1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2009 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/pagemap.h> 8 #include <linux/writeback.h> 9 #include <linux/blkdev.h> 10 #include <linux/rbtree.h> 11 #include <linux/slab.h> 12 #include <linux/error-injection.h> 13 #include "ctree.h" 14 #include "disk-io.h" 15 #include "transaction.h" 16 #include "volumes.h" 17 #include "locking.h" 18 #include "btrfs_inode.h" 19 #include "async-thread.h" 20 #include "free-space-cache.h" 21 #include "qgroup.h" 22 #include "print-tree.h" 23 #include "delalloc-space.h" 24 #include "block-group.h" 25 #include "backref.h" 26 #include "misc.h" 27 #include "subpage.h" 28 #include "zoned.h" 29 #include "inode-item.h" 30 #include "space-info.h" 31 #include "fs.h" 32 #include "accessors.h" 33 #include "extent-tree.h" 34 #include "root-tree.h" 35 #include "file-item.h" 36 #include "relocation.h" 37 #include "super.h" 38 #include "tree-checker.h" 39 40 /* 41 * Relocation overview 42 * 43 * [What does relocation do] 44 * 45 * The objective of relocation is to relocate all extents of the target block 46 * group to other block groups. 47 * This is utilized by resize (shrink only), profile converting, compacting 48 * space, or balance routine to spread chunks over devices. 49 * 50 * Before | After 51 * ------------------------------------------------------------------ 52 * BG A: 10 data extents | BG A: deleted 53 * BG B: 2 data extents | BG B: 10 data extents (2 old + 8 relocated) 54 * BG C: 1 extents | BG C: 3 data extents (1 old + 2 relocated) 55 * 56 * [How does relocation work] 57 * 58 * 1. Mark the target block group read-only 59 * New extents won't be allocated from the target block group. 60 * 61 * 2.1 Record each extent in the target block group 62 * To build a proper map of extents to be relocated. 63 * 64 * 2.2 Build data reloc tree and reloc trees 65 * Data reloc tree will contain an inode, recording all newly relocated 66 * data extents. 67 * There will be only one data reloc tree for one data block group. 68 * 69 * Reloc tree will be a special snapshot of its source tree, containing 70 * relocated tree blocks. 71 * Each tree referring to a tree block in target block group will get its 72 * reloc tree built. 73 * 74 * 2.3 Swap source tree with its corresponding reloc tree 75 * Each involved tree only refers to new extents after swap. 76 * 77 * 3. Cleanup reloc trees and data reloc tree. 78 * As old extents in the target block group are still referenced by reloc 79 * trees, we need to clean them up before really freeing the target block 80 * group. 81 * 82 * The main complexity is in steps 2.2 and 2.3. 83 * 84 * The entry point of relocation is relocate_block_group() function. 85 */ 86 87 #define RELOCATION_RESERVED_NODES 256 88 /* 89 * map address of tree root to tree 90 */ 91 struct mapping_node { 92 struct { 93 struct rb_node rb_node; 94 u64 bytenr; 95 }; /* Use rb_simle_node for search/insert */ 96 void *data; 97 }; 98 99 struct mapping_tree { 100 struct rb_root rb_root; 101 spinlock_t lock; 102 }; 103 104 /* 105 * present a tree block to process 106 */ 107 struct tree_block { 108 struct { 109 struct rb_node rb_node; 110 u64 bytenr; 111 }; /* Use rb_simple_node for search/insert */ 112 u64 owner; 113 struct btrfs_key key; 114 u8 level; 115 bool key_ready; 116 }; 117 118 #define MAX_EXTENTS 128 119 120 struct file_extent_cluster { 121 u64 start; 122 u64 end; 123 u64 boundary[MAX_EXTENTS]; 124 unsigned int nr; 125 u64 owning_root; 126 }; 127 128 /* Stages of data relocation. */ 129 enum reloc_stage { 130 MOVE_DATA_EXTENTS, 131 UPDATE_DATA_PTRS 132 }; 133 134 struct reloc_control { 135 /* block group to relocate */ 136 struct btrfs_block_group *block_group; 137 /* extent tree */ 138 struct btrfs_root *extent_root; 139 /* inode for moving data */ 140 struct inode *data_inode; 141 142 struct btrfs_block_rsv *block_rsv; 143 144 struct btrfs_backref_cache backref_cache; 145 146 struct file_extent_cluster cluster; 147 /* tree blocks have been processed */ 148 struct extent_io_tree processed_blocks; 149 /* map start of tree root to corresponding reloc tree */ 150 struct mapping_tree reloc_root_tree; 151 /* list of reloc trees */ 152 struct list_head reloc_roots; 153 /* list of subvolume trees that get relocated */ 154 struct list_head dirty_subvol_roots; 155 /* size of metadata reservation for merging reloc trees */ 156 u64 merging_rsv_size; 157 /* size of relocated tree nodes */ 158 u64 nodes_relocated; 159 /* reserved size for block group relocation*/ 160 u64 reserved_bytes; 161 162 u64 search_start; 163 u64 extents_found; 164 165 enum reloc_stage stage; 166 bool create_reloc_tree; 167 bool merge_reloc_tree; 168 bool found_file_extent; 169 }; 170 171 static void mark_block_processed(struct reloc_control *rc, 172 struct btrfs_backref_node *node) 173 { 174 u32 blocksize; 175 176 if (node->level == 0 || 177 in_range(node->bytenr, rc->block_group->start, 178 rc->block_group->length)) { 179 blocksize = rc->extent_root->fs_info->nodesize; 180 set_extent_bit(&rc->processed_blocks, node->bytenr, 181 node->bytenr + blocksize - 1, EXTENT_DIRTY, NULL); 182 } 183 node->processed = 1; 184 } 185 186 /* 187 * walk up backref nodes until reach node presents tree root 188 */ 189 static struct btrfs_backref_node *walk_up_backref( 190 struct btrfs_backref_node *node, 191 struct btrfs_backref_edge *edges[], int *index) 192 { 193 struct btrfs_backref_edge *edge; 194 int idx = *index; 195 196 while (!list_empty(&node->upper)) { 197 edge = list_entry(node->upper.next, 198 struct btrfs_backref_edge, list[LOWER]); 199 edges[idx++] = edge; 200 node = edge->node[UPPER]; 201 } 202 BUG_ON(node->detached); 203 *index = idx; 204 return node; 205 } 206 207 /* 208 * walk down backref nodes to find start of next reference path 209 */ 210 static struct btrfs_backref_node *walk_down_backref( 211 struct btrfs_backref_edge *edges[], int *index) 212 { 213 struct btrfs_backref_edge *edge; 214 struct btrfs_backref_node *lower; 215 int idx = *index; 216 217 while (idx > 0) { 218 edge = edges[idx - 1]; 219 lower = edge->node[LOWER]; 220 if (list_is_last(&edge->list[LOWER], &lower->upper)) { 221 idx--; 222 continue; 223 } 224 edge = list_entry(edge->list[LOWER].next, 225 struct btrfs_backref_edge, list[LOWER]); 226 edges[idx - 1] = edge; 227 *index = idx; 228 return edge->node[UPPER]; 229 } 230 *index = 0; 231 return NULL; 232 } 233 234 static void update_backref_node(struct btrfs_backref_cache *cache, 235 struct btrfs_backref_node *node, u64 bytenr) 236 { 237 struct rb_node *rb_node; 238 rb_erase(&node->rb_node, &cache->rb_root); 239 node->bytenr = bytenr; 240 rb_node = rb_simple_insert(&cache->rb_root, node->bytenr, &node->rb_node); 241 if (rb_node) 242 btrfs_backref_panic(cache->fs_info, bytenr, -EEXIST); 243 } 244 245 /* 246 * update backref cache after a transaction commit 247 */ 248 static int update_backref_cache(struct btrfs_trans_handle *trans, 249 struct btrfs_backref_cache *cache) 250 { 251 struct btrfs_backref_node *node; 252 int level = 0; 253 254 if (cache->last_trans == 0) { 255 cache->last_trans = trans->transid; 256 return 0; 257 } 258 259 if (cache->last_trans == trans->transid) 260 return 0; 261 262 /* 263 * detached nodes are used to avoid unnecessary backref 264 * lookup. transaction commit changes the extent tree. 265 * so the detached nodes are no longer useful. 266 */ 267 while (!list_empty(&cache->detached)) { 268 node = list_entry(cache->detached.next, 269 struct btrfs_backref_node, list); 270 btrfs_backref_cleanup_node(cache, node); 271 } 272 273 while (!list_empty(&cache->changed)) { 274 node = list_entry(cache->changed.next, 275 struct btrfs_backref_node, list); 276 list_del_init(&node->list); 277 BUG_ON(node->pending); 278 update_backref_node(cache, node, node->new_bytenr); 279 } 280 281 /* 282 * some nodes can be left in the pending list if there were 283 * errors during processing the pending nodes. 284 */ 285 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 286 list_for_each_entry(node, &cache->pending[level], list) { 287 BUG_ON(!node->pending); 288 if (node->bytenr == node->new_bytenr) 289 continue; 290 update_backref_node(cache, node, node->new_bytenr); 291 } 292 } 293 294 cache->last_trans = 0; 295 return 1; 296 } 297 298 static bool reloc_root_is_dead(const struct btrfs_root *root) 299 { 300 /* 301 * Pair with set_bit/clear_bit in clean_dirty_subvols and 302 * btrfs_update_reloc_root. We need to see the updated bit before 303 * trying to access reloc_root 304 */ 305 smp_rmb(); 306 if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state)) 307 return true; 308 return false; 309 } 310 311 /* 312 * Check if this subvolume tree has valid reloc tree. 313 * 314 * Reloc tree after swap is considered dead, thus not considered as valid. 315 * This is enough for most callers, as they don't distinguish dead reloc root 316 * from no reloc root. But btrfs_should_ignore_reloc_root() below is a 317 * special case. 318 */ 319 static bool have_reloc_root(const struct btrfs_root *root) 320 { 321 if (reloc_root_is_dead(root)) 322 return false; 323 if (!root->reloc_root) 324 return false; 325 return true; 326 } 327 328 bool btrfs_should_ignore_reloc_root(const struct btrfs_root *root) 329 { 330 struct btrfs_root *reloc_root; 331 332 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 333 return false; 334 335 /* This root has been merged with its reloc tree, we can ignore it */ 336 if (reloc_root_is_dead(root)) 337 return true; 338 339 reloc_root = root->reloc_root; 340 if (!reloc_root) 341 return false; 342 343 if (btrfs_header_generation(reloc_root->commit_root) == 344 root->fs_info->running_transaction->transid) 345 return false; 346 /* 347 * If there is reloc tree and it was created in previous transaction 348 * backref lookup can find the reloc tree, so backref node for the fs 349 * tree root is useless for relocation. 350 */ 351 return true; 352 } 353 354 /* 355 * find reloc tree by address of tree root 356 */ 357 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr) 358 { 359 struct reloc_control *rc = fs_info->reloc_ctl; 360 struct rb_node *rb_node; 361 struct mapping_node *node; 362 struct btrfs_root *root = NULL; 363 364 ASSERT(rc); 365 spin_lock(&rc->reloc_root_tree.lock); 366 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr); 367 if (rb_node) { 368 node = rb_entry(rb_node, struct mapping_node, rb_node); 369 root = node->data; 370 } 371 spin_unlock(&rc->reloc_root_tree.lock); 372 return btrfs_grab_root(root); 373 } 374 375 /* 376 * For useless nodes, do two major clean ups: 377 * 378 * - Cleanup the children edges and nodes 379 * If child node is also orphan (no parent) during cleanup, then the child 380 * node will also be cleaned up. 381 * 382 * - Freeing up leaves (level 0), keeps nodes detached 383 * For nodes, the node is still cached as "detached" 384 * 385 * Return false if @node is not in the @useless_nodes list. 386 * Return true if @node is in the @useless_nodes list. 387 */ 388 static bool handle_useless_nodes(struct reloc_control *rc, 389 struct btrfs_backref_node *node) 390 { 391 struct btrfs_backref_cache *cache = &rc->backref_cache; 392 struct list_head *useless_node = &cache->useless_node; 393 bool ret = false; 394 395 while (!list_empty(useless_node)) { 396 struct btrfs_backref_node *cur; 397 398 cur = list_first_entry(useless_node, struct btrfs_backref_node, 399 list); 400 list_del_init(&cur->list); 401 402 /* Only tree root nodes can be added to @useless_nodes */ 403 ASSERT(list_empty(&cur->upper)); 404 405 if (cur == node) 406 ret = true; 407 408 /* The node is the lowest node */ 409 if (cur->lowest) { 410 list_del_init(&cur->lower); 411 cur->lowest = 0; 412 } 413 414 /* Cleanup the lower edges */ 415 while (!list_empty(&cur->lower)) { 416 struct btrfs_backref_edge *edge; 417 struct btrfs_backref_node *lower; 418 419 edge = list_entry(cur->lower.next, 420 struct btrfs_backref_edge, list[UPPER]); 421 list_del(&edge->list[UPPER]); 422 list_del(&edge->list[LOWER]); 423 lower = edge->node[LOWER]; 424 btrfs_backref_free_edge(cache, edge); 425 426 /* Child node is also orphan, queue for cleanup */ 427 if (list_empty(&lower->upper)) 428 list_add(&lower->list, useless_node); 429 } 430 /* Mark this block processed for relocation */ 431 mark_block_processed(rc, cur); 432 433 /* 434 * Backref nodes for tree leaves are deleted from the cache. 435 * Backref nodes for upper level tree blocks are left in the 436 * cache to avoid unnecessary backref lookup. 437 */ 438 if (cur->level > 0) { 439 list_add(&cur->list, &cache->detached); 440 cur->detached = 1; 441 } else { 442 rb_erase(&cur->rb_node, &cache->rb_root); 443 btrfs_backref_free_node(cache, cur); 444 } 445 } 446 return ret; 447 } 448 449 /* 450 * Build backref tree for a given tree block. Root of the backref tree 451 * corresponds the tree block, leaves of the backref tree correspond roots of 452 * b-trees that reference the tree block. 453 * 454 * The basic idea of this function is check backrefs of a given block to find 455 * upper level blocks that reference the block, and then check backrefs of 456 * these upper level blocks recursively. The recursion stops when tree root is 457 * reached or backrefs for the block is cached. 458 * 459 * NOTE: if we find that backrefs for a block are cached, we know backrefs for 460 * all upper level blocks that directly/indirectly reference the block are also 461 * cached. 462 */ 463 static noinline_for_stack struct btrfs_backref_node *build_backref_tree( 464 struct btrfs_trans_handle *trans, 465 struct reloc_control *rc, struct btrfs_key *node_key, 466 int level, u64 bytenr) 467 { 468 struct btrfs_backref_iter *iter; 469 struct btrfs_backref_cache *cache = &rc->backref_cache; 470 /* For searching parent of TREE_BLOCK_REF */ 471 struct btrfs_path *path; 472 struct btrfs_backref_node *cur; 473 struct btrfs_backref_node *node = NULL; 474 struct btrfs_backref_edge *edge; 475 int ret; 476 int err = 0; 477 478 iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info); 479 if (!iter) 480 return ERR_PTR(-ENOMEM); 481 path = btrfs_alloc_path(); 482 if (!path) { 483 err = -ENOMEM; 484 goto out; 485 } 486 487 node = btrfs_backref_alloc_node(cache, bytenr, level); 488 if (!node) { 489 err = -ENOMEM; 490 goto out; 491 } 492 493 node->lowest = 1; 494 cur = node; 495 496 /* Breadth-first search to build backref cache */ 497 do { 498 ret = btrfs_backref_add_tree_node(trans, cache, path, iter, 499 node_key, cur); 500 if (ret < 0) { 501 err = ret; 502 goto out; 503 } 504 edge = list_first_entry_or_null(&cache->pending_edge, 505 struct btrfs_backref_edge, list[UPPER]); 506 /* 507 * The pending list isn't empty, take the first block to 508 * process 509 */ 510 if (edge) { 511 list_del_init(&edge->list[UPPER]); 512 cur = edge->node[UPPER]; 513 } 514 } while (edge); 515 516 /* Finish the upper linkage of newly added edges/nodes */ 517 ret = btrfs_backref_finish_upper_links(cache, node); 518 if (ret < 0) { 519 err = ret; 520 goto out; 521 } 522 523 if (handle_useless_nodes(rc, node)) 524 node = NULL; 525 out: 526 btrfs_free_path(iter->path); 527 kfree(iter); 528 btrfs_free_path(path); 529 if (err) { 530 btrfs_backref_error_cleanup(cache, node); 531 return ERR_PTR(err); 532 } 533 ASSERT(!node || !node->detached); 534 ASSERT(list_empty(&cache->useless_node) && 535 list_empty(&cache->pending_edge)); 536 return node; 537 } 538 539 /* 540 * helper to add backref node for the newly created snapshot. 