xref: /linux/fs/btrfs/relocation.c (revision 501834349e872ed4115eea3beef65ca9eeb5528e)
1 /*
2  * Copyright (C) 2009 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/rbtree.h>
24 #include <linux/slab.h>
25 #include "ctree.h"
26 #include "disk-io.h"
27 #include "transaction.h"
28 #include "volumes.h"
29 #include "locking.h"
30 #include "btrfs_inode.h"
31 #include "async-thread.h"
32 #include "free-space-cache.h"
33 
34 /*
35  * backref_node, mapping_node and tree_block start with this
36  */
37 struct tree_entry {
38 	struct rb_node rb_node;
39 	u64 bytenr;
40 };
41 
42 /*
43  * present a tree block in the backref cache
44  */
45 struct backref_node {
46 	struct rb_node rb_node;
47 	u64 bytenr;
48 
49 	u64 new_bytenr;
50 	/* objectid of tree block owner, can be not uptodate */
51 	u64 owner;
52 	/* link to pending, changed or detached list */
53 	struct list_head list;
54 	/* list of upper level blocks reference this block */
55 	struct list_head upper;
56 	/* list of child blocks in the cache */
57 	struct list_head lower;
58 	/* NULL if this node is not tree root */
59 	struct btrfs_root *root;
60 	/* extent buffer got by COW the block */
61 	struct extent_buffer *eb;
62 	/* level of tree block */
63 	unsigned int level:8;
64 	/* is the block in non-reference counted tree */
65 	unsigned int cowonly:1;
66 	/* 1 if no child node in the cache */
67 	unsigned int lowest:1;
68 	/* is the extent buffer locked */
69 	unsigned int locked:1;
70 	/* has the block been processed */
71 	unsigned int processed:1;
72 	/* have backrefs of this block been checked */
73 	unsigned int checked:1;
74 	/*
75 	 * 1 if corresponding block has been cowed but some upper
76 	 * level block pointers may not point to the new location
77 	 */
78 	unsigned int pending:1;
79 	/*
80 	 * 1 if the backref node isn't connected to any other
81 	 * backref node.
82 	 */
83 	unsigned int detached:1;
84 };
85 
86 /*
87  * present a block pointer in the backref cache
88  */
89 struct backref_edge {
90 	struct list_head list[2];
91 	struct backref_node *node[2];
92 };
93 
94 #define LOWER	0
95 #define UPPER	1
96 
97 struct backref_cache {
98 	/* red black tree of all backref nodes in the cache */
99 	struct rb_root rb_root;
100 	/* for passing backref nodes to btrfs_reloc_cow_block */
101 	struct backref_node *path[BTRFS_MAX_LEVEL];
102 	/*
103 	 * list of blocks that have been cowed but some block
104 	 * pointers in upper level blocks may not reflect the
105 	 * new location
106 	 */
107 	struct list_head pending[BTRFS_MAX_LEVEL];
108 	/* list of backref nodes with no child node */
109 	struct list_head leaves;
110 	/* list of blocks that have been cowed in current transaction */
111 	struct list_head changed;
112 	/* list of detached backref node. */
113 	struct list_head detached;
114 
115 	u64 last_trans;
116 
117 	int nr_nodes;
118 	int nr_edges;
119 };
120 
121 /*
122  * map address of tree root to tree
123  */
124 struct mapping_node {
125 	struct rb_node rb_node;
126 	u64 bytenr;
127 	void *data;
128 };
129 
130 struct mapping_tree {
131 	struct rb_root rb_root;
132 	spinlock_t lock;
133 };
134 
135 /*
136  * present a tree block to process
137  */
138 struct tree_block {
139 	struct rb_node rb_node;
140 	u64 bytenr;
141 	struct btrfs_key key;
142 	unsigned int level:8;
143 	unsigned int key_ready:1;
144 };
145 
146 #define MAX_EXTENTS 128
147 
148 struct file_extent_cluster {
149 	u64 start;
150 	u64 end;
151 	u64 boundary[MAX_EXTENTS];
152 	unsigned int nr;
153 };
154 
155 struct reloc_control {
156 	/* block group to relocate */
157 	struct btrfs_block_group_cache *block_group;
158 	/* extent tree */
159 	struct btrfs_root *extent_root;
160 	/* inode for moving data */
161 	struct inode *data_inode;
162 
163 	struct btrfs_block_rsv *block_rsv;
164 
165 	struct backref_cache backref_cache;
166 
167 	struct file_extent_cluster cluster;
168 	/* tree blocks have been processed */
169 	struct extent_io_tree processed_blocks;
170 	/* map start of tree root to corresponding reloc tree */
171 	struct mapping_tree reloc_root_tree;
172 	/* list of reloc trees */
173 	struct list_head reloc_roots;
174 	/* size of metadata reservation for merging reloc trees */
175 	u64 merging_rsv_size;
176 	/* size of relocated tree nodes */
177 	u64 nodes_relocated;
178 
179 	u64 search_start;
180 	u64 extents_found;
181 
182 	unsigned int stage:8;
183 	unsigned int create_reloc_tree:1;
184 	unsigned int merge_reloc_tree:1;
185 	unsigned int found_file_extent:1;
186 	unsigned int commit_transaction:1;
187 };
188 
189 /* stages of data relocation */
190 #define MOVE_DATA_EXTENTS	0
191 #define UPDATE_DATA_PTRS	1
192 
193 static void remove_backref_node(struct backref_cache *cache,
194 				struct backref_node *node);
195 static void __mark_block_processed(struct reloc_control *rc,
196 				   struct backref_node *node);
197 
198 static void mapping_tree_init(struct mapping_tree *tree)
199 {
200 	tree->rb_root = RB_ROOT;
201 	spin_lock_init(&tree->lock);
202 }
203 
204 static void backref_cache_init(struct backref_cache *cache)
205 {
206 	int i;
207 	cache->rb_root = RB_ROOT;
208 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
209 		INIT_LIST_HEAD(&cache->pending[i]);
210 	INIT_LIST_HEAD(&cache->changed);
211 	INIT_LIST_HEAD(&cache->detached);
212 	INIT_LIST_HEAD(&cache->leaves);
213 }
214 
215 static void backref_cache_cleanup(struct backref_cache *cache)
216 {
217 	struct backref_node *node;
218 	int i;
219 
220 	while (!list_empty(&cache->detached)) {
221 		node = list_entry(cache->detached.next,
222 				  struct backref_node, list);
223 		remove_backref_node(cache, node);
224 	}
225 
226 	while (!list_empty(&cache->leaves)) {
227 		node = list_entry(cache->leaves.next,
228 				  struct backref_node, lower);
229 		remove_backref_node(cache, node);
230 	}
231 
232 	cache->last_trans = 0;
233 
234 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
235 		BUG_ON(!list_empty(&cache->pending[i]));
236 	BUG_ON(!list_empty(&cache->changed));
237 	BUG_ON(!list_empty(&cache->detached));
238 	BUG_ON(!RB_EMPTY_ROOT(&cache->rb_root));
239 	BUG_ON(cache->nr_nodes);
240 	BUG_ON(cache->nr_edges);
241 }
242 
243 static struct backref_node *alloc_backref_node(struct backref_cache *cache)
244 {
245 	struct backref_node *node;
246 
247 	node = kzalloc(sizeof(*node), GFP_NOFS);
248 	if (node) {
249 		INIT_LIST_HEAD(&node->list);
250 		INIT_LIST_HEAD(&node->upper);
251 		INIT_LIST_HEAD(&node->lower);
252 		RB_CLEAR_NODE(&node->rb_node);
253 		cache->nr_nodes++;
254 	}
255 	return node;
256 }
257 
258 static void free_backref_node(struct backref_cache *cache,
259 			      struct backref_node *node)
260 {
261 	if (node) {
262 		cache->nr_nodes--;
263 		kfree(node);
264 	}
265 }
266 
267 static struct backref_edge *alloc_backref_edge(struct backref_cache *cache)
268 {
269 	struct backref_edge *edge;
270 
271 	edge = kzalloc(sizeof(*edge), GFP_NOFS);
272 	if (edge)
273 		cache->nr_edges++;
274 	return edge;
275 }
276 
277 static void free_backref_edge(struct backref_cache *cache,
278 			      struct backref_edge *edge)
279 {
280 	if (edge) {
281 		cache->nr_edges--;
282 		kfree(edge);
283 	}
284 }
285 
286 static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr,
287 				   struct rb_node *node)
288 {
289 	struct rb_node **p = &root->rb_node;
290 	struct rb_node *parent = NULL;
291 	struct tree_entry *entry;
292 
293 	while (*p) {
294 		parent = *p;
295 		entry = rb_entry(parent, struct tree_entry, rb_node);
296 
297 		if (bytenr < entry->bytenr)
298 			p = &(*p)->rb_left;
299 		else if (bytenr > entry->bytenr)
300 			p = &(*p)->rb_right;
301 		else
302 			return parent;
303 	}
304 
305 	rb_link_node(node, parent, p);
306 	rb_insert_color(node, root);
307 	return NULL;
308 }
309 
310 static struct rb_node *tree_search(struct rb_root *root, u64 bytenr)
311 {
312 	struct rb_node *n = root->rb_node;
313 	struct tree_entry *entry;
314 
315 	while (n) {
316 		entry = rb_entry(n, struct tree_entry, rb_node);
317 
318 		if (bytenr < entry->bytenr)
319 			n = n->rb_left;
320 		else if (bytenr > entry->bytenr)
321 			n = n->rb_right;
322 		else
323 			return n;
324 	}
325 	return NULL;
326 }
327 
328 /*
329  * walk up backref nodes until reach node presents tree root
330  */
331 static struct backref_node *walk_up_backref(struct backref_node *node,
332 					    struct backref_edge *edges[],
333 					    int *index)
334 {
335 	struct backref_edge *edge;
336 	int idx = *index;
337 
338 	while (!list_empty(&node->upper)) {
339 		edge = list_entry(node->upper.next,
340 				  struct backref_edge, list[LOWER]);
341 		edges[idx++] = edge;
342 		node = edge->node[UPPER];
343 	}
344 	BUG_ON(node->detached);
345 	*index = idx;
346 	return node;
347 }
348 
349 /*
350  * walk down backref nodes to find start of next reference path
351  */
352 static struct backref_node *walk_down_backref(struct backref_edge *edges[],
353 					      int *index)
354 {
355 	struct backref_edge *edge;
356 	struct backref_node *lower;
357 	int idx = *index;
358 
359 	while (idx > 0) {
360 		edge = edges[idx - 1];
361 		lower = edge->node[LOWER];
362 		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
363 			idx--;
364 			continue;
365 		}
366 		edge = list_entry(edge->list[LOWER].next,
367 				  struct backref_edge, list[LOWER]);
368 		edges[idx - 1] = edge;
369 		*index = idx;
370 		return edge->node[UPPER];
371 	}
372 	*index = 0;
373 	return NULL;
374 }
375 
376 static void unlock_node_buffer(struct backref_node *node)
377 {
378 	if (node->locked) {
379 		btrfs_tree_unlock(node->eb);
380 		node->locked = 0;
381 	}
382 }
383 
384 static void drop_node_buffer(struct backref_node *node)
385 {
386 	if (node->eb) {
387 		unlock_node_buffer(node);
388 		free_extent_buffer(node->eb);
389 		node->eb = NULL;
390 	}
391 }
392 
393 static void drop_backref_node(struct backref_cache *tree,
394 			      struct backref_node *node)
395 {
396 	BUG_ON(!list_empty(&node->upper));
397 
398 	drop_node_buffer(node);
399 	list_del(&node->list);
400 	list_del(&node->lower);
401 	if (!RB_EMPTY_NODE(&node->rb_node))
402 		rb_erase(&node->rb_node, &tree->rb_root);
403 	free_backref_node(tree, node);
404 }
405 
406 /*
407  * remove a backref node from the backref cache
408  */
409 static void remove_backref_node(struct backref_cache *cache,
410 				struct backref_node *node)
411 {
412 	struct backref_node *upper;
413 	struct backref_edge *edge;
414 
415 	if (!node)
416 		return;
417 
418 	BUG_ON(!node->lowest && !node->detached);
419 	while (!list_empty(&node->upper)) {
420 		edge = list_entry(node->upper.next, struct backref_edge,
421 				  list[LOWER]);
422 		upper = edge->node[UPPER];
423 		list_del(&edge->list[LOWER]);
424 		list_del(&edge->list[UPPER]);
425 		free_backref_edge(cache, edge);
426 
427 		if (RB_EMPTY_NODE(&upper->rb_node)) {
428 			BUG_ON(!list_empty(&node->upper));
429 			drop_backref_node(cache, node);
430 			node = upper;
431 			node->lowest = 1;
432 			continue;
433 		}
434 		/*
435 		 * add the node to leaf node list if no other
436 		 * child block cached.
437 		 */
438 		if (list_empty(&upper->lower)) {
439 			list_add_tail(&upper->lower, &cache->leaves);
440 			upper->lowest = 1;
441 		}
442 	}
443 
444 	drop_backref_node(cache, node);
445 }
446 
447 static void update_backref_node(struct backref_cache *cache,
448 				struct backref_node *node, u64 bytenr)
449 {
450 	struct rb_node *rb_node;
451 	rb_erase(&node->rb_node, &cache->rb_root);
452 	node->bytenr = bytenr;
453 	rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node);
454 	BUG_ON(rb_node);
455 }
456 
457 /*
458  * update backref cache after a transaction commit
459  */
460 static int update_backref_cache(struct btrfs_trans_handle *trans,
461 				struct backref_cache *cache)
462 {
463 	struct backref_node *node;
464 	int level = 0;
465 
466 	if (cache->last_trans == 0) {
467 		cache->last_trans = trans->transid;
468 		return 0;
469 	}
470 
471 	if (cache->last_trans == trans->transid)
472 		return 0;
473 
474 	/*
475 	 * detached nodes are used to avoid unnecessary backref
476 	 * lookup. transaction commit changes the extent tree.
477 	 * so the detached nodes are no longer useful.
478 	 */
479 	while (!list_empty(&cache->detached)) {
480 		node = list_entry(cache->detached.next,
481 				  struct backref_node, list);
482 		remove_backref_node(cache, node);
483 	}
484 
485 	while (!list_empty(&cache->changed)) {
486 		node = list_entry(cache->changed.next,
487 				  struct backref_node, list);
488 		list_del_init(&node->list);
489 		BUG_ON(node->pending);
490 		update_backref_node(cache, node, node->new_bytenr);
491 	}
492 
493 	/*
494 	 * some nodes can be left in the pending list if there were
495 	 * errors during processing the pending nodes.
496 	 */
497 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
498 		list_for_each_entry(node, &cache->pending[level], list) {
499 			BUG_ON(!node->pending);
500 			if (node->bytenr == node->new_bytenr)
501 				continue;
502 			update_backref_node(cache, node, node->new_bytenr);
503 		}
504 	}
505 
506 	cache->last_trans = 0;
507 	return 1;
508 }
509 
510 static int should_ignore_root(struct btrfs_root *root)
511 {
512 	struct btrfs_root *reloc_root;
513 
514 	if (!root->ref_cows)
515 		return 0;
516 
517 	reloc_root = root->reloc_root;
518 	if (!reloc_root)
519 		return 0;
520 
521 	if (btrfs_root_last_snapshot(&reloc_root->root_item) ==
522 	    root->fs_info->running_transaction->transid - 1)
523 		return 0;
524 	/*
525 	 * if there is reloc tree and it was created in previous
526 	 * transaction backref lookup can find the reloc tree,
527 	 * so backref node for the fs tree root is useless for
528 	 * relocation.
529 	 */
530 	return 1;
531 }
532 
533 /*
534  * find reloc tree by address of tree root
535  */
536 static struct btrfs_root *find_reloc_root(struct reloc_control *rc,
537 					  u64 bytenr)
538 {
539 	struct rb_node *rb_node;
540 	struct mapping_node *node;
541 	struct btrfs_root *root = NULL;
542 
543 	spin_lock(&rc->reloc_root_tree.lock);
544 	rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr);
545 	if (rb_node) {
546 		node = rb_entry(rb_node, struct mapping_node, rb_node);
547 		root = (struct btrfs_root *)node->data;
548 	}
549 	spin_unlock(&rc->reloc_root_tree.lock);
550 	return root;
551 }
552 
553 static int is_cowonly_root(u64 root_objectid)
554 {
555 	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
556 	    root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
557 	    root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
558 	    root_objectid == BTRFS_DEV_TREE_OBJECTID ||
559 	    root_objectid == BTRFS_TREE_LOG_OBJECTID ||
560 	    root_objectid == BTRFS_CSUM_TREE_OBJECTID)
561 		return 1;
562 	return 0;
563 }
564 
565 static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info,
566 					u64 root_objectid)
567 {
568 	struct btrfs_key key;
569 
570 	key.objectid = root_objectid;
571 	key.type = BTRFS_ROOT_ITEM_KEY;
572 	if (is_cowonly_root(root_objectid))
573 		key.offset = 0;
574 	else
575 		key.offset = (u64)-1;
576 
577 	return btrfs_read_fs_root_no_name(fs_info, &key);
578 }
579 
580 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
581 static noinline_for_stack
582 struct btrfs_root *find_tree_root(struct reloc_control *rc,
583 				  struct extent_buffer *leaf,
584 				  struct btrfs_extent_ref_v0 *ref0)
585 {
586 	struct btrfs_root *root;
587 	u64 root_objectid = btrfs_ref_root_v0(leaf, ref0);
588 	u64 generation = btrfs_ref_generation_v0(leaf, ref0);
589 
590 	BUG_ON(root_objectid == BTRFS_TREE_RELOC_OBJECTID);
591 
592 	root = read_fs_root(rc->extent_root->fs_info, root_objectid);
593 	BUG_ON(IS_ERR(root));
594 
595 	if (root->ref_cows &&
596 	    generation != btrfs_root_generation(&root->root_item))
597 		return NULL;
598 
599 	return root;
600 }
601 #endif
602 
603 static noinline_for_stack
604 int find_inline_backref(struct extent_buffer *leaf, int slot,
605 			unsigned long *ptr, unsigned long *end)
606 {
607 	struct btrfs_extent_item *ei;
608 	struct btrfs_tree_block_info *bi;
609 	u32 item_size;
610 
611 	item_size = btrfs_item_size_nr(leaf, slot);
612 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
613 	if (item_size < sizeof(*ei)) {
614 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
615 		return 1;
616 	}
617 #endif
618 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
619 	WARN_ON(!(btrfs_extent_flags(leaf, ei) &
620 		  BTRFS_EXTENT_FLAG_TREE_BLOCK));
621 
622 	if (item_size <= sizeof(*ei) + sizeof(*bi)) {
623 		WARN_ON(item_size < sizeof(*ei) + sizeof(*bi));
624 		return 1;
625 	}
626 
627 	bi = (struct btrfs_tree_block_info *)(ei + 1);
628 	*ptr = (unsigned long)(bi + 1);
629 	*end = (unsigned long)ei + item_size;
630 	return 0;
631 }
632 
633 /*
634  * build backref tree for a given tree block. root of the backref tree
635  * corresponds the tree block, leaves of the backref tree correspond
636  * roots of b-trees that reference the tree block.
