xref: /linux/fs/btrfs/relocation.c (revision 3a38ef2b3cb6b63c105247b5ea4a9cf600e673f0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2009 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/pagemap.h>
8 #include <linux/writeback.h>
9 #include <linux/blkdev.h>
10 #include <linux/rbtree.h>
11 #include <linux/slab.h>
12 #include <linux/error-injection.h>
13 #include "ctree.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "volumes.h"
17 #include "locking.h"
18 #include "btrfs_inode.h"
19 #include "async-thread.h"
20 #include "free-space-cache.h"
21 #include "qgroup.h"
22 #include "print-tree.h"
23 #include "delalloc-space.h"
24 #include "block-group.h"
25 #include "backref.h"
26 #include "misc.h"
27 #include "subpage.h"
28 #include "zoned.h"
29 #include "inode-item.h"
30 
31 /*
32  * Relocation overview
33  *
34  * [What does relocation do]
35  *
36  * The objective of relocation is to relocate all extents of the target block
37  * group to other block groups.
38  * This is utilized by resize (shrink only), profile converting, compacting
39  * space, or balance routine to spread chunks over devices.
40  *
41  * 		Before		|		After
42  * ------------------------------------------------------------------
43  *  BG A: 10 data extents	| BG A: deleted
44  *  BG B:  2 data extents	| BG B: 10 data extents (2 old + 8 relocated)
45  *  BG C:  1 extents		| BG C:  3 data extents (1 old + 2 relocated)
46  *
47  * [How does relocation work]
48  *
49  * 1.   Mark the target block group read-only
50  *      New extents won't be allocated from the target block group.
51  *
52  * 2.1  Record each extent in the target block group
53  *      To build a proper map of extents to be relocated.
54  *
55  * 2.2  Build data reloc tree and reloc trees
56  *      Data reloc tree will contain an inode, recording all newly relocated
57  *      data extents.
58  *      There will be only one data reloc tree for one data block group.
59  *
60  *      Reloc tree will be a special snapshot of its source tree, containing
61  *      relocated tree blocks.
62  *      Each tree referring to a tree block in target block group will get its
63  *      reloc tree built.
64  *
65  * 2.3  Swap source tree with its corresponding reloc tree
66  *      Each involved tree only refers to new extents after swap.
67  *
68  * 3.   Cleanup reloc trees and data reloc tree.
69  *      As old extents in the target block group are still referenced by reloc
70  *      trees, we need to clean them up before really freeing the target block
71  *      group.
72  *
73  * The main complexity is in steps 2.2 and 2.3.
74  *
75  * The entry point of relocation is relocate_block_group() function.
76  */
77 
78 #define RELOCATION_RESERVED_NODES	256
79 /*
80  * map address of tree root to tree
81  */
82 struct mapping_node {
83 	struct {
84 		struct rb_node rb_node;
85 		u64 bytenr;
86 	}; /* Use rb_simle_node for search/insert */
87 	void *data;
88 };
89 
90 struct mapping_tree {
91 	struct rb_root rb_root;
92 	spinlock_t lock;
93 };
94 
95 /*
96  * present a tree block to process
97  */
98 struct tree_block {
99 	struct {
100 		struct rb_node rb_node;
101 		u64 bytenr;
102 	}; /* Use rb_simple_node for search/insert */
103 	u64 owner;
104 	struct btrfs_key key;
105 	unsigned int level:8;
106 	unsigned int key_ready:1;
107 };
108 
109 #define MAX_EXTENTS 128
110 
111 struct file_extent_cluster {
112 	u64 start;
113 	u64 end;
114 	u64 boundary[MAX_EXTENTS];
115 	unsigned int nr;
116 };
117 
118 struct reloc_control {
119 	/* block group to relocate */
120 	struct btrfs_block_group *block_group;
121 	/* extent tree */
122 	struct btrfs_root *extent_root;
123 	/* inode for moving data */
124 	struct inode *data_inode;
125 
126 	struct btrfs_block_rsv *block_rsv;
127 
128 	struct btrfs_backref_cache backref_cache;
129 
130 	struct file_extent_cluster cluster;
131 	/* tree blocks have been processed */
132 	struct extent_io_tree processed_blocks;
133 	/* map start of tree root to corresponding reloc tree */
134 	struct mapping_tree reloc_root_tree;
135 	/* list of reloc trees */
136 	struct list_head reloc_roots;
137 	/* list of subvolume trees that get relocated */
138 	struct list_head dirty_subvol_roots;
139 	/* size of metadata reservation for merging reloc trees */
140 	u64 merging_rsv_size;
141 	/* size of relocated tree nodes */
142 	u64 nodes_relocated;
143 	/* reserved size for block group relocation*/
144 	u64 reserved_bytes;
145 
146 	u64 search_start;
147 	u64 extents_found;
148 
149 	unsigned int stage:8;
150 	unsigned int create_reloc_tree:1;
151 	unsigned int merge_reloc_tree:1;
152 	unsigned int found_file_extent:1;
153 };
154 
155 /* stages of data relocation */
156 #define MOVE_DATA_EXTENTS	0
157 #define UPDATE_DATA_PTRS	1
158 
159 static void mark_block_processed(struct reloc_control *rc,
160 				 struct btrfs_backref_node *node)
161 {
162 	u32 blocksize;
163 
164 	if (node->level == 0 ||
165 	    in_range(node->bytenr, rc->block_group->start,
166 		     rc->block_group->length)) {
167 		blocksize = rc->extent_root->fs_info->nodesize;
168 		set_extent_bits(&rc->processed_blocks, node->bytenr,
169 				node->bytenr + blocksize - 1, EXTENT_DIRTY);
170 	}
171 	node->processed = 1;
172 }
173 
174 
175 static void mapping_tree_init(struct mapping_tree *tree)
176 {
177 	tree->rb_root = RB_ROOT;
178 	spin_lock_init(&tree->lock);
179 }
180 
181 /*
182  * walk up backref nodes until reach node presents tree root
183  */
184 static struct btrfs_backref_node *walk_up_backref(
185 		struct btrfs_backref_node *node,
186 		struct btrfs_backref_edge *edges[], int *index)
187 {
188 	struct btrfs_backref_edge *edge;
189 	int idx = *index;
190 
191 	while (!list_empty(&node->upper)) {
192 		edge = list_entry(node->upper.next,
193 				  struct btrfs_backref_edge, list[LOWER]);
194 		edges[idx++] = edge;
195 		node = edge->node[UPPER];
196 	}
197 	BUG_ON(node->detached);
198 	*index = idx;
199 	return node;
200 }
201 
202 /*
203  * walk down backref nodes to find start of next reference path
204  */
205 static struct btrfs_backref_node *walk_down_backref(
206 		struct btrfs_backref_edge *edges[], int *index)
207 {
208 	struct btrfs_backref_edge *edge;
209 	struct btrfs_backref_node *lower;
210 	int idx = *index;
211 
212 	while (idx > 0) {
213 		edge = edges[idx - 1];
214 		lower = edge->node[LOWER];
215 		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
216 			idx--;
217 			continue;
218 		}
219 		edge = list_entry(edge->list[LOWER].next,
220 				  struct btrfs_backref_edge, list[LOWER]);
221 		edges[idx - 1] = edge;
222 		*index = idx;
223 		return edge->node[UPPER];
224 	}
225 	*index = 0;
226 	return NULL;
227 }
228 
229 static void update_backref_node(struct btrfs_backref_cache *cache,
230 				struct btrfs_backref_node *node, u64 bytenr)
231 {
232 	struct rb_node *rb_node;
233 	rb_erase(&node->rb_node, &cache->rb_root);
234 	node->bytenr = bytenr;
235 	rb_node = rb_simple_insert(&cache->rb_root, node->bytenr, &node->rb_node);
236 	if (rb_node)
237 		btrfs_backref_panic(cache->fs_info, bytenr, -EEXIST);
238 }
239 
240 /*
241  * update backref cache after a transaction commit
242  */
243 static int update_backref_cache(struct btrfs_trans_handle *trans,
244 				struct btrfs_backref_cache *cache)
245 {
246 	struct btrfs_backref_node *node;
247 	int level = 0;
248 
249 	if (cache->last_trans == 0) {
250 		cache->last_trans = trans->transid;
251 		return 0;
252 	}
253 
254 	if (cache->last_trans == trans->transid)
255 		return 0;
256 
257 	/*
258 	 * detached nodes are used to avoid unnecessary backref
259 	 * lookup. transaction commit changes the extent tree.
260 	 * so the detached nodes are no longer useful.
261 	 */
262 	while (!list_empty(&cache->detached)) {
263 		node = list_entry(cache->detached.next,
264 				  struct btrfs_backref_node, list);
265 		btrfs_backref_cleanup_node(cache, node);
266 	}
267 
268 	while (!list_empty(&cache->changed)) {
269 		node = list_entry(cache->changed.next,
270 				  struct btrfs_backref_node, list);
271 		list_del_init(&node->list);
272 		BUG_ON(node->pending);
273 		update_backref_node(cache, node, node->new_bytenr);
274 	}
275 
276 	/*
277 	 * some nodes can be left in the pending list if there were
278 	 * errors during processing the pending nodes.
279 	 */
280 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
281 		list_for_each_entry(node, &cache->pending[level], list) {
282 			BUG_ON(!node->pending);
283 			if (node->bytenr == node->new_bytenr)
284 				continue;
285 			update_backref_node(cache, node, node->new_bytenr);
286 		}
287 	}
288 
289 	cache->last_trans = 0;
290 	return 1;
291 }
292 
293 static bool reloc_root_is_dead(struct btrfs_root *root)
294 {
295 	/*
296 	 * Pair with set_bit/clear_bit in clean_dirty_subvols and
297 	 * btrfs_update_reloc_root. We need to see the updated bit before
298 	 * trying to access reloc_root
299 	 */
300 	smp_rmb();
301 	if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state))
302 		return true;
303 	return false;
304 }
305 
306 /*
307  * Check if this subvolume tree has valid reloc tree.
308  *
309  * Reloc tree after swap is considered dead, thus not considered as valid.
310  * This is enough for most callers, as they don't distinguish dead reloc root
311  * from no reloc root.  But btrfs_should_ignore_reloc_root() below is a
312  * special case.
313  */
314 static bool have_reloc_root(struct btrfs_root *root)
315 {
316 	if (reloc_root_is_dead(root))
317 		return false;
318 	if (!root->reloc_root)
319 		return false;
320 	return true;
321 }
322 
323 int btrfs_should_ignore_reloc_root(struct btrfs_root *root)
324 {
325 	struct btrfs_root *reloc_root;
326 
327 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
328 		return 0;
329 
330 	/* This root has been merged with its reloc tree, we can ignore it */
331 	if (reloc_root_is_dead(root))
332 		return 1;
333 
334 	reloc_root = root->reloc_root;
335 	if (!reloc_root)
336 		return 0;
337 
338 	if (btrfs_header_generation(reloc_root->commit_root) ==
339 	    root->fs_info->running_transaction->transid)
340 		return 0;
341 	/*
342 	 * if there is reloc tree and it was created in previous
343 	 * transaction backref lookup can find the reloc tree,
344 	 * so backref node for the fs tree root is useless for
345 	 * relocation.
346 	 */
347 	return 1;
348 }
349 
350 /*
351  * find reloc tree by address of tree root
352  */
353 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr)
354 {
355 	struct reloc_control *rc = fs_info->reloc_ctl;
356 	struct rb_node *rb_node;
357 	struct mapping_node *node;
358 	struct btrfs_root *root = NULL;
359 
360 	ASSERT(rc);
361 	spin_lock(&rc->reloc_root_tree.lock);
362 	rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr);
363 	if (rb_node) {
364 		node = rb_entry(rb_node, struct mapping_node, rb_node);
365 		root = node->data;
366 	}
367 	spin_unlock(&rc->reloc_root_tree.lock);
368 	return btrfs_grab_root(root);
369 }
370 
371 /*
372  * For useless nodes, do two major clean ups:
373  *
374  * - Cleanup the children edges and nodes
375  *   If child node is also orphan (no parent) during cleanup, then the child
376  *   node will also be cleaned up.
377  *
378  * - Freeing up leaves (level 0), keeps nodes detached
379  *   For nodes, the node is still cached as "detached"
380  *
381  * Return false if @node is not in the @useless_nodes list.
382  * Return true if @node is in the @useless_nodes list.
383  */
384 static bool handle_useless_nodes(struct reloc_control *rc,
385 				 struct btrfs_backref_node *node)
386 {
387 	struct btrfs_backref_cache *cache = &rc->backref_cache;
388 	struct list_head *useless_node = &cache->useless_node;
389 	bool ret = false;
390 
391 	while (!list_empty(useless_node)) {
392 		struct btrfs_backref_node *cur;
393 
394 		cur = list_first_entry(useless_node, struct btrfs_backref_node,
395 				 list);
396 		list_del_init(&cur->list);
397 
398 		/* Only tree root nodes can be added to @useless_nodes */
399 		ASSERT(list_empty(&cur->upper));
400 
401 		if (cur == node)
402 			ret = true;
403 
404 		/* The node is the lowest node */
405 		if (cur->lowest) {
406 			list_del_init(&cur->lower);
407 			cur->lowest = 0;
408 		}
409 
410 		/* Cleanup the lower edges */
411 		while (!list_empty(&cur->lower)) {
412 			struct btrfs_backref_edge *edge;
413 			struct btrfs_backref_node *lower;
414 
415 			edge = list_entry(cur->lower.next,
416 					struct btrfs_backref_edge, list[UPPER]);
417 			list_del(&edge->list[UPPER]);
418 			list_del(&edge->list[LOWER]);
419 			lower = edge->node[LOWER];
420 			btrfs_backref_free_edge(cache, edge);
421 
422 			/* Child node is also orphan, queue for cleanup */
423 			if (list_empty(&lower->upper))
424 				list_add(&lower->list, useless_node);
425 		}
426 		/* Mark this block processed for relocation */
427 		mark_block_processed(rc, cur);
428 
429 		/*
430 		 * Backref nodes for tree leaves are deleted from the cache.
431 		 * Backref nodes for upper level tree blocks are left in the
432 		 * cache to avoid unnecessary backref lookup.
433 		 */
434 		if (cur->level > 0) {
435 			list_add(&cur->list, &cache->detached);
436 			cur->detached = 1;
437 		} else {
438 			rb_erase(&cur->rb_node, &cache->rb_root);
439 			btrfs_backref_free_node(cache, cur);
440 		}
441 	}
442 	return ret;
443 }
444 
445 /*
446  * Build backref tree for a given tree block. Root of the backref tree
447  * corresponds the tree block, leaves of the backref tree correspond roots of
448  * b-trees that reference the tree block.
449  *
450  * The basic idea of this function is check backrefs of a given block to find
451  * upper level blocks that reference the block, and then check backrefs of
452  * these upper level blocks recursively. The recursion stops when tree root is
453  * reached or backrefs for the block is cached.
454  *
455  * NOTE: if we find that backrefs for a block are cached, we know backrefs for
456  * all upper level blocks that directly/indirectly reference the block are also
457  * cached.
458  */
459 static noinline_for_stack struct btrfs_backref_node *build_backref_tree(
460 			struct reloc_control *rc, struct btrfs_key *node_key,
461 			int level, u64 bytenr)
462 {
463 	struct btrfs_backref_iter *iter;
464 	struct btrfs_backref_cache *cache = &rc->backref_cache;
465 	/* For searching parent of TREE_BLOCK_REF */
466 	struct btrfs_path *path;
467 	struct btrfs_backref_node *cur;
468 	struct btrfs_backref_node *node = NULL;
469 	struct btrfs_backref_edge *edge;
470 	int ret;
471 	int err = 0;
472 
473 	iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info, GFP_NOFS);
474 	if (!iter)
475 		return ERR_PTR(-ENOMEM);
476 	path = btrfs_alloc_path();
477 	if (!path) {
478 		err = -ENOMEM;
479 		goto out;
480 	}
481 
482 	node = btrfs_backref_alloc_node(cache, bytenr, level);
483 	if (!node) {
484 		err = -ENOMEM;
485 		goto out;
486 	}
487 
488 	node->lowest = 1;
489 	cur = node;
490 
491 	/* Breadth-first search to build backref cache */
492 	do {
493 		ret = btrfs_backref_add_tree_node(cache, path, iter, node_key,
494 						  cur);
495 		if (ret < 0) {
496 			err = ret;
497 			goto out;
498 		}
499 		edge = list_first_entry_or_null(&cache->pending_edge,
500 				struct btrfs_backref_edge, list[UPPER]);
501 		/*
502 		 * The pending list isn't empty, take the first block to
503 		 * process
504 		 */
505 		if (edge) {
506 			list_del_init(&edge->list[UPPER]);
507 			cur = edge->node[UPPER];
508 		}
509 	} while (edge);
510 
511 	/* Finish the upper linkage of newly added edges/nodes */
512 	ret = btrfs_backref_finish_upper_links(cache, node);
513 	if (ret < 0) {
514 		err = ret;
515 		goto out;
516 	}
517 
518 	if (handle_useless_nodes(rc, node))
519 		node = NULL;
520 out:
521 	btrfs_backref_iter_free(iter);
522 	btrfs_free_path(path);
523 	if (err) {
524 		btrfs_backref_error_cleanup(cache, node);
525 		return ERR_PTR(err);
526 	}
527 	ASSERT(!node || !node->detached);
528 	ASSERT(list_empty(&cache->useless_node) &&
529 	       list_empty(&cache->pending_edge));
530 	return node;
531 }
532 
533 /*
534  * helper to add backref node for the newly created snapshot.