541 * the backref node is created by cloning backref node that 542 * corresponds to root of source tree 543 */ 544 static int clone_backref_node(struct btrfs_trans_handle *trans, 545 struct reloc_control *rc, 546 const struct btrfs_root *src, 547 struct btrfs_root *dest) 548 { 549 struct btrfs_root *reloc_root = src->reloc_root; 550 struct btrfs_backref_cache *cache = &rc->backref_cache; 551 struct btrfs_backref_node *node = NULL; 552 struct btrfs_backref_node *new_node; 553 struct btrfs_backref_edge *edge; 554 struct btrfs_backref_edge *new_edge; 555 struct rb_node *rb_node; 556 557 if (cache->last_trans > 0) 558 update_backref_cache(trans, cache); 559 560 rb_node = rb_simple_search(&cache->rb_root, src->commit_root->start); 561 if (rb_node) { 562 node = rb_entry(rb_node, struct btrfs_backref_node, rb_node); 563 if (node->detached) 564 node = NULL; 565 else 566 BUG_ON(node->new_bytenr != reloc_root->node->start); 567 } 568 569 if (!node) { 570 rb_node = rb_simple_search(&cache->rb_root, 571 reloc_root->commit_root->start); 572 if (rb_node) { 573 node = rb_entry(rb_node, struct btrfs_backref_node, 574 rb_node); 575 BUG_ON(node->detached); 576 } 577 } 578 579 if (!node) 580 return 0; 581 582 new_node = btrfs_backref_alloc_node(cache, dest->node->start, 583 node->level); 584 if (!new_node) 585 return -ENOMEM; 586 587 new_node->lowest = node->lowest; 588 new_node->checked = 1; 589 new_node->root = btrfs_grab_root(dest); 590 ASSERT(new_node->root); 591 592 if (!node->lowest) { 593 list_for_each_entry(edge, &node->lower, list[UPPER]) { 594 new_edge = btrfs_backref_alloc_edge(cache); 595 if (!new_edge) 596 goto fail; 597 598 btrfs_backref_link_edge(new_edge, edge->node[LOWER], 599 new_node, LINK_UPPER); 600 } 601 } else { 602 list_add_tail(&new_node->lower, &cache->leaves); 603 } 604 605 rb_node = rb_simple_insert(&cache->rb_root, new_node->bytenr, 606 &new_node->rb_node); 607 if (rb_node) 608 btrfs_backref_panic(trans->fs_info, new_node->bytenr, -EEXIST); 609 610 if (!new_node->lowest) { 611 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) { 612 list_add_tail(&new_edge->list[LOWER], 613 &new_edge->node[LOWER]->upper); 614 } 615 } 616 return 0; 617 fail: 618 while (!list_empty(&new_node->lower)) { 619 new_edge = list_entry(new_node->lower.next, 620 struct btrfs_backref_edge, list[UPPER]); 621 list_del(&new_edge->list[UPPER]); 622 btrfs_backref_free_edge(cache, new_edge); 623 } 624 btrfs_backref_free_node(cache, new_node); 625 return -ENOMEM; 626 } 627 628 /* 629 * helper to add 'address of tree root -> reloc tree' mapping 630 */ 631 static int __add_reloc_root(struct btrfs_root *root) 632 { 633 struct btrfs_fs_info *fs_info = root->fs_info; 634 struct rb_node *rb_node; 635 struct mapping_node *node; 636 struct reloc_control *rc = fs_info->reloc_ctl; 637 638 node = kmalloc(sizeof(*node), GFP_NOFS); 639 if (!node) 640 return -ENOMEM; 641 642 node->bytenr = root->commit_root->start; 643 node->data = root; 644 645 spin_lock(&rc->reloc_root_tree.lock); 646 rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root, 647 node->bytenr, &node->rb_node); 648 spin_unlock(&rc->reloc_root_tree.lock); 649 if (rb_node) { 650 btrfs_err(fs_info, 651 "Duplicate root found for start=%llu while inserting into relocation tree", 652 node->bytenr); 653 return -EEXIST; 654 } 655 656 list_add_tail(&root->root_list, &rc->reloc_roots); 657 return 0; 658 } 659 660 /* 661 * helper to delete the 'address of tree root -> reloc tree' 662 * mapping 663 */ 664 static void __del_reloc_root(struct btrfs_root *root) 665 { 666 struct btrfs_fs_info *fs_info = root->fs_info; 667 struct rb_node *rb_node; 668 struct mapping_node *node = NULL; 669 struct reloc_control *rc = fs_info->reloc_ctl; 670 bool put_ref = false; 671 672 if (rc && root->node) { 673 spin_lock(&rc->reloc_root_tree.lock); 674 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, 675 root->commit_root->start); 676 if (rb_node) { 677 node = rb_entry(rb_node, struct mapping_node, rb_node); 678 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); 679 RB_CLEAR_NODE(&node->rb_node); 680 } 681 spin_unlock(&rc->reloc_root_tree.lock); 682 ASSERT(!node || (struct btrfs_root *)node->data == root); 683 } 684 685 /* 686 * We only put the reloc root here if it's on the list. There's a lot 687 * of places where the pattern is to splice the rc->reloc_roots, process 688 * the reloc roots, and then add the reloc root back onto 689 * rc->reloc_roots. If we call __del_reloc_root while it's off of the 690 * list we don't want the reference being dropped, because the guy 691 * messing with the list is in charge of the reference. 692 */ 693 spin_lock(&fs_info->trans_lock); 694 if (!list_empty(&root->root_list)) { 695 put_ref = true; 696 list_del_init(&root->root_list); 697 } 698 spin_unlock(&fs_info->trans_lock); 699 if (put_ref) 700 btrfs_put_root(root); 701 kfree(node); 702 } 703 704 /* 705 * helper to update the 'address of tree root -> reloc tree' 706 * mapping 707 */ 708 static int __update_reloc_root(struct btrfs_root *root) 709 { 710 struct btrfs_fs_info *fs_info = root->fs_info; 711 struct rb_node *rb_node; 712 struct mapping_node *node = NULL; 713 struct reloc_control *rc = fs_info->reloc_ctl; 714 715 spin_lock(&rc->reloc_root_tree.lock); 716 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, 717 root->commit_root->start); 718 if (rb_node) { 719 node = rb_entry(rb_node, struct mapping_node, rb_node); 720 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); 721 } 722 spin_unlock(&rc->reloc_root_tree.lock); 723 724 if (!node) 725 return 0; 726 BUG_ON((struct btrfs_root *)node->data != root); 727 728 spin_lock(&rc->reloc_root_tree.lock); 729 node->bytenr = root->node->start; 730 rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root, 731 node->bytenr, &node->rb_node); 732 spin_unlock(&rc->reloc_root_tree.lock); 733 if (rb_node) 734 btrfs_backref_panic(fs_info, node->bytenr, -EEXIST); 735 return 0; 736 } 737 738 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans, 739 struct btrfs_root *root, u64 objectid) 740 { 741 struct btrfs_fs_info *fs_info = root->fs_info; 742 struct btrfs_root *reloc_root; 743 struct extent_buffer *eb; 744 struct btrfs_root_item *root_item; 745 struct btrfs_key root_key; 746 int ret = 0; 747 bool must_abort = false; 748 749 root_item = kmalloc(sizeof(*root_item), GFP_NOFS); 750 if (!root_item) 751 return ERR_PTR(-ENOMEM); 752 753 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID; 754 root_key.type = BTRFS_ROOT_ITEM_KEY; 755 root_key.offset = objectid; 756 757 if (root->root_key.objectid == objectid) { 758 u64 commit_root_gen; 759 760 /* called by btrfs_init_reloc_root */ 761 ret = btrfs_copy_root(trans, root, root->commit_root, &eb, 762 BTRFS_TREE_RELOC_OBJECTID); 763 if (ret) 764 goto fail; 765 766 /* 767 * Set the last_snapshot field to the generation of the commit 768 * root - like this ctree.c:btrfs_block_can_be_shared() behaves 769 * correctly (returns true) when the relocation root is created 770 * either inside the critical section of a transaction commit 771 * (through transaction.c:qgroup_account_snapshot()) and when 772 * it's created before the transaction commit is started. 773 */ 774 commit_root_gen = btrfs_header_generation(root->commit_root); 775 btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen); 776 } else { 777 /* 778 * called by btrfs_reloc_post_snapshot_hook. 779 * the source tree is a reloc tree, all tree blocks 780 * modified after it was created have RELOC flag 781 * set in their headers. so it's OK to not update 782 * the 'last_snapshot'. 783 */ 784 ret = btrfs_copy_root(trans, root, root->node, &eb, 785 BTRFS_TREE_RELOC_OBJECTID); 786 if (ret) 787 goto fail; 788 } 789 790 /* 791 * We have changed references at this point, we must abort the 792 * transaction if anything fails. 793 */ 794 must_abort = true; 795 796 memcpy(root_item, &root->root_item, sizeof(*root_item)); 797 btrfs_set_root_bytenr(root_item, eb->start); 798 btrfs_set_root_level(root_item, btrfs_header_level(eb)); 799 btrfs_set_root_generation(root_item, trans->transid); 800 801 if (root->root_key.objectid == objectid) { 802 btrfs_set_root_refs(root_item, 0); 803 memset(&root_item->drop_progress, 0, 804 sizeof(struct btrfs_disk_key)); 805 btrfs_set_root_drop_level(root_item, 0); 806 } 807 808 btrfs_tree_unlock(eb); 809 free_extent_buffer(eb); 810 811 ret = btrfs_insert_root(trans, fs_info->tree_root, 812 &root_key, root_item); 813 if (ret) 814 goto fail; 815 816 kfree(root_item); 817 818 reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key); 819 if (IS_ERR(reloc_root)) { 820 ret = PTR_ERR(reloc_root); 821 goto abort; 822 } 823 set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state); 824 reloc_root->last_trans = trans->transid; 825 return reloc_root; 826 fail: 827 kfree(root_item); 828 abort: 829 if (must_abort) 830 btrfs_abort_transaction(trans, ret); 831 return ERR_PTR(ret); 832 } 833 834 /* 835 * create reloc tree for a given fs tree. reloc tree is just a 836 * snapshot of the fs tree with special root objectid. 837 * 838 * The reloc_root comes out of here with two references, one for 839 * root->reloc_root, and another for being on the rc->reloc_roots list. 840 */ 841 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans, 842 struct btrfs_root *root) 843 { 844 struct btrfs_fs_info *fs_info = root->fs_info; 845 struct btrfs_root *reloc_root; 846 struct reloc_control *rc = fs_info->reloc_ctl; 847 struct btrfs_block_rsv *rsv; 848 int clear_rsv = 0; 849 int ret; 850 851 if (!rc) 852 return 0; 853 854 /* 855 * The subvolume has reloc tree but the swap is finished, no need to 856 * create/update the dead reloc tree 857 */ 858 if (reloc_root_is_dead(root)) 859 return 0; 860 861 /* 862 * This is subtle but important. We do not do 863 * record_root_in_transaction for reloc roots, instead we record their 864 * corresponding fs root, and then here we update the last trans for the 865 * reloc root. This means that we have to do this for the entire life 866 * of the reloc root, regardless of which stage of the relocation we are 867 * in. 868 */ 869 if (root->reloc_root) { 870 reloc_root = root->reloc_root; 871 reloc_root->last_trans = trans->transid; 872 return 0; 873 } 874 875 /* 876 * We are merging reloc roots, we do not need new reloc trees. Also 877 * reloc trees never need their own reloc tree. 878 */ 879 if (!rc->create_reloc_tree || 880 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 881 return 0; 882 883 if (!trans->reloc_reserved) { 884 rsv = trans->block_rsv; 885 trans->block_rsv = rc->block_rsv; 886 clear_rsv = 1; 887 } 888 reloc_root = create_reloc_root(trans, root, root->root_key.objectid); 889 if (clear_rsv) 890 trans->block_rsv = rsv; 891 if (IS_ERR(reloc_root)) 892 return PTR_ERR(reloc_root); 893 894 ret = __add_reloc_root(reloc_root); 895 ASSERT(ret != -EEXIST); 896 if (ret) { 897 /* Pairs with create_reloc_root */ 898 btrfs_put_root(reloc_root); 899 return ret; 900 } 901 root->reloc_root = btrfs_grab_root(reloc_root); 902 return 0; 903 } 904 905 /* 906 * update root item of reloc tree 907 */ 908 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans, 909 struct btrfs_root *root) 910 { 911 struct btrfs_fs_info *fs_info = root->fs_info; 912 struct btrfs_root *reloc_root; 913 struct btrfs_root_item *root_item; 914 int ret; 915 916 if (!have_reloc_root(root)) 917 return 0; 918 919 reloc_root = root->reloc_root; 920 root_item = &reloc_root->root_item; 921 922 /* 923 * We are probably ok here, but __del_reloc_root() will drop its ref of 924 * the root. We have the ref for root->reloc_root, but just in case 925 * hold it while we update the reloc root. 926 */ 927 btrfs_grab_root(reloc_root); 928 929 /* root->reloc_root will stay until current relocation finished */ 930 if (fs_info->reloc_ctl->merge_reloc_tree && 931 btrfs_root_refs(root_item) == 0) { 932 set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state); 933 /* 934 * Mark the tree as dead before we change reloc_root so 935 * have_reloc_root will not touch it from now on. 936 */ 937 smp_wmb(); 938 __del_reloc_root(reloc_root); 939 } 940 941 if (reloc_root->commit_root != reloc_root->node) { 942 __update_reloc_root(reloc_root); 943 btrfs_set_root_node(root_item, reloc_root->node); 944 free_extent_buffer(reloc_root->commit_root); 945 reloc_root->commit_root = btrfs_root_node(reloc_root); 946 } 947 948 ret = btrfs_update_root(trans, fs_info->tree_root, 949 &reloc_root->root_key, root_item); 950 btrfs_put_root(reloc_root); 951 return ret; 952 } 953 954 /* 955 * helper to find first cached inode with inode number >= objectid 956 * in a subvolume 957 */ 958 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid) 959 { 960 struct rb_node *node; 961 struct rb_node *prev; 962 struct btrfs_inode *entry; 963 struct inode *inode; 964 965 spin_lock(&root->inode_lock); 966 again: 967 node = root->inode_tree.rb_node; 968 prev = NULL; 969 while (node) { 970 prev = node; 971 entry = rb_entry(node, struct btrfs_inode, rb_node); 972 973 if (objectid < btrfs_ino(entry)) 974 node = node->rb_left; 975 else if (objectid > btrfs_ino(entry)) 976 node = node->rb_right; 977 else 978 break; 979 } 980 if (!node) { 981 while (prev) { 982 entry = rb_entry(prev, struct btrfs_inode, rb_node); 983 if (objectid <= btrfs_ino(entry)) { 984 node = prev; 985 break; 986 } 987 prev = rb_next(prev); 988 } 989 } 990 while (node) { 991 entry = rb_entry(node, struct btrfs_inode, rb_node); 992 inode = igrab(&entry->vfs_inode); 993 if (inode) { 994 spin_unlock(&root->inode_lock); 995 return inode; 996 } 997 998 objectid = btrfs_ino(entry) + 1; 999 if (cond_resched_lock(&root->inode_lock)) 1000 goto again; 1001 1002 node = rb_next(node); 1003 } 1004 spin_unlock(&root->inode_lock); 1005 return NULL; 1006 } 1007 1008 /* 1009 * get new location of data 1010 */ 1011 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr, 1012 u64 bytenr, u64 num_bytes) 1013 { 1014 struct btrfs_root *root = BTRFS_I(reloc_inode)->root; 1015 struct btrfs_path *path; 1016 struct btrfs_file_extent_item *fi; 1017 struct extent_buffer *leaf; 1018 int ret; 1019 1020 path = btrfs_alloc_path(); 1021 if (!path) 1022 return -ENOMEM; 1023 1024 bytenr -= BTRFS_I(reloc_inode)->index_cnt; 1025 ret = btrfs_lookup_file_extent(NULL, root, path, 1026 btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0); 1027 if (ret < 0) 1028 goto out; 1029 if (ret > 0) { 1030 ret = -ENOENT; 1031 goto out; 1032 } 1033 1034 leaf = path->nodes[0]; 1035 fi = btrfs_item_ptr(leaf, path->slots[0], 1036 struct btrfs_file_extent_item); 1037 1038 BUG_ON(btrfs_file_extent_offset(leaf, fi) || 1039 btrfs_file_extent_compression(leaf, fi) || 1040 btrfs_file_extent_encryption(leaf, fi) || 1041 btrfs_file_extent_other_encoding(leaf, fi)); 1042 1043 if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) { 1044 ret = -EINVAL; 1045 goto out; 1046 } 1047 1048 *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1049 ret = 0; 1050 out: 1051 btrfs_free_path(path); 1052 return ret; 1053 } 1054 1055 /* 1056 * update file extent items in the tree leaf to point to 1057 * the new locations. 1058 */ 1059 static noinline_for_stack 1060 int replace_file_extents(struct btrfs_trans_handle *trans, 1061 struct reloc_control *rc, 1062 struct btrfs_root *root, 1063 struct extent_buffer *leaf) 1064 { 1065 struct btrfs_fs_info *fs_info = root->fs_info; 1066 struct btrfs_key key; 1067 struct btrfs_file_extent_item *fi; 1068 struct inode *inode = NULL; 1069 u64 parent; 1070 u64 bytenr; 1071 u64 new_bytenr = 0; 1072 u64 num_bytes; 1073 u64 end; 1074 u32 nritems; 1075 u32 i; 1076 int ret = 0; 1077 int first = 1; 1078 int dirty = 0; 1079 1080 if (rc->stage != UPDATE_DATA_PTRS) 1081 return 0; 1082 1083 /* reloc trees always use full backref */ 1084 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1085 parent = leaf->start; 1086 else 1087 parent = 0; 1088 1089 nritems = btrfs_header_nritems(leaf); 1090 for (i = 0; i < nritems; i++) { 1091 struct btrfs_ref ref = { 0 }; 1092 1093 cond_resched(); 1094 btrfs_item_key_to_cpu(leaf, &key, i); 1095 if (key.type != BTRFS_EXTENT_DATA_KEY) 1096 continue; 1097 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); 1098 if (btrfs_file_extent_type(leaf, fi) == 1099 BTRFS_FILE_EXTENT_INLINE) 1100 continue; 1101 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1102 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1103 if (bytenr == 0) 1104 continue; 1105 if (!in_range(bytenr, rc->block_group->start, 1106 rc->block_group->length)) 1107 continue; 1108 1109 /* 1110 * if we are modifying block in fs tree, wait for read_folio 1111 * to complete and drop the extent cache 1112 */ 1113 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 1114 if (first) { 1115 inode = find_next_inode(root, key.objectid); 1116 first = 0; 1117 } else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) { 1118 btrfs_add_delayed_iput(BTRFS_I(inode)); 1119 inode = find_next_inode(root, key.objectid); 1120 } 1121 if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) { 1122 struct extent_state *cached_state = NULL; 1123 1124 end = key.offset + 1125 btrfs_file_extent_num_bytes(leaf, fi); 1126 WARN_ON(!IS_ALIGNED(key.offset, 1127 fs_info->sectorsize)); 1128 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize)); 1129 end--; 1130 ret = try_lock_extent(&BTRFS_I(inode)->io_tree, 1131 key.offset, end, 1132 &cached_state); 1133 if (!ret) 1134 continue; 1135 1136 btrfs_drop_extent_map_range(BTRFS_I(inode), 1137 key.offset, end, true); 1138 unlock_extent(&BTRFS_I(inode)->io_tree, 1139 key.offset, end, &cached_state); 1140 } 1141 } 1142 1143 ret = get_new_location(rc->data_inode, &new_bytenr, 1144 bytenr, num_bytes); 1145 if (ret) { 1146 /* 1147 * Don't have to abort since we've not changed anything 1148 * in the file extent yet. 1149 */ 1150 break; 1151 } 1152 1153 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr); 1154 dirty = 1; 1155 1156 key.offset -= btrfs_file_extent_offset(leaf, fi); 1157 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr, 1158 num_bytes, parent, root->root_key.objectid); 1159 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf), 1160 key.objectid, key.offset, 1161 root->root_key.objectid, false); 1162 ret = btrfs_inc_extent_ref(trans, &ref); 1163 if (ret) { 1164 btrfs_abort_transaction(trans, ret); 1165 break; 1166 } 1167 1168 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 1169 num_bytes, parent, root->root_key.objectid); 1170 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf), 1171 key.objectid, key.offset, 1172 root->root_key.objectid, false); 1173 ret = btrfs_free_extent(trans, &ref); 1174 if (ret) { 1175 btrfs_abort_transaction(trans, ret); 1176 break; 1177 } 1178 } 1179 if (dirty) 1180 btrfs_mark_buffer_dirty(trans, leaf); 1181 if (inode) 1182 btrfs_add_delayed_iput(BTRFS_I(inode)); 1183 return ret; 1184 } 1185 1186 static noinline_for_stack int memcmp_node_keys(const struct extent_buffer *eb, 1187 int slot, const struct btrfs_path *path, 1188 int level) 1189 { 1190 struct btrfs_disk_key key1; 1191 struct btrfs_disk_key key2; 1192 btrfs_node_key(eb, &key1, slot); 1193 btrfs_node_key(path->nodes[level], &key2, path->slots[level]); 1194 return memcmp(&key1, &key2, sizeof(key1)); 1195 } 1196 1197 /* 1198 * try to replace tree blocks in fs tree with the new blocks 1199 * in reloc tree. tree blocks haven't been modified since the 1200 * reloc tree was create can be replaced. 