637  *
638  * the basic idea of this function is check backrefs of a given block
639  * to find upper level blocks that refernece the block, and then check
640  * bakcrefs of these upper level blocks recursively. the recursion stop
641  * when tree root is reached or backrefs for the block is cached.
642  *
643  * NOTE: if we find backrefs for a block are cached, we know backrefs
644  * for all upper level blocks that directly/indirectly reference the
645  * block are also cached.
646  */
647 static noinline_for_stack
648 struct backref_node *build_backref_tree(struct reloc_control *rc,
649 					struct btrfs_key *node_key,
650 					int level, u64 bytenr)
651 {
652 	struct backref_cache *cache = &rc->backref_cache;
653 	struct btrfs_path *path1;
654 	struct btrfs_path *path2;
655 	struct extent_buffer *eb;
656 	struct btrfs_root *root;
657 	struct backref_node *cur;
658 	struct backref_node *upper;
659 	struct backref_node *lower;
660 	struct backref_node *node = NULL;
661 	struct backref_node *exist = NULL;
662 	struct backref_edge *edge;
663 	struct rb_node *rb_node;
664 	struct btrfs_key key;
665 	unsigned long end;
666 	unsigned long ptr;
667 	LIST_HEAD(list);
668 	LIST_HEAD(useless);
669 	int cowonly;
670 	int ret;
671 	int err = 0;
672 
673 	path1 = btrfs_alloc_path();
674 	path2 = btrfs_alloc_path();
675 	if (!path1 || !path2) {
676 		err = -ENOMEM;
677 		goto out;
678 	}
679 
680 	node = alloc_backref_node(cache);
681 	if (!node) {
682 		err = -ENOMEM;
683 		goto out;
684 	}
685 
686 	node->bytenr = bytenr;
687 	node->level = level;
688 	node->lowest = 1;
689 	cur = node;
690 again:
691 	end = 0;
692 	ptr = 0;
693 	key.objectid = cur->bytenr;
694 	key.type = BTRFS_EXTENT_ITEM_KEY;
695 	key.offset = (u64)-1;
696 
697 	path1->search_commit_root = 1;
698 	path1->skip_locking = 1;
699 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1,
700 				0, 0);
701 	if (ret < 0) {
702 		err = ret;
703 		goto out;
704 	}
705 	BUG_ON(!ret || !path1->slots[0]);
706 
707 	path1->slots[0]--;
708 
709 	WARN_ON(cur->checked);
710 	if (!list_empty(&cur->upper)) {
711 		/*
712 		 * the backref was added previously when processsing
713 		 * backref of type BTRFS_TREE_BLOCK_REF_KEY
714 		 */
715 		BUG_ON(!list_is_singular(&cur->upper));
716 		edge = list_entry(cur->upper.next, struct backref_edge,
717 				  list[LOWER]);
718 		BUG_ON(!list_empty(&edge->list[UPPER]));
719 		exist = edge->node[UPPER];
720 		/*
721 		 * add the upper level block to pending list if we need
722 		 * check its backrefs
723 		 */
724 		if (!exist->checked)
725 			list_add_tail(&edge->list[UPPER], &list);
726 	} else {
727 		exist = NULL;
728 	}
729 
730 	while (1) {
731 		cond_resched();
732 		eb = path1->nodes[0];
733 
734 		if (ptr >= end) {
735 			if (path1->slots[0] >= btrfs_header_nritems(eb)) {
736 				ret = btrfs_next_leaf(rc->extent_root, path1);
737 				if (ret < 0) {
738 					err = ret;
739 					goto out;
740 				}
741 				if (ret > 0)
742 					break;
743 				eb = path1->nodes[0];
744 			}
745 
746 			btrfs_item_key_to_cpu(eb, &key, path1->slots[0]);
747 			if (key.objectid != cur->bytenr) {
748 				WARN_ON(exist);
749 				break;
750 			}
751 
752 			if (key.type == BTRFS_EXTENT_ITEM_KEY) {
753 				ret = find_inline_backref(eb, path1->slots[0],
754 							  &ptr, &end);
755 				if (ret)
756 					goto next;
757 			}
758 		}
759 
760 		if (ptr < end) {
761 			/* update key for inline back ref */
762 			struct btrfs_extent_inline_ref *iref;
763 			iref = (struct btrfs_extent_inline_ref *)ptr;
764 			key.type = btrfs_extent_inline_ref_type(eb, iref);
765 			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
766 			WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY &&
767 				key.type != BTRFS_SHARED_BLOCK_REF_KEY);
768 		}
769 
770 		if (exist &&
771 		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
772 		      exist->owner == key.offset) ||
773 		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
774 		      exist->bytenr == key.offset))) {
775 			exist = NULL;
776 			goto next;
777 		}
778 
779 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
780 		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY ||
781 		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
782 			if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
783 				struct btrfs_extent_ref_v0 *ref0;
784 				ref0 = btrfs_item_ptr(eb, path1->slots[0],
785 						struct btrfs_extent_ref_v0);
786 				if (key.objectid == key.offset) {
787 					root = find_tree_root(rc, eb, ref0);
788 					if (root && !should_ignore_root(root))
789 						cur->root = root;
790 					else
791 						list_add(&cur->list, &useless);
792 					break;
793 				}
794 				if (is_cowonly_root(btrfs_ref_root_v0(eb,
795 								      ref0)))
796 					cur->cowonly = 1;
797 			}
798 #else
799 		BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
800 		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
801 #endif
802 			if (key.objectid == key.offset) {
803 				/*
804 				 * only root blocks of reloc trees use
805 				 * backref of this type.
806 				 */
807 				root = find_reloc_root(rc, cur->bytenr);
808 				BUG_ON(!root);
809 				cur->root = root;
810 				break;
811 			}
812 
813 			edge = alloc_backref_edge(cache);
814 			if (!edge) {
815 				err = -ENOMEM;
816 				goto out;
817 			}
818 			rb_node = tree_search(&cache->rb_root, key.offset);
819 			if (!rb_node) {
820 				upper = alloc_backref_node(cache);
821 				if (!upper) {
822 					free_backref_edge(cache, edge);
823 					err = -ENOMEM;
824 					goto out;
825 				}
826 				upper->bytenr = key.offset;
827 				upper->level = cur->level + 1;
828 				/*
829 				 *  backrefs for the upper level block isn't
830 				 *  cached, add the block to pending list
831 				 */
832 				list_add_tail(&edge->list[UPPER], &list);
833 			} else {
834 				upper = rb_entry(rb_node, struct backref_node,
835 						 rb_node);
836 				BUG_ON(!upper->checked);
837 				INIT_LIST_HEAD(&edge->list[UPPER]);
838 			}
839 			list_add_tail(&edge->list[LOWER], &cur->upper);
840 			edge->node[LOWER] = cur;
841 			edge->node[UPPER] = upper;
842 
843 			goto next;
844 		} else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
845 			goto next;
846 		}
847 
848 		/* key.type == BTRFS_TREE_BLOCK_REF_KEY */
849 		root = read_fs_root(rc->extent_root->fs_info, key.offset);
850 		if (IS_ERR(root)) {
851 			err = PTR_ERR(root);
852 			goto out;
853 		}
854 
855 		if (!root->ref_cows)
856 			cur->cowonly = 1;
857 
858 		if (btrfs_root_level(&root->root_item) == cur->level) {
859 			/* tree root */
860 			BUG_ON(btrfs_root_bytenr(&root->root_item) !=
861 			       cur->bytenr);
862 			if (should_ignore_root(root))
863 				list_add(&cur->list, &useless);
864 			else
865 				cur->root = root;
866 			break;
867 		}
868 
869 		level = cur->level + 1;
870 
871 		/*
872 		 * searching the tree to find upper level blocks
873 		 * reference the block.
874 		 */
875 		path2->search_commit_root = 1;
876 		path2->skip_locking = 1;
877 		path2->lowest_level = level;
878 		ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0);
879 		path2->lowest_level = 0;
880 		if (ret < 0) {
881 			err = ret;
882 			goto out;
883 		}
884 		if (ret > 0 && path2->slots[level] > 0)
885 			path2->slots[level]--;
886 
887 		eb = path2->nodes[level];
888 		WARN_ON(btrfs_node_blockptr(eb, path2->slots[level]) !=
889 			cur->bytenr);
890 
891 		lower = cur;
892 		for (; level < BTRFS_MAX_LEVEL; level++) {
893 			if (!path2->nodes[level]) {
894 				BUG_ON(btrfs_root_bytenr(&root->root_item) !=
895 				       lower->bytenr);
896 				if (should_ignore_root(root))
897 					list_add(&lower->list, &useless);
898 				else
899 					lower->root = root;
900 				break;
901 			}
902 
903 			edge = alloc_backref_edge(cache);
904 			if (!edge) {
905 				err = -ENOMEM;
906 				goto out;
907 			}
908 
909 			eb = path2->nodes[level];
910 			rb_node = tree_search(&cache->rb_root, eb->start);
911 			if (!rb_node) {
912 				upper = alloc_backref_node(cache);
913 				if (!upper) {
914 					free_backref_edge(cache, edge);
915 					err = -ENOMEM;
916 					goto out;
917 				}
918 				upper->bytenr = eb->start;
919 				upper->owner = btrfs_header_owner(eb);
920 				upper->level = lower->level + 1;
921 				if (!root->ref_cows)
922 					upper->cowonly = 1;
923 
924 				/*
925 				 * if we know the block isn't shared
926 				 * we can void checking its backrefs.
927 				 */
928 				if (btrfs_block_can_be_shared(root, eb))
929 					upper->checked = 0;
930 				else
931 					upper->checked = 1;
932 
933 				/*
934 				 * add the block to pending list if we
935 				 * need check its backrefs. only block
936 				 * at 'cur->level + 1' is added to the
937 				 * tail of pending list. this guarantees
938 				 * we check backrefs from lower level
939 				 * blocks to upper level blocks.
940 				 */
941 				if (!upper->checked &&
942 				    level == cur->level + 1) {
943 					list_add_tail(&edge->list[UPPER],
944 						      &list);
945 				} else
946 					INIT_LIST_HEAD(&edge->list[UPPER]);
947 			} else {
948 				upper = rb_entry(rb_node, struct backref_node,
949 						 rb_node);
950 				BUG_ON(!upper->checked);
951 				INIT_LIST_HEAD(&edge->list[UPPER]);
952 				if (!upper->owner)
953 					upper->owner = btrfs_header_owner(eb);
954 			}
955 			list_add_tail(&edge->list[LOWER], &lower->upper);
956 			edge->node[LOWER] = lower;
957 			edge->node[UPPER] = upper;
958 
959 			if (rb_node)
960 				break;
961 			lower = upper;
962 			upper = NULL;
963 		}
964 		btrfs_release_path(root, path2);
965 next:
966 		if (ptr < end) {
967 			ptr += btrfs_extent_inline_ref_size(key.type);
968 			if (ptr >= end) {
969 				WARN_ON(ptr > end);
970 				ptr = 0;
971 				end = 0;
972 			}
973 		}
974 		if (ptr >= end)
975 			path1->slots[0]++;
976 	}
977 	btrfs_release_path(rc->extent_root, path1);
978 
979 	cur->checked = 1;
980 	WARN_ON(exist);
981 
982 	/* the pending list isn't empty, take the first block to process */
983 	if (!list_empty(&list)) {
984 		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
985 		list_del_init(&edge->list[UPPER]);
986 		cur = edge->node[UPPER];
987 		goto again;
988 	}
989 
990 	/*
991 	 * everything goes well, connect backref nodes and insert backref nodes
992 	 * into the cache.
993 	 */
994 	BUG_ON(!node->checked);
995 	cowonly = node->cowonly;
996 	if (!cowonly) {
997 		rb_node = tree_insert(&cache->rb_root, node->bytenr,
998 				      &node->rb_node);
999 		BUG_ON(rb_node);
1000 		list_add_tail(&node->lower, &cache->leaves);
1001 	}
1002 
1003 	list_for_each_entry(edge, &node->upper, list[LOWER])
1004 		list_add_tail(&edge->list[UPPER], &list);
1005 
1006 	while (!list_empty(&list)) {
1007 		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1008 		list_del_init(&edge->list[UPPER]);
1009 		upper = edge->node[UPPER];
1010 		if (upper->detached) {
1011 			list_del(&edge->list[LOWER]);
1012 			lower = edge->node[LOWER];
1013 			free_backref_edge(cache, edge);
1014 			if (list_empty(&lower->upper))
1015 				list_add(&lower->list, &useless);
1016 			continue;
1017 		}
1018 
1019 		if (!RB_EMPTY_NODE(&upper->rb_node)) {
1020 			if (upper->lowest) {
1021 				list_del_init(&upper->lower);
1022 				upper->lowest = 0;
1023 			}
1024 
1025 			list_add_tail(&edge->list[UPPER], &upper->lower);
1026 			continue;
1027 		}
1028 
1029 		BUG_ON(!upper->checked);
1030 		BUG_ON(cowonly != upper->cowonly);
1031 		if (!cowonly) {
1032 			rb_node = tree_insert(&cache->rb_root, upper->bytenr,
1033 					      &upper->rb_node);
1034 			BUG_ON(rb_node);
1035 		}
1036 
1037 		list_add_tail(&edge->list[UPPER], &upper->lower);
1038 
1039 		list_for_each_entry(edge, &upper->upper, list[LOWER])
1040 			list_add_tail(&edge->list[UPPER], &list);
1041 	}
1042 	/*
1043 	 * process useless backref nodes. backref nodes for tree leaves
1044 	 * are deleted from the cache. backref nodes for upper level
1045 	 * tree blocks are left in the cache to avoid unnecessary backref
1046 	 * lookup.
1047 	 */
1048 	while (!list_empty(&useless)) {
1049 		upper = list_entry(useless.next, struct backref_node, list);
1050 		list_del_init(&upper->list);
1051 		BUG_ON(!list_empty(&upper->upper));
1052 		if (upper == node)
1053 			node = NULL;
1054 		if (upper->lowest) {
1055 			list_del_init(&upper->lower);
1056 			upper->lowest = 0;
1057 		}
1058 		while (!list_empty(&upper->lower)) {
1059 			edge = list_entry(upper->lower.next,
1060 					  struct backref_edge, list[UPPER]);
1061 			list_del(&edge->list[UPPER]);
1062 			list_del(&edge->list[LOWER]);
1063 			lower = edge->node[LOWER];
1064 			free_backref_edge(cache, edge);
1065 
1066 			if (list_empty(&lower->upper))
1067 				list_add(&lower->list, &useless);
1068 		}
1069 		__mark_block_processed(rc, upper);
1070 		if (upper->level > 0) {
1071 			list_add(&upper->list, &cache->detached);
1072 			upper->detached = 1;
1073 		} else {
1074 			rb_erase(&upper->rb_node, &cache->rb_root);
1075 			free_backref_node(cache, upper);
1076 		}
1077 	}
1078 out:
1079 	btrfs_free_path(path1);
1080 	btrfs_free_path(path2);
1081 	if (err) {
1082 		while (!list_empty(&useless)) {
1083 			lower = list_entry(useless.next,
1084 					   struct backref_node, upper);
1085 			list_del_init(&lower->upper);
1086 		}
1087 		upper = node;
1088 		INIT_LIST_HEAD(&list);
1089 		while (upper) {
1090 			if (RB_EMPTY_NODE(&upper->rb_node)) {
1091 				list_splice_tail(&upper->upper, &list);
1092 				free_backref_node(cache, upper);
1093 			}
1094 
1095 			if (list_empty(&list))
1096 				break;
1097 
1098 			edge = list_entry(list.next, struct backref_edge,
1099 					  list[LOWER]);
1100 			list_del(&edge->list[LOWER]);
1101 			upper = edge->node[UPPER];
1102 			free_backref_edge(cache, edge);
1103 		}
1104 		return ERR_PTR(err);
1105 	}
1106 	BUG_ON(node && node->detached);
1107 	return node;
1108 }
1109 
1110 /*
1111  * helper to add backref node for the newly created snapshot.