535  * the backref node is created by cloning backref node that
536  * corresponds to root of source tree
537  */
538 static int clone_backref_node(struct btrfs_trans_handle *trans,
539 			      struct reloc_control *rc,
540 			      struct btrfs_root *src,
541 			      struct btrfs_root *dest)
542 {
543 	struct btrfs_root *reloc_root = src->reloc_root;
544 	struct btrfs_backref_cache *cache = &rc->backref_cache;
545 	struct btrfs_backref_node *node = NULL;
546 	struct btrfs_backref_node *new_node;
547 	struct btrfs_backref_edge *edge;
548 	struct btrfs_backref_edge *new_edge;
549 	struct rb_node *rb_node;
550 
551 	if (cache->last_trans > 0)
552 		update_backref_cache(trans, cache);
553 
554 	rb_node = rb_simple_search(&cache->rb_root, src->commit_root->start);
555 	if (rb_node) {
556 		node = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
557 		if (node->detached)
558 			node = NULL;
559 		else
560 			BUG_ON(node->new_bytenr != reloc_root->node->start);
561 	}
562 
563 	if (!node) {
564 		rb_node = rb_simple_search(&cache->rb_root,
565 					   reloc_root->commit_root->start);
566 		if (rb_node) {
567 			node = rb_entry(rb_node, struct btrfs_backref_node,
568 					rb_node);
569 			BUG_ON(node->detached);
570 		}
571 	}
572 
573 	if (!node)
574 		return 0;
575 
576 	new_node = btrfs_backref_alloc_node(cache, dest->node->start,
577 					    node->level);
578 	if (!new_node)
579 		return -ENOMEM;
580 
581 	new_node->lowest = node->lowest;
582 	new_node->checked = 1;
583 	new_node->root = btrfs_grab_root(dest);
584 	ASSERT(new_node->root);
585 
586 	if (!node->lowest) {
587 		list_for_each_entry(edge, &node->lower, list[UPPER]) {
588 			new_edge = btrfs_backref_alloc_edge(cache);
589 			if (!new_edge)
590 				goto fail;
591 
592 			btrfs_backref_link_edge(new_edge, edge->node[LOWER],
593 						new_node, LINK_UPPER);
594 		}
595 	} else {
596 		list_add_tail(&new_node->lower, &cache->leaves);
597 	}
598 
599 	rb_node = rb_simple_insert(&cache->rb_root, new_node->bytenr,
600 				   &new_node->rb_node);
601 	if (rb_node)
602 		btrfs_backref_panic(trans->fs_info, new_node->bytenr, -EEXIST);
603 
604 	if (!new_node->lowest) {
605 		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
606 			list_add_tail(&new_edge->list[LOWER],
607 				      &new_edge->node[LOWER]->upper);
608 		}
609 	}
610 	return 0;
611 fail:
612 	while (!list_empty(&new_node->lower)) {
613 		new_edge = list_entry(new_node->lower.next,
614 				      struct btrfs_backref_edge, list[UPPER]);
615 		list_del(&new_edge->list[UPPER]);
616 		btrfs_backref_free_edge(cache, new_edge);
617 	}
618 	btrfs_backref_free_node(cache, new_node);
619 	return -ENOMEM;
620 }
621 
622 /*
623  * helper to add 'address of tree root -> reloc tree' mapping
624  */
625 static int __must_check __add_reloc_root(struct btrfs_root *root)
626 {
627 	struct btrfs_fs_info *fs_info = root->fs_info;
628 	struct rb_node *rb_node;
629 	struct mapping_node *node;
630 	struct reloc_control *rc = fs_info->reloc_ctl;
631 
632 	node = kmalloc(sizeof(*node), GFP_NOFS);
633 	if (!node)
634 		return -ENOMEM;
635 
636 	node->bytenr = root->commit_root->start;
637 	node->data = root;
638 
639 	spin_lock(&rc->reloc_root_tree.lock);
640 	rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
641 				   node->bytenr, &node->rb_node);
642 	spin_unlock(&rc->reloc_root_tree.lock);
643 	if (rb_node) {
644 		btrfs_err(fs_info,
645 			    "Duplicate root found for start=%llu while inserting into relocation tree",
646 			    node->bytenr);
647 		return -EEXIST;
648 	}
649 
650 	list_add_tail(&root->root_list, &rc->reloc_roots);
651 	return 0;
652 }
653 
654 /*
655  * helper to delete the 'address of tree root -> reloc tree'
656  * mapping
657  */
658 static void __del_reloc_root(struct btrfs_root *root)
659 {
660 	struct btrfs_fs_info *fs_info = root->fs_info;
661 	struct rb_node *rb_node;
662 	struct mapping_node *node = NULL;
663 	struct reloc_control *rc = fs_info->reloc_ctl;
664 	bool put_ref = false;
665 
666 	if (rc && root->node) {
667 		spin_lock(&rc->reloc_root_tree.lock);
668 		rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
669 					   root->commit_root->start);
670 		if (rb_node) {
671 			node = rb_entry(rb_node, struct mapping_node, rb_node);
672 			rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
673 			RB_CLEAR_NODE(&node->rb_node);
674 		}
675 		spin_unlock(&rc->reloc_root_tree.lock);
676 		ASSERT(!node || (struct btrfs_root *)node->data == root);
677 	}
678 
679 	/*
680 	 * We only put the reloc root here if it's on the list.  There's a lot
681 	 * of places where the pattern is to splice the rc->reloc_roots, process
682 	 * the reloc roots, and then add the reloc root back onto
683 	 * rc->reloc_roots.  If we call __del_reloc_root while it's off of the
684 	 * list we don't want the reference being dropped, because the guy
685 	 * messing with the list is in charge of the reference.
686 	 */
687 	spin_lock(&fs_info->trans_lock);
688 	if (!list_empty(&root->root_list)) {
689 		put_ref = true;
690 		list_del_init(&root->root_list);
691 	}
692 	spin_unlock(&fs_info->trans_lock);
693 	if (put_ref)
694 		btrfs_put_root(root);
695 	kfree(node);
696 }
697 
698 /*
699  * helper to update the 'address of tree root -> reloc tree'
700  * mapping
701  */
702 static int __update_reloc_root(struct btrfs_root *root)
703 {
704 	struct btrfs_fs_info *fs_info = root->fs_info;
705 	struct rb_node *rb_node;
706 	struct mapping_node *node = NULL;
707 	struct reloc_control *rc = fs_info->reloc_ctl;
708 
709 	spin_lock(&rc->reloc_root_tree.lock);
710 	rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
711 				   root->commit_root->start);
712 	if (rb_node) {
713 		node = rb_entry(rb_node, struct mapping_node, rb_node);
714 		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
715 	}
716 	spin_unlock(&rc->reloc_root_tree.lock);
717 
718 	if (!node)
719 		return 0;
720 	BUG_ON((struct btrfs_root *)node->data != root);
721 
722 	spin_lock(&rc->reloc_root_tree.lock);
723 	node->bytenr = root->node->start;
724 	rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
725 				   node->bytenr, &node->rb_node);
726 	spin_unlock(&rc->reloc_root_tree.lock);
727 	if (rb_node)
728 		btrfs_backref_panic(fs_info, node->bytenr, -EEXIST);
729 	return 0;
730 }
731 
732 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
733 					struct btrfs_root *root, u64 objectid)
734 {
735 	struct btrfs_fs_info *fs_info = root->fs_info;
736 	struct btrfs_root *reloc_root;
737 	struct extent_buffer *eb;
738 	struct btrfs_root_item *root_item;
739 	struct btrfs_key root_key;
740 	int ret = 0;
741 	bool must_abort = false;
742 
743 	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
744 	if (!root_item)
745 		return ERR_PTR(-ENOMEM);
746 
747 	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
748 	root_key.type = BTRFS_ROOT_ITEM_KEY;
749 	root_key.offset = objectid;
750 
751 	if (root->root_key.objectid == objectid) {
752 		u64 commit_root_gen;
753 
754 		/* called by btrfs_init_reloc_root */
755 		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
756 				      BTRFS_TREE_RELOC_OBJECTID);
757 		if (ret)
758 			goto fail;
759 
760 		/*
761 		 * Set the last_snapshot field to the generation of the commit
762 		 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
763 		 * correctly (returns true) when the relocation root is created
764 		 * either inside the critical section of a transaction commit
765 		 * (through transaction.c:qgroup_account_snapshot()) and when
766 		 * it's created before the transaction commit is started.
767 		 */
768 		commit_root_gen = btrfs_header_generation(root->commit_root);
769 		btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
770 	} else {
771 		/*
772 		 * called by btrfs_reloc_post_snapshot_hook.
773 		 * the source tree is a reloc tree, all tree blocks
774 		 * modified after it was created have RELOC flag
775 		 * set in their headers. so it's OK to not update
776 		 * the 'last_snapshot'.
777 		 */
778 		ret = btrfs_copy_root(trans, root, root->node, &eb,
779 				      BTRFS_TREE_RELOC_OBJECTID);
780 		if (ret)
781 			goto fail;
782 	}
783 
784 	/*
785 	 * We have changed references at this point, we must abort the
786 	 * transaction if anything fails.
787 	 */
788 	must_abort = true;
789 
790 	memcpy(root_item, &root->root_item, sizeof(*root_item));
791 	btrfs_set_root_bytenr(root_item, eb->start);
792 	btrfs_set_root_level(root_item, btrfs_header_level(eb));
793 	btrfs_set_root_generation(root_item, trans->transid);
794 
795 	if (root->root_key.objectid == objectid) {
796 		btrfs_set_root_refs(root_item, 0);
797 		memset(&root_item->drop_progress, 0,
798 		       sizeof(struct btrfs_disk_key));
799 		btrfs_set_root_drop_level(root_item, 0);
800 	}
801 
802 	btrfs_tree_unlock(eb);
803 	free_extent_buffer(eb);
804 
805 	ret = btrfs_insert_root(trans, fs_info->tree_root,
806 				&root_key, root_item);
807 	if (ret)
808 		goto fail;
809 
810 	kfree(root_item);
811 
812 	reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key);
813 	if (IS_ERR(reloc_root)) {
814 		ret = PTR_ERR(reloc_root);
815 		goto abort;
816 	}
817 	set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
818 	reloc_root->last_trans = trans->transid;
819 	return reloc_root;
820 fail:
821 	kfree(root_item);
822 abort:
823 	if (must_abort)
824 		btrfs_abort_transaction(trans, ret);
825 	return ERR_PTR(ret);
826 }
827 
828 /*
829  * create reloc tree for a given fs tree. reloc tree is just a
830  * snapshot of the fs tree with special root objectid.
831  *
832  * The reloc_root comes out of here with two references, one for
833  * root->reloc_root, and another for being on the rc->reloc_roots list.
834  */
835 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
836 			  struct btrfs_root *root)
837 {
838 	struct btrfs_fs_info *fs_info = root->fs_info;
839 	struct btrfs_root *reloc_root;
840 	struct reloc_control *rc = fs_info->reloc_ctl;
841 	struct btrfs_block_rsv *rsv;
842 	int clear_rsv = 0;
843 	int ret;
844 
845 	if (!rc)
846 		return 0;
847 
848 	/*
849 	 * The subvolume has reloc tree but the swap is finished, no need to
850 	 * create/update the dead reloc tree
851 	 */
852 	if (reloc_root_is_dead(root))
853 		return 0;
854 
855 	/*
856 	 * This is subtle but important.  We do not do
857 	 * record_root_in_transaction for reloc roots, instead we record their
858 	 * corresponding fs root, and then here we update the last trans for the
859 	 * reloc root.  This means that we have to do this for the entire life
860 	 * of the reloc root, regardless of which stage of the relocation we are
861 	 * in.
862 	 */
863 	if (root->reloc_root) {
864 		reloc_root = root->reloc_root;
865 		reloc_root->last_trans = trans->transid;
866 		return 0;
867 	}
868 
869 	/*
870 	 * We are merging reloc roots, we do not need new reloc trees.  Also
871 	 * reloc trees never need their own reloc tree.
872 	 */
873 	if (!rc->create_reloc_tree ||
874 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
875 		return 0;
876 
877 	if (!trans->reloc_reserved) {
878 		rsv = trans->block_rsv;
879 		trans->block_rsv = rc->block_rsv;
880 		clear_rsv = 1;
881 	}
882 	reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
883 	if (clear_rsv)
884 		trans->block_rsv = rsv;
885 	if (IS_ERR(reloc_root))
886 		return PTR_ERR(reloc_root);
887 
888 	ret = __add_reloc_root(reloc_root);
889 	ASSERT(ret != -EEXIST);
890 	if (ret) {
891 		/* Pairs with create_reloc_root */
892 		btrfs_put_root(reloc_root);
893 		return ret;
894 	}
895 	root->reloc_root = btrfs_grab_root(reloc_root);
896 	return 0;
897 }
898 
899 /*
900  * update root item of reloc tree
901  */
902 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
903 			    struct btrfs_root *root)
904 {
905 	struct btrfs_fs_info *fs_info = root->fs_info;
906 	struct btrfs_root *reloc_root;
907 	struct btrfs_root_item *root_item;
908 	int ret;
909 
910 	if (!have_reloc_root(root))
911 		return 0;
912 
913 	reloc_root = root->reloc_root;
914 	root_item = &reloc_root->root_item;
915 
916 	/*
917 	 * We are probably ok here, but __del_reloc_root() will drop its ref of
918 	 * the root.  We have the ref for root->reloc_root, but just in case
919 	 * hold it while we update the reloc root.
920 	 */
921 	btrfs_grab_root(reloc_root);
922 
923 	/* root->reloc_root will stay until current relocation finished */
924 	if (fs_info->reloc_ctl->merge_reloc_tree &&
925 	    btrfs_root_refs(root_item) == 0) {
926 		set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
927 		/*
928 		 * Mark the tree as dead before we change reloc_root so
929 		 * have_reloc_root will not touch it from now on.
930 		 */
931 		smp_wmb();
932 		__del_reloc_root(reloc_root);
933 	}
934 
935 	if (reloc_root->commit_root != reloc_root->node) {
936 		__update_reloc_root(reloc_root);
937 		btrfs_set_root_node(root_item, reloc_root->node);
938 		free_extent_buffer(reloc_root->commit_root);
939 		reloc_root->commit_root = btrfs_root_node(reloc_root);
940 	}
941 
942 	ret = btrfs_update_root(trans, fs_info->tree_root,
943 				&reloc_root->root_key, root_item);
944 	btrfs_put_root(reloc_root);
945 	return ret;
946 }
947 
948 /*
949  * helper to find first cached inode with inode number >= objectid
950  * in a subvolume
951  */
952 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
953 {
954 	struct rb_node *node;
955 	struct rb_node *prev;
956 	struct btrfs_inode *entry;
957 	struct inode *inode;
958 
959 	spin_lock(&root->inode_lock);
960 again:
961 	node = root->inode_tree.rb_node;
962 	prev = NULL;
963 	while (node) {
964 		prev = node;
965 		entry = rb_entry(node, struct btrfs_inode, rb_node);
966 
967 		if (objectid < btrfs_ino(entry))
968 			node = node->rb_left;
969 		else if (objectid > btrfs_ino(entry))
970 			node = node->rb_right;
971 		else
972 			break;
973 	}
974 	if (!node) {
975 		while (prev) {
976 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
977 			if (objectid <= btrfs_ino(entry)) {
978 				node = prev;
979 				break;
980 			}
981 			prev = rb_next(prev);
982 		}
983 	}
984 	while (node) {
985 		entry = rb_entry(node, struct btrfs_inode, rb_node);
986 		inode = igrab(&entry->vfs_inode);
987 		if (inode) {
988 			spin_unlock(&root->inode_lock);
989 			return inode;
990 		}
991 
992 		objectid = btrfs_ino(entry) + 1;
993 		if (cond_resched_lock(&root->inode_lock))
994 			goto again;
995 
996 		node = rb_next(node);
997 	}
998 	spin_unlock(&root->inode_lock);
999 	return NULL;
1000 }
1001 
1002 /*
1003  * get new location of data
1004  */
1005 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1006 			    u64 bytenr, u64 num_bytes)
1007 {
1008 	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1009 	struct btrfs_path *path;
1010 	struct btrfs_file_extent_item *fi;
1011 	struct extent_buffer *leaf;
1012 	int ret;
1013 
1014 	path = btrfs_alloc_path();
1015 	if (!path)
1016 		return -ENOMEM;
1017 
1018 	bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1019 	ret = btrfs_lookup_file_extent(NULL, root, path,
1020 			btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
1021 	if (ret < 0)
1022 		goto out;
1023 	if (ret > 0) {
1024 		ret = -ENOENT;
1025 		goto out;
1026 	}
1027 
1028 	leaf = path->nodes[0];
1029 	fi = btrfs_item_ptr(leaf, path->slots[0],
1030 			    struct btrfs_file_extent_item);
1031 
1032 	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1033 	       btrfs_file_extent_compression(leaf, fi) ||
1034 	       btrfs_file_extent_encryption(leaf, fi) ||
1035 	       btrfs_file_extent_other_encoding(leaf, fi));
1036 
1037 	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1038 		ret = -EINVAL;
1039 		goto out;
1040 	}
1041 
1042 	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1043 	ret = 0;
1044 out:
1045 	btrfs_free_path(path);
1046 	return ret;
1047 }
1048 
1049 /*
1050  * update file extent items in the tree leaf to point to
1051  * the new locations.
1052  */
1053 static noinline_for_stack
1054 int replace_file_extents(struct btrfs_trans_handle *trans,
1055 			 struct reloc_control *rc,
1056 			 struct btrfs_root *root,
1057 			 struct extent_buffer *leaf)
1058 {
1059 	struct btrfs_fs_info *fs_info = root->fs_info;
1060 	struct btrfs_key key;
1061 	struct btrfs_file_extent_item *fi;
1062 	struct inode *inode = NULL;
1063 	u64 parent;
1064 	u64 bytenr;
1065 	u64 new_bytenr = 0;
1066 	u64 num_bytes;
1067 	u64 end;
1068 	u32 nritems;
1069 	u32 i;
1070 	int ret = 0;
1071 	int first = 1;
1072 	int dirty = 0;
1073 
1074 	if (rc->stage != UPDATE_DATA_PTRS)
1075 		return 0;
1076 
1077 	/* reloc trees always use full backref */
1078 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1079 		parent = leaf->start;
1080 	else
1081 		parent = 0;
1082 
1083 	nritems = btrfs_header_nritems(leaf);
1084 	for (i = 0; i < nritems; i++) {
1085 		struct btrfs_ref ref = { 0 };
1086 
1087 		cond_resched();
1088 		btrfs_item_key_to_cpu(leaf, &key, i);
1089 		if (key.type != BTRFS_EXTENT_DATA_KEY)
1090 			continue;
1091 		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1092 		if (btrfs_file_extent_type(leaf, fi) ==
1093 		    BTRFS_FILE_EXTENT_INLINE)
1094 			continue;
1095 		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1096 		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1097 		if (bytenr == 0)
1098 			continue;
1099 		if (!in_range(bytenr, rc->block_group->start,
1100 			      rc->block_group->length))
1101 			continue;
1102 
1103 		/*
1104 		 * if we are modifying block in fs tree, wait for read_folio
1105 		 * to complete and drop the extent cache
1106 		 */
1107 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1108 			if (first) {
1109 				inode = find_next_inode(root, key.objectid);
1110 				first = 0;
1111 			} else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) {
1112 				btrfs_add_delayed_iput(inode);
1113 				inode = find_next_inode(root, key.objectid);
1114 			}
1115 			if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) {
1116 				end = key.offset +
1117 				      btrfs_file_extent_num_bytes(leaf, fi);
1118 				WARN_ON(!IS_ALIGNED(key.offset,
1119 						    fs_info->sectorsize));
1120 				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1121 				end--;
1122 				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1123 						      key.offset, end);
1124 				if (!ret)
1125 					continue;
1126 
1127 				btrfs_drop_extent_map_range(BTRFS_I(inode),
1128 							    key.offset, end, true);
1129 				unlock_extent(&BTRFS_I(inode)->io_tree,
1130 					      key.offset, end, NULL);
1131 			}
1132 		}
1133 
1134 		ret = get_new_location(rc->data_inode, &new_bytenr,
1135 				       bytenr, num_bytes);
1136 		if (ret) {
1137 			/*
1138 			 * Don't have to abort since we've not changed anything
1139 			 * in the file extent yet.