1201 * 1202 * if a block was replaced, level of the block + 1 is returned. 1203 * if no block got replaced, 0 is returned. if there are other 1204 * errors, a negative error number is returned. 1205 */ 1206 static noinline_for_stack 1207 int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc, 1208 struct btrfs_root *dest, struct btrfs_root *src, 1209 struct btrfs_path *path, struct btrfs_key *next_key, 1210 int lowest_level, int max_level) 1211 { 1212 struct btrfs_fs_info *fs_info = dest->fs_info; 1213 struct extent_buffer *eb; 1214 struct extent_buffer *parent; 1215 struct btrfs_ref ref = { 0 }; 1216 struct btrfs_key key; 1217 u64 old_bytenr; 1218 u64 new_bytenr; 1219 u64 old_ptr_gen; 1220 u64 new_ptr_gen; 1221 u64 last_snapshot; 1222 u32 blocksize; 1223 int cow = 0; 1224 int level; 1225 int ret; 1226 int slot; 1227 1228 ASSERT(src->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID); 1229 ASSERT(dest->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 1230 1231 last_snapshot = btrfs_root_last_snapshot(&src->root_item); 1232 again: 1233 slot = path->slots[lowest_level]; 1234 btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot); 1235 1236 eb = btrfs_lock_root_node(dest); 1237 level = btrfs_header_level(eb); 1238 1239 if (level < lowest_level) { 1240 btrfs_tree_unlock(eb); 1241 free_extent_buffer(eb); 1242 return 0; 1243 } 1244 1245 if (cow) { 1246 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb, 1247 BTRFS_NESTING_COW); 1248 if (ret) { 1249 btrfs_tree_unlock(eb); 1250 free_extent_buffer(eb); 1251 return ret; 1252 } 1253 } 1254 1255 if (next_key) { 1256 next_key->objectid = (u64)-1; 1257 next_key->type = (u8)-1; 1258 next_key->offset = (u64)-1; 1259 } 1260 1261 parent = eb; 1262 while (1) { 1263 level = btrfs_header_level(parent); 1264 ASSERT(level >= lowest_level); 1265 1266 ret = btrfs_bin_search(parent, 0, &key, &slot); 1267 if (ret < 0) 1268 break; 1269 if (ret && slot > 0) 1270 slot--; 1271 1272 if (next_key && slot + 1 < btrfs_header_nritems(parent)) 1273 btrfs_node_key_to_cpu(parent, next_key, slot + 1); 1274 1275 old_bytenr = btrfs_node_blockptr(parent, slot); 1276 blocksize = fs_info->nodesize; 1277 old_ptr_gen = btrfs_node_ptr_generation(parent, slot); 1278 1279 if (level <= max_level) { 1280 eb = path->nodes[level]; 1281 new_bytenr = btrfs_node_blockptr(eb, 1282 path->slots[level]); 1283 new_ptr_gen = btrfs_node_ptr_generation(eb, 1284 path->slots[level]); 1285 } else { 1286 new_bytenr = 0; 1287 new_ptr_gen = 0; 1288 } 1289 1290 if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) { 1291 ret = level; 1292 break; 1293 } 1294 1295 if (new_bytenr == 0 || old_ptr_gen > last_snapshot || 1296 memcmp_node_keys(parent, slot, path, level)) { 1297 if (level <= lowest_level) { 1298 ret = 0; 1299 break; 1300 } 1301 1302 eb = btrfs_read_node_slot(parent, slot); 1303 if (IS_ERR(eb)) { 1304 ret = PTR_ERR(eb); 1305 break; 1306 } 1307 btrfs_tree_lock(eb); 1308 if (cow) { 1309 ret = btrfs_cow_block(trans, dest, eb, parent, 1310 slot, &eb, 1311 BTRFS_NESTING_COW); 1312 if (ret) { 1313 btrfs_tree_unlock(eb); 1314 free_extent_buffer(eb); 1315 break; 1316 } 1317 } 1318 1319 btrfs_tree_unlock(parent); 1320 free_extent_buffer(parent); 1321 1322 parent = eb; 1323 continue; 1324 } 1325 1326 if (!cow) { 1327 btrfs_tree_unlock(parent); 1328 free_extent_buffer(parent); 1329 cow = 1; 1330 goto again; 1331 } 1332 1333 btrfs_node_key_to_cpu(path->nodes[level], &key, 1334 path->slots[level]); 1335 btrfs_release_path(path); 1336 1337 path->lowest_level = level; 1338 set_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state); 1339 ret = btrfs_search_slot(trans, src, &key, path, 0, 1); 1340 clear_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state); 1341 path->lowest_level = 0; 1342 if (ret) { 1343 if (ret > 0) 1344 ret = -ENOENT; 1345 break; 1346 } 1347 1348 /* 1349 * Info qgroup to trace both subtrees. 1350 * 1351 * We must trace both trees. 1352 * 1) Tree reloc subtree 1353 * If not traced, we will leak data numbers 1354 * 2) Fs subtree 1355 * If not traced, we will double count old data 1356 * 1357 * We don't scan the subtree right now, but only record 1358 * the swapped tree blocks. 1359 * The real subtree rescan is delayed until we have new 1360 * CoW on the subtree root node before transaction commit. 1361 */ 1362 ret = btrfs_qgroup_add_swapped_blocks(trans, dest, 1363 rc->block_group, parent, slot, 1364 path->nodes[level], path->slots[level], 1365 last_snapshot); 1366 if (ret < 0) 1367 break; 1368 /* 1369 * swap blocks in fs tree and reloc tree. 1370 */ 1371 btrfs_set_node_blockptr(parent, slot, new_bytenr); 1372 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen); 1373 btrfs_mark_buffer_dirty(trans, parent); 1374 1375 btrfs_set_node_blockptr(path->nodes[level], 1376 path->slots[level], old_bytenr); 1377 btrfs_set_node_ptr_generation(path->nodes[level], 1378 path->slots[level], old_ptr_gen); 1379 btrfs_mark_buffer_dirty(trans, path->nodes[level]); 1380 1381 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr, 1382 blocksize, path->nodes[level]->start, 1383 src->root_key.objectid); 1384 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid, 1385 0, true); 1386 ret = btrfs_inc_extent_ref(trans, &ref); 1387 if (ret) { 1388 btrfs_abort_transaction(trans, ret); 1389 break; 1390 } 1391 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr, 1392 blocksize, 0, dest->root_key.objectid); 1393 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid, 0, 1394 true); 1395 ret = btrfs_inc_extent_ref(trans, &ref); 1396 if (ret) { 1397 btrfs_abort_transaction(trans, ret); 1398 break; 1399 } 1400 1401 /* We don't know the real owning_root, use 0. */ 1402 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr, 1403 blocksize, path->nodes[level]->start, 0); 1404 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid, 1405 0, true); 1406 ret = btrfs_free_extent(trans, &ref); 1407 if (ret) { 1408 btrfs_abort_transaction(trans, ret); 1409 break; 1410 } 1411 1412 /* We don't know the real owning_root, use 0. */ 1413 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr, 1414 blocksize, 0, 0); 1415 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid, 1416 0, true); 1417 ret = btrfs_free_extent(trans, &ref); 1418 if (ret) { 1419 btrfs_abort_transaction(trans, ret); 1420 break; 1421 } 1422 1423 btrfs_unlock_up_safe(path, 0); 1424 1425 ret = level; 1426 break; 1427 } 1428 btrfs_tree_unlock(parent); 1429 free_extent_buffer(parent); 1430 return ret; 1431 } 1432 1433 /* 1434 * helper to find next relocated block in reloc tree 1435 */ 1436 static noinline_for_stack 1437 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 1438 int *level) 1439 { 1440 struct extent_buffer *eb; 1441 int i; 1442 u64 last_snapshot; 1443 u32 nritems; 1444 1445 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 1446 1447 for (i = 0; i < *level; i++) { 1448 free_extent_buffer(path->nodes[i]); 1449 path->nodes[i] = NULL; 1450 } 1451 1452 for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) { 1453 eb = path->nodes[i]; 1454 nritems = btrfs_header_nritems(eb); 1455 while (path->slots[i] + 1 < nritems) { 1456 path->slots[i]++; 1457 if (btrfs_node_ptr_generation(eb, path->slots[i]) <= 1458 last_snapshot) 1459 continue; 1460 1461 *level = i; 1462 return 0; 1463 } 1464 free_extent_buffer(path->nodes[i]); 1465 path->nodes[i] = NULL; 1466 } 1467 return 1; 1468 } 1469 1470 /* 1471 * walk down reloc tree to find relocated block of lowest level 1472 */ 1473 static noinline_for_stack 1474 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 1475 int *level) 1476 { 1477 struct extent_buffer *eb = NULL; 1478 int i; 1479 u64 ptr_gen = 0; 1480 u64 last_snapshot; 1481 u32 nritems; 1482 1483 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 1484 1485 for (i = *level; i > 0; i--) { 1486 eb = path->nodes[i]; 1487 nritems = btrfs_header_nritems(eb); 1488 while (path->slots[i] < nritems) { 1489 ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]); 1490 if (ptr_gen > last_snapshot) 1491 break; 1492 path->slots[i]++; 1493 } 1494 if (path->slots[i] >= nritems) { 1495 if (i == *level) 1496 break; 1497 *level = i + 1; 1498 return 0; 1499 } 1500 if (i == 1) { 1501 *level = i; 1502 return 0; 1503 } 1504 1505 eb = btrfs_read_node_slot(eb, path->slots[i]); 1506 if (IS_ERR(eb)) 1507 return PTR_ERR(eb); 1508 BUG_ON(btrfs_header_level(eb) != i - 1); 1509 path->nodes[i - 1] = eb; 1510 path->slots[i - 1] = 0; 1511 } 1512 return 1; 1513 } 1514 1515 /* 1516 * invalidate extent cache for file extents whose key in range of 1517 * [min_key, max_key) 1518 */ 1519 static int invalidate_extent_cache(struct btrfs_root *root, 1520 const struct btrfs_key *min_key, 1521 const struct btrfs_key *max_key) 1522 { 1523 struct btrfs_fs_info *fs_info = root->fs_info; 1524 struct inode *inode = NULL; 1525 u64 objectid; 1526 u64 start, end; 1527 u64 ino; 1528 1529 objectid = min_key->objectid; 1530 while (1) { 1531 struct extent_state *cached_state = NULL; 1532 1533 cond_resched(); 1534 iput(inode); 1535 1536 if (objectid > max_key->objectid) 1537 break; 1538 1539 inode = find_next_inode(root, objectid); 1540 if (!inode) 1541 break; 1542 ino = btrfs_ino(BTRFS_I(inode)); 1543 1544 if (ino > max_key->objectid) { 1545 iput(inode); 1546 break; 1547 } 1548 1549 objectid = ino + 1; 1550 if (!S_ISREG(inode->i_mode)) 1551 continue; 1552 1553 if (unlikely(min_key->objectid == ino)) { 1554 if (min_key->type > BTRFS_EXTENT_DATA_KEY) 1555 continue; 1556 if (min_key->type < BTRFS_EXTENT_DATA_KEY) 1557 start = 0; 1558 else { 1559 start = min_key->offset; 1560 WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize)); 1561 } 1562 } else { 1563 start = 0; 1564 } 1565 1566 if (unlikely(max_key->objectid == ino)) { 1567 if (max_key->type < BTRFS_EXTENT_DATA_KEY) 1568 continue; 1569 if (max_key->type > BTRFS_EXTENT_DATA_KEY) { 1570 end = (u64)-1; 1571 } else { 1572 if (max_key->offset == 0) 1573 continue; 1574 end = max_key->offset; 1575 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize)); 1576 end--; 1577 } 1578 } else { 1579 end = (u64)-1; 1580 } 1581 1582 /* the lock_extent waits for read_folio to complete */ 1583 lock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state); 1584 btrfs_drop_extent_map_range(BTRFS_I(inode), start, end, true); 1585 unlock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state); 1586 } 1587 return 0; 1588 } 1589 1590 static int find_next_key(struct btrfs_path *path, int level, 1591 struct btrfs_key *key) 1592 1593 { 1594 while (level < BTRFS_MAX_LEVEL) { 1595 if (!path->nodes[level]) 1596 break; 1597 if (path->slots[level] + 1 < 1598 btrfs_header_nritems(path->nodes[level])) { 1599 btrfs_node_key_to_cpu(path->nodes[level], key, 1600 path->slots[level] + 1); 1601 return 0; 1602 } 1603 level++; 1604 } 1605 return 1; 1606 } 1607 1608 /* 1609 * Insert current subvolume into reloc_control::dirty_subvol_roots 1610 */ 1611 static int insert_dirty_subvol(struct btrfs_trans_handle *trans, 1612 struct reloc_control *rc, 1613 struct btrfs_root *root) 1614 { 1615 struct btrfs_root *reloc_root = root->reloc_root; 1616 struct btrfs_root_item *reloc_root_item; 1617 int ret; 1618 1619 /* @root must be a subvolume tree root with a valid reloc tree */ 1620 ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 1621 ASSERT(reloc_root); 1622 1623 reloc_root_item = &reloc_root->root_item; 1624 memset(&reloc_root_item->drop_progress, 0, 1625 sizeof(reloc_root_item->drop_progress)); 1626 btrfs_set_root_drop_level(reloc_root_item, 0); 1627 btrfs_set_root_refs(reloc_root_item, 0); 1628 ret = btrfs_update_reloc_root(trans, root); 1629 if (ret) 1630 return ret; 1631 1632 if (list_empty(&root->reloc_dirty_list)) { 1633 btrfs_grab_root(root); 1634 list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots); 1635 } 1636 1637 return 0; 1638 } 1639 1640 static int clean_dirty_subvols(struct reloc_control *rc) 1641 { 1642 struct btrfs_root *root; 1643 struct btrfs_root *next; 1644 int ret = 0; 1645 int ret2; 1646 1647 list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots, 1648 reloc_dirty_list) { 1649 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 1650 /* Merged subvolume, cleanup its reloc root */ 1651 struct btrfs_root *reloc_root = root->reloc_root; 1652 1653 list_del_init(&root->reloc_dirty_list); 1654 root->reloc_root = NULL; 1655 /* 1656 * Need barrier to ensure clear_bit() only happens after 1657 * root->reloc_root = NULL. Pairs with have_reloc_root. 1658 */ 1659 smp_wmb(); 1660 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state); 1661 if (reloc_root) { 1662 /* 1663 * btrfs_drop_snapshot drops our ref we hold for 1664 * ->reloc_root. If it fails however we must 1665 * drop the ref ourselves. 1666 */ 1667 ret2 = btrfs_drop_snapshot(reloc_root, 0, 1); 1668 if (ret2 < 0) { 1669 btrfs_put_root(reloc_root); 1670 if (!ret) 1671 ret = ret2; 1672 } 1673 } 1674 btrfs_put_root(root); 1675 } else { 1676 /* Orphan reloc tree, just clean it up */ 1677 ret2 = btrfs_drop_snapshot(root, 0, 1); 1678 if (ret2 < 0) { 1679 btrfs_put_root(root); 1680 if (!ret) 1681 ret = ret2; 1682 } 1683 } 1684 } 1685 return ret; 1686 } 1687 1688 /* 1689 * merge the relocated tree blocks in reloc tree with corresponding 1690 * fs tree. 1691 */ 1692 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc, 1693 struct btrfs_root *root) 1694 { 1695 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 1696 struct btrfs_key key; 1697 struct btrfs_key next_key; 1698 struct btrfs_trans_handle *trans = NULL; 1699 struct btrfs_root *reloc_root; 1700 struct btrfs_root_item *root_item; 1701 struct btrfs_path *path; 1702 struct extent_buffer *leaf; 1703 int reserve_level; 1704 int level; 1705 int max_level; 1706 int replaced = 0; 1707 int ret = 0; 1708 u32 min_reserved; 1709 1710 path = btrfs_alloc_path(); 1711 if (!path) 1712 return -ENOMEM; 1713 path->reada = READA_FORWARD; 1714 1715 reloc_root = root->reloc_root; 1716 root_item = &reloc_root->root_item; 1717 1718 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 1719 level = btrfs_root_level(root_item); 1720 atomic_inc(&reloc_root->node->refs); 1721 path->nodes[level] = reloc_root->node; 1722 path->slots[level] = 0; 1723 } else { 1724 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 1725 1726 level = btrfs_root_drop_level(root_item); 1727 BUG_ON(level == 0); 1728 path->lowest_level = level; 1729 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0); 1730 path->lowest_level = 0; 1731 if (ret < 0) { 1732 btrfs_free_path(path); 1733 return ret; 1734 } 1735 1736 btrfs_node_key_to_cpu(path->nodes[level], &next_key, 1737 path->slots[level]); 1738 WARN_ON(memcmp(&key, &next_key, sizeof(key))); 1739 1740 btrfs_unlock_up_safe(path, 0); 1741 } 1742 1743 /* 1744 * In merge_reloc_root(), we modify the upper level pointer to swap the 1745 * tree blocks between reloc tree and subvolume tree. Thus for tree 1746 * block COW, we COW at most from level 1 to root level for each tree. 1747 * 1748 * Thus the needed metadata size is at most root_level * nodesize, 1749 * and * 2 since we have two trees to COW. 1750 */ 1751 reserve_level = max_t(int, 1, btrfs_root_level(root_item)); 1752 min_reserved = fs_info->nodesize * reserve_level * 2; 1753 memset(&next_key, 0, sizeof(next_key)); 1754 1755 while (1) { 1756 ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv, 1757 min_reserved, 1758 BTRFS_RESERVE_FLUSH_LIMIT); 1759 if (ret) 1760 goto out; 1761 trans = btrfs_start_transaction(root, 0); 1762 if (IS_ERR(trans)) { 1763 ret = PTR_ERR(trans); 1764 trans = NULL; 1765 goto out; 1766 } 1767 1768 /* 1769 * At this point we no longer have a reloc_control, so we can't 1770 * depend on btrfs_init_reloc_root to update our last_trans. 