xref: /linux/fs/btrfs/relocation.c (revision 4c16e1cadcbcaf3c82d5fc310fbd34d0f5d0db7c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2009 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/pagemap.h>
8 #include <linux/writeback.h>
9 #include <linux/blkdev.h>
10 #include <linux/rbtree.h>
11 #include <linux/slab.h>
12 #include <linux/error-injection.h>
13 #include "ctree.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "volumes.h"
17 #include "locking.h"
18 #include "btrfs_inode.h"
19 #include "async-thread.h"
20 #include "free-space-cache.h"
21 #include "qgroup.h"
22 #include "print-tree.h"
23 #include "delalloc-space.h"
24 #include "block-group.h"
25 #include "backref.h"
26 #include "misc.h"
27 #include "subpage.h"
28 #include "zoned.h"
29 #include "inode-item.h"
30 #include "space-info.h"
31 #include "fs.h"
32 #include "accessors.h"
33 #include "extent-tree.h"
34 #include "root-tree.h"
35 #include "file-item.h"
36 #include "relocation.h"
37 #include "super.h"
38 #include "tree-checker.h"
39 #include "raid-stripe-tree.h"
40 
41 /*
42  * Relocation overview
43  *
44  * [What does relocation do]
45  *
46  * The objective of relocation is to relocate all extents of the target block
47  * group to other block groups.
48  * This is utilized by resize (shrink only), profile converting, compacting
49  * space, or balance routine to spread chunks over devices.
50  *
51  * 		Before		|		After
52  * ------------------------------------------------------------------
53  *  BG A: 10 data extents	| BG A: deleted
54  *  BG B:  2 data extents	| BG B: 10 data extents (2 old + 8 relocated)
55  *  BG C:  1 extents		| BG C:  3 data extents (1 old + 2 relocated)
56  *
57  * [How does relocation work]
58  *
59  * 1.   Mark the target block group read-only
60  *      New extents won't be allocated from the target block group.
61  *
62  * 2.1  Record each extent in the target block group
63  *      To build a proper map of extents to be relocated.
64  *
65  * 2.2  Build data reloc tree and reloc trees
66  *      Data reloc tree will contain an inode, recording all newly relocated
67  *      data extents.
68  *      There will be only one data reloc tree for one data block group.
69  *
70  *      Reloc tree will be a special snapshot of its source tree, containing
71  *      relocated tree blocks.
72  *      Each tree referring to a tree block in target block group will get its
73  *      reloc tree built.
74  *
75  * 2.3  Swap source tree with its corresponding reloc tree
76  *      Each involved tree only refers to new extents after swap.
77  *
78  * 3.   Cleanup reloc trees and data reloc tree.
79  *      As old extents in the target block group are still referenced by reloc
80  *      trees, we need to clean them up before really freeing the target block
81  *      group.
82  *
83  * The main complexity is in steps 2.2 and 2.3.
84  *
85  * The entry point of relocation is relocate_block_group() function.
86  */
87 
88 #define RELOCATION_RESERVED_NODES	256
89 /*
90  * map address of tree root to tree
91  */
92 struct mapping_node {
93 	struct {
94 		struct rb_node rb_node;
95 		u64 bytenr;
96 	}; /* Use rb_simle_node for search/insert */
97 	void *data;
98 };
99 
100 struct mapping_tree {
101 	struct rb_root rb_root;
102 	spinlock_t lock;
103 };
104 
105 /*
106  * present a tree block to process
107  */
108 struct tree_block {
109 	struct {
110 		struct rb_node rb_node;
111 		u64 bytenr;
112 	}; /* Use rb_simple_node for search/insert */
113 	u64 owner;
114 	struct btrfs_key key;
115 	u8 level;
116 	bool key_ready;
117 };
118 
119 #define MAX_EXTENTS 128
120 
121 struct file_extent_cluster {
122 	u64 start;
123 	u64 end;
124 	u64 boundary[MAX_EXTENTS];
125 	unsigned int nr;
126 	u64 owning_root;
127 };
128 
129 /* Stages of data relocation. */
130 enum reloc_stage {
131 	MOVE_DATA_EXTENTS,
132 	UPDATE_DATA_PTRS
133 };
134 
135 struct reloc_control {
136 	/* block group to relocate */
137 	struct btrfs_block_group *block_group;
138 	/* extent tree */
139 	struct btrfs_root *extent_root;
140 	/* inode for moving data */
141 	struct inode *data_inode;
142 
143 	struct btrfs_block_rsv *block_rsv;
144 
145 	struct btrfs_backref_cache backref_cache;
146 
147 	struct file_extent_cluster cluster;
148 	/* tree blocks have been processed */
149 	struct extent_io_tree processed_blocks;
150 	/* map start of tree root to corresponding reloc tree */
151 	struct mapping_tree reloc_root_tree;
152 	/* list of reloc trees */
153 	struct list_head reloc_roots;
154 	/* list of subvolume trees that get relocated */
155 	struct list_head dirty_subvol_roots;
156 	/* size of metadata reservation for merging reloc trees */
157 	u64 merging_rsv_size;
158 	/* size of relocated tree nodes */
159 	u64 nodes_relocated;
160 	/* reserved size for block group relocation*/
161 	u64 reserved_bytes;
162 
163 	u64 search_start;
164 	u64 extents_found;
165 
166 	enum reloc_stage stage;
167 	bool create_reloc_tree;
168 	bool merge_reloc_tree;
169 	bool found_file_extent;
170 };
171 
172 static void mark_block_processed(struct reloc_control *rc,
173 				 struct btrfs_backref_node *node)
174 {
175 	u32 blocksize;
176 
177 	if (node->level == 0 ||
178 	    in_range(node->bytenr, rc->block_group->start,
179 		     rc->block_group->length)) {
180 		blocksize = rc->extent_root->fs_info->nodesize;
181 		set_extent_bit(&rc->processed_blocks, node->bytenr,
182 			       node->bytenr + blocksize - 1, EXTENT_DIRTY, NULL);
183 	}
184 	node->processed = 1;
185 }
186 
187 /*
188  * walk up backref nodes until reach node presents tree root
189  */
190 static struct btrfs_backref_node *walk_up_backref(
191 		struct btrfs_backref_node *node,
192 		struct btrfs_backref_edge *edges[], int *index)
193 {
194 	struct btrfs_backref_edge *edge;
195 	int idx = *index;
196 
197 	while (!list_empty(&node->upper)) {
198 		edge = list_entry(node->upper.next,
199 				  struct btrfs_backref_edge, list[LOWER]);
200 		edges[idx++] = edge;
201 		node = edge->node[UPPER];
202 	}
203 	BUG_ON(node->detached);
204 	*index = idx;
205 	return node;
206 }
207 
208 /*
209  * walk down backref nodes to find start of next reference path
210  */
211 static struct btrfs_backref_node *walk_down_backref(
212 		struct btrfs_backref_edge *edges[], int *index)
213 {
214 	struct btrfs_backref_edge *edge;
215 	struct btrfs_backref_node *lower;
216 	int idx = *index;
217 
218 	while (idx > 0) {
219 		edge = edges[idx - 1];
220 		lower = edge->node[LOWER];
221 		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
222 			idx--;
223 			continue;
224 		}
225 		edge = list_entry(edge->list[LOWER].next,
226 				  struct btrfs_backref_edge, list[LOWER]);
227 		edges[idx - 1] = edge;
228 		*index = idx;
229 		return edge->node[UPPER];
230 	}
231 	*index = 0;
232 	return NULL;
233 }
234 
235 static bool reloc_root_is_dead(const struct btrfs_root *root)
236 {
237 	/*
238 	 * Pair with set_bit/clear_bit in clean_dirty_subvols and
239 	 * btrfs_update_reloc_root. We need to see the updated bit before
240 	 * trying to access reloc_root
241 	 */
242 	smp_rmb();
243 	if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state))
244 		return true;
245 	return false;
246 }
247 
248 /*
249  * Check if this subvolume tree has valid reloc tree.
250  *
251  * Reloc tree after swap is considered dead, thus not considered as valid.
252  * This is enough for most callers, as they don't distinguish dead reloc root
253  * from no reloc root.  But btrfs_should_ignore_reloc_root() below is a
254  * special case.
255  */
256 static bool have_reloc_root(const struct btrfs_root *root)
257 {
258 	if (reloc_root_is_dead(root))
259 		return false;
260 	if (!root->reloc_root)
261 		return false;
262 	return true;
263 }
264 
265 bool btrfs_should_ignore_reloc_root(const struct btrfs_root *root)
266 {
267 	struct btrfs_root *reloc_root;
268 
269 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
270 		return false;
271 
272 	/* This root has been merged with its reloc tree, we can ignore it */
273 	if (reloc_root_is_dead(root))
274 		return true;
275 
276 	reloc_root = root->reloc_root;
277 	if (!reloc_root)
278 		return false;
279 
280 	if (btrfs_header_generation(reloc_root->commit_root) ==
281 	    root->fs_info->running_transaction->transid)
282 		return false;
283 	/*
284 	 * If there is reloc tree and it was created in previous transaction
285 	 * backref lookup can find the reloc tree, so backref node for the fs
286 	 * tree root is useless for relocation.
287 	 */
288 	return true;
289 }
290 
291 /*
292  * find reloc tree by address of tree root
293  */
294 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr)
295 {
296 	struct reloc_control *rc = fs_info->reloc_ctl;
297 	struct rb_node *rb_node;
298 	struct mapping_node *node;
299 	struct btrfs_root *root = NULL;
300 
301 	ASSERT(rc);
302 	spin_lock(&rc->reloc_root_tree.lock);
303 	rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr);
304 	if (rb_node) {
305 		node = rb_entry(rb_node, struct mapping_node, rb_node);
306 		root = node->data;
307 	}
308 	spin_unlock(&rc->reloc_root_tree.lock);
309 	return btrfs_grab_root(root);
310 }
311 
312 /*
313  * For useless nodes, do two major clean ups:
314  *
315  * - Cleanup the children edges and nodes
316  *   If child node is also orphan (no parent) during cleanup, then the child
317  *   node will also be cleaned up.
318  *
319  * - Freeing up leaves (level 0), keeps nodes detached
320  *   For nodes, the node is still cached as "detached"
321  *
322  * Return false if @node is not in the @useless_nodes list.
323  * Return true if @node is in the @useless_nodes list.
324  */
325 static bool handle_useless_nodes(struct reloc_control *rc,
326 				 struct btrfs_backref_node *node)
327 {
328 	struct btrfs_backref_cache *cache = &rc->backref_cache;
329 	struct list_head *useless_node = &cache->useless_node;
330 	bool ret = false;
331 
332 	while (!list_empty(useless_node)) {
333 		struct btrfs_backref_node *cur;
334 
335 		cur = list_first_entry(useless_node, struct btrfs_backref_node,
336 				 list);
337 		list_del_init(&cur->list);
338 
339 		/* Only tree root nodes can be added to @useless_nodes */
340 		ASSERT(list_empty(&cur->upper));
341 
342 		if (cur == node)
343 			ret = true;
344 
345 		/* The node is the lowest node */
346 		if (cur->lowest) {
347 			list_del_init(&cur->lower);
348 			cur->lowest = 0;
349 		}
350 
351 		/* Cleanup the lower edges */
352 		while (!list_empty(&cur->lower)) {
353 			struct btrfs_backref_edge *edge;
354 			struct btrfs_backref_node *lower;
355 
356 			edge = list_entry(cur->lower.next,
357 					struct btrfs_backref_edge, list[UPPER]);
358 			list_del(&edge->list[UPPER]);
359 			list_del(&edge->list[LOWER]);
360 			lower = edge->node[LOWER];
361 			btrfs_backref_free_edge(cache, edge);
362 
363 			/* Child node is also orphan, queue for cleanup */
364 			if (list_empty(&lower->upper))
365 				list_add(&lower->list, useless_node);
366 		}
367 		/* Mark this block processed for relocation */
368 		mark_block_processed(rc, cur);
369 
370 		/*
371 		 * Backref nodes for tree leaves are deleted from the cache.
372 		 * Backref nodes for upper level tree blocks are left in the
373 		 * cache to avoid unnecessary backref lookup.
374 		 */
375 		if (cur->level > 0) {
376 			list_add(&cur->list, &cache->detached);
377 			cur->detached = 1;
378 		} else {
379 			rb_erase(&cur->rb_node, &cache->rb_root);
380 			btrfs_backref_free_node(cache, cur);
381 		}
382 	}
383 	return ret;
384 }
385 
386 /*
387  * Build backref tree for a given tree block. Root of the backref tree
388  * corresponds the tree block, leaves of the backref tree correspond roots of
389  * b-trees that reference the tree block.
390  *
391  * The basic idea of this function is check backrefs of a given block to find
392  * upper level blocks that reference the block, and then check backrefs of
393  * these upper level blocks recursively. The recursion stops when tree root is
394  * reached or backrefs for the block is cached.
395  *
396  * NOTE: if we find that backrefs for a block are cached, we know backrefs for
397  * all upper level blocks that directly/indirectly reference the block are also
398  * cached.
399  */
400 static noinline_for_stack struct btrfs_backref_node *build_backref_tree(
401 			struct btrfs_trans_handle *trans,
402 			struct reloc_control *rc, struct btrfs_key *node_key,
403 			int level, u64 bytenr)
404 {
405 	struct btrfs_backref_iter *iter;
406 	struct btrfs_backref_cache *cache = &rc->backref_cache;
407 	/* For searching parent of TREE_BLOCK_REF */
408 	struct btrfs_path *path;
409 	struct btrfs_backref_node *cur;
410 	struct btrfs_backref_node *node = NULL;
411 	struct btrfs_backref_edge *edge;
412 	int ret;
413 
414 	iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info);
415 	if (!iter)
416 		return ERR_PTR(-ENOMEM);
417 	path = btrfs_alloc_path();
418 	if (!path) {
419 		ret = -ENOMEM;
420 		goto out;
421 	}
422 
423 	node = btrfs_backref_alloc_node(cache, bytenr, level);
424 	if (!node) {
425 		ret = -ENOMEM;
426 		goto out;
427 	}
428 
429 	node->lowest = 1;
430 	cur = node;
431 
432 	/* Breadth-first search to build backref cache */
433 	do {
434 		ret = btrfs_backref_add_tree_node(trans, cache, path, iter,
435 						  node_key, cur);
436 		if (ret < 0)
437 			goto out;
438 
439 		edge = list_first_entry_or_null(&cache->pending_edge,
440 				struct btrfs_backref_edge, list[UPPER]);
441 		/*
442 		 * The pending list isn't empty, take the first block to
443 		 * process
444 		 */
445 		if (edge) {
446 			list_del_init(&edge->list[UPPER]);
447 			cur = edge->node[UPPER];
448 		}
449 	} while (edge);
450 
451 	/* Finish the upper linkage of newly added edges/nodes */
452 	ret = btrfs_backref_finish_upper_links(cache, node);
453 	if (ret < 0)
454 		goto out;
455 
456 	if (handle_useless_nodes(rc, node))
457 		node = NULL;
458 out:
459 	btrfs_free_path(iter->path);
460 	kfree(iter);
461 	btrfs_free_path(path);
462 	if (ret) {
463 		btrfs_backref_error_cleanup(cache, node);
464 		return ERR_PTR(ret);
465 	}
466 	ASSERT(!node || !node->detached);
467 	ASSERT(list_empty(&cache->useless_node) &&
468 	       list_empty(&cache->pending_edge));
469 	return node;
470 }
471 
472 /*
473  * helper to add backref node for the newly created snapshot.
474  * the backref node is created by cloning backref node that
475  * corresponds to root of source tree
476  */
477 static int clone_backref_node(struct btrfs_trans_handle *trans,
478 			      struct reloc_control *rc,
479 			      const struct btrfs_root *src,
480 			      struct btrfs_root *dest)
481 {
482 	struct btrfs_root *reloc_root = src->reloc_root;
483 	struct btrfs_backref_cache *cache = &rc->backref_cache;
484 	struct btrfs_backref_node *node = NULL;
485 	struct btrfs_backref_node *new_node;
486 	struct btrfs_backref_edge *edge;
487 	struct btrfs_backref_edge *new_edge;
488 	struct rb_node *rb_node;
489 
490 	rb_node = rb_simple_search(&cache->rb_root, src->commit_root->start);
491 	if (rb_node) {
492 		node = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
493 		if (node->detached)
494 			node = NULL;
495 		else
496 			BUG_ON(node->new_bytenr != reloc_root->node->start);
497 	}
498 
499 	if (!node) {
500 		rb_node = rb_simple_search(&cache->rb_root,
501 					   reloc_root->commit_root->start);
502 		if (rb_node) {
503 			node = rb_entry(rb_node, struct btrfs_backref_node,
504 					rb_node);
505 			BUG_ON(node->detached);
506 		}
507 	}
508 
509 	if (!node)
510 		return 0;
511 
512 	new_node = btrfs_backref_alloc_node(cache, dest->node->start,
513 					    node->level);
514 	if (!new_node)
515 		return -ENOMEM;
516 
517 	new_node->lowest = node->lowest;
518 	new_node->checked = 1;
519 	new_node->root = btrfs_grab_root(dest);
520 	ASSERT(new_node->root);
521 
522 	if (!node->lowest) {
523 		list_for_each_entry(edge, &node->lower, list[UPPER]) {
524 			new_edge = btrfs_backref_alloc_edge(cache);
525 			if (!new_edge)
526 				goto fail;
527 
528 			btrfs_backref_link_edge(new_edge, edge->node[LOWER],
529 						new_node, LINK_UPPER);
530 		}
531 	} else {
532 		list_add_tail(&new_node->lower, &cache->leaves);
533 	}
534 
535 	rb_node = rb_simple_insert(&cache->rb_root, new_node->bytenr,
536 				   &new_node->rb_node);
537 	if (rb_node)
538 		btrfs_backref_panic(trans->fs_info, new_node->bytenr, -EEXIST);
539 
540 	if (!new_node->lowest) {
541 		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
542 			list_add_tail(&new_edge->list[LOWER],
543 				      &new_edge->node[LOWER]->upper);
544 		}
545 	}
546 	return 0;
547 fail:
548 	while (!list_empty(&new_node->lower)) {
549 		new_edge = list_entry(new_node->lower.next,
550 				      struct btrfs_backref_edge, list[UPPER]);
551 		list_del(&new_edge->list[UPPER]);
552 		btrfs_backref_free_edge(cache, new_edge);
553 	}
554 	btrfs_backref_free_node(cache, new_node);
555 	return -ENOMEM;
556 }
557 
558 /*
559  * helper to add 'address of tree root -> reloc tree' mapping
560  */
561 static int __add_reloc_root(struct btrfs_root *root)
562 {
563 	struct btrfs_fs_info *fs_info = root->fs_info;
564 	struct rb_node *rb_node;
565 	struct mapping_node *node;
566 	struct reloc_control *rc = fs_info->reloc_ctl;
567 
568 	node = kmalloc(sizeof(*node), GFP_NOFS);
569 	if (!node)
570 		return -ENOMEM;
571 
572 	node->bytenr = root->commit_root->start;
573 	node->data = root;
574 
575 	spin_lock(&rc->reloc_root_tree.lock);
576 	rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
577 				   node->bytenr, &node->rb_node);
578 	spin_unlock(&rc->reloc_root_tree.lock);
579 	if (rb_node) {
580 		btrfs_err(fs_info,
581 			    "Duplicate root found for start=%llu while inserting into relocation tree",
582 			    node->bytenr);
583 		return -EEXIST;
584 	}
585 
586 	list_add_tail(&root->root_list, &rc->reloc_roots);
587 	return 0;
588 }
589 
590 /*
591  * helper to delete the 'address of tree root -> reloc tree'
592  * mapping
593  */
594 static void __del_reloc_root(struct btrfs_root *root)
595 {
596 	struct btrfs_fs_info *fs_info = root->fs_info;
597 	struct rb_node *rb_node;
598 	struct mapping_node *node = NULL;
599 	struct reloc_control *rc = fs_info->reloc_ctl;
600 	bool put_ref = false;
601 
602 	if (rc && root->node) {
603 		spin_lock(&rc->reloc_root_tree.lock);
604 		rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
605 					   root->commit_root->start);
606 		if (rb_node) {
607 			node = rb_entry(rb_node, struct mapping_node, rb_node);
608 			rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
609 			RB_CLEAR_NODE(&node->rb_node);
610 		}
611 		spin_unlock(&rc->reloc_root_tree.lock);
612 		ASSERT(!node || (struct btrfs_root *)node->data == root);
613 	}
614 
615 	/*
616 	 * We only put the reloc root here if it's on the list.  There's a lot
617 	 * of places where the pattern is to splice the rc->reloc_roots, process
618 	 * the reloc roots, and then add the reloc root back onto
619 	 * rc->reloc_roots.  If we call __del_reloc_root while it's off of the
620 	 * list we don't want the reference being dropped, because the guy
621 	 * messing with the list is in charge of the reference.