1140 			 */
1141 			break;
1142 		}
1143 
1144 		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1145 		dirty = 1;
1146 
1147 		key.offset -= btrfs_file_extent_offset(leaf, fi);
1148 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1149 				       num_bytes, parent);
1150 		btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1151 				    key.objectid, key.offset,
1152 				    root->root_key.objectid, false);
1153 		ret = btrfs_inc_extent_ref(trans, &ref);
1154 		if (ret) {
1155 			btrfs_abort_transaction(trans, ret);
1156 			break;
1157 		}
1158 
1159 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1160 				       num_bytes, parent);
1161 		btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1162 				    key.objectid, key.offset,
1163 				    root->root_key.objectid, false);
1164 		ret = btrfs_free_extent(trans, &ref);
1165 		if (ret) {
1166 			btrfs_abort_transaction(trans, ret);
1167 			break;
1168 		}
1169 	}
1170 	if (dirty)
1171 		btrfs_mark_buffer_dirty(leaf);
1172 	if (inode)
1173 		btrfs_add_delayed_iput(inode);
1174 	return ret;
1175 }
1176 
1177 static noinline_for_stack
1178 int memcmp_node_keys(struct extent_buffer *eb, int slot,
1179 		     struct btrfs_path *path, int level)
1180 {
1181 	struct btrfs_disk_key key1;
1182 	struct btrfs_disk_key key2;
1183 	btrfs_node_key(eb, &key1, slot);
1184 	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1185 	return memcmp(&key1, &key2, sizeof(key1));
1186 }
1187 
1188 /*
1189  * try to replace tree blocks in fs tree with the new blocks
1190  * in reloc tree. tree blocks haven't been modified since the
1191  * reloc tree was create can be replaced.
1192  *
1193  * if a block was replaced, level of the block + 1 is returned.
1194  * if no block got replaced, 0 is returned. if there are other
1195  * errors, a negative error number is returned.
1196  */
1197 static noinline_for_stack
1198 int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
1199 		 struct btrfs_root *dest, struct btrfs_root *src,
1200 		 struct btrfs_path *path, struct btrfs_key *next_key,
1201 		 int lowest_level, int max_level)
1202 {
1203 	struct btrfs_fs_info *fs_info = dest->fs_info;
1204 	struct extent_buffer *eb;
1205 	struct extent_buffer *parent;
1206 	struct btrfs_ref ref = { 0 };
1207 	struct btrfs_key key;
1208 	u64 old_bytenr;
1209 	u64 new_bytenr;
1210 	u64 old_ptr_gen;
1211 	u64 new_ptr_gen;
1212 	u64 last_snapshot;
1213 	u32 blocksize;
1214 	int cow = 0;
1215 	int level;
1216 	int ret;
1217 	int slot;
1218 
1219 	ASSERT(src->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1220 	ASSERT(dest->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1221 
1222 	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1223 again:
1224 	slot = path->slots[lowest_level];
1225 	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1226 
1227 	eb = btrfs_lock_root_node(dest);
1228 	level = btrfs_header_level(eb);
1229 
1230 	if (level < lowest_level) {
1231 		btrfs_tree_unlock(eb);
1232 		free_extent_buffer(eb);
1233 		return 0;
1234 	}
1235 
1236 	if (cow) {
1237 		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb,
1238 				      BTRFS_NESTING_COW);
1239 		if (ret) {
1240 			btrfs_tree_unlock(eb);
1241 			free_extent_buffer(eb);
1242 			return ret;
1243 		}
1244 	}
1245 
1246 	if (next_key) {
1247 		next_key->objectid = (u64)-1;
1248 		next_key->type = (u8)-1;
1249 		next_key->offset = (u64)-1;
1250 	}
1251 
1252 	parent = eb;
1253 	while (1) {
1254 		level = btrfs_header_level(parent);
1255 		ASSERT(level >= lowest_level);
1256 
1257 		ret = btrfs_bin_search(parent, &key, &slot);
1258 		if (ret < 0)
1259 			break;
1260 		if (ret && slot > 0)
1261 			slot--;
1262 
1263 		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1264 			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1265 
1266 		old_bytenr = btrfs_node_blockptr(parent, slot);
1267 		blocksize = fs_info->nodesize;
1268 		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1269 
1270 		if (level <= max_level) {
1271 			eb = path->nodes[level];
1272 			new_bytenr = btrfs_node_blockptr(eb,
1273 							path->slots[level]);
1274 			new_ptr_gen = btrfs_node_ptr_generation(eb,
1275 							path->slots[level]);
1276 		} else {
1277 			new_bytenr = 0;
1278 			new_ptr_gen = 0;
1279 		}
1280 
1281 		if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1282 			ret = level;
1283 			break;
1284 		}
1285 
1286 		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1287 		    memcmp_node_keys(parent, slot, path, level)) {
1288 			if (level <= lowest_level) {
1289 				ret = 0;
1290 				break;
1291 			}
1292 
1293 			eb = btrfs_read_node_slot(parent, slot);
1294 			if (IS_ERR(eb)) {
1295 				ret = PTR_ERR(eb);
1296 				break;
1297 			}
1298 			btrfs_tree_lock(eb);
1299 			if (cow) {
1300 				ret = btrfs_cow_block(trans, dest, eb, parent,
1301 						      slot, &eb,
1302 						      BTRFS_NESTING_COW);
1303 				if (ret) {
1304 					btrfs_tree_unlock(eb);
1305 					free_extent_buffer(eb);
1306 					break;
1307 				}
1308 			}
1309 
1310 			btrfs_tree_unlock(parent);
1311 			free_extent_buffer(parent);
1312 
1313 			parent = eb;
1314 			continue;
1315 		}
1316 
1317 		if (!cow) {
1318 			btrfs_tree_unlock(parent);
1319 			free_extent_buffer(parent);
1320 			cow = 1;
1321 			goto again;
1322 		}
1323 
1324 		btrfs_node_key_to_cpu(path->nodes[level], &key,
1325 				      path->slots[level]);
1326 		btrfs_release_path(path);
1327 
1328 		path->lowest_level = level;
1329 		set_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state);
1330 		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1331 		clear_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state);
1332 		path->lowest_level = 0;
1333 		if (ret) {
1334 			if (ret > 0)
1335 				ret = -ENOENT;
1336 			break;
1337 		}
1338 
1339 		/*
1340 		 * Info qgroup to trace both subtrees.
1341 		 *
1342 		 * We must trace both trees.
1343 		 * 1) Tree reloc subtree
1344 		 *    If not traced, we will leak data numbers
1345 		 * 2) Fs subtree
1346 		 *    If not traced, we will double count old data
1347 		 *
1348 		 * We don't scan the subtree right now, but only record
1349 		 * the swapped tree blocks.
1350 		 * The real subtree rescan is delayed until we have new
1351 		 * CoW on the subtree root node before transaction commit.
1352 		 */
1353 		ret = btrfs_qgroup_add_swapped_blocks(trans, dest,
1354 				rc->block_group, parent, slot,
1355 				path->nodes[level], path->slots[level],
1356 				last_snapshot);
1357 		if (ret < 0)
1358 			break;
1359 		/*
1360 		 * swap blocks in fs tree and reloc tree.
1361 		 */
1362 		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1363 		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1364 		btrfs_mark_buffer_dirty(parent);
1365 
1366 		btrfs_set_node_blockptr(path->nodes[level],
1367 					path->slots[level], old_bytenr);
1368 		btrfs_set_node_ptr_generation(path->nodes[level],
1369 					      path->slots[level], old_ptr_gen);
1370 		btrfs_mark_buffer_dirty(path->nodes[level]);
1371 
1372 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr,
1373 				       blocksize, path->nodes[level]->start);
1374 		btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid,
1375 				    0, true);
1376 		ret = btrfs_inc_extent_ref(trans, &ref);
1377 		if (ret) {
1378 			btrfs_abort_transaction(trans, ret);
1379 			break;
1380 		}
1381 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1382 				       blocksize, 0);
1383 		btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid, 0,
1384 				    true);
1385 		ret = btrfs_inc_extent_ref(trans, &ref);
1386 		if (ret) {
1387 			btrfs_abort_transaction(trans, ret);
1388 			break;
1389 		}
1390 
1391 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr,
1392 				       blocksize, path->nodes[level]->start);
1393 		btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid,
1394 				    0, true);
1395 		ret = btrfs_free_extent(trans, &ref);
1396 		if (ret) {
1397 			btrfs_abort_transaction(trans, ret);
1398 			break;
1399 		}
1400 
1401 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr,
1402 				       blocksize, 0);
1403 		btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid,
1404 				    0, true);
1405 		ret = btrfs_free_extent(trans, &ref);
1406 		if (ret) {
1407 			btrfs_abort_transaction(trans, ret);
1408 			break;
1409 		}
1410 
1411 		btrfs_unlock_up_safe(path, 0);
1412 
1413 		ret = level;
1414 		break;
1415 	}
1416 	btrfs_tree_unlock(parent);
1417 	free_extent_buffer(parent);
1418 	return ret;
1419 }
1420 
1421 /*
1422  * helper to find next relocated block in reloc tree
1423  */
1424 static noinline_for_stack
1425 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1426 		       int *level)
1427 {
1428 	struct extent_buffer *eb;
1429 	int i;
1430 	u64 last_snapshot;
1431 	u32 nritems;
1432 
1433 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1434 
1435 	for (i = 0; i < *level; i++) {
1436 		free_extent_buffer(path->nodes[i]);
1437 		path->nodes[i] = NULL;
1438 	}
1439 
1440 	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1441 		eb = path->nodes[i];
1442 		nritems = btrfs_header_nritems(eb);
1443 		while (path->slots[i] + 1 < nritems) {
1444 			path->slots[i]++;
1445 			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1446 			    last_snapshot)
1447 				continue;
1448 
1449 			*level = i;
1450 			return 0;
1451 		}
1452 		free_extent_buffer(path->nodes[i]);
1453 		path->nodes[i] = NULL;
1454 	}
1455 	return 1;
1456 }
1457 
1458 /*
1459  * walk down reloc tree to find relocated block of lowest level
1460  */
1461 static noinline_for_stack
1462 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1463 			 int *level)
1464 {
1465 	struct extent_buffer *eb = NULL;
1466 	int i;
1467 	u64 ptr_gen = 0;
1468 	u64 last_snapshot;
1469 	u32 nritems;
1470 
1471 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1472 
1473 	for (i = *level; i > 0; i--) {
1474 		eb = path->nodes[i];
1475 		nritems = btrfs_header_nritems(eb);
1476 		while (path->slots[i] < nritems) {
1477 			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1478 			if (ptr_gen > last_snapshot)
1479 				break;
1480 			path->slots[i]++;
1481 		}
1482 		if (path->slots[i] >= nritems) {
1483 			if (i == *level)
1484 				break;
1485 			*level = i + 1;
1486 			return 0;
1487 		}
1488 		if (i == 1) {
1489 			*level = i;
1490 			return 0;
1491 		}
1492 
1493 		eb = btrfs_read_node_slot(eb, path->slots[i]);
1494 		if (IS_ERR(eb))
1495 			return PTR_ERR(eb);
1496 		BUG_ON(btrfs_header_level(eb) != i - 1);
1497 		path->nodes[i - 1] = eb;
1498 		path->slots[i - 1] = 0;
1499 	}
1500 	return 1;
1501 }
1502 
1503 /*
1504  * invalidate extent cache for file extents whose key in range of
1505  * [min_key, max_key)
1506  */
1507 static int invalidate_extent_cache(struct btrfs_root *root,
1508 				   struct btrfs_key *min_key,
1509 				   struct btrfs_key *max_key)
1510 {
1511 	struct btrfs_fs_info *fs_info = root->fs_info;
1512 	struct inode *inode = NULL;
1513 	u64 objectid;
1514 	u64 start, end;
1515 	u64 ino;
1516 
1517 	objectid = min_key->objectid;
1518 	while (1) {
1519 		cond_resched();
1520 		iput(inode);
1521 
1522 		if (objectid > max_key->objectid)
1523 			break;
1524 
1525 		inode = find_next_inode(root, objectid);
1526 		if (!inode)
1527 			break;
1528 		ino = btrfs_ino(BTRFS_I(inode));
1529 
1530 		if (ino > max_key->objectid) {
1531 			iput(inode);
1532 			break;
1533 		}
1534 
1535 		objectid = ino + 1;
1536 		if (!S_ISREG(inode->i_mode))
1537 			continue;
1538 
1539 		if (unlikely(min_key->objectid == ino)) {
1540 			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1541 				continue;
1542 			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1543 				start = 0;
1544 			else {
1545 				start = min_key->offset;
1546 				WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
1547 			}
1548 		} else {
1549 			start = 0;
1550 		}
1551 
1552 		if (unlikely(max_key->objectid == ino)) {
1553 			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1554 				continue;
1555 			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1556 				end = (u64)-1;
1557 			} else {
1558 				if (max_key->offset == 0)
1559 					continue;
1560 				end = max_key->offset;
1561 				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1562 				end--;
1563 			}
1564 		} else {
1565 			end = (u64)-1;
1566 		}
1567 
1568 		/* the lock_extent waits for read_folio to complete */
1569 		lock_extent(&BTRFS_I(inode)->io_tree, start, end, NULL);
1570 		btrfs_drop_extent_map_range(BTRFS_I(inode), start, end, true);
1571 		unlock_extent(&BTRFS_I(inode)->io_tree, start, end, NULL);
1572 	}
1573 	return 0;
1574 }
1575 
1576 static int find_next_key(struct btrfs_path *path, int level,
1577 			 struct btrfs_key *key)
1578 
1579 {
1580 	while (level < BTRFS_MAX_LEVEL) {
1581 		if (!path->nodes[level])
1582 			break;
1583 		if (path->slots[level] + 1 <
1584 		    btrfs_header_nritems(path->nodes[level])) {
1585 			btrfs_node_key_to_cpu(path->nodes[level], key,
1586 					      path->slots[level] + 1);
1587 			return 0;
1588 		}
1589 		level++;
1590 	}
1591 	return 1;
1592 }
1593 
1594 /*
1595  * Insert current subvolume into reloc_control::dirty_subvol_roots
1596  */
1597 static int insert_dirty_subvol(struct btrfs_trans_handle *trans,
1598 			       struct reloc_control *rc,
1599 			       struct btrfs_root *root)
1600 {
1601 	struct btrfs_root *reloc_root = root->reloc_root;
1602 	struct btrfs_root_item *reloc_root_item;
1603 	int ret;
1604 
1605 	/* @root must be a subvolume tree root with a valid reloc tree */
1606 	ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1607 	ASSERT(reloc_root);
1608 
1609 	reloc_root_item = &reloc_root->root_item;
1610 	memset(&reloc_root_item->drop_progress, 0,
1611 		sizeof(reloc_root_item->drop_progress));
1612 	btrfs_set_root_drop_level(reloc_root_item, 0);
1613 	btrfs_set_root_refs(reloc_root_item, 0);
1614 	ret = btrfs_update_reloc_root(trans, root);
1615 	if (ret)
1616 		return ret;
1617 
1618 	if (list_empty(&root->reloc_dirty_list)) {
1619 		btrfs_grab_root(root);
1620 		list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots);
1621 	}
1622 
1623 	return 0;
1624 }
1625 
1626 static int clean_dirty_subvols(struct reloc_control *rc)
1627 {
1628 	struct btrfs_root *root;
1629 	struct btrfs_root *next;
1630 	int ret = 0;
1631 	int ret2;
1632 
1633 	list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots,
1634 				 reloc_dirty_list) {
1635 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1636 			/* Merged subvolume, cleanup its reloc root */
1637 			struct btrfs_root *reloc_root = root->reloc_root;
1638 
1639 			list_del_init(&root->reloc_dirty_list);
1640 			root->reloc_root = NULL;
1641 			/*
1642 			 * Need barrier to ensure clear_bit() only happens after
1643 			 * root->reloc_root = NULL. Pairs with have_reloc_root.
1644 			 */
1645 			smp_wmb();
1646 			clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
1647 			if (reloc_root) {
1648 				/*
1649 				 * btrfs_drop_snapshot drops our ref we hold for
1650 				 * ->reloc_root.  If it fails however we must
1651 				 * drop the ref ourselves.
1652 				 */
1653 				ret2 = btrfs_drop_snapshot(reloc_root, 0, 1);
1654 				if (ret2 < 0) {
1655 					btrfs_put_root(reloc_root);
1656 					if (!ret)
1657 						ret = ret2;
1658 				}
1659 			}
1660 			btrfs_put_root(root);
1661 		} else {
1662 			/* Orphan reloc tree, just clean it up */
1663 			ret2 = btrfs_drop_snapshot(root, 0, 1);
1664 			if (ret2 < 0) {
1665 				btrfs_put_root(root);
1666 				if (!ret)
1667 					ret = ret2;
1668 			}
1669 		}
1670 	}
1671 	return ret;
1672 }
1673 
1674 /*
1675  * merge the relocated tree blocks in reloc tree with corresponding
1676  * fs tree.
1677  */
1678 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
1679 					       struct btrfs_root *root)
1680 {
1681 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1682 	struct btrfs_key key;
1683 	struct btrfs_key next_key;
1684 	struct btrfs_trans_handle *trans = NULL;
1685 	struct btrfs_root *reloc_root;
1686 	struct btrfs_root_item *root_item;
1687 	struct btrfs_path *path;
1688 	struct extent_buffer *leaf;
1689 	int reserve_level;
1690 	int level;
1691 	int max_level;
1692 	int replaced = 0;
1693 	int ret = 0;
1694 	u32 min_reserved;
1695 
1696 	path = btrfs_alloc_path();
1697 	if (!path)
1698 		return -ENOMEM;
1699 	path->reada = READA_FORWARD;
1700 
1701 	reloc_root = root->reloc_root;
1702 	root_item = &reloc_root->root_item;
1703 
1704 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
1705 		level = btrfs_root_level(root_item);
1706 		atomic_inc(&reloc_root->node->refs);
1707 		path->nodes[level] = reloc_root->node;
1708 		path->slots[level] = 0;
1709 	} else {
1710 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
1711 
1712 		level = btrfs_root_drop_level(root_item);
1713 		BUG_ON(level == 0);
1714 		path->lowest_level = level;
1715 		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
1716 		path->lowest_level = 0;
1717 		if (ret < 0) {
1718 			btrfs_free_path(path);
1719 			return ret;
1720 		}
1721 
1722 		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
1723 				      path->slots[level]);
1724 		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
1725 
1726 		btrfs_unlock_up_safe(path, 0);
1727 	}
1728 
1729 	/*
1730 	 * In merge_reloc_root(), we modify the upper level pointer to swap the
1731 	 * tree blocks between reloc tree and subvolume tree.  Thus for tree
1732 	 * block COW, we COW at most from level 1 to root level for each tree.
1733 	 *
1734 	 * Thus the needed metadata size is at most root_level * nodesize,
1735 	 * and * 2 since we have two trees to COW.
1736 	 */
1737 	reserve_level = max_t(int, 1, btrfs_root_level(root_item));
1738 	min_reserved = fs_info->nodesize * reserve_level * 2;
1739 	memset(&next_key, 0, sizeof(next_key));
1740 
1741 	while (1) {
1742 		ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv,
1743 					     min_reserved,
1744 					     BTRFS_RESERVE_FLUSH_LIMIT);
1745 		if (ret)
1746 			goto out;
1747 		trans = btrfs_start_transaction(root, 0);
1748 		if (IS_ERR(trans)) {
1749 			ret = PTR_ERR(trans);
1750 			trans = NULL;
1751 			goto out;
1752 		}
1753 
1754 		/*
1755 		 * At this point we no longer have a reloc_control, so we can't
1756 		 * depend on btrfs_init_reloc_root to update our last_trans.