1112  * the backref node is created by cloning backref node that
1113  * corresponds to root of source tree
1114  */
1115 static int clone_backref_node(struct btrfs_trans_handle *trans,
1116 			      struct reloc_control *rc,
1117 			      struct btrfs_root *src,
1118 			      struct btrfs_root *dest)
1119 {
1120 	struct btrfs_root *reloc_root = src->reloc_root;
1121 	struct backref_cache *cache = &rc->backref_cache;
1122 	struct backref_node *node = NULL;
1123 	struct backref_node *new_node;
1124 	struct backref_edge *edge;
1125 	struct backref_edge *new_edge;
1126 	struct rb_node *rb_node;
1127 
1128 	if (cache->last_trans > 0)
1129 		update_backref_cache(trans, cache);
1130 
1131 	rb_node = tree_search(&cache->rb_root, src->commit_root->start);
1132 	if (rb_node) {
1133 		node = rb_entry(rb_node, struct backref_node, rb_node);
1134 		if (node->detached)
1135 			node = NULL;
1136 		else
1137 			BUG_ON(node->new_bytenr != reloc_root->node->start);
1138 	}
1139 
1140 	if (!node) {
1141 		rb_node = tree_search(&cache->rb_root,
1142 				      reloc_root->commit_root->start);
1143 		if (rb_node) {
1144 			node = rb_entry(rb_node, struct backref_node,
1145 					rb_node);
1146 			BUG_ON(node->detached);
1147 		}
1148 	}
1149 
1150 	if (!node)
1151 		return 0;
1152 
1153 	new_node = alloc_backref_node(cache);
1154 	if (!new_node)
1155 		return -ENOMEM;
1156 
1157 	new_node->bytenr = dest->node->start;
1158 	new_node->level = node->level;
1159 	new_node->lowest = node->lowest;
1160 	new_node->root = dest;
1161 
1162 	if (!node->lowest) {
1163 		list_for_each_entry(edge, &node->lower, list[UPPER]) {
1164 			new_edge = alloc_backref_edge(cache);
1165 			if (!new_edge)
1166 				goto fail;
1167 
1168 			new_edge->node[UPPER] = new_node;
1169 			new_edge->node[LOWER] = edge->node[LOWER];
1170 			list_add_tail(&new_edge->list[UPPER],
1171 				      &new_node->lower);
1172 		}
1173 	}
1174 
1175 	rb_node = tree_insert(&cache->rb_root, new_node->bytenr,
1176 			      &new_node->rb_node);
1177 	BUG_ON(rb_node);
1178 
1179 	if (!new_node->lowest) {
1180 		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
1181 			list_add_tail(&new_edge->list[LOWER],
1182 				      &new_edge->node[LOWER]->upper);
1183 		}
1184 	}
1185 	return 0;
1186 fail:
1187 	while (!list_empty(&new_node->lower)) {
1188 		new_edge = list_entry(new_node->lower.next,
1189 				      struct backref_edge, list[UPPER]);
1190 		list_del(&new_edge->list[UPPER]);
1191 		free_backref_edge(cache, new_edge);
1192 	}
1193 	free_backref_node(cache, new_node);
1194 	return -ENOMEM;
1195 }
1196 
1197 /*
1198  * helper to add 'address of tree root -> reloc tree' mapping
1199  */
1200 static int __add_reloc_root(struct btrfs_root *root)
1201 {
1202 	struct rb_node *rb_node;
1203 	struct mapping_node *node;
1204 	struct reloc_control *rc = root->fs_info->reloc_ctl;
1205 
1206 	node = kmalloc(sizeof(*node), GFP_NOFS);
1207 	BUG_ON(!node);
1208 
1209 	node->bytenr = root->node->start;
1210 	node->data = root;
1211 
1212 	spin_lock(&rc->reloc_root_tree.lock);
1213 	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1214 			      node->bytenr, &node->rb_node);
1215 	spin_unlock(&rc->reloc_root_tree.lock);
1216 	BUG_ON(rb_node);
1217 
1218 	list_add_tail(&root->root_list, &rc->reloc_roots);
1219 	return 0;
1220 }
1221 
1222 /*
1223  * helper to update/delete the 'address of tree root -> reloc tree'
1224  * mapping
1225  */
1226 static int __update_reloc_root(struct btrfs_root *root, int del)
1227 {
1228 	struct rb_node *rb_node;
1229 	struct mapping_node *node = NULL;
1230 	struct reloc_control *rc = root->fs_info->reloc_ctl;
1231 
1232 	spin_lock(&rc->reloc_root_tree.lock);
1233 	rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1234 			      root->commit_root->start);
1235 	if (rb_node) {
1236 		node = rb_entry(rb_node, struct mapping_node, rb_node);
1237 		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1238 	}
1239 	spin_unlock(&rc->reloc_root_tree.lock);
1240 
1241 	BUG_ON((struct btrfs_root *)node->data != root);
1242 
1243 	if (!del) {
1244 		spin_lock(&rc->reloc_root_tree.lock);
1245 		node->bytenr = root->node->start;
1246 		rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1247 				      node->bytenr, &node->rb_node);
1248 		spin_unlock(&rc->reloc_root_tree.lock);
1249 		BUG_ON(rb_node);
1250 	} else {
1251 		list_del_init(&root->root_list);
1252 		kfree(node);
1253 	}
1254 	return 0;
1255 }
1256 
1257 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
1258 					struct btrfs_root *root, u64 objectid)
1259 {
1260 	struct btrfs_root *reloc_root;
1261 	struct extent_buffer *eb;
1262 	struct btrfs_root_item *root_item;
1263 	struct btrfs_key root_key;
1264 	int ret;
1265 
1266 	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
1267 	BUG_ON(!root_item);
1268 
1269 	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
1270 	root_key.type = BTRFS_ROOT_ITEM_KEY;
1271 	root_key.offset = objectid;
1272 
1273 	if (root->root_key.objectid == objectid) {
1274 		/* called by btrfs_init_reloc_root */
1275 		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
1276 				      BTRFS_TREE_RELOC_OBJECTID);
1277 		BUG_ON(ret);
1278 
1279 		btrfs_set_root_last_snapshot(&root->root_item,
1280 					     trans->transid - 1);
1281 	} else {
1282 		/*
1283 		 * called by btrfs_reloc_post_snapshot_hook.
1284 		 * the source tree is a reloc tree, all tree blocks
1285 		 * modified after it was created have RELOC flag
1286 		 * set in their headers. so it's OK to not update
1287 		 * the 'last_snapshot'.
1288 		 */
1289 		ret = btrfs_copy_root(trans, root, root->node, &eb,
1290 				      BTRFS_TREE_RELOC_OBJECTID);
1291 		BUG_ON(ret);
1292 	}
1293 
1294 	memcpy(root_item, &root->root_item, sizeof(*root_item));
1295 	btrfs_set_root_bytenr(root_item, eb->start);
1296 	btrfs_set_root_level(root_item, btrfs_header_level(eb));
1297 	btrfs_set_root_generation(root_item, trans->transid);
1298 
1299 	if (root->root_key.objectid == objectid) {
1300 		btrfs_set_root_refs(root_item, 0);
1301 		memset(&root_item->drop_progress, 0,
1302 		       sizeof(struct btrfs_disk_key));
1303 		root_item->drop_level = 0;
1304 	}
1305 
1306 	btrfs_tree_unlock(eb);
1307 	free_extent_buffer(eb);
1308 
1309 	ret = btrfs_insert_root(trans, root->fs_info->tree_root,
1310 				&root_key, root_item);
1311 	BUG_ON(ret);
1312 	kfree(root_item);
1313 
1314 	reloc_root = btrfs_read_fs_root_no_radix(root->fs_info->tree_root,
1315 						 &root_key);
1316 	BUG_ON(IS_ERR(reloc_root));
1317 	reloc_root->last_trans = trans->transid;
1318 	return reloc_root;
1319 }
1320 
1321 /*
1322  * create reloc tree for a given fs tree. reloc tree is just a
1323  * snapshot of the fs tree with special root objectid.
1324  */
1325 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
1326 			  struct btrfs_root *root)
1327 {
1328 	struct btrfs_root *reloc_root;
1329 	struct reloc_control *rc = root->fs_info->reloc_ctl;
1330 	int clear_rsv = 0;
1331 
1332 	if (root->reloc_root) {
1333 		reloc_root = root->reloc_root;
1334 		reloc_root->last_trans = trans->transid;
1335 		return 0;
1336 	}
1337 
1338 	if (!rc || !rc->create_reloc_tree ||
1339 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1340 		return 0;
1341 
1342 	if (!trans->block_rsv) {
1343 		trans->block_rsv = rc->block_rsv;
1344 		clear_rsv = 1;
1345 	}
1346 	reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
1347 	if (clear_rsv)
1348 		trans->block_rsv = NULL;
1349 
1350 	__add_reloc_root(reloc_root);
1351 	root->reloc_root = reloc_root;
1352 	return 0;
1353 }
1354 
1355 /*
1356  * update root item of reloc tree
1357  */
1358 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
1359 			    struct btrfs_root *root)
1360 {
1361 	struct btrfs_root *reloc_root;
1362 	struct btrfs_root_item *root_item;
1363 	int del = 0;
1364 	int ret;
1365 
1366 	if (!root->reloc_root)
1367 		return 0;
1368 
1369 	reloc_root = root->reloc_root;
1370 	root_item = &reloc_root->root_item;
1371 
1372 	if (root->fs_info->reloc_ctl->merge_reloc_tree &&
1373 	    btrfs_root_refs(root_item) == 0) {
1374 		root->reloc_root = NULL;
1375 		del = 1;
1376 	}
1377 
1378 	__update_reloc_root(reloc_root, del);
1379 
1380 	if (reloc_root->commit_root != reloc_root->node) {
1381 		btrfs_set_root_node(root_item, reloc_root->node);
1382 		free_extent_buffer(reloc_root->commit_root);
1383 		reloc_root->commit_root = btrfs_root_node(reloc_root);
1384 	}
1385 
1386 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
1387 				&reloc_root->root_key, root_item);
1388 	BUG_ON(ret);
1389 	return 0;
1390 }
1391 
1392 /*
1393  * helper to find first cached inode with inode number >= objectid
1394  * in a subvolume
1395  */
1396 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
1397 {
1398 	struct rb_node *node;
1399 	struct rb_node *prev;
1400 	struct btrfs_inode *entry;
1401 	struct inode *inode;
1402 
1403 	spin_lock(&root->inode_lock);
1404 again:
1405 	node = root->inode_tree.rb_node;
1406 	prev = NULL;
1407 	while (node) {
1408 		prev = node;
1409 		entry = rb_entry(node, struct btrfs_inode, rb_node);
1410 
1411 		if (objectid < entry->vfs_inode.i_ino)
1412 			node = node->rb_left;
1413 		else if (objectid > entry->vfs_inode.i_ino)
1414 			node = node->rb_right;
1415 		else
1416 			break;
1417 	}
1418 	if (!node) {
1419 		while (prev) {
1420 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
1421 			if (objectid <= entry->vfs_inode.i_ino) {
1422 				node = prev;
1423 				break;
1424 			}
1425 			prev = rb_next(prev);
1426 		}
1427 	}
1428 	while (node) {
1429 		entry = rb_entry(node, struct btrfs_inode, rb_node);
1430 		inode = igrab(&entry->vfs_inode);
1431 		if (inode) {
1432 			spin_unlock(&root->inode_lock);
1433 			return inode;
1434 		}
1435 
1436 		objectid = entry->vfs_inode.i_ino + 1;
1437 		if (cond_resched_lock(&root->inode_lock))
1438 			goto again;
1439 
1440 		node = rb_next(node);
1441 	}
1442 	spin_unlock(&root->inode_lock);
1443 	return NULL;
1444 }
1445 
1446 static int in_block_group(u64 bytenr,
1447 			  struct btrfs_block_group_cache *block_group)
1448 {
1449 	if (bytenr >= block_group->key.objectid &&
1450 	    bytenr < block_group->key.objectid + block_group->key.offset)
1451 		return 1;
1452 	return 0;
1453 }
1454 
1455 /*
1456  * get new location of data
1457  */
1458 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1459 			    u64 bytenr, u64 num_bytes)
1460 {
1461 	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1462 	struct btrfs_path *path;
1463 	struct btrfs_file_extent_item *fi;
1464 	struct extent_buffer *leaf;
1465 	int ret;
1466 
1467 	path = btrfs_alloc_path();
1468 	if (!path)
1469 		return -ENOMEM;
1470 
1471 	bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1472 	ret = btrfs_lookup_file_extent(NULL, root, path, reloc_inode->i_ino,
1473 				       bytenr, 0);
1474 	if (ret < 0)
1475 		goto out;
1476 	if (ret > 0) {
1477 		ret = -ENOENT;
1478 		goto out;
1479 	}
1480 
1481 	leaf = path->nodes[0];
1482 	fi = btrfs_item_ptr(leaf, path->slots[0],
1483 			    struct btrfs_file_extent_item);
1484 
1485 	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1486 	       btrfs_file_extent_compression(leaf, fi) ||
1487 	       btrfs_file_extent_encryption(leaf, fi) ||
1488 	       btrfs_file_extent_other_encoding(leaf, fi));
1489 
1490 	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1491 		ret = 1;
1492 		goto out;
1493 	}
1494 
1495 	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1496 	ret = 0;
1497 out:
1498 	btrfs_free_path(path);
1499 	return ret;
1500 }
1501 
1502 /*
1503  * update file extent items in the tree leaf to point to
1504  * the new locations.
1505  */
1506 static noinline_for_stack
1507 int replace_file_extents(struct btrfs_trans_handle *trans,
1508 			 struct reloc_control *rc,
1509 			 struct btrfs_root *root,
1510 			 struct extent_buffer *leaf)
1511 {
1512 	struct btrfs_key key;
1513 	struct btrfs_file_extent_item *fi;
1514 	struct inode *inode = NULL;
1515 	u64 parent;
1516 	u64 bytenr;
1517 	u64 new_bytenr = 0;
1518 	u64 num_bytes;
1519 	u64 end;
1520 	u32 nritems;
1521 	u32 i;
1522 	int ret;
1523 	int first = 1;
1524 	int dirty = 0;
1525 
1526 	if (rc->stage != UPDATE_DATA_PTRS)
1527 		return 0;
1528 
1529 	/* reloc trees always use full backref */
1530 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1531 		parent = leaf->start;
1532 	else
1533 		parent = 0;
1534 
1535 	nritems = btrfs_header_nritems(leaf);
1536 	for (i = 0; i < nritems; i++) {
1537 		cond_resched();
1538 		btrfs_item_key_to_cpu(leaf, &key, i);
1539 		if (key.type != BTRFS_EXTENT_DATA_KEY)
1540 			continue;
1541 		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1542 		if (btrfs_file_extent_type(leaf, fi) ==
1543 		    BTRFS_FILE_EXTENT_INLINE)
1544 			continue;
1545 		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1546 		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1547 		if (bytenr == 0)
1548 			continue;
1549 		if (!in_block_group(bytenr, rc->block_group))
1550 			continue;
1551 
1552 		/*
1553 		 * if we are modifying block in fs tree, wait for readpage
1554 		 * to complete and drop the extent cache
1555 		 */
1556 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1557 			if (first) {
1558 				inode = find_next_inode(root, key.objectid);
1559 				first = 0;
1560 			} else if (inode && inode->i_ino < key.objectid) {
1561 				btrfs_add_delayed_iput(inode);
1562 				inode = find_next_inode(root, key.objectid);
1563 			}
1564 			if (inode && inode->i_ino == key.objectid) {
1565 				end = key.offset +
1566 				      btrfs_file_extent_num_bytes(leaf, fi);
1567 				WARN_ON(!IS_ALIGNED(key.offset,
1568 						    root->sectorsize));
1569 				WARN_ON(!IS_ALIGNED(end, root->sectorsize));
1570 				end--;
1571 				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1572 						      key.offset, end,
1573 						      GFP_NOFS);
1574 				if (!ret)
1575 					continue;
1576 
1577 				btrfs_drop_extent_cache(inode, key.offset, end,
1578 							1);
1579 				unlock_extent(&BTRFS_I(inode)->io_tree,
1580 					      key.offset, end, GFP_NOFS);
1581 			}
1582 		}
1583 
1584 		ret = get_new_location(rc->data_inode, &new_bytenr,
1585 				       bytenr, num_bytes);
1586 		if (ret > 0) {
1587 			WARN_ON(1);
1588 			continue;
1589 		}
1590 		BUG_ON(ret < 0);
1591 
1592 		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1593 		dirty = 1;
1594 
1595 		key.offset -= btrfs_file_extent_offset(leaf, fi);
1596 		ret = btrfs_inc_extent_ref(trans, root, new_bytenr,
1597 					   num_bytes, parent,
1598 					   btrfs_header_owner(leaf),
1599 					   key.objectid, key.offset);
1600 		BUG_ON(ret);
1601 
1602 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1603 					parent, btrfs_header_owner(leaf),
1604 					key.objectid, key.offset);
1605 		BUG_ON(ret);
1606 	}
1607 	if (dirty)
1608 		btrfs_mark_buffer_dirty(leaf);
1609 	if (inode)
1610 		btrfs_add_delayed_iput(inode);
1611 	return 0;
1612 }
1613 
1614 static noinline_for_stack
1615 int memcmp_node_keys(struct extent_buffer *eb, int slot,
1616 		     struct btrfs_path *path, int level)
1617 {
1618 	struct btrfs_disk_key key1;
1619 	struct btrfs_disk_key key2;
1620 	btrfs_node_key(eb, &key1, slot);
1621 	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1622 	return memcmp(&key1, &key2, sizeof(key1));
1623 }
1624 
1625 /*
1626  * try to replace tree blocks in fs tree with the new blocks
1627  * in reloc tree. tree blocks haven't been modified since the
1628  * reloc tree was create can be replaced.
1629  *
1630  * if a block was replaced, level of the block + 1 is returned.
1631  * if no block got replaced, 0 is returned. if there are other
1632  * errors, a negative error number is returned.
