_key->objectid) 3539 break; 3540 3541 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3542 if (key.type == BTRFS_SHARED_DATA_REF_KEY || 3543 key.type == BTRFS_EXTENT_REF_V0_KEY) { 3544 #else 3545 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY); 3546 if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 3547 #endif 3548 ret = __add_tree_block(rc, key.offset, blocksize, 3549 blocks); 3550 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 3551 dref = btrfs_item_ptr(eb, path->slots[0], 3552 struct btrfs_extent_data_ref); 3553 ret = find_data_references(rc, extent_key, 3554 eb, dref, blocks); 3555 } else { 3556 ret = 0; 3557 } 3558 if (ret) { 3559 err = ret; 3560 break; 3561 } 3562 path->slots[0]++; 3563 } 3564 btrfs_release_path(path); 3565 if (err) 3566 free_block_list(blocks); 3567 return err; 3568 } 3569 3570 /* 3571 * hepler to find next unprocessed extent 3572 */ 3573 static noinline_for_stack 3574 int find_next_extent(struct btrfs_trans_handle *trans, 3575 struct reloc_control *rc, struct btrfs_path *path, 3576 struct btrfs_key *extent_key) 3577 { 3578 struct btrfs_key key; 3579 struct extent_buffer *leaf; 3580 u64 start, end, last; 3581 int ret; 3582 3583 last = rc->block_group->key.objectid + rc->block_group->key.offset; 3584 while (1) { 3585 cond_resched(); 3586 if (rc->search_start >= last) { 3587 ret = 1; 3588 break; 3589 } 3590 3591 key.objectid = rc->search_start; 3592 key.type = BTRFS_EXTENT_ITEM_KEY; 3593 key.offset = 0; 3594 3595 path->search_commit_root = 1; 3596 path->skip_locking = 1; 3597 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 3598 0, 0); 3599 if (ret < 0) 3600 break; 3601 next: 3602 leaf = path->nodes[0]; 3603 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 3604 ret = btrfs_next_leaf(rc->extent_root, path); 3605 if (ret != 0) 3606 break; 3607 leaf = path->nodes[0]; 3608 } 3609 3610 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3611 if (key.objectid >= last) { 3612 ret = 1; 3613 break; 3614 } 3615 3616 if (key.type != BTRFS_EXTENT_ITEM_KEY || 3617 key.objectid + key.offset <= rc->search_start) { 3618 path->slots[0]++; 3619 goto next; 3620 } 3621 3622 ret = find_first_extent_bit(&rc->processed_blocks, 3623 key.objectid, &start, &end, 3624 EXTENT_DIRTY); 3625 3626 if (ret == 0 && start <= key.objectid) { 3627 btrfs_release_path(path); 3628 rc->search_start = end + 1; 3629 } else { 3630 rc->search_start = key.objectid + key.offset; 3631 memcpy(extent_key, &key, sizeof(key)); 3632 return 0; 3633 } 3634 } 3635 btrfs_release_path(path); 3636 return ret; 3637 } 3638 3639 static void set_reloc_control(struct reloc_control *rc) 3640 { 3641 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3642 3643 mutex_lock(&fs_info->reloc_mutex); 3644 fs_info->reloc_ctl = rc; 3645 mutex_unlock(&fs_info->reloc_mutex); 3646 } 3647 3648 static void unset_reloc_control(struct reloc_control *rc) 3649 { 3650 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3651 3652 mutex_lock(&fs_info->reloc_mutex); 3653 fs_info->reloc_ctl = NULL; 3654 mutex_unlock(&fs_info->reloc_mutex); 3655 } 3656 3657 static int check_extent_flags(u64 flags) 3658 { 3659 if ((flags & BTRFS_EXTENT_FLAG_DATA) && 3660 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) 3661 return 1; 3662 if (!