1757 		 *
1758 		 * But that's ok, we started the trans handle on our
1759 		 * corresponding fs_root, which means it's been added to the
1760 		 * dirty list.  At commit time we'll still call
1761 		 * btrfs_update_reloc_root() and update our root item
1762 		 * appropriately.
1763 		 */
1764 		reloc_root->last_trans = trans->transid;
1765 		trans->block_rsv = rc->block_rsv;
1766 
1767 		replaced = 0;
1768 		max_level = level;
1769 
1770 		ret = walk_down_reloc_tree(reloc_root, path, &level);
1771 		if (ret < 0)
1772 			goto out;
1773 		if (ret > 0)
1774 			break;
1775 
1776 		if (!find_next_key(path, level, &key) &&
1777 		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
1778 			ret = 0;
1779 		} else {
1780 			ret = replace_path(trans, rc, root, reloc_root, path,
1781 					   &next_key, level, max_level);
1782 		}
1783 		if (ret < 0)
1784 			goto out;
1785 		if (ret > 0) {
1786 			level = ret;
1787 			btrfs_node_key_to_cpu(path->nodes[level], &key,
1788 					      path->slots[level]);
1789 			replaced = 1;
1790 		}
1791 
1792 		ret = walk_up_reloc_tree(reloc_root, path, &level);
1793 		if (ret > 0)
1794 			break;
1795 
1796 		BUG_ON(level == 0);
1797 		/*
1798 		 * save the merging progress in the drop_progress.
1799 		 * this is OK since root refs == 1 in this case.
1800 		 */
1801 		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
1802 			       path->slots[level]);
1803 		btrfs_set_root_drop_level(root_item, level);
1804 
1805 		btrfs_end_transaction_throttle(trans);
1806 		trans = NULL;
1807 
1808 		btrfs_btree_balance_dirty(fs_info);
1809 
1810 		if (replaced && rc->stage == UPDATE_DATA_PTRS)
1811 			invalidate_extent_cache(root, &key, &next_key);
1812 	}
1813 
1814 	/*
1815 	 * handle the case only one block in the fs tree need to be
1816 	 * relocated and the block is tree root.
1817 	 */
1818 	leaf = btrfs_lock_root_node(root);
1819 	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf,
1820 			      BTRFS_NESTING_COW);
1821 	btrfs_tree_unlock(leaf);
1822 	free_extent_buffer(leaf);
1823 out:
1824 	btrfs_free_path(path);
1825 
1826 	if (ret == 0) {
1827 		ret = insert_dirty_subvol(trans, rc, root);
1828 		if (ret)
1829 			btrfs_abort_transaction(trans, ret);
1830 	}
1831 
1832 	if (trans)
1833 		btrfs_end_transaction_throttle(trans);
1834 
1835 	btrfs_btree_balance_dirty(fs_info);
1836 
1837 	if (replaced && rc->stage == UPDATE_DATA_PTRS)
1838 		invalidate_extent_cache(root, &key, &next_key);
1839 
1840 	return ret;
1841 }
1842 
1843 static noinline_for_stack
1844 int prepare_to_merge(struct reloc_control *rc, int err)
1845 {
1846 	struct btrfs_root *root = rc->extent_root;
1847 	struct btrfs_fs_info *fs_info = root->fs_info;
1848 	struct btrfs_root *reloc_root;
1849 	struct btrfs_trans_handle *trans;
1850 	LIST_HEAD(reloc_roots);
1851 	u64 num_bytes = 0;
1852 	int ret;
1853 
1854 	mutex_lock(&fs_info->reloc_mutex);
1855 	rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
1856 	rc->merging_rsv_size += rc->nodes_relocated * 2;
1857 	mutex_unlock(&fs_info->reloc_mutex);
1858 
1859 again:
1860 	if (!err) {
1861 		num_bytes = rc->merging_rsv_size;
1862 		ret = btrfs_block_rsv_add(fs_info, rc->block_rsv, num_bytes,
1863 					  BTRFS_RESERVE_FLUSH_ALL);
1864 		if (ret)
1865 			err = ret;
1866 	}
1867 
1868 	trans = btrfs_join_transaction(rc->extent_root);
1869 	if (IS_ERR(trans)) {
1870 		if (!err)
1871 			btrfs_block_rsv_release(fs_info, rc->block_rsv,
1872 						num_bytes, NULL);
1873 		return PTR_ERR(trans);
1874 	}
1875 
1876 	if (!err) {
1877 		if (num_bytes != rc->merging_rsv_size) {
1878 			btrfs_end_transaction(trans);
1879 			btrfs_block_rsv_release(fs_info, rc->block_rsv,
1880 						num_bytes, NULL);
1881 			goto again;
1882 		}
1883 	}
1884 
1885 	rc->merge_reloc_tree = 1;
1886 
1887 	while (!list_empty(&rc->reloc_roots)) {
1888 		reloc_root = list_entry(rc->reloc_roots.next,
1889 					struct btrfs_root, root_list);
1890 		list_del_init(&reloc_root->root_list);
1891 
1892 		root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1893 				false);
1894 		if (IS_ERR(root)) {
1895 			/*
1896 			 * Even if we have an error we need this reloc root
1897 			 * back on our list so we can clean up properly.
1898 			 */
1899 			list_add(&reloc_root->root_list, &reloc_roots);
1900 			btrfs_abort_transaction(trans, (int)PTR_ERR(root));
1901 			if (!err)
1902 				err = PTR_ERR(root);
1903 			break;
1904 		}
1905 		ASSERT(root->reloc_root == reloc_root);
1906 
1907 		/*
1908 		 * set reference count to 1, so btrfs_recover_relocation
1909 		 * knows it should resumes merging
1910 		 */
1911 		if (!err)
1912 			btrfs_set_root_refs(&reloc_root->root_item, 1);
1913 		ret = btrfs_update_reloc_root(trans, root);
1914 
1915 		/*
1916 		 * Even if we have an error we need this reloc root back on our
1917 		 * list so we can clean up properly.
1918 		 */
1919 		list_add(&reloc_root->root_list, &reloc_roots);
1920 		btrfs_put_root(root);
1921 
1922 		if (ret) {
1923 			btrfs_abort_transaction(trans, ret);
1924 			if (!err)
1925 				err = ret;
1926 			break;
1927 		}
1928 	}
1929 
1930 	list_splice(&reloc_roots, &rc->reloc_roots);
1931 
1932 	if (!err)
1933 		err = btrfs_commit_transaction(trans);
1934 	else
1935 		btrfs_end_transaction(trans);
1936 	return err;
1937 }
1938 
1939 static noinline_for_stack
1940 void free_reloc_roots(struct list_head *list)
1941 {
1942 	struct btrfs_root *reloc_root, *tmp;
1943 
1944 	list_for_each_entry_safe(reloc_root, tmp, list, root_list)
1945 		__del_reloc_root(reloc_root);
1946 }
1947 
1948 static noinline_for_stack
1949 void merge_reloc_roots(struct reloc_control *rc)
1950 {
1951 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1952 	struct btrfs_root *root;
1953 	struct btrfs_root *reloc_root;
1954 	LIST_HEAD(reloc_roots);
1955 	int found = 0;
1956 	int ret = 0;
1957 again:
1958 	root = rc->extent_root;
1959 
1960 	/*
1961 	 * this serializes us with btrfs_record_root_in_transaction,
1962 	 * we have to make sure nobody is in the middle of
1963 	 * adding their roots to the list while we are
1964 	 * doing this splice
1965 	 */
1966 	mutex_lock(&fs_info->reloc_mutex);
1967 	list_splice_init(&rc->reloc_roots, &reloc_roots);
1968 	mutex_unlock(&fs_info->reloc_mutex);
1969 
1970 	while (!list_empty(&reloc_roots)) {
1971 		found = 1;
1972 		reloc_root = list_entry(reloc_roots.next,
1973 					struct btrfs_root, root_list);
1974 
1975 		root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1976 					 false);
1977 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
1978 			if (IS_ERR(root)) {
1979 				/*
1980 				 * For recovery we read the fs roots on mount,
1981 				 * and if we didn't find the root then we marked
1982 				 * the reloc root as a garbage root.  For normal
1983 				 * relocation obviously the root should exist in
1984 				 * memory.  However there's no reason we can't
1985 				 * handle the error properly here just in case.
1986 				 */
1987 				ASSERT(0);
1988 				ret = PTR_ERR(root);
1989 				goto out;
1990 			}
1991 			if (root->reloc_root != reloc_root) {
1992 				/*
1993 				 * This is actually impossible without something
1994 				 * going really wrong (like weird race condition
1995 				 * or cosmic rays).
1996 				 */
1997 				ASSERT(0);
1998 				ret = -EINVAL;
1999 				goto out;
2000 			}
2001 			ret = merge_reloc_root(rc, root);
2002 			btrfs_put_root(root);
2003 			if (ret) {
2004 				if (list_empty(&reloc_root->root_list))
2005 					list_add_tail(&reloc_root->root_list,
2006 						      &reloc_roots);
2007 				goto out;
2008 			}
2009 		} else {
2010 			if (!IS_ERR(root)) {
2011 				if (root->reloc_root == reloc_root) {
2012 					root->reloc_root = NULL;
2013 					btrfs_put_root(reloc_root);
2014 				}
2015 				clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE,
2016 					  &root->state);
2017 				btrfs_put_root(root);
2018 			}
2019 
2020 			list_del_init(&reloc_root->root_list);
2021 			/* Don't forget to queue this reloc root for cleanup */
2022 			list_add_tail(&reloc_root->reloc_dirty_list,
2023 				      &rc->dirty_subvol_roots);
2024 		}
2025 	}
2026 
2027 	if (found) {
2028 		found = 0;
2029 		goto again;
2030 	}
2031 out:
2032 	if (ret) {
2033 		btrfs_handle_fs_error(fs_info, ret, NULL);
2034 		free_reloc_roots(&reloc_roots);
2035 
2036 		/* new reloc root may be added */
2037 		mutex_lock(&fs_info->reloc_mutex);
2038 		list_splice_init(&rc->reloc_roots, &reloc_roots);
2039 		mutex_unlock(&fs_info->reloc_mutex);
2040 		free_reloc_roots(&reloc_roots);
2041 	}
2042 
2043 	/*
2044 	 * We used to have
2045 	 *
2046 	 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2047 	 *
2048 	 * here, but it's wrong.  If we fail to start the transaction in
2049 	 * prepare_to_merge() we will have only 0 ref reloc roots, none of which
2050 	 * have actually been removed from the reloc_root_tree rb tree.  This is
2051 	 * fine because we're bailing here, and we hold a reference on the root
2052 	 * for the list that holds it, so these roots will be cleaned up when we
2053 	 * do the reloc_dirty_list afterwards.  Meanwhile the root->reloc_root
2054 	 * will be cleaned up on unmount.
2055 	 *
2056 	 * The remaining nodes will be cleaned up by free_reloc_control.
2057 	 */
2058 }
2059 
2060 static void free_block_list(struct rb_root *blocks)
2061 {
2062 	struct tree_block *block;
2063 	struct rb_node *rb_node;
2064 	while ((rb_node = rb_first(blocks))) {
2065 		block = rb_entry(rb_node, struct tree_block, rb_node);
2066 		rb_erase(rb_node, blocks);
2067 		kfree(block);
2068 	}
2069 }
2070 
2071 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2072 				      struct btrfs_root *reloc_root)
2073 {
2074 	struct btrfs_fs_info *fs_info = reloc_root->fs_info;
2075 	struct btrfs_root *root;
2076 	int ret;
2077 
2078 	if (reloc_root->last_trans == trans->transid)
2079 		return 0;
2080 
2081 	root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false);
2082 
2083 	/*
2084 	 * This should succeed, since we can't have a reloc root without having
2085 	 * already looked up the actual root and created the reloc root for this
2086 	 * root.
2087 	 *
2088 	 * However if there's some sort of corruption where we have a ref to a
2089 	 * reloc root without a corresponding root this could return ENOENT.
2090 	 */
2091 	if (IS_ERR(root)) {
2092 		ASSERT(0);
2093 		return PTR_ERR(root);
2094 	}
2095 	if (root->reloc_root != reloc_root) {
2096 		ASSERT(0);
2097 		btrfs_err(fs_info,
2098 			  "root %llu has two reloc roots associated with it",
2099 			  reloc_root->root_key.offset);
2100 		btrfs_put_root(root);
2101 		return -EUCLEAN;
2102 	}
2103 	ret = btrfs_record_root_in_trans(trans, root);
2104 	btrfs_put_root(root);
2105 
2106 	return ret;
2107 }
2108 
2109 static noinline_for_stack
2110 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2111 				     struct reloc_control *rc,
2112 				     struct btrfs_backref_node *node,
2113 				     struct btrfs_backref_edge *edges[])
2114 {
2115 	struct btrfs_backref_node *next;
2116 	struct btrfs_root *root;
2117 	int index = 0;
2118 	int ret;
2119 
2120 	next = node;
2121 	while (1) {
2122 		cond_resched();
2123 		next = walk_up_backref(next, edges, &index);
2124 		root = next->root;
2125 
2126 		/*
2127 		 * If there is no root, then our references for this block are
2128 		 * incomplete, as we should be able to walk all the way up to a
2129 		 * block that is owned by a root.
2130 		 *
2131 		 * This path is only for SHAREABLE roots, so if we come upon a
2132 		 * non-SHAREABLE root then we have backrefs that resolve
2133 		 * improperly.
2134 		 *
2135 		 * Both of these cases indicate file system corruption, or a bug
2136 		 * in the backref walking code.
2137 		 */
2138 		if (!root) {
2139 			ASSERT(0);
2140 			btrfs_err(trans->fs_info,
2141 		"bytenr %llu doesn't have a backref path ending in a root",
2142 				  node->bytenr);
2143 			return ERR_PTR(-EUCLEAN);
2144 		}
2145 		if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2146 			ASSERT(0);
2147 			btrfs_err(trans->fs_info,
2148 	"bytenr %llu has multiple refs with one ending in a non-shareable root",
2149 				  node->bytenr);
2150 			return ERR_PTR(-EUCLEAN);
2151 		}
2152 
2153 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2154 			ret = record_reloc_root_in_trans(trans, root);
2155 			if (ret)
2156 				return ERR_PTR(ret);
2157 			break;
2158 		}
2159 
2160 		ret = btrfs_record_root_in_trans(trans, root);
2161 		if (ret)
2162 			return ERR_PTR(ret);
2163 		root = root->reloc_root;
2164 
2165 		/*
2166 		 * We could have raced with another thread which failed, so
2167 		 * root->reloc_root may not be set, return ENOENT in this case.
2168 		 */
2169 		if (!root)
2170 			return ERR_PTR(-ENOENT);
2171 
2172 		if (next->new_bytenr != root->node->start) {
2173 			/*
2174 			 * We just created the reloc root, so we shouldn't have
2175 			 * ->new_bytenr set and this shouldn't be in the changed
2176 			 *  list.  If it is then we have multiple roots pointing
2177 			 *  at the same bytenr which indicates corruption, or
2178 			 *  we've made a mistake in the backref walking code.
2179 			 */
2180 			ASSERT(next->new_bytenr == 0);
2181 			ASSERT(list_empty(&next->list));
2182 			if (next->new_bytenr || !list_empty(&next->list)) {
2183 				btrfs_err(trans->fs_info,
2184 	"bytenr %llu possibly has multiple roots pointing at the same bytenr %llu",
2185 					  node->bytenr, next->bytenr);
2186 				return ERR_PTR(-EUCLEAN);
2187 			}
2188 
2189 			next->new_bytenr = root->node->start;
2190 			btrfs_put_root(next->root);
2191 			next->root = btrfs_grab_root(root);
2192 			ASSERT(next->root);
2193 			list_add_tail(&next->list,
2194 				      &rc->backref_cache.changed);
2195 			mark_block_processed(rc, next);
2196 			break;
2197 		}
2198 
2199 		WARN_ON(1);
2200 		root = NULL;
2201 		next = walk_down_backref(edges, &index);
2202 		if (!next || next->level <= node->level)
2203 			break;
2204 	}
2205 	if (!root) {
2206 		/*
2207 		 * This can happen if there's fs corruption or if there's a bug
2208 		 * in the backref lookup code.
2209 		 */
2210 		ASSERT(0);
2211 		return ERR_PTR(-ENOENT);
2212 	}
2213 
2214 	next = node;
2215 	/* setup backref node path for btrfs_reloc_cow_block */
2216 	while (1) {
2217 		rc->backref_cache.path[next->level] = next;
2218 		if (--index < 0)
2219 			break;
2220 		next = edges[index]->node[UPPER];
2221 	}
2222 	return root;
2223 }
2224 
2225 /*
2226  * Select a tree root for relocation.
2227  *
2228  * Return NULL if the block is not shareable. We should use do_relocation() in
2229  * this case.
2230  *
2231  * Return a tree root pointer if the block is shareable.
2232  * Return -ENOENT if the block is root of reloc tree.
2233  */
2234 static noinline_for_stack
2235 struct btrfs_root *select_one_root(struct btrfs_backref_node *node)
2236 {
2237 	struct btrfs_backref_node *next;
2238 	struct btrfs_root *root;
2239 	struct btrfs_root *fs_root = NULL;
2240 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2241 	int index = 0;
2242 
2243 	next = node;
2244 	while (1) {
2245 		cond_resched();
2246 		next = walk_up_backref(next, edges, &index);
2247 		root = next->root;
2248 
2249 		/*
2250 		 * This can occur if we have incomplete extent refs leading all
2251 		 * the way up a particular path, in this case return -EUCLEAN.
2252 		 */
2253 		if (!root)
2254 			return ERR_PTR(-EUCLEAN);
2255 
2256 		/* No other choice for non-shareable tree */
2257 		if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2258 			return root;
2259 
2260 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2261 			fs_root = root;
2262 
2263 		if (next != node)
2264 			return NULL;
2265 
2266 		next = walk_down_backref(edges, &index);
2267 		if (!next || next->level <= node->level)
2268 			break;
2269 	}
2270 
2271 	if (!fs_root)
2272 		return ERR_PTR(-ENOENT);
2273 	return fs_root;
2274 }
2275 
2276 static noinline_for_stack
2277 u64 calcu_metadata_size(struct reloc_control *rc,
2278 			struct btrfs_backref_node *node, int reserve)
2279 {
2280 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2281 	struct btrfs_backref_node *next = node;
2282 	struct btrfs_backref_edge *edge;
2283 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2284 	u64 num_bytes = 0;
2285 	int index = 0;
2286 
2287 	BUG_ON(reserve && node->processed);
2288 
2289 	while (next) {
2290 		cond_resched();
2291 		while (1) {
2292 			if (next->processed && (reserve || next != node))
2293 				break;
2294 
2295 			num_bytes += fs_info->nodesize;
2296 
2297 			if (list_empty(&next->upper))
2298 				break;
2299 
2300 			edge = list_entry(next->upper.next,
2301 					struct btrfs_backref_edge, list[LOWER]);
2302 			edges[index++] = edge;
2303 			next = edge->node[UPPER];
2304 		}
2305 		next = walk_down_backref(edges, &index);
2306 	}
2307 	return num_bytes;
2308 }
2309 
2310 static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2311 				  struct reloc_control *rc,
2312 				  struct btrfs_backref_node *node)
2313 {
2314 	struct btrfs_root *root = rc->extent_root;
2315 	struct btrfs_fs_info *fs_info = root->fs_info;
2316 	u64 num_bytes;
2317 	int ret;
2318 	u64 tmp;
2319 
2320 	num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2321 
2322 	trans->block_rsv = rc->block_rsv;
2323 	rc->reserved_bytes += num_bytes;
2324 
2325 	/*
2326 	 * We are under a transaction here so we can only do limited flushing.