1633  */
1634 static noinline_for_stack
1635 int replace_path(struct btrfs_trans_handle *trans,
1636 		 struct btrfs_root *dest, struct btrfs_root *src,
1637 		 struct btrfs_path *path, struct btrfs_key *next_key,
1638 		 int lowest_level, int max_level)
1639 {
1640 	struct extent_buffer *eb;
1641 	struct extent_buffer *parent;
1642 	struct btrfs_key key;
1643 	u64 old_bytenr;
1644 	u64 new_bytenr;
1645 	u64 old_ptr_gen;
1646 	u64 new_ptr_gen;
1647 	u64 last_snapshot;
1648 	u32 blocksize;
1649 	int cow = 0;
1650 	int level;
1651 	int ret;
1652 	int slot;
1653 
1654 	BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1655 	BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1656 
1657 	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1658 again:
1659 	slot = path->slots[lowest_level];
1660 	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1661 
1662 	eb = btrfs_lock_root_node(dest);
1663 	btrfs_set_lock_blocking(eb);
1664 	level = btrfs_header_level(eb);
1665 
1666 	if (level < lowest_level) {
1667 		btrfs_tree_unlock(eb);
1668 		free_extent_buffer(eb);
1669 		return 0;
1670 	}
1671 
1672 	if (cow) {
1673 		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
1674 		BUG_ON(ret);
1675 	}
1676 	btrfs_set_lock_blocking(eb);
1677 
1678 	if (next_key) {
1679 		next_key->objectid = (u64)-1;
1680 		next_key->type = (u8)-1;
1681 		next_key->offset = (u64)-1;
1682 	}
1683 
1684 	parent = eb;
1685 	while (1) {
1686 		level = btrfs_header_level(parent);
1687 		BUG_ON(level < lowest_level);
1688 
1689 		ret = btrfs_bin_search(parent, &key, level, &slot);
1690 		if (ret && slot > 0)
1691 			slot--;
1692 
1693 		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1694 			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1695 
1696 		old_bytenr = btrfs_node_blockptr(parent, slot);
1697 		blocksize = btrfs_level_size(dest, level - 1);
1698 		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1699 
1700 		if (level <= max_level) {
1701 			eb = path->nodes[level];
1702 			new_bytenr = btrfs_node_blockptr(eb,
1703 							path->slots[level]);
1704 			new_ptr_gen = btrfs_node_ptr_generation(eb,
1705 							path->slots[level]);
1706 		} else {
1707 			new_bytenr = 0;
1708 			new_ptr_gen = 0;
1709 		}
1710 
1711 		if (new_bytenr > 0 && new_bytenr == old_bytenr) {
1712 			WARN_ON(1);
1713 			ret = level;
1714 			break;
1715 		}
1716 
1717 		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1718 		    memcmp_node_keys(parent, slot, path, level)) {
1719 			if (level <= lowest_level) {
1720 				ret = 0;
1721 				break;
1722 			}
1723 
1724 			eb = read_tree_block(dest, old_bytenr, blocksize,
1725 					     old_ptr_gen);
1726 			btrfs_tree_lock(eb);
1727 			if (cow) {
1728 				ret = btrfs_cow_block(trans, dest, eb, parent,
1729 						      slot, &eb);
1730 				BUG_ON(ret);
1731 			}
1732 			btrfs_set_lock_blocking(eb);
1733 
1734 			btrfs_tree_unlock(parent);
1735 			free_extent_buffer(parent);
1736 
1737 			parent = eb;
1738 			continue;
1739 		}
1740 
1741 		if (!cow) {
1742 			btrfs_tree_unlock(parent);
1743 			free_extent_buffer(parent);
1744 			cow = 1;
1745 			goto again;
1746 		}
1747 
1748 		btrfs_node_key_to_cpu(path->nodes[level], &key,
1749 				      path->slots[level]);
1750 		btrfs_release_path(src, path);
1751 
1752 		path->lowest_level = level;
1753 		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1754 		path->lowest_level = 0;
1755 		BUG_ON(ret);
1756 
1757 		/*
1758 		 * swap blocks in fs tree and reloc tree.
1759 		 */
1760 		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1761 		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1762 		btrfs_mark_buffer_dirty(parent);
1763 
1764 		btrfs_set_node_blockptr(path->nodes[level],
1765 					path->slots[level], old_bytenr);
1766 		btrfs_set_node_ptr_generation(path->nodes[level],
1767 					      path->slots[level], old_ptr_gen);
1768 		btrfs_mark_buffer_dirty(path->nodes[level]);
1769 
1770 		ret = btrfs_inc_extent_ref(trans, src, old_bytenr, blocksize,
1771 					path->nodes[level]->start,
1772 					src->root_key.objectid, level - 1, 0);
1773 		BUG_ON(ret);
1774 		ret = btrfs_inc_extent_ref(trans, dest, new_bytenr, blocksize,
1775 					0, dest->root_key.objectid, level - 1,
1776 					0);
1777 		BUG_ON(ret);
1778 
1779 		ret = btrfs_free_extent(trans, src, new_bytenr, blocksize,
1780 					path->nodes[level]->start,
1781 					src->root_key.objectid, level - 1, 0);
1782 		BUG_ON(ret);
1783 
1784 		ret = btrfs_free_extent(trans, dest, old_bytenr, blocksize,
1785 					0, dest->root_key.objectid, level - 1,
1786 					0);
1787 		BUG_ON(ret);
1788 
1789 		btrfs_unlock_up_safe(path, 0);
1790 
1791 		ret = level;
1792 		break;
1793 	}
1794 	btrfs_tree_unlock(parent);
1795 	free_extent_buffer(parent);
1796 	return ret;
1797 }
1798 
1799 /*
1800  * helper to find next relocated block in reloc tree
1801  */
1802 static noinline_for_stack
1803 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1804 		       int *level)
1805 {
1806 	struct extent_buffer *eb;
1807 	int i;
1808 	u64 last_snapshot;
1809 	u32 nritems;
1810 
1811 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1812 
1813 	for (i = 0; i < *level; i++) {
1814 		free_extent_buffer(path->nodes[i]);
1815 		path->nodes[i] = NULL;
1816 	}
1817 
1818 	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1819 		eb = path->nodes[i];
1820 		nritems = btrfs_header_nritems(eb);
1821 		while (path->slots[i] + 1 < nritems) {
1822 			path->slots[i]++;
1823 			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1824 			    last_snapshot)
1825 				continue;
1826 
1827 			*level = i;
1828 			return 0;
1829 		}
1830 		free_extent_buffer(path->nodes[i]);
1831 		path->nodes[i] = NULL;
1832 	}
1833 	return 1;
1834 }
1835 
1836 /*
1837  * walk down reloc tree to find relocated block of lowest level
1838  */
1839 static noinline_for_stack
1840 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1841 			 int *level)
1842 {
1843 	struct extent_buffer *eb = NULL;
1844 	int i;
1845 	u64 bytenr;
1846 	u64 ptr_gen = 0;
1847 	u64 last_snapshot;
1848 	u32 blocksize;
1849 	u32 nritems;
1850 
1851 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1852 
1853 	for (i = *level; i > 0; i--) {
1854 		eb = path->nodes[i];
1855 		nritems = btrfs_header_nritems(eb);
1856 		while (path->slots[i] < nritems) {
1857 			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1858 			if (ptr_gen > last_snapshot)
1859 				break;
1860 			path->slots[i]++;
1861 		}
1862 		if (path->slots[i] >= nritems) {
1863 			if (i == *level)
1864 				break;
1865 			*level = i + 1;
1866 			return 0;
1867 		}
1868 		if (i == 1) {
1869 			*level = i;
1870 			return 0;
1871 		}
1872 
1873 		bytenr = btrfs_node_blockptr(eb, path->slots[i]);
1874 		blocksize = btrfs_level_size(root, i - 1);
1875 		eb = read_tree_block(root, bytenr, blocksize, ptr_gen);
1876 		BUG_ON(btrfs_header_level(eb) != i - 1);
1877 		path->nodes[i - 1] = eb;
1878 		path->slots[i - 1] = 0;
1879 	}
1880 	return 1;
1881 }
1882 
1883 /*
1884  * invalidate extent cache for file extents whose key in range of
1885  * [min_key, max_key)
1886  */
1887 static int invalidate_extent_cache(struct btrfs_root *root,
1888 				   struct btrfs_key *min_key,
1889 				   struct btrfs_key *max_key)
1890 {
1891 	struct inode *inode = NULL;
1892 	u64 objectid;
1893 	u64 start, end;
1894 
1895 	objectid = min_key->objectid;
1896 	while (1) {
1897 		cond_resched();
1898 		iput(inode);
1899 
1900 		if (objectid > max_key->objectid)
1901 			break;
1902 
1903 		inode = find_next_inode(root, objectid);
1904 		if (!inode)
1905 			break;
1906 
1907 		if (inode->i_ino > max_key->objectid) {
1908 			iput(inode);
1909 			break;
1910 		}
1911 
1912 		objectid = inode->i_ino + 1;
1913 		if (!S_ISREG(inode->i_mode))
1914 			continue;
1915 
1916 		if (unlikely(min_key->objectid == inode->i_ino)) {
1917 			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1918 				continue;
1919 			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1920 				start = 0;
1921 			else {
1922 				start = min_key->offset;
1923 				WARN_ON(!IS_ALIGNED(start, root->sectorsize));
1924 			}
1925 		} else {
1926 			start = 0;
1927 		}
1928 
1929 		if (unlikely(max_key->objectid == inode->i_ino)) {
1930 			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1931 				continue;
1932 			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1933 				end = (u64)-1;
1934 			} else {
1935 				if (max_key->offset == 0)
1936 					continue;
1937 				end = max_key->offset;
1938 				WARN_ON(!IS_ALIGNED(end, root->sectorsize));
1939 				end--;
1940 			}
1941 		} else {
1942 			end = (u64)-1;
1943 		}
1944 
1945 		/* the lock_extent waits for readpage to complete */
1946 		lock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
1947 		btrfs_drop_extent_cache(inode, start, end, 1);
1948 		unlock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
1949 	}
1950 	return 0;
1951 }
1952 
1953 static int find_next_key(struct btrfs_path *path, int level,
1954 			 struct btrfs_key *key)
1955 
1956 {
1957 	while (level < BTRFS_MAX_LEVEL) {
1958 		if (!path->nodes[level])
1959 			break;
1960 		if (path->slots[level] + 1 <
1961 		    btrfs_header_nritems(path->nodes[level])) {
1962 			btrfs_node_key_to_cpu(path->nodes[level], key,
1963 					      path->slots[level] + 1);
1964 			return 0;
1965 		}
1966 		level++;
1967 	}
1968 	return 1;
1969 }
1970 
1971 /*
1972  * merge the relocated tree blocks in reloc tree with corresponding
1973  * fs tree.
1974  */
1975 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
1976 					       struct btrfs_root *root)
1977 {
1978 	LIST_HEAD(inode_list);
1979 	struct btrfs_key key;
1980 	struct btrfs_key next_key;
1981 	struct btrfs_trans_handle *trans;
1982 	struct btrfs_root *reloc_root;
1983 	struct btrfs_root_item *root_item;
1984 	struct btrfs_path *path;
1985 	struct extent_buffer *leaf;
1986 	unsigned long nr;
1987 	int level;
1988 	int max_level;
1989 	int replaced = 0;
1990 	int ret;
1991 	int err = 0;
1992 	u32 min_reserved;
1993 
1994 	path = btrfs_alloc_path();
1995 	if (!path)
1996 		return -ENOMEM;
1997 
1998 	reloc_root = root->reloc_root;
1999 	root_item = &reloc_root->root_item;
2000 
2001 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2002 		level = btrfs_root_level(root_item);
2003 		extent_buffer_get(reloc_root->node);
2004 		path->nodes[level] = reloc_root->node;
2005 		path->slots[level] = 0;
2006 	} else {
2007 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2008 
2009 		level = root_item->drop_level;
2010 		BUG_ON(level == 0);
2011 		path->lowest_level = level;
2012 		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
2013 		path->lowest_level = 0;
2014 		if (ret < 0) {
2015 			btrfs_free_path(path);
2016 			return ret;
2017 		}
2018 
2019 		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
2020 				      path->slots[level]);
2021 		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
2022 
2023 		btrfs_unlock_up_safe(path, 0);
2024 	}
2025 
2026 	min_reserved = root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2027 	memset(&next_key, 0, sizeof(next_key));
2028 
2029 	while (1) {
2030 		trans = btrfs_start_transaction(root, 0);
2031 		BUG_ON(IS_ERR(trans));
2032 		trans->block_rsv = rc->block_rsv;
2033 
2034 		ret = btrfs_block_rsv_check(trans, root, rc->block_rsv,
2035 					    min_reserved, 0);
2036 		if (ret) {
2037 			BUG_ON(ret != -EAGAIN);
2038 			ret = btrfs_commit_transaction(trans, root);
2039 			BUG_ON(ret);
2040 			continue;
2041 		}
2042 
2043 		replaced = 0;
2044 		max_level = level;
2045 
2046 		ret = walk_down_reloc_tree(reloc_root, path, &level);
2047 		if (ret < 0) {
2048 			err = ret;
2049 			goto out;
2050 		}
2051 		if (ret > 0)
2052 			break;
2053 
2054 		if (!find_next_key(path, level, &key) &&
2055 		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
2056 			ret = 0;
2057 		} else {
2058 			ret = replace_path(trans, root, reloc_root, path,
2059 					   &next_key, level, max_level);
2060 		}
2061 		if (ret < 0) {
2062 			err = ret;
2063 			goto out;
2064 		}
2065 
2066 		if (ret > 0) {
2067 			level = ret;
2068 			btrfs_node_key_to_cpu(path->nodes[level], &key,
2069 					      path->slots[level]);
2070 			replaced = 1;
2071 		}
2072 
2073 		ret = walk_up_reloc_tree(reloc_root, path, &level);
2074 		if (ret > 0)
2075 			break;
2076 
2077 		BUG_ON(level == 0);
2078 		/*
2079 		 * save the merging progress in the drop_progress.
2080 		 * this is OK since root refs == 1 in this case.
2081 		 */
2082 		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
2083 			       path->slots[level]);
2084 		root_item->drop_level = level;
2085 
2086 		nr = trans->blocks_used;
2087 		btrfs_end_transaction_throttle(trans, root);
2088 
2089 		btrfs_btree_balance_dirty(root, nr);
2090 
2091 		if (replaced && rc->stage == UPDATE_DATA_PTRS)
2092 			invalidate_extent_cache(root, &key, &next_key);
2093 	}
2094 
2095 	/*
2096 	 * handle the case only one block in the fs tree need to be
2097 	 * relocated and the block is tree root.
2098 	 */
2099 	leaf = btrfs_lock_root_node(root);
2100 	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
2101 	btrfs_tree_unlock(leaf);
2102 	free_extent_buffer(leaf);
2103 	if (ret < 0)
2104 		err = ret;
2105 out:
2106 	btrfs_free_path(path);
2107 
2108 	if (err == 0) {
2109 		memset(&root_item->drop_progress, 0,
2110 		       sizeof(root_item->drop_progress));
2111 		root_item->drop_level = 0;
2112 		btrfs_set_root_refs(root_item, 0);
2113 		btrfs_update_reloc_root(trans, root);
2114 	}
2115 
2116 	nr = trans->blocks_used;
2117 	btrfs_end_transaction_throttle(trans, root);
2118 
2119 	btrfs_btree_balance_dirty(root, nr);
2120 
2121 	if (replaced && rc->stage == UPDATE_DATA_PTRS)
2122 		invalidate_extent_cache(root, &key, &next_key);
2123 
2124 	return err;
2125 }
2126 
2127 static noinline_for_stack
2128 int prepare_to_merge(struct reloc_control *rc, int err)
2129 {
2130 	struct btrfs_root *root = rc->extent_root;
2131 	struct btrfs_root *reloc_root;
2132 	struct btrfs_trans_handle *trans;
2133 	LIST_HEAD(reloc_roots);
2134 	u64 num_bytes = 0;
2135 	int ret;
2136 
2137 	mutex_lock(&root->fs_info->trans_mutex);
2138 	rc->merging_rsv_size += root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2139 	rc->merging_rsv_size += rc->nodes_relocated * 2;
2140 	mutex_unlock(&root->fs_info->trans_mutex);
2141 again:
2142 	if (!err) {
2143 		num_bytes = rc->merging_rsv_size;
2144 		ret = btrfs_block_rsv_add(NULL, root, rc->block_rsv,
2145 					  num_bytes);
2146 		if (ret)
2147 			err = ret;
2148 	}
2149 
2150 	trans = btrfs_join_transaction(rc->extent_root, 1);
2151 	if (IS_ERR(trans)) {
2152 		if (!err)
2153 			btrfs_block_rsv_release(rc->extent_root,
2154 						rc->block_rsv, num_bytes);
2155 		return PTR_ERR(trans);
2156 	}
2157 
2158 	if (!err) {
2159 		if (num_bytes != rc->merging_rsv_size) {
2160 			btrfs_end_transaction(trans, rc->extent_root);
2161 			btrfs_block_rsv_release(rc->extent_root,
2162 						rc->block_rsv, num_bytes);
2163 			goto again;
2164 		}
2165 	}
2166 
2167 	rc->merge_reloc_tree = 1;
2168 
2169 	while (!list_empty(&rc->reloc_roots)) {
2170 		reloc_root = list_entry(rc->reloc_roots.next,
2171 					struct btrfs_root, root_list);
2172 		list_del_init(&reloc_root->root_list);
2173 
2174 		root = read_fs_root(reloc_root->fs_info,
2175 				    reloc_root->root_key.offset);
2176 		BUG_ON(IS_ERR(root));
2177 		BUG_ON(root->reloc_root != reloc_root);
2178 
2179 		/*
2180 		 * set reference count to 1, so btrfs_recover_relocation
2181 		 * knows it should resumes merging
2182 		 */
2183 		if (!err)
2184 			btrfs_set_root_refs(&reloc_root->root_item, 1);
2185 		btrfs_update_reloc_root(trans, root);
2186 
2187 		list_add(&reloc_root->root_list, &reloc_roots);
2188 	}
2189 
2190 	list_splice(&reloc_roots, &rc->reloc_roots);
2191 
2192 	if (!err)
2193 		btrfs_commit_transaction(trans, rc->extent_root);
2194 	else
2195 		btrfs_end_transaction(trans, rc->extent_root);
2196 	return err;
2197 }
2198 
2199 static noinline_for_stack
2200 int merge_reloc_roots(struct reloc_control *rc)
2201 {
2202 	struct btrfs_root *root;
2203 	struct btrfs_root *reloc_root;
2204 	LIST_HEAD(reloc_roots);
2205 	int found = 0;
2206 	int ret;
2207 again:
2208 	root = rc->extent_root;
2209 	mutex_lock(&root->fs_info->trans_mutex);
2210 	list_splice_init(&rc->reloc_roots, &reloc_roots);
2211 	mutex_unlock(&root->fs_info->trans_mutex);
2212 
2213 	while (!list_empty(&reloc_roots)) {
2214 		found = 1;
2215 		reloc_root = list_entry(reloc_roots.next,
2216 					struct btrfs_root, root_list);
2217 
2218 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
2219 			root = read_fs_root(reloc_root->fs_info,
2220 					    reloc_root->root_key.offset);
2221 			BUG_ON(IS_ERR(root));
2222 			BUG_ON(root->reloc_root != reloc_root);
2223 
2224 			ret = merge_reloc_root(rc, root);
2225 			BUG_ON(ret);
2226 		} else {
2227 			list_del_init(&reloc_root->root_list);
2228 		}
2229 		btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0);
2230 	}
2231 
2232 	if (found) {
2233 		found = 0;
2234 		goto again;
2235 	}
2236 	BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2237 	return 0;
2238 }
2239 
2240 static void free_block_list(struct rb_root *blocks)
2241 {
2242 	struct tree_block *block;
2243 	struct rb_node *rb_node;
2244 	while ((rb_node = rb_first(blocks))) {
2245 		block = rb_entry(rb_node, struct tree_block, rb_node);
2246 		rb_erase(rb_node, blocks);
2247 		kfree(block);
2248 	}
2249 }
2250 
2251 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2252 				      struct btrfs_root *reloc_root)
2253 {
2254 	struct btrfs_root *root;
2255 
2256 	if (reloc_root->last_trans == trans->transid)
2257 		return 0;
2258 
2259 	root = read_fs_root(reloc_root->fs_info, reloc_root->root_key.offset);
2260 	BUG_ON(IS_ERR(root));
2261 	BUG_ON(root->reloc_root != reloc_root);
2262 
2263 	return btrfs_record_root_in_trans(trans, root);
2264 }
2265 
2266 static noinline_for_stack
2267 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2268 				     struct reloc_control *rc,
2269 				     struct backref_node *node,
2270 				     struct backref_edge *edges[], int *nr)
2271 {
2272 	struct backref_node *next;
2273 	struct btrfs_root *root;
2274 	int index = 0;
2275 
2276 	next = node;
2277 	while (1) {
2278 		cond_resched();
2279 		next = walk_up_backref(next, edges, &index);
2280 		root = next->root;
2281 		BUG_ON(!root);
2282 		BUG_ON(!root->ref_cows);
2283 
2284 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2285 			record_reloc_root_in_trans(trans, root);
2286 			break;
2287 		}
2288 
2289 		btrfs_record_root_in_trans(trans, root);
2290 		root = root->reloc_root;
2291 
2292 		if (next->new_bytenr != root->node->start) {
2293 			BUG_ON(next->new_bytenr);
2294 			BUG_ON(!list_empty(&next->list));
2295 			next->new_bytenr = root->node->start;
2296 			next->root = root;
2297 			list_add_tail(&next->list,
2298 				      &rc->backref_cache.changed);
2299 			__mark_block_processed(rc, next);
2300 			break;
2301 		}
2302 
2303 		WARN_ON(1);
2304 		root = NULL;
2305 		next = walk_down_backref(edges, &index);
2306 		if (!next || next->level <= node->level)
2307 			break;
2308 	}
2309 	if (!root)
2310 		return NULL;
2311 
2312 	*nr = index;
2313 	next = node;
2314 	/* setup backref node path for btrfs_reloc_cow_block */
2315 	while (1) {
2316 		rc->backref_cache.path[next->level] = next;
2317 		if (--index < 0)
2318 			break;
2319 		next = edges[index]->node[UPPER];
2320 	}
2321 	return root;
2322 }
2323 
2324 /*
2325  * select a tree root for relocation. return NULL if the block
2326  * is reference counted. we should use do_relocation() in this
2327  * case. return a tree root pointer if the block isn't reference
2328  * counted. return -ENOENT if the block is root of reloc tree.