(flags & BTRFS_EXTENT_FLAG_DATA) && 3663 !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) 3664 return 1; 3665 if ((flags & BTRFS_EXTENT_FLAG_DATA) && 3666 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 3667 return 1; 3668 return 0; 3669 } 3670 3671 static noinline_for_stack 3672 int prepare_to_relocate(struct reloc_control *rc) 3673 { 3674 struct btrfs_trans_handle *trans; 3675 int ret; 3676 3677 rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root); 3678 if (!rc->block_rsv) 3679 return -ENOMEM; 3680 3681 /* 3682 * reserve some space for creating reloc trees. 3683 * btrfs_init_reloc_root will use them when there 3684 * is no reservation in transaction handle. 3685 */ 3686 ret = btrfs_block_rsv_add(rc->extent_root, rc->block_rsv, 3687 rc->extent_root->nodesize * 256); 3688 if (ret) 3689 return ret; 3690 3691 memset(&rc->cluster, 0, sizeof(rc->cluster)); 3692 rc->search_start = rc->block_group->key.objectid; 3693 rc->extents_found = 0; 3694 rc->nodes_relocated = 0; 3695 rc->merging_rsv_size = 0; 3696 3697 rc->create_reloc_tree = 1; 3698 set_reloc_control(rc); 3699 3700 trans = btrfs_join_transaction(rc->extent_root); 3701 BUG_ON(IS_ERR(trans)); 3702 btrfs_commit_transaction(trans, rc->extent_root); 3703 return 0; 3704 } 3705 3706 static noinline_for_stack int relocate_block_group(struct reloc_control *rc) 3707 { 3708 struct rb_root blocks = RB_ROOT; 3709 struct btrfs_key key; 3710 struct btrfs_trans_handle *trans = NULL; 3711 struct btrfs_path *path; 3712 struct btrfs_extent_item *ei; 3713 unsigned long nr; 3714 u64 flags; 3715 u32 item_size; 3716 int ret; 3717 int err = 0; 3718 int progress = 0; 3719 3720 path = btrfs_alloc_path(); 3721 if (!path) 3722 return -ENOMEM; 3723 path->reada = 1; 3724 3725 ret = prepare_to_relocate(rc); 3726 if (ret) { 3727 err = ret; 3728 goto out_free; 3729 } 3730 3731 while (1) { 3732 progress++; 3733 trans = btrfs_start_transaction(rc->extent_root, 0); 3734 BUG_ON(IS_ERR(trans)); 3735 restart: 3736 if (update_backref_cache(trans, &rc->backref_cache)) { 3737 btrfs_end_transaction(trans, rc->extent_root); 3738 continue; 3739 } 3740 3741 ret = find_next_extent(trans, rc, path, &key); 3742 if (ret < 0) 3743 err = ret; 3744 if (ret != 0) 3745 break; 3746 3747 rc->extents_found++; 3748 3749 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 3750 struct btrfs_extent_item); 3751 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]); 3752 if (item_size >= sizeof(*ei)) { 3753 flags = btrfs_extent_flags(path->nodes[0], ei); 3754 ret = check_extent_flags(flags); 3755 BUG_ON(ret); 3756 3757 } else { 3758 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3759 u64 ref_owner; 3760 int path_change = 0; 3761 3762 BUG_ON(item_size != 3763 sizeof(struct btrfs_extent_item_v0)); 3764 ret = get_ref_objectid_v0(rc, path, &key, &ref_owner, 3765 &path_change); 3766 if (ref_owner < BTRFS_FIRST_FREE_OBJECTID) 3767 flags = BTRFS_EXTENT_FLAG_TREE_BLOCK; 3768 else 3769 flags = BTRFS_EXTENT_FLAG_DATA; 