622 	 */
623 	spin_lock(&fs_info->trans_lock);
624 	if (!list_empty(&root->root_list)) {
625 		put_ref = true;
626 		list_del_init(&root->root_list);
627 	}
628 	spin_unlock(&fs_info->trans_lock);
629 	if (put_ref)
630 		btrfs_put_root(root);
631 	kfree(node);
632 }
633 
634 /*
635  * helper to update the 'address of tree root -> reloc tree'
636  * mapping
637  */
638 static int __update_reloc_root(struct btrfs_root *root)
639 {
640 	struct btrfs_fs_info *fs_info = root->fs_info;
641 	struct rb_node *rb_node;
642 	struct mapping_node *node = NULL;
643 	struct reloc_control *rc = fs_info->reloc_ctl;
644 
645 	spin_lock(&rc->reloc_root_tree.lock);
646 	rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
647 				   root->commit_root->start);
648 	if (rb_node) {
649 		node = rb_entry(rb_node, struct mapping_node, rb_node);
650 		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
651 	}
652 	spin_unlock(&rc->reloc_root_tree.lock);
653 
654 	if (!node)
655 		return 0;
656 	BUG_ON((struct btrfs_root *)node->data != root);
657 
658 	spin_lock(&rc->reloc_root_tree.lock);
659 	node->bytenr = root->node->start;
660 	rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
661 				   node->bytenr, &node->rb_node);
662 	spin_unlock(&rc->reloc_root_tree.lock);
663 	if (rb_node)
664 		btrfs_backref_panic(fs_info, node->bytenr, -EEXIST);
665 	return 0;
666 }
667 
668 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
669 					struct btrfs_root *root, u64 objectid)
670 {
671 	struct btrfs_fs_info *fs_info = root->fs_info;
672 	struct btrfs_root *reloc_root;
673 	struct extent_buffer *eb;
674 	struct btrfs_root_item *root_item;
675 	struct btrfs_key root_key;
676 	int ret = 0;
677 	bool must_abort = false;
678 
679 	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
680 	if (!root_item)
681 		return ERR_PTR(-ENOMEM);
682 
683 	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
684 	root_key.type = BTRFS_ROOT_ITEM_KEY;
685 	root_key.offset = objectid;
686 
687 	if (btrfs_root_id(root) == objectid) {
688 		u64 commit_root_gen;
689 
690 		/* called by btrfs_init_reloc_root */
691 		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
692 				      BTRFS_TREE_RELOC_OBJECTID);
693 		if (ret)
694 			goto fail;
695 
696 		/*
697 		 * Set the last_snapshot field to the generation of the commit
698 		 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
699 		 * correctly (returns true) when the relocation root is created
700 		 * either inside the critical section of a transaction commit
701 		 * (through transaction.c:qgroup_account_snapshot()) and when
702 		 * it's created before the transaction commit is started.
703 		 */
704 		commit_root_gen = btrfs_header_generation(root->commit_root);
705 		btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
706 	} else {
707 		/*
708 		 * called by btrfs_reloc_post_snapshot_hook.
709 		 * the source tree is a reloc tree, all tree blocks
710 		 * modified after it was created have RELOC flag
711 		 * set in their headers. so it's OK to not update
712 		 * the 'last_snapshot'.
713 		 */
714 		ret = btrfs_copy_root(trans, root, root->node, &eb,
715 				      BTRFS_TREE_RELOC_OBJECTID);
716 		if (ret)
717 			goto fail;
718 	}
719 
720 	/*
721 	 * We have changed references at this point, we must abort the
722 	 * transaction if anything fails.
723 	 */
724 	must_abort = true;
725 
726 	memcpy(root_item, &root->root_item, sizeof(*root_item));
727 	btrfs_set_root_bytenr(root_item, eb->start);
728 	btrfs_set_root_level(root_item, btrfs_header_level(eb));
729 	btrfs_set_root_generation(root_item, trans->transid);
730 
731 	if (btrfs_root_id(root) == objectid) {
732 		btrfs_set_root_refs(root_item, 0);
733 		memset(&root_item->drop_progress, 0,
734 		       sizeof(struct btrfs_disk_key));
735 		btrfs_set_root_drop_level(root_item, 0);
736 	}
737 
738 	btrfs_tree_unlock(eb);
739 	free_extent_buffer(eb);
740 
741 	ret = btrfs_insert_root(trans, fs_info->tree_root,
742 				&root_key, root_item);
743 	if (ret)
744 		goto fail;
745 
746 	kfree(root_item);
747 
748 	reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key);
749 	if (IS_ERR(reloc_root)) {
750 		ret = PTR_ERR(reloc_root);
751 		goto abort;
752 	}
753 	set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
754 	btrfs_set_root_last_trans(reloc_root, trans->transid);
755 	return reloc_root;
756 fail:
757 	kfree(root_item);
758 abort:
759 	if (must_abort)
760 		btrfs_abort_transaction(trans, ret);
761 	return ERR_PTR(ret);
762 }
763 
764 /*
765  * create reloc tree for a given fs tree. reloc tree is just a
766  * snapshot of the fs tree with special root objectid.
767  *
768  * The reloc_root comes out of here with two references, one for
769  * root->reloc_root, and another for being on the rc->reloc_roots list.
770  */
771 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
772 			  struct btrfs_root *root)
773 {
774 	struct btrfs_fs_info *fs_info = root->fs_info;
775 	struct btrfs_root *reloc_root;
776 	struct reloc_control *rc = fs_info->reloc_ctl;
777 	struct btrfs_block_rsv *rsv;
778 	int clear_rsv = 0;
779 	int ret;
780 
781 	if (!rc)
782 		return 0;
783 
784 	/*
785 	 * The subvolume has reloc tree but the swap is finished, no need to
786 	 * create/update the dead reloc tree
787 	 */
788 	if (reloc_root_is_dead(root))
789 		return 0;
790 
791 	/*
792 	 * This is subtle but important.  We do not do
793 	 * record_root_in_transaction for reloc roots, instead we record their
794 	 * corresponding fs root, and then here we update the last trans for the
795 	 * reloc root.  This means that we have to do this for the entire life
796 	 * of the reloc root, regardless of which stage of the relocation we are
797 	 * in.
798 	 */
799 	if (root->reloc_root) {
800 		reloc_root = root->reloc_root;
801 		btrfs_set_root_last_trans(reloc_root, trans->transid);
802 		return 0;
803 	}
804 
805 	/*
806 	 * We are merging reloc roots, we do not need new reloc trees.  Also
807 	 * reloc trees never need their own reloc tree.
808 	 */
809 	if (!rc->create_reloc_tree || btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
810 		return 0;
811 
812 	if (!trans->reloc_reserved) {
813 		rsv = trans->block_rsv;
814 		trans->block_rsv = rc->block_rsv;
815 		clear_rsv = 1;
816 	}
817 	reloc_root = create_reloc_root(trans, root, btrfs_root_id(root));
818 	if (clear_rsv)
819 		trans->block_rsv = rsv;
820 	if (IS_ERR(reloc_root))
821 		return PTR_ERR(reloc_root);
822 
823 	ret = __add_reloc_root(reloc_root);
824 	ASSERT(ret != -EEXIST);
825 	if (ret) {
826 		/* Pairs with create_reloc_root */
827 		btrfs_put_root(reloc_root);
828 		return ret;
829 	}
830 	root->reloc_root = btrfs_grab_root(reloc_root);
831 	return 0;
832 }
833 
834 /*
835  * update root item of reloc tree
836  */
837 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
838 			    struct btrfs_root *root)
839 {
840 	struct btrfs_fs_info *fs_info = root->fs_info;
841 	struct btrfs_root *reloc_root;
842 	struct btrfs_root_item *root_item;
843 	int ret;
844 
845 	if (!have_reloc_root(root))
846 		return 0;
847 
848 	reloc_root = root->reloc_root;
849 	root_item = &reloc_root->root_item;
850 
851 	/*
852 	 * We are probably ok here, but __del_reloc_root() will drop its ref of
853 	 * the root.  We have the ref for root->reloc_root, but just in case
854 	 * hold it while we update the reloc root.
855 	 */
856 	btrfs_grab_root(reloc_root);
857 
858 	/* root->reloc_root will stay until current relocation finished */
859 	if (fs_info->reloc_ctl && fs_info->reloc_ctl->merge_reloc_tree &&
860 	    btrfs_root_refs(root_item) == 0) {
861 		set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
862 		/*
863 		 * Mark the tree as dead before we change reloc_root so
864 		 * have_reloc_root will not touch it from now on.
865 		 */
866 		smp_wmb();
867 		__del_reloc_root(reloc_root);
868 	}
869 
870 	if (reloc_root->commit_root != reloc_root->node) {
871 		__update_reloc_root(reloc_root);
872 		btrfs_set_root_node(root_item, reloc_root->node);
873 		free_extent_buffer(reloc_root->commit_root);
874 		reloc_root->commit_root = btrfs_root_node(reloc_root);
875 	}
876 
877 	ret = btrfs_update_root(trans, fs_info->tree_root,
878 				&reloc_root->root_key, root_item);
879 	btrfs_put_root(reloc_root);
880 	return ret;
881 }
882 
883 /*
884  * get new location of data
885  */
886 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
887 			    u64 bytenr, u64 num_bytes)
888 {
889 	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
890 	struct btrfs_path *path;
891 	struct btrfs_file_extent_item *fi;
892 	struct extent_buffer *leaf;
893 	int ret;
894 
895 	path = btrfs_alloc_path();
896 	if (!path)
897 		return -ENOMEM;
898 
899 	bytenr -= BTRFS_I(reloc_inode)->reloc_block_group_start;
900 	ret = btrfs_lookup_file_extent(NULL, root, path,
901 			btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
902 	if (ret < 0)
903 		goto out;
904 	if (ret > 0) {
905 		ret = -ENOENT;
906 		goto out;
907 	}
908 
909 	leaf = path->nodes[0];
910 	fi = btrfs_item_ptr(leaf, path->slots[0],
911 			    struct btrfs_file_extent_item);
912 
913 	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
914 	       btrfs_file_extent_compression(leaf, fi) ||
915 	       btrfs_file_extent_encryption(leaf, fi) ||
916 	       btrfs_file_extent_other_encoding(leaf, fi));
917 
918 	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
919 		ret = -EINVAL;
920 		goto out;
921 	}
922 
923 	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
924 	ret = 0;
925 out:
926 	btrfs_free_path(path);
927 	return ret;
928 }
929 
930 /*
931  * update file extent items in the tree leaf to point to
932  * the new locations.
933  */
934 static noinline_for_stack
935 int replace_file_extents(struct btrfs_trans_handle *trans,
936 			 struct reloc_control *rc,
937 			 struct btrfs_root *root,
938 			 struct extent_buffer *leaf)
939 {
940 	struct btrfs_fs_info *fs_info = root->fs_info;
941 	struct btrfs_key key;
942 	struct btrfs_file_extent_item *fi;
943 	struct btrfs_inode *inode = NULL;
944 	u64 parent;
945 	u64 bytenr;
946 	u64 new_bytenr = 0;
947 	u64 num_bytes;
948 	u64 end;
949 	u32 nritems;
950 	u32 i;
951 	int ret = 0;
952 	int first = 1;
953 	int dirty = 0;
954 
955 	if (rc->stage != UPDATE_DATA_PTRS)
956 		return 0;
957 
958 	/* reloc trees always use full backref */
959 	if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
960 		parent = leaf->start;
961 	else
962 		parent = 0;
963 
964 	nritems = btrfs_header_nritems(leaf);
965 	for (i = 0; i < nritems; i++) {
966 		struct btrfs_ref ref = { 0 };
967 
968 		cond_resched();
969 		btrfs_item_key_to_cpu(leaf, &key, i);
970 		if (key.type != BTRFS_EXTENT_DATA_KEY)
971 			continue;
972 		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
973 		if (btrfs_file_extent_type(leaf, fi) ==
974 		    BTRFS_FILE_EXTENT_INLINE)
975 			continue;
976 		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
977 		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
978 		if (bytenr == 0)
979 			continue;
980 		if (!in_range(bytenr, rc->block_group->start,
981 			      rc->block_group->length))
982 			continue;
983 
984 		/*
985 		 * if we are modifying block in fs tree, wait for read_folio
986 		 * to complete and drop the extent cache
987 		 */
988 		if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID) {
989 			if (first) {
990 				inode = btrfs_find_first_inode(root, key.objectid);
991 				first = 0;
992 			} else if (inode && btrfs_ino(inode) < key.objectid) {
993 				btrfs_add_delayed_iput(inode);
994 				inode = btrfs_find_first_inode(root, key.objectid);
995 			}
996 			if (inode && btrfs_ino(inode) == key.objectid) {
997 				struct extent_state *cached_state = NULL;
998 
999 				end = key.offset +
1000 				      btrfs_file_extent_num_bytes(leaf, fi);
1001 				WARN_ON(!IS_ALIGNED(key.offset,
1002 						    fs_info->sectorsize));
1003 				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1004 				end--;
1005 				/* Take mmap lock to serialize with reflinks. */
1006 				if (!down_read_trylock(&inode->i_mmap_lock))
1007 					continue;
1008 				ret = try_lock_extent(&inode->io_tree, key.offset,
1009 						      end, &cached_state);
1010 				if (!ret) {
1011 					up_read(&inode->i_mmap_lock);
1012 					continue;
1013 				}
1014 
1015 				btrfs_drop_extent_map_range(inode, key.offset, end, true);
1016 				unlock_extent(&inode->io_tree, key.offset, end,
1017 					      &cached_state);
1018 				up_read(&inode->i_mmap_lock);
1019 			}
1020 		}
1021 
1022 		ret = get_new_location(rc->data_inode, &new_bytenr,
1023 				       bytenr, num_bytes);
1024 		if (ret) {
1025 			/*
1026 			 * Don't have to abort since we've not changed anything
1027 			 * in the file extent yet.
1028 			 */
1029 			break;
1030 		}
1031 
1032 		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1033 		dirty = 1;
1034 
1035 		key.offset -= btrfs_file_extent_offset(leaf, fi);
1036 		ref.action = BTRFS_ADD_DELAYED_REF;
1037 		ref.bytenr = new_bytenr;
1038 		ref.num_bytes = num_bytes;
1039 		ref.parent = parent;
1040 		ref.owning_root = btrfs_root_id(root);
1041 		ref.ref_root = btrfs_header_owner(leaf);
1042 		btrfs_init_data_ref(&ref, key.objectid, key.offset,
1043 				    btrfs_root_id(root), false);
1044 		ret = btrfs_inc_extent_ref(trans, &ref);
1045 		if (ret) {
1046 			btrfs_abort_transaction(trans, ret);
1047 			break;
1048 		}
1049 
1050 		ref.action = BTRFS_DROP_DELAYED_REF;
1051 		ref.bytenr = bytenr;
1052 		ref.num_bytes = num_bytes;
1053 		ref.parent = parent;
1054 		ref.owning_root = btrfs_root_id(root);
1055 		ref.ref_root = btrfs_header_owner(leaf);
1056 		btrfs_init_data_ref(&ref, key.objectid, key.offset,
1057 				    btrfs_root_id(root), false);
1058 		ret = btrfs_free_extent(trans, &ref);
1059 		if (ret) {
1060 			btrfs_abort_transaction(trans, ret);
1061 			break;
1062 		}
1063 	}
1064 	if (dirty)
1065 		btrfs_mark_buffer_dirty(trans, leaf);
1066 	if (inode)
1067 		btrfs_add_delayed_iput(inode);
1068 	return ret;
1069 }
1070 
1071 static noinline_for_stack int memcmp_node_keys(const struct extent_buffer *eb,
1072 					       int slot, const struct btrfs_path *path,
1073 					       int level)
1074 {
1075 	struct btrfs_disk_key key1;
1076 	struct btrfs_disk_key key2;
1077 	btrfs_node_key(eb, &key1, slot);
1078 	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1079 	return memcmp(&key1, &key2, sizeof(key1));
1080 }
1081 
1082 /*
1083  * try to replace tree blocks in fs tree with the new blocks
1084  * in reloc tree. tree blocks haven't been modified since the
1085  * reloc tree was create can be replaced.
1086  *
1087  * if a block was replaced, level of the block + 1 is returned.
1088  * if no block got replaced, 0 is returned. if there are other
1089  * errors, a negative error number is returned.
1090  */
1091 static noinline_for_stack
1092 int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
1093 		 struct btrfs_root *dest, struct btrfs_root *src,
1094 		 struct btrfs_path *path, struct btrfs_key *next_key,
1095 		 int lowest_level, int max_level)
1096 {
1097 	struct btrfs_fs_info *fs_info = dest->fs_info;
1098 	struct extent_buffer *eb;
1099 	struct extent_buffer *parent;
1100 	struct btrfs_ref ref = { 0 };
1101 	struct btrfs_key key;
1102 	u64 old_bytenr;
1103 	u64 new_bytenr;
1104 	u64 old_ptr_gen;
1105 	u64 new_ptr_gen;
1106 	u64 last_snapshot;
1107 	u32 blocksize;
1108 	int cow = 0;
1109 	int level;
1110 	int ret;
1111 	int slot;
1112 
1113 	ASSERT(btrfs_root_id(src) == BTRFS_TREE_RELOC_OBJECTID);
1114 	ASSERT(btrfs_root_id(dest) != BTRFS_TREE_RELOC_OBJECTID);
1115 
1116 	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1117 again:
1118 	slot = path->slots[lowest_level];
1119 	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1120 
1121 	eb = btrfs_lock_root_node(dest);
1122 	level = btrfs_header_level(eb);
1123 
1124 	if (level < lowest_level) {
1125 		btrfs_tree_unlock(eb);
1126 		free_extent_buffer(eb);
1127 		return 0;
1128 	}
1129 
1130 	if (cow) {
1131 		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb,
1132 				      BTRFS_NESTING_COW);
1133 		if (ret) {
1134 			btrfs_tree_unlock(eb);
1135 			free_extent_buffer(eb);
1136 			return ret;
1137 		}
1138 	}
1139 
1140 	if (next_key) {
1141 		next_key->objectid = (u64)-1;
1142 		next_key->type = (u8)-1;
1143 		next_key->offset = (u64)-1;
1144 	}
1145 
1146 	parent = eb;
1147 	while (1) {
1148 		level = btrfs_header_level(parent);
1149 		ASSERT(level >= lowest_level);
1150 
1151 		ret = btrfs_bin_search(parent, 0, &key, &slot);
1152 		if (ret < 0)
1153 			break;
1154 		if (ret && slot > 0)
1155 			slot--;
1156 
1157 		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1158 			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1159 
1160 		old_bytenr = btrfs_node_blockptr(parent, slot);
1161 		blocksize = fs_info->nodesize;
1162 		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1163 
1164 		if (level <= max_level) {
1165 			eb = path->nodes[level];
1166 			new_bytenr = btrfs_node_blockptr(eb,
1167 							path->slots[level]);
1168 			new_ptr_gen = btrfs_node_ptr_generation(eb,
1169 							path->slots[level]);
1170 		} else {
1171 			new_bytenr = 0;
1172 			new_ptr_gen = 0;
1173 		}
1174 
1175 		if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1176 			ret = level;
1177 			break;
1178 		}
1179 
1180 		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1181 		    memcmp_node_keys(parent, slot, path, level)) {
1182 			if (level <= lowest_level) {
1183 				ret = 0;
1184 				break;
1185 			}
1186 
1187 			eb = btrfs_read_node_slot(parent, slot);
1188 			if (IS_ERR(eb)) {
1189 				ret = PTR_ERR(eb);
1190 				break;
1191 			}
1192 			btrfs_tree_lock(eb);
1193 			if (cow) {
1194 				ret = btrfs_cow_block(trans, dest, eb, parent,
1195 						      slot, &eb,
1196 						      BTRFS_NESTING_COW);
1197 				if (ret) {
1198 					btrfs_tree_unlock(eb);
1199 					free_extent_buffer(eb);
1200 					break;
1201 				}
1202 			}
1203 
1204 			btrfs_tree_unlock(parent);
1205 			free_extent_buffer(parent);
1206 
1207 			parent = eb;
1208 			continue;
1209 		}
1210 
1211 		if (!cow) {
1212 			btrfs_tree_unlock(parent);
1213 			free_extent_buffer(parent);
1214 			cow = 1;
1215 			goto again;
1216 		}
1217 
1218 		btrfs_node_key_to_cpu(path->nodes[level], &key,
1219 				      path->slots[level]);
1220 		btrfs_release_path(path);
1221 
1222 		path->lowest_level = level;
1223 		set_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state);
1224 		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1225 		clear_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state);
1226 		path->lowest_level = 0;
1227 		if (ret) {
1228 			if (ret > 0)
1229 				ret = -ENOENT;
1230 			break;
1231 		}
1232 
1233 		/*
1234 		 * Info qgroup to trace both subtrees.