2329  */
2330 static noinline_for_stack
2331 struct btrfs_root *select_one_root(struct btrfs_trans_handle *trans,
2332 				   struct backref_node *node)
2333 {
2334 	struct backref_node *next;
2335 	struct btrfs_root *root;
2336 	struct btrfs_root *fs_root = NULL;
2337 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2338 	int index = 0;
2339 
2340 	next = node;
2341 	while (1) {
2342 		cond_resched();
2343 		next = walk_up_backref(next, edges, &index);
2344 		root = next->root;
2345 		BUG_ON(!root);
2346 
2347 		/* no other choice for non-refernce counted tree */
2348 		if (!root->ref_cows)
2349 			return root;
2350 
2351 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2352 			fs_root = root;
2353 
2354 		if (next != node)
2355 			return NULL;
2356 
2357 		next = walk_down_backref(edges, &index);
2358 		if (!next || next->level <= node->level)
2359 			break;
2360 	}
2361 
2362 	if (!fs_root)
2363 		return ERR_PTR(-ENOENT);
2364 	return fs_root;
2365 }
2366 
2367 static noinline_for_stack
2368 u64 calcu_metadata_size(struct reloc_control *rc,
2369 			struct backref_node *node, int reserve)
2370 {
2371 	struct backref_node *next = node;
2372 	struct backref_edge *edge;
2373 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2374 	u64 num_bytes = 0;
2375 	int index = 0;
2376 
2377 	BUG_ON(reserve && node->processed);
2378 
2379 	while (next) {
2380 		cond_resched();
2381 		while (1) {
2382 			if (next->processed && (reserve || next != node))
2383 				break;
2384 
2385 			num_bytes += btrfs_level_size(rc->extent_root,
2386 						      next->level);
2387 
2388 			if (list_empty(&next->upper))
2389 				break;
2390 
2391 			edge = list_entry(next->upper.next,
2392 					  struct backref_edge, list[LOWER]);
2393 			edges[index++] = edge;
2394 			next = edge->node[UPPER];
2395 		}
2396 		next = walk_down_backref(edges, &index);
2397 	}
2398 	return num_bytes;
2399 }
2400 
2401 static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2402 				  struct reloc_control *rc,
2403 				  struct backref_node *node)
2404 {
2405 	struct btrfs_root *root = rc->extent_root;
2406 	u64 num_bytes;
2407 	int ret;
2408 
2409 	num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2410 
2411 	trans->block_rsv = rc->block_rsv;
2412 	ret = btrfs_block_rsv_add(trans, root, rc->block_rsv, num_bytes);
2413 	if (ret) {
2414 		if (ret == -EAGAIN)
2415 			rc->commit_transaction = 1;
2416 		return ret;
2417 	}
2418 
2419 	return 0;
2420 }
2421 
2422 static void release_metadata_space(struct reloc_control *rc,
2423 				   struct backref_node *node)
2424 {
2425 	u64 num_bytes = calcu_metadata_size(rc, node, 0) * 2;
2426 	btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, num_bytes);
2427 }
2428 
2429 /*
2430  * relocate a block tree, and then update pointers in upper level
2431  * blocks that reference the block to point to the new location.
2432  *
2433  * if called by link_to_upper, the block has already been relocated.
2434  * in that case this function just updates pointers.
2435  */
2436 static int do_relocation(struct btrfs_trans_handle *trans,
2437 			 struct reloc_control *rc,
2438 			 struct backref_node *node,
2439 			 struct btrfs_key *key,
2440 			 struct btrfs_path *path, int lowest)
2441 {
2442 	struct backref_node *upper;
2443 	struct backref_edge *edge;
2444 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2445 	struct btrfs_root *root;
2446 	struct extent_buffer *eb;
2447 	u32 blocksize;
2448 	u64 bytenr;
2449 	u64 generation;
2450 	int nr;
2451 	int slot;
2452 	int ret;
2453 	int err = 0;
2454 
2455 	BUG_ON(lowest && node->eb);
2456 
2457 	path->lowest_level = node->level + 1;
2458 	rc->backref_cache.path[node->level] = node;
2459 	list_for_each_entry(edge, &node->upper, list[LOWER]) {
2460 		cond_resched();
2461 
2462 		upper = edge->node[UPPER];
2463 		root = select_reloc_root(trans, rc, upper, edges, &nr);
2464 		BUG_ON(!root);
2465 
2466 		if (upper->eb && !upper->locked) {
2467 			if (!lowest) {
2468 				ret = btrfs_bin_search(upper->eb, key,
2469 						       upper->level, &slot);
2470 				BUG_ON(ret);
2471 				bytenr = btrfs_node_blockptr(upper->eb, slot);
2472 				if (node->eb->start == bytenr)
2473 					goto next;
2474 			}
2475 			drop_node_buffer(upper);
2476 		}
2477 
2478 		if (!upper->eb) {
2479 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2480 			if (ret < 0) {
2481 				err = ret;
2482 				break;
2483 			}
2484 			BUG_ON(ret > 0);
2485 
2486 			if (!upper->eb) {
2487 				upper->eb = path->nodes[upper->level];
2488 				path->nodes[upper->level] = NULL;
2489 			} else {
2490 				BUG_ON(upper->eb != path->nodes[upper->level]);
2491 			}
2492 
2493 			upper->locked = 1;
2494 			path->locks[upper->level] = 0;
2495 
2496 			slot = path->slots[upper->level];
2497 			btrfs_release_path(NULL, path);
2498 		} else {
2499 			ret = btrfs_bin_search(upper->eb, key, upper->level,
2500 					       &slot);
2501 			BUG_ON(ret);
2502 		}
2503 
2504 		bytenr = btrfs_node_blockptr(upper->eb, slot);
2505 		if (lowest) {
2506 			BUG_ON(bytenr != node->bytenr);
2507 		} else {
2508 			if (node->eb->start == bytenr)
2509 				goto next;
2510 		}
2511 
2512 		blocksize = btrfs_level_size(root, node->level);
2513 		generation = btrfs_node_ptr_generation(upper->eb, slot);
2514 		eb = read_tree_block(root, bytenr, blocksize, generation);
2515 		btrfs_tree_lock(eb);
2516 		btrfs_set_lock_blocking(eb);
2517 
2518 		if (!node->eb) {
2519 			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2520 					      slot, &eb);
2521 			btrfs_tree_unlock(eb);
2522 			free_extent_buffer(eb);
2523 			if (ret < 0) {
2524 				err = ret;
2525 				goto next;
2526 			}
2527 			BUG_ON(node->eb != eb);
2528 		} else {
2529 			btrfs_set_node_blockptr(upper->eb, slot,
2530 						node->eb->start);
2531 			btrfs_set_node_ptr_generation(upper->eb, slot,
2532 						      trans->transid);
2533 			btrfs_mark_buffer_dirty(upper->eb);
2534 
2535 			ret = btrfs_inc_extent_ref(trans, root,
2536 						node->eb->start, blocksize,
2537 						upper->eb->start,
2538 						btrfs_header_owner(upper->eb),
2539 						node->level, 0);
2540 			BUG_ON(ret);
2541 
2542 			ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2543 			BUG_ON(ret);
2544 		}
2545 next:
2546 		if (!upper->pending)
2547 			drop_node_buffer(upper);
2548 		else
2549 			unlock_node_buffer(upper);
2550 		if (err)
2551 			break;
2552 	}
2553 
2554 	if (!err && node->pending) {
2555 		drop_node_buffer(node);
2556 		list_move_tail(&node->list, &rc->backref_cache.changed);
2557 		node->pending = 0;
2558 	}
2559 
2560 	path->lowest_level = 0;
2561 	BUG_ON(err == -ENOSPC);
2562 	return err;
2563 }
2564 
2565 static int link_to_upper(struct btrfs_trans_handle *trans,
2566 			 struct reloc_control *rc,
2567 			 struct backref_node *node,
2568 			 struct btrfs_path *path)
2569 {
2570 	struct btrfs_key key;
2571 
2572 	btrfs_node_key_to_cpu(node->eb, &key, 0);
2573 	return do_relocation(trans, rc, node, &key, path, 0);
2574 }
2575 
2576 static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2577 				struct reloc_control *rc,
2578 				struct btrfs_path *path, int err)
2579 {
2580 	LIST_HEAD(list);
2581 	struct backref_cache *cache = &rc->backref_cache;
2582 	struct backref_node *node;
2583 	int level;
2584 	int ret;
2585 
2586 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2587 		while (!list_empty(&cache->pending[level])) {
2588 			node = list_entry(cache->pending[level].next,
2589 					  struct backref_node, list);
2590 			list_move_tail(&node->list, &list);
2591 			BUG_ON(!node->pending);
2592 
2593 			if (!err) {
2594 				ret = link_to_upper(trans, rc, node, path);
2595 				if (ret < 0)
2596 					err = ret;
2597 			}
2598 		}
2599 		list_splice_init(&list, &cache->pending[level]);
2600 	}
2601 	return err;
2602 }
2603 
2604 static void mark_block_processed(struct reloc_control *rc,
2605 				 u64 bytenr, u32 blocksize)
2606 {
2607 	set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1,
2608 			EXTENT_DIRTY, GFP_NOFS);
2609 }
2610 
2611 static void __mark_block_processed(struct reloc_control *rc,
2612 				   struct backref_node *node)
2613 {
2614 	u32 blocksize;
2615 	if (node->level == 0 ||
2616 	    in_block_group(node->bytenr, rc->block_group)) {
2617 		blocksize = btrfs_level_size(rc->extent_root, node->level);
2618 		mark_block_processed(rc, node->bytenr, blocksize);
2619 	}
2620 	node->processed = 1;
2621 }
2622 
2623 /*
2624  * mark a block and all blocks directly/indirectly reference the block
2625  * as processed.