3770 3771 if (path_change) { 3772 btrfs_release_path(path); 3773 3774 path->search_commit_root = 1; 3775 path->skip_locking = 1; 3776 ret = btrfs_search_slot(NULL, rc->extent_root, 3777 &key, path, 0, 0); 3778 if (ret < 0) { 3779 err = ret; 3780 break; 3781 } 3782 BUG_ON(ret > 0); 3783 } 3784 #else 3785 BUG(); 3786 #endif 3787 } 3788 3789 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 3790 ret = add_tree_block(rc, &key, path, &blocks); 3791 } else if (rc->stage == UPDATE_DATA_PTRS && 3792 (flags & BTRFS_EXTENT_FLAG_DATA)) { 3793 ret = add_data_references(rc, &key, path, &blocks); 3794 } else { 3795 btrfs_release_path(path); 3796 ret = 0; 3797 } 3798 if (ret < 0) { 3799 err = ret; 3800 break; 3801 } 3802 3803 if (!RB_EMPTY_ROOT(&blocks)) { 3804 ret = relocate_tree_blocks(trans, rc, &blocks); 3805 if (ret < 0) { 3806 if (ret != -EAGAIN) { 3807 err = ret; 3808 break; 3809 } 3810 rc->extents_found--; 3811 rc->search_start = key.objectid; 3812 } 3813 } 3814 3815 ret = btrfs_block_rsv_check(rc->extent_root, rc->block_rsv, 5); 3816 if (ret < 0) { 3817 if (ret != -ENOSPC) { 3818 err = ret; 3819 WARN_ON(1); 3820 break; 3821 } 3822 rc->commit_transaction = 1; 3823 } 3824 3825 if (rc->commit_transaction) { 3826 rc->commit_transaction = 0; 3827 ret = btrfs_commit_transaction(trans, rc->extent_root); 3828 BUG_ON(ret); 3829 } else { 3830 nr = trans->blocks_used; 3831 btrfs_end_transaction_throttle(trans, rc->extent_root); 3832 btrfs_btree_balance_dirty(rc->extent_root, nr); 3833 } 3834 trans = NULL; 3835 3836 if (rc->stage == MOVE_DATA_EXTENTS && 3837 (flags & BTRFS_EXTENT_FLAG_DATA)) { 3838 rc->found_file_extent = 1; 3839 ret = relocate_data_extent(rc->data_inode, 3840 &key, &rc->cluster); 3841 if (ret < 0) { 3842 err = ret; 3843 break; 3844 } 3845 } 3846 } 3847 if (trans && progress && err == -ENOSPC) { 3848 ret = btrfs_force_chunk_alloc(trans, rc->extent_root, 3849 rc->block_group->flags); 3850 if (ret == 0) { 3851 err = 0; 3852 progress = 0; 3853 goto restart; 3854 } 3855 } 3856 3857 btrfs_release_path(path); 3858 clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY, 3859 GFP_NOFS); 3860 3861 if (trans) { 3862 nr = trans->blocks_used; 3863 btrfs_end_transaction_throttle(trans, rc->extent_root); 3864 btrfs_btree_balance_dirty(rc->extent_root, nr); 3865 } 3866 3867 if (!err) { 3868 ret = relocate_file_extent_cluster(rc->data_inode, 3869 &rc->cluster); 3870 if (ret < 0) 3871 err = ret; 3872 } 3873 3874 rc->create_reloc_tree = 0; 3875 set_reloc_control(rc); 3876 3877 backref_cache_cleanup(&rc->backref_cache); 3878 btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1); 3879 3880 err = prepare_to_merge(rc, err); 3881 3882 merge_reloc_roots(rc); 3883 3884 rc->merge_reloc_tree = 0; 3885 unset_reloc_control(rc); 3886 btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1); 3887 3888 /* get rid of pinned extents */ 3889 trans = btrfs_join_transaction(rc->extent_root); 3890 if (IS_ERR(trans)) 3891 err = PTR_ERR(trans); 3892 else 3893 btrfs_commit_transaction(trans, rc->extent_root); 3894 out_free: 3895 btrfs_free_block_rsv(rc->extent_root, rc->block_rsv); 