1235 		 *
1236 		 * We must trace both trees.
1237 		 * 1) Tree reloc subtree
1238 		 *    If not traced, we will leak data numbers
1239 		 * 2) Fs subtree
1240 		 *    If not traced, we will double count old data
1241 		 *
1242 		 * We don't scan the subtree right now, but only record
1243 		 * the swapped tree blocks.
1244 		 * The real subtree rescan is delayed until we have new
1245 		 * CoW on the subtree root node before transaction commit.
1246 		 */
1247 		ret = btrfs_qgroup_add_swapped_blocks(dest,
1248 				rc->block_group, parent, slot,
1249 				path->nodes[level], path->slots[level],
1250 				last_snapshot);
1251 		if (ret < 0)
1252 			break;
1253 		/*
1254 		 * swap blocks in fs tree and reloc tree.
1255 		 */
1256 		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1257 		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1258 		btrfs_mark_buffer_dirty(trans, parent);
1259 
1260 		btrfs_set_node_blockptr(path->nodes[level],
1261 					path->slots[level], old_bytenr);
1262 		btrfs_set_node_ptr_generation(path->nodes[level],
1263 					      path->slots[level], old_ptr_gen);
1264 		btrfs_mark_buffer_dirty(trans, path->nodes[level]);
1265 
1266 		ref.action = BTRFS_ADD_DELAYED_REF;
1267 		ref.bytenr = old_bytenr;
1268 		ref.num_bytes = blocksize;
1269 		ref.parent = path->nodes[level]->start;
1270 		ref.owning_root = btrfs_root_id(src);
1271 		ref.ref_root = btrfs_root_id(src);
1272 		btrfs_init_tree_ref(&ref, level - 1, 0, true);
1273 		ret = btrfs_inc_extent_ref(trans, &ref);
1274 		if (ret) {
1275 			btrfs_abort_transaction(trans, ret);
1276 			break;
1277 		}
1278 
1279 		ref.action = BTRFS_ADD_DELAYED_REF;
1280 		ref.bytenr = new_bytenr;
1281 		ref.num_bytes = blocksize;
1282 		ref.parent = 0;
1283 		ref.owning_root = btrfs_root_id(dest);
1284 		ref.ref_root = btrfs_root_id(dest);
1285 		btrfs_init_tree_ref(&ref, level - 1, 0, true);
1286 		ret = btrfs_inc_extent_ref(trans, &ref);
1287 		if (ret) {
1288 			btrfs_abort_transaction(trans, ret);
1289 			break;
1290 		}
1291 
1292 		/* We don't know the real owning_root, use 0. */
1293 		ref.action = BTRFS_DROP_DELAYED_REF;
1294 		ref.bytenr = new_bytenr;
1295 		ref.num_bytes = blocksize;
1296 		ref.parent = path->nodes[level]->start;
1297 		ref.owning_root = 0;
1298 		ref.ref_root = btrfs_root_id(src);
1299 		btrfs_init_tree_ref(&ref, level - 1, 0, true);
1300 		ret = btrfs_free_extent(trans, &ref);
1301 		if (ret) {
1302 			btrfs_abort_transaction(trans, ret);
1303 			break;
1304 		}
1305 
1306 		/* We don't know the real owning_root, use 0. */
1307 		ref.action = BTRFS_DROP_DELAYED_REF;
1308 		ref.bytenr = old_bytenr;
1309 		ref.num_bytes = blocksize;
1310 		ref.parent = 0;
1311 		ref.owning_root = 0;
1312 		ref.ref_root = btrfs_root_id(dest);
1313 		btrfs_init_tree_ref(&ref, level - 1, 0, true);
1314 		ret = btrfs_free_extent(trans, &ref);
1315 		if (ret) {
1316 			btrfs_abort_transaction(trans, ret);
1317 			break;
1318 		}
1319 
1320 		btrfs_unlock_up_safe(path, 0);
1321 
1322 		ret = level;
1323 		break;
1324 	}
1325 	btrfs_tree_unlock(parent);
1326 	free_extent_buffer(parent);
1327 	return ret;
1328 }
1329 
1330 /*
1331  * helper to find next relocated block in reloc tree
1332  */
1333 static noinline_for_stack
1334 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1335 		       int *level)
1336 {
1337 	struct extent_buffer *eb;
1338 	int i;
1339 	u64 last_snapshot;
1340 	u32 nritems;
1341 
1342 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1343 
1344 	for (i = 0; i < *level; i++) {
1345 		free_extent_buffer(path->nodes[i]);
1346 		path->nodes[i] = NULL;
1347 	}
1348 
1349 	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1350 		eb = path->nodes[i];
1351 		nritems = btrfs_header_nritems(eb);
1352 		while (path->slots[i] + 1 < nritems) {
1353 			path->slots[i]++;
1354 			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1355 			    last_snapshot)
1356 				continue;
1357 
1358 			*level = i;
1359 			return 0;
1360 		}
1361 		free_extent_buffer(path->nodes[i]);
1362 		path->nodes[i] = NULL;
1363 	}
1364 	return 1;
1365 }
1366 
1367 /*
1368  * walk down reloc tree to find relocated block of lowest level
1369  */
1370 static noinline_for_stack
1371 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1372 			 int *level)
1373 {
1374 	struct extent_buffer *eb = NULL;
1375 	int i;
1376 	u64 ptr_gen = 0;
1377 	u64 last_snapshot;
1378 	u32 nritems;
1379 
1380 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1381 
1382 	for (i = *level; i > 0; i--) {
1383 		eb = path->nodes[i];
1384 		nritems = btrfs_header_nritems(eb);
1385 		while (path->slots[i] < nritems) {
1386 			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1387 			if (ptr_gen > last_snapshot)
1388 				break;
1389 			path->slots[i]++;
1390 		}
1391 		if (path->slots[i] >= nritems) {
1392 			if (i == *level)
1393 				break;
1394 			*level = i + 1;
1395 			return 0;
1396 		}
1397 		if (i == 1) {
1398 			*level = i;
1399 			return 0;
1400 		}
1401 
1402 		eb = btrfs_read_node_slot(eb, path->slots[i]);
1403 		if (IS_ERR(eb))
1404 			return PTR_ERR(eb);
1405 		BUG_ON(btrfs_header_level(eb) != i - 1);
1406 		path->nodes[i - 1] = eb;
1407 		path->slots[i - 1] = 0;
1408 	}
1409 	return 1;
1410 }
1411 
1412 /*
1413  * invalidate extent cache for file extents whose key in range of
1414  * [min_key, max_key)
1415  */
1416 static int invalidate_extent_cache(struct btrfs_root *root,
1417 				   const struct btrfs_key *min_key,
1418 				   const struct btrfs_key *max_key)
1419 {
1420 	struct btrfs_fs_info *fs_info = root->fs_info;
1421 	struct btrfs_inode *inode = NULL;
1422 	u64 objectid;
1423 	u64 start, end;
1424 	u64 ino;
1425 
1426 	objectid = min_key->objectid;
1427 	while (1) {
1428 		struct extent_state *cached_state = NULL;
1429 
1430 		cond_resched();
1431 		if (inode)
1432 			iput(&inode->vfs_inode);
1433 
1434 		if (objectid > max_key->objectid)
1435 			break;
1436 
1437 		inode = btrfs_find_first_inode(root, objectid);
1438 		if (!inode)
1439 			break;
1440 		ino = btrfs_ino(inode);
1441 
1442 		if (ino > max_key->objectid) {
1443 			iput(&inode->vfs_inode);
1444 			break;
1445 		}
1446 
1447 		objectid = ino + 1;
1448 		if (!S_ISREG(inode->vfs_inode.i_mode))
1449 			continue;
1450 
1451 		if (unlikely(min_key->objectid == ino)) {
1452 			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1453 				continue;
1454 			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1455 				start = 0;
1456 			else {
1457 				start = min_key->offset;
1458 				WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
1459 			}
1460 		} else {
1461 			start = 0;
1462 		}
1463 
1464 		if (unlikely(max_key->objectid == ino)) {
1465 			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1466 				continue;
1467 			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1468 				end = (u64)-1;
1469 			} else {
1470 				if (max_key->offset == 0)
1471 					continue;
1472 				end = max_key->offset;
1473 				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1474 				end--;
1475 			}
1476 		} else {
1477 			end = (u64)-1;
1478 		}
1479 
1480 		/* the lock_extent waits for read_folio to complete */
1481 		lock_extent(&inode->io_tree, start, end, &cached_state);
1482 		btrfs_drop_extent_map_range(inode, start, end, true);
1483 		unlock_extent(&inode->io_tree, start, end, &cached_state);
1484 	}
1485 	return 0;
1486 }
1487 
1488 static int find_next_key(struct btrfs_path *path, int level,
1489 			 struct btrfs_key *key)
1490 
1491 {
1492 	while (level < BTRFS_MAX_LEVEL) {
1493 		if (!path->nodes[level])
1494 			break;
1495 		if (path->slots[level] + 1 <
1496 		    btrfs_header_nritems(path->nodes[level])) {
1497 			btrfs_node_key_to_cpu(path->nodes[level], key,
1498 					      path->slots[level] + 1);
1499 			return 0;
1500 		}
1501 		level++;
1502 	}
1503 	return 1;
1504 }
1505 
1506 /*
1507  * Insert current subvolume into reloc_control::dirty_subvol_roots
1508  */
1509 static int insert_dirty_subvol(struct btrfs_trans_handle *trans,
1510 			       struct reloc_control *rc,
1511 			       struct btrfs_root *root)
1512 {
1513 	struct btrfs_root *reloc_root = root->reloc_root;
1514 	struct btrfs_root_item *reloc_root_item;
1515 	int ret;
1516 
1517 	/* @root must be a subvolume tree root with a valid reloc tree */
1518 	ASSERT(btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID);
1519 	ASSERT(reloc_root);
1520 
1521 	reloc_root_item = &reloc_root->root_item;
1522 	memset(&reloc_root_item->drop_progress, 0,
1523 		sizeof(reloc_root_item->drop_progress));
1524 	btrfs_set_root_drop_level(reloc_root_item, 0);
1525 	btrfs_set_root_refs(reloc_root_item, 0);
1526 	ret = btrfs_update_reloc_root(trans, root);
1527 	if (ret)
1528 		return ret;
1529 
1530 	if (list_empty(&root->reloc_dirty_list)) {
1531 		btrfs_grab_root(root);
1532 		list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots);
1533 	}
1534 
1535 	return 0;
1536 }
1537 
1538 static int clean_dirty_subvols(struct reloc_control *rc)
1539 {
1540 	struct btrfs_root *root;
1541 	struct btrfs_root *next;
1542 	int ret = 0;
1543 	int ret2;
1544 
1545 	list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots,
1546 				 reloc_dirty_list) {
1547 		if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID) {
1548 			/* Merged subvolume, cleanup its reloc root */
1549 			struct btrfs_root *reloc_root = root->reloc_root;
1550 
1551 			list_del_init(&root->reloc_dirty_list);
1552 			root->reloc_root = NULL;
1553 			/*
1554 			 * Need barrier to ensure clear_bit() only happens after
1555 			 * root->reloc_root = NULL. Pairs with have_reloc_root.
1556 			 */
1557 			smp_wmb();
1558 			clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
1559 			if (reloc_root) {
1560 				/*
1561 				 * btrfs_drop_snapshot drops our ref we hold for
1562 				 * ->reloc_root.  If it fails however we must
1563 				 * drop the ref ourselves.
1564 				 */
1565 				ret2 = btrfs_drop_snapshot(reloc_root, 0, 1);
1566 				if (ret2 < 0) {
1567 					btrfs_put_root(reloc_root);
1568 					if (!ret)
1569 						ret = ret2;
1570 				}
1571 			}
1572 			btrfs_put_root(root);
1573 		} else {
1574 			/* Orphan reloc tree, just clean it up */
1575 			ret2 = btrfs_drop_snapshot(root, 0, 1);
1576 			if (ret2 < 0) {
1577 				btrfs_put_root(root);
1578 				if (!ret)
1579 					ret = ret2;
1580 			}
1581 		}
1582 	}
1583 	return ret;
1584 }
1585 
1586 /*
1587  * merge the relocated tree blocks in reloc tree with corresponding
1588  * fs tree.
1589  */
1590 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
1591 					       struct btrfs_root *root)
1592 {
1593 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1594 	struct btrfs_key key;
1595 	struct btrfs_key next_key;
1596 	struct btrfs_trans_handle *trans = NULL;
1597 	struct btrfs_root *reloc_root;
1598 	struct btrfs_root_item *root_item;
1599 	struct btrfs_path *path;
1600 	struct extent_buffer *leaf;
1601 	int reserve_level;
1602 	int level;
1603 	int max_level;
1604 	int replaced = 0;
1605 	int ret = 0;
1606 	u32 min_reserved;
1607 
1608 	path = btrfs_alloc_path();
1609 	if (!path)
1610 		return -ENOMEM;
1611 	path->reada = READA_FORWARD;
1612 
1613 	reloc_root = root->reloc_root;
1614 	root_item = &reloc_root->root_item;
1615 
1616 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
1617 		level = btrfs_root_level(root_item);
1618 		atomic_inc(&reloc_root->node->refs);
1619 		path->nodes[level] = reloc_root->node;
1620 		path->slots[level] = 0;
1621 	} else {
1622 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
1623 
1624 		level = btrfs_root_drop_level(root_item);
1625 		BUG_ON(level == 0);
1626 		path->lowest_level = level;
1627 		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
1628 		path->lowest_level = 0;
1629 		if (ret < 0) {
1630 			btrfs_free_path(path);
1631 			return ret;
1632 		}
1633 
1634 		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
1635 				      path->slots[level]);
1636 		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
1637 
1638 		btrfs_unlock_up_safe(path, 0);
1639 	}
1640 
1641 	/*
1642 	 * In merge_reloc_root(), we modify the upper level pointer to swap the
1643 	 * tree blocks between reloc tree and subvolume tree.  Thus for tree
1644 	 * block COW, we COW at most from level 1 to root level for each tree.
1645 	 *
1646 	 * Thus the needed metadata size is at most root_level * nodesize,
1647 	 * and * 2 since we have two trees to COW.
1648 	 */
1649 	reserve_level = max_t(int, 1, btrfs_root_level(root_item));
1650 	min_reserved = fs_info->nodesize * reserve_level * 2;
1651 	memset(&next_key, 0, sizeof(next_key));
1652 
1653 	while (1) {
1654 		ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv,
1655 					     min_reserved,
1656 					     BTRFS_RESERVE_FLUSH_LIMIT);
1657 		if (ret)
1658 			goto out;
1659 		trans = btrfs_start_transaction(root, 0);
1660 		if (IS_ERR(trans)) {
1661 			ret = PTR_ERR(trans);
1662 			trans = NULL;
1663 			goto out;
1664 		}
1665 
1666 		/*
1667 		 * At this point we no longer have a reloc_control, so we can't
1668 		 * depend on btrfs_init_reloc_root to update our last_trans.
1669 		 *
1670 		 * But that's ok, we started the trans handle on our
1671 		 * corresponding fs_root, which means it's been added to the
1672 		 * dirty list.  At commit time we'll still call
1673 		 * btrfs_update_reloc_root() and update our root item
1674 		 * appropriately.
1675 		 */
1676 		btrfs_set_root_last_trans(reloc_root, trans->transid);
1677 		trans->block_rsv = rc->block_rsv;
1678 
1679 		replaced = 0;
1680 		max_level = level;
1681 
1682 		ret = walk_down_reloc_tree(reloc_root, path, &level);
1683 		if (ret < 0)
1684 			goto out;
1685 		if (ret > 0)
1686 			break;
1687 
1688 		if (!find_next_key(path, level, &key) &&
1689 		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
1690 			ret = 0;
1691 		} else {
1692 			ret = replace_path(trans, rc, root, reloc_root, path,
1693 					   &next_key, level, max_level);
1694 		}
1695 		if (ret < 0)
1696 			goto out;
1697 		if (ret > 0) {
1698 			level = ret;
1699 			btrfs_node_key_to_cpu(path->nodes[level], &key,
1700 					      path->slots[level]);
1701 			replaced = 1;
1702 		}
1703 
1704 		ret = walk_up_reloc_tree(reloc_root, path, &level);
1705 		if (ret > 0)
1706 			break;
1707 
1708 		BUG_ON(level == 0);
1709 		/*
1710 		 * save the merging progress in the drop_progress.
1711 		 * this is OK since root refs == 1 in this case.
1712 		 */
1713 		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
1714 			       path->slots[level]);
1715 		btrfs_set_root_drop_level(root_item, level);
1716 
1717 		btrfs_end_transaction_throttle(trans);
1718 		trans = NULL;
1719 
1720 		btrfs_btree_balance_dirty(fs_info);
1721 
1722 		if (replaced && rc->stage == UPDATE_DATA_PTRS)
1723 			invalidate_extent_cache(root, &key, &next_key);
1724 	}
1725 
1726 	/*
1727 	 * handle the case only one block in the fs tree need to be
1728 	 * relocated and the block is tree root.