1771 * 1772 * But that's ok, we started the trans handle on our 1773 * corresponding fs_root, which means it's been added to the 1774 * dirty list. At commit time we'll still call 1775 * btrfs_update_reloc_root() and update our root item 1776 * appropriately. 1777 */ 1778 reloc_root->last_trans = trans->transid; 1779 trans->block_rsv = rc->block_rsv; 1780 1781 replaced = 0; 1782 max_level = level; 1783 1784 ret = walk_down_reloc_tree(reloc_root, path, &level); 1785 if (ret < 0) 1786 goto out; 1787 if (ret > 0) 1788 break; 1789 1790 if (!find_next_key(path, level, &key) && 1791 btrfs_comp_cpu_keys(&next_key, &key) >= 0) { 1792 ret = 0; 1793 } else { 1794 ret = replace_path(trans, rc, root, reloc_root, path, 1795 &next_key, level, max_level); 1796 } 1797 if (ret < 0) 1798 goto out; 1799 if (ret > 0) { 1800 level = ret; 1801 btrfs_node_key_to_cpu(path->nodes[level], &key, 1802 path->slots[level]); 1803 replaced = 1; 1804 } 1805 1806 ret = walk_up_reloc_tree(reloc_root, path, &level); 1807 if (ret > 0) 1808 break; 1809 1810 BUG_ON(level == 0); 1811 /* 1812 * save the merging progress in the drop_progress. 1813 * this is OK since root refs == 1 in this case. 1814 */ 1815 btrfs_node_key(path->nodes[level], &root_item->drop_progress, 1816 path->slots[level]); 1817 btrfs_set_root_drop_level(root_item, level); 1818 1819 btrfs_end_transaction_throttle(trans); 1820 trans = NULL; 1821 1822 btrfs_btree_balance_dirty(fs_info); 1823 1824 if (replaced && rc->stage == UPDATE_DATA_PTRS) 1825 invalidate_extent_cache(root, &key, &next_key); 1826 } 1827 1828 /* 1829 * handle the case only one block in the fs tree need to be 1830 * relocated and the block is tree root. 1831 */ 1832 leaf = btrfs_lock_root_node(root); 1833 ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf, 1834 BTRFS_NESTING_COW); 1835 btrfs_tree_unlock(leaf); 1836 free_extent_buffer(leaf); 1837 out: 1838 btrfs_free_path(path); 1839 1840 if (ret == 0) { 1841 ret = insert_dirty_subvol(trans, rc, root); 1842 if (ret) 1843 btrfs_abort_transaction(trans, ret); 1844 } 1845 1846 if (trans) 1847 btrfs_end_transaction_throttle(trans); 1848 1849 btrfs_btree_balance_dirty(fs_info); 1850 1851 if (replaced && rc->stage == UPDATE_DATA_PTRS) 1852 invalidate_extent_cache(root, &key, &next_key); 1853 1854 return ret; 1855 } 1856 1857 static noinline_for_stack 1858 int prepare_to_merge(struct reloc_control *rc, int err) 1859 { 1860 struct btrfs_root *root = rc->extent_root; 1861 struct btrfs_fs_info *fs_info = root->fs_info; 1862 struct btrfs_root *reloc_root; 1863 struct btrfs_trans_handle *trans; 1864 LIST_HEAD(reloc_roots); 1865 u64 num_bytes = 0; 1866 int ret; 1867 1868 mutex_lock(&fs_info->reloc_mutex); 1869 rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2; 1870 rc->merging_rsv_size += rc->nodes_relocated * 2; 1871 mutex_unlock(&fs_info->reloc_mutex); 1872 1873 again: 1874 if (!err) { 1875 num_bytes = rc->merging_rsv_size; 1876 ret = btrfs_block_rsv_add(fs_info, rc->block_rsv, num_bytes, 1877 BTRFS_RESERVE_FLUSH_ALL); 1878 if (ret) 1879 err = ret; 1880 } 1881 1882 trans = btrfs_join_transaction(rc->extent_root); 1883 if (IS_ERR(trans)) { 1884 if (!err) 1885 btrfs_block_rsv_release(fs_info, rc->block_rsv, 1886 num_bytes, NULL); 1887 return PTR_ERR(trans); 1888 } 1889 1890 if (!err) { 1891 if (num_bytes != rc->merging_rsv_size) { 1892 btrfs_end_transaction(trans); 1893 btrfs_block_rsv_release(fs_info, rc->block_rsv, 1894 num_bytes, NULL); 1895 goto again; 1896 } 1897 } 1898 1899 rc->merge_reloc_tree = true; 1900 1901 while (!list_empty(&rc->reloc_roots)) { 1902 reloc_root = list_entry(rc->reloc_roots.next, 1903 struct btrfs_root, root_list); 1904 list_del_init(&reloc_root->root_list); 1905 1906 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, 1907 false); 1908 if (IS_ERR(root)) { 1909 /* 1910 * Even if we have an error we need this reloc root 1911 * back on our list so we can clean up properly. 1912 */ 1913 list_add(&reloc_root->root_list, &reloc_roots); 1914 btrfs_abort_transaction(trans, (int)PTR_ERR(root)); 1915 if (!err) 1916 err = PTR_ERR(root); 1917 break; 1918 } 1919 1920 if (unlikely(root->reloc_root != reloc_root)) { 1921 if (root->reloc_root) { 1922 btrfs_err(fs_info, 1923 "reloc tree mismatch, root %lld has reloc root key (%lld %u %llu) gen %llu, expect reloc root key (%lld %u %llu) gen %llu", 1924 root->root_key.objectid, 1925 root->reloc_root->root_key.objectid, 1926 root->reloc_root->root_key.type, 1927 root->reloc_root->root_key.offset, 1928 btrfs_root_generation( 1929 &root->reloc_root->root_item), 1930 reloc_root->root_key.objectid, 1931 reloc_root->root_key.type, 1932 reloc_root->root_key.offset, 1933 btrfs_root_generation( 1934 &reloc_root->root_item)); 1935 } else { 1936 btrfs_err(fs_info, 1937 "reloc tree mismatch, root %lld has no reloc root, expect reloc root key (%lld %u %llu) gen %llu", 1938 root->root_key.objectid, 1939 reloc_root->root_key.objectid, 1940 reloc_root->root_key.type, 1941 reloc_root->root_key.offset, 1942 btrfs_root_generation( 1943 &reloc_root->root_item)); 1944 } 1945 list_add(&reloc_root->root_list, &reloc_roots); 1946 btrfs_put_root(root); 1947 btrfs_abort_transaction(trans, -EUCLEAN); 1948 if (!err) 1949 err = -EUCLEAN; 1950 break; 1951 } 1952 1953 /* 1954 * set reference count to 1, so btrfs_recover_relocation 1955 * knows it should resumes merging 1956 */ 1957 if (!err) 1958 btrfs_set_root_refs(&reloc_root->root_item, 1); 1959 ret = btrfs_update_reloc_root(trans, root); 1960 1961 /* 1962 * Even if we have an error we need this reloc root back on our 1963 * list so we can clean up properly. 1964 */ 1965 list_add(&reloc_root->root_list, &reloc_roots); 1966 btrfs_put_root(root); 1967 1968 if (ret) { 1969 btrfs_abort_transaction(trans, ret); 1970 if (!err) 1971 err = ret; 1972 break; 1973 } 1974 } 1975 1976 list_splice(&reloc_roots, &rc->reloc_roots); 1977 1978 if (!err) 1979 err = btrfs_commit_transaction(trans); 1980 else 1981 btrfs_end_transaction(trans); 1982 return err; 1983 } 1984 1985 static noinline_for_stack 1986 void free_reloc_roots(struct list_head *list) 1987 { 1988 struct btrfs_root *reloc_root, *tmp; 1989 1990 list_for_each_entry_safe(reloc_root, tmp, list, root_list) 1991 __del_reloc_root(reloc_root); 1992 } 1993 1994 static noinline_for_stack 1995 void merge_reloc_roots(struct reloc_control *rc) 1996 { 1997 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 1998 struct btrfs_root *root; 1999 struct btrfs_root *reloc_root; 2000 LIST_HEAD(reloc_roots); 2001 int found = 0; 2002 int ret = 0; 2003 again: 2004 root = rc->extent_root; 2005 2006 /* 2007 * this serializes us with btrfs_record_root_in_transaction, 2008 * we have to make sure nobody is in the middle of 2009 * adding their roots to the list while we are 2010 * doing this splice 2011 */ 2012 mutex_lock(&fs_info->reloc_mutex); 2013 list_splice_init(&rc->reloc_roots, &reloc_roots); 2014 mutex_unlock(&fs_info->reloc_mutex); 2015 2016 while (!list_empty(&reloc_roots)) { 2017 found = 1; 2018 reloc_root = list_entry(reloc_roots.next, 2019 struct btrfs_root, root_list); 2020 2021 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, 2022 false); 2023 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 2024 if (WARN_ON(IS_ERR(root))) { 2025 /* 2026 * For recovery we read the fs roots on mount, 2027 * and if we didn't find the root then we marked 2028 * the reloc root as a garbage root. For normal 2029 * relocation obviously the root should exist in 2030 * memory. However there's no reason we can't 2031 * handle the error properly here just in case. 2032 */ 2033 ret = PTR_ERR(root); 2034 goto out; 2035 } 2036 if (WARN_ON(root->reloc_root != reloc_root)) { 2037 /* 2038 * This can happen if on-disk metadata has some 2039 * corruption, e.g. bad reloc tree key offset. 2040 */ 2041 ret = -EINVAL; 2042 goto out; 2043 } 2044 ret = merge_reloc_root(rc, root); 2045 btrfs_put_root(root); 2046 if (ret) { 2047 if (list_empty(&reloc_root->root_list)) 2048 list_add_tail(&reloc_root->root_list, 2049 &reloc_roots); 2050 goto out; 2051 } 2052 } else { 2053 if (!IS_ERR(root)) { 2054 if (root->reloc_root == reloc_root) { 2055 root->reloc_root = NULL; 2056 btrfs_put_root(reloc_root); 2057 } 2058 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, 2059 &root->state); 2060 btrfs_put_root(root); 2061 } 2062 2063 list_del_init(&reloc_root->root_list); 2064 /* Don't forget to queue this reloc root for cleanup */ 2065 list_add_tail(&reloc_root->reloc_dirty_list, 2066 &rc->dirty_subvol_roots); 2067 } 2068 } 2069 2070 if (found) { 2071 found = 0; 2072 goto again; 2073 } 2074 out: 2075 if (ret) { 2076 btrfs_handle_fs_error(fs_info, ret, NULL); 2077 free_reloc_roots(&reloc_roots); 2078 2079 /* new reloc root may be added */ 2080 mutex_lock(&fs_info->reloc_mutex); 2081 list_splice_init(&rc->reloc_roots, &reloc_roots); 2082 mutex_unlock(&fs_info->reloc_mutex); 2083 free_reloc_roots(&reloc_roots); 2084 } 2085 2086 /* 2087 * We used to have 2088 * 2089 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root)); 2090 * 2091 * here, but it's wrong. If we fail to start the transaction in 2092 * prepare_to_merge() we will have only 0 ref reloc roots, none of which 2093 * have actually been removed from the reloc_root_tree rb tree. This is 2094 * fine because we're bailing here, and we hold a reference on the root 2095 * for the list that holds it, so these roots will be cleaned up when we 2096 * do the reloc_dirty_list afterwards. Meanwhile the root->reloc_root 2097 * will be cleaned up on unmount. 2098 * 2099 * The remaining nodes will be cleaned up by free_reloc_control. 2100 */ 2101 } 2102 2103 static void free_block_list(struct rb_root *blocks) 2104 { 2105 struct tree_block *block; 2106 struct rb_node *rb_node; 2107 while ((rb_node = rb_first(blocks))) { 2108 block = rb_entry(rb_node, struct tree_block, rb_node); 2109 rb_erase(rb_node, blocks); 2110 kfree(block); 2111 } 2112 } 2113 2114 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans, 2115 struct btrfs_root *reloc_root) 2116 { 2117 struct btrfs_fs_info *fs_info = reloc_root->fs_info; 2118 struct btrfs_root *root; 2119 int ret; 2120 2121 if (reloc_root->last_trans == trans->transid) 2122 return 0; 2123 2124 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false); 2125 2126 /* 2127 * This should succeed, since we can't have a reloc root without having 2128 * already looked up the actual root and created the reloc root for this 2129 * root. 2130 * 2131 * However if there's some sort of corruption where we have a ref to a 2132 * reloc root without a corresponding root this could return ENOENT. 2133 */ 2134 if (IS_ERR(root)) { 2135 ASSERT(0); 2136 return PTR_ERR(root); 2137 } 2138 if (root->reloc_root != reloc_root) { 2139 ASSERT(0); 2140 btrfs_err(fs_info, 2141 "root %llu has two reloc roots associated with it", 2142 reloc_root->root_key.offset); 2143 btrfs_put_root(root); 2144 return -EUCLEAN; 2145 } 2146 ret = btrfs_record_root_in_trans(trans, root); 2147 btrfs_put_root(root); 2148 2149 return ret; 2150 } 2151 2152 static noinline_for_stack 2153 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans, 2154 struct reloc_control *rc, 2155 struct btrfs_backref_node *node, 2156 struct btrfs_backref_edge *edges[]) 2157 { 2158 struct btrfs_backref_node *next; 2159 struct btrfs_root *root; 2160 int index = 0; 2161 int ret; 2162 2163 next = node; 2164 while (1) { 2165 cond_resched(); 2166 next = walk_up_backref(next, edges, &index); 2167 root = next->root; 2168 2169 /* 2170 * If there is no root, then our references for this block are 2171 * incomplete, as we should be able to walk all the way up to a 2172 * block that is owned by a root. 2173 * 2174 * This path is only for SHAREABLE roots, so if we come upon a 2175 * non-SHAREABLE root then we have backrefs that resolve 2176 * improperly. 2177 * 2178 * Both of these cases indicate file system corruption, or a bug 2179 * in the backref walking code. 2180 */ 2181 if (!root) { 2182 ASSERT(0); 2183 btrfs_err(trans->fs_info, 2184 "bytenr %llu doesn't have a backref path ending in a root", 2185 node->bytenr); 2186 return ERR_PTR(-EUCLEAN); 2187 } 2188 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) { 2189 ASSERT(0); 2190 btrfs_err(trans->fs_info, 2191 "bytenr %llu has multiple refs with one ending in a non-shareable root", 2192 node->bytenr); 2193 return ERR_PTR(-EUCLEAN); 2194 } 2195 2196 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 2197 ret = record_reloc_root_in_trans(trans, root); 2198 if (ret) 2199 return ERR_PTR(ret); 2200 break; 2201 } 2202 2203 ret = btrfs_record_root_in_trans(trans, root); 2204 if (ret) 2205 return ERR_PTR(ret); 2206 root = root->reloc_root; 2207 2208 /* 2209 * We could have raced with another thread which failed, so 2210 * root->reloc_root may not be set, return ENOENT in this case. 2211 */ 2212 if (!root) 2213 return ERR_PTR(-ENOENT); 2214 2215 if (next->new_bytenr != root->node->start) { 2216 /* 2217 * We just created the reloc root, so we shouldn't have 2218 * ->new_bytenr set and this shouldn't be in the changed 2219 * list. If it is then we have multiple roots pointing 2220 * at the same bytenr which indicates corruption, or 2221 * we've made a mistake in the backref walking code. 2222 */ 2223 ASSERT(next->new_bytenr == 0); 2224 ASSERT(list_empty(&next->list)); 2225 if (next->new_bytenr || !list_empty(&next->list)) { 2226 btrfs_err(trans->fs_info, 2227 "bytenr %llu possibly has multiple roots pointing at the same bytenr %llu", 2228 node->bytenr, next->bytenr); 2229 return ERR_PTR(-EUCLEAN); 2230 } 2231 2232 next->new_bytenr = root->node->start; 2233 btrfs_put_root(next->root); 2234 next->root = btrfs_grab_root(root); 2235 ASSERT(next->root); 2236 list_add_tail(&next->list, 2237 &rc->backref_cache.changed); 2238 mark_block_processed(rc, next); 2239 break; 2240 } 2241 2242 WARN_ON(1); 2243 root = NULL; 2244 next = walk_down_backref(edges, &index); 2245 if (!next || next->level <= node->level) 2246 break; 2247 } 2248 if (!root) { 2249 /* 2250 * This can happen if there's fs corruption or if there's a bug 2251 * in the backref lookup code. 2252 */ 2253 ASSERT(0); 2254 return ERR_PTR(-ENOENT); 2255 } 2256 2257 next = node; 2258 /* setup backref node path for btrfs_reloc_cow_block */ 2259 while (1) { 2260 rc->backref_cache.path[next->level] = next; 2261 if (--index < 0) 2262 break; 2263 next = edges[index]->node[UPPER]; 2264 } 2265 return root; 2266 } 2267 2268 /* 2269 * Select a tree root for relocation. 2270 * 2271 * Return NULL if the block is not shareable. We should use do_relocation() in 2272 * this case. 2273 * 2274 * Return a tree root pointer if the block is shareable. 2275 * Return -ENOENT if the block is root of reloc tree. 2276 */ 2277 static noinline_for_stack 2278 struct btrfs_root *select_one_root(struct btrfs_backref_node *node) 2279 { 2280 struct btrfs_backref_node *next; 2281 struct btrfs_root *root; 2282 struct btrfs_root *fs_root = NULL; 2283 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2284 int index = 0; 2285 2286 next = node; 2287 while (1) { 2288 cond_resched(); 2289 next = walk_up_backref(next, edges, &index); 2290 root = next->root; 2291 2292 /* 2293 * This can occur if we have incomplete extent refs leading all 2294 * the way up a particular path, in this case return -EUCLEAN. 