2327 	 * If we get an enospc just kick back -EAGAIN so we know to drop the
2328 	 * transaction and try to refill when we can flush all the things.
2329 	 */
2330 	ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv, num_bytes,
2331 				     BTRFS_RESERVE_FLUSH_LIMIT);
2332 	if (ret) {
2333 		tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2334 		while (tmp <= rc->reserved_bytes)
2335 			tmp <<= 1;
2336 		/*
2337 		 * only one thread can access block_rsv at this point,
2338 		 * so we don't need hold lock to protect block_rsv.
2339 		 * we expand more reservation size here to allow enough
2340 		 * space for relocation and we will return earlier in
2341 		 * enospc case.
2342 		 */
2343 		rc->block_rsv->size = tmp + fs_info->nodesize *
2344 				      RELOCATION_RESERVED_NODES;
2345 		return -EAGAIN;
2346 	}
2347 
2348 	return 0;
2349 }
2350 
2351 /*
2352  * relocate a block tree, and then update pointers in upper level
2353  * blocks that reference the block to point to the new location.
2354  *
2355  * if called by link_to_upper, the block has already been relocated.
2356  * in that case this function just updates pointers.
2357  */
2358 static int do_relocation(struct btrfs_trans_handle *trans,
2359 			 struct reloc_control *rc,
2360 			 struct btrfs_backref_node *node,
2361 			 struct btrfs_key *key,
2362 			 struct btrfs_path *path, int lowest)
2363 {
2364 	struct btrfs_backref_node *upper;
2365 	struct btrfs_backref_edge *edge;
2366 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2367 	struct btrfs_root *root;
2368 	struct extent_buffer *eb;
2369 	u32 blocksize;
2370 	u64 bytenr;
2371 	int slot;
2372 	int ret = 0;
2373 
2374 	/*
2375 	 * If we are lowest then this is the first time we're processing this
2376 	 * block, and thus shouldn't have an eb associated with it yet.
2377 	 */
2378 	ASSERT(!lowest || !node->eb);
2379 
2380 	path->lowest_level = node->level + 1;
2381 	rc->backref_cache.path[node->level] = node;
2382 	list_for_each_entry(edge, &node->upper, list[LOWER]) {
2383 		struct btrfs_ref ref = { 0 };
2384 
2385 		cond_resched();
2386 
2387 		upper = edge->node[UPPER];
2388 		root = select_reloc_root(trans, rc, upper, edges);
2389 		if (IS_ERR(root)) {
2390 			ret = PTR_ERR(root);
2391 			goto next;
2392 		}
2393 
2394 		if (upper->eb && !upper->locked) {
2395 			if (!lowest) {
2396 				ret = btrfs_bin_search(upper->eb, key, &slot);
2397 				if (ret < 0)
2398 					goto next;
2399 				BUG_ON(ret);
2400 				bytenr = btrfs_node_blockptr(upper->eb, slot);
2401 				if (node->eb->start == bytenr)
2402 					goto next;
2403 			}
2404 			btrfs_backref_drop_node_buffer(upper);
2405 		}
2406 
2407 		if (!upper->eb) {
2408 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2409 			if (ret) {
2410 				if (ret > 0)
2411 					ret = -ENOENT;
2412 
2413 				btrfs_release_path(path);
2414 				break;
2415 			}
2416 
2417 			if (!upper->eb) {
2418 				upper->eb = path->nodes[upper->level];
2419 				path->nodes[upper->level] = NULL;
2420 			} else {
2421 				BUG_ON(upper->eb != path->nodes[upper->level]);
2422 			}
2423 
2424 			upper->locked = 1;
2425 			path->locks[upper->level] = 0;
2426 
2427 			slot = path->slots[upper->level];
2428 			btrfs_release_path(path);
2429 		} else {
2430 			ret = btrfs_bin_search(upper->eb, key, &slot);
2431 			if (ret < 0)
2432 				goto next;
2433 			BUG_ON(ret);
2434 		}
2435 
2436 		bytenr = btrfs_node_blockptr(upper->eb, slot);
2437 		if (lowest) {
2438 			if (bytenr != node->bytenr) {
2439 				btrfs_err(root->fs_info,
2440 		"lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2441 					  bytenr, node->bytenr, slot,
2442 					  upper->eb->start);
2443 				ret = -EIO;
2444 				goto next;
2445 			}
2446 		} else {
2447 			if (node->eb->start == bytenr)
2448 				goto next;
2449 		}
2450 
2451 		blocksize = root->fs_info->nodesize;
2452 		eb = btrfs_read_node_slot(upper->eb, slot);
2453 		if (IS_ERR(eb)) {
2454 			ret = PTR_ERR(eb);
2455 			goto next;
2456 		}
2457 		btrfs_tree_lock(eb);
2458 
2459 		if (!node->eb) {
2460 			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2461 					      slot, &eb, BTRFS_NESTING_COW);
2462 			btrfs_tree_unlock(eb);
2463 			free_extent_buffer(eb);
2464 			if (ret < 0)
2465 				goto next;
2466 			/*
2467 			 * We've just COWed this block, it should have updated
2468 			 * the correct backref node entry.
2469 			 */
2470 			ASSERT(node->eb == eb);
2471 		} else {
2472 			btrfs_set_node_blockptr(upper->eb, slot,
2473 						node->eb->start);
2474 			btrfs_set_node_ptr_generation(upper->eb, slot,
2475 						      trans->transid);
2476 			btrfs_mark_buffer_dirty(upper->eb);
2477 
2478 			btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2479 					       node->eb->start, blocksize,
2480 					       upper->eb->start);
2481 			btrfs_init_tree_ref(&ref, node->level,
2482 					    btrfs_header_owner(upper->eb),
2483 					    root->root_key.objectid, false);
2484 			ret = btrfs_inc_extent_ref(trans, &ref);
2485 			if (!ret)
2486 				ret = btrfs_drop_subtree(trans, root, eb,
2487 							 upper->eb);
2488 			if (ret)
2489 				btrfs_abort_transaction(trans, ret);
2490 		}
2491 next:
2492 		if (!upper->pending)
2493 			btrfs_backref_drop_node_buffer(upper);
2494 		else
2495 			btrfs_backref_unlock_node_buffer(upper);
2496 		if (ret)
2497 			break;
2498 	}
2499 
2500 	if (!ret && node->pending) {
2501 		btrfs_backref_drop_node_buffer(node);
2502 		list_move_tail(&node->list, &rc->backref_cache.changed);
2503 		node->pending = 0;
2504 	}
2505 
2506 	path->lowest_level = 0;
2507 
2508 	/*
2509 	 * We should have allocated all of our space in the block rsv and thus
2510 	 * shouldn't ENOSPC.
2511 	 */
2512 	ASSERT(ret != -ENOSPC);
2513 	return ret;
2514 }
2515 
2516 static int link_to_upper(struct btrfs_trans_handle *trans,
2517 			 struct reloc_control *rc,
2518 			 struct btrfs_backref_node *node,
2519 			 struct btrfs_path *path)
2520 {
2521 	struct btrfs_key key;
2522 
2523 	btrfs_node_key_to_cpu(node->eb, &key, 0);
2524 	return do_relocation(trans, rc, node, &key, path, 0);
2525 }
2526 
2527 static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2528 				struct reloc_control *rc,
2529 				struct btrfs_path *path, int err)
2530 {
2531 	LIST_HEAD(list);
2532 	struct btrfs_backref_cache *cache = &rc->backref_cache;
2533 	struct btrfs_backref_node *node;
2534 	int level;
2535 	int ret;
2536 
2537 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2538 		while (!list_empty(&cache->pending[level])) {
2539 			node = list_entry(cache->pending[level].next,
2540 					  struct btrfs_backref_node, list);
2541 			list_move_tail(&node->list, &list);
2542 			BUG_ON(!node->pending);
2543 
2544 			if (!err) {
2545 				ret = link_to_upper(trans, rc, node, path);
2546 				if (ret < 0)
2547 					err = ret;
2548 			}
2549 		}
2550 		list_splice_init(&list, &cache->pending[level]);
2551 	}
2552 	return err;
2553 }
2554 
2555 /*
2556  * mark a block and all blocks directly/indirectly reference the block
2557  * as processed.
2558  */
2559 static void update_processed_blocks(struct reloc_control *rc,
2560 				    struct btrfs_backref_node *node)
2561 {
2562 	struct btrfs_backref_node *next = node;
2563 	struct btrfs_backref_edge *edge;
2564 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2565 	int index = 0;
2566 
2567 	while (next) {
2568 		cond_resched();
2569 		while (1) {
2570 			if (next->processed)
2571 				break;
2572 
2573 			mark_block_processed(rc, next);
2574 
2575 			if (list_empty(&next->upper))
2576 				break;
2577 
2578 			edge = list_entry(next->upper.next,
2579 					struct btrfs_backref_edge, list[LOWER]);
2580 			edges[index++] = edge;
2581 			next = edge->node[UPPER];
2582 		}
2583 		next = walk_down_backref(edges, &index);
2584 	}
2585 }
2586 
2587 static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2588 {
2589 	u32 blocksize = rc->extent_root->fs_info->nodesize;
2590 
2591 	if (test_range_bit(&rc->processed_blocks, bytenr,
2592 			   bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2593 		return 1;
2594 	return 0;
2595 }
2596 
2597 static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2598 			      struct tree_block *block)
2599 {
2600 	struct extent_buffer *eb;
2601 
2602 	eb = read_tree_block(fs_info, block->bytenr, block->owner,
2603 			     block->key.offset, block->level, NULL);
2604 	if (IS_ERR(eb))
2605 		return PTR_ERR(eb);
2606 	if (!extent_buffer_uptodate(eb)) {
2607 		free_extent_buffer(eb);
2608 		return -EIO;
2609 	}
2610 	if (block->level == 0)
2611 		btrfs_item_key_to_cpu(eb, &block->key, 0);
2612 	else
2613 		btrfs_node_key_to_cpu(eb, &block->key, 0);
2614 	free_extent_buffer(eb);
2615 	block->key_ready = 1;
2616 	return 0;
2617 }
2618 
2619 /*
2620  * helper function to relocate a tree block
2621  */
2622 static int relocate_tree_block(struct btrfs_trans_handle *trans,
2623 				struct reloc_control *rc,
2624 				struct btrfs_backref_node *node,
2625 				struct btrfs_key *key,
2626 				struct btrfs_path *path)
2627 {
2628 	struct btrfs_root *root;
2629 	int ret = 0;
2630 
2631 	if (!node)
2632 		return 0;
2633 
2634 	/*
2635 	 * If we fail here we want to drop our backref_node because we are going
2636 	 * to start over and regenerate the tree for it.
2637 	 */
2638 	ret = reserve_metadata_space(trans, rc, node);
2639 	if (ret)
2640 		goto out;
2641 
2642 	BUG_ON(node->processed);
2643 	root = select_one_root(node);
2644 	if (IS_ERR(root)) {
2645 		ret = PTR_ERR(root);
2646 
2647 		/* See explanation in select_one_root for the -EUCLEAN case. */
2648 		ASSERT(ret == -ENOENT);
2649 		if (ret == -ENOENT) {
2650 			ret = 0;
2651 			update_processed_blocks(rc, node);
2652 		}
2653 		goto out;
2654 	}
2655 
2656 	if (root) {
2657 		if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2658 			/*
2659 			 * This block was the root block of a root, and this is
2660 			 * the first time we're processing the block and thus it
2661 			 * should not have had the ->new_bytenr modified and
2662 			 * should have not been included on the changed list.
2663 			 *
2664 			 * However in the case of corruption we could have
2665 			 * multiple refs pointing to the same block improperly,
2666 			 * and thus we would trip over these checks.  ASSERT()
2667 			 * for the developer case, because it could indicate a
2668 			 * bug in the backref code, however error out for a
2669 			 * normal user in the case of corruption.
2670 			 */
2671 			ASSERT(node->new_bytenr == 0);
2672 			ASSERT(list_empty(&node->list));
2673 			if (node->new_bytenr || !list_empty(&node->list)) {
2674 				btrfs_err(root->fs_info,
2675 				  "bytenr %llu has improper references to it",
2676 					  node->bytenr);
2677 				ret = -EUCLEAN;
2678 				goto out;
2679 			}
2680 			ret = btrfs_record_root_in_trans(trans, root);
2681 			if (ret)
2682 				goto out;
2683 			/*
2684 			 * Another thread could have failed, need to check if we
2685 			 * have reloc_root actually set.
2686 			 */
2687 			if (!root->reloc_root) {
2688 				ret = -ENOENT;
2689 				goto out;
2690 			}
2691 			root = root->reloc_root;
2692 			node->new_bytenr = root->node->start;
2693 			btrfs_put_root(node->root);
2694 			node->root = btrfs_grab_root(root);
2695 			ASSERT(node->root);
2696 			list_add_tail(&node->list, &rc->backref_cache.changed);
2697 		} else {
2698 			path->lowest_level = node->level;
2699 			if (root == root->fs_info->chunk_root)
2700 				btrfs_reserve_chunk_metadata(trans, false);
2701 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2702 			btrfs_release_path(path);
2703 			if (root == root->fs_info->chunk_root)
2704 				btrfs_trans_release_chunk_metadata(trans);
2705 			if (ret > 0)
2706 				ret = 0;
2707 		}
2708 		if (!ret)
2709 			update_processed_blocks(rc, node);
2710 	} else {
2711 		ret = do_relocation(trans, rc, node, key, path, 1);
2712 	}
2713 out:
2714 	if (ret || node->level == 0 || node->cowonly)
2715 		btrfs_backref_cleanup_node(&rc->backref_cache, node);
2716 	return ret;
2717 }
2718 
2719 /*
2720  * relocate a list of blocks
2721  */
2722 static noinline_for_stack
2723 int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2724 			 struct reloc_control *rc, struct rb_root *blocks)
2725 {
2726 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2727 	struct btrfs_backref_node *node;
2728 	struct btrfs_path *path;
2729 	struct tree_block *block;
2730 	struct tree_block *next;
2731 	int ret;
2732 	int err = 0;
2733 
2734 	path = btrfs_alloc_path();
2735 	if (!path) {
2736 		err = -ENOMEM;
2737 		goto out_free_blocks;
2738 	}
2739 
2740 	/* Kick in readahead for tree blocks with missing keys */
2741 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2742 		if (!block->key_ready)
2743 			btrfs_readahead_tree_block(fs_info, block->bytenr,
2744 						   block->owner, 0,
2745 						   block->level);
2746 	}
2747 
2748 	/* Get first keys */
2749 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2750 		if (!block->key_ready) {
2751 			err = get_tree_block_key(fs_info, block);
2752 			if (err)
2753 				goto out_free_path;
2754 		}
2755 	}
2756 
2757 	/* Do tree relocation */
2758 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2759 		node = build_backref_tree(rc, &block->key,
2760 					  block->level, block->bytenr);
2761 		if (IS_ERR(node)) {
2762 			err = PTR_ERR(node);
2763 			goto out;
2764 		}
2765 
2766 		ret = relocate_tree_block(trans, rc, node, &block->key,
2767 					  path);
2768 		if (ret < 0) {
2769 			err = ret;
2770 			break;
2771 		}
2772 	}
2773 out:
2774 	err = finish_pending_nodes(trans, rc, path, err);
2775 
2776 out_free_path:
2777 	btrfs_free_path(path);
2778 out_free_blocks:
2779 	free_block_list(blocks);
2780 	return err;
2781 }
2782 
2783 static noinline_for_stack int prealloc_file_extent_cluster(
2784 				struct btrfs_inode *inode,
2785 				struct file_extent_cluster *cluster)
2786 {
2787 	u64 alloc_hint = 0;
2788 	u64 start;
2789 	u64 end;
2790 	u64 offset = inode->index_cnt;
2791 	u64 num_bytes;
2792 	int nr;
2793 	int ret = 0;
2794 	u64 i_size = i_size_read(&inode->vfs_inode);
2795 	u64 prealloc_start = cluster->start - offset;
2796 	u64 prealloc_end = cluster->end - offset;
2797 	u64 cur_offset = prealloc_start;
2798 
2799 	/*
2800 	 * For subpage case, previous i_size may not be aligned to PAGE_SIZE.
2801 	 * This means the range [i_size, PAGE_END + 1) is filled with zeros by
2802 	 * btrfs_do_readpage() call of previously relocated file cluster.
2803 	 *
2804 	 * If the current cluster starts in the above range, btrfs_do_readpage()
2805 	 * will skip the read, and relocate_one_page() will later writeback
2806 	 * the padding zeros as new data, causing data corruption.
2807 	 *
2808 	 * Here we have to manually invalidate the range (i_size, PAGE_END + 1).
2809 	 */
2810 	if (!IS_ALIGNED(i_size, PAGE_SIZE)) {
2811 		struct address_space *mapping = inode->vfs_inode.i_mapping;
2812 		struct btrfs_fs_info *fs_info = inode->root->fs_info;
2813 		const u32 sectorsize = fs_info->sectorsize;
2814 		struct page *page;
2815 
2816 		ASSERT(sectorsize < PAGE_SIZE);
2817 		ASSERT(IS_ALIGNED(i_size, sectorsize));
2818 
2819 		/*
2820 		 * Subpage can't handle page with DIRTY but without UPTODATE
2821 		 * bit as it can lead to the following deadlock:
2822 		 *
2823 		 * btrfs_read_folio()
2824 		 * | Page already *locked*
2825 		 * |- btrfs_lock_and_flush_ordered_range()
2826 		 *    |- btrfs_start_ordered_extent()
2827 		 *       |- extent_write_cache_pages()
2828 		 *          |- lock_page()
2829 		 *             We try to lock the page we already hold.
2830 		 *
2831 		 * Here we just writeback the whole data reloc inode, so that
2832 		 * we will be ensured to have no dirty range in the page, and
2833 		 * are safe to clear the uptodate bits.
2834 		 *
2835 		 * This shouldn't cause too much overhead, as we need to write
2836 		 * the data back anyway.
2837 		 */
2838 		ret = filemap_write_and_wait(mapping);
2839 		if (ret < 0)
2840 			return ret;
2841 
2842 		clear_extent_bits(&inode->io_tree, i_size,
2843 				  round_up(i_size, PAGE_SIZE) - 1,
2844 				  EXTENT_UPTODATE);
2845 		page = find_lock_page(mapping, i_size >> PAGE_SHIFT);
2846 		/*
2847 		 * If page is freed we don't need to do anything then, as we
2848 		 * will re-read the whole page anyway.