1729 	 */
1730 	leaf = btrfs_lock_root_node(root);
1731 	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf,
1732 			      BTRFS_NESTING_COW);
1733 	btrfs_tree_unlock(leaf);
1734 	free_extent_buffer(leaf);
1735 out:
1736 	btrfs_free_path(path);
1737 
1738 	if (ret == 0) {
1739 		ret = insert_dirty_subvol(trans, rc, root);
1740 		if (ret)
1741 			btrfs_abort_transaction(trans, ret);
1742 	}
1743 
1744 	if (trans)
1745 		btrfs_end_transaction_throttle(trans);
1746 
1747 	btrfs_btree_balance_dirty(fs_info);
1748 
1749 	if (replaced && rc->stage == UPDATE_DATA_PTRS)
1750 		invalidate_extent_cache(root, &key, &next_key);
1751 
1752 	return ret;
1753 }
1754 
1755 static noinline_for_stack
1756 int prepare_to_merge(struct reloc_control *rc, int err)
1757 {
1758 	struct btrfs_root *root = rc->extent_root;
1759 	struct btrfs_fs_info *fs_info = root->fs_info;
1760 	struct btrfs_root *reloc_root;
1761 	struct btrfs_trans_handle *trans;
1762 	LIST_HEAD(reloc_roots);
1763 	u64 num_bytes = 0;
1764 	int ret;
1765 
1766 	mutex_lock(&fs_info->reloc_mutex);
1767 	rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
1768 	rc->merging_rsv_size += rc->nodes_relocated * 2;
1769 	mutex_unlock(&fs_info->reloc_mutex);
1770 
1771 again:
1772 	if (!err) {
1773 		num_bytes = rc->merging_rsv_size;
1774 		ret = btrfs_block_rsv_add(fs_info, rc->block_rsv, num_bytes,
1775 					  BTRFS_RESERVE_FLUSH_ALL);
1776 		if (ret)
1777 			err = ret;
1778 	}
1779 
1780 	trans = btrfs_join_transaction(rc->extent_root);
1781 	if (IS_ERR(trans)) {
1782 		if (!err)
1783 			btrfs_block_rsv_release(fs_info, rc->block_rsv,
1784 						num_bytes, NULL);
1785 		return PTR_ERR(trans);
1786 	}
1787 
1788 	if (!err) {
1789 		if (num_bytes != rc->merging_rsv_size) {
1790 			btrfs_end_transaction(trans);
1791 			btrfs_block_rsv_release(fs_info, rc->block_rsv,
1792 						num_bytes, NULL);
1793 			goto again;
1794 		}
1795 	}
1796 
1797 	rc->merge_reloc_tree = true;
1798 
1799 	while (!list_empty(&rc->reloc_roots)) {
1800 		reloc_root = list_entry(rc->reloc_roots.next,
1801 					struct btrfs_root, root_list);
1802 		list_del_init(&reloc_root->root_list);
1803 
1804 		root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1805 				false);
1806 		if (IS_ERR(root)) {
1807 			/*
1808 			 * Even if we have an error we need this reloc root
1809 			 * back on our list so we can clean up properly.
1810 			 */
1811 			list_add(&reloc_root->root_list, &reloc_roots);
1812 			btrfs_abort_transaction(trans, (int)PTR_ERR(root));
1813 			if (!err)
1814 				err = PTR_ERR(root);
1815 			break;
1816 		}
1817 
1818 		if (unlikely(root->reloc_root != reloc_root)) {
1819 			if (root->reloc_root) {
1820 				btrfs_err(fs_info,
1821 "reloc tree mismatch, root %lld has reloc root key (%lld %u %llu) gen %llu, expect reloc root key (%lld %u %llu) gen %llu",
1822 					  btrfs_root_id(root),
1823 					  btrfs_root_id(root->reloc_root),
1824 					  root->reloc_root->root_key.type,
1825 					  root->reloc_root->root_key.offset,
1826 					  btrfs_root_generation(
1827 						  &root->reloc_root->root_item),
1828 					  btrfs_root_id(reloc_root),
1829 					  reloc_root->root_key.type,
1830 					  reloc_root->root_key.offset,
1831 					  btrfs_root_generation(
1832 						  &reloc_root->root_item));
1833 			} else {
1834 				btrfs_err(fs_info,
1835 "reloc tree mismatch, root %lld has no reloc root, expect reloc root key (%lld %u %llu) gen %llu",
1836 					  btrfs_root_id(root),
1837 					  btrfs_root_id(reloc_root),
1838 					  reloc_root->root_key.type,
1839 					  reloc_root->root_key.offset,
1840 					  btrfs_root_generation(
1841 						  &reloc_root->root_item));
1842 			}
1843 			list_add(&reloc_root->root_list, &reloc_roots);
1844 			btrfs_put_root(root);
1845 			btrfs_abort_transaction(trans, -EUCLEAN);
1846 			if (!err)
1847 				err = -EUCLEAN;
1848 			break;
1849 		}
1850 
1851 		/*
1852 		 * set reference count to 1, so btrfs_recover_relocation
1853 		 * knows it should resumes merging
1854 		 */
1855 		if (!err)
1856 			btrfs_set_root_refs(&reloc_root->root_item, 1);
1857 		ret = btrfs_update_reloc_root(trans, root);
1858 
1859 		/*
1860 		 * Even if we have an error we need this reloc root back on our
1861 		 * list so we can clean up properly.
1862 		 */
1863 		list_add(&reloc_root->root_list, &reloc_roots);
1864 		btrfs_put_root(root);
1865 
1866 		if (ret) {
1867 			btrfs_abort_transaction(trans, ret);
1868 			if (!err)
1869 				err = ret;
1870 			break;
1871 		}
1872 	}
1873 
1874 	list_splice(&reloc_roots, &rc->reloc_roots);
1875 
1876 	if (!err)
1877 		err = btrfs_commit_transaction(trans);
1878 	else
1879 		btrfs_end_transaction(trans);
1880 	return err;
1881 }
1882 
1883 static noinline_for_stack
1884 void free_reloc_roots(struct list_head *list)
1885 {
1886 	struct btrfs_root *reloc_root, *tmp;
1887 
1888 	list_for_each_entry_safe(reloc_root, tmp, list, root_list)
1889 		__del_reloc_root(reloc_root);
1890 }
1891 
1892 static noinline_for_stack
1893 void merge_reloc_roots(struct reloc_control *rc)
1894 {
1895 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1896 	struct btrfs_root *root;
1897 	struct btrfs_root *reloc_root;
1898 	LIST_HEAD(reloc_roots);
1899 	int found = 0;
1900 	int ret = 0;
1901 again:
1902 	root = rc->extent_root;
1903 
1904 	/*
1905 	 * this serializes us with btrfs_record_root_in_transaction,
1906 	 * we have to make sure nobody is in the middle of
1907 	 * adding their roots to the list while we are
1908 	 * doing this splice
1909 	 */
1910 	mutex_lock(&fs_info->reloc_mutex);
1911 	list_splice_init(&rc->reloc_roots, &reloc_roots);
1912 	mutex_unlock(&fs_info->reloc_mutex);
1913 
1914 	while (!list_empty(&reloc_roots)) {
1915 		found = 1;
1916 		reloc_root = list_entry(reloc_roots.next,
1917 					struct btrfs_root, root_list);
1918 
1919 		root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1920 					 false);
1921 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
1922 			if (WARN_ON(IS_ERR(root))) {
1923 				/*
1924 				 * For recovery we read the fs roots on mount,
1925 				 * and if we didn't find the root then we marked
1926 				 * the reloc root as a garbage root.  For normal
1927 				 * relocation obviously the root should exist in
1928 				 * memory.  However there's no reason we can't
1929 				 * handle the error properly here just in case.
1930 				 */
1931 				ret = PTR_ERR(root);
1932 				goto out;
1933 			}
1934 			if (WARN_ON(root->reloc_root != reloc_root)) {
1935 				/*
1936 				 * This can happen if on-disk metadata has some
1937 				 * corruption, e.g. bad reloc tree key offset.
1938 				 */
1939 				ret = -EINVAL;
1940 				goto out;
1941 			}
1942 			ret = merge_reloc_root(rc, root);
1943 			btrfs_put_root(root);
1944 			if (ret) {
1945 				if (list_empty(&reloc_root->root_list))
1946 					list_add_tail(&reloc_root->root_list,
1947 						      &reloc_roots);
1948 				goto out;
1949 			}
1950 		} else {
1951 			if (!IS_ERR(root)) {
1952 				if (root->reloc_root == reloc_root) {
1953 					root->reloc_root = NULL;
1954 					btrfs_put_root(reloc_root);
1955 				}
1956 				clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE,
1957 					  &root->state);
1958 				btrfs_put_root(root);
1959 			}
1960 
1961 			list_del_init(&reloc_root->root_list);
1962 			/* Don't forget to queue this reloc root for cleanup */
1963 			list_add_tail(&reloc_root->reloc_dirty_list,
1964 				      &rc->dirty_subvol_roots);
1965 		}
1966 	}
1967 
1968 	if (found) {
1969 		found = 0;
1970 		goto again;
1971 	}
1972 out:
1973 	if (ret) {
1974 		btrfs_handle_fs_error(fs_info, ret, NULL);
1975 		free_reloc_roots(&reloc_roots);
1976 
1977 		/* new reloc root may be added */
1978 		mutex_lock(&fs_info->reloc_mutex);
1979 		list_splice_init(&rc->reloc_roots, &reloc_roots);
1980 		mutex_unlock(&fs_info->reloc_mutex);
1981 		free_reloc_roots(&reloc_roots);
1982 	}
1983 
1984 	/*
1985 	 * We used to have
1986 	 *
1987 	 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
1988 	 *
1989 	 * here, but it's wrong.  If we fail to start the transaction in
1990 	 * prepare_to_merge() we will have only 0 ref reloc roots, none of which
1991 	 * have actually been removed from the reloc_root_tree rb tree.  This is
1992 	 * fine because we're bailing here, and we hold a reference on the root
1993 	 * for the list that holds it, so these roots will be cleaned up when we
1994 	 * do the reloc_dirty_list afterwards.  Meanwhile the root->reloc_root
1995 	 * will be cleaned up on unmount.
1996 	 *
1997 	 * The remaining nodes will be cleaned up by free_reloc_control.
1998 	 */
1999 }
2000 
2001 static void free_block_list(struct rb_root *blocks)
2002 {
2003 	struct tree_block *block;
2004 	struct rb_node *rb_node;
2005 	while ((rb_node = rb_first(blocks))) {
2006 		block = rb_entry(rb_node, struct tree_block, rb_node);
2007 		rb_erase(rb_node, blocks);
2008 		kfree(block);
2009 	}
2010 }
2011 
2012 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2013 				      struct btrfs_root *reloc_root)
2014 {
2015 	struct btrfs_fs_info *fs_info = reloc_root->fs_info;
2016 	struct btrfs_root *root;
2017 	int ret;
2018 
2019 	if (btrfs_get_root_last_trans(reloc_root) == trans->transid)
2020 		return 0;
2021 
2022 	root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false);
2023 
2024 	/*
2025 	 * This should succeed, since we can't have a reloc root without having
2026 	 * already looked up the actual root and created the reloc root for this
2027 	 * root.
2028 	 *
2029 	 * However if there's some sort of corruption where we have a ref to a
2030 	 * reloc root without a corresponding root this could return ENOENT.
2031 	 */
2032 	if (IS_ERR(root)) {
2033 		ASSERT(0);
2034 		return PTR_ERR(root);
2035 	}
2036 	if (root->reloc_root != reloc_root) {
2037 		ASSERT(0);
2038 		btrfs_err(fs_info,
2039 			  "root %llu has two reloc roots associated with it",
2040 			  reloc_root->root_key.offset);
2041 		btrfs_put_root(root);
2042 		return -EUCLEAN;
2043 	}
2044 	ret = btrfs_record_root_in_trans(trans, root);
2045 	btrfs_put_root(root);
2046 
2047 	return ret;
2048 }
2049 
2050 static noinline_for_stack
2051 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2052 				     struct reloc_control *rc,
2053 				     struct btrfs_backref_node *node,
2054 				     struct btrfs_backref_edge *edges[])
2055 {
2056 	struct btrfs_backref_node *next;
2057 	struct btrfs_root *root;
2058 	int index = 0;
2059 	int ret;
2060 
2061 	next = node;
2062 	while (1) {
2063 		cond_resched();
2064 		next = walk_up_backref(next, edges, &index);
2065 		root = next->root;
2066 
2067 		/*
2068 		 * If there is no root, then our references for this block are
2069 		 * incomplete, as we should be able to walk all the way up to a
2070 		 * block that is owned by a root.
2071 		 *
2072 		 * This path is only for SHAREABLE roots, so if we come upon a
2073 		 * non-SHAREABLE root then we have backrefs that resolve
2074 		 * improperly.
2075 		 *
2076 		 * Both of these cases indicate file system corruption, or a bug
2077 		 * in the backref walking code.
2078 		 */
2079 		if (!root) {
2080 			ASSERT(0);
2081 			btrfs_err(trans->fs_info,
2082 		"bytenr %llu doesn't have a backref path ending in a root",
2083 				  node->bytenr);
2084 			return ERR_PTR(-EUCLEAN);
2085 		}
2086 		if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2087 			ASSERT(0);
2088 			btrfs_err(trans->fs_info,
2089 	"bytenr %llu has multiple refs with one ending in a non-shareable root",
2090 				  node->bytenr);
2091 			return ERR_PTR(-EUCLEAN);
2092 		}
2093 
2094 		if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) {
2095 			ret = record_reloc_root_in_trans(trans, root);
2096 			if (ret)
2097 				return ERR_PTR(ret);
2098 			break;
2099 		}
2100 
2101 		ret = btrfs_record_root_in_trans(trans, root);
2102 		if (ret)
2103 			return ERR_PTR(ret);
2104 		root = root->reloc_root;
2105 
2106 		/*
2107 		 * We could have raced with another thread which failed, so
2108 		 * root->reloc_root may not be set, return ENOENT in this case.
2109 		 */
2110 		if (!root)
2111 			return ERR_PTR(-ENOENT);
2112 
2113 		if (next->new_bytenr != root->node->start) {
2114 			/*
2115 			 * We just created the reloc root, so we shouldn't have
2116 			 * ->new_bytenr set and this shouldn't be in the changed
2117 			 *  list.  If it is then we have multiple roots pointing
2118 			 *  at the same bytenr which indicates corruption, or
2119 			 *  we've made a mistake in the backref walking code.
2120 			 */
2121 			ASSERT(next->new_bytenr == 0);
2122 			ASSERT(list_empty(&next->list));
2123 			if (next->new_bytenr || !list_empty(&next->list)) {
2124 				btrfs_err(trans->fs_info,
2125 	"bytenr %llu possibly has multiple roots pointing at the same bytenr %llu",
2126 					  node->bytenr, next->bytenr);
2127 				return ERR_PTR(-EUCLEAN);
2128 			}
2129 
2130 			next->new_bytenr = root->node->start;
2131 			btrfs_put_root(next->root);
2132 			next->root = btrfs_grab_root(root);
2133 			ASSERT(next->root);
2134 			list_add_tail(&next->list,
2135 				      &rc->backref_cache.changed);
2136 			mark_block_processed(rc, next);
2137 			break;
2138 		}
2139 
2140 		WARN_ON(1);
2141 		root = NULL;
2142 		next = walk_down_backref(edges, &index);
2143 		if (!next || next->level <= node->level)
2144 			break;
2145 	}
2146 	if (!root) {
2147 		/*
2148 		 * This can happen if there's fs corruption or if there's a bug
2149 		 * in the backref lookup code.
2150 		 */
2151 		ASSERT(0);
2152 		return ERR_PTR(-ENOENT);
2153 	}
2154 
2155 	next = node;
2156 	/* setup backref node path for btrfs_reloc_cow_block */
2157 	while (1) {
2158 		rc->backref_cache.path[next->level] = next;
2159 		if (--index < 0)
2160 			break;
2161 		next = edges[index]->node[UPPER];
2162 	}
2163 	return root;
2164 }
2165 
2166 /*
2167  * Select a tree root for relocation.
2168  *
2169  * Return NULL if the block is not shareable. We should use do_relocation() in
2170  * this case.
2171  *
2172  * Return a tree root pointer if the block is shareable.
2173  * Return -ENOENT if the block is root of reloc tree.
2174  */
2175 static noinline_for_stack
2176 struct btrfs_root *select_one_root(struct btrfs_backref_node *node)
2177 {
2178 	struct btrfs_backref_node *next;
2179 	struct btrfs_root *root;
2180 	struct btrfs_root *fs_root = NULL;
2181 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2182 	int index = 0;
2183 
2184 	next = node;
2185 	while (1) {
2186 		cond_resched();
2187 		next = walk_up_backref(next, edges, &index);
2188 		root = next->root;
2189 
2190 		/*
2191 		 * This can occur if we have incomplete extent refs leading all
2192 		 * the way up a particular path, in this case return -EUCLEAN.
2193 		 */
2194 		if (!root)
2195 			return ERR_PTR(-EUCLEAN);
2196 
2197 		/* No other choice for non-shareable tree */
2198 		if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2199 			return root;
2200 
2201 		if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID)
2202 			fs_root = root;
2203 
2204 		if (next != node)
2205 			return NULL;
2206 
2207 		next = walk_down_backref(edges, &index);
2208 		if (!next || next->level <= node->level)
2209 			break;
2210 	}
2211 
2212 	if (!fs_root)
2213 		return ERR_PTR(-ENOENT);
2214 	return fs_root;
2215 }
2216 
2217 static noinline_for_stack u64 calcu_metadata_size(struct reloc_control *rc,
2218 						  struct btrfs_backref_node *node)
2219 {
2220 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2221 	struct btrfs_backref_node *next = node;
2222 	struct btrfs_backref_edge *edge;
2223 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2224 	u64 num_bytes = 0;
2225 	int index = 0;
2226 
2227 	BUG_ON(node->processed);
2228 
2229 	while (next) {
2230 		cond_resched();
2231 		while (1) {
2232 			if (next->processed)
2233 				break;
2234 
2235 			num_bytes += fs_info->nodesize;
2236 
2237 			if (list_empty(&next->upper))
2238 				break;
2239 
2240 			edge = list_entry(next->upper.next,
2241 					struct btrfs_backref_edge, list[LOWER]);
2242 			edges[index++] = edge;
2243 			next = edge->node[UPPER];
2244 		}
2245 		next = walk_down_backref(edges, &index);
2246 	}
2247 	return num_bytes;
2248 }
2249 
2250 static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2251 				  struct reloc_control *rc,
2252 				  struct btrfs_backref_node *node)
2253 {
2254 	struct btrfs_root *root = rc->extent_root;
2255 	struct btrfs_fs_info *fs_info = root->fs_info;
2256 	u64 num_bytes;
2257 	int ret;
2258 	u64 tmp;
2259 
2260 	num_bytes = calcu_metadata_size(rc, node) * 2;
2261 
2262 	trans->block_rsv = rc->block_rsv;
2263 	rc->reserved_bytes += num_bytes;
2264 
2265 	/*
2266 	 * We are under a transaction here so we can only do limited flushing.
2267 	 * If we get an enospc just kick back -EAGAIN so we know to drop the
2268 	 * transaction and try to refill when we can flush all the things.
2269 	 */
2270 	ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv, num_bytes,
2271 				     BTRFS_RESERVE_FLUSH_LIMIT);
2272 	if (ret) {
2273 		tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2274 		while (tmp <= rc->reserved_bytes)
2275 			tmp <<= 1;
2276 		/*
2277 		 * only one thread can access block_rsv at this point,
2278 		 * so we don't need hold lock to protect block_rsv.
2279 		 * we expand more reservation size here to allow enough
2280 		 * space for relocation and we will return earlier in
2281 		 * enospc case.
2282 		 */
2283 		rc->block_rsv->size = tmp + fs_info->nodesize *
2284 				      RELOCATION_RESERVED_NODES;
2285 		return -EAGAIN;
2286 	}
2287 
2288 	return 0;
2289 }
2290 
2291 /*
2292  * relocate a block tree, and then update pointers in upper level
2293  * blocks that reference the block to point to the new location.
2294  *
2295  * if called by link_to_upper, the block has already been relocated.
2296  * in that case this function just updates pointers.
2297  */
2298 static int do_relocation(struct btrfs_trans_handle *trans,
2299 			 struct reloc_control *rc,
2300 			 struct btrfs_backref_node *node,
2301 			 struct btrfs_key *key,
2302 			 struct btrfs_path *path, int lowest)
2303 {
2304 	struct btrfs_backref_node *upper;
2305 	struct btrfs_backref_edge *edge;
2306 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2307 	struct btrfs_root *root;
2308 	struct extent_buffer *eb;
2309 	u32 blocksize;
2310 	u64 bytenr;
2311 	int slot;
2312 	int ret = 0;
2313 
2314 	/*
2315 	 * If we are lowest then this is the first time we're processing this
2316 	 * block, and thus shouldn't have an eb associated with it yet.