3896 btrfs_free_path(path); 3897 return err; 3898 } 3899 3900 static int __insert_orphan_inode(struct btrfs_trans_handle *trans, 3901 struct btrfs_root *root, u64 objectid) 3902 { 3903 struct btrfs_path *path; 3904 struct btrfs_inode_item *item; 3905 struct extent_buffer *leaf; 3906 int ret; 3907 3908 path = btrfs_alloc_path(); 3909 if (!path) 3910 return -ENOMEM; 3911 3912 ret = btrfs_insert_empty_inode(trans, root, path, objectid); 3913 if (ret) 3914 goto out; 3915 3916 leaf = path->nodes[0]; 3917 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item); 3918 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item)); 3919 btrfs_set_inode_generation(leaf, item, 1); 3920 btrfs_set_inode_size(leaf, item, 0); 3921 btrfs_set_inode_mode(leaf, item, S_IFREG | 0600); 3922 btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS | 3923 BTRFS_INODE_PREALLOC); 3924 btrfs_mark_buffer_dirty(leaf); 3925 btrfs_release_path(path); 3926 out: 3927 btrfs_free_path(path); 3928 return ret; 3929 } 3930 3931 /* 3932 * helper to create inode for data relocation. 3933 * the inode is in data relocation tree and its link count is 0 3934 */ 3935 static noinline_for_stack 3936 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info, 3937 struct btrfs_block_group_cache *group) 3938 { 3939 struct inode *inode = NULL; 3940 struct btrfs_trans_handle *trans; 3941 struct btrfs_root *root; 3942 struct btrfs_key key; 3943 unsigned long nr; 3944 u64 objectid = BTRFS_FIRST_FREE_OBJECTID; 3945 int err = 0; 3946 3947 root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID); 3948 if (IS_ERR(root)) 3949 return ERR_CAST(root); 3950 3951 trans = btrfs_start_transaction(root, 6); 3952 if (IS_ERR(trans)) 3953 return ERR_CAST(trans); 3954 3955 err = btrfs_find_free_objectid(root, &objectid); 3956 if (err) 3957 goto out; 3958 3959 err = __insert_orphan_inode(trans, root, objectid); 3960 BUG_ON(err); 3961 3962 key.objectid = objectid; 3963 key.type = BTRFS_INODE_ITEM_KEY; 3964 key.offset = 0; 3965 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL); 3966 BUG_ON(IS_ERR(inode) || is_bad_inode(inode)); 3967 BTRFS_I(inode)->index_cnt = group->key.objectid; 3968 3969 err = btrfs_orphan_add(trans, inode); 3970 out: 3971 nr = trans->blocks_used; 3972 btrfs_end_transaction(trans, root); 3973 btrfs_btree_balance_dirty(root, nr); 3974 if (err) { 3975 if (inode) 3976 iput(inode); 3977 inode = ERR_PTR(err); 3978 } 3979 return inode; 3980 } 3981 3982 static struct reloc_control *alloc_reloc_control(void) 3983 { 3984 struct reloc_control *rc; 3985 3986 rc = kzalloc(sizeof(*rc), GFP_NOFS); 3987 if (!rc) 3988 return NULL; 3989 3990 INIT_LIST_HEAD(&rc->reloc_roots); 3991 backref_cache_init(&rc->backref_cache); 3992 mapping_tree_init(&rc->reloc_root_tree); 3993 extent_io_tree_init(&rc->processed_blocks, NULL); 3994 return rc; 3995 } 3996 3997 /* 3998 * function to relocate all extents in a block group. 