2626  */
2627 static void update_processed_blocks(struct reloc_control *rc,
2628 				    struct backref_node *node)
2629 {
2630 	struct backref_node *next = node;
2631 	struct backref_edge *edge;
2632 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2633 	int index = 0;
2634 
2635 	while (next) {
2636 		cond_resched();
2637 		while (1) {
2638 			if (next->processed)
2639 				break;
2640 
2641 			__mark_block_processed(rc, next);
2642 
2643 			if (list_empty(&next->upper))
2644 				break;
2645 
2646 			edge = list_entry(next->upper.next,
2647 					  struct backref_edge, list[LOWER]);
2648 			edges[index++] = edge;
2649 			next = edge->node[UPPER];
2650 		}
2651 		next = walk_down_backref(edges, &index);
2652 	}
2653 }
2654 
2655 static int tree_block_processed(u64 bytenr, u32 blocksize,
2656 				struct reloc_control *rc)
2657 {
2658 	if (test_range_bit(&rc->processed_blocks, bytenr,
2659 			   bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2660 		return 1;
2661 	return 0;
2662 }
2663 
2664 static int get_tree_block_key(struct reloc_control *rc,
2665 			      struct tree_block *block)
2666 {
2667 	struct extent_buffer *eb;
2668 
2669 	BUG_ON(block->key_ready);
2670 	eb = read_tree_block(rc->extent_root, block->bytenr,
2671 			     block->key.objectid, block->key.offset);
2672 	WARN_ON(btrfs_header_level(eb) != block->level);
2673 	if (block->level == 0)
2674 		btrfs_item_key_to_cpu(eb, &block->key, 0);
2675 	else
2676 		btrfs_node_key_to_cpu(eb, &block->key, 0);
2677 	free_extent_buffer(eb);
2678 	block->key_ready = 1;
2679 	return 0;
2680 }
2681 
2682 static int reada_tree_block(struct reloc_control *rc,
2683 			    struct tree_block *block)
2684 {
2685 	BUG_ON(block->key_ready);
2686 	readahead_tree_block(rc->extent_root, block->bytenr,
2687 			     block->key.objectid, block->key.offset);
2688 	return 0;
2689 }
2690 
2691 /*
2692  * helper function to relocate a tree block
2693  */
2694 static int relocate_tree_block(struct btrfs_trans_handle *trans,
2695 				struct reloc_control *rc,
2696 				struct backref_node *node,
2697 				struct btrfs_key *key,
2698 				struct btrfs_path *path)
2699 {
2700 	struct btrfs_root *root;
2701 	int release = 0;
2702 	int ret = 0;
2703 
2704 	if (!node)
2705 		return 0;
2706 
2707 	BUG_ON(node->processed);
2708 	root = select_one_root(trans, node);
2709 	if (root == ERR_PTR(-ENOENT)) {
2710 		update_processed_blocks(rc, node);
2711 		goto out;
2712 	}
2713 
2714 	if (!root || root->ref_cows) {
2715 		ret = reserve_metadata_space(trans, rc, node);
2716 		if (ret)
2717 			goto out;
2718 		release = 1;
2719 	}
2720 
2721 	if (root) {
2722 		if (root->ref_cows) {
2723 			BUG_ON(node->new_bytenr);
2724 			BUG_ON(!list_empty(&node->list));
2725 			btrfs_record_root_in_trans(trans, root);
2726 			root = root->reloc_root;
2727 			node->new_bytenr = root->node->start;
2728 			node->root = root;
2729 			list_add_tail(&node->list, &rc->backref_cache.changed);
2730 		} else {
2731 			path->lowest_level = node->level;
2732 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2733 			btrfs_release_path(root, path);
2734 			if (ret > 0)
2735 				ret = 0;
2736 		}
2737 		if (!ret)
2738 			update_processed_blocks(rc, node);
2739 	} else {
2740 		ret = do_relocation(trans, rc, node, key, path, 1);
2741 	}
2742 out:
2743 	if (ret || node->level == 0 || node->cowonly) {
2744 		if (release)
2745 			release_metadata_space(rc, node);
2746 		remove_backref_node(&rc->backref_cache, node);
2747 	}
2748 	return ret;
2749 }
2750 
2751 /*
2752  * relocate a list of blocks
2753  */
2754 static noinline_for_stack
2755 int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2756 			 struct reloc_control *rc, struct rb_root *blocks)
2757 {
2758 	struct backref_node *node;
2759 	struct btrfs_path *path;
2760 	struct tree_block *block;
2761 	struct rb_node *rb_node;
2762 	int ret;
2763 	int err = 0;
2764 
2765 	path = btrfs_alloc_path();
2766 	if (!path)
2767 		return -ENOMEM;
2768 
2769 	rb_node = rb_first(blocks);
2770 	while (rb_node) {
2771 		block = rb_entry(rb_node, struct tree_block, rb_node);
2772 		if (!block->key_ready)
2773 			reada_tree_block(rc, block);
2774 		rb_node = rb_next(rb_node);
2775 	}
2776 
2777 	rb_node = rb_first(blocks);
2778 	while (rb_node) {
2779 		block = rb_entry(rb_node, struct tree_block, rb_node);
2780 		if (!block->key_ready)
2781 			get_tree_block_key(rc, block);
2782 		rb_node = rb_next(rb_node);
2783 	}
2784 
2785 	rb_node = rb_first(blocks);
2786 	while (rb_node) {
2787 		block = rb_entry(rb_node, struct tree_block, rb_node);
2788 
2789 		node = build_backref_tree(rc, &block->key,
2790 					  block->level, block->bytenr);
2791 		if (IS_ERR(node)) {
2792 			err = PTR_ERR(node);
2793 			goto out;
2794 		}
2795 
2796 		ret = relocate_tree_block(trans, rc, node, &block->key,
2797 					  path);
2798 		if (ret < 0) {
2799 			if (ret != -EAGAIN || rb_node == rb_first(blocks))
2800 				err = ret;
2801 			goto out;
2802 		}
2803 		rb_node = rb_next(rb_node);
2804 	}
2805 out:
2806 	free_block_list(blocks);
2807 	err = finish_pending_nodes(trans, rc, path, err);
2808 
2809 	btrfs_free_path(path);
2810 	return err;
2811 }
2812 
2813 static noinline_for_stack
2814 int prealloc_file_extent_cluster(struct inode *inode,
2815 				 struct file_extent_cluster *cluster)
2816 {
2817 	u64 alloc_hint = 0;
2818 	u64 start;
2819 	u64 end;
2820 	u64 offset = BTRFS_I(inode)->index_cnt;
2821 	u64 num_bytes;
2822 	int nr = 0;
2823 	int ret = 0;
2824 
2825 	BUG_ON(cluster->start != cluster->boundary[0]);
2826 	mutex_lock(&inode->i_mutex);
2827 
2828 	ret = btrfs_check_data_free_space(inode, cluster->end +
2829 					  1 - cluster->start);
2830 	if (ret)
2831 		goto out;
2832 
2833 	while (nr < cluster->nr) {
2834 		start = cluster->boundary[nr] - offset;
2835 		if (nr + 1 < cluster->nr)
2836 			end = cluster->boundary[nr + 1] - 1 - offset;
2837 		else
2838 			end = cluster->end - offset;
2839 
2840 		lock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
2841 		num_bytes = end + 1 - start;
2842 		ret = btrfs_prealloc_file_range(inode, 0, start,
2843 						num_bytes, num_bytes,
2844 						end + 1, &alloc_hint);
2845 		unlock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
2846 		if (ret)
2847 			break;
2848 		nr++;
2849 	}
2850 	btrfs_free_reserved_data_space(inode, cluster->end +
2851 				       1 - cluster->start);
2852 out:
2853 	mutex_unlock(&inode->i_mutex);
2854 	return ret;
2855 }
2856 
2857 static noinline_for_stack
2858 int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
2859 			 u64 block_start)
2860 {
2861 	struct btrfs_root *root = BTRFS_I(inode)->root;
2862 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2863 	struct extent_map *em;
2864 	int ret = 0;
2865 
2866 	em = alloc_extent_map(GFP_NOFS);
2867 	if (!em)
2868 		return -ENOMEM;
2869 
2870 	em->start = start;
2871 	em->len = end + 1 - start;
2872 	em->block_len = em->len;
2873 	em->block_start = block_start;
2874 	em->bdev = root->fs_info->fs_devices->latest_bdev;
2875 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
2876 
2877 	lock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
2878 	while (1) {
2879 		write_lock(&em_tree->lock);
2880 		ret = add_extent_mapping(em_tree, em);
2881 		write_unlock(&em_tree->lock);
2882 		if (ret != -EEXIST) {
2883 			free_extent_map(em);
2884 			break;
2885 		}
2886 		btrfs_drop_extent_cache(inode, start, end, 0);
2887 	}
2888 	unlock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
2889 	return ret;
2890 }
2891 
2892 static int relocate_file_extent_cluster(struct inode *inode,
2893 					struct file_extent_cluster *cluster)
2894 {
2895 	u64 page_start;
2896 	u64 page_end;
2897 	u64 offset = BTRFS_I(inode)->index_cnt;
2898 	unsigned long index;
2899 	unsigned long last_index;
2900 	struct page *page;
2901 	struct file_ra_state *ra;
2902 	int nr = 0;
2903 	int ret = 0;
2904 
2905 	if (!cluster->nr)
2906 		return 0;
2907 
2908 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
2909 	if (!ra)
2910 		return -ENOMEM;
2911 
2912 	ret = prealloc_file_extent_cluster(inode, cluster);
2913 	if (ret)
2914 		goto out;
2915 
2916 	file_ra_state_init(ra, inode->i_mapping);
2917 
2918 	ret = setup_extent_mapping(inode, cluster->start - offset,
2919 				   cluster->end - offset, cluster->start);
2920 	if (ret)
2921 		goto out;
2922 
2923 	index = (cluster->start - offset) >> PAGE_CACHE_SHIFT;
2924 	last_index = (cluster->end - offset) >> PAGE_CACHE_SHIFT;
2925 	while (index <= last_index) {
2926 		ret = btrfs_delalloc_reserve_metadata(inode, PAGE_CACHE_SIZE);
2927 		if (ret)
2928 			goto out;
2929 
2930 		page = find_lock_page(inode->i_mapping, index);
2931 		if (!page) {
2932 			page_cache_sync_readahead(inode->i_mapping,
2933 						  ra, NULL, index,
2934 						  last_index + 1 - index);
2935 			page = grab_cache_page(inode->i_mapping, index);
2936 			if (!page) {
2937 				btrfs_delalloc_release_metadata(inode,
2938 							PAGE_CACHE_SIZE);
2939 				ret = -ENOMEM;
2940 				goto out;
2941 			}
2942 		}
2943 
2944 		if (PageReadahead(page)) {
2945 			page_cache_async_readahead(inode->i_mapping,
2946 						   ra, NULL, page, index,
2947 						   last_index + 1 - index);
2948 		}
2949 
2950 		if (!PageUptodate(page)) {
2951 			btrfs_readpage(NULL, page);
2952 			lock_page(page);
2953 			if (!PageUptodate(page)) {
2954 				unlock_page(page);
2955 				page_cache_release(page);
2956 				btrfs_delalloc_release_metadata(inode,
2957 							PAGE_CACHE_SIZE);
2958 				ret = -EIO;
2959 				goto out;
2960 			}
2961 		}
2962 
2963 		page_start = (u64)page->index << PAGE_CACHE_SHIFT;
2964 		page_end = page_start + PAGE_CACHE_SIZE - 1;
2965 
2966 		lock_extent(&BTRFS_I(inode)->io_tree,
2967 			    page_start, page_end, GFP_NOFS);
2968 
2969 		set_page_extent_mapped(page);
2970 
2971 		if (nr < cluster->nr &&
2972 		    page_start + offset == cluster->boundary[nr]) {
2973 			set_extent_bits(&BTRFS_I(inode)->io_tree,
2974 					page_start, page_end,
2975 					EXTENT_BOUNDARY, GFP_NOFS);
2976 			nr++;
2977 		}
2978 
2979 		btrfs_set_extent_delalloc(inode, page_start, page_end, NULL);
2980 		set_page_dirty(page);
2981 
2982 		unlock_extent(&BTRFS_I(inode)->io_tree,
2983 			      page_start, page_end, GFP_NOFS);
2984 		unlock_page(page);
2985 		page_cache_release(page);
2986 
2987 		index++;
2988 		balance_dirty_pages_ratelimited(inode->i_mapping);
2989 		btrfs_throttle(BTRFS_I(inode)->root);
2990 	}
2991 	WARN_ON(nr != cluster->nr);
2992 out:
2993 	kfree(ra);
2994 	return ret;
2995 }
2996 
2997 static noinline_for_stack
2998 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
2999 			 struct file_extent_cluster *cluster)
3000 {
3001 	int ret;
3002 
3003 	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3004 		ret = relocate_file_extent_cluster(inode, cluster);
3005 		if (ret)
3006 			return ret;
3007 		cluster->nr = 0;
3008 	}
3009 
3010 	if (!cluster->nr)
3011 		cluster->start = extent_key->objectid;
3012 	else
3013 		BUG_ON(cluster->nr >= MAX_EXTENTS);
3014 	cluster->end = extent_key->objectid + extent_key->offset - 1;
3015 	cluster->boundary[cluster->nr] = extent_key->objectid;
3016 	cluster->nr++;
3017 
3018 	if (cluster->nr >= MAX_EXTENTS) {
3019 		ret = relocate_file_extent_cluster(inode, cluster);
3020 		if (ret)
3021 			return ret;
3022 		cluster->nr = 0;
3023 	}
3024 	return 0;
3025 }
3026 
3027 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3028 static int get_ref_objectid_v0(struct reloc_control *rc,
3029 			       struct btrfs_path *path,
3030 			       struct btrfs_key *extent_key,
3031 			       u64 *ref_objectid, int *path_change)
3032 {
3033 	struct btrfs_key key;
3034 	struct extent_buffer *leaf;
3035 	struct btrfs_extent_ref_v0 *ref0;
3036 	int ret;
3037 	int slot;
3038 
3039 	leaf = path->nodes[0];
3040 	slot = path->slots[0];
3041 	while (1) {
3042 		if (slot >= btrfs_header_nritems(leaf)) {
3043 			ret = btrfs_next_leaf(rc->extent_root, path);
3044 			if (ret < 0)
3045 				return ret;
3046 			BUG_ON(ret > 0);
3047 			leaf = path->nodes[0];
3048 			slot = path->slots[0];
3049 			if (path_change)
3050 				*path_change = 1;
3051 		}
3052 		btrfs_item_key_to_cpu(leaf, &key, slot);
3053 		if (key.objectid != extent_key->objectid)
3054 			return -ENOENT;
3055 
3056 		if (key.type != BTRFS_EXTENT_REF_V0_KEY) {
3057 			slot++;
3058 			continue;
3059 		}
3060 		ref0 = btrfs_item_ptr(leaf, slot,
3061 				struct btrfs_extent_ref_v0);
3062 		*ref_objectid = btrfs_ref_objectid_v0(leaf, ref0);
3063 		break;
3064 	}
3065 	return 0;
3066 }
3067 #endif
3068 
3069 /*
3070  * helper to add a tree block to the list.
3071  * the major work is getting the generation and level of the block
3072  */
3073 static int add_tree_block(struct reloc_control *rc,
3074 			  struct btrfs_key *extent_key,
3075 			  struct btrfs_path *path,
3076 			  struct rb_root *blocks)
3077 {
3078 	struct extent_buffer *eb;
3079 	struct btrfs_extent_item *ei;
3080 	struct btrfs_tree_block_info *bi;
3081 	struct tree_block *block;
3082 	struct rb_node *rb_node;
3083 	u32 item_size;
3084 	int level = -1;
3085 	int generation;
3086 
3087 	eb =  path->nodes[0];
3088 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
3089 
3090 	if (item_size >= sizeof(*ei) + sizeof(*bi)) {
3091 		ei = btrfs_item_ptr(eb, path->slots[0],
3092 				struct btrfs_extent_item);
3093 		bi = (struct btrfs_tree_block_info *)(ei + 1);
3094 		generation = btrfs_extent_generation(eb, ei);
3095 		level = btrfs_tree_block_level(eb, bi);
3096 	} else {
3097 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3098 		u64 ref_owner;
3099 		int ret;
3100 
3101 		BUG_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3102 		ret = get_ref_objectid_v0(rc, path, extent_key,
3103 					  &ref_owner, NULL);
3104 		if (ret < 0)
3105 			return ret;
3106 		BUG_ON(ref_owner >= BTRFS_MAX_LEVEL);
3107 		level = (int)ref_owner;
3108 		/* FIXME: get real generation */
3109 		generation = 0;
3110 #else
3111 		BUG();
3112 #endif
3113 	}
3114 
3115 	btrfs_release_path(rc->extent_root, path);
3116 
3117 	BUG_ON(level == -1);
3118 
3119 	block = kmalloc(sizeof(*block), GFP_NOFS);
3120 	if (!block)
3121 		return -ENOMEM;
3122 
3123 	block->bytenr = extent_key->objectid;
3124 	block->key.objectid = extent_key->offset;
3125 	block->key.offset = generation;
3126 	block->level = level;
3127 	block->key_ready = 0;
3128 
3129 	rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
3130 	BUG_ON(rb_node);
3131 
3132 	return 0;
3133 }
3134 
3135 /*
3136  * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3137  */
3138 static int __add_tree_block(struct reloc_control *rc,
3139 			    u64 bytenr, u32 blocksize,
3140 			    struct rb_root *blocks)
3141 {
3142 	struct btrfs_path *path;
3143 	struct btrfs_key key;
3144 	int ret;
3145 
3146 	if (tree_block_processed(bytenr, blocksize, rc))
3147 		return 0;
3148 
3149 	if (tree_search(blocks, bytenr))
3150 		return 0;
3151 
3152 	path = btrfs_alloc_path();
3153 	if (!path)
3154 		return -ENOMEM;
3155 
3156 	key.objectid = bytenr;
3157 	key.type = BTRFS_EXTENT_ITEM_KEY;
3158 	key.offset = blocksize;
3159 
3160 	path->search_commit_root = 1;
3161 	path->skip_locking = 1;
3162 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3163 	if (ret < 0)
3164 		goto out;
3165 	BUG_ON(ret);
3166 
3167 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3168 	ret = add_tree_block(rc, &key, path, blocks);
3169 out:
3170 	btrfs_free_path(path);
3171 	return ret;
3172 }
3173 
3174 /*
3175  * helper to check if the block use full backrefs for pointers in it
3176  */
3177 static int block_use_full_backref(struct reloc_control *rc,
3178 				  struct extent_buffer *eb)
3179 {
3180 	u64 flags;
3181 	int ret;
3182 
3183 	if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) ||
3184 	    btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV)
3185 		return 1;
3186 
3187 	ret = btrfs_lookup_extent_info(NULL, rc->extent_root,
3188 				       eb->start, eb->len, NULL, &flags);
3189 	BUG_ON(ret);
3190 
3191 	if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
3192 		ret = 1;
3193 	else
3194 		ret = 0;
3195 	return ret;
3196 }
3197 
3198 static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3199 				    struct inode *inode, u64 ino)
3200 {
3201 	struct btrfs_key key;
3202 	struct btrfs_path *path;
3203 	struct btrfs_root *root = fs_info->tree_root;
3204 	struct btrfs_trans_handle *trans;
3205 	unsigned long nr;
3206 	int ret = 0;
3207 
3208 	if (inode)
3209 		goto truncate;
3210 
3211 	key.objectid = ino;
3212 	key.type = BTRFS_INODE_ITEM_KEY;
3213 	key.offset = 0;
3214 
3215 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
3216 	if (!inode || IS_ERR(inode) || is_bad_inode(inode)) {
3217 		if (inode && !IS_ERR(inode))
3218 			iput(inode);
3219 		return -ENOENT;
3220 	}
3221 
3222 truncate:
3223 	path = btrfs_alloc_path();
3224 	if (!path) {
3225 		ret = -ENOMEM;
3226 		goto out;
3227 	}
3228 
3229 	trans = btrfs_join_transaction(root, 0);
3230 	if (IS_ERR(trans)) {
3231 		btrfs_free_path(path);
3232 		ret = PTR_ERR(trans);
3233 		goto out;
3234 	}
3235 
3236 	ret = btrfs_truncate_free_space_cache(root, trans, path, inode);
3237 
3238 	btrfs_free_path(path);
3239 	nr = trans->blocks_used;
3240 	btrfs_end_transaction(trans, root);
3241 	btrfs_btree_balance_dirty(root, nr);
3242 out:
3243 	iput(inode);
3244 	return ret;
3245 }
3246 
3247 /*
3248  * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY
3249  * this function scans fs tree to find blocks reference the data extent
3250  */
3251 static int find_data_references(struct reloc_control *rc,
3252 				struct btrfs_key *extent_key,
3253 				struct extent_buffer *leaf,
3254 				struct btrfs_extent_data_ref *ref,
3255 				struct rb_root *blocks)
3256 {
3257 	struct btrfs_path *path;
3258 	struct tree_block *block;
3259 	struct btrfs_root *root;
3260 	struct btrfs_file_extent_item *fi;
3261 	struct rb_node *rb_node;
3262 	struct btrfs_key key;
3263 	u64 ref_root;
3264 	u64 ref_objectid;
3265 	u64 ref_offset;
3266 	u32 ref_count;
3267 	u32 nritems;
3268 	int err = 0;
3269 	int added = 0;
3270 	int counted;
3271 	int ret;
3272 
3273 	ref_root = btrfs_extent_data_ref_root(leaf, ref);
3274 	ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref);
3275 	ref_offset = btrfs_extent_data_ref_offset(leaf, ref);
3276 	ref_count = btrfs_extent_data_ref_count(leaf, ref);
3277 
3278 	/*
3279 	 * This is an extent belonging to the free space cache, lets just delete
3280 	 * it and redo the search.