2295 */ 2296 if (!root) 2297 return ERR_PTR(-EUCLEAN); 2298 2299 /* No other choice for non-shareable tree */ 2300 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 2301 return root; 2302 2303 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) 2304 fs_root = root; 2305 2306 if (next != node) 2307 return NULL; 2308 2309 next = walk_down_backref(edges, &index); 2310 if (!next || next->level <= node->level) 2311 break; 2312 } 2313 2314 if (!fs_root) 2315 return ERR_PTR(-ENOENT); 2316 return fs_root; 2317 } 2318 2319 static noinline_for_stack 2320 u64 calcu_metadata_size(struct reloc_control *rc, 2321 struct btrfs_backref_node *node, int reserve) 2322 { 2323 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2324 struct btrfs_backref_node *next = node; 2325 struct btrfs_backref_edge *edge; 2326 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2327 u64 num_bytes = 0; 2328 int index = 0; 2329 2330 BUG_ON(reserve && node->processed); 2331 2332 while (next) { 2333 cond_resched(); 2334 while (1) { 2335 if (next->processed && (reserve || next != node)) 2336 break; 2337 2338 num_bytes += fs_info->nodesize; 2339 2340 if (list_empty(&next->upper)) 2341 break; 2342 2343 edge = list_entry(next->upper.next, 2344 struct btrfs_backref_edge, list[LOWER]); 2345 edges[index++] = edge; 2346 next = edge->node[UPPER]; 2347 } 2348 next = walk_down_backref(edges, &index); 2349 } 2350 return num_bytes; 2351 } 2352 2353 static int reserve_metadata_space(struct btrfs_trans_handle *trans, 2354 struct reloc_control *rc, 2355 struct btrfs_backref_node *node) 2356 { 2357 struct btrfs_root *root = rc->extent_root; 2358 struct btrfs_fs_info *fs_info = root->fs_info; 2359 u64 num_bytes; 2360 int ret; 2361 u64 tmp; 2362 2363 num_bytes = calcu_metadata_size(rc, node, 1) * 2; 2364 2365 trans->block_rsv = rc->block_rsv; 2366 rc->reserved_bytes += num_bytes; 2367 2368 /* 2369 * We are under a transaction here so we can only do limited flushing. 2370 * If we get an enospc just kick back -EAGAIN so we know to drop the 2371 * transaction and try to refill when we can flush all the things. 2372 */ 2373 ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv, num_bytes, 2374 BTRFS_RESERVE_FLUSH_LIMIT); 2375 if (ret) { 2376 tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES; 2377 while (tmp <= rc->reserved_bytes) 2378 tmp <<= 1; 2379 /* 2380 * only one thread can access block_rsv at this point, 2381 * so we don't need hold lock to protect block_rsv. 2382 * we expand more reservation size here to allow enough 2383 * space for relocation and we will return earlier in 2384 * enospc case. 2385 */ 2386 rc->block_rsv->size = tmp + fs_info->nodesize * 2387 RELOCATION_RESERVED_NODES; 2388 return -EAGAIN; 2389 } 2390 2391 return 0; 2392 } 2393 2394 /* 2395 * relocate a block tree, and then update pointers in upper level 2396 * blocks that reference the block to point to the new location. 2397 * 2398 * if called by link_to_upper, the block has already been relocated. 2399 * in that case this function just updates pointers. 2400 */ 2401 static int do_relocation(struct btrfs_trans_handle *trans, 2402 struct reloc_control *rc, 2403 struct btrfs_backref_node *node, 2404 struct btrfs_key *key, 2405 struct btrfs_path *path, int lowest) 2406 { 2407 struct btrfs_backref_node *upper; 2408 struct btrfs_backref_edge *edge; 2409 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2410 struct btrfs_root *root; 2411 struct extent_buffer *eb; 2412 u32 blocksize; 2413 u64 bytenr; 2414 int slot; 2415 int ret = 0; 2416 2417 /* 2418 * If we are lowest then this is the first time we're processing this 2419 * block, and thus shouldn't have an eb associated with it yet. 2420 */ 2421 ASSERT(!lowest || !node->eb); 2422 2423 path->lowest_level = node->level + 1; 2424 rc->backref_cache.path[node->level] = node; 2425 list_for_each_entry(edge, &node->upper, list[LOWER]) { 2426 struct btrfs_ref ref = { 0 }; 2427 2428 cond_resched(); 2429 2430 upper = edge->node[UPPER]; 2431 root = select_reloc_root(trans, rc, upper, edges); 2432 if (IS_ERR(root)) { 2433 ret = PTR_ERR(root); 2434 goto next; 2435 } 2436 2437 if (upper->eb && !upper->locked) { 2438 if (!lowest) { 2439 ret = btrfs_bin_search(upper->eb, 0, key, &slot); 2440 if (ret < 0) 2441 goto next; 2442 BUG_ON(ret); 2443 bytenr = btrfs_node_blockptr(upper->eb, slot); 2444 if (node->eb->start == bytenr) 2445 goto next; 2446 } 2447 btrfs_backref_drop_node_buffer(upper); 2448 } 2449 2450 if (!upper->eb) { 2451 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2452 if (ret) { 2453 if (ret > 0) 2454 ret = -ENOENT; 2455 2456 btrfs_release_path(path); 2457 break; 2458 } 2459 2460 if (!upper->eb) { 2461 upper->eb = path->nodes[upper->level]; 2462 path->nodes[upper->level] = NULL; 2463 } else { 2464 BUG_ON(upper->eb != path->nodes[upper->level]); 2465 } 2466 2467 upper->locked = 1; 2468 path->locks[upper->level] = 0; 2469 2470 slot = path->slots[upper->level]; 2471 btrfs_release_path(path); 2472 } else { 2473 ret = btrfs_bin_search(upper->eb, 0, key, &slot); 2474 if (ret < 0) 2475 goto next; 2476 BUG_ON(ret); 2477 } 2478 2479 bytenr = btrfs_node_blockptr(upper->eb, slot); 2480 if (lowest) { 2481 if (bytenr != node->bytenr) { 2482 btrfs_err(root->fs_info, 2483 "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu", 2484 bytenr, node->bytenr, slot, 2485 upper->eb->start); 2486 ret = -EIO; 2487 goto next; 2488 } 2489 } else { 2490 if (node->eb->start == bytenr) 2491 goto next; 2492 } 2493 2494 blocksize = root->fs_info->nodesize; 2495 eb = btrfs_read_node_slot(upper->eb, slot); 2496 if (IS_ERR(eb)) { 2497 ret = PTR_ERR(eb); 2498 goto next; 2499 } 2500 btrfs_tree_lock(eb); 2501 2502 if (!node->eb) { 2503 ret = btrfs_cow_block(trans, root, eb, upper->eb, 2504 slot, &eb, BTRFS_NESTING_COW); 2505 btrfs_tree_unlock(eb); 2506 free_extent_buffer(eb); 2507 if (ret < 0) 2508 goto next; 2509 /* 2510 * We've just COWed this block, it should have updated 2511 * the correct backref node entry. 2512 */ 2513 ASSERT(node->eb == eb); 2514 } else { 2515 btrfs_set_node_blockptr(upper->eb, slot, 2516 node->eb->start); 2517 btrfs_set_node_ptr_generation(upper->eb, slot, 2518 trans->transid); 2519 btrfs_mark_buffer_dirty(trans, upper->eb); 2520 2521 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, 2522 node->eb->start, blocksize, 2523 upper->eb->start, 2524 btrfs_header_owner(upper->eb)); 2525 btrfs_init_tree_ref(&ref, node->level, 2526 btrfs_header_owner(upper->eb), 2527 root->root_key.objectid, false); 2528 ret = btrfs_inc_extent_ref(trans, &ref); 2529 if (!ret) 2530 ret = btrfs_drop_subtree(trans, root, eb, 2531 upper->eb); 2532 if (ret) 2533 btrfs_abort_transaction(trans, ret); 2534 } 2535 next: 2536 if (!upper->pending) 2537 btrfs_backref_drop_node_buffer(upper); 2538 else 2539 btrfs_backref_unlock_node_buffer(upper); 2540 if (ret) 2541 break; 2542 } 2543 2544 if (!ret && node->pending) { 2545 btrfs_backref_drop_node_buffer(node); 2546 list_move_tail(&node->list, &rc->backref_cache.changed); 2547 node->pending = 0; 2548 } 2549 2550 path->lowest_level = 0; 2551 2552 /* 2553 * We should have allocated all of our space in the block rsv and thus 2554 * shouldn't ENOSPC. 2555 */ 2556 ASSERT(ret != -ENOSPC); 2557 return ret; 2558 } 2559 2560 static int link_to_upper(struct btrfs_trans_handle *trans, 2561 struct reloc_control *rc, 2562 struct btrfs_backref_node *node, 2563 struct btrfs_path *path) 2564 { 2565 struct btrfs_key key; 2566 2567 btrfs_node_key_to_cpu(node->eb, &key, 0); 2568 return do_relocation(trans, rc, node, &key, path, 0); 2569 } 2570 2571 static int finish_pending_nodes(struct btrfs_trans_handle *trans, 2572 struct reloc_control *rc, 2573 struct btrfs_path *path, int err) 2574 { 2575 LIST_HEAD(list); 2576 struct btrfs_backref_cache *cache = &rc->backref_cache; 2577 struct btrfs_backref_node *node; 2578 int level; 2579 int ret; 2580 2581 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 2582 while (!list_empty(&cache->pending[level])) { 2583 node = list_entry(cache->pending[level].next, 2584 struct btrfs_backref_node, list); 2585 list_move_tail(&node->list, &list); 2586 BUG_ON(!node->pending); 2587 2588 if (!err) { 2589 ret = link_to_upper(trans, rc, node, path); 2590 if (ret < 0) 2591 err = ret; 2592 } 2593 } 2594 list_splice_init(&list, &cache->pending[level]); 2595 } 2596 return err; 2597 } 2598 2599 /* 2600 * mark a block and all blocks directly/indirectly reference the block 2601 * as processed. 2602 */ 2603 static void update_processed_blocks(struct reloc_control *rc, 2604 struct btrfs_backref_node *node) 2605 { 2606 struct btrfs_backref_node *next = node; 2607 struct btrfs_backref_edge *edge; 2608 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2609 int index = 0; 2610 2611 while (next) { 2612 cond_resched(); 2613 while (1) { 2614 if (next->processed) 2615 break; 2616 2617 mark_block_processed(rc, next); 2618 2619 if (list_empty(&next->upper)) 2620 break; 2621 2622 edge = list_entry(next->upper.next, 2623 struct btrfs_backref_edge, list[LOWER]); 2624 edges[index++] = edge; 2625 next = edge->node[UPPER]; 2626 } 2627 next = walk_down_backref(edges, &index); 2628 } 2629 } 2630 2631 static int tree_block_processed(u64 bytenr, struct reloc_control *rc) 2632 { 2633 u32 blocksize = rc->extent_root->fs_info->nodesize; 2634 2635 if (test_range_bit(&rc->processed_blocks, bytenr, 2636 bytenr + blocksize - 1, EXTENT_DIRTY, NULL)) 2637 return 1; 2638 return 0; 2639 } 2640 2641 static int get_tree_block_key(struct btrfs_fs_info *fs_info, 2642 struct tree_block *block) 2643 { 2644 struct btrfs_tree_parent_check check = { 2645 .level = block->level, 2646 .owner_root = block->owner, 2647 .transid = block->key.offset 2648 }; 2649 struct extent_buffer *eb; 2650 2651 eb = read_tree_block(fs_info, block->bytenr, &check); 2652 if (IS_ERR(eb)) 2653 return PTR_ERR(eb); 2654 if (!extent_buffer_uptodate(eb)) { 2655 free_extent_buffer(eb); 2656 return -EIO; 2657 } 2658 if (block->level == 0) 2659 btrfs_item_key_to_cpu(eb, &block->key, 0); 2660 else 2661 btrfs_node_key_to_cpu(eb, &block->key, 0); 2662 free_extent_buffer(eb); 2663 block->key_ready = true; 2664 return 0; 2665 } 2666 2667 /* 2668 * helper function to relocate a tree block 2669 */ 2670 static int relocate_tree_block(struct btrfs_trans_handle *trans, 2671 struct reloc_control *rc, 2672 struct btrfs_backref_node *node, 2673 struct btrfs_key *key, 2674 struct btrfs_path *path) 2675 { 2676 struct btrfs_root *root; 2677 int ret = 0; 2678 2679 if (!node) 2680 return 0; 2681 2682 /* 2683 * If we fail here we want to drop our backref_node because we are going 2684 * to start over and regenerate the tree for it. 2685 */ 2686 ret = reserve_metadata_space(trans, rc, node); 2687 if (ret) 2688 goto out; 2689 2690 BUG_ON(node->processed); 2691 root = select_one_root(node); 2692 if (IS_ERR(root)) { 2693 ret = PTR_ERR(root); 2694 2695 /* See explanation in select_one_root for the -EUCLEAN case. */ 2696 ASSERT(ret == -ENOENT); 2697 if (ret == -ENOENT) { 2698 ret = 0; 2699 update_processed_blocks(rc, node); 2700 } 2701 goto out; 2702 } 2703 2704 if (root) { 2705 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) { 2706 /* 2707 * This block was the root block of a root, and this is 2708 * the first time we're processing the block and thus it 2709 * should not have had the ->new_bytenr modified and 2710 * should have not been included on the changed list. 2711 * 2712 * However in the case of corruption we could have 2713 * multiple refs pointing to the same block improperly, 2714 * and thus we would trip over these checks. ASSERT() 2715 * for the developer case, because it could indicate a 2716 * bug in the backref code, however error out for a 2717 * normal user in the case of corruption. 2718 */ 2719 ASSERT(node->new_bytenr == 0); 2720 ASSERT(list_empty(&node->list)); 2721 if (node->new_bytenr || !list_empty(&node->list)) { 2722 btrfs_err(root->fs_info, 2723 "bytenr %llu has improper references to it", 2724 node->bytenr); 2725 ret = -EUCLEAN; 2726 goto out; 2727 } 2728 ret = btrfs_record_root_in_trans(trans, root); 2729 if (ret) 2730 goto out; 2731 /* 2732 * Another thread could have failed, need to check if we 2733 * have reloc_root actually set. 2734 */ 2735 if (!root->reloc_root) { 2736 ret = -ENOENT; 2737 goto out; 2738 } 2739 root = root->reloc_root; 2740 node->new_bytenr = root->node->start; 2741 btrfs_put_root(node->root); 2742 node->root = btrfs_grab_root(root); 2743 ASSERT(node->root); 2744 list_add_tail(&node->list, &rc->backref_cache.changed); 2745 } else { 2746 path->lowest_level = node->level; 2747 if (root == root->fs_info->chunk_root) 2748 btrfs_reserve_chunk_metadata(trans, false); 2749 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2750 btrfs_release_path(path); 2751 if (root == root->fs_info->chunk_root) 2752 btrfs_trans_release_chunk_metadata(trans); 2753 if (ret > 0) 2754 ret = 0; 2755 } 2756 if (!ret) 2757 update_processed_blocks(rc, node); 2758 } else { 2759 ret = do_relocation(trans, rc, node, key, path, 1); 2760 } 2761 out: 2762 if (ret || node->level == 0 || node->cowonly) 2763 btrfs_backref_cleanup_node(&rc->backref_cache, node); 2764 return ret; 2765 } 2766 2767 /* 2768 * relocate a list of blocks 2769 */ 2770 static noinline_for_stack 2771 int relocate_tree_blocks(struct btrfs_trans_handle *trans, 2772 struct reloc_control *rc, struct rb_root *blocks) 2773 { 2774 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2775 struct btrfs_backref_node *node; 2776 struct btrfs_path *path; 2777 struct tree_block *block; 2778 struct tree_block *next; 2779 int ret; 2780 int err = 0; 2781 2782 path = btrfs_alloc_path(); 2783 if (!path) { 2784 err = -ENOMEM; 2785 goto out_free_blocks; 2786 } 2787 2788 /* Kick in readahead for tree blocks with missing keys */ 2789 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { 2790 if (!block->key_ready) 2791 btrfs_readahead_tree_block(fs_info, block->bytenr, 2792 block->owner, 0, 2793 block->level); 2794 } 2795 2796 /* Get first keys */ 2797 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { 2798 if (!block->key_ready) { 2799 err = get_tree_block_key(fs_info, block); 2800 if (err) 2801 goto out_free_path; 2802 } 2803 } 2804 2805 /* Do tree relocation */ 2806 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { 2807 node = build_backref_tree(trans, rc, &block->key, 2808 block->level, block->bytenr); 2809 if (IS_ERR(node)) { 2810 err = PTR_ERR(node); 2811 goto out; 2812 } 2813 2814 ret = relocate_tree_block(trans, rc, node, &block->key, 2815 path); 2816 if (ret < 0) { 2817 err = ret; 2818 break; 2819 } 2820 } 2821 out: 2822 err = finish_pending_nodes(trans, rc, path, err); 2823 2824 out_free_path: 2825 btrfs_free_path(path); 2826 out_free_blocks: 2827 free_block_list(blocks); 2828 return err; 2829 } 2830 2831 static noinline_for_stack int prealloc_file_extent_cluster( 2832 struct btrfs_inode *inode, 2833 const struct file_extent_cluster *cluster) 2834 { 2835 u64 alloc_hint = 0; 2836 u64 start; 2837 u64 end; 2838 u64 offset = inode->index_cnt; 2839 u64 num_bytes; 2840 int nr; 2841 int ret = 0; 2842 u64 i_size = i_size_read(&inode->vfs_inode); 2843 u64 prealloc_start = cluster->start - offset; 2844 u64 prealloc_end = cluster->end - offset; 2845 u64 cur_offset = prealloc_start; 2846 2847 /* 2848 * For subpage case, previous i_size may not be aligned to PAGE_SIZE. 2849 * This means the range [i_size, PAGE_END + 1) is filled with zeros by 2850 * btrfs_do_readpage() call of previously relocated file cluster. 2851 * 2852 * If the current cluster starts in the above range, btrfs_do_readpage() 2853 * will skip the read, and relocate_one_page() will later writeback 2854 * the padding zeros as new data, causing data corruption. 2855 * 2856 * Here we have to manually invalidate the range (i_size, PAGE_END + 1). 2857 */ 2858 if (!PAGE_ALIGNED(i_size)) { 2859 struct address_space *mapping = inode->vfs_inode.i_mapping; 2860 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2861 const u32 sectorsize = fs_info->sectorsize; 2862 struct page *page; 2863 2864 ASSERT(sectorsize < PAGE_SIZE); 2865 ASSERT(IS_ALIGNED(i_size, sectorsize)); 2866 2867 /* 2868 * Subpage can't handle page with DIRTY but without UPTODATE 2869 * bit as it can lead to the following deadlock: 2870 * 2871 * btrfs_read_folio() 2872 * | Page already *locked* 2873 * |- btrfs_lock_and_flush_ordered_range() 2874 * |- btrfs_start_ordered_extent() 2875 * |- extent_write_cache_pages() 2876 * |- lock_page() 2877 * We try to lock the page we already hold. 2878 * 2879 * Here we just writeback the whole data reloc inode, so that 2880 * we will be ensured to have no dirty range in the page, and 2881 * are safe to clear the uptodate bits. 2882 * 2883 * This shouldn't cause too much overhead, as we need to write 2884 * the data back anyway. 