2317 	 */
2318 	ASSERT(!lowest || !node->eb);
2319 
2320 	path->lowest_level = node->level + 1;
2321 	rc->backref_cache.path[node->level] = node;
2322 	list_for_each_entry(edge, &node->upper, list[LOWER]) {
2323 		cond_resched();
2324 
2325 		upper = edge->node[UPPER];
2326 		root = select_reloc_root(trans, rc, upper, edges);
2327 		if (IS_ERR(root)) {
2328 			ret = PTR_ERR(root);
2329 			goto next;
2330 		}
2331 
2332 		if (upper->eb && !upper->locked) {
2333 			if (!lowest) {
2334 				ret = btrfs_bin_search(upper->eb, 0, key, &slot);
2335 				if (ret < 0)
2336 					goto next;
2337 				BUG_ON(ret);
2338 				bytenr = btrfs_node_blockptr(upper->eb, slot);
2339 				if (node->eb->start == bytenr)
2340 					goto next;
2341 			}
2342 			btrfs_backref_drop_node_buffer(upper);
2343 		}
2344 
2345 		if (!upper->eb) {
2346 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2347 			if (ret) {
2348 				if (ret > 0)
2349 					ret = -ENOENT;
2350 
2351 				btrfs_release_path(path);
2352 				break;
2353 			}
2354 
2355 			if (!upper->eb) {
2356 				upper->eb = path->nodes[upper->level];
2357 				path->nodes[upper->level] = NULL;
2358 			} else {
2359 				BUG_ON(upper->eb != path->nodes[upper->level]);
2360 			}
2361 
2362 			upper->locked = 1;
2363 			path->locks[upper->level] = 0;
2364 
2365 			slot = path->slots[upper->level];
2366 			btrfs_release_path(path);
2367 		} else {
2368 			ret = btrfs_bin_search(upper->eb, 0, key, &slot);
2369 			if (ret < 0)
2370 				goto next;
2371 			BUG_ON(ret);
2372 		}
2373 
2374 		bytenr = btrfs_node_blockptr(upper->eb, slot);
2375 		if (lowest) {
2376 			if (bytenr != node->bytenr) {
2377 				btrfs_err(root->fs_info,
2378 		"lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2379 					  bytenr, node->bytenr, slot,
2380 					  upper->eb->start);
2381 				ret = -EIO;
2382 				goto next;
2383 			}
2384 		} else {
2385 			if (node->eb->start == bytenr)
2386 				goto next;
2387 		}
2388 
2389 		blocksize = root->fs_info->nodesize;
2390 		eb = btrfs_read_node_slot(upper->eb, slot);
2391 		if (IS_ERR(eb)) {
2392 			ret = PTR_ERR(eb);
2393 			goto next;
2394 		}
2395 		btrfs_tree_lock(eb);
2396 
2397 		if (!node->eb) {
2398 			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2399 					      slot, &eb, BTRFS_NESTING_COW);
2400 			btrfs_tree_unlock(eb);
2401 			free_extent_buffer(eb);
2402 			if (ret < 0)
2403 				goto next;
2404 			/*
2405 			 * We've just COWed this block, it should have updated
2406 			 * the correct backref node entry.
2407 			 */
2408 			ASSERT(node->eb == eb);
2409 		} else {
2410 			struct btrfs_ref ref = {
2411 				.action = BTRFS_ADD_DELAYED_REF,
2412 				.bytenr = node->eb->start,
2413 				.num_bytes = blocksize,
2414 				.parent = upper->eb->start,
2415 				.owning_root = btrfs_header_owner(upper->eb),
2416 				.ref_root = btrfs_header_owner(upper->eb),
2417 			};
2418 
2419 			btrfs_set_node_blockptr(upper->eb, slot,
2420 						node->eb->start);
2421 			btrfs_set_node_ptr_generation(upper->eb, slot,
2422 						      trans->transid);
2423 			btrfs_mark_buffer_dirty(trans, upper->eb);
2424 
2425 			btrfs_init_tree_ref(&ref, node->level,
2426 					    btrfs_root_id(root), false);
2427 			ret = btrfs_inc_extent_ref(trans, &ref);
2428 			if (!ret)
2429 				ret = btrfs_drop_subtree(trans, root, eb,
2430 							 upper->eb);
2431 			if (ret)
2432 				btrfs_abort_transaction(trans, ret);
2433 		}
2434 next:
2435 		if (!upper->pending)
2436 			btrfs_backref_drop_node_buffer(upper);
2437 		else
2438 			btrfs_backref_unlock_node_buffer(upper);
2439 		if (ret)
2440 			break;
2441 	}
2442 
2443 	if (!ret && node->pending) {
2444 		btrfs_backref_drop_node_buffer(node);
2445 		list_move_tail(&node->list, &rc->backref_cache.changed);
2446 		node->pending = 0;
2447 	}
2448 
2449 	path->lowest_level = 0;
2450 
2451 	/*
2452 	 * We should have allocated all of our space in the block rsv and thus
2453 	 * shouldn't ENOSPC.
2454 	 */
2455 	ASSERT(ret != -ENOSPC);
2456 	return ret;
2457 }
2458 
2459 static int link_to_upper(struct btrfs_trans_handle *trans,
2460 			 struct reloc_control *rc,
2461 			 struct btrfs_backref_node *node,
2462 			 struct btrfs_path *path)
2463 {
2464 	struct btrfs_key key;
2465 
2466 	btrfs_node_key_to_cpu(node->eb, &key, 0);
2467 	return do_relocation(trans, rc, node, &key, path, 0);
2468 }
2469 
2470 static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2471 				struct reloc_control *rc,
2472 				struct btrfs_path *path, int err)
2473 {
2474 	LIST_HEAD(list);
2475 	struct btrfs_backref_cache *cache = &rc->backref_cache;
2476 	struct btrfs_backref_node *node;
2477 	int level;
2478 	int ret;
2479 
2480 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2481 		while (!list_empty(&cache->pending[level])) {
2482 			node = list_entry(cache->pending[level].next,
2483 					  struct btrfs_backref_node, list);
2484 			list_move_tail(&node->list, &list);
2485 			BUG_ON(!node->pending);
2486 
2487 			if (!err) {
2488 				ret = link_to_upper(trans, rc, node, path);
2489 				if (ret < 0)
2490 					err = ret;
2491 			}
2492 		}
2493 		list_splice_init(&list, &cache->pending[level]);
2494 	}
2495 	return err;
2496 }
2497 
2498 /*
2499  * mark a block and all blocks directly/indirectly reference the block
2500  * as processed.
2501  */
2502 static void update_processed_blocks(struct reloc_control *rc,
2503 				    struct btrfs_backref_node *node)
2504 {
2505 	struct btrfs_backref_node *next = node;
2506 	struct btrfs_backref_edge *edge;
2507 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2508 	int index = 0;
2509 
2510 	while (next) {
2511 		cond_resched();
2512 		while (1) {
2513 			if (next->processed)
2514 				break;
2515 
2516 			mark_block_processed(rc, next);
2517 
2518 			if (list_empty(&next->upper))
2519 				break;
2520 
2521 			edge = list_entry(next->upper.next,
2522 					struct btrfs_backref_edge, list[LOWER]);
2523 			edges[index++] = edge;
2524 			next = edge->node[UPPER];
2525 		}
2526 		next = walk_down_backref(edges, &index);
2527 	}
2528 }
2529 
2530 static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2531 {
2532 	u32 blocksize = rc->extent_root->fs_info->nodesize;
2533 
2534 	if (test_range_bit(&rc->processed_blocks, bytenr,
2535 			   bytenr + blocksize - 1, EXTENT_DIRTY, NULL))
2536 		return 1;
2537 	return 0;
2538 }
2539 
2540 static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2541 			      struct tree_block *block)
2542 {
2543 	struct btrfs_tree_parent_check check = {
2544 		.level = block->level,
2545 		.owner_root = block->owner,
2546 		.transid = block->key.offset
2547 	};
2548 	struct extent_buffer *eb;
2549 
2550 	eb = read_tree_block(fs_info, block->bytenr, &check);
2551 	if (IS_ERR(eb))
2552 		return PTR_ERR(eb);
2553 	if (!extent_buffer_uptodate(eb)) {
2554 		free_extent_buffer(eb);
2555 		return -EIO;
2556 	}
2557 	if (block->level == 0)
2558 		btrfs_item_key_to_cpu(eb, &block->key, 0);
2559 	else
2560 		btrfs_node_key_to_cpu(eb, &block->key, 0);
2561 	free_extent_buffer(eb);
2562 	block->key_ready = true;
2563 	return 0;
2564 }
2565 
2566 /*
2567  * helper function to relocate a tree block
2568  */
2569 static int relocate_tree_block(struct btrfs_trans_handle *trans,
2570 				struct reloc_control *rc,
2571 				struct btrfs_backref_node *node,
2572 				struct btrfs_key *key,
2573 				struct btrfs_path *path)
2574 {
2575 	struct btrfs_root *root;
2576 	int ret = 0;
2577 
2578 	if (!node)
2579 		return 0;
2580 
2581 	/*
2582 	 * If we fail here we want to drop our backref_node because we are going
2583 	 * to start over and regenerate the tree for it.
2584 	 */
2585 	ret = reserve_metadata_space(trans, rc, node);
2586 	if (ret)
2587 		goto out;
2588 
2589 	BUG_ON(node->processed);
2590 	root = select_one_root(node);
2591 	if (IS_ERR(root)) {
2592 		ret = PTR_ERR(root);
2593 
2594 		/* See explanation in select_one_root for the -EUCLEAN case. */
2595 		ASSERT(ret == -ENOENT);
2596 		if (ret == -ENOENT) {
2597 			ret = 0;
2598 			update_processed_blocks(rc, node);
2599 		}
2600 		goto out;
2601 	}
2602 
2603 	if (root) {
2604 		if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2605 			/*
2606 			 * This block was the root block of a root, and this is
2607 			 * the first time we're processing the block and thus it
2608 			 * should not have had the ->new_bytenr modified and
2609 			 * should have not been included on the changed list.
2610 			 *
2611 			 * However in the case of corruption we could have
2612 			 * multiple refs pointing to the same block improperly,
2613 			 * and thus we would trip over these checks.  ASSERT()
2614 			 * for the developer case, because it could indicate a
2615 			 * bug in the backref code, however error out for a
2616 			 * normal user in the case of corruption.
2617 			 */
2618 			ASSERT(node->new_bytenr == 0);
2619 			ASSERT(list_empty(&node->list));
2620 			if (node->new_bytenr || !list_empty(&node->list)) {
2621 				btrfs_err(root->fs_info,
2622 				  "bytenr %llu has improper references to it",
2623 					  node->bytenr);
2624 				ret = -EUCLEAN;
2625 				goto out;
2626 			}
2627 			ret = btrfs_record_root_in_trans(trans, root);
2628 			if (ret)
2629 				goto out;
2630 			/*
2631 			 * Another thread could have failed, need to check if we
2632 			 * have reloc_root actually set.
2633 			 */
2634 			if (!root->reloc_root) {
2635 				ret = -ENOENT;
2636 				goto out;
2637 			}
2638 			root = root->reloc_root;
2639 			node->new_bytenr = root->node->start;
2640 			btrfs_put_root(node->root);
2641 			node->root = btrfs_grab_root(root);
2642 			ASSERT(node->root);
2643 			list_add_tail(&node->list, &rc->backref_cache.changed);
2644 		} else {
2645 			path->lowest_level = node->level;
2646 			if (root == root->fs_info->chunk_root)
2647 				btrfs_reserve_chunk_metadata(trans, false);
2648 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2649 			btrfs_release_path(path);
2650 			if (root == root->fs_info->chunk_root)
2651 				btrfs_trans_release_chunk_metadata(trans);
2652 			if (ret > 0)
2653 				ret = 0;
2654 		}
2655 		if (!ret)
2656 			update_processed_blocks(rc, node);
2657 	} else {
2658 		ret = do_relocation(trans, rc, node, key, path, 1);
2659 	}
2660 out:
2661 	if (ret || node->level == 0 || node->cowonly)
2662 		btrfs_backref_cleanup_node(&rc->backref_cache, node);
2663 	return ret;
2664 }
2665 
2666 /*
2667  * relocate a list of blocks
2668  */
2669 static noinline_for_stack
2670 int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2671 			 struct reloc_control *rc, struct rb_root *blocks)
2672 {
2673 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2674 	struct btrfs_backref_node *node;
2675 	struct btrfs_path *path;
2676 	struct tree_block *block;
2677 	struct tree_block *next;
2678 	int ret = 0;
2679 
2680 	path = btrfs_alloc_path();
2681 	if (!path) {
2682 		ret = -ENOMEM;
2683 		goto out_free_blocks;
2684 	}
2685 
2686 	/* Kick in readahead for tree blocks with missing keys */
2687 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2688 		if (!block->key_ready)
2689 			btrfs_readahead_tree_block(fs_info, block->bytenr,
2690 						   block->owner, 0,
2691 						   block->level);
2692 	}
2693 
2694 	/* Get first keys */
2695 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2696 		if (!block->key_ready) {
2697 			ret = get_tree_block_key(fs_info, block);
2698 			if (ret)
2699 				goto out_free_path;
2700 		}
2701 	}
2702 
2703 	/* Do tree relocation */
2704 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2705 		node = build_backref_tree(trans, rc, &block->key,
2706 					  block->level, block->bytenr);
2707 		if (IS_ERR(node)) {
2708 			ret = PTR_ERR(node);
2709 			goto out;
2710 		}
2711 
2712 		ret = relocate_tree_block(trans, rc, node, &block->key,
2713 					  path);
2714 		if (ret < 0)
2715 			break;
2716 	}
2717 out:
2718 	ret = finish_pending_nodes(trans, rc, path, ret);
2719 
2720 out_free_path:
2721 	btrfs_free_path(path);
2722 out_free_blocks:
2723 	free_block_list(blocks);
2724 	return ret;
2725 }
2726 
2727 static noinline_for_stack int prealloc_file_extent_cluster(struct reloc_control *rc)
2728 {
2729 	const struct file_extent_cluster *cluster = &rc->cluster;
2730 	struct btrfs_inode *inode = BTRFS_I(rc->data_inode);
2731 	u64 alloc_hint = 0;
2732 	u64 start;
2733 	u64 end;
2734 	u64 offset = inode->reloc_block_group_start;
2735 	u64 num_bytes;
2736 	int nr;
2737 	int ret = 0;
2738 	u64 i_size = i_size_read(&inode->vfs_inode);
2739 	u64 prealloc_start = cluster->start - offset;
2740 	u64 prealloc_end = cluster->end - offset;
2741 	u64 cur_offset = prealloc_start;
2742 
2743 	/*
2744 	 * For subpage case, previous i_size may not be aligned to PAGE_SIZE.
2745 	 * This means the range [i_size, PAGE_END + 1) is filled with zeros by
2746 	 * btrfs_do_readpage() call of previously relocated file cluster.
2747 	 *
2748 	 * If the current cluster starts in the above range, btrfs_do_readpage()
2749 	 * will skip the read, and relocate_one_folio() will later writeback
2750 	 * the padding zeros as new data, causing data corruption.
2751 	 *
2752 	 * Here we have to manually invalidate the range (i_size, PAGE_END + 1).
2753 	 */
2754 	if (!PAGE_ALIGNED(i_size)) {
2755 		struct address_space *mapping = inode->vfs_inode.i_mapping;
2756 		struct btrfs_fs_info *fs_info = inode->root->fs_info;
2757 		const u32 sectorsize = fs_info->sectorsize;
2758 		struct folio *folio;
2759 
2760 		ASSERT(sectorsize < PAGE_SIZE);
2761 		ASSERT(IS_ALIGNED(i_size, sectorsize));
2762 
2763 		/*
2764 		 * Subpage can't handle page with DIRTY but without UPTODATE
2765 		 * bit as it can lead to the following deadlock:
2766 		 *
2767 		 * btrfs_read_folio()
2768 		 * | Page already *locked*
2769 		 * |- btrfs_lock_and_flush_ordered_range()
2770 		 *    |- btrfs_start_ordered_extent()
2771 		 *       |- extent_write_cache_pages()
2772 		 *          |- lock_page()
2773 		 *             We try to lock the page we already hold.
2774 		 *
2775 		 * Here we just writeback the whole data reloc inode, so that
2776 		 * we will be ensured to have no dirty range in the page, and
2777 		 * are safe to clear the uptodate bits.
2778 		 *
2779 		 * This shouldn't cause too much overhead, as we need to write
2780 		 * the data back anyway.
2781 		 */
2782 		ret = filemap_write_and_wait(mapping);
2783 		if (ret < 0)
2784 			return ret;
2785 
2786 		clear_extent_bits(&inode->io_tree, i_size,
2787 				  round_up(i_size, PAGE_SIZE) - 1,
2788 				  EXTENT_UPTODATE);
2789 		folio = filemap_lock_folio(mapping, i_size >> PAGE_SHIFT);
2790 		/*
2791 		 * If page is freed we don't need to do anything then, as we
2792 		 * will re-read the whole page anyway.
2793 		 */
2794 		if (!IS_ERR(folio)) {
2795 			btrfs_subpage_clear_uptodate(fs_info, folio, i_size,
2796 					round_up(i_size, PAGE_SIZE) - i_size);
2797 			folio_unlock(folio);
2798 			folio_put(folio);
2799 		}
2800 	}
2801 
2802 	BUG_ON(cluster->start != cluster->boundary[0]);
2803 	ret = btrfs_alloc_data_chunk_ondemand(inode,
2804 					      prealloc_end + 1 - prealloc_start);
2805 	if (ret)
2806 		return ret;
2807 
2808 	btrfs_inode_lock(inode, 0);
2809 	for (nr = 0; nr < cluster->nr; nr++) {
2810 		struct extent_state *cached_state = NULL;
2811 
2812 		start = cluster->boundary[nr] - offset;
2813 		if (nr + 1 < cluster->nr)
2814 			end = cluster->boundary[nr + 1] - 1 - offset;
2815 		else
2816 			end = cluster->end - offset;
2817 
2818 		lock_extent(&inode->io_tree, start, end, &cached_state);
2819 		num_bytes = end + 1 - start;
2820 		ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start,
2821 						num_bytes, num_bytes,
2822 						end + 1, &alloc_hint);
2823 		cur_offset = end + 1;
2824 		unlock_extent(&inode->io_tree, start, end, &cached_state);
2825 		if (ret)
2826 			break;
2827 	}
2828 	btrfs_inode_unlock(inode, 0);
2829 
2830 	if (cur_offset < prealloc_end)
2831 		btrfs_free_reserved_data_space_noquota(inode->root->fs_info,
2832 					       prealloc_end + 1 - cur_offset);
2833 	return ret;
2834 }
2835 
2836 static noinline_for_stack int setup_relocation_extent_mapping(struct reloc_control *rc)
2837 {
2838 	struct btrfs_inode *inode = BTRFS_I(rc->data_inode);
2839 	struct extent_map *em;
2840 	struct extent_state *cached_state = NULL;
2841 	u64 offset = inode->reloc_block_group_start;
2842 	u64 start = rc->cluster.start - offset;
2843 	u64 end = rc->cluster.end - offset;
2844 	int ret = 0;
2845 
2846 	em = alloc_extent_map();
2847 	if (!em)
2848 		return -ENOMEM;
2849 
2850 	em->start = start;
2851 	em->len = end + 1 - start;
2852 	em->disk_bytenr = rc->cluster.start;
2853 	em->disk_num_bytes = em->len;
2854 	em->ram_bytes = em->len;
2855 	em->flags |= EXTENT_FLAG_PINNED;
2856 
2857 	lock_extent(&inode->io_tree, start, end, &cached_state);
2858 	ret = btrfs_replace_extent_map_range(inode, em, false);
2859 	unlock_extent(&inode->io_tree, start, end, &cached_state);
2860 	free_extent_map(em);
2861 
2862 	return ret;
2863 }
2864 
2865 /*
2866  * Allow error injection to test balance/relocation cancellation
2867  */
2868 noinline int btrfs_should_cancel_balance(const struct btrfs_fs_info *fs_info)
2869 {
2870 	return atomic_read(&fs_info->balance_cancel_req) ||
2871 		atomic_read(&fs_info->reloc_cancel_req) ||
2872 		fatal_signal_pending(current);
2873 }
2874 ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE);
2875 
2876 static u64 get_cluster_boundary_end(const struct file_extent_cluster *cluster,
2877 				    int cluster_nr)
2878 {
2879 	/* Last extent, use cluster end directly */
2880 	if (cluster_nr >= cluster->nr - 1)
2881 		return cluster->end;
2882 
2883 	/* Use next boundary start*/
2884 	return cluster->boundary[cluster_nr + 1] - 1;
2885 }
2886 
2887 static int relocate_one_folio(struct reloc_control *rc,
2888 			      struct file_ra_state *ra,
2889 			      int *cluster_nr, unsigned long index)
2890 {
2891 	const struct file_extent_cluster *cluster = &rc->cluster;
2892 	struct inode *inode = rc->data_inode;
2893 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2894 	u64 offset = BTRFS_I(inode)->reloc_block_group_start;
2895 	const unsigned long last_index = (cluster->end - offset) >> PAGE_SHIFT;
2896 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
2897 	struct folio *folio;
2898 	u64 folio_start;
2899 	u64 folio_end;
2900 	u64 cur;
2901 	int ret;
2902 	const bool use_rst = btrfs_need_stripe_tree_update(fs_info, rc->block_group->flags);
2903 
2904 	ASSERT(index <= last_index);
2905 again:
2906 	folio = filemap_lock_folio(inode->i_mapping, index);
2907 	if (IS_ERR(folio)) {
2908 
2909 		/*
2910 		 * On relocation we're doing readahead on the relocation inode,
2911 		 * but if the filesystem is backed by a RAID stripe tree we can
2912 		 * get ENOENT (e.g. due to preallocated extents not being
2913 		 * mapped in the RST) from the lookup.