3281 	 */
3282 	if (ref_root == BTRFS_ROOT_TREE_OBJECTID) {
3283 		ret = delete_block_group_cache(rc->extent_root->fs_info,
3284 					       NULL, ref_objectid);
3285 		if (ret != -ENOENT)
3286 			return ret;
3287 		ret = 0;
3288 	}
3289 
3290 	path = btrfs_alloc_path();
3291 	if (!path)
3292 		return -ENOMEM;
3293 
3294 	root = read_fs_root(rc->extent_root->fs_info, ref_root);
3295 	if (IS_ERR(root)) {
3296 		err = PTR_ERR(root);
3297 		goto out;
3298 	}
3299 
3300 	key.objectid = ref_objectid;
3301 	key.offset = ref_offset;
3302 	key.type = BTRFS_EXTENT_DATA_KEY;
3303 
3304 	path->search_commit_root = 1;
3305 	path->skip_locking = 1;
3306 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3307 	if (ret < 0) {
3308 		err = ret;
3309 		goto out;
3310 	}
3311 
3312 	leaf = path->nodes[0];
3313 	nritems = btrfs_header_nritems(leaf);
3314 	/*
3315 	 * the references in tree blocks that use full backrefs
3316 	 * are not counted in
3317 	 */
3318 	if (block_use_full_backref(rc, leaf))
3319 		counted = 0;
3320 	else
3321 		counted = 1;
3322 	rb_node = tree_search(blocks, leaf->start);
3323 	if (rb_node) {
3324 		if (counted)
3325 			added = 1;
3326 		else
3327 			path->slots[0] = nritems;
3328 	}
3329 
3330 	while (ref_count > 0) {
3331 		while (path->slots[0] >= nritems) {
3332 			ret = btrfs_next_leaf(root, path);
3333 			if (ret < 0) {
3334 				err = ret;
3335 				goto out;
3336 			}
3337 			if (ret > 0) {
3338 				WARN_ON(1);
3339 				goto out;
3340 			}
3341 
3342 			leaf = path->nodes[0];
3343 			nritems = btrfs_header_nritems(leaf);
3344 			added = 0;
3345 
3346 			if (block_use_full_backref(rc, leaf))
3347 				counted = 0;
3348 			else
3349 				counted = 1;
3350 			rb_node = tree_search(blocks, leaf->start);
3351 			if (rb_node) {
3352 				if (counted)
3353 					added = 1;
3354 				else
3355 					path->slots[0] = nritems;
3356 			}
3357 		}
3358 
3359 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3360 		if (key.objectid != ref_objectid ||
3361 		    key.type != BTRFS_EXTENT_DATA_KEY) {
3362 			WARN_ON(1);
3363 			break;
3364 		}
3365 
3366 		fi = btrfs_item_ptr(leaf, path->slots[0],
3367 				    struct btrfs_file_extent_item);
3368 
3369 		if (btrfs_file_extent_type(leaf, fi) ==
3370 		    BTRFS_FILE_EXTENT_INLINE)
3371 			goto next;
3372 
3373 		if (btrfs_file_extent_disk_bytenr(leaf, fi) !=
3374 		    extent_key->objectid)
3375 			goto next;
3376 
3377 		key.offset -= btrfs_file_extent_offset(leaf, fi);
3378 		if (key.offset != ref_offset)
3379 			goto next;
3380 
3381 		if (counted)
3382 			ref_count--;
3383 		if (added)
3384 			goto next;
3385 
3386 		if (!tree_block_processed(leaf->start, leaf->len, rc)) {
3387 			block = kmalloc(sizeof(*block), GFP_NOFS);
3388 			if (!block) {
3389 				err = -ENOMEM;
3390 				break;
3391 			}
3392 			block->bytenr = leaf->start;
3393 			btrfs_item_key_to_cpu(leaf, &block->key, 0);
3394 			block->level = 0;
3395 			block->key_ready = 1;
3396 			rb_node = tree_insert(blocks, block->bytenr,
3397 					      &block->rb_node);
3398 			BUG_ON(rb_node);
3399 		}
3400 		if (counted)
3401 			added = 1;
3402 		else
3403 			path->slots[0] = nritems;
3404 next:
3405 		path->slots[0]++;
3406 
3407 	}
3408 out:
3409 	btrfs_free_path(path);
3410 	return err;
3411 }
3412 
3413 /*
3414  * hepler to find all tree blocks that reference a given data extent
3415  */
3416 static noinline_for_stack
3417 int add_data_references(struct reloc_control *rc,
3418 			struct btrfs_key *extent_key,
3419 			struct btrfs_path *path,
3420 			struct rb_root *blocks)
3421 {
3422 	struct btrfs_key key;
3423 	struct extent_buffer *eb;
3424 	struct btrfs_extent_data_ref *dref;
3425 	struct btrfs_extent_inline_ref *iref;
3426 	unsigned long ptr;
3427 	unsigned long end;
3428 	u32 blocksize = btrfs_level_size(rc->extent_root, 0);
3429 	int ret;
3430 	int err = 0;
3431 
3432 	eb = path->nodes[0];
3433 	ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
3434 	end = ptr + btrfs_item_size_nr(eb, path->slots[0]);
3435 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3436 	if (ptr + sizeof(struct btrfs_extent_item_v0) == end)
3437 		ptr = end;
3438 	else
3439 #endif
3440 		ptr += sizeof(struct btrfs_extent_item);
3441 
3442 	while (ptr < end) {
3443 		iref = (struct btrfs_extent_inline_ref *)ptr;
3444 		key.type = btrfs_extent_inline_ref_type(eb, iref);
3445 		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3446 			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3447 			ret = __add_tree_block(rc, key.offset, blocksize,
3448 					       blocks);
3449 		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3450 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
3451 			ret = find_data_references(rc, extent_key,
3452 						   eb, dref, blocks);
3453 		} else {
3454 			BUG();
3455 		}
3456 		ptr += btrfs_extent_inline_ref_size(key.type);
3457 	}
3458 	WARN_ON(ptr > end);
3459 
3460 	while (1) {
3461 		cond_resched();
3462 		eb = path->nodes[0];
3463 		if (path->slots[0] >= btrfs_header_nritems(eb)) {
3464 			ret = btrfs_next_leaf(rc->extent_root, path);
3465 			if (ret < 0) {
3466 				err = ret;
3467 				break;
3468 			}
3469 			if (ret > 0)
3470 				break;
3471 			eb = path->nodes[0];
3472 		}
3473 
3474 		btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
3475 		if (key.objectid != extent_key->objectid)
3476 			break;
3477 
3478 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3479 		if (key.type == BTRFS_SHARED_DATA_REF_KEY ||
3480 		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
3481 #else
3482 		BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
3483 		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3484 #endif
3485 			ret = __add_tree_block(rc, key.offset, blocksize,
3486 					       blocks);
3487 		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3488 			dref = btrfs_item_ptr(eb, path->slots[0],
3489 					      struct btrfs_extent_data_ref);
3490 			ret = find_data_references(rc, extent_key,
3491 						   eb, dref, blocks);
3492 		} else {
3493 			ret = 0;
3494 		}
3495 		if (ret) {
3496 			err = ret;
3497 			break;
3498 		}
3499 		path->slots[0]++;
3500 	}
3501 	btrfs_release_path(rc->extent_root, path);
3502 	if (err)
3503 		free_block_list(blocks);
3504 	return err;
3505 }
3506 
3507 /*
3508  * hepler to find next unprocessed extent
3509  */
3510 static noinline_for_stack
3511 int find_next_extent(struct btrfs_trans_handle *trans,
3512 		     struct reloc_control *rc, struct btrfs_path *path,
3513 		     struct btrfs_key *extent_key)
3514 {
3515 	struct btrfs_key key;
3516 	struct extent_buffer *leaf;
3517 	u64 start, end, last;
3518 	int ret;
3519 
3520 	last = rc->block_group->key.objectid + rc->block_group->key.offset;
3521 	while (1) {
3522 		cond_resched();
3523 		if (rc->search_start >= last) {
3524 			ret = 1;
3525 			break;
3526 		}
3527 
3528 		key.objectid = rc->search_start;
3529 		key.type = BTRFS_EXTENT_ITEM_KEY;
3530 		key.offset = 0;
3531 
3532 		path->search_commit_root = 1;
3533 		path->skip_locking = 1;
3534 		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3535 					0, 0);
3536 		if (ret < 0)
3537 			break;
3538 next:
3539 		leaf = path->nodes[0];
3540 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3541 			ret = btrfs_next_leaf(rc->extent_root, path);
3542 			if (ret != 0)
3543 				break;
3544 			leaf = path->nodes[0];
3545 		}
3546 
3547 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3548 		if (key.objectid >= last) {
3549 			ret = 1;
3550 			break;
3551 		}
3552 
3553 		if (key.type != BTRFS_EXTENT_ITEM_KEY ||
3554 		    key.objectid + key.offset <= rc->search_start) {
3555 			path->slots[0]++;
3556 			goto next;
3557 		}
3558 
3559 		ret = find_first_extent_bit(&rc->processed_blocks,
3560 					    key.objectid, &start, &end,
3561 					    EXTENT_DIRTY);
3562 
3563 		if (ret == 0 && start <= key.objectid) {
3564 			btrfs_release_path(rc->extent_root, path);
3565 			rc->search_start = end + 1;
3566 		} else {
3567 			rc->search_start = key.objectid + key.offset;
3568 			memcpy(extent_key, &key, sizeof(key));
3569 			return 0;
3570 		}
3571 	}
3572 	btrfs_release_path(rc->extent_root, path);
3573 	return ret;
3574 }
3575 
3576 static void set_reloc_control(struct reloc_control *rc)
3577 {
3578 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3579 	mutex_lock(&fs_info->trans_mutex);
3580 	fs_info->reloc_ctl = rc;
3581 	mutex_unlock(&fs_info->trans_mutex);
3582 }
3583 
3584 static void unset_reloc_control(struct reloc_control *rc)
3585 {
3586 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3587 	mutex_lock(&fs_info->trans_mutex);
3588 	fs_info->reloc_ctl = NULL;
3589 	mutex_unlock(&fs_info->trans_mutex);
3590 }
3591 
3592 static int check_extent_flags(u64 flags)
3593 {
3594 	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3595 	    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3596 		return 1;
3597 	if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
3598 	    !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3599 		return 1;
3600 	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3601 	    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
3602 		return 1;
3603 	return 0;
3604 }
3605 
3606 static noinline_for_stack
3607 int prepare_to_relocate(struct reloc_control *rc)
3608 {
3609 	struct btrfs_trans_handle *trans;
3610 	int ret;
3611 
3612 	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root);
3613 	if (!rc->block_rsv)
3614 		return -ENOMEM;
3615 
3616 	/*
3617 	 * reserve some space for creating reloc trees.
3618 	 * btrfs_init_reloc_root will use them when there
3619 	 * is no reservation in transaction handle.
3620 	 */
3621 	ret = btrfs_block_rsv_add(NULL, rc->extent_root, rc->block_rsv,
3622 				  rc->extent_root->nodesize * 256);
3623 	if (ret)
3624 		return ret;
3625 
3626 	rc->block_rsv->refill_used = 1;
3627 	btrfs_add_durable_block_rsv(rc->extent_root->fs_info, rc->block_rsv);
3628 
3629 	memset(&rc->cluster, 0, sizeof(rc->cluster));
3630 	rc->search_start = rc->block_group->key.objectid;
3631 	rc->extents_found = 0;
3632 	rc->nodes_relocated = 0;
3633 	rc->merging_rsv_size = 0;
3634 
3635 	rc->create_reloc_tree = 1;
3636 	set_reloc_control(rc);
3637 
3638 	trans = btrfs_join_transaction(rc->extent_root, 1);
3639 	BUG_ON(IS_ERR(trans));
3640 	btrfs_commit_transaction(trans, rc->extent_root);
3641 	return 0;
3642 }
3643 
3644 static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3645 {
3646 	struct rb_root blocks = RB_ROOT;
3647 	struct btrfs_key key;
3648 	struct btrfs_trans_handle *trans = NULL;
3649 	struct btrfs_path *path;
3650 	struct btrfs_extent_item *ei;
3651 	unsigned long nr;
3652 	u64 flags;
3653 	u32 item_size;
3654 	int ret;
3655 	int err = 0;
3656 
3657 	path = btrfs_alloc_path();
3658 	if (!path)
3659 		return -ENOMEM;
3660 
3661 	ret = prepare_to_relocate(rc);
3662 	if (ret) {
3663 		err = ret;
3664 		goto out_free;
3665 	}
3666 
3667 	while (1) {
3668 		trans = btrfs_start_transaction(rc->extent_root, 0);
3669 		BUG_ON(IS_ERR(trans));
3670 
3671 		if (update_backref_cache(trans, &rc->backref_cache)) {
3672 			btrfs_end_transaction(trans, rc->extent_root);
3673 			continue;
3674 		}
3675 
3676 		ret = find_next_extent(trans, rc, path, &key);
3677 		if (ret < 0)
3678 			err = ret;
3679 		if (ret != 0)
3680 			break;
3681 
3682 		rc->extents_found++;
3683 
3684 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3685 				    struct btrfs_extent_item);
3686 		item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
3687 		if (item_size >= sizeof(*ei)) {
3688 			flags = btrfs_extent_flags(path->nodes[0], ei);
3689 			ret = check_extent_flags(flags);
3690 			BUG_ON(ret);
3691 
3692 		} else {
3693 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3694 			u64 ref_owner;
3695 			int path_change = 0;
3696 
3697 			BUG_ON(item_size !=
3698 			       sizeof(struct btrfs_extent_item_v0));
3699 			ret = get_ref_objectid_v0(rc, path, &key, &ref_owner,
3700 						  &path_change);
3701 			if (ref_owner < BTRFS_FIRST_FREE_OBJECTID)
3702 				flags = BTRFS_EXTENT_FLAG_TREE_BLOCK;
3703 			else
3704 				flags = BTRFS_EXTENT_FLAG_DATA;
3705 
3706 			if (path_change) {
3707 				btrfs_release_path(rc->extent_root, path);
3708 
3709 				path->search_commit_root = 1;
3710 				path->skip_locking = 1;
3711 				ret = btrfs_search_slot(NULL, rc->extent_root,
3712 							&key, path, 0, 0);
3713 				if (ret < 0) {
3714 					err = ret;
3715 					break;
3716 				}
3717 				BUG_ON(ret > 0);
3718 			}
3719 #else
3720 			BUG();
3721 #endif
3722 		}
3723 
3724 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3725 			ret = add_tree_block(rc, &key, path, &blocks);
3726 		} else if (rc->stage == UPDATE_DATA_PTRS &&
3727 			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
3728 			ret = add_data_references(rc, &key, path, &blocks);
3729 		} else {
3730 			btrfs_release_path(rc->extent_root, path);
3731 			ret = 0;
3732 		}
3733 		if (ret < 0) {
3734 			err = ret;
3735 			break;
3736 		}
3737 
3738 		if (!RB_EMPTY_ROOT(&blocks)) {
3739 			ret = relocate_tree_blocks(trans, rc, &blocks);
3740 			if (ret < 0) {
3741 				if (ret != -EAGAIN) {
3742 					err = ret;
3743 					break;
3744 				}
3745 				rc->extents_found--;
3746 				rc->search_start = key.objectid;
3747 			}
3748 		}
3749 
3750 		ret = btrfs_block_rsv_check(trans, rc->extent_root,
3751 					    rc->block_rsv, 0, 5);
3752 		if (ret < 0) {
3753 			if (ret != -EAGAIN) {
3754 				err = ret;
3755 				WARN_ON(1);
3756 				break;
3757 			}
3758 			rc->commit_transaction = 1;
3759 		}
3760 
3761 		if (rc->commit_transaction) {
3762 			rc->commit_transaction = 0;
3763 			ret = btrfs_commit_transaction(trans, rc->extent_root);
3764 			BUG_ON(ret);
3765 		} else {
3766 			nr = trans->blocks_used;
3767 			btrfs_end_transaction_throttle(trans, rc->extent_root);
3768 			btrfs_btree_balance_dirty(rc->extent_root, nr);
3769 		}
3770 		trans = NULL;
3771 
3772 		if (rc->stage == MOVE_DATA_EXTENTS &&
3773 		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
3774 			rc->found_file_extent = 1;
3775 			ret = relocate_data_extent(rc->data_inode,
3776 						   &key, &rc->cluster);
3777 			if (ret < 0) {
3778 				err = ret;
3779 				break;
3780 			}
3781 		}
3782 	}
3783 
3784 	btrfs_release_path(rc->extent_root, path);
3785 	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY,
3786 			  GFP_NOFS);
3787 
3788 	if (trans) {
3789 		nr = trans->blocks_used;
3790 		btrfs_end_transaction_throttle(trans, rc->extent_root);
3791 		btrfs_btree_balance_dirty(rc->extent_root, nr);
3792 	}
3793 
3794 	if (!err) {
3795 		ret = relocate_file_extent_cluster(rc->data_inode,
3796 						   &rc->cluster);
3797 		if (ret < 0)
3798 			err = ret;
3799 	}
3800 
3801 	rc->create_reloc_tree = 0;
3802 	set_reloc_control(rc);
3803 
3804 	backref_cache_cleanup(&rc->backref_cache);
3805 	btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1);
3806 
3807 	err = prepare_to_merge(rc, err);
3808 
3809 	merge_reloc_roots(rc);
3810 
3811 	rc->merge_reloc_tree = 0;
3812 	unset_reloc_control(rc);
3813 	btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1);
3814 
3815 	/* get rid of pinned extents */
3816 	trans = btrfs_join_transaction(rc->extent_root, 1);
3817 	if (IS_ERR(trans))
3818 		err = PTR_ERR(trans);
3819 	else
3820 		btrfs_commit_transaction(trans, rc->extent_root);
3821 out_free:
3822 	btrfs_free_block_rsv(rc->extent_root, rc->block_rsv);
3823 	btrfs_free_path(path);
3824 	return err;
3825 }
3826 
3827 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3828 				 struct btrfs_root *root, u64 objectid)
3829 {
3830 	struct btrfs_path *path;
3831 	struct btrfs_inode_item *item;
3832 	struct extent_buffer *leaf;
3833 	int ret;
3834 
3835 	path = btrfs_alloc_path();
3836 	if (!path)
3837 		return -ENOMEM;
3838 
3839 	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
3840 	if (ret)
3841 		goto out;
3842 
3843 	leaf = path->nodes[0];
3844 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3845 	memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
3846 	btrfs_set_inode_generation(leaf, item, 1);
3847 	btrfs_set_inode_size(leaf, item, 0);
3848 	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
3849 	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
3850 					  BTRFS_INODE_PREALLOC);
3851 	btrfs_mark_buffer_dirty(leaf);
3852 	btrfs_release_path(root, path);
3853 out:
3854 	btrfs_free_path(path);
3855 	return ret;
3856 }
3857 
3858 /*
3859  * helper to create inode for data relocation.