2885 */ 2886 ret = filemap_write_and_wait(mapping); 2887 if (ret < 0) 2888 return ret; 2889 2890 clear_extent_bits(&inode->io_tree, i_size, 2891 round_up(i_size, PAGE_SIZE) - 1, 2892 EXTENT_UPTODATE); 2893 page = find_lock_page(mapping, i_size >> PAGE_SHIFT); 2894 /* 2895 * If page is freed we don't need to do anything then, as we 2896 * will re-read the whole page anyway. 2897 */ 2898 if (page) { 2899 btrfs_subpage_clear_uptodate(fs_info, page_folio(page), i_size, 2900 round_up(i_size, PAGE_SIZE) - i_size); 2901 unlock_page(page); 2902 put_page(page); 2903 } 2904 } 2905 2906 BUG_ON(cluster->start != cluster->boundary[0]); 2907 ret = btrfs_alloc_data_chunk_ondemand(inode, 2908 prealloc_end + 1 - prealloc_start); 2909 if (ret) 2910 return ret; 2911 2912 btrfs_inode_lock(inode, 0); 2913 for (nr = 0; nr < cluster->nr; nr++) { 2914 struct extent_state *cached_state = NULL; 2915 2916 start = cluster->boundary[nr] - offset; 2917 if (nr + 1 < cluster->nr) 2918 end = cluster->boundary[nr + 1] - 1 - offset; 2919 else 2920 end = cluster->end - offset; 2921 2922 lock_extent(&inode->io_tree, start, end, &cached_state); 2923 num_bytes = end + 1 - start; 2924 ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start, 2925 num_bytes, num_bytes, 2926 end + 1, &alloc_hint); 2927 cur_offset = end + 1; 2928 unlock_extent(&inode->io_tree, start, end, &cached_state); 2929 if (ret) 2930 break; 2931 } 2932 btrfs_inode_unlock(inode, 0); 2933 2934 if (cur_offset < prealloc_end) 2935 btrfs_free_reserved_data_space_noquota(inode->root->fs_info, 2936 prealloc_end + 1 - cur_offset); 2937 return ret; 2938 } 2939 2940 static noinline_for_stack int setup_relocation_extent_mapping(struct inode *inode, 2941 u64 start, u64 end, u64 block_start) 2942 { 2943 struct extent_map *em; 2944 struct extent_state *cached_state = NULL; 2945 int ret = 0; 2946 2947 em = alloc_extent_map(); 2948 if (!em) 2949 return -ENOMEM; 2950 2951 em->start = start; 2952 em->len = end + 1 - start; 2953 em->block_len = em->len; 2954 em->block_start = block_start; 2955 em->flags |= EXTENT_FLAG_PINNED; 2956 2957 lock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state); 2958 ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, false); 2959 unlock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state); 2960 free_extent_map(em); 2961 2962 return ret; 2963 } 2964 2965 /* 2966 * Allow error injection to test balance/relocation cancellation 2967 */ 2968 noinline int btrfs_should_cancel_balance(const struct btrfs_fs_info *fs_info) 2969 { 2970 return atomic_read(&fs_info->balance_cancel_req) || 2971 atomic_read(&fs_info->reloc_cancel_req) || 2972 fatal_signal_pending(current); 2973 } 2974 ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE); 2975 2976 static u64 get_cluster_boundary_end(const struct file_extent_cluster *cluster, 2977 int cluster_nr) 2978 { 2979 /* Last extent, use cluster end directly */ 2980 if (cluster_nr >= cluster->nr - 1) 2981 return cluster->end; 2982 2983 /* Use next boundary start*/ 2984 return cluster->boundary[cluster_nr + 1] - 1; 2985 } 2986 2987 static int relocate_one_page(struct inode *inode, struct file_ra_state *ra, 2988 const struct file_extent_cluster *cluster, 2989 int *cluster_nr, unsigned long page_index) 2990 { 2991 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 2992 u64 offset = BTRFS_I(inode)->index_cnt; 2993 const unsigned long last_index = (cluster->end - offset) >> PAGE_SHIFT; 2994 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 2995 struct page *page; 2996 u64 page_start; 2997 u64 page_end; 2998 u64 cur; 2999 int ret; 3000 3001 ASSERT(page_index <= last_index); 3002 page = find_lock_page(inode->i_mapping, page_index); 3003 if (!page) { 3004 page_cache_sync_readahead(inode->i_mapping, ra, NULL, 3005 page_index, last_index + 1 - page_index); 3006 page = find_or_create_page(inode->i_mapping, page_index, mask); 3007 if (!page) 3008 return -ENOMEM; 3009 } 3010 3011 if (PageReadahead(page)) 3012 page_cache_async_readahead(inode->i_mapping, ra, NULL, 3013 page_folio(page), page_index, 3014 last_index + 1 - page_index); 3015 3016 if (!PageUptodate(page)) { 3017 btrfs_read_folio(NULL, page_folio(page)); 3018 lock_page(page); 3019 if (!PageUptodate(page)) { 3020 ret = -EIO; 3021 goto release_page; 3022 } 3023 } 3024 3025 /* 3026 * We could have lost page private when we dropped the lock to read the 3027 * page above, make sure we set_page_extent_mapped here so we have any 3028 * of the subpage blocksize stuff we need in place. 3029 */ 3030 ret = set_page_extent_mapped(page); 3031 if (ret < 0) 3032 goto release_page; 3033 3034 page_start = page_offset(page); 3035 page_end = page_start + PAGE_SIZE - 1; 3036 3037 /* 3038 * Start from the cluster, as for subpage case, the cluster can start 3039 * inside the page. 3040 */ 3041 cur = max(page_start, cluster->boundary[*cluster_nr] - offset); 3042 while (cur <= page_end) { 3043 struct extent_state *cached_state = NULL; 3044 u64 extent_start = cluster->boundary[*cluster_nr] - offset; 3045 u64 extent_end = get_cluster_boundary_end(cluster, 3046 *cluster_nr) - offset; 3047 u64 clamped_start = max(page_start, extent_start); 3048 u64 clamped_end = min(page_end, extent_end); 3049 u32 clamped_len = clamped_end + 1 - clamped_start; 3050 3051 /* Reserve metadata for this range */ 3052 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), 3053 clamped_len, clamped_len, 3054 false); 3055 if (ret) 3056 goto release_page; 3057 3058 /* Mark the range delalloc and dirty for later writeback */ 3059 lock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end, 3060 &cached_state); 3061 ret = btrfs_set_extent_delalloc(BTRFS_I(inode), clamped_start, 3062 clamped_end, 0, &cached_state); 3063 if (ret) { 3064 clear_extent_bit(&BTRFS_I(inode)->io_tree, 3065 clamped_start, clamped_end, 3066 EXTENT_LOCKED | EXTENT_BOUNDARY, 3067 &cached_state); 3068 btrfs_delalloc_release_metadata(BTRFS_I(inode), 3069 clamped_len, true); 3070 btrfs_delalloc_release_extents(BTRFS_I(inode), 3071 clamped_len); 3072 goto release_page; 3073 } 3074 btrfs_folio_set_dirty(fs_info, page_folio(page), 3075 clamped_start, clamped_len); 3076 3077 /* 3078 * Set the boundary if it's inside the page. 3079 * Data relocation requires the destination extents to have the 3080 * same size as the source. 3081 * EXTENT_BOUNDARY bit prevents current extent from being merged 3082 * with previous extent. 3083 */ 3084 if (in_range(cluster->boundary[*cluster_nr] - offset, 3085 page_start, PAGE_SIZE)) { 3086 u64 boundary_start = cluster->boundary[*cluster_nr] - 3087 offset; 3088 u64 boundary_end = boundary_start + 3089 fs_info->sectorsize - 1; 3090 3091 set_extent_bit(&BTRFS_I(inode)->io_tree, 3092 boundary_start, boundary_end, 3093 EXTENT_BOUNDARY, NULL); 3094 } 3095 unlock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end, 3096 &cached_state); 3097 btrfs_delalloc_release_extents(BTRFS_I(inode), clamped_len); 3098 cur += clamped_len; 3099 3100 /* Crossed extent end, go to next extent */ 3101 if (cur >= extent_end) { 3102 (*cluster_nr)++; 3103 /* Just finished the last extent of the cluster, exit. */ 3104 if (*cluster_nr >= cluster->nr) 3105 break; 3106 } 3107 } 3108 unlock_page(page); 3109 put_page(page); 3110 3111 balance_dirty_pages_ratelimited(inode->i_mapping); 3112 btrfs_throttle(fs_info); 3113 if (btrfs_should_cancel_balance(fs_info)) 3114 ret = -ECANCELED; 3115 return ret; 3116 3117 release_page: 3118 unlock_page(page); 3119 put_page(page); 3120 return ret; 3121 } 3122 3123 static int relocate_file_extent_cluster(struct inode *inode, 3124 const struct file_extent_cluster *cluster) 3125 { 3126 u64 offset = BTRFS_I(inode)->index_cnt; 3127 unsigned long index; 3128 unsigned long last_index; 3129 struct file_ra_state *ra; 3130 int cluster_nr = 0; 3131 int ret = 0; 3132 3133 if (!cluster->nr) 3134 return 0; 3135 3136 ra = kzalloc(sizeof(*ra), GFP_NOFS); 3137 if (!ra) 3138 return -ENOMEM; 3139 3140 ret = prealloc_file_extent_cluster(BTRFS_I(inode), cluster); 3141 if (ret) 3142 goto out; 3143 3144 file_ra_state_init(ra, inode->i_mapping); 3145 3146 ret = setup_relocation_extent_mapping(inode, cluster->start - offset, 3147 cluster->end - offset, cluster->start); 3148 if (ret) 3149 goto out; 3150 3151 last_index = (cluster->end - offset) >> PAGE_SHIFT; 3152 for (index = (cluster->start - offset) >> PAGE_SHIFT; 3153 index <= last_index && !ret; index++) 3154 ret = relocate_one_page(inode, ra, cluster, &cluster_nr, index); 3155 if (ret == 0) 3156 WARN_ON(cluster_nr != cluster->nr); 3157 out: 3158 kfree(ra); 3159 return ret; 3160 } 3161 3162 static noinline_for_stack int relocate_data_extent(struct inode *inode, 3163 const struct btrfs_key *extent_key, 3164 struct file_extent_cluster *cluster) 3165 { 3166 int ret; 3167 struct btrfs_root *root = BTRFS_I(inode)->root; 3168 3169 if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) { 3170 ret = relocate_file_extent_cluster(inode, cluster); 3171 if (ret) 3172 return ret; 3173 cluster->nr = 0; 3174 } 3175 3176 /* 3177 * Under simple quotas, we set root->relocation_src_root when we find 3178 * the extent. If adjacent extents have different owners, we can't merge 3179 * them while relocating. Handle this by storing the owning root that 3180 * started a cluster and if we see an extent from a different root break 3181 * cluster formation (just like the above case of non-adjacent extents). 3182 * 3183 * Without simple quotas, relocation_src_root is always 0, so we should 3184 * never see a mismatch, and it should have no effect on relocation 3185 * clusters. 3186 */ 3187 if (cluster->nr > 0 && cluster->owning_root != root->relocation_src_root) { 3188 u64 tmp = root->relocation_src_root; 3189 3190 /* 3191 * root->relocation_src_root is the state that actually affects 3192 * the preallocation we do here, so set it to the root owning 3193 * the cluster we need to relocate. 3194 */ 3195 root->relocation_src_root = cluster->owning_root; 3196 ret = relocate_file_extent_cluster(inode, cluster); 3197 if (ret) 3198 return ret; 3199 cluster->nr = 0; 3200 /* And reset it back for the current extent's owning root. */ 3201 root->relocation_src_root = tmp; 3202 } 3203 3204 if (!cluster->nr) { 3205 cluster->start = extent_key->objectid; 3206 cluster->owning_root = root->relocation_src_root; 3207 } 3208 else 3209 BUG_ON(cluster->nr >= MAX_EXTENTS); 3210 cluster->end = extent_key->objectid + extent_key->offset - 1; 3211 cluster->boundary[cluster->nr] = extent_key->objectid; 3212 cluster->nr++; 3213 3214 if (cluster->nr >= MAX_EXTENTS) { 3215 ret = relocate_file_extent_cluster(inode, cluster); 3216 if (ret) 3217 return ret; 3218 cluster->nr = 0; 3219 } 3220 return 0; 3221 } 3222 3223 /* 3224 * helper to add a tree block to the list. 3225 * the major work is getting the generation and level of the block 3226 */ 3227 static int add_tree_block(struct reloc_control *rc, 3228 const struct btrfs_key *extent_key, 3229 struct btrfs_path *path, 3230 struct rb_root *blocks) 3231 { 3232 struct extent_buffer *eb; 3233 struct btrfs_extent_item *ei; 3234 struct btrfs_tree_block_info *bi; 3235 struct tree_block *block; 3236 struct rb_node *rb_node; 3237 u32 item_size; 3238 int level = -1; 3239 u64 generation; 3240 u64 owner = 0; 3241 3242 eb = path->nodes[0]; 3243 item_size = btrfs_item_size(eb, path->slots[0]); 3244 3245 if (extent_key->type == BTRFS_METADATA_ITEM_KEY || 3246 item_size >= sizeof(*ei) + sizeof(*bi)) { 3247 unsigned long ptr = 0, end; 3248 3249 ei = btrfs_item_ptr(eb, path->slots[0], 3250 struct btrfs_extent_item); 3251 end = (unsigned long)ei + item_size; 3252 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) { 3253 bi = (struct btrfs_tree_block_info *)(ei + 1); 3254 level = btrfs_tree_block_level(eb, bi); 3255 ptr = (unsigned long)(bi + 1); 3256 } else { 3257 level = (int)extent_key->offset; 3258 ptr = (unsigned long)(ei + 1); 3259 } 3260 generation = btrfs_extent_generation(eb, ei); 3261 3262 /* 3263 * We're reading random blocks without knowing their owner ahead 3264 * of time. This is ok most of the time, as all reloc roots and 3265 * fs roots have the same lock type. However normal trees do 3266 * not, and the only way to know ahead of time is to read the 3267 * inline ref offset. We know it's an fs root if 3268 * 3269 * 1. There's more than one ref. 3270 * 2. There's a SHARED_DATA_REF_KEY set. 3271 * 3. FULL_BACKREF is set on the flags. 3272 * 3273 * Otherwise it's safe to assume that the ref offset == the 3274 * owner of this block, so we can use that when calling 3275 * read_tree_block. 3276 */ 3277 if (btrfs_extent_refs(eb, ei) == 1 && 3278 !(btrfs_extent_flags(eb, ei) & 3279 BTRFS_BLOCK_FLAG_FULL_BACKREF) && 3280 ptr < end) { 3281 struct btrfs_extent_inline_ref *iref; 3282 int type; 3283 3284 iref = (struct btrfs_extent_inline_ref *)ptr; 3285 type = btrfs_get_extent_inline_ref_type(eb, iref, 3286 BTRFS_REF_TYPE_BLOCK); 3287 if (type == BTRFS_REF_TYPE_INVALID) 3288 return -EINVAL; 3289 if (type == BTRFS_TREE_BLOCK_REF_KEY) 3290 owner = btrfs_extent_inline_ref_offset(eb, iref); 3291 } 3292 } else { 3293 btrfs_print_leaf(eb); 3294 btrfs_err(rc->block_group->fs_info, 3295 "unrecognized tree backref at tree block %llu slot %u", 3296 eb->start, path->slots[0]); 3297 btrfs_release_path(path); 3298 return -EUCLEAN; 3299 } 3300 3301 btrfs_release_path(path); 3302 3303 BUG_ON(level == -1); 3304 3305 block = kmalloc(sizeof(*block), GFP_NOFS); 3306 if (!block) 3307 return -ENOMEM; 3308 3309 block->bytenr = extent_key->objectid; 3310 block->key.objectid = rc->extent_root->fs_info->nodesize; 3311 block->key.offset = generation; 3312 block->level = level; 3313 block->key_ready = false; 3314 block->owner = owner; 3315 3316 rb_node = rb_simple_insert(blocks, block->bytenr, &block->rb_node); 3317 if (rb_node) 3318 btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr, 3319 -EEXIST); 3320 3321 return 0; 3322 } 3323 3324 /* 3325 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY 3326 */ 3327 static int __add_tree_block(struct reloc_control *rc, 3328 u64 bytenr, u32 blocksize, 3329 struct rb_root *blocks) 3330 { 3331 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3332 struct btrfs_path *path; 3333 struct btrfs_key key; 3334 int ret; 3335 bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 3336 3337 if (tree_block_processed(bytenr, rc)) 3338 return 0; 3339 3340 if (rb_simple_search(blocks, bytenr)) 3341 return 0; 3342 3343 path = btrfs_alloc_path(); 3344 if (!path) 3345 return -ENOMEM; 3346 again: 3347 key.objectid = bytenr; 3348 if (skinny) { 3349 key.type = BTRFS_METADATA_ITEM_KEY; 3350 key.offset = (u64)-1; 3351 } else { 3352 key.type = BTRFS_EXTENT_ITEM_KEY; 3353 key.offset = blocksize; 3354 } 3355 3356 path->search_commit_root = 1; 3357 path->skip_locking = 1; 3358 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0); 3359 if (ret < 0) 3360 goto out; 3361 3362 if (ret > 0 && skinny) { 3363 if (path->slots[0]) { 3364 path->slots[0]--; 3365 btrfs_item_key_to_cpu(path->nodes[0], &key, 3366 path->slots[0]); 3367 if (key.objectid == bytenr && 3368 (key.type == BTRFS_METADATA_ITEM_KEY || 3369 (key.type == BTRFS_EXTENT_ITEM_KEY && 3370 key.offset == blocksize))) 3371 ret = 0; 3372 } 3373 3374 if (ret) { 3375 skinny = false; 3376 btrfs_release_path(path); 3377 goto again; 3378 } 3379 } 3380 if (ret) { 3381 ASSERT(ret == 1); 3382 btrfs_print_leaf(path->nodes[0]); 3383 btrfs_err(fs_info, 3384 "tree block extent item (%llu) is not found in extent tree", 3385 bytenr); 3386 WARN_ON(1); 3387 ret = -EINVAL; 3388 goto out; 3389 } 3390 3391 ret = add_tree_block(rc, &key, path, blocks); 3392 out: 3393 btrfs_free_path(path); 3394 return ret; 3395 } 3396 3397 static int delete_block_group_cache(struct btrfs_fs_info *fs_info, 3398 struct btrfs_block_group *block_group, 3399 struct inode *inode, 3400 u64 ino) 3401 { 3402 struct btrfs_root *root = fs_info->tree_root; 3403 struct btrfs_trans_handle *trans; 3404 int ret = 0; 3405 3406 if (inode) 3407 goto truncate; 3408 3409 inode = btrfs_iget(fs_info->sb, ino, root); 3410 if (IS_ERR(inode)) 3411 return -ENOENT; 3412 3413 truncate: 3414 ret = btrfs_check_trunc_cache_free_space(fs_info, 3415 &fs_info->global_block_rsv); 3416 if (ret) 3417 goto out; 3418 3419 trans = btrfs_join_transaction(root); 3420 if (IS_ERR(trans)) { 3421 ret = PTR_ERR(trans); 3422 goto out; 3423 } 3424 3425 ret = btrfs_truncate_free_space_cache(trans, block_group, inode); 3426 3427 btrfs_end_transaction(trans); 3428 btrfs_btree_balance_dirty(fs_info); 3429 out: 3430 iput(inode); 3431 return ret; 3432 } 3433 3434 /* 3435 * Locate the free space cache EXTENT_DATA in root tree leaf and delete the 3436 * cache inode, to avoid free space cache data extent blocking data relocation. 