3999 */ 4000 int btrfs_relocate_block_group(struct btrfs_root *extent_root, u64 group_start) 4001 { 4002 struct btrfs_fs_info *fs_info = extent_root->fs_info; 4003 struct reloc_control *rc; 4004 struct inode *inode; 4005 struct btrfs_path *path; 4006 int ret; 4007 int rw = 0; 4008 int err = 0; 4009 4010 rc = alloc_reloc_control(); 4011 if (!rc) 4012 return -ENOMEM; 4013 4014 rc->extent_root = extent_root; 4015 4016 rc->block_group = btrfs_lookup_block_group(fs_info, group_start); 4017 BUG_ON(!rc->block_group); 4018 4019 if (!rc->block_group->ro) { 4020 ret = btrfs_set_block_group_ro(extent_root, rc->block_group); 4021 if (ret) { 4022 err = ret; 4023 goto out; 4024 } 4025 rw = 1; 4026 } 4027 4028 path = btrfs_alloc_path(); 4029 if (!path) { 4030 err = -ENOMEM; 4031 goto out; 4032 } 4033 4034 inode = lookup_free_space_inode(fs_info->tree_root, rc->block_group, 4035 path); 4036 btrfs_free_path(path); 4037 4038 if (!IS_ERR(inode)) 4039 ret = delete_block_group_cache(fs_info, inode, 0); 4040 else 4041 ret = PTR_ERR(inode); 4042 4043 if (ret && ret != -ENOENT) { 4044 err = ret; 4045 goto out; 4046 } 4047 4048 rc->data_inode = create_reloc_inode(fs_info, rc->block_group); 4049 if (IS_ERR(rc->data_inode)) { 4050 err = PTR_ERR(rc->data_inode); 4051 rc->data_inode = NULL; 4052 goto out; 4053 } 4054 4055 printk(KERN_INFO "btrfs: relocating block group %llu flags %llu\n", 4056 (unsigned long long)rc->block_group->key.objectid, 4057 (unsigned long long)rc->block_group->flags); 4058 4059 btrfs_start_delalloc_inodes(fs_info->tree_root, 0); 4060 btrfs_wait_ordered_extents(fs_info->tree_root, 0, 0); 4061 4062 while (1) { 4063 mutex_lock(&fs_info->cleaner_mutex); 4064 4065 btrfs_clean_old_snapshots(fs_info->tree_root); 4066 ret = relocate_block_group(rc); 4067 4068 mutex_unlock(&fs_info->cleaner_mutex); 4069 if (ret < 0) { 4070 err = ret; 4071 goto out; 4072 } 4073 4074 if (rc->extents_found == 0) 4075 break; 4076 4077 printk(KERN_INFO "btrfs: found %llu extents\n", 4078 (unsigned long long)rc->extents_found); 4079 4080 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) { 4081 btrfs_wait_ordered_range(rc->data_inode, 0, (u64)-1); 4082 invalidate_mapping_pages(rc->data_inode->i_mapping, 4083 0, -1); 4084 rc->stage = UPDATE_DATA_PTRS; 4085 } 4086 } 4087 4088 filemap_write_and_wait_range(fs_info->btree_inode->i_mapping, 4089 rc->block_group->key.objectid, 4090 rc->block_group->key.objectid + 4091 rc->block_group->key.offset - 1); 4092 4093 WARN_ON(rc->block_group->pinned > 0); 4094 WARN_ON(rc->block_group->reserved > 0); 4095 WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0); 4096 out: 4097 if (err && rw) 4098 btrfs_set_block_group_rw(extent_root, rc->block_group); 4099 iput(rc->data_inode); 4100 btrfs_put_block_group(rc->block_group); 4101 kfree(rc); 4102 return err; 4103 } 4104 4105 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root) 4106 { 4107 struct btrfs_trans_handle *trans; 4108 int ret, err; 4109 4110 trans = btrfs_start_transaction(root->fs_info->tree_root, 0); 4111 if (IS_ERR(trans)) 4112 return PTR_ERR(trans); 4113 4114 memset(&root->root_item.drop_progress, 0, 4115 sizeof(root->root_item.drop_progress)); 4116 root->root_item.drop_level = 0; 4117 btrfs_set_root_refs(&root->root_item, 0); 4118 ret = btrfs_update_root(trans, root->fs_info->tree_root, 4119 &root->root_key, &root->root_item); 4120 4121 err = btrfs_end_transaction(trans, root->fs_info->tree_root); 4122 if (err) 4123 return err; 4124 return ret; 4125 } 4126 4127 /* 4128 * recover relocation interrupted by system crash. 