2914 		 *
2915 		 * But readahead doesn't handle the error and submits invalid
2916 		 * reads to the device, causing a assertion failures.
2917 		 */
2918 		if (!use_rst)
2919 			page_cache_sync_readahead(inode->i_mapping, ra, NULL,
2920 						  index, last_index + 1 - index);
2921 		folio = __filemap_get_folio(inode->i_mapping, index,
2922 					    FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
2923 					    mask);
2924 		if (IS_ERR(folio))
2925 			return PTR_ERR(folio);
2926 	}
2927 
2928 	WARN_ON(folio_order(folio));
2929 
2930 	if (folio_test_readahead(folio) && !use_rst)
2931 		page_cache_async_readahead(inode->i_mapping, ra, NULL,
2932 					   folio, last_index + 1 - index);
2933 
2934 	if (!folio_test_uptodate(folio)) {
2935 		btrfs_read_folio(NULL, folio);
2936 		folio_lock(folio);
2937 		if (!folio_test_uptodate(folio)) {
2938 			ret = -EIO;
2939 			goto release_folio;
2940 		}
2941 		if (folio->mapping != inode->i_mapping) {
2942 			folio_unlock(folio);
2943 			folio_put(folio);
2944 			goto again;
2945 		}
2946 	}
2947 
2948 	/*
2949 	 * We could have lost folio private when we dropped the lock to read the
2950 	 * folio above, make sure we set_page_extent_mapped here so we have any
2951 	 * of the subpage blocksize stuff we need in place.
2952 	 */
2953 	ret = set_folio_extent_mapped(folio);
2954 	if (ret < 0)
2955 		goto release_folio;
2956 
2957 	folio_start = folio_pos(folio);
2958 	folio_end = folio_start + PAGE_SIZE - 1;
2959 
2960 	/*
2961 	 * Start from the cluster, as for subpage case, the cluster can start
2962 	 * inside the folio.
2963 	 */
2964 	cur = max(folio_start, cluster->boundary[*cluster_nr] - offset);
2965 	while (cur <= folio_end) {
2966 		struct extent_state *cached_state = NULL;
2967 		u64 extent_start = cluster->boundary[*cluster_nr] - offset;
2968 		u64 extent_end = get_cluster_boundary_end(cluster,
2969 						*cluster_nr) - offset;
2970 		u64 clamped_start = max(folio_start, extent_start);
2971 		u64 clamped_end = min(folio_end, extent_end);
2972 		u32 clamped_len = clamped_end + 1 - clamped_start;
2973 
2974 		/* Reserve metadata for this range */
2975 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
2976 						      clamped_len, clamped_len,
2977 						      false);
2978 		if (ret)
2979 			goto release_folio;
2980 
2981 		/* Mark the range delalloc and dirty for later writeback */
2982 		lock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end,
2983 			    &cached_state);
2984 		ret = btrfs_set_extent_delalloc(BTRFS_I(inode), clamped_start,
2985 						clamped_end, 0, &cached_state);
2986 		if (ret) {
2987 			clear_extent_bit(&BTRFS_I(inode)->io_tree,
2988 					 clamped_start, clamped_end,
2989 					 EXTENT_LOCKED | EXTENT_BOUNDARY,
2990 					 &cached_state);
2991 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
2992 							clamped_len, true);
2993 			btrfs_delalloc_release_extents(BTRFS_I(inode),
2994 						       clamped_len);
2995 			goto release_folio;
2996 		}
2997 		btrfs_folio_set_dirty(fs_info, folio, clamped_start, clamped_len);
2998 
2999 		/*
3000 		 * Set the boundary if it's inside the folio.
3001 		 * Data relocation requires the destination extents to have the
3002 		 * same size as the source.
3003 		 * EXTENT_BOUNDARY bit prevents current extent from being merged
3004 		 * with previous extent.
3005 		 */
3006 		if (in_range(cluster->boundary[*cluster_nr] - offset, folio_start, PAGE_SIZE)) {
3007 			u64 boundary_start = cluster->boundary[*cluster_nr] -
3008 						offset;
3009 			u64 boundary_end = boundary_start +
3010 					   fs_info->sectorsize - 1;
3011 
3012 			set_extent_bit(&BTRFS_I(inode)->io_tree,
3013 				       boundary_start, boundary_end,
3014 				       EXTENT_BOUNDARY, NULL);
3015 		}
3016 		unlock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end,
3017 			      &cached_state);
3018 		btrfs_delalloc_release_extents(BTRFS_I(inode), clamped_len);
3019 		cur += clamped_len;
3020 
3021 		/* Crossed extent end, go to next extent */
3022 		if (cur >= extent_end) {
3023 			(*cluster_nr)++;
3024 			/* Just finished the last extent of the cluster, exit. */
3025 			if (*cluster_nr >= cluster->nr)
3026 				break;
3027 		}
3028 	}
3029 	folio_unlock(folio);
3030 	folio_put(folio);
3031 
3032 	balance_dirty_pages_ratelimited(inode->i_mapping);
3033 	btrfs_throttle(fs_info);
3034 	if (btrfs_should_cancel_balance(fs_info))
3035 		ret = -ECANCELED;
3036 	return ret;
3037 
3038 release_folio:
3039 	folio_unlock(folio);
3040 	folio_put(folio);
3041 	return ret;
3042 }
3043 
3044 static int relocate_file_extent_cluster(struct reloc_control *rc)
3045 {
3046 	struct inode *inode = rc->data_inode;
3047 	const struct file_extent_cluster *cluster = &rc->cluster;
3048 	u64 offset = BTRFS_I(inode)->reloc_block_group_start;
3049 	unsigned long index;
3050 	unsigned long last_index;
3051 	struct file_ra_state *ra;
3052 	int cluster_nr = 0;
3053 	int ret = 0;
3054 
3055 	if (!cluster->nr)
3056 		return 0;
3057 
3058 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
3059 	if (!ra)
3060 		return -ENOMEM;
3061 
3062 	ret = prealloc_file_extent_cluster(rc);
3063 	if (ret)
3064 		goto out;
3065 
3066 	file_ra_state_init(ra, inode->i_mapping);
3067 
3068 	ret = setup_relocation_extent_mapping(rc);
3069 	if (ret)
3070 		goto out;
3071 
3072 	last_index = (cluster->end - offset) >> PAGE_SHIFT;
3073 	for (index = (cluster->start - offset) >> PAGE_SHIFT;
3074 	     index <= last_index && !ret; index++)
3075 		ret = relocate_one_folio(rc, ra, &cluster_nr, index);
3076 	if (ret == 0)
3077 		WARN_ON(cluster_nr != cluster->nr);
3078 out:
3079 	kfree(ra);
3080 	return ret;
3081 }
3082 
3083 static noinline_for_stack int relocate_data_extent(struct reloc_control *rc,
3084 					   const struct btrfs_key *extent_key)
3085 {
3086 	struct inode *inode = rc->data_inode;
3087 	struct file_extent_cluster *cluster = &rc->cluster;
3088 	int ret;
3089 	struct btrfs_root *root = BTRFS_I(inode)->root;
3090 
3091 	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3092 		ret = relocate_file_extent_cluster(rc);
3093 		if (ret)
3094 			return ret;
3095 		cluster->nr = 0;
3096 	}
3097 
3098 	/*
3099 	 * Under simple quotas, we set root->relocation_src_root when we find
3100 	 * the extent. If adjacent extents have different owners, we can't merge
3101 	 * them while relocating. Handle this by storing the owning root that
3102 	 * started a cluster and if we see an extent from a different root break
3103 	 * cluster formation (just like the above case of non-adjacent extents).
3104 	 *
3105 	 * Without simple quotas, relocation_src_root is always 0, so we should
3106 	 * never see a mismatch, and it should have no effect on relocation
3107 	 * clusters.
3108 	 */
3109 	if (cluster->nr > 0 && cluster->owning_root != root->relocation_src_root) {
3110 		u64 tmp = root->relocation_src_root;
3111 
3112 		/*
3113 		 * root->relocation_src_root is the state that actually affects
3114 		 * the preallocation we do here, so set it to the root owning
3115 		 * the cluster we need to relocate.
3116 		 */
3117 		root->relocation_src_root = cluster->owning_root;
3118 		ret = relocate_file_extent_cluster(rc);
3119 		if (ret)
3120 			return ret;
3121 		cluster->nr = 0;
3122 		/* And reset it back for the current extent's owning root. */
3123 		root->relocation_src_root = tmp;
3124 	}
3125 
3126 	if (!cluster->nr) {
3127 		cluster->start = extent_key->objectid;
3128 		cluster->owning_root = root->relocation_src_root;
3129 	}
3130 	else
3131 		BUG_ON(cluster->nr >= MAX_EXTENTS);
3132 	cluster->end = extent_key->objectid + extent_key->offset - 1;
3133 	cluster->boundary[cluster->nr] = extent_key->objectid;
3134 	cluster->nr++;
3135 
3136 	if (cluster->nr >= MAX_EXTENTS) {
3137 		ret = relocate_file_extent_cluster(rc);
3138 		if (ret)
3139 			return ret;
3140 		cluster->nr = 0;
3141 	}
3142 	return 0;
3143 }
3144 
3145 /*
3146  * helper to add a tree block to the list.
3147  * the major work is getting the generation and level of the block
3148  */
3149 static int add_tree_block(struct reloc_control *rc,
3150 			  const struct btrfs_key *extent_key,
3151 			  struct btrfs_path *path,
3152 			  struct rb_root *blocks)
3153 {
3154 	struct extent_buffer *eb;
3155 	struct btrfs_extent_item *ei;
3156 	struct btrfs_tree_block_info *bi;
3157 	struct tree_block *block;
3158 	struct rb_node *rb_node;
3159 	u32 item_size;
3160 	int level = -1;
3161 	u64 generation;
3162 	u64 owner = 0;
3163 
3164 	eb =  path->nodes[0];
3165 	item_size = btrfs_item_size(eb, path->slots[0]);
3166 
3167 	if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3168 	    item_size >= sizeof(*ei) + sizeof(*bi)) {
3169 		unsigned long ptr = 0, end;
3170 
3171 		ei = btrfs_item_ptr(eb, path->slots[0],
3172 				struct btrfs_extent_item);
3173 		end = (unsigned long)ei + item_size;
3174 		if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3175 			bi = (struct btrfs_tree_block_info *)(ei + 1);
3176 			level = btrfs_tree_block_level(eb, bi);
3177 			ptr = (unsigned long)(bi + 1);
3178 		} else {
3179 			level = (int)extent_key->offset;
3180 			ptr = (unsigned long)(ei + 1);
3181 		}
3182 		generation = btrfs_extent_generation(eb, ei);
3183 
3184 		/*
3185 		 * We're reading random blocks without knowing their owner ahead
3186 		 * of time.  This is ok most of the time, as all reloc roots and
3187 		 * fs roots have the same lock type.  However normal trees do
3188 		 * not, and the only way to know ahead of time is to read the
3189 		 * inline ref offset.  We know it's an fs root if
3190 		 *
3191 		 * 1. There's more than one ref.
3192 		 * 2. There's a SHARED_DATA_REF_KEY set.
3193 		 * 3. FULL_BACKREF is set on the flags.
3194 		 *
3195 		 * Otherwise it's safe to assume that the ref offset == the
3196 		 * owner of this block, so we can use that when calling
3197 		 * read_tree_block.
3198 		 */
3199 		if (btrfs_extent_refs(eb, ei) == 1 &&
3200 		    !(btrfs_extent_flags(eb, ei) &
3201 		      BTRFS_BLOCK_FLAG_FULL_BACKREF) &&
3202 		    ptr < end) {
3203 			struct btrfs_extent_inline_ref *iref;
3204 			int type;
3205 
3206 			iref = (struct btrfs_extent_inline_ref *)ptr;
3207 			type = btrfs_get_extent_inline_ref_type(eb, iref,
3208 							BTRFS_REF_TYPE_BLOCK);
3209 			if (type == BTRFS_REF_TYPE_INVALID)
3210 				return -EINVAL;
3211 			if (type == BTRFS_TREE_BLOCK_REF_KEY)
3212 				owner = btrfs_extent_inline_ref_offset(eb, iref);
3213 		}
3214 	} else {
3215 		btrfs_print_leaf(eb);
3216 		btrfs_err(rc->block_group->fs_info,
3217 			  "unrecognized tree backref at tree block %llu slot %u",
3218 			  eb->start, path->slots[0]);
3219 		btrfs_release_path(path);
3220 		return -EUCLEAN;
3221 	}
3222 
3223 	btrfs_release_path(path);
3224 
3225 	BUG_ON(level == -1);
3226 
3227 	block = kmalloc(sizeof(*block), GFP_NOFS);
3228 	if (!block)
3229 		return -ENOMEM;
3230 
3231 	block->bytenr = extent_key->objectid;
3232 	block->key.objectid = rc->extent_root->fs_info->nodesize;
3233 	block->key.offset = generation;
3234 	block->level = level;
3235 	block->key_ready = false;
3236 	block->owner = owner;
3237 
3238 	rb_node = rb_simple_insert(blocks, block->bytenr, &block->rb_node);
3239 	if (rb_node)
3240 		btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr,
3241 				    -EEXIST);
3242 
3243 	return 0;
3244 }
3245 
3246 /*
3247  * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3248  */
3249 static int __add_tree_block(struct reloc_control *rc,
3250 			    u64 bytenr, u32 blocksize,
3251 			    struct rb_root *blocks)
3252 {
3253 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3254 	struct btrfs_path *path;
3255 	struct btrfs_key key;
3256 	int ret;
3257 	bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3258 
3259 	if (tree_block_processed(bytenr, rc))
3260 		return 0;
3261 
3262 	if (rb_simple_search(blocks, bytenr))
3263 		return 0;
3264 
3265 	path = btrfs_alloc_path();
3266 	if (!path)
3267 		return -ENOMEM;
3268 again:
3269 	key.objectid = bytenr;
3270 	if (skinny) {
3271 		key.type = BTRFS_METADATA_ITEM_KEY;
3272 		key.offset = (u64)-1;
3273 	} else {
3274 		key.type = BTRFS_EXTENT_ITEM_KEY;
3275 		key.offset = blocksize;
3276 	}
3277 
3278 	path->search_commit_root = 1;
3279 	path->skip_locking = 1;
3280 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3281 	if (ret < 0)
3282 		goto out;
3283 
3284 	if (ret > 0 && skinny) {
3285 		if (path->slots[0]) {
3286 			path->slots[0]--;
3287 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3288 					      path->slots[0]);
3289 			if (key.objectid == bytenr &&
3290 			    (key.type == BTRFS_METADATA_ITEM_KEY ||
3291 			     (key.type == BTRFS_EXTENT_ITEM_KEY &&
3292 			      key.offset == blocksize)))
3293 				ret = 0;
3294 		}
3295 
3296 		if (ret) {
3297 			skinny = false;
3298 			btrfs_release_path(path);
3299 			goto again;
3300 		}
3301 	}
3302 	if (ret) {
3303 		ASSERT(ret == 1);
3304 		btrfs_print_leaf(path->nodes[0]);
3305 		btrfs_err(fs_info,
3306 	     "tree block extent item (%llu) is not found in extent tree",
3307 		     bytenr);
3308 		WARN_ON(1);
3309 		ret = -EINVAL;
3310 		goto out;
3311 	}
3312 
3313 	ret = add_tree_block(rc, &key, path, blocks);
3314 out:
3315 	btrfs_free_path(path);
3316 	return ret;
3317 }
3318 
3319 static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3320 				    struct btrfs_block_group *block_group,
3321 				    struct inode *inode,
3322 				    u64 ino)
3323 {
3324 	struct btrfs_root *root = fs_info->tree_root;
3325 	struct btrfs_trans_handle *trans;
3326 	int ret = 0;
3327 
3328 	if (inode)
3329 		goto truncate;
3330 
3331 	inode = btrfs_iget(ino, root);
3332 	if (IS_ERR(inode))
3333 		return -ENOENT;
3334 
3335 truncate:
3336 	ret = btrfs_check_trunc_cache_free_space(fs_info,
3337 						 &fs_info->global_block_rsv);
3338 	if (ret)
3339 		goto out;
3340 
3341 	trans = btrfs_join_transaction(root);
3342 	if (IS_ERR(trans)) {
3343 		ret = PTR_ERR(trans);
3344 		goto out;
3345 	}
3346 
3347 	ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
3348 
3349 	btrfs_end_transaction(trans);
3350 	btrfs_btree_balance_dirty(fs_info);
3351 out:
3352 	iput(inode);
3353 	return ret;
3354 }
3355 
3356 /*
3357  * Locate the free space cache EXTENT_DATA in root tree leaf and delete the
3358  * cache inode, to avoid free space cache data extent blocking data relocation.