3437 */ 3438 static int delete_v1_space_cache(struct extent_buffer *leaf, 3439 struct btrfs_block_group *block_group, 3440 u64 data_bytenr) 3441 { 3442 u64 space_cache_ino; 3443 struct btrfs_file_extent_item *ei; 3444 struct btrfs_key key; 3445 bool found = false; 3446 int i; 3447 int ret; 3448 3449 if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID) 3450 return 0; 3451 3452 for (i = 0; i < btrfs_header_nritems(leaf); i++) { 3453 u8 type; 3454 3455 btrfs_item_key_to_cpu(leaf, &key, i); 3456 if (key.type != BTRFS_EXTENT_DATA_KEY) 3457 continue; 3458 ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); 3459 type = btrfs_file_extent_type(leaf, ei); 3460 3461 if ((type == BTRFS_FILE_EXTENT_REG || 3462 type == BTRFS_FILE_EXTENT_PREALLOC) && 3463 btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) { 3464 found = true; 3465 space_cache_ino = key.objectid; 3466 break; 3467 } 3468 } 3469 if (!found) 3470 return -ENOENT; 3471 ret = delete_block_group_cache(leaf->fs_info, block_group, NULL, 3472 space_cache_ino); 3473 return ret; 3474 } 3475 3476 /* 3477 * helper to find all tree blocks that reference a given data extent 3478 */ 3479 static noinline_for_stack int add_data_references(struct reloc_control *rc, 3480 const struct btrfs_key *extent_key, 3481 struct btrfs_path *path, 3482 struct rb_root *blocks) 3483 { 3484 struct btrfs_backref_walk_ctx ctx = { 0 }; 3485 struct ulist_iterator leaf_uiter; 3486 struct ulist_node *ref_node = NULL; 3487 const u32 blocksize = rc->extent_root->fs_info->nodesize; 3488 int ret = 0; 3489 3490 btrfs_release_path(path); 3491 3492 ctx.bytenr = extent_key->objectid; 3493 ctx.skip_inode_ref_list = true; 3494 ctx.fs_info = rc->extent_root->fs_info; 3495 3496 ret = btrfs_find_all_leafs(&ctx); 3497 if (ret < 0) 3498 return ret; 3499 3500 ULIST_ITER_INIT(&leaf_uiter); 3501 while ((ref_node = ulist_next(ctx.refs, &leaf_uiter))) { 3502 struct btrfs_tree_parent_check check = { 0 }; 3503 struct extent_buffer *eb; 3504 3505 eb = read_tree_block(ctx.fs_info, ref_node->val, &check); 3506 if (IS_ERR(eb)) { 3507 ret = PTR_ERR(eb); 3508 break; 3509 } 3510 ret = delete_v1_space_cache(eb, rc->block_group, 3511 extent_key->objectid); 3512 free_extent_buffer(eb); 3513 if (ret < 0) 3514 break; 3515 ret = __add_tree_block(rc, ref_node->val, blocksize, blocks); 3516 if (ret < 0) 3517 break; 3518 } 3519 if (ret < 0) 3520 free_block_list(blocks); 3521 ulist_free(ctx.refs); 3522 return ret; 3523 } 3524 3525 /* 3526 * helper to find next unprocessed extent 3527 */ 3528 static noinline_for_stack 3529 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path, 3530 struct btrfs_key *extent_key) 3531 { 3532 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3533 struct btrfs_key key; 3534 struct extent_buffer *leaf; 3535 u64 start, end, last; 3536 int ret; 3537 3538 last = rc->block_group->start + rc->block_group->length; 3539 while (1) { 3540 bool block_found; 3541 3542 cond_resched(); 3543 if (rc->search_start >= last) { 3544 ret = 1; 3545 break; 3546 } 3547 3548 key.objectid = rc->search_start; 3549 key.type = BTRFS_EXTENT_ITEM_KEY; 3550 key.offset = 0; 3551 3552 path->search_commit_root = 1; 3553 path->skip_locking = 1; 3554 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 3555 0, 0); 3556 if (ret < 0) 3557 break; 3558 next: 3559 leaf = path->nodes[0]; 3560 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 3561 ret = btrfs_next_leaf(rc->extent_root, path); 3562 if (ret != 0) 3563 break; 3564 leaf = path->nodes[0]; 3565 } 3566 3567 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3568 if (key.objectid >= last) { 3569 ret = 1; 3570 break; 3571 } 3572 3573 if (key.type != BTRFS_EXTENT_ITEM_KEY && 3574 key.type != BTRFS_METADATA_ITEM_KEY) { 3575 path->slots[0]++; 3576 goto next; 3577 } 3578 3579 if (key.type == BTRFS_EXTENT_ITEM_KEY && 3580 key.objectid + key.offset <= rc->search_start) { 3581 path->slots[0]++; 3582 goto next; 3583 } 3584 3585 if (key.type == BTRFS_METADATA_ITEM_KEY && 3586 key.objectid + fs_info->nodesize <= 3587 rc->search_start) { 3588 path->slots[0]++; 3589 goto next; 3590 } 3591 3592 block_found = find_first_extent_bit(&rc->processed_blocks, 3593 key.objectid, &start, &end, 3594 EXTENT_DIRTY, NULL); 3595 3596 if (block_found && start <= key.objectid) { 3597 btrfs_release_path(path); 3598 rc->search_start = end + 1; 3599 } else { 3600 if (key.type == BTRFS_EXTENT_ITEM_KEY) 3601 rc->search_start = key.objectid + key.offset; 3602 else 3603 rc->search_start = key.objectid + 3604 fs_info->nodesize; 3605 memcpy(extent_key, &key, sizeof(key)); 3606 return 0; 3607 } 3608 } 3609 btrfs_release_path(path); 3610 return ret; 3611 } 3612 3613 static void set_reloc_control(struct reloc_control *rc) 3614 { 3615 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3616 3617 mutex_lock(&fs_info->reloc_mutex); 3618 fs_info->reloc_ctl = rc; 3619 mutex_unlock(&fs_info->reloc_mutex); 3620 } 3621 3622 static void unset_reloc_control(struct reloc_control *rc) 3623 { 3624 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3625 3626 mutex_lock(&fs_info->reloc_mutex); 3627 fs_info->reloc_ctl = NULL; 3628 mutex_unlock(&fs_info->reloc_mutex); 3629 } 3630 3631 static noinline_for_stack 3632 int prepare_to_relocate(struct reloc_control *rc) 3633 { 3634 struct btrfs_trans_handle *trans; 3635 int ret; 3636 3637 rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info, 3638 BTRFS_BLOCK_RSV_TEMP); 3639 if (!rc->block_rsv) 3640 return -ENOMEM; 3641 3642 memset(&rc->cluster, 0, sizeof(rc->cluster)); 3643 rc->search_start = rc->block_group->start; 3644 rc->extents_found = 0; 3645 rc->nodes_relocated = 0; 3646 rc->merging_rsv_size = 0; 3647 rc->reserved_bytes = 0; 3648 rc->block_rsv->size = rc->extent_root->fs_info->nodesize * 3649 RELOCATION_RESERVED_NODES; 3650 ret = btrfs_block_rsv_refill(rc->extent_root->fs_info, 3651 rc->block_rsv, rc->block_rsv->size, 3652 BTRFS_RESERVE_FLUSH_ALL); 3653 if (ret) 3654 return ret; 3655 3656 rc->create_reloc_tree = true; 3657 set_reloc_control(rc); 3658 3659 trans = btrfs_join_transaction(rc->extent_root); 3660 if (IS_ERR(trans)) { 3661 unset_reloc_control(rc); 3662 /* 3663 * extent tree is not a ref_cow tree and has no reloc_root to 3664 * cleanup. And callers are responsible to free the above 3665 * block rsv. 3666 */ 3667 return PTR_ERR(trans); 3668 } 3669 3670 ret = btrfs_commit_transaction(trans); 3671 if (ret) 3672 unset_reloc_control(rc); 3673 3674 return ret; 3675 } 3676 3677 static noinline_for_stack int relocate_block_group(struct reloc_control *rc) 3678 { 3679 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3680 struct rb_root blocks = RB_ROOT; 3681 struct btrfs_key key; 3682 struct btrfs_trans_handle *trans = NULL; 3683 struct btrfs_path *path; 3684 struct btrfs_extent_item *ei; 3685 u64 flags; 3686 int ret; 3687 int err = 0; 3688 int progress = 0; 3689 3690 path = btrfs_alloc_path(); 3691 if (!path) 3692 return -ENOMEM; 3693 path->reada = READA_FORWARD; 3694 3695 ret = prepare_to_relocate(rc); 3696 if (ret) { 3697 err = ret; 3698 goto out_free; 3699 } 3700 3701 while (1) { 3702 rc->reserved_bytes = 0; 3703 ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv, 3704 rc->block_rsv->size, 3705 BTRFS_RESERVE_FLUSH_ALL); 3706 if (ret) { 3707 err = ret; 3708 break; 3709 } 3710 progress++; 3711 trans = btrfs_start_transaction(rc->extent_root, 0); 3712 if (IS_ERR(trans)) { 3713 err = PTR_ERR(trans); 3714 trans = NULL; 3715 break; 3716 } 3717 restart: 3718 if (update_backref_cache(trans, &rc->backref_cache)) { 3719 btrfs_end_transaction(trans); 3720 trans = NULL; 3721 continue; 3722 } 3723 3724 ret = find_next_extent(rc, path, &key); 3725 if (ret < 0) 3726 err = ret; 3727 if (ret != 0) 3728 break; 3729 3730 rc->extents_found++; 3731 3732 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 3733 struct btrfs_extent_item); 3734 flags = btrfs_extent_flags(path->nodes[0], ei); 3735 3736 /* 3737 * If we are relocating a simple quota owned extent item, we 3738 * need to note the owner on the reloc data root so that when 3739 * we allocate the replacement item, we can attribute it to the 3740 * correct eventual owner (rather than the reloc data root). 3741 */ 3742 if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE) { 3743 struct btrfs_root *root = BTRFS_I(rc->data_inode)->root; 3744 u64 owning_root_id = btrfs_get_extent_owner_root(fs_info, 3745 path->nodes[0], 3746 path->slots[0]); 3747 3748 root->relocation_src_root = owning_root_id; 3749 } 3750 3751 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 3752 ret = add_tree_block(rc, &key, path, &blocks); 3753 } else if (rc->stage == UPDATE_DATA_PTRS && 3754 (flags & BTRFS_EXTENT_FLAG_DATA)) { 3755 ret = add_data_references(rc, &key, path, &blocks); 3756 } else { 3757 btrfs_release_path(path); 3758 ret = 0; 3759 } 3760 if (ret < 0) { 3761 err = ret; 3762 break; 3763 } 3764 3765 if (!RB_EMPTY_ROOT(&blocks)) { 3766 ret = relocate_tree_blocks(trans, rc, &blocks); 3767 if (ret < 0) { 3768 if (ret != -EAGAIN) { 3769 err = ret; 3770 break; 3771 } 3772 rc->extents_found--; 3773 rc->search_start = key.objectid; 3774 } 3775 } 3776 3777 btrfs_end_transaction_throttle(trans); 3778 btrfs_btree_balance_dirty(fs_info); 3779 trans = NULL; 3780 3781 if (rc->stage == MOVE_DATA_EXTENTS && 3782 (flags & BTRFS_EXTENT_FLAG_DATA)) { 3783 rc->found_file_extent = true; 3784 ret = relocate_data_extent(rc->data_inode, 3785 &key, &rc->cluster); 3786 if (ret < 0) { 3787 err = ret; 3788 break; 3789 } 3790 } 3791 if (btrfs_should_cancel_balance(fs_info)) { 3792 err = -ECANCELED; 3793 break; 3794 } 3795 } 3796 if (trans && progress && err == -ENOSPC) { 3797 ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags); 3798 if (ret == 1) { 3799 err = 0; 3800 progress = 0; 3801 goto restart; 3802 } 3803 } 3804 3805 btrfs_release_path(path); 3806 clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY); 3807 3808 if (trans) { 3809 btrfs_end_transaction_throttle(trans); 3810 btrfs_btree_balance_dirty(fs_info); 3811 } 3812 3813 if (!err) { 3814 ret = relocate_file_extent_cluster(rc->data_inode, 3815 &rc->cluster); 3816 if (ret < 0) 3817 err = ret; 3818 } 3819 3820 rc->create_reloc_tree = false; 3821 set_reloc_control(rc); 3822 3823 btrfs_backref_release_cache(&rc->backref_cache); 3824 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL); 3825 3826 /* 3827 * Even in the case when the relocation is cancelled, we should all go 3828 * through prepare_to_merge() and merge_reloc_roots(). 3829 * 3830 * For error (including cancelled balance), prepare_to_merge() will 3831 * mark all reloc trees orphan, then queue them for cleanup in 3832 * merge_reloc_roots() 3833 */ 3834 err = prepare_to_merge(rc, err); 3835 3836 merge_reloc_roots(rc); 3837 3838 rc->merge_reloc_tree = false; 3839 unset_reloc_control(rc); 3840 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL); 3841 3842 /* get rid of pinned extents */ 3843 trans = btrfs_join_transaction(rc->extent_root); 3844 if (IS_ERR(trans)) { 3845 err = PTR_ERR(trans); 3846 goto out_free; 3847 } 3848 ret = btrfs_commit_transaction(trans); 3849 if (ret && !err) 3850 err = ret; 3851 out_free: 3852 ret = clean_dirty_subvols(rc); 3853 if (ret < 0 && !err) 3854 err = ret; 3855 btrfs_free_block_rsv(fs_info, rc->block_rsv); 3856 btrfs_free_path(path); 3857 return err; 3858 } 3859 3860 static int __insert_orphan_inode(struct btrfs_trans_handle *trans, 3861 struct btrfs_root *root, u64 objectid) 3862 { 3863 struct btrfs_path *path; 3864 struct btrfs_inode_item *item; 3865 struct extent_buffer *leaf; 3866 int ret; 3867 3868 path = btrfs_alloc_path(); 3869 if (!path) 3870 return -ENOMEM; 3871 3872 ret = btrfs_insert_empty_inode(trans, root, path, objectid); 3873 if (ret) 3874 goto out; 3875 3876 leaf = path->nodes[0]; 3877 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item); 3878 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 3879 btrfs_set_inode_generation(leaf, item, 1); 3880 btrfs_set_inode_size(leaf, item, 0); 3881 btrfs_set_inode_mode(leaf, item, S_IFREG | 0600); 3882 btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS | 3883 BTRFS_INODE_PREALLOC); 3884 btrfs_mark_buffer_dirty(trans, leaf); 3885 out: 3886 btrfs_free_path(path); 3887 return ret; 3888 } 3889 3890 static void delete_orphan_inode(struct btrfs_trans_handle *trans, 3891 struct btrfs_root *root, u64 objectid) 3892 { 3893 struct btrfs_path *path; 3894 struct btrfs_key key; 3895 int ret = 0; 3896 3897 path = btrfs_alloc_path(); 3898 if (!path) { 3899 ret = -ENOMEM; 3900 goto out; 3901 } 3902 3903 key.objectid = objectid; 3904 key.type = BTRFS_INODE_ITEM_KEY; 3905 key.offset = 0; 3906 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3907 if (ret) { 3908 if (ret > 0) 3909 ret = -ENOENT; 3910 goto out; 3911 } 3912 ret = btrfs_del_item(trans, root, path); 3913 out: 3914 if (ret) 3915 btrfs_abort_transaction(trans, ret); 3916 btrfs_free_path(path); 3917 } 3918 3919 /* 3920 * helper to create inode for data relocation. 3921 * the inode is in data relocation tree and its link count is 0 3922 */ 3923 static noinline_for_stack struct inode *create_reloc_inode( 3924 struct btrfs_fs_info *fs_info, 3925 const struct btrfs_block_group *group) 3926 { 3927 struct inode *inode = NULL; 3928 struct btrfs_trans_handle *trans; 3929 struct btrfs_root *root; 3930 u64 objectid; 3931 int err = 0; 3932 3933 root = btrfs_grab_root(fs_info->data_reloc_root); 3934 trans = btrfs_start_transaction(root, 6); 3935 if (IS_ERR(trans)) { 3936 btrfs_put_root(root); 3937 return ERR_CAST(trans); 3938 } 3939 3940 err = btrfs_get_free_objectid(root, &objectid); 3941 if (err) 3942 goto out; 3943 3944 err = __insert_orphan_inode(trans, root, objectid); 3945 if (err) 3946 goto out; 3947 3948 inode = btrfs_iget(fs_info->sb, objectid, root); 3949 if (IS_ERR(inode)) { 3950 delete_orphan_inode(trans, root, objectid); 3951 err = PTR_ERR(inode); 3952 inode = NULL; 3953 goto out; 3954 } 3955 BTRFS_I(inode)->index_cnt = group->start; 3956 3957 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 3958 out: 3959 btrfs_put_root(root); 3960 btrfs_end_transaction(trans); 3961 btrfs_btree_balance_dirty(fs_info); 3962 if (err) { 3963 iput(inode); 3964 inode = ERR_PTR(err); 3965 } 3966 return inode; 3967 } 3968 3969 /* 3970 * Mark start of chunk relocation that is cancellable. Check if the cancellation 3971 * has been requested meanwhile and don't start in that case. 3972 * 3973 * Return: 3974 * 0 success 3975 * -EINPROGRESS operation is already in progress, that's probably a bug 3976 * -ECANCELED cancellation request was set before the operation started 3977 */ 3978 static int reloc_chunk_start(struct btrfs_fs_info *fs_info) 3979 { 3980 if (test_and_set_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) { 3981 /* This should not happen */ 3982 btrfs_err(fs_info, "reloc already running, cannot start"); 3983 return -EINPROGRESS; 3984 } 3985 3986 if (atomic_read(&fs_info->reloc_cancel_req) > 0) { 3987 btrfs_info(fs_info, "chunk relocation canceled on start"); 3988 /* 3989 * On cancel, clear all requests but let the caller mark 3990 * the end after cleanup operations. 3991 */ 3992 atomic_set(&fs_info->reloc_cancel_req, 0); 3993 return -ECANCELED; 3994 } 3995 return 0; 3996 } 3997 3998 /* 3999 * Mark end of chunk relocation that is cancellable and wake any waiters. 