4129 * 4130 * this function resumes merging reloc trees with corresponding fs trees. 4131 * this is important for keeping the sharing of tree blocks 4132 */ 4133 int btrfs_recover_relocation(struct btrfs_root *root) 4134 { 4135 LIST_HEAD(reloc_roots); 4136 struct btrfs_key key; 4137 struct btrfs_root *fs_root; 4138 struct btrfs_root *reloc_root; 4139 struct btrfs_path *path; 4140 struct extent_buffer *leaf; 4141 struct reloc_control *rc = NULL; 4142 struct btrfs_trans_handle *trans; 4143 int ret; 4144 int err = 0; 4145 4146 path = btrfs_alloc_path(); 4147 if (!path) 4148 return -ENOMEM; 4149 path->reada = -1; 4150 4151 key.objectid = BTRFS_TREE_RELOC_OBJECTID; 4152 key.type = BTRFS_ROOT_ITEM_KEY; 4153 key.offset = (u64)-1; 4154 4155 while (1) { 4156 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, 4157 path, 0, 0); 4158 if (ret < 0) { 4159 err = ret; 4160 goto out; 4161 } 4162 if (ret > 0) { 4163 if (path->slots[0] == 0) 4164 break; 4165 path->slots[0]--; 4166 } 4167 leaf = path->nodes[0]; 4168 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4169 btrfs_release_path(path); 4170 4171 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID || 4172 key.type != BTRFS_ROOT_ITEM_KEY) 4173 break; 4174 4175 reloc_root = btrfs_read_fs_root_no_radix(root, &key); 4176 if (IS_ERR(reloc_root)) { 4177 err = PTR_ERR(reloc_root); 4178 goto out; 4179 } 4180 4181 list_add(&reloc_root->root_list, &reloc_roots); 4182 4183 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 4184 fs_root = read_fs_root(root->fs_info, 4185 reloc_root->root_key.offset); 4186 if (IS_ERR(fs_root)) { 4187 ret = PTR_ERR(fs_root); 4188 if (ret != -ENOENT) { 4189 err = ret; 4190 goto out; 4191 } 4192 ret = mark_garbage_root(reloc_root); 4193 if (ret < 0) { 4194 err = ret; 4195 goto out; 4196 } 4197 } 4198 } 4199 4200 if (key.offset == 0) 4201 break; 4202 4203 key.offset--; 4204 } 4205 btrfs_release_path(path); 4206 4207 if (list_empty(&reloc_roots)) 4208 goto out; 4209 4210 rc = alloc_reloc_control(); 4211 if (!rc) { 4212 err = -ENOMEM; 4213 goto out; 4214 } 4215 4216 rc->extent_root = root->fs_info->extent_root; 4217 4218 set_reloc_control(rc); 4219 4220 trans = btrfs_join_transaction(rc->extent_root); 4221 if (IS_ERR(trans)) { 4222 unset_reloc_control(rc); 4223 err = PTR_ERR(trans); 4224 goto out_free; 4225 } 4226 4227 rc->merge_reloc_tree = 1; 4228 4229 while (!list_empty(&reloc_roots)) { 4230 reloc_root = list_entry(reloc_roots.next, 4231 struct btrfs_root, root_list); 4232 list_del(&reloc_root->root_list); 4233 4234 if (btrfs_root_refs(&reloc_root->root_item) == 0) { 4235 list_add_tail(&reloc_root->root_list, 4236 &rc->reloc_roots); 4237 continue; 4238 } 4239 4240 fs_root = read_fs_root(root->fs_info, 4241 reloc_root->root_key.offset); 4242 if (IS_ERR(fs_root)) { 4243 err = PTR_ERR(fs_root); 4244 goto out_free; 4245 } 4246 4247 err = __add_reloc_root(reloc_root); 4248 