3359  */
3360 static int delete_v1_space_cache(struct extent_buffer *leaf,
3361 				 struct btrfs_block_group *block_group,
3362 				 u64 data_bytenr)
3363 {
3364 	u64 space_cache_ino;
3365 	struct btrfs_file_extent_item *ei;
3366 	struct btrfs_key key;
3367 	bool found = false;
3368 	int i;
3369 	int ret;
3370 
3371 	if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID)
3372 		return 0;
3373 
3374 	for (i = 0; i < btrfs_header_nritems(leaf); i++) {
3375 		u8 type;
3376 
3377 		btrfs_item_key_to_cpu(leaf, &key, i);
3378 		if (key.type != BTRFS_EXTENT_DATA_KEY)
3379 			continue;
3380 		ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
3381 		type = btrfs_file_extent_type(leaf, ei);
3382 
3383 		if ((type == BTRFS_FILE_EXTENT_REG ||
3384 		     type == BTRFS_FILE_EXTENT_PREALLOC) &&
3385 		    btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) {
3386 			found = true;
3387 			space_cache_ino = key.objectid;
3388 			break;
3389 		}
3390 	}
3391 	if (!found)
3392 		return -ENOENT;
3393 	ret = delete_block_group_cache(leaf->fs_info, block_group, NULL,
3394 					space_cache_ino);
3395 	return ret;
3396 }
3397 
3398 /*
3399  * helper to find all tree blocks that reference a given data extent
3400  */
3401 static noinline_for_stack int add_data_references(struct reloc_control *rc,
3402 						  const struct btrfs_key *extent_key,
3403 						  struct btrfs_path *path,
3404 						  struct rb_root *blocks)
3405 {
3406 	struct btrfs_backref_walk_ctx ctx = { 0 };
3407 	struct ulist_iterator leaf_uiter;
3408 	struct ulist_node *ref_node = NULL;
3409 	const u32 blocksize = rc->extent_root->fs_info->nodesize;
3410 	int ret = 0;
3411 
3412 	btrfs_release_path(path);
3413 
3414 	ctx.bytenr = extent_key->objectid;
3415 	ctx.skip_inode_ref_list = true;
3416 	ctx.fs_info = rc->extent_root->fs_info;
3417 
3418 	ret = btrfs_find_all_leafs(&ctx);
3419 	if (ret < 0)
3420 		return ret;
3421 
3422 	ULIST_ITER_INIT(&leaf_uiter);
3423 	while ((ref_node = ulist_next(ctx.refs, &leaf_uiter))) {
3424 		struct btrfs_tree_parent_check check = { 0 };
3425 		struct extent_buffer *eb;
3426 
3427 		eb = read_tree_block(ctx.fs_info, ref_node->val, &check);
3428 		if (IS_ERR(eb)) {
3429 			ret = PTR_ERR(eb);
3430 			break;
3431 		}
3432 		ret = delete_v1_space_cache(eb, rc->block_group,
3433 					    extent_key->objectid);
3434 		free_extent_buffer(eb);
3435 		if (ret < 0)
3436 			break;
3437 		ret = __add_tree_block(rc, ref_node->val, blocksize, blocks);
3438 		if (ret < 0)
3439 			break;
3440 	}
3441 	if (ret < 0)
3442 		free_block_list(blocks);
3443 	ulist_free(ctx.refs);
3444 	return ret;
3445 }
3446 
3447 /*
3448  * helper to find next unprocessed extent
3449  */
3450 static noinline_for_stack
3451 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3452 		     struct btrfs_key *extent_key)
3453 {
3454 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3455 	struct btrfs_key key;
3456 	struct extent_buffer *leaf;
3457 	u64 start, end, last;
3458 	int ret;
3459 
3460 	last = rc->block_group->start + rc->block_group->length;
3461 	while (1) {
3462 		bool block_found;
3463 
3464 		cond_resched();
3465 		if (rc->search_start >= last) {
3466 			ret = 1;
3467 			break;
3468 		}
3469 
3470 		key.objectid = rc->search_start;
3471 		key.type = BTRFS_EXTENT_ITEM_KEY;
3472 		key.offset = 0;
3473 
3474 		path->search_commit_root = 1;
3475 		path->skip_locking = 1;
3476 		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3477 					0, 0);
3478 		if (ret < 0)
3479 			break;
3480 next:
3481 		leaf = path->nodes[0];
3482 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3483 			ret = btrfs_next_leaf(rc->extent_root, path);
3484 			if (ret != 0)
3485 				break;
3486 			leaf = path->nodes[0];
3487 		}
3488 
3489 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3490 		if (key.objectid >= last) {
3491 			ret = 1;
3492 			break;
3493 		}
3494 
3495 		if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3496 		    key.type != BTRFS_METADATA_ITEM_KEY) {
3497 			path->slots[0]++;
3498 			goto next;
3499 		}
3500 
3501 		if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3502 		    key.objectid + key.offset <= rc->search_start) {
3503 			path->slots[0]++;
3504 			goto next;
3505 		}
3506 
3507 		if (key.type == BTRFS_METADATA_ITEM_KEY &&
3508 		    key.objectid + fs_info->nodesize <=
3509 		    rc->search_start) {
3510 			path->slots[0]++;
3511 			goto next;
3512 		}
3513 
3514 		block_found = find_first_extent_bit(&rc->processed_blocks,
3515 						    key.objectid, &start, &end,
3516 						    EXTENT_DIRTY, NULL);
3517 
3518 		if (block_found && start <= key.objectid) {
3519 			btrfs_release_path(path);
3520 			rc->search_start = end + 1;
3521 		} else {
3522 			if (key.type == BTRFS_EXTENT_ITEM_KEY)
3523 				rc->search_start = key.objectid + key.offset;
3524 			else
3525 				rc->search_start = key.objectid +
3526 					fs_info->nodesize;
3527 			memcpy(extent_key, &key, sizeof(key));
3528 			return 0;
3529 		}
3530 	}
3531 	btrfs_release_path(path);
3532 	return ret;
3533 }
3534 
3535 static void set_reloc_control(struct reloc_control *rc)
3536 {
3537 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3538 
3539 	mutex_lock(&fs_info->reloc_mutex);
3540 	fs_info->reloc_ctl = rc;
3541 	mutex_unlock(&fs_info->reloc_mutex);
3542 }
3543 
3544 static void unset_reloc_control(struct reloc_control *rc)
3545 {
3546 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3547 
3548 	mutex_lock(&fs_info->reloc_mutex);
3549 	fs_info->reloc_ctl = NULL;
3550 	mutex_unlock(&fs_info->reloc_mutex);
3551 }
3552 
3553 static noinline_for_stack
3554 int prepare_to_relocate(struct reloc_control *rc)
3555 {
3556 	struct btrfs_trans_handle *trans;
3557 	int ret;
3558 
3559 	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3560 					      BTRFS_BLOCK_RSV_TEMP);
3561 	if (!rc->block_rsv)
3562 		return -ENOMEM;
3563 
3564 	memset(&rc->cluster, 0, sizeof(rc->cluster));
3565 	rc->search_start = rc->block_group->start;
3566 	rc->extents_found = 0;
3567 	rc->nodes_relocated = 0;
3568 	rc->merging_rsv_size = 0;
3569 	rc->reserved_bytes = 0;
3570 	rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3571 			      RELOCATION_RESERVED_NODES;
3572 	ret = btrfs_block_rsv_refill(rc->extent_root->fs_info,
3573 				     rc->block_rsv, rc->block_rsv->size,
3574 				     BTRFS_RESERVE_FLUSH_ALL);
3575 	if (ret)
3576 		return ret;
3577 
3578 	rc->create_reloc_tree = true;
3579 	set_reloc_control(rc);
3580 
3581 	trans = btrfs_join_transaction(rc->extent_root);
3582 	if (IS_ERR(trans)) {
3583 		unset_reloc_control(rc);
3584 		/*
3585 		 * extent tree is not a ref_cow tree and has no reloc_root to
3586 		 * cleanup.  And callers are responsible to free the above
3587 		 * block rsv.
3588 		 */
3589 		return PTR_ERR(trans);
3590 	}
3591 
3592 	ret = btrfs_commit_transaction(trans);
3593 	if (ret)
3594 		unset_reloc_control(rc);
3595 
3596 	return ret;
3597 }
3598 
3599 static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3600 {
3601 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3602 	struct rb_root blocks = RB_ROOT;
3603 	struct btrfs_key key;
3604 	struct btrfs_trans_handle *trans = NULL;
3605 	struct btrfs_path *path;
3606 	struct btrfs_extent_item *ei;
3607 	u64 flags;
3608 	int ret;
3609 	int err = 0;
3610 	int progress = 0;
3611 
3612 	path = btrfs_alloc_path();
3613 	if (!path)
3614 		return -ENOMEM;
3615 	path->reada = READA_FORWARD;
3616 
3617 	ret = prepare_to_relocate(rc);
3618 	if (ret) {
3619 		err = ret;
3620 		goto out_free;
3621 	}
3622 
3623 	while (1) {
3624 		rc->reserved_bytes = 0;
3625 		ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv,
3626 					     rc->block_rsv->size,
3627 					     BTRFS_RESERVE_FLUSH_ALL);
3628 		if (ret) {
3629 			err = ret;
3630 			break;
3631 		}
3632 		progress++;
3633 		trans = btrfs_start_transaction(rc->extent_root, 0);
3634 		if (IS_ERR(trans)) {
3635 			err = PTR_ERR(trans);
3636 			trans = NULL;
3637 			break;
3638 		}
3639 restart:
3640 		if (rc->backref_cache.last_trans != trans->transid)
3641 			btrfs_backref_release_cache(&rc->backref_cache);
3642 		rc->backref_cache.last_trans = trans->transid;
3643 
3644 		ret = find_next_extent(rc, path, &key);
3645 		if (ret < 0)
3646 			err = ret;
3647 		if (ret != 0)
3648 			break;
3649 
3650 		rc->extents_found++;
3651 
3652 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3653 				    struct btrfs_extent_item);
3654 		flags = btrfs_extent_flags(path->nodes[0], ei);
3655 
3656 		/*
3657 		 * If we are relocating a simple quota owned extent item, we
3658 		 * need to note the owner on the reloc data root so that when
3659 		 * we allocate the replacement item, we can attribute it to the
3660 		 * correct eventual owner (rather than the reloc data root).
3661 		 */
3662 		if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE) {
3663 			struct btrfs_root *root = BTRFS_I(rc->data_inode)->root;
3664 			u64 owning_root_id = btrfs_get_extent_owner_root(fs_info,
3665 								 path->nodes[0],
3666 								 path->slots[0]);
3667 
3668 			root->relocation_src_root = owning_root_id;
3669 		}
3670 
3671 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3672 			ret = add_tree_block(rc, &key, path, &blocks);
3673 		} else if (rc->stage == UPDATE_DATA_PTRS &&
3674 			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
3675 			ret = add_data_references(rc, &key, path, &blocks);
3676 		} else {
3677 			btrfs_release_path(path);
3678 			ret = 0;
3679 		}
3680 		if (ret < 0) {
3681 			err = ret;
3682 			break;
3683 		}
3684 
3685 		if (!RB_EMPTY_ROOT(&blocks)) {
3686 			ret = relocate_tree_blocks(trans, rc, &blocks);
3687 			if (ret < 0) {
3688 				if (ret != -EAGAIN) {
3689 					err = ret;
3690 					break;
3691 				}
3692 				rc->extents_found--;
3693 				rc->search_start = key.objectid;
3694 			}
3695 		}
3696 
3697 		btrfs_end_transaction_throttle(trans);
3698 		btrfs_btree_balance_dirty(fs_info);
3699 		trans = NULL;
3700 
3701 		if (rc->stage == MOVE_DATA_EXTENTS &&
3702 		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
3703 			rc->found_file_extent = true;
3704 			ret = relocate_data_extent(rc, &key);
3705 			if (ret < 0) {
3706 				err = ret;
3707 				break;
3708 			}
3709 		}
3710 		if (btrfs_should_cancel_balance(fs_info)) {
3711 			err = -ECANCELED;
3712 			break;
3713 		}
3714 	}
3715 	if (trans && progress && err == -ENOSPC) {
3716 		ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
3717 		if (ret == 1) {
3718 			err = 0;
3719 			progress = 0;
3720 			goto restart;
3721 		}
3722 	}
3723 
3724 	btrfs_release_path(path);
3725 	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
3726 
3727 	if (trans) {
3728 		btrfs_end_transaction_throttle(trans);
3729 		btrfs_btree_balance_dirty(fs_info);
3730 	}
3731 
3732 	if (!err) {
3733 		ret = relocate_file_extent_cluster(rc);
3734 		if (ret < 0)
3735 			err = ret;
3736 	}
3737 
3738 	rc->create_reloc_tree = false;
3739 	set_reloc_control(rc);
3740 
3741 	btrfs_backref_release_cache(&rc->backref_cache);
3742 	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3743 
3744 	/*
3745 	 * Even in the case when the relocation is cancelled, we should all go
3746 	 * through prepare_to_merge() and merge_reloc_roots().
3747 	 *
3748 	 * For error (including cancelled balance), prepare_to_merge() will
3749 	 * mark all reloc trees orphan, then queue them for cleanup in
3750 	 * merge_reloc_roots()
3751 	 */
3752 	err = prepare_to_merge(rc, err);
3753 
3754 	merge_reloc_roots(rc);
3755 
3756 	rc->merge_reloc_tree = false;
3757 	unset_reloc_control(rc);
3758 	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3759 
3760 	/* get rid of pinned extents */
3761 	trans = btrfs_join_transaction(rc->extent_root);
3762 	if (IS_ERR(trans)) {
3763 		err = PTR_ERR(trans);
3764 		goto out_free;
3765 	}
3766 	ret = btrfs_commit_transaction(trans);
3767 	if (ret && !err)
3768 		err = ret;
3769 out_free:
3770 	ret = clean_dirty_subvols(rc);
3771 	if (ret < 0 && !err)
3772 		err = ret;
3773 	btrfs_free_block_rsv(fs_info, rc->block_rsv);
3774 	btrfs_free_path(path);
3775 	return err;
3776 }
3777 
3778 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3779 				 struct btrfs_root *root, u64 objectid)
3780 {
3781 	struct btrfs_path *path;
3782 	struct btrfs_inode_item *item;
3783 	struct extent_buffer *leaf;
3784 	int ret;
3785 
3786 	path = btrfs_alloc_path();
3787 	if (!path)
3788 		return -ENOMEM;
3789 
3790 	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
3791 	if (ret)
3792 		goto out;
3793 
3794 	leaf = path->nodes[0];
3795 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3796 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3797 	btrfs_set_inode_generation(leaf, item, 1);
3798 	btrfs_set_inode_size(leaf, item, 0);
3799 	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
3800 	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
3801 					  BTRFS_INODE_PREALLOC);
3802 	btrfs_mark_buffer_dirty(trans, leaf);
3803 out:
3804 	btrfs_free_path(path);
3805 	return ret;
3806 }
3807 
3808 static void delete_orphan_inode(struct btrfs_trans_handle *trans,
3809 				struct btrfs_root *root, u64 objectid)
3810 {
3811 	struct btrfs_path *path;
3812 	struct btrfs_key key;
3813 	int ret = 0;
3814 
3815 	path = btrfs_alloc_path();
3816 	if (!path) {
3817 		ret = -ENOMEM;
3818 		goto out;
3819 	}
3820 
3821 	key.objectid = objectid;
3822 	key.type = BTRFS_INODE_ITEM_KEY;
3823 	key.offset = 0;
3824 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3825 	if (ret) {
3826 		if (ret > 0)
3827 			ret = -ENOENT;
3828 		goto out;
3829 	}
3830 	ret = btrfs_del_item(trans, root, path);
3831 out:
3832 	if (ret)
3833 		btrfs_abort_transaction(trans, ret);
3834 	btrfs_free_path(path);
3835 }
3836 
3837 /*
3838  * helper to create inode for data relocation.
3839  * the inode is in data relocation tree and its link count is 0
3840  */
3841 static noinline_for_stack struct inode *create_reloc_inode(
3842 					struct btrfs_fs_info *fs_info,
3843 					const struct btrfs_block_group *group)
3844 {
3845 	struct inode *inode = NULL;
3846 	struct btrfs_trans_handle *trans;
3847 	struct btrfs_root *root;
3848 	u64 objectid;
3849 	int ret = 0;
3850 
3851 	root = btrfs_grab_root(fs_info->data_reloc_root);
3852 	trans = btrfs_start_transaction(root, 6);
3853 	if (IS_ERR(trans)) {
3854 		btrfs_put_root(root);
3855 		return ERR_CAST(trans);
3856 	}
3857 
3858 	ret = btrfs_get_free_objectid(root, &objectid);
3859 	if (ret)
3860 		goto out;
3861 
3862 	ret = __insert_orphan_inode(trans, root, objectid);
3863 	if (ret)
3864 		goto out;
3865 
3866 	inode = btrfs_iget(objectid, root);
3867 	if (IS_ERR(inode)) {
3868 		delete_orphan_inode(trans, root, objectid);
3869 		ret = PTR_ERR(inode);
3870 		inode = NULL;
3871 		goto out;
3872 	}
3873 	BTRFS_I(inode)->reloc_block_group_start = group->start;
3874 
3875 	ret = btrfs_orphan_add(trans, BTRFS_I(inode));
3876 out:
3877 	btrfs_put_root(root);
3878 	btrfs_end_transaction(trans);
3879 	btrfs_btree_balance_dirty(fs_info);
3880 	if (ret) {
3881 		iput(inode);
3882 		inode = ERR_PTR(ret);
3883 	}
3884 	return inode;
3885 }
3886 
3887 /*
3888  * Mark start of chunk relocation that is cancellable. Check if the cancellation
3889  * has been requested meanwhile and don't start in that case.
3890  *
3891  * Return:
3892  *   0             success
3893  *   -EINPROGRESS  operation is already in progress, that's probably a bug
3894  *   -ECANCELED    cancellation request was set before the operation started
3895  */
3896 static int reloc_chunk_start(struct btrfs_fs_info *fs_info)
3897 {
3898 	if (test_and_set_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) {
3899 		/* This should not happen */
3900 		btrfs_err(fs_info, "reloc already running, cannot start");
3901 		return -EINPROGRESS;
3902 	}
3903 
3904 	if (atomic_read(&fs_info->reloc_cancel_req) > 0) {
3905 		btrfs_info(fs_info, "chunk relocation canceled on start");
3906 		/*
3907 		 * On cancel, clear all requests but let the caller mark
3908 		 * the end after cleanup operations.
3909 		 */
3910 		atomic_set(&fs_info->reloc_cancel_req, 0);
3911 		return -ECANCELED;
3912 	}
3913 	return 0;
3914 }
3915 
3916 /*
3917  * Mark end of chunk relocation that is cancellable and wake any waiters.
3918  */
3919 static void reloc_chunk_end(struct btrfs_fs_info *fs_info)
3920 {
3921 	/* Requested after start, clear bit first so any waiters can continue */
3922 	if (atomic_read(&fs_info->reloc_cancel_req) > 0)
3923 		btrfs_info(fs_info, "chunk relocation canceled during operation");
3924 	clear_and_wake_up_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags);
3925 	atomic_set(&fs_info->reloc_cancel_req, 0);
3926 }
3927 
3928 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
3929 {
3930 	struct reloc_control *rc;
3931 
3932 	rc = kzalloc(sizeof(*rc), GFP_NOFS);
3933 	if (!rc)
3934 		return NULL;
3935 
3936 	INIT_LIST_HEAD(&rc->reloc_roots);
3937 	INIT_LIST_HEAD(&rc->dirty_subvol_roots);
3938 	btrfs_backref_init_cache(fs_info, &rc->backref_cache, true);
3939 	rc->reloc_root_tree.rb_root = RB_ROOT;
3940 	spin_lock_init(&rc->reloc_root_tree.lock);
3941 	extent_io_tree_init(fs_info, &rc->processed_blocks, IO_TREE_RELOC_BLOCKS);
3942 	return rc;
3943 }
3944 
3945 static void free_reloc_control(struct reloc_control *rc)
3946 {
3947 	struct mapping_node *node, *tmp;
3948 
3949 	free_reloc_roots(&rc->reloc_roots);
3950 	rbtree_postorder_for_each_entry_safe(node, tmp,
3951 			&rc->reloc_root_tree.rb_root, rb_node)
3952 		kfree(node);
3953 
3954 	kfree(rc);
3955 }
3956 
3957 /*
3958  * Print the block group being relocated
3959  */
3960 static void describe_relocation(struct btrfs_block_group *block_group)
3961 {
3962 	char buf[128] = {'\0'};
3963 
3964 	btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf));
3965 
3966 	btrfs_info(block_group->fs_info, "relocating block group %llu flags %s",
3967 		   block_group->start, buf);
3968 }
3969 
3970 static const char *stage_to_string(enum reloc_stage stage)
3971 {
3972 	if (stage == MOVE_DATA_EXTENTS)
3973 		return "move data extents";
3974 	if (stage == UPDATE_DATA_PTRS)
3975 		return "update data pointers";
3976 	return "unknown";
3977 }
3978 
3979 /*
3980  * function to relocate all extents in a block group.