2849 		 */
2850 		if (page) {
2851 			btrfs_subpage_clear_uptodate(fs_info, page, i_size,
2852 					round_up(i_size, PAGE_SIZE) - i_size);
2853 			unlock_page(page);
2854 			put_page(page);
2855 		}
2856 	}
2857 
2858 	BUG_ON(cluster->start != cluster->boundary[0]);
2859 	ret = btrfs_alloc_data_chunk_ondemand(inode,
2860 					      prealloc_end + 1 - prealloc_start);
2861 	if (ret)
2862 		return ret;
2863 
2864 	btrfs_inode_lock(&inode->vfs_inode, 0);
2865 	for (nr = 0; nr < cluster->nr; nr++) {
2866 		start = cluster->boundary[nr] - offset;
2867 		if (nr + 1 < cluster->nr)
2868 			end = cluster->boundary[nr + 1] - 1 - offset;
2869 		else
2870 			end = cluster->end - offset;
2871 
2872 		lock_extent(&inode->io_tree, start, end, NULL);
2873 		num_bytes = end + 1 - start;
2874 		ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start,
2875 						num_bytes, num_bytes,
2876 						end + 1, &alloc_hint);
2877 		cur_offset = end + 1;
2878 		unlock_extent(&inode->io_tree, start, end, NULL);
2879 		if (ret)
2880 			break;
2881 	}
2882 	btrfs_inode_unlock(&inode->vfs_inode, 0);
2883 
2884 	if (cur_offset < prealloc_end)
2885 		btrfs_free_reserved_data_space_noquota(inode->root->fs_info,
2886 					       prealloc_end + 1 - cur_offset);
2887 	return ret;
2888 }
2889 
2890 static noinline_for_stack int setup_relocation_extent_mapping(struct inode *inode,
2891 				u64 start, u64 end, u64 block_start)
2892 {
2893 	struct extent_map *em;
2894 	int ret = 0;
2895 
2896 	em = alloc_extent_map();
2897 	if (!em)
2898 		return -ENOMEM;
2899 
2900 	em->start = start;
2901 	em->len = end + 1 - start;
2902 	em->block_len = em->len;
2903 	em->block_start = block_start;
2904 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
2905 
2906 	lock_extent(&BTRFS_I(inode)->io_tree, start, end, NULL);
2907 	ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, false);
2908 	unlock_extent(&BTRFS_I(inode)->io_tree, start, end, NULL);
2909 	free_extent_map(em);
2910 
2911 	return ret;
2912 }
2913 
2914 /*
2915  * Allow error injection to test balance/relocation cancellation
2916  */
2917 noinline int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info)
2918 {
2919 	return atomic_read(&fs_info->balance_cancel_req) ||
2920 		atomic_read(&fs_info->reloc_cancel_req) ||
2921 		fatal_signal_pending(current);
2922 }
2923 ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE);
2924 
2925 static u64 get_cluster_boundary_end(struct file_extent_cluster *cluster,
2926 				    int cluster_nr)
2927 {
2928 	/* Last extent, use cluster end directly */
2929 	if (cluster_nr >= cluster->nr - 1)
2930 		return cluster->end;
2931 
2932 	/* Use next boundary start*/
2933 	return cluster->boundary[cluster_nr + 1] - 1;
2934 }
2935 
2936 static int relocate_one_page(struct inode *inode, struct file_ra_state *ra,
2937 			     struct file_extent_cluster *cluster,
2938 			     int *cluster_nr, unsigned long page_index)
2939 {
2940 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2941 	u64 offset = BTRFS_I(inode)->index_cnt;
2942 	const unsigned long last_index = (cluster->end - offset) >> PAGE_SHIFT;
2943 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
2944 	struct page *page;
2945 	u64 page_start;
2946 	u64 page_end;
2947 	u64 cur;
2948 	int ret;
2949 
2950 	ASSERT(page_index <= last_index);
2951 	page = find_lock_page(inode->i_mapping, page_index);
2952 	if (!page) {
2953 		page_cache_sync_readahead(inode->i_mapping, ra, NULL,
2954 				page_index, last_index + 1 - page_index);
2955 		page = find_or_create_page(inode->i_mapping, page_index, mask);
2956 		if (!page)
2957 			return -ENOMEM;
2958 	}
2959 	ret = set_page_extent_mapped(page);
2960 	if (ret < 0)
2961 		goto release_page;
2962 
2963 	if (PageReadahead(page))
2964 		page_cache_async_readahead(inode->i_mapping, ra, NULL,
2965 				page_folio(page), page_index,
2966 				last_index + 1 - page_index);
2967 
2968 	if (!PageUptodate(page)) {
2969 		btrfs_read_folio(NULL, page_folio(page));
2970 		lock_page(page);
2971 		if (!PageUptodate(page)) {
2972 			ret = -EIO;
2973 			goto release_page;
2974 		}
2975 	}
2976 
2977 	page_start = page_offset(page);
2978 	page_end = page_start + PAGE_SIZE - 1;
2979 
2980 	/*
2981 	 * Start from the cluster, as for subpage case, the cluster can start
2982 	 * inside the page.
2983 	 */
2984 	cur = max(page_start, cluster->boundary[*cluster_nr] - offset);
2985 	while (cur <= page_end) {
2986 		u64 extent_start = cluster->boundary[*cluster_nr] - offset;
2987 		u64 extent_end = get_cluster_boundary_end(cluster,
2988 						*cluster_nr) - offset;
2989 		u64 clamped_start = max(page_start, extent_start);
2990 		u64 clamped_end = min(page_end, extent_end);
2991 		u32 clamped_len = clamped_end + 1 - clamped_start;
2992 
2993 		/* Reserve metadata for this range */
2994 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
2995 						      clamped_len, clamped_len,
2996 						      false);
2997 		if (ret)
2998 			goto release_page;
2999 
3000 		/* Mark the range delalloc and dirty for later writeback */
3001 		lock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end, NULL);
3002 		ret = btrfs_set_extent_delalloc(BTRFS_I(inode), clamped_start,
3003 						clamped_end, 0, NULL);
3004 		if (ret) {
3005 			clear_extent_bits(&BTRFS_I(inode)->io_tree,
3006 					clamped_start, clamped_end,
3007 					EXTENT_LOCKED | EXTENT_BOUNDARY);
3008 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
3009 							clamped_len, true);
3010 			btrfs_delalloc_release_extents(BTRFS_I(inode),
3011 						       clamped_len);
3012 			goto release_page;
3013 		}
3014 		btrfs_page_set_dirty(fs_info, page, clamped_start, clamped_len);
3015 
3016 		/*
3017 		 * Set the boundary if it's inside the page.
3018 		 * Data relocation requires the destination extents to have the
3019 		 * same size as the source.
3020 		 * EXTENT_BOUNDARY bit prevents current extent from being merged
3021 		 * with previous extent.
3022 		 */
3023 		if (in_range(cluster->boundary[*cluster_nr] - offset,
3024 			     page_start, PAGE_SIZE)) {
3025 			u64 boundary_start = cluster->boundary[*cluster_nr] -
3026 						offset;
3027 			u64 boundary_end = boundary_start +
3028 					   fs_info->sectorsize - 1;
3029 
3030 			set_extent_bits(&BTRFS_I(inode)->io_tree,
3031 					boundary_start, boundary_end,
3032 					EXTENT_BOUNDARY);
3033 		}
3034 		unlock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end, NULL);
3035 		btrfs_delalloc_release_extents(BTRFS_I(inode), clamped_len);
3036 		cur += clamped_len;
3037 
3038 		/* Crossed extent end, go to next extent */
3039 		if (cur >= extent_end) {
3040 			(*cluster_nr)++;
3041 			/* Just finished the last extent of the cluster, exit. */
3042 			if (*cluster_nr >= cluster->nr)
3043 				break;
3044 		}
3045 	}
3046 	unlock_page(page);
3047 	put_page(page);
3048 
3049 	balance_dirty_pages_ratelimited(inode->i_mapping);
3050 	btrfs_throttle(fs_info);
3051 	if (btrfs_should_cancel_balance(fs_info))
3052 		ret = -ECANCELED;
3053 	return ret;
3054 
3055 release_page:
3056 	unlock_page(page);
3057 	put_page(page);
3058 	return ret;
3059 }
3060 
3061 static int relocate_file_extent_cluster(struct inode *inode,
3062 					struct file_extent_cluster *cluster)
3063 {
3064 	u64 offset = BTRFS_I(inode)->index_cnt;
3065 	unsigned long index;
3066 	unsigned long last_index;
3067 	struct file_ra_state *ra;
3068 	int cluster_nr = 0;
3069 	int ret = 0;
3070 
3071 	if (!cluster->nr)
3072 		return 0;
3073 
3074 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
3075 	if (!ra)
3076 		return -ENOMEM;
3077 
3078 	ret = prealloc_file_extent_cluster(BTRFS_I(inode), cluster);
3079 	if (ret)
3080 		goto out;
3081 
3082 	file_ra_state_init(ra, inode->i_mapping);
3083 
3084 	ret = setup_relocation_extent_mapping(inode, cluster->start - offset,
3085 				   cluster->end - offset, cluster->start);
3086 	if (ret)
3087 		goto out;
3088 
3089 	last_index = (cluster->end - offset) >> PAGE_SHIFT;
3090 	for (index = (cluster->start - offset) >> PAGE_SHIFT;
3091 	     index <= last_index && !ret; index++)
3092 		ret = relocate_one_page(inode, ra, cluster, &cluster_nr, index);
3093 	if (ret == 0)
3094 		WARN_ON(cluster_nr != cluster->nr);
3095 out:
3096 	kfree(ra);
3097 	return ret;
3098 }
3099 
3100 static noinline_for_stack
3101 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3102 			 struct file_extent_cluster *cluster)
3103 {
3104 	int ret;
3105 
3106 	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3107 		ret = relocate_file_extent_cluster(inode, cluster);
3108 		if (ret)
3109 			return ret;
3110 		cluster->nr = 0;
3111 	}
3112 
3113 	if (!cluster->nr)
3114 		cluster->start = extent_key->objectid;
3115 	else
3116 		BUG_ON(cluster->nr >= MAX_EXTENTS);
3117 	cluster->end = extent_key->objectid + extent_key->offset - 1;
3118 	cluster->boundary[cluster->nr] = extent_key->objectid;
3119 	cluster->nr++;
3120 
3121 	if (cluster->nr >= MAX_EXTENTS) {
3122 		ret = relocate_file_extent_cluster(inode, cluster);
3123 		if (ret)
3124 			return ret;
3125 		cluster->nr = 0;
3126 	}
3127 	return 0;
3128 }
3129 
3130 /*
3131  * helper to add a tree block to the list.
3132  * the major work is getting the generation and level of the block
3133  */
3134 static int add_tree_block(struct reloc_control *rc,
3135 			  struct btrfs_key *extent_key,
3136 			  struct btrfs_path *path,
3137 			  struct rb_root *blocks)
3138 {
3139 	struct extent_buffer *eb;
3140 	struct btrfs_extent_item *ei;
3141 	struct btrfs_tree_block_info *bi;
3142 	struct tree_block *block;
3143 	struct rb_node *rb_node;
3144 	u32 item_size;
3145 	int level = -1;
3146 	u64 generation;
3147 	u64 owner = 0;
3148 
3149 	eb =  path->nodes[0];
3150 	item_size = btrfs_item_size(eb, path->slots[0]);
3151 
3152 	if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3153 	    item_size >= sizeof(*ei) + sizeof(*bi)) {
3154 		unsigned long ptr = 0, end;
3155 
3156 		ei = btrfs_item_ptr(eb, path->slots[0],
3157 				struct btrfs_extent_item);
3158 		end = (unsigned long)ei + item_size;
3159 		if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3160 			bi = (struct btrfs_tree_block_info *)(ei + 1);
3161 			level = btrfs_tree_block_level(eb, bi);
3162 			ptr = (unsigned long)(bi + 1);
3163 		} else {
3164 			level = (int)extent_key->offset;
3165 			ptr = (unsigned long)(ei + 1);
3166 		}
3167 		generation = btrfs_extent_generation(eb, ei);
3168 
3169 		/*
3170 		 * We're reading random blocks without knowing their owner ahead
3171 		 * of time.  This is ok most of the time, as all reloc roots and
3172 		 * fs roots have the same lock type.  However normal trees do
3173 		 * not, and the only way to know ahead of time is to read the
3174 		 * inline ref offset.  We know it's an fs root if
3175 		 *
3176 		 * 1. There's more than one ref.
3177 		 * 2. There's a SHARED_DATA_REF_KEY set.
3178 		 * 3. FULL_BACKREF is set on the flags.
3179 		 *
3180 		 * Otherwise it's safe to assume that the ref offset == the
3181 		 * owner of this block, so we can use that when calling
3182 		 * read_tree_block.
3183 		 */
3184 		if (btrfs_extent_refs(eb, ei) == 1 &&
3185 		    !(btrfs_extent_flags(eb, ei) &
3186 		      BTRFS_BLOCK_FLAG_FULL_BACKREF) &&
3187 		    ptr < end) {
3188 			struct btrfs_extent_inline_ref *iref;
3189 			int type;
3190 
3191 			iref = (struct btrfs_extent_inline_ref *)ptr;
3192 			type = btrfs_get_extent_inline_ref_type(eb, iref,
3193 							BTRFS_REF_TYPE_BLOCK);
3194 			if (type == BTRFS_REF_TYPE_INVALID)
3195 				return -EINVAL;
3196 			if (type == BTRFS_TREE_BLOCK_REF_KEY)
3197 				owner = btrfs_extent_inline_ref_offset(eb, iref);
3198 		}
3199 	} else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
3200 		btrfs_print_v0_err(eb->fs_info);
3201 		btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
3202 		return -EINVAL;
3203 	} else {
3204 		BUG();
3205 	}
3206 
3207 	btrfs_release_path(path);
3208 
3209 	BUG_ON(level == -1);
3210 
3211 	block = kmalloc(sizeof(*block), GFP_NOFS);
3212 	if (!block)
3213 		return -ENOMEM;
3214 
3215 	block->bytenr = extent_key->objectid;
3216 	block->key.objectid = rc->extent_root->fs_info->nodesize;
3217 	block->key.offset = generation;
3218 	block->level = level;
3219 	block->key_ready = 0;
3220 	block->owner = owner;
3221 
3222 	rb_node = rb_simple_insert(blocks, block->bytenr, &block->rb_node);
3223 	if (rb_node)
3224 		btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr,
3225 				    -EEXIST);
3226 
3227 	return 0;
3228 }
3229 
3230 /*
3231  * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3232  */
3233 static int __add_tree_block(struct reloc_control *rc,
3234 			    u64 bytenr, u32 blocksize,
3235 			    struct rb_root *blocks)
3236 {
3237 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3238 	struct btrfs_path *path;
3239 	struct btrfs_key key;
3240 	int ret;
3241 	bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3242 
3243 	if (tree_block_processed(bytenr, rc))
3244 		return 0;
3245 
3246 	if (rb_simple_search(blocks, bytenr))
3247 		return 0;
3248 
3249 	path = btrfs_alloc_path();
3250 	if (!path)
3251 		return -ENOMEM;
3252 again:
3253 	key.objectid = bytenr;
3254 	if (skinny) {
3255 		key.type = BTRFS_METADATA_ITEM_KEY;
3256 		key.offset = (u64)-1;
3257 	} else {
3258 		key.type = BTRFS_EXTENT_ITEM_KEY;
3259 		key.offset = blocksize;
3260 	}
3261 
3262 	path->search_commit_root = 1;
3263 	path->skip_locking = 1;
3264 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3265 	if (ret < 0)
3266 		goto out;
3267 
3268 	if (ret > 0 && skinny) {
3269 		if (path->slots[0]) {
3270 			path->slots[0]--;
3271 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3272 					      path->slots[0]);
3273 			if (key.objectid == bytenr &&
3274 			    (key.type == BTRFS_METADATA_ITEM_KEY ||
3275 			     (key.type == BTRFS_EXTENT_ITEM_KEY &&
3276 			      key.offset == blocksize)))
3277 				ret = 0;
3278 		}
3279 
3280 		if (ret) {
3281 			skinny = false;
3282 			btrfs_release_path(path);
3283 			goto again;
3284 		}
3285 	}
3286 	if (ret) {
3287 		ASSERT(ret == 1);
3288 		btrfs_print_leaf(path->nodes[0]);
3289 		btrfs_err(fs_info,
3290 	     "tree block extent item (%llu) is not found in extent tree",
3291 		     bytenr);
3292 		WARN_ON(1);
3293 		ret = -EINVAL;
3294 		goto out;
3295 	}
3296 
3297 	ret = add_tree_block(rc, &key, path, blocks);
3298 out:
3299 	btrfs_free_path(path);
3300 	return ret;
3301 }
3302 
3303 static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3304 				    struct btrfs_block_group *block_group,
3305 				    struct inode *inode,
3306 				    u64 ino)
3307 {
3308 	struct btrfs_root *root = fs_info->tree_root;
3309 	struct btrfs_trans_handle *trans;
3310 	int ret = 0;
3311 
3312 	if (inode)
3313 		goto truncate;
3314 
3315 	inode = btrfs_iget(fs_info->sb, ino, root);
3316 	if (IS_ERR(inode))
3317 		return -ENOENT;
3318 
3319 truncate:
3320 	ret = btrfs_check_trunc_cache_free_space(fs_info,
3321 						 &fs_info->global_block_rsv);
3322 	if (ret)
3323 		goto out;
3324 
3325 	trans = btrfs_join_transaction(root);
3326 	if (IS_ERR(trans)) {
3327 		ret = PTR_ERR(trans);
3328 		goto out;
3329 	}
3330 
3331 	ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
3332 
3333 	btrfs_end_transaction(trans);
3334 	btrfs_btree_balance_dirty(fs_info);
3335 out:
3336 	iput(inode);
3337 	return ret;
3338 }
3339 
3340 /*
3341  * Locate the free space cache EXTENT_DATA in root tree leaf and delete the
3342  * cache inode, to avoid free space cache data extent blocking data relocation.