BUG_ON(err < 0); /* -ENOMEM or logic error */ 4249 fs_root->reloc_root = reloc_root; 4250 } 4251 4252 err = btrfs_commit_transaction(trans, rc->extent_root); 4253 if (err) 4254 goto out_free; 4255 4256 merge_reloc_roots(rc); 4257 4258 unset_reloc_control(rc); 4259 4260 trans = btrfs_join_transaction(rc->extent_root); 4261 if (IS_ERR(trans)) 4262 err = PTR_ERR(trans); 4263 else 4264 err = btrfs_commit_transaction(trans, rc->extent_root); 4265 out_free: 4266 kfree(rc); 4267 out: 4268 while (!list_empty(&reloc_roots)) { 4269 reloc_root = list_entry(reloc_roots.next, 4270 struct btrfs_root, root_list); 4271 list_del(&reloc_root->root_list); 4272 free_extent_buffer(reloc_root->node); 4273 free_extent_buffer(reloc_root->commit_root); 4274 kfree(reloc_root); 4275 } 4276 btrfs_free_path(path); 4277 4278 if (err == 0) { 4279 /* cleanup orphan inode in data relocation tree */ 4280 fs_root = read_fs_root(root->fs_info, 4281 BTRFS_DATA_RELOC_TREE_OBJECTID); 4282 if (IS_ERR(fs_root)) 4283 err = PTR_ERR(fs_root); 4284 else 4285 err = btrfs_orphan_cleanup(fs_root); 4286 } 4287 return err; 4288 } 4289 4290 /* 4291 * helper to add ordered checksum for data relocation. 4292 * 4293 * cloning checksum properly handles the nodatasum extents. 4294 * it also saves CPU time to re-calculate the checksum. 4295 */ 4296 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len) 4297 { 4298 struct btrfs_ordered_sum *sums; 4299 struct btrfs_sector_sum *sector_sum; 4300 struct btrfs_ordered_extent *ordered; 4301 struct btrfs_root *root = BTRFS_I(inode)->root; 4302 size_t offset; 4303 int ret; 4304 u64 disk_bytenr; 4305 LIST_HEAD(list); 4306 4307 ordered = btrfs_lookup_ordered_extent(inode, file_pos); 4308 BUG_ON(ordered->file_offset != file_pos || ordered->len != len); 4309 4310 disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt; 4311 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, disk_bytenr, 4312 disk_bytenr + len - 1, &list, 0); 4313 if (ret) 4314 goto out; 4315 4316 while (!list_empty(&list)) { 4317 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 4318 list_del_init(&sums->list); 4319 4320 sector_sum = sums->sums; 4321 sums->bytenr = ordered->start; 4322 4323 offset = 0; 4324 while (offset < sums->len) { 4325 sector_sum->bytenr += ordered->start - disk_bytenr; 4326 sector_sum++; 4327 offset += root->sectorsize; 4328 } 4329 4330 btrfs_add_ordered_sum(inode, ordered, sums); 4331 } 4332 out: 4333 btrfs_put_ordered_extent(ordered); 4334 return ret; 4335 } 4336 4337 void btrfs_reloc_cow_block(struct btrfs_trans_handle *trans, 4338 struct btrfs_root *root, struct extent_buffer *buf, 4339 struct extent_buffer *cow) 4340 { 4341 struct reloc_control *rc; 4342 struct backref_node *node; 4343 int first_cow = 0; 4344 int level; 4345 int ret; 4346 4347 rc = root->fs_info->reloc_ctl; 4348 if (!rc) 4349 return; 4350 4351 BUG_ON(rc->stage == UPDATE_DATA_PTRS && 4352 root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID); 4353 4354 level = btrfs_header_level(buf); 4355 if (btrfs_header_generation(buf) <= 4356 btrfs_root_last_snapshot(&root->root_item)) 4357 first_cow = 1; 4358 4359 