3981  */
3982 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
3983 {
3984 	struct btrfs_block_group *bg;
3985 	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, group_start);
3986 	struct reloc_control *rc;
3987 	struct inode *inode;
3988 	struct btrfs_path *path;
3989 	int ret;
3990 	int rw = 0;
3991 	int err = 0;
3992 
3993 	/*
3994 	 * This only gets set if we had a half-deleted snapshot on mount.  We
3995 	 * cannot allow relocation to start while we're still trying to clean up
3996 	 * these pending deletions.
3997 	 */
3998 	ret = wait_on_bit(&fs_info->flags, BTRFS_FS_UNFINISHED_DROPS, TASK_INTERRUPTIBLE);
3999 	if (ret)
4000 		return ret;
4001 
4002 	/* We may have been woken up by close_ctree, so bail if we're closing. */
4003 	if (btrfs_fs_closing(fs_info))
4004 		return -EINTR;
4005 
4006 	bg = btrfs_lookup_block_group(fs_info, group_start);
4007 	if (!bg)
4008 		return -ENOENT;
4009 
4010 	/*
4011 	 * Relocation of a data block group creates ordered extents.  Without
4012 	 * sb_start_write(), we can freeze the filesystem while unfinished
4013 	 * ordered extents are left. Such ordered extents can cause a deadlock
4014 	 * e.g. when syncfs() is waiting for their completion but they can't
4015 	 * finish because they block when joining a transaction, due to the
4016 	 * fact that the freeze locks are being held in write mode.
4017 	 */
4018 	if (bg->flags & BTRFS_BLOCK_GROUP_DATA)
4019 		ASSERT(sb_write_started(fs_info->sb));
4020 
4021 	if (btrfs_pinned_by_swapfile(fs_info, bg)) {
4022 		btrfs_put_block_group(bg);
4023 		return -ETXTBSY;
4024 	}
4025 
4026 	rc = alloc_reloc_control(fs_info);
4027 	if (!rc) {
4028 		btrfs_put_block_group(bg);
4029 		return -ENOMEM;
4030 	}
4031 
4032 	ret = reloc_chunk_start(fs_info);
4033 	if (ret < 0) {
4034 		err = ret;
4035 		goto out_put_bg;
4036 	}
4037 
4038 	rc->extent_root = extent_root;
4039 	rc->block_group = bg;
4040 
4041 	ret = btrfs_inc_block_group_ro(rc->block_group, true);
4042 	if (ret) {
4043 		err = ret;
4044 		goto out;
4045 	}
4046 	rw = 1;
4047 
4048 	path = btrfs_alloc_path();
4049 	if (!path) {
4050 		err = -ENOMEM;
4051 		goto out;
4052 	}
4053 
4054 	inode = lookup_free_space_inode(rc->block_group, path);
4055 	btrfs_free_path(path);
4056 
4057 	if (!IS_ERR(inode))
4058 		ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
4059 	else
4060 		ret = PTR_ERR(inode);
4061 
4062 	if (ret && ret != -ENOENT) {
4063 		err = ret;
4064 		goto out;
4065 	}
4066 
4067 	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4068 	if (IS_ERR(rc->data_inode)) {
4069 		err = PTR_ERR(rc->data_inode);
4070 		rc->data_inode = NULL;
4071 		goto out;
4072 	}
4073 
4074 	describe_relocation(rc->block_group);
4075 
4076 	btrfs_wait_block_group_reservations(rc->block_group);
4077 	btrfs_wait_nocow_writers(rc->block_group);
4078 	btrfs_wait_ordered_roots(fs_info, U64_MAX, rc->block_group);
4079 
4080 	ret = btrfs_zone_finish(rc->block_group);
4081 	WARN_ON(ret && ret != -EAGAIN);
4082 
4083 	while (1) {
4084 		enum reloc_stage finishes_stage;
4085 
4086 		mutex_lock(&fs_info->cleaner_mutex);
4087 		ret = relocate_block_group(rc);
4088 		mutex_unlock(&fs_info->cleaner_mutex);
4089 		if (ret < 0)
4090 			err = ret;
4091 
4092 		finishes_stage = rc->stage;
4093 		/*
4094 		 * We may have gotten ENOSPC after we already dirtied some
4095 		 * extents.  If writeout happens while we're relocating a
4096 		 * different block group we could end up hitting the
4097 		 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
4098 		 * btrfs_reloc_cow_block.  Make sure we write everything out
4099 		 * properly so we don't trip over this problem, and then break
4100 		 * out of the loop if we hit an error.
4101 		 */
4102 		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4103 			ret = btrfs_wait_ordered_range(BTRFS_I(rc->data_inode), 0,
4104 						       (u64)-1);
4105 			if (ret)
4106 				err = ret;
4107 			invalidate_mapping_pages(rc->data_inode->i_mapping,
4108 						 0, -1);
4109 			rc->stage = UPDATE_DATA_PTRS;
4110 		}
4111 
4112 		if (err < 0)
4113 			goto out;
4114 
4115 		if (rc->extents_found == 0)
4116 			break;
4117 
4118 		btrfs_info(fs_info, "found %llu extents, stage: %s",
4119 			   rc->extents_found, stage_to_string(finishes_stage));
4120 	}
4121 
4122 	WARN_ON(rc->block_group->pinned > 0);
4123 	WARN_ON(rc->block_group->reserved > 0);
4124 	WARN_ON(rc->block_group->used > 0);
4125 out:
4126 	if (err && rw)
4127 		btrfs_dec_block_group_ro(rc->block_group);
4128 	iput(rc->data_inode);
4129 out_put_bg:
4130 	btrfs_put_block_group(bg);
4131 	reloc_chunk_end(fs_info);
4132 	free_reloc_control(rc);
4133 	return err;
4134 }
4135 
4136 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4137 {
4138 	struct btrfs_fs_info *fs_info = root->fs_info;
4139 	struct btrfs_trans_handle *trans;
4140 	int ret, err;
4141 
4142 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
4143 	if (IS_ERR(trans))
4144 		return PTR_ERR(trans);
4145 
4146 	memset(&root->root_item.drop_progress, 0,
4147 		sizeof(root->root_item.drop_progress));
4148 	btrfs_set_root_drop_level(&root->root_item, 0);
4149 	btrfs_set_root_refs(&root->root_item, 0);
4150 	ret = btrfs_update_root(trans, fs_info->tree_root,
4151 				&root->root_key, &root->root_item);
4152 
4153 	err = btrfs_end_transaction(trans);
4154 	if (err)
4155 		return err;
4156 	return ret;
4157 }
4158 
4159 /*
4160  * recover relocation interrupted by system crash.
4161  *
4162  * this function resumes merging reloc trees with corresponding fs trees.
4163  * this is important for keeping the sharing of tree blocks
4164  */
4165 int btrfs_recover_relocation(struct btrfs_fs_info *fs_info)
4166 {
4167 	LIST_HEAD(reloc_roots);
4168 	struct btrfs_key key;
4169 	struct btrfs_root *fs_root;
4170 	struct btrfs_root *reloc_root;
4171 	struct btrfs_path *path;
4172 	struct extent_buffer *leaf;
4173 	struct reloc_control *rc = NULL;
4174 	struct btrfs_trans_handle *trans;
4175 	int ret2;
4176 	int ret = 0;
4177 
4178 	path = btrfs_alloc_path();
4179 	if (!path)
4180 		return -ENOMEM;
4181 	path->reada = READA_BACK;
4182 
4183 	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4184 	key.type = BTRFS_ROOT_ITEM_KEY;
4185 	key.offset = (u64)-1;
4186 
4187 	while (1) {
4188 		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
4189 					path, 0, 0);
4190 		if (ret < 0)
4191 			goto out;
4192 		if (ret > 0) {
4193 			if (path->slots[0] == 0)
4194 				break;
4195 			path->slots[0]--;
4196 		}
4197 		ret = 0;
4198 		leaf = path->nodes[0];
4199 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4200 		btrfs_release_path(path);
4201 
4202 		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4203 		    key.type != BTRFS_ROOT_ITEM_KEY)
4204 			break;
4205 
4206 		reloc_root = btrfs_read_tree_root(fs_info->tree_root, &key);
4207 		if (IS_ERR(reloc_root)) {
4208 			ret = PTR_ERR(reloc_root);
4209 			goto out;
4210 		}
4211 
4212 		set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
4213 		list_add(&reloc_root->root_list, &reloc_roots);
4214 
4215 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4216 			fs_root = btrfs_get_fs_root(fs_info,
4217 					reloc_root->root_key.offset, false);
4218 			if (IS_ERR(fs_root)) {
4219 				ret = PTR_ERR(fs_root);
4220 				if (ret != -ENOENT)
4221 					goto out;
4222 				ret = mark_garbage_root(reloc_root);
4223 				if (ret < 0)
4224 					goto out;
4225 				ret = 0;
4226 			} else {
4227 				btrfs_put_root(fs_root);
4228 			}
4229 		}
4230 
4231 		if (key.offset == 0)
4232 			break;
4233 
4234 		key.offset--;
4235 	}
4236 	btrfs_release_path(path);
4237 
4238 	if (list_empty(&reloc_roots))
4239 		goto out;
4240 
4241 	rc = alloc_reloc_control(fs_info);
4242 	if (!rc) {
4243 		ret = -ENOMEM;
4244 		goto out;
4245 	}
4246 
4247 	ret = reloc_chunk_start(fs_info);
4248 	if (ret < 0)
4249 		goto out_end;
4250 
4251 	rc->extent_root = btrfs_extent_root(fs_info, 0);
4252 
4253 	set_reloc_control(rc);
4254 
4255 	trans = btrfs_join_transaction(rc->extent_root);
4256 	if (IS_ERR(trans)) {
4257 		ret = PTR_ERR(trans);
4258 		goto out_unset;
4259 	}
4260 
4261 	rc->merge_reloc_tree = true;
4262 
4263 	while (!list_empty(&reloc_roots)) {
4264 		reloc_root = list_entry(reloc_roots.next,
4265 					struct btrfs_root, root_list);
4266 		list_del(&reloc_root->root_list);
4267 
4268 		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4269 			list_add_tail(&reloc_root->root_list,
4270 				      &rc->reloc_roots);
4271 			continue;
4272 		}
4273 
4274 		fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
4275 					    false);
4276 		if (IS_ERR(fs_root)) {
4277 			ret = PTR_ERR(fs_root);
4278 			list_add_tail(&reloc_root->root_list, &reloc_roots);
4279 			btrfs_end_transaction(trans);
4280 			goto out_unset;
4281 		}
4282 
4283 		ret = __add_reloc_root(reloc_root);
4284 		ASSERT(ret != -EEXIST);
4285 		if (ret) {
4286 			list_add_tail(&reloc_root->root_list, &reloc_roots);
4287 			btrfs_put_root(fs_root);
4288 			btrfs_end_transaction(trans);
4289 			goto out_unset;
4290 		}
4291 		fs_root->reloc_root = btrfs_grab_root(reloc_root);
4292 		btrfs_put_root(fs_root);
4293 	}
4294 
4295 	ret = btrfs_commit_transaction(trans);
4296 	if (ret)
4297 		goto out_unset;
4298 
4299 	merge_reloc_roots(rc);
4300 
4301 	unset_reloc_control(rc);
4302 
4303 	trans = btrfs_join_transaction(rc->extent_root);
4304 	if (IS_ERR(trans)) {
4305 		ret = PTR_ERR(trans);
4306 		goto out_clean;
4307 	}
4308 	ret = btrfs_commit_transaction(trans);
4309 out_clean:
4310 	ret2 = clean_dirty_subvols(rc);
4311 	if (ret2 < 0 && !ret)
4312 		ret = ret2;
4313 out_unset:
4314 	unset_reloc_control(rc);
4315 out_end:
4316 	reloc_chunk_end(fs_info);
4317 	free_reloc_control(rc);
4318 out:
4319 	free_reloc_roots(&reloc_roots);
4320 
4321 	btrfs_free_path(path);
4322 
4323 	if (ret == 0) {
4324 		/* cleanup orphan inode in data relocation tree */
4325 		fs_root = btrfs_grab_root(fs_info->data_reloc_root);
4326 		ASSERT(fs_root);
4327 		ret = btrfs_orphan_cleanup(fs_root);
4328 		btrfs_put_root(fs_root);
4329 	}
4330 	return ret;
4331 }
4332 
4333 /*
4334  * helper to add ordered checksum for data relocation.
4335  *
4336  * cloning checksum properly handles the nodatasum extents.
4337  * it also saves CPU time to re-calculate the checksum.
4338  */
4339 int btrfs_reloc_clone_csums(struct btrfs_ordered_extent *ordered)
4340 {
4341 	struct btrfs_inode *inode = ordered->inode;
4342 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
4343 	u64 disk_bytenr = ordered->file_offset + inode->reloc_block_group_start;
4344 	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, disk_bytenr);
4345 	LIST_HEAD(list);
4346 	int ret;
4347 
4348 	ret = btrfs_lookup_csums_list(csum_root, disk_bytenr,
4349 				      disk_bytenr + ordered->num_bytes - 1,
4350 				      &list, false);
4351 	if (ret < 0) {
4352 		btrfs_mark_ordered_extent_error(ordered);
4353 		return ret;
4354 	}
4355 
4356 	while (!list_empty(&list)) {
4357 		struct btrfs_ordered_sum *sums =
4358 			list_entry(list.next, struct btrfs_ordered_sum, list);
4359 
4360 		list_del_init(&sums->list);
4361 
4362 		/*
4363 		 * We need to offset the new_bytenr based on where the csum is.
4364 		 * We need to do this because we will read in entire prealloc
4365 		 * extents but we may have written to say the middle of the
4366 		 * prealloc extent, so we need to make sure the csum goes with
4367 		 * the right disk offset.
4368 		 *
4369 		 * We can do this because the data reloc inode refers strictly
4370 		 * to the on disk bytes, so we don't have to worry about
4371 		 * disk_len vs real len like with real inodes since it's all
4372 		 * disk length.
4373 		 */
4374 		sums->logical = ordered->disk_bytenr + sums->logical - disk_bytenr;
4375 		btrfs_add_ordered_sum(ordered, sums);
4376 	}
4377 
4378 	return 0;
4379 }
4380 
4381 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4382 			  struct btrfs_root *root,
4383 			  const struct extent_buffer *buf,
4384 			  struct extent_buffer *cow)
4385 {
4386 	struct btrfs_fs_info *fs_info = root->fs_info;
4387 	struct reloc_control *rc;
4388 	struct btrfs_backref_node *node;
4389 	int first_cow = 0;
4390 	int level;
4391 	int ret = 0;
4392 
4393 	rc = fs_info->reloc_ctl;
4394 	if (!rc)
4395 		return 0;
4396 
4397 	BUG_ON(rc->stage == UPDATE_DATA_PTRS && btrfs_is_data_reloc_root(root));
4398 
4399 	level = btrfs_header_level(buf);
4400 	if (btrfs_header_generation(buf) <=
4401 	    btrfs_root_last_snapshot(&root->root_item))
4402 		first_cow = 1;
4403 
4404 	if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID && rc->create_reloc_tree) {
4405 		WARN_ON(!first_cow && level == 0);
4406 
4407 		node = rc->backref_cache.path[level];
4408 		BUG_ON(node->bytenr != buf->start &&
4409 		       node->new_bytenr != buf->start);
4410 
4411 		btrfs_backref_drop_node_buffer(node);
4412 		atomic_inc(&cow->refs);
4413 		node->eb = cow;
4414 		node->new_bytenr = cow->start;
4415 
4416 		if (!node->pending) {
4417 			list_move_tail(&node->list,
4418 				       &rc->backref_cache.pending[level]);
4419 			node->pending = 1;
4420 		}
4421 
4422 		if (first_cow)
4423 			mark_block_processed(rc, node);
4424 
4425 		if (first_cow && level > 0)
4426 			rc->nodes_relocated += buf->len;
4427 	}
4428 
4429 	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4430 		ret = replace_file_extents(trans, rc, root, cow);
4431 	return ret;
4432 }
4433 
4434 /*
4435  * called before creating snapshot. it calculates metadata reservation
4436  * required for relocating tree blocks in the snapshot
4437  */
4438 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4439 			      u64 *bytes_to_reserve)
4440 {
4441 	struct btrfs_root *root = pending->root;
4442 	struct reloc_control *rc = root->fs_info->reloc_ctl;
4443 
4444 	if (!rc || !have_reloc_root(root))
4445 		return;
4446 
4447 	if (!rc->merge_reloc_tree)
4448 		return;
4449 
4450 	root = root->reloc_root;
4451 	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4452 	/*
4453 	 * relocation is in the stage of merging trees. the space
4454 	 * used by merging a reloc tree is twice the size of
4455 	 * relocated tree nodes in the worst case. half for cowing
4456 	 * the reloc tree, half for cowing the fs tree. the space
4457 	 * used by cowing the reloc tree will be freed after the
4458 	 * tree is dropped. if we create snapshot, cowing the fs
4459 	 * tree may use more space than it frees. so we need
4460 	 * reserve extra space.
4461 	 */
4462 	*bytes_to_reserve += rc->nodes_relocated;
4463 }
4464 
4465 /*
4466  * called after snapshot is created. migrate block reservation
4467  * and create reloc root for the newly created snapshot
4468  *
4469  * This is similar to btrfs_init_reloc_root(), we come out of here with two
4470  * references held on the reloc_root, one for root->reloc_root and one for
4471  * rc->reloc_roots.
4472  */
4473 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4474 			       struct btrfs_pending_snapshot *pending)
4475 {
4476 	struct btrfs_root *root = pending->root;
4477 	struct btrfs_root *reloc_root;
4478 	struct btrfs_root *new_root;
4479 	struct reloc_control *rc = root->fs_info->reloc_ctl;
4480 	int ret;
4481 
4482 	if (!rc || !have_reloc_root(root))
4483 		return 0;
4484 
4485 	rc = root->fs_info->reloc_ctl;
4486 	rc->merging_rsv_size += rc->nodes_relocated;
4487 
4488 	if (rc->merge_reloc_tree) {
4489 		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4490 					      rc->block_rsv,
4491 					      rc->nodes_relocated, true);
4492 		if (ret)
4493 			return ret;
4494 	}
4495 
4496 	new_root = pending->snap;
4497 	reloc_root = create_reloc_root(trans, root->reloc_root, btrfs_root_id(new_root));
4498 	if (IS_ERR(reloc_root))
4499 		return PTR_ERR(reloc_root);
4500 
4501 	ret = __add_reloc_root(reloc_root);
4502 	ASSERT(ret != -EEXIST);
4503 	if (ret) {
4504 		/* Pairs with create_reloc_root */
4505 		btrfs_put_root(reloc_root);
4506 		return ret;
4507 	}
4508 	new_root->reloc_root = btrfs_grab_root(reloc_root);
4509 
4510 	if (rc->create_reloc_tree)
4511 		ret = clone_backref_node(trans, rc, root, reloc_root);
4512 	return ret;
4513 }
4514 
4515 /*
4516  * Get the current bytenr for the block group which is being relocated.
4517  *
4518  * Return U64_MAX if no running relocation.
4519  */
4520 u64 btrfs_get_reloc_bg_bytenr(const struct btrfs_fs_info *fs_info)
4521 {
4522 	u64 logical = U64_MAX;
4523 
4524 	lockdep_assert_held(&fs_info->reloc_mutex);
4525 
4526 	if (fs_info->reloc_ctl && fs_info->reloc_ctl->block_group)
4527 		logical = fs_info->reloc_ctl->block_group->start;
4528 	return logical;
4529 }
4530