3860  * the inode is in data relocation tree and its link count is 0
3861  */
3862 static noinline_for_stack
3863 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
3864 				 struct btrfs_block_group_cache *group)
3865 {
3866 	struct inode *inode = NULL;
3867 	struct btrfs_trans_handle *trans;
3868 	struct btrfs_root *root;
3869 	struct btrfs_key key;
3870 	unsigned long nr;
3871 	u64 objectid = BTRFS_FIRST_FREE_OBJECTID;
3872 	int err = 0;
3873 
3874 	root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
3875 	if (IS_ERR(root))
3876 		return ERR_CAST(root);
3877 
3878 	trans = btrfs_start_transaction(root, 6);
3879 	if (IS_ERR(trans))
3880 		return ERR_CAST(trans);
3881 
3882 	err = btrfs_find_free_objectid(trans, root, objectid, &objectid);
3883 	if (err)
3884 		goto out;
3885 
3886 	err = __insert_orphan_inode(trans, root, objectid);
3887 	BUG_ON(err);
3888 
3889 	key.objectid = objectid;
3890 	key.type = BTRFS_INODE_ITEM_KEY;
3891 	key.offset = 0;
3892 	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
3893 	BUG_ON(IS_ERR(inode) || is_bad_inode(inode));
3894 	BTRFS_I(inode)->index_cnt = group->key.objectid;
3895 
3896 	err = btrfs_orphan_add(trans, inode);
3897 out:
3898 	nr = trans->blocks_used;
3899 	btrfs_end_transaction(trans, root);
3900 	btrfs_btree_balance_dirty(root, nr);
3901 	if (err) {
3902 		if (inode)
3903 			iput(inode);
3904 		inode = ERR_PTR(err);
3905 	}
3906 	return inode;
3907 }
3908 
3909 static struct reloc_control *alloc_reloc_control(void)
3910 {
3911 	struct reloc_control *rc;
3912 
3913 	rc = kzalloc(sizeof(*rc), GFP_NOFS);
3914 	if (!rc)
3915 		return NULL;
3916 
3917 	INIT_LIST_HEAD(&rc->reloc_roots);
3918 	backref_cache_init(&rc->backref_cache);
3919 	mapping_tree_init(&rc->reloc_root_tree);
3920 	extent_io_tree_init(&rc->processed_blocks, NULL, GFP_NOFS);
3921 	return rc;
3922 }
3923 
3924 /*
3925  * function to relocate all extents in a block group.
3926  */
3927 int btrfs_relocate_block_group(struct btrfs_root *extent_root, u64 group_start)
3928 {
3929 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
3930 	struct reloc_control *rc;
3931 	struct inode *inode;
3932 	struct btrfs_path *path;
3933 	int ret;
3934 	int rw = 0;
3935 	int err = 0;
3936 
3937 	rc = alloc_reloc_control();
3938 	if (!rc)
3939 		return -ENOMEM;
3940 
3941 	rc->extent_root = extent_root;
3942 
3943 	rc->block_group = btrfs_lookup_block_group(fs_info, group_start);
3944 	BUG_ON(!rc->block_group);
3945 
3946 	if (!rc->block_group->ro) {
3947 		ret = btrfs_set_block_group_ro(extent_root, rc->block_group);
3948 		if (ret) {
3949 			err = ret;
3950 			goto out;
3951 		}
3952 		rw = 1;
3953 	}
3954 
3955 	path = btrfs_alloc_path();
3956 	if (!path) {
3957 		err = -ENOMEM;
3958 		goto out;
3959 	}
3960 
3961 	inode = lookup_free_space_inode(fs_info->tree_root, rc->block_group,
3962 					path);
3963 	btrfs_free_path(path);
3964 
3965 	if (!IS_ERR(inode))
3966 		ret = delete_block_group_cache(fs_info, inode, 0);
3967 	else
3968 		ret = PTR_ERR(inode);
3969 
3970 	if (ret && ret != -ENOENT) {
3971 		err = ret;
3972 		goto out;
3973 	}
3974 
3975 	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
3976 	if (IS_ERR(rc->data_inode)) {
3977 		err = PTR_ERR(rc->data_inode);
3978 		rc->data_inode = NULL;
3979 		goto out;
3980 	}
3981 
3982 	printk(KERN_INFO "btrfs: relocating block group %llu flags %llu\n",
3983 	       (unsigned long long)rc->block_group->key.objectid,
3984 	       (unsigned long long)rc->block_group->flags);
3985 
3986 	btrfs_start_delalloc_inodes(fs_info->tree_root, 0);
3987 	btrfs_wait_ordered_extents(fs_info->tree_root, 0, 0);
3988 
3989 	while (1) {
3990 		mutex_lock(&fs_info->cleaner_mutex);
3991 
3992 		btrfs_clean_old_snapshots(fs_info->tree_root);
3993 		ret = relocate_block_group(rc);
3994 
3995 		mutex_unlock(&fs_info->cleaner_mutex);
3996 		if (ret < 0) {
3997 			err = ret;
3998 			goto out;
3999 		}
4000 
4001 		if (rc->extents_found == 0)
4002 			break;
4003 
4004 		printk(KERN_INFO "btrfs: found %llu extents\n",
4005 			(unsigned long long)rc->extents_found);
4006 
4007 		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4008 			btrfs_wait_ordered_range(rc->data_inode, 0, (u64)-1);
4009 			invalidate_mapping_pages(rc->data_inode->i_mapping,
4010 						 0, -1);
4011 			rc->stage = UPDATE_DATA_PTRS;
4012 		}
4013 	}
4014 
4015 	filemap_write_and_wait_range(fs_info->btree_inode->i_mapping,
4016 				     rc->block_group->key.objectid,
4017 				     rc->block_group->key.objectid +
4018 				     rc->block_group->key.offset - 1);
4019 
4020 	WARN_ON(rc->block_group->pinned > 0);
4021 	WARN_ON(rc->block_group->reserved > 0);
4022 	WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0);
4023 out:
4024 	if (err && rw)
4025 		btrfs_set_block_group_rw(extent_root, rc->block_group);
4026 	iput(rc->data_inode);
4027 	btrfs_put_block_group(rc->block_group);
4028 	kfree(rc);
4029 	return err;
4030 }
4031 
4032 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4033 {
4034 	struct btrfs_trans_handle *trans;
4035 	int ret;
4036 
4037 	trans = btrfs_start_transaction(root->fs_info->tree_root, 0);
4038 	BUG_ON(IS_ERR(trans));
4039 
4040 	memset(&root->root_item.drop_progress, 0,
4041 		sizeof(root->root_item.drop_progress));
4042 	root->root_item.drop_level = 0;
4043 	btrfs_set_root_refs(&root->root_item, 0);
4044 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
4045 				&root->root_key, &root->root_item);
4046 	BUG_ON(ret);
4047 
4048 	ret = btrfs_end_transaction(trans, root->fs_info->tree_root);
4049 	BUG_ON(ret);
4050 	return 0;
4051 }
4052 
4053 /*
4054  * recover relocation interrupted by system crash.
4055  *
4056  * this function resumes merging reloc trees with corresponding fs trees.
4057  * this is important for keeping the sharing of tree blocks
4058  */
4059 int btrfs_recover_relocation(struct btrfs_root *root)
4060 {
4061 	LIST_HEAD(reloc_roots);
4062 	struct btrfs_key key;
4063 	struct btrfs_root *fs_root;
4064 	struct btrfs_root *reloc_root;
4065 	struct btrfs_path *path;
4066 	struct extent_buffer *leaf;
4067 	struct reloc_control *rc = NULL;
4068 	struct btrfs_trans_handle *trans;
4069 	int ret;
4070 	int err = 0;
4071 
4072 	path = btrfs_alloc_path();
4073 	if (!path)
4074 		return -ENOMEM;
4075 
4076 	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4077 	key.type = BTRFS_ROOT_ITEM_KEY;
4078 	key.offset = (u64)-1;
4079 
4080 	while (1) {
4081 		ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key,
4082 					path, 0, 0);
4083 		if (ret < 0) {
4084 			err = ret;
4085 			goto out;
4086 		}
4087 		if (ret > 0) {
4088 			if (path->slots[0] == 0)
4089 				break;
4090 			path->slots[0]--;
4091 		}
4092 		leaf = path->nodes[0];
4093 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4094 		btrfs_release_path(root->fs_info->tree_root, path);
4095 
4096 		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4097 		    key.type != BTRFS_ROOT_ITEM_KEY)
4098 			break;
4099 
4100 		reloc_root = btrfs_read_fs_root_no_radix(root, &key);
4101 		if (IS_ERR(reloc_root)) {
4102 			err = PTR_ERR(reloc_root);
4103 			goto out;
4104 		}
4105 
4106 		list_add(&reloc_root->root_list, &reloc_roots);
4107 
4108 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4109 			fs_root = read_fs_root(root->fs_info,
4110 					       reloc_root->root_key.offset);
4111 			if (IS_ERR(fs_root)) {
4112 				ret = PTR_ERR(fs_root);
4113 				if (ret != -ENOENT) {
4114 					err = ret;
4115 					goto out;
4116 				}
4117 				mark_garbage_root(reloc_root);
4118 			}
4119 		}
4120 
4121 		if (key.offset == 0)
4122 			break;
4123 
4124 		key.offset--;
4125 	}
4126 	btrfs_release_path(root->fs_info->tree_root, path);
4127 
4128 	if (list_empty(&reloc_roots))
4129 		goto out;
4130 
4131 	rc = alloc_reloc_control();
4132 	if (!rc) {
4133 		err = -ENOMEM;
4134 		goto out;
4135 	}
4136 
4137 	rc->extent_root = root->fs_info->extent_root;
4138 
4139 	set_reloc_control(rc);
4140 
4141 	trans = btrfs_join_transaction(rc->extent_root, 1);
4142 	if (IS_ERR(trans)) {
4143 		unset_reloc_control(rc);
4144 		err = PTR_ERR(trans);
4145 		goto out_free;
4146 	}
4147 
4148 	rc->merge_reloc_tree = 1;
4149 
4150 	while (!list_empty(&reloc_roots)) {
4151 		reloc_root = list_entry(reloc_roots.next,
4152 					struct btrfs_root, root_list);
4153 		list_del(&reloc_root->root_list);
4154 
4155 		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4156 			list_add_tail(&reloc_root->root_list,
4157 				      &rc->reloc_roots);
4158 			continue;
4159 		}
4160 
4161 		fs_root = read_fs_root(root->fs_info,
4162 				       reloc_root->root_key.offset);
4163 		BUG_ON(IS_ERR(fs_root));
4164 
4165 		__add_reloc_root(reloc_root);
4166 		fs_root->reloc_root = reloc_root;
4167 	}
4168 
4169 	btrfs_commit_transaction(trans, rc->extent_root);
4170 
4171 	merge_reloc_roots(rc);
4172 
4173 	unset_reloc_control(rc);
4174 
4175 	trans = btrfs_join_transaction(rc->extent_root, 1);
4176 	if (IS_ERR(trans))
4177 		err = PTR_ERR(trans);
4178 	else
4179 		btrfs_commit_transaction(trans, rc->extent_root);
4180 out_free:
4181 	kfree(rc);
4182 out:
4183 	while (!list_empty(&reloc_roots)) {
4184 		reloc_root = list_entry(reloc_roots.next,
4185 					struct btrfs_root, root_list);
4186 		list_del(&reloc_root->root_list);
4187 		free_extent_buffer(reloc_root->node);
4188 		free_extent_buffer(reloc_root->commit_root);
4189 		kfree(reloc_root);
4190 	}
4191 	btrfs_free_path(path);
4192 
4193 	if (err == 0) {
4194 		/* cleanup orphan inode in data relocation tree */
4195 		fs_root = read_fs_root(root->fs_info,
4196 				       BTRFS_DATA_RELOC_TREE_OBJECTID);
4197 		if (IS_ERR(fs_root))
4198 			err = PTR_ERR(fs_root);
4199 		else
4200 			btrfs_orphan_cleanup(fs_root);
4201 	}
4202 	return err;
4203 }
4204 
4205 /*
4206  * helper to add ordered checksum for data relocation.
4207  *
4208  * cloning checksum properly handles the nodatasum extents.
4209  * it also saves CPU time to re-calculate the checksum.
4210  */
4211 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
4212 {
4213 	struct btrfs_ordered_sum *sums;
4214 	struct btrfs_sector_sum *sector_sum;
4215 	struct btrfs_ordered_extent *ordered;
4216 	struct btrfs_root *root = BTRFS_I(inode)->root;
4217 	size_t offset;
4218 	int ret;
4219 	u64 disk_bytenr;
4220 	LIST_HEAD(list);
4221 
4222 	ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4223 	BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
4224 
4225 	disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
4226 	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, disk_bytenr,
4227 				       disk_bytenr + len - 1, &list);
4228 
4229 	while (!list_empty(&list)) {
4230 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4231 		list_del_init(&sums->list);
4232 
4233 		sector_sum = sums->sums;
4234 		sums->bytenr = ordered->start;
4235 
4236 		offset = 0;
4237 		while (offset < sums->len) {
4238 			sector_sum->bytenr += ordered->start - disk_bytenr;
4239 			sector_sum++;
4240 			offset += root->sectorsize;
4241 		}
4242 
4243 		btrfs_add_ordered_sum(inode, ordered, sums);
4244 	}
4245 	btrfs_put_ordered_extent(ordered);
4246 	return ret;
4247 }
4248 
4249 void btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4250 			   struct btrfs_root *root, struct extent_buffer *buf,
4251 			   struct extent_buffer *cow)
4252 {
4253 	struct reloc_control *rc;
4254 	struct backref_node *node;
4255 	int first_cow = 0;
4256 	int level;
4257 	int ret;
4258 
4259 	rc = root->fs_info->reloc_ctl;
4260 	if (!rc)
4261 		return;
4262 
4263 	BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
4264 	       root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
4265 
4266 	level = btrfs_header_level(buf);
4267 	if (btrfs_header_generation(buf) <=
4268 	    btrfs_root_last_snapshot(&root->root_item))
4269 		first_cow = 1;
4270 
4271 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4272 	    rc->create_reloc_tree) {
4273 		WARN_ON(!first_cow && level == 0);
4274 
4275 		node = rc->backref_cache.path[level];
4276 		BUG_ON(node->bytenr != buf->start &&
4277 		       node->new_bytenr != buf->start);
4278 
4279 		drop_node_buffer(node);
4280 		extent_buffer_get(cow);
4281 		node->eb = cow;
4282 		node->new_bytenr = cow->start;
4283 
4284 		if (!node->pending) {
4285 			list_move_tail(&node->list,
4286 				       &rc->backref_cache.pending[level]);
4287 			node->pending = 1;
4288 		}
4289 
4290 		if (first_cow)
4291 			__mark_block_processed(rc, node);
4292 
4293 		if (first_cow && level > 0)
4294 			rc->nodes_relocated += buf->len;
4295 	}
4296 
4297 	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS) {
4298 		ret = replace_file_extents(trans, rc, root, cow);
4299 		BUG_ON(ret);
4300 	}
4301 }
4302 
4303 /*
4304  * called before creating snapshot. it calculates metadata reservation
4305  * requried for relocating tree blocks in the snapshot
4306  */
4307 void btrfs_reloc_pre_snapshot(struct btrfs_trans_handle *trans,
4308 			      struct btrfs_pending_snapshot *pending,
4309 			      u64 *bytes_to_reserve)
4310 {
4311 	struct btrfs_root *root;
4312 	struct reloc_control *rc;
4313 
4314 	root = pending->root;
4315 	if (!root->reloc_root)
4316 		return;
4317 
4318 	rc = root->fs_info->reloc_ctl;
4319 	if (!rc->merge_reloc_tree)
4320 		return;
4321 
4322 	root = root->reloc_root;
4323 	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4324 	/*
4325 	 * relocation is in the stage of merging trees. the space
4326 	 * used by merging a reloc tree is twice the size of
4327 	 * relocated tree nodes in the worst case. half for cowing
4328 	 * the reloc tree, half for cowing the fs tree. the space
4329 	 * used by cowing the reloc tree will be freed after the
4330 	 * tree is dropped. if we create snapshot, cowing the fs
4331 	 * tree may use more space than it frees. so we need
4332 	 * reserve extra space.
4333 	 */
4334 	*bytes_to_reserve += rc->nodes_relocated;
4335 }
4336 
4337 /*
4338  * called after snapshot is created. migrate block reservation
4339  * and create reloc root for the newly created snapshot
4340  */
4341 void btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4342 			       struct btrfs_pending_snapshot *pending)
4343 {
4344 	struct btrfs_root *root = pending->root;
4345 	struct btrfs_root *reloc_root;
4346 	struct btrfs_root *new_root;
4347 	struct reloc_control *rc;
4348 	int ret;
4349 
4350 	if (!root->reloc_root)
4351 		return;
4352 
4353 	rc = root->fs_info->reloc_ctl;
4354 	rc->merging_rsv_size += rc->nodes_relocated;
4355 
4356 	if (rc->merge_reloc_tree) {
4357 		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4358 					      rc->block_rsv,
4359 					      rc->nodes_relocated);
4360 		BUG_ON(ret);
4361 	}
4362 
4363 	new_root = pending->snap;
4364 	reloc_root = create_reloc_root(trans, root->reloc_root,
4365 				       new_root->root_key.objectid);
4366 
4367 	__add_reloc_root(reloc_root);
4368 	new_root->reloc_root = reloc_root;
4369 
4370 	if (rc->create_reloc_tree) {
4371 		ret = clone_backref_node(trans, rc, root, reloc_root);
4372 		BUG_ON(ret);
4373 	}
4374 }
4375