3343  */
3344 static int delete_v1_space_cache(struct extent_buffer *leaf,
3345 				 struct btrfs_block_group *block_group,
3346 				 u64 data_bytenr)
3347 {
3348 	u64 space_cache_ino;
3349 	struct btrfs_file_extent_item *ei;
3350 	struct btrfs_key key;
3351 	bool found = false;
3352 	int i;
3353 	int ret;
3354 
3355 	if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID)
3356 		return 0;
3357 
3358 	for (i = 0; i < btrfs_header_nritems(leaf); i++) {
3359 		u8 type;
3360 
3361 		btrfs_item_key_to_cpu(leaf, &key, i);
3362 		if (key.type != BTRFS_EXTENT_DATA_KEY)
3363 			continue;
3364 		ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
3365 		type = btrfs_file_extent_type(leaf, ei);
3366 
3367 		if ((type == BTRFS_FILE_EXTENT_REG ||
3368 		     type == BTRFS_FILE_EXTENT_PREALLOC) &&
3369 		    btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) {
3370 			found = true;
3371 			space_cache_ino = key.objectid;
3372 			break;
3373 		}
3374 	}
3375 	if (!found)
3376 		return -ENOENT;
3377 	ret = delete_block_group_cache(leaf->fs_info, block_group, NULL,
3378 					space_cache_ino);
3379 	return ret;
3380 }
3381 
3382 /*
3383  * helper to find all tree blocks that reference a given data extent
3384  */
3385 static noinline_for_stack
3386 int add_data_references(struct reloc_control *rc,
3387 			struct btrfs_key *extent_key,
3388 			struct btrfs_path *path,
3389 			struct rb_root *blocks)
3390 {
3391 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3392 	struct ulist *leaves = NULL;
3393 	struct ulist_iterator leaf_uiter;
3394 	struct ulist_node *ref_node = NULL;
3395 	const u32 blocksize = fs_info->nodesize;
3396 	int ret = 0;
3397 
3398 	btrfs_release_path(path);
3399 	ret = btrfs_find_all_leafs(NULL, fs_info, extent_key->objectid,
3400 				   0, &leaves, NULL, true);
3401 	if (ret < 0)
3402 		return ret;
3403 
3404 	ULIST_ITER_INIT(&leaf_uiter);
3405 	while ((ref_node = ulist_next(leaves, &leaf_uiter))) {
3406 		struct extent_buffer *eb;
3407 
3408 		eb = read_tree_block(fs_info, ref_node->val, 0, 0, 0, NULL);
3409 		if (IS_ERR(eb)) {
3410 			ret = PTR_ERR(eb);
3411 			break;
3412 		}
3413 		ret = delete_v1_space_cache(eb, rc->block_group,
3414 					    extent_key->objectid);
3415 		free_extent_buffer(eb);
3416 		if (ret < 0)
3417 			break;
3418 		ret = __add_tree_block(rc, ref_node->val, blocksize, blocks);
3419 		if (ret < 0)
3420 			break;
3421 	}
3422 	if (ret < 0)
3423 		free_block_list(blocks);
3424 	ulist_free(leaves);
3425 	return ret;
3426 }
3427 
3428 /*
3429  * helper to find next unprocessed extent
3430  */
3431 static noinline_for_stack
3432 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3433 		     struct btrfs_key *extent_key)
3434 {
3435 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3436 	struct btrfs_key key;
3437 	struct extent_buffer *leaf;
3438 	u64 start, end, last;
3439 	int ret;
3440 
3441 	last = rc->block_group->start + rc->block_group->length;
3442 	while (1) {
3443 		cond_resched();
3444 		if (rc->search_start >= last) {
3445 			ret = 1;
3446 			break;
3447 		}
3448 
3449 		key.objectid = rc->search_start;
3450 		key.type = BTRFS_EXTENT_ITEM_KEY;
3451 		key.offset = 0;
3452 
3453 		path->search_commit_root = 1;
3454 		path->skip_locking = 1;
3455 		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3456 					0, 0);
3457 		if (ret < 0)
3458 			break;
3459 next:
3460 		leaf = path->nodes[0];
3461 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3462 			ret = btrfs_next_leaf(rc->extent_root, path);
3463 			if (ret != 0)
3464 				break;
3465 			leaf = path->nodes[0];
3466 		}
3467 
3468 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3469 		if (key.objectid >= last) {
3470 			ret = 1;
3471 			break;
3472 		}
3473 
3474 		if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3475 		    key.type != BTRFS_METADATA_ITEM_KEY) {
3476 			path->slots[0]++;
3477 			goto next;
3478 		}
3479 
3480 		if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3481 		    key.objectid + key.offset <= rc->search_start) {
3482 			path->slots[0]++;
3483 			goto next;
3484 		}
3485 
3486 		if (key.type == BTRFS_METADATA_ITEM_KEY &&
3487 		    key.objectid + fs_info->nodesize <=
3488 		    rc->search_start) {
3489 			path->slots[0]++;
3490 			goto next;
3491 		}
3492 
3493 		ret = find_first_extent_bit(&rc->processed_blocks,
3494 					    key.objectid, &start, &end,
3495 					    EXTENT_DIRTY, NULL);
3496 
3497 		if (ret == 0 && start <= key.objectid) {
3498 			btrfs_release_path(path);
3499 			rc->search_start = end + 1;
3500 		} else {
3501 			if (key.type == BTRFS_EXTENT_ITEM_KEY)
3502 				rc->search_start = key.objectid + key.offset;
3503 			else
3504 				rc->search_start = key.objectid +
3505 					fs_info->nodesize;
3506 			memcpy(extent_key, &key, sizeof(key));
3507 			return 0;
3508 		}
3509 	}
3510 	btrfs_release_path(path);
3511 	return ret;
3512 }
3513 
3514 static void set_reloc_control(struct reloc_control *rc)
3515 {
3516 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3517 
3518 	mutex_lock(&fs_info->reloc_mutex);
3519 	fs_info->reloc_ctl = rc;
3520 	mutex_unlock(&fs_info->reloc_mutex);
3521 }
3522 
3523 static void unset_reloc_control(struct reloc_control *rc)
3524 {
3525 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3526 
3527 	mutex_lock(&fs_info->reloc_mutex);
3528 	fs_info->reloc_ctl = NULL;
3529 	mutex_unlock(&fs_info->reloc_mutex);
3530 }
3531 
3532 static noinline_for_stack
3533 int prepare_to_relocate(struct reloc_control *rc)
3534 {
3535 	struct btrfs_trans_handle *trans;
3536 	int ret;
3537 
3538 	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3539 					      BTRFS_BLOCK_RSV_TEMP);
3540 	if (!rc->block_rsv)
3541 		return -ENOMEM;
3542 
3543 	memset(&rc->cluster, 0, sizeof(rc->cluster));
3544 	rc->search_start = rc->block_group->start;
3545 	rc->extents_found = 0;
3546 	rc->nodes_relocated = 0;
3547 	rc->merging_rsv_size = 0;
3548 	rc->reserved_bytes = 0;
3549 	rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3550 			      RELOCATION_RESERVED_NODES;
3551 	ret = btrfs_block_rsv_refill(rc->extent_root->fs_info,
3552 				     rc->block_rsv, rc->block_rsv->size,
3553 				     BTRFS_RESERVE_FLUSH_ALL);
3554 	if (ret)
3555 		return ret;
3556 
3557 	rc->create_reloc_tree = 1;
3558 	set_reloc_control(rc);
3559 
3560 	trans = btrfs_join_transaction(rc->extent_root);
3561 	if (IS_ERR(trans)) {
3562 		unset_reloc_control(rc);
3563 		/*
3564 		 * extent tree is not a ref_cow tree and has no reloc_root to
3565 		 * cleanup.  And callers are responsible to free the above
3566 		 * block rsv.
3567 		 */
3568 		return PTR_ERR(trans);
3569 	}
3570 
3571 	ret = btrfs_commit_transaction(trans);
3572 	if (ret)
3573 		unset_reloc_control(rc);
3574 
3575 	return ret;
3576 }
3577 
3578 static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3579 {
3580 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3581 	struct rb_root blocks = RB_ROOT;
3582 	struct btrfs_key key;
3583 	struct btrfs_trans_handle *trans = NULL;
3584 	struct btrfs_path *path;
3585 	struct btrfs_extent_item *ei;
3586 	u64 flags;
3587 	int ret;
3588 	int err = 0;
3589 	int progress = 0;
3590 
3591 	path = btrfs_alloc_path();
3592 	if (!path)
3593 		return -ENOMEM;
3594 	path->reada = READA_FORWARD;
3595 
3596 	ret = prepare_to_relocate(rc);
3597 	if (ret) {
3598 		err = ret;
3599 		goto out_free;
3600 	}
3601 
3602 	while (1) {
3603 		rc->reserved_bytes = 0;
3604 		ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv,
3605 					     rc->block_rsv->size,
3606 					     BTRFS_RESERVE_FLUSH_ALL);
3607 		if (ret) {
3608 			err = ret;
3609 			break;
3610 		}
3611 		progress++;
3612 		trans = btrfs_start_transaction(rc->extent_root, 0);
3613 		if (IS_ERR(trans)) {
3614 			err = PTR_ERR(trans);
3615 			trans = NULL;
3616 			break;
3617 		}
3618 restart:
3619 		if (update_backref_cache(trans, &rc->backref_cache)) {
3620 			btrfs_end_transaction(trans);
3621 			trans = NULL;
3622 			continue;
3623 		}
3624 
3625 		ret = find_next_extent(rc, path, &key);
3626 		if (ret < 0)
3627 			err = ret;
3628 		if (ret != 0)
3629 			break;
3630 
3631 		rc->extents_found++;
3632 
3633 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3634 				    struct btrfs_extent_item);
3635 		flags = btrfs_extent_flags(path->nodes[0], ei);
3636 
3637 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3638 			ret = add_tree_block(rc, &key, path, &blocks);
3639 		} else if (rc->stage == UPDATE_DATA_PTRS &&
3640 			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
3641 			ret = add_data_references(rc, &key, path, &blocks);
3642 		} else {
3643 			btrfs_release_path(path);
3644 			ret = 0;
3645 		}
3646 		if (ret < 0) {
3647 			err = ret;
3648 			break;
3649 		}
3650 
3651 		if (!RB_EMPTY_ROOT(&blocks)) {
3652 			ret = relocate_tree_blocks(trans, rc, &blocks);
3653 			if (ret < 0) {
3654 				if (ret != -EAGAIN) {
3655 					err = ret;
3656 					break;
3657 				}
3658 				rc->extents_found--;
3659 				rc->search_start = key.objectid;
3660 			}
3661 		}
3662 
3663 		btrfs_end_transaction_throttle(trans);
3664 		btrfs_btree_balance_dirty(fs_info);
3665 		trans = NULL;
3666 
3667 		if (rc->stage == MOVE_DATA_EXTENTS &&
3668 		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
3669 			rc->found_file_extent = 1;
3670 			ret = relocate_data_extent(rc->data_inode,
3671 						   &key, &rc->cluster);
3672 			if (ret < 0) {
3673 				err = ret;
3674 				break;
3675 			}
3676 		}
3677 		if (btrfs_should_cancel_balance(fs_info)) {
3678 			err = -ECANCELED;
3679 			break;
3680 		}
3681 	}
3682 	if (trans && progress && err == -ENOSPC) {
3683 		ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
3684 		if (ret == 1) {
3685 			err = 0;
3686 			progress = 0;
3687 			goto restart;
3688 		}
3689 	}
3690 
3691 	btrfs_release_path(path);
3692 	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
3693 
3694 	if (trans) {
3695 		btrfs_end_transaction_throttle(trans);
3696 		btrfs_btree_balance_dirty(fs_info);
3697 	}
3698 
3699 	if (!err) {
3700 		ret = relocate_file_extent_cluster(rc->data_inode,
3701 						   &rc->cluster);
3702 		if (ret < 0)
3703 			err = ret;
3704 	}
3705 
3706 	rc->create_reloc_tree = 0;
3707 	set_reloc_control(rc);
3708 
3709 	btrfs_backref_release_cache(&rc->backref_cache);
3710 	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3711 
3712 	/*
3713 	 * Even in the case when the relocation is cancelled, we should all go
3714 	 * through prepare_to_merge() and merge_reloc_roots().
3715 	 *
3716 	 * For error (including cancelled balance), prepare_to_merge() will
3717 	 * mark all reloc trees orphan, then queue them for cleanup in
3718 	 * merge_reloc_roots()
3719 	 */
3720 	err = prepare_to_merge(rc, err);
3721 
3722 	merge_reloc_roots(rc);
3723 
3724 	rc->merge_reloc_tree = 0;
3725 	unset_reloc_control(rc);
3726 	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3727 
3728 	/* get rid of pinned extents */
3729 	trans = btrfs_join_transaction(rc->extent_root);
3730 	if (IS_ERR(trans)) {
3731 		err = PTR_ERR(trans);
3732 		goto out_free;
3733 	}
3734 	ret = btrfs_commit_transaction(trans);
3735 	if (ret && !err)
3736 		err = ret;
3737 out_free:
3738 	ret = clean_dirty_subvols(rc);
3739 	if (ret < 0 && !err)
3740 		err = ret;
3741 	btrfs_free_block_rsv(fs_info, rc->block_rsv);
3742 	btrfs_free_path(path);
3743 	return err;
3744 }
3745 
3746 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3747 				 struct btrfs_root *root, u64 objectid)
3748 {
3749 	struct btrfs_path *path;
3750 	struct btrfs_inode_item *item;
3751 	struct extent_buffer *leaf;
3752 	int ret;
3753 
3754 	path = btrfs_alloc_path();
3755 	if (!path)
3756 		return -ENOMEM;
3757 
3758 	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
3759 	if (ret)
3760 		goto out;
3761 
3762 	leaf = path->nodes[0];
3763 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3764 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3765 	btrfs_set_inode_generation(leaf, item, 1);
3766 	btrfs_set_inode_size(leaf, item, 0);
3767 	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
3768 	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
3769 					  BTRFS_INODE_PREALLOC);
3770 	btrfs_mark_buffer_dirty(leaf);
3771 out:
3772 	btrfs_free_path(path);
3773 	return ret;
3774 }
3775 
3776 static void delete_orphan_inode(struct btrfs_trans_handle *trans,
3777 				struct btrfs_root *root, u64 objectid)
3778 {
3779 	struct btrfs_path *path;
3780 	struct btrfs_key key;
3781 	int ret = 0;
3782 
3783 	path = btrfs_alloc_path();
3784 	if (!path) {
3785 		ret = -ENOMEM;
3786 		goto out;
3787 	}
3788 
3789 	key.objectid = objectid;
3790 	key.type = BTRFS_INODE_ITEM_KEY;
3791 	key.offset = 0;
3792 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3793 	if (ret) {
3794 		if (ret > 0)
3795 			ret = -ENOENT;
3796 		goto out;
3797 	}
3798 	ret = btrfs_del_item(trans, root, path);
3799 out:
3800 	if (ret)
3801 		btrfs_abort_transaction(trans, ret);
3802 	btrfs_free_path(path);
3803 }
3804 
3805 /*
3806  * helper to create inode for data relocation.
3807  * the inode is in data relocation tree and its link count is 0
3808  */
3809 static noinline_for_stack
3810 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
3811 				 struct btrfs_block_group *group)
3812 {
3813 	struct inode *inode = NULL;
3814 	struct btrfs_trans_handle *trans;
3815 	struct btrfs_root *root;
3816 	u64 objectid;
3817 	int err = 0;
3818 
3819 	root = btrfs_grab_root(fs_info->data_reloc_root);
3820 	trans = btrfs_start_transaction(root, 6);
3821 	if (IS_ERR(trans)) {
3822 		btrfs_put_root(root);
3823 		return ERR_CAST(trans);
3824 	}
3825 
3826 	err = btrfs_get_free_objectid(root, &objectid);
3827 	if (err)
3828 		goto out;
3829 
3830 	err = __insert_orphan_inode(trans, root, objectid);
3831 	if (err)
3832 		goto out;
3833 
3834 	inode = btrfs_iget(fs_info->sb, objectid, root);
3835 	if (IS_ERR(inode)) {
3836 		delete_orphan_inode(trans, root, objectid);
3837 		err = PTR_ERR(inode);
3838 		inode = NULL;
3839 		goto out;
3840 	}
3841 	BTRFS_I(inode)->index_cnt = group->start;
3842 
3843 	err = btrfs_orphan_add(trans, BTRFS_I(inode));
3844 out:
3845 	btrfs_put_root(root);
3846 	btrfs_end_transaction(trans);
3847 	btrfs_btree_balance_dirty(fs_info);
3848 	if (err) {
3849 		iput(inode);
3850 		inode = ERR_PTR(err);
3851 	}
3852 	return inode;
3853 }
3854 
3855 /*
3856  * Mark start of chunk relocation that is cancellable. Check if the cancellation
3857  * has been requested meanwhile and don't start in that case.
3858  *
3859  * Return:
3860  *   0             success
3861  *   -EINPROGRESS  operation is already in progress, that's probably a bug
3862  *   -ECANCELED    cancellation request was set before the operation started
3863  */
3864 static int reloc_chunk_start(struct btrfs_fs_info *fs_info)
3865 {
3866 	if (test_and_set_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) {
3867 		/* This should not happen */
3868 		btrfs_err(fs_info, "reloc already running, cannot start");
3869 		return -EINPROGRESS;
3870 	}
3871 
3872 	if (atomic_read(&fs_info->reloc_cancel_req) > 0) {
3873 		btrfs_info(fs_info, "chunk relocation canceled on start");
3874 		/*
3875 		 * On cancel, clear all requests but let the caller mark
3876 		 * the end after cleanup operations.
3877 		 */
3878 		atomic_set(&fs_info->reloc_cancel_req, 0);
3879 		return -ECANCELED;
3880 	}
3881 	return 0;
3882 }
3883 
3884 /*
3885  * Mark end of chunk relocation that is cancellable and wake any waiters.
3886  */
3887 static void reloc_chunk_end(struct btrfs_fs_info *fs_info)
3888 {
3889 	/* Requested after start, clear bit first so any waiters can continue */
3890 	if (atomic_read(&fs_info->reloc_cancel_req) > 0)
3891 		btrfs_info(fs_info, "chunk relocation canceled during operation");
3892 	clear_and_wake_up_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags);
3893 	atomic_set(&fs_info->reloc_cancel_req, 0);
3894 }
3895 
3896 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
3897 {
3898 	struct reloc_control *rc;
3899 
3900 	rc = kzalloc(sizeof(*rc), GFP_NOFS);
3901 	if (!rc)
3902 		return NULL;
3903 
3904 	INIT_LIST_HEAD(&rc->reloc_roots);
3905 	INIT_LIST_HEAD(&rc->dirty_subvol_roots);
3906 	btrfs_backref_init_cache(fs_info, &rc->backref_cache, 1);
3907 	mapping_tree_init(&rc->reloc_root_tree);
3908 	extent_io_tree_init(fs_info, &rc->processed_blocks,
3909 			    IO_TREE_RELOC_BLOCKS, NULL);
3910 	return rc;
3911 }
3912 
3913 static void free_reloc_control(struct reloc_control *rc)
3914 {
3915 	struct mapping_node *node, *tmp;
3916 
3917 	free_reloc_roots(&rc->reloc_roots);
3918 	rbtree_postorder_for_each_entry_safe(node, tmp,
3919 			&rc->reloc_root_tree.rb_root, rb_node)
3920 		kfree(node);
3921 
3922 	kfree(rc);
3923 }
3924 
3925 /*
3926  * Print the block group being relocated
3927  */
3928 static void describe_relocation(struct btrfs_fs_info *fs_info,
3929 				struct btrfs_block_group *block_group)
3930 {
3931 	char buf[128] = {'\0'};
3932 
3933 	btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf));
3934 
3935 	btrfs_info(fs_info,
3936 		   "relocating block group %llu flags %s",
3937 		   block_group->start, buf);
3938 }
3939 
3940 static const char *stage_to_string(int stage)
3941 {
3942 	if (stage == MOVE_DATA_EXTENTS)
3943 		return "move data extents";
3944 	if (stage == UPDATE_DATA_PTRS)
3945 		return "update data pointers";
3946 	return "unknown";
3947 }
3948 
3949 /*
3950  * function to relocate all extents in a block group.