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID && 4360 rc->create_reloc_tree) { 4361 WARN_ON(!first_cow && level == 0); 4362 4363 node = rc->backref_cache.path[level]; 4364 BUG_ON(node->bytenr != buf->start && 4365 node->new_bytenr != buf->start); 4366 4367 drop_node_buffer(node); 4368 extent_buffer_get(cow); 4369 node->eb = cow; 4370 node->new_bytenr = cow->start; 4371 4372 if (!node->pending) { 4373 list_move_tail(&node->list, 4374 &rc->backref_cache.pending[level]); 4375 node->pending = 1; 4376 } 4377 4378 if (first_cow) 4379 __mark_block_processed(rc, node); 4380 4381 if (first_cow && level > 0) 4382 rc->nodes_relocated += buf->len; 4383 } 4384 4385 if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS) { 4386 ret = replace_file_extents(trans, rc, root, cow); 4387 BUG_ON(ret); 4388 } 4389 } 4390 4391 /* 4392 * called before creating snapshot. it calculates metadata reservation 4393 * requried for relocating tree blocks in the snapshot 4394 */ 4395 void btrfs_reloc_pre_snapshot(struct btrfs_trans_handle *trans, 4396 struct btrfs_pending_snapshot *pending, 4397 u64 *bytes_to_reserve) 4398 { 4399 struct btrfs_root *root; 4400 struct reloc_control *rc; 4401 4402 root = pending->root; 4403 if (!root->reloc_root) 4404 return; 4405 4406 rc = root->fs_info->reloc_ctl; 4407 if (!rc->merge_reloc_tree) 4408 return; 4409 4410 root = root->reloc_root; 4411 BUG_ON(btrfs_root_refs(&root->root_item) == 0); 4412 /* 4413 * relocation is in the stage of merging trees. the space 4414 * used by merging a reloc tree is twice the size of 4415 * relocated tree nodes in the worst case. half for cowing 4416 * the reloc tree, half for cowing the fs tree. the space 4417 * used by cowing the reloc tree will be freed after the 4418 * tree is dropped. if we create snapshot, cowing the fs 4419 * tree may use more space than it frees. so we need 4420 * reserve extra space. 4421 */ 4422 *bytes_to_reserve += rc->nodes_relocated; 4423 } 4424 4425 /* 4426 * called after snapshot is created. migrate block reservation 4427 * and create reloc root for the newly created snapshot 4428 */ 4429 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans, 4430 struct btrfs_pending_snapshot *pending) 4431 { 4432 struct btrfs_root *root = pending->root; 4433 struct btrfs_root *reloc_root; 4434 struct btrfs_root *new_root; 4435 struct reloc_control *rc; 4436 int ret; 4437 4438 if (!root->reloc_root) 4439 return 0; 4440 4441 rc = root->fs_info->reloc_ctl; 4442 rc->merging_rsv_size += rc->nodes_relocated; 4443 4444 if (rc->merge_reloc_tree) { 4445 ret = btrfs_block_rsv_migrate(&pending->block_rsv, 4446 rc->block_rsv, 4447 rc->nodes_relocated); 4448 if (ret) 4449 return ret; 4450 } 4451 4452 new_root = pending->snap; 4453 reloc_root = create_reloc_root(trans, root->reloc_root, 4454 new_root->root_key.objectid); 4455 if (IS_ERR(reloc_root)) 4456 return PTR_ERR(reloc_root); 4457 4458 ret = __add_reloc_root(reloc_root); 4459 BUG_ON(ret < 0); 4460 new_root->reloc_root = reloc_root; 4461 4462 if (rc->create_reloc_tree) 4463 ret = clone_backref_node(trans, rc, root, reloc_root); 4464 return ret; 4465 } 4466