3951  */
3952 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
3953 {
3954 	struct btrfs_block_group *bg;
3955 	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, group_start);
3956 	struct reloc_control *rc;
3957 	struct inode *inode;
3958 	struct btrfs_path *path;
3959 	int ret;
3960 	int rw = 0;
3961 	int err = 0;
3962 
3963 	/*
3964 	 * This only gets set if we had a half-deleted snapshot on mount.  We
3965 	 * cannot allow relocation to start while we're still trying to clean up
3966 	 * these pending deletions.
3967 	 */
3968 	ret = wait_on_bit(&fs_info->flags, BTRFS_FS_UNFINISHED_DROPS, TASK_INTERRUPTIBLE);
3969 	if (ret)
3970 		return ret;
3971 
3972 	/* We may have been woken up by close_ctree, so bail if we're closing. */
3973 	if (btrfs_fs_closing(fs_info))
3974 		return -EINTR;
3975 
3976 	bg = btrfs_lookup_block_group(fs_info, group_start);
3977 	if (!bg)
3978 		return -ENOENT;
3979 
3980 	/*
3981 	 * Relocation of a data block group creates ordered extents.  Without
3982 	 * sb_start_write(), we can freeze the filesystem while unfinished
3983 	 * ordered extents are left. Such ordered extents can cause a deadlock
3984 	 * e.g. when syncfs() is waiting for their completion but they can't
3985 	 * finish because they block when joining a transaction, due to the
3986 	 * fact that the freeze locks are being held in write mode.
3987 	 */
3988 	if (bg->flags & BTRFS_BLOCK_GROUP_DATA)
3989 		ASSERT(sb_write_started(fs_info->sb));
3990 
3991 	if (btrfs_pinned_by_swapfile(fs_info, bg)) {
3992 		btrfs_put_block_group(bg);
3993 		return -ETXTBSY;
3994 	}
3995 
3996 	rc = alloc_reloc_control(fs_info);
3997 	if (!rc) {
3998 		btrfs_put_block_group(bg);
3999 		return -ENOMEM;
4000 	}
4001 
4002 	ret = reloc_chunk_start(fs_info);
4003 	if (ret < 0) {
4004 		err = ret;
4005 		goto out_put_bg;
4006 	}
4007 
4008 	rc->extent_root = extent_root;
4009 	rc->block_group = bg;
4010 
4011 	ret = btrfs_inc_block_group_ro(rc->block_group, true);
4012 	if (ret) {
4013 		err = ret;
4014 		goto out;
4015 	}
4016 	rw = 1;
4017 
4018 	path = btrfs_alloc_path();
4019 	if (!path) {
4020 		err = -ENOMEM;
4021 		goto out;
4022 	}
4023 
4024 	inode = lookup_free_space_inode(rc->block_group, path);
4025 	btrfs_free_path(path);
4026 
4027 	if (!IS_ERR(inode))
4028 		ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
4029 	else
4030 		ret = PTR_ERR(inode);
4031 
4032 	if (ret && ret != -ENOENT) {
4033 		err = ret;
4034 		goto out;
4035 	}
4036 
4037 	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4038 	if (IS_ERR(rc->data_inode)) {
4039 		err = PTR_ERR(rc->data_inode);
4040 		rc->data_inode = NULL;
4041 		goto out;
4042 	}
4043 
4044 	describe_relocation(fs_info, rc->block_group);
4045 
4046 	btrfs_wait_block_group_reservations(rc->block_group);
4047 	btrfs_wait_nocow_writers(rc->block_group);
4048 	btrfs_wait_ordered_roots(fs_info, U64_MAX,
4049 				 rc->block_group->start,
4050 				 rc->block_group->length);
4051 
4052 	ret = btrfs_zone_finish(rc->block_group);
4053 	WARN_ON(ret && ret != -EAGAIN);
4054 
4055 	while (1) {
4056 		int finishes_stage;
4057 
4058 		mutex_lock(&fs_info->cleaner_mutex);
4059 		ret = relocate_block_group(rc);
4060 		mutex_unlock(&fs_info->cleaner_mutex);
4061 		if (ret < 0)
4062 			err = ret;
4063 
4064 		finishes_stage = rc->stage;
4065 		/*
4066 		 * We may have gotten ENOSPC after we already dirtied some
4067 		 * extents.  If writeout happens while we're relocating a
4068 		 * different block group we could end up hitting the
4069 		 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
4070 		 * btrfs_reloc_cow_block.  Make sure we write everything out
4071 		 * properly so we don't trip over this problem, and then break
4072 		 * out of the loop if we hit an error.
4073 		 */
4074 		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4075 			ret = btrfs_wait_ordered_range(rc->data_inode, 0,
4076 						       (u64)-1);
4077 			if (ret)
4078 				err = ret;
4079 			invalidate_mapping_pages(rc->data_inode->i_mapping,
4080 						 0, -1);
4081 			rc->stage = UPDATE_DATA_PTRS;
4082 		}
4083 
4084 		if (err < 0)
4085 			goto out;
4086 
4087 		if (rc->extents_found == 0)
4088 			break;
4089 
4090 		btrfs_info(fs_info, "found %llu extents, stage: %s",
4091 			   rc->extents_found, stage_to_string(finishes_stage));
4092 	}
4093 
4094 	WARN_ON(rc->block_group->pinned > 0);
4095 	WARN_ON(rc->block_group->reserved > 0);
4096 	WARN_ON(rc->block_group->used > 0);
4097 out:
4098 	if (err && rw)
4099 		btrfs_dec_block_group_ro(rc->block_group);
4100 	iput(rc->data_inode);
4101 out_put_bg:
4102 	btrfs_put_block_group(bg);
4103 	reloc_chunk_end(fs_info);
4104 	free_reloc_control(rc);
4105 	return err;
4106 }
4107 
4108 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4109 {
4110 	struct btrfs_fs_info *fs_info = root->fs_info;
4111 	struct btrfs_trans_handle *trans;
4112 	int ret, err;
4113 
4114 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
4115 	if (IS_ERR(trans))
4116 		return PTR_ERR(trans);
4117 
4118 	memset(&root->root_item.drop_progress, 0,
4119 		sizeof(root->root_item.drop_progress));
4120 	btrfs_set_root_drop_level(&root->root_item, 0);
4121 	btrfs_set_root_refs(&root->root_item, 0);
4122 	ret = btrfs_update_root(trans, fs_info->tree_root,
4123 				&root->root_key, &root->root_item);
4124 
4125 	err = btrfs_end_transaction(trans);
4126 	if (err)
4127 		return err;
4128 	return ret;
4129 }
4130 
4131 /*
4132  * recover relocation interrupted by system crash.
4133  *
4134  * this function resumes merging reloc trees with corresponding fs trees.
4135  * this is important for keeping the sharing of tree blocks
4136  */
4137 int btrfs_recover_relocation(struct btrfs_fs_info *fs_info)
4138 {
4139 	LIST_HEAD(reloc_roots);
4140 	struct btrfs_key key;
4141 	struct btrfs_root *fs_root;
4142 	struct btrfs_root *reloc_root;
4143 	struct btrfs_path *path;
4144 	struct extent_buffer *leaf;
4145 	struct reloc_control *rc = NULL;
4146 	struct btrfs_trans_handle *trans;
4147 	int ret;
4148 	int err = 0;
4149 
4150 	path = btrfs_alloc_path();
4151 	if (!path)
4152 		return -ENOMEM;
4153 	path->reada = READA_BACK;
4154 
4155 	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4156 	key.type = BTRFS_ROOT_ITEM_KEY;
4157 	key.offset = (u64)-1;
4158 
4159 	while (1) {
4160 		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
4161 					path, 0, 0);
4162 		if (ret < 0) {
4163 			err = ret;
4164 			goto out;
4165 		}
4166 		if (ret > 0) {
4167 			if (path->slots[0] == 0)
4168 				break;
4169 			path->slots[0]--;
4170 		}
4171 		leaf = path->nodes[0];
4172 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4173 		btrfs_release_path(path);
4174 
4175 		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4176 		    key.type != BTRFS_ROOT_ITEM_KEY)
4177 			break;
4178 
4179 		reloc_root = btrfs_read_tree_root(fs_info->tree_root, &key);
4180 		if (IS_ERR(reloc_root)) {
4181 			err = PTR_ERR(reloc_root);
4182 			goto out;
4183 		}
4184 
4185 		set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
4186 		list_add(&reloc_root->root_list, &reloc_roots);
4187 
4188 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4189 			fs_root = btrfs_get_fs_root(fs_info,
4190 					reloc_root->root_key.offset, false);
4191 			if (IS_ERR(fs_root)) {
4192 				ret = PTR_ERR(fs_root);
4193 				if (ret != -ENOENT) {
4194 					err = ret;
4195 					goto out;
4196 				}
4197 				ret = mark_garbage_root(reloc_root);
4198 				if (ret < 0) {
4199 					err = ret;
4200 					goto out;
4201 				}
4202 			} else {
4203 				btrfs_put_root(fs_root);
4204 			}
4205 		}
4206 
4207 		if (key.offset == 0)
4208 			break;
4209 
4210 		key.offset--;
4211 	}
4212 	btrfs_release_path(path);
4213 
4214 	if (list_empty(&reloc_roots))
4215 		goto out;
4216 
4217 	rc = alloc_reloc_control(fs_info);
4218 	if (!rc) {
4219 		err = -ENOMEM;
4220 		goto out;
4221 	}
4222 
4223 	ret = reloc_chunk_start(fs_info);
4224 	if (ret < 0) {
4225 		err = ret;
4226 		goto out_end;
4227 	}
4228 
4229 	rc->extent_root = btrfs_extent_root(fs_info, 0);
4230 
4231 	set_reloc_control(rc);
4232 
4233 	trans = btrfs_join_transaction(rc->extent_root);
4234 	if (IS_ERR(trans)) {
4235 		err = PTR_ERR(trans);
4236 		goto out_unset;
4237 	}
4238 
4239 	rc->merge_reloc_tree = 1;
4240 
4241 	while (!list_empty(&reloc_roots)) {
4242 		reloc_root = list_entry(reloc_roots.next,
4243 					struct btrfs_root, root_list);
4244 		list_del(&reloc_root->root_list);
4245 
4246 		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4247 			list_add_tail(&reloc_root->root_list,
4248 				      &rc->reloc_roots);
4249 			continue;
4250 		}
4251 
4252 		fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
4253 					    false);
4254 		if (IS_ERR(fs_root)) {
4255 			err = PTR_ERR(fs_root);
4256 			list_add_tail(&reloc_root->root_list, &reloc_roots);
4257 			btrfs_end_transaction(trans);
4258 			goto out_unset;
4259 		}
4260 
4261 		err = __add_reloc_root(reloc_root);
4262 		ASSERT(err != -EEXIST);
4263 		if (err) {
4264 			list_add_tail(&reloc_root->root_list, &reloc_roots);
4265 			btrfs_put_root(fs_root);
4266 			btrfs_end_transaction(trans);
4267 			goto out_unset;
4268 		}
4269 		fs_root->reloc_root = btrfs_grab_root(reloc_root);
4270 		btrfs_put_root(fs_root);
4271 	}
4272 
4273 	err = btrfs_commit_transaction(trans);
4274 	if (err)
4275 		goto out_unset;
4276 
4277 	merge_reloc_roots(rc);
4278 
4279 	unset_reloc_control(rc);
4280 
4281 	trans = btrfs_join_transaction(rc->extent_root);
4282 	if (IS_ERR(trans)) {
4283 		err = PTR_ERR(trans);
4284 		goto out_clean;
4285 	}
4286 	err = btrfs_commit_transaction(trans);
4287 out_clean:
4288 	ret = clean_dirty_subvols(rc);
4289 	if (ret < 0 && !err)
4290 		err = ret;
4291 out_unset:
4292 	unset_reloc_control(rc);
4293 out_end:
4294 	reloc_chunk_end(fs_info);
4295 	free_reloc_control(rc);
4296 out:
4297 	free_reloc_roots(&reloc_roots);
4298 
4299 	btrfs_free_path(path);
4300 
4301 	if (err == 0) {
4302 		/* cleanup orphan inode in data relocation tree */
4303 		fs_root = btrfs_grab_root(fs_info->data_reloc_root);
4304 		ASSERT(fs_root);
4305 		err = btrfs_orphan_cleanup(fs_root);
4306 		btrfs_put_root(fs_root);
4307 	}
4308 	return err;
4309 }
4310 
4311 /*
4312  * helper to add ordered checksum for data relocation.
4313  *
4314  * cloning checksum properly handles the nodatasum extents.
4315  * it also saves CPU time to re-calculate the checksum.
4316  */
4317 int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len)
4318 {
4319 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
4320 	struct btrfs_root *csum_root;
4321 	struct btrfs_ordered_sum *sums;
4322 	struct btrfs_ordered_extent *ordered;
4323 	int ret;
4324 	u64 disk_bytenr;
4325 	u64 new_bytenr;
4326 	LIST_HEAD(list);
4327 
4328 	ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4329 	BUG_ON(ordered->file_offset != file_pos || ordered->num_bytes != len);
4330 
4331 	disk_bytenr = file_pos + inode->index_cnt;
4332 	csum_root = btrfs_csum_root(fs_info, disk_bytenr);
4333 	ret = btrfs_lookup_csums_range(csum_root, disk_bytenr,
4334 				       disk_bytenr + len - 1, &list, 0, false);
4335 	if (ret)
4336 		goto out;
4337 
4338 	while (!list_empty(&list)) {
4339 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4340 		list_del_init(&sums->list);
4341 
4342 		/*
4343 		 * We need to offset the new_bytenr based on where the csum is.
4344 		 * We need to do this because we will read in entire prealloc
4345 		 * extents but we may have written to say the middle of the
4346 		 * prealloc extent, so we need to make sure the csum goes with
4347 		 * the right disk offset.
4348 		 *
4349 		 * We can do this because the data reloc inode refers strictly
4350 		 * to the on disk bytes, so we don't have to worry about
4351 		 * disk_len vs real len like with real inodes since it's all
4352 		 * disk length.
4353 		 */
4354 		new_bytenr = ordered->disk_bytenr + sums->bytenr - disk_bytenr;
4355 		sums->bytenr = new_bytenr;
4356 
4357 		btrfs_add_ordered_sum(ordered, sums);
4358 	}
4359 out:
4360 	btrfs_put_ordered_extent(ordered);
4361 	return ret;
4362 }
4363 
4364 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4365 			  struct btrfs_root *root, struct extent_buffer *buf,
4366 			  struct extent_buffer *cow)
4367 {
4368 	struct btrfs_fs_info *fs_info = root->fs_info;
4369 	struct reloc_control *rc;
4370 	struct btrfs_backref_node *node;
4371 	int first_cow = 0;
4372 	int level;
4373 	int ret = 0;
4374 
4375 	rc = fs_info->reloc_ctl;
4376 	if (!rc)
4377 		return 0;
4378 
4379 	BUG_ON(rc->stage == UPDATE_DATA_PTRS && btrfs_is_data_reloc_root(root));
4380 
4381 	level = btrfs_header_level(buf);
4382 	if (btrfs_header_generation(buf) <=
4383 	    btrfs_root_last_snapshot(&root->root_item))
4384 		first_cow = 1;
4385 
4386 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4387 	    rc->create_reloc_tree) {
4388 		WARN_ON(!first_cow && level == 0);
4389 
4390 		node = rc->backref_cache.path[level];
4391 		BUG_ON(node->bytenr != buf->start &&
4392 		       node->new_bytenr != buf->start);
4393 
4394 		btrfs_backref_drop_node_buffer(node);
4395 		atomic_inc(&cow->refs);
4396 		node->eb = cow;
4397 		node->new_bytenr = cow->start;
4398 
4399 		if (!node->pending) {
4400 			list_move_tail(&node->list,
4401 				       &rc->backref_cache.pending[level]);
4402 			node->pending = 1;
4403 		}
4404 
4405 		if (first_cow)
4406 			mark_block_processed(rc, node);
4407 
4408 		if (first_cow && level > 0)
4409 			rc->nodes_relocated += buf->len;
4410 	}
4411 
4412 	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4413 		ret = replace_file_extents(trans, rc, root, cow);
4414 	return ret;
4415 }
4416 
4417 /*
4418  * called before creating snapshot. it calculates metadata reservation
4419  * required for relocating tree blocks in the snapshot
4420  */
4421 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4422 			      u64 *bytes_to_reserve)
4423 {
4424 	struct btrfs_root *root = pending->root;
4425 	struct reloc_control *rc = root->fs_info->reloc_ctl;
4426 
4427 	if (!rc || !have_reloc_root(root))
4428 		return;
4429 
4430 	if (!rc->merge_reloc_tree)
4431 		return;
4432 
4433 	root = root->reloc_root;
4434 	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4435 	/*
4436 	 * relocation is in the stage of merging trees. the space
4437 	 * used by merging a reloc tree is twice the size of
4438 	 * relocated tree nodes in the worst case. half for cowing
4439 	 * the reloc tree, half for cowing the fs tree. the space
4440 	 * used by cowing the reloc tree will be freed after the
4441 	 * tree is dropped. if we create snapshot, cowing the fs
4442 	 * tree may use more space than it frees. so we need
4443 	 * reserve extra space.
4444 	 */
4445 	*bytes_to_reserve += rc->nodes_relocated;
4446 }
4447 
4448 /*
4449  * called after snapshot is created. migrate block reservation
4450  * and create reloc root for the newly created snapshot
4451  *
4452  * This is similar to btrfs_init_reloc_root(), we come out of here with two
4453  * references held on the reloc_root, one for root->reloc_root and one for
4454  * rc->reloc_roots.
4455  */
4456 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4457 			       struct btrfs_pending_snapshot *pending)
4458 {
4459 	struct btrfs_root *root = pending->root;
4460 	struct btrfs_root *reloc_root;
4461 	struct btrfs_root *new_root;
4462 	struct reloc_control *rc = root->fs_info->reloc_ctl;
4463 	int ret;
4464 
4465 	if (!rc || !have_reloc_root(root))
4466 		return 0;
4467 
4468 	rc = root->fs_info->reloc_ctl;
4469 	rc->merging_rsv_size += rc->nodes_relocated;
4470 
4471 	if (rc->merge_reloc_tree) {
4472 		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4473 					      rc->block_rsv,
4474 					      rc->nodes_relocated, true);
4475 		if (ret)
4476 			return ret;
4477 	}
4478 
4479 	new_root = pending->snap;
4480 	reloc_root = create_reloc_root(trans, root->reloc_root,
4481 				       new_root->root_key.objectid);
4482 	if (IS_ERR(reloc_root))
4483 		return PTR_ERR(reloc_root);
4484 
4485 	ret = __add_reloc_root(reloc_root);
4486 	ASSERT(ret != -EEXIST);
4487 	if (ret) {
4488 		/* Pairs with create_reloc_root */
4489 		btrfs_put_root(reloc_root);
4490 		return ret;
4491 	}
4492 	new_root->reloc_root = btrfs_grab_root(reloc_root);
4493 
4494 	if (rc->create_reloc_tree)
4495 		ret = clone_backref_node(trans, rc, root, reloc_root);
4496 	return ret;
4497 }
4498