4000 */ 4001 static void reloc_chunk_end(struct btrfs_fs_info *fs_info) 4002 { 4003 /* Requested after start, clear bit first so any waiters can continue */ 4004 if (atomic_read(&fs_info->reloc_cancel_req) > 0) 4005 btrfs_info(fs_info, "chunk relocation canceled during operation"); 4006 clear_and_wake_up_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags); 4007 atomic_set(&fs_info->reloc_cancel_req, 0); 4008 } 4009 4010 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info) 4011 { 4012 struct reloc_control *rc; 4013 4014 rc = kzalloc(sizeof(*rc), GFP_NOFS); 4015 if (!rc) 4016 return NULL; 4017 4018 INIT_LIST_HEAD(&rc->reloc_roots); 4019 INIT_LIST_HEAD(&rc->dirty_subvol_roots); 4020 btrfs_backref_init_cache(fs_info, &rc->backref_cache, true); 4021 rc->reloc_root_tree.rb_root = RB_ROOT; 4022 spin_lock_init(&rc->reloc_root_tree.lock); 4023 extent_io_tree_init(fs_info, &rc->processed_blocks, IO_TREE_RELOC_BLOCKS); 4024 return rc; 4025 } 4026 4027 static void free_reloc_control(struct reloc_control *rc) 4028 { 4029 struct mapping_node *node, *tmp; 4030 4031 free_reloc_roots(&rc->reloc_roots); 4032 rbtree_postorder_for_each_entry_safe(node, tmp, 4033 &rc->reloc_root_tree.rb_root, rb_node) 4034 kfree(node); 4035 4036 kfree(rc); 4037 } 4038 4039 /* 4040 * Print the block group being relocated 4041 */ 4042 static void describe_relocation(struct btrfs_fs_info *fs_info, 4043 struct btrfs_block_group *block_group) 4044 { 4045 char buf[128] = {'\0'}; 4046 4047 btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf)); 4048 4049 btrfs_info(fs_info, 4050 "relocating block group %llu flags %s", 4051 block_group->start, buf); 4052 } 4053 4054 static const char *stage_to_string(enum reloc_stage stage) 4055 { 4056 if (stage == MOVE_DATA_EXTENTS) 4057 return "move data extents"; 4058 if (stage == UPDATE_DATA_PTRS) 4059 return "update data pointers"; 4060 return "unknown"; 4061 } 4062 4063 /* 4064 * function to relocate all extents in a block group. 4065 */ 4066 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start) 4067 { 4068 struct btrfs_block_group *bg; 4069 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, group_start); 4070 struct reloc_control *rc; 4071 struct inode *inode; 4072 struct btrfs_path *path; 4073 int ret; 4074 int rw = 0; 4075 int err = 0; 4076 4077 /* 4078 * This only gets set if we had a half-deleted snapshot on mount. We 4079 * cannot allow relocation to start while we're still trying to clean up 4080 * these pending deletions. 4081 */ 4082 ret = wait_on_bit(&fs_info->flags, BTRFS_FS_UNFINISHED_DROPS, TASK_INTERRUPTIBLE); 4083 if (ret) 4084 return ret; 4085 4086 /* We may have been woken up by close_ctree, so bail if we're closing. */ 4087 if (btrfs_fs_closing(fs_info)) 4088 return -EINTR; 4089 4090 bg = btrfs_lookup_block_group(fs_info, group_start); 4091 if (!bg) 4092 return -ENOENT; 4093 4094 /* 4095 * Relocation of a data block group creates ordered extents. Without 4096 * sb_start_write(), we can freeze the filesystem while unfinished 4097 * ordered extents are left. Such ordered extents can cause a deadlock 4098 * e.g. when syncfs() is waiting for their completion but they can't 4099 * finish because they block when joining a transaction, due to the 4100 * fact that the freeze locks are being held in write mode. 4101 */ 4102 if (bg->flags & BTRFS_BLOCK_GROUP_DATA) 4103 ASSERT(sb_write_started(fs_info->sb)); 4104 4105 if (btrfs_pinned_by_swapfile(fs_info, bg)) { 4106 btrfs_put_block_group(bg); 4107 return -ETXTBSY; 4108 } 4109 4110 rc = alloc_reloc_control(fs_info); 4111 if (!rc) { 4112 btrfs_put_block_group(bg); 4113 return -ENOMEM; 4114 } 4115 4116 ret = reloc_chunk_start(fs_info); 4117 if (ret < 0) { 4118 err = ret; 4119 goto out_put_bg; 4120 } 4121 4122 rc->extent_root = extent_root; 4123 rc->block_group = bg; 4124 4125 ret = btrfs_inc_block_group_ro(rc->block_group, true); 4126 if (ret) { 4127 err = ret; 4128 goto out; 4129 } 4130 rw = 1; 4131 4132 path = btrfs_alloc_path(); 4133 if (!path) { 4134 err = -ENOMEM; 4135 goto out; 4136 } 4137 4138 inode = lookup_free_space_inode(rc->block_group, path); 4139 btrfs_free_path(path); 4140 4141 if (!IS_ERR(inode)) 4142 ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0); 4143 else 4144 ret = PTR_ERR(inode); 4145 4146 if (ret && ret != -ENOENT) { 4147 err = ret; 4148 goto out; 4149 } 4150 4151 rc->data_inode = create_reloc_inode(fs_info, rc->block_group); 4152 if (IS_ERR(rc->data_inode)) { 4153 err = PTR_ERR(rc->data_inode); 4154 rc->data_inode = NULL; 4155 goto out; 4156 } 4157 4158 describe_relocation(fs_info, rc->block_group); 4159 4160 btrfs_wait_block_group_reservations(rc->block_group); 4161 btrfs_wait_nocow_writers(rc->block_group); 4162 btrfs_wait_ordered_roots(fs_info, U64_MAX, 4163 rc->block_group->start, 4164 rc->block_group->length); 4165 4166 ret = btrfs_zone_finish(rc->block_group); 4167 WARN_ON(ret && ret != -EAGAIN); 4168 4169 while (1) { 4170 enum reloc_stage finishes_stage; 4171 4172 mutex_lock(&fs_info->cleaner_mutex); 4173 ret = relocate_block_group(rc); 4174 mutex_unlock(&fs_info->cleaner_mutex); 4175 if (ret < 0) 4176 err = ret; 4177 4178 finishes_stage = rc->stage; 4179 /* 4180 * We may have gotten ENOSPC after we already dirtied some 4181 * extents. If writeout happens while we're relocating a 4182 * different block group we could end up hitting the 4183 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in 4184 * btrfs_reloc_cow_block. Make sure we write everything out 4185 * properly so we don't trip over this problem, and then break 4186 * out of the loop if we hit an error. 4187 */ 4188 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) { 4189 ret = btrfs_wait_ordered_range(rc->data_inode, 0, 4190 (u64)-1); 4191 if (ret) 4192 err = ret; 4193 invalidate_mapping_pages(rc->data_inode->i_mapping, 4194 0, -1); 4195 rc->stage = UPDATE_DATA_PTRS; 4196 } 4197 4198 if (err < 0) 4199 goto out; 4200 4201 if (rc->extents_found == 0) 4202 break; 4203 4204 btrfs_info(fs_info, "found %llu extents, stage: %s", 4205 rc->extents_found, stage_to_string(finishes_stage)); 4206 } 4207 4208 WARN_ON(rc->block_group->pinned > 0); 4209 WARN_ON(rc->block_group->reserved > 0); 4210 WARN_ON(rc->block_group->used > 0); 4211 out: 4212 if (err && rw) 4213 btrfs_dec_block_group_ro(rc->block_group); 4214 iput(rc->data_inode); 4215 out_put_bg: 4216 btrfs_put_block_group(bg); 4217 reloc_chunk_end(fs_info); 4218 free_reloc_control(rc); 4219 return err; 4220 } 4221 4222 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root) 4223 { 4224 struct btrfs_fs_info *fs_info = root->fs_info; 4225 struct btrfs_trans_handle *trans; 4226 int ret, err; 4227 4228 trans = btrfs_start_transaction(fs_info->tree_root, 0); 4229 if (IS_ERR(trans)) 4230 return PTR_ERR(trans); 4231 4232 memset(&root->root_item.drop_progress, 0, 4233 sizeof(root->root_item.drop_progress)); 4234 btrfs_set_root_drop_level(&root->root_item, 0); 4235 btrfs_set_root_refs(&root->root_item, 0); 4236 ret = btrfs_update_root(trans, fs_info->tree_root, 4237 &root->root_key, &root->root_item); 4238 4239 err = btrfs_end_transaction(trans); 4240 if (err) 4241 return err; 4242 return ret; 4243 } 4244 4245 /* 4246 * recover relocation interrupted by system crash. 4247 * 4248 * this function resumes merging reloc trees with corresponding fs trees. 4249 * this is important for keeping the sharing of tree blocks 4250 */ 4251 int btrfs_recover_relocation(struct btrfs_fs_info *fs_info) 4252 { 4253 LIST_HEAD(reloc_roots); 4254 struct btrfs_key key; 4255 struct btrfs_root *fs_root; 4256 struct btrfs_root *reloc_root; 4257 struct btrfs_path *path; 4258 struct extent_buffer *leaf; 4259 struct reloc_control *rc = NULL; 4260 struct btrfs_trans_handle *trans; 4261 int ret; 4262 int err = 0; 4263 4264 path = btrfs_alloc_path(); 4265 if (!path) 4266 return -ENOMEM; 4267 path->reada = READA_BACK; 4268 4269 key.objectid = BTRFS_TREE_RELOC_OBJECTID; 4270 key.type = BTRFS_ROOT_ITEM_KEY; 4271 key.offset = (u64)-1; 4272 4273 while (1) { 4274 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, 4275 path, 0, 0); 4276 if (ret < 0) { 4277 err = ret; 4278 goto out; 4279 } 4280 if (ret > 0) { 4281 if (path->slots[0] == 0) 4282 break; 4283 path->slots[0]--; 4284 } 4285 leaf = path->nodes[0]; 4286 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4287 btrfs_release_path(path); 4288 4289 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID || 4290 key.type != BTRFS_ROOT_ITEM_KEY) 4291 break; 4292 4293 reloc_root = btrfs_read_tree_root(fs_info->tree_root, &key); 4294 if (IS_ERR(reloc_root)) { 4295 err = PTR_ERR(reloc_root); 4296 goto out; 4297 } 4298 4299 set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state); 4300 list_add(&reloc_root->root_list, &reloc_roots); 4301 4302 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 4303 fs_root = btrfs_get_fs_root(fs_info, 4304 reloc_root->root_key.offset, false); 4305 if (IS_ERR(fs_root)) { 4306 ret = PTR_ERR(fs_root); 4307 if (ret != -ENOENT) { 4308 err = ret; 4309 goto out; 4310 } 4311 ret = mark_garbage_root(reloc_root); 4312 if (ret < 0) { 4313 err = ret; 4314 goto out; 4315 } 4316 } else { 4317 btrfs_put_root(fs_root); 4318 } 4319 } 4320 4321 if (key.offset == 0) 4322 break; 4323 4324 key.offset--; 4325 } 4326 btrfs_release_path(path); 4327 4328 if (list_empty(&reloc_roots)) 4329 goto out; 4330 4331 rc = alloc_reloc_control(fs_info); 4332 if (!rc) { 4333 err = -ENOMEM; 4334 goto out; 4335 } 4336 4337 ret = reloc_chunk_start(fs_info); 4338 if (ret < 0) { 4339 err = ret; 4340 goto out_end; 4341 } 4342 4343 rc->extent_root = btrfs_extent_root(fs_info, 0); 4344 4345 set_reloc_control(rc); 4346 4347 trans = btrfs_join_transaction(rc->extent_root); 4348 if (IS_ERR(trans)) { 4349 err = PTR_ERR(trans); 4350 goto out_unset; 4351 } 4352 4353 rc->merge_reloc_tree = true; 4354 4355 while (!list_empty(&reloc_roots)) { 4356 reloc_root = list_entry(reloc_roots.next, 4357 struct btrfs_root, root_list); 4358 list_del(&reloc_root->root_list); 4359 4360 if (btrfs_root_refs(&reloc_root->root_item) == 0) { 4361 list_add_tail(&reloc_root->root_list, 4362 &rc->reloc_roots); 4363 continue; 4364 } 4365 4366 fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, 4367 false); 4368 if (IS_ERR(fs_root)) { 4369 err = PTR_ERR(fs_root); 4370 list_add_tail(&reloc_root->root_list, &reloc_roots); 4371 btrfs_end_transaction(trans); 4372 goto out_unset; 4373 } 4374 4375 err = __add_reloc_root(reloc_root); 4376 ASSERT(err != -EEXIST); 4377 if (err) { 4378 list_add_tail(&reloc_root->root_list, &reloc_roots); 4379 btrfs_put_root(fs_root); 4380 btrfs_end_transaction(trans); 4381 goto out_unset; 4382 } 4383 fs_root->reloc_root = btrfs_grab_root(reloc_root); 4384 btrfs_put_root(fs_root); 4385 } 4386 4387 err = btrfs_commit_transaction(trans); 4388 if (err) 4389 goto out_unset; 4390 4391 merge_reloc_roots(rc); 4392 4393 unset_reloc_control(rc); 4394 4395 trans = btrfs_join_transaction(rc->extent_root); 4396 if (IS_ERR(trans)) { 4397 err = PTR_ERR(trans); 4398 goto out_clean; 4399 } 4400 err = btrfs_commit_transaction(trans); 4401 out_clean: 4402 ret = clean_dirty_subvols(rc); 4403 if (ret < 0 && !err) 4404 err = ret; 4405 out_unset: 4406 unset_reloc_control(rc); 4407 out_end: 4408 reloc_chunk_end(fs_info); 4409 free_reloc_control(rc); 4410 out: 4411 free_reloc_roots(&reloc_roots); 4412 4413 btrfs_free_path(path); 4414 4415 if (err == 0) { 4416 /* cleanup orphan inode in data relocation tree */ 4417 fs_root = btrfs_grab_root(fs_info->data_reloc_root); 4418 ASSERT(fs_root); 4419 err = btrfs_orphan_cleanup(fs_root); 4420 btrfs_put_root(fs_root); 4421 } 4422 return err; 4423 } 4424 4425 /* 4426 * helper to add ordered checksum for data relocation. 4427 * 4428 * cloning checksum properly handles the nodatasum extents. 4429 * it also saves CPU time to re-calculate the checksum. 4430 */ 4431 int btrfs_reloc_clone_csums(struct btrfs_ordered_extent *ordered) 4432 { 4433 struct btrfs_inode *inode = BTRFS_I(ordered->inode); 4434 struct btrfs_fs_info *fs_info = inode->root->fs_info; 4435 u64 disk_bytenr = ordered->file_offset + inode->index_cnt; 4436 struct btrfs_root *csum_root = btrfs_csum_root(fs_info, disk_bytenr); 4437 LIST_HEAD(list); 4438 int ret; 4439 4440 ret = btrfs_lookup_csums_list(csum_root, disk_bytenr, 4441 disk_bytenr + ordered->num_bytes - 1, 4442 &list, 0, false); 4443 if (ret) 4444 return ret; 4445 4446 while (!list_empty(&list)) { 4447 struct btrfs_ordered_sum *sums = 4448 list_entry(list.next, struct btrfs_ordered_sum, list); 4449 4450 list_del_init(&sums->list); 4451 4452 /* 4453 * We need to offset the new_bytenr based on where the csum is. 4454 * We need to do this because we will read in entire prealloc 4455 * extents but we may have written to say the middle of the 4456 * prealloc extent, so we need to make sure the csum goes with 4457 * the right disk offset. 4458 * 4459 * We can do this because the data reloc inode refers strictly 4460 * to the on disk bytes, so we don't have to worry about 4461 * disk_len vs real len like with real inodes since it's all 4462 * disk length. 4463 */ 4464 sums->logical = ordered->disk_bytenr + sums->logical - disk_bytenr; 4465 btrfs_add_ordered_sum(ordered, sums); 4466 } 4467 4468 return 0; 4469 } 4470 4471 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans, 4472 struct btrfs_root *root, 4473 const struct extent_buffer *buf, 4474 struct extent_buffer *cow) 4475 { 4476 struct btrfs_fs_info *fs_info = root->fs_info; 4477 struct reloc_control *rc; 4478 struct btrfs_backref_node *node; 4479 int first_cow = 0; 4480 int level; 4481 int ret = 0; 4482 4483 rc = fs_info->reloc_ctl; 4484 if (!rc) 4485 return 0; 4486 4487 BUG_ON(rc->stage == UPDATE_DATA_PTRS && btrfs_is_data_reloc_root(root)); 4488 4489 level = btrfs_header_level(buf); 4490 if (btrfs_header_generation(buf) <= 4491 btrfs_root_last_snapshot(&root->root_item)) 4492 first_cow = 1; 4493 4494 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID && 4495 rc->create_reloc_tree) { 4496 WARN_ON(!first_cow && level == 0); 4497 4498 node = rc->backref_cache.path[level]; 4499 BUG_ON(node->bytenr != buf->start && 4500 node->new_bytenr != buf->start); 4501 4502 btrfs_backref_drop_node_buffer(node); 4503 atomic_inc(&cow->refs); 4504 node->eb = cow; 4505 node->new_bytenr = cow->start; 4506 4507 if (!node->pending) { 4508 list_move_tail(&node->list, 4509 &rc->backref_cache.pending[level]); 4510 node->pending = 1; 4511 } 4512 4513 if (first_cow) 4514 mark_block_processed(rc, node); 4515 4516 if (first_cow && level > 0) 4517 rc->nodes_relocated += buf->len; 4518 } 4519 4520 if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS) 4521 ret = replace_file_extents(trans, rc, root, cow); 4522 return ret; 4523 } 4524 4525 /* 4526 * called before creating snapshot. it calculates metadata reservation 4527 * required for relocating tree blocks in the snapshot 4528 */ 4529 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending, 4530 u64 *bytes_to_reserve) 4531 { 4532 struct btrfs_root *root = pending->root; 4533 struct reloc_control *rc = root->fs_info->reloc_ctl; 4534 4535 if (!rc || !have_reloc_root(root)) 4536 return; 4537 4538 if (!rc->merge_reloc_tree) 4539 return; 4540 4541 root = root->reloc_root; 4542 BUG_ON(btrfs_root_refs(&root->root_item) == 0); 4543 /* 4544 * relocation is in the stage of merging trees. the space 4545 * used by merging a reloc tree is twice the size of 4546 * relocated tree nodes in the worst case. half for cowing 4547 * the reloc tree, half for cowing the fs tree. the space 4548 * used by cowing the reloc tree will be freed after the 4549 * tree is dropped. if we create snapshot, cowing the fs 4550 * tree may use more space than it frees. so we need 4551 * reserve extra space. 4552 */ 4553 *bytes_to_reserve += rc->nodes_relocated; 4554 } 4555 4556 /* 4557 * called after snapshot is created. migrate block reservation 4558 * and create reloc root for the newly created snapshot 4559 * 4560 * This is similar to btrfs_init_reloc_root(), we come out of here with two 4561 * references held on the reloc_root, one for root->reloc_root and one for 4562 * rc->reloc_roots. 4563 */ 4564 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans, 4565 struct btrfs_pending_snapshot *pending) 4566 { 4567 struct btrfs_root *root = pending->root; 4568 struct btrfs_root *reloc_root; 4569 struct btrfs_root *new_root; 4570 struct reloc_control *rc = root->fs_info->reloc_ctl; 4571 int ret; 4572 4573 if (!rc || !have_reloc_root(root)) 4574 return 0; 4575 4576 rc = root->fs_info->reloc_ctl; 4577 rc->merging_rsv_size += rc->nodes_relocated; 4578 4579 if (rc->merge_reloc_tree) { 4580 ret = btrfs_block_rsv_migrate(&pending->block_rsv, 4581 rc->block_rsv, 4582 rc->nodes_relocated, true); 4583 if (ret) 4584 return ret; 4585 } 4586 4587 new_root = pending->snap; 4588 reloc_root = create_reloc_root(trans, root->reloc_root, 4589 new_root->root_key.objectid); 4590 if (IS_ERR(reloc_root)) 4591 return PTR_ERR(reloc_root); 4592 4593 ret = __add_reloc_root(reloc_root); 4594 ASSERT(ret != -EEXIST); 4595 if (ret) { 4596 /* Pairs with create_reloc_root */ 4597 btrfs_put_root(reloc_root); 4598 return ret; 4599 } 4600 new_root->reloc_root = btrfs_grab_root(reloc_root); 4601 4602 if (rc->create_reloc_tree) 4603 ret = clone_backref_node(trans, rc, root, reloc_root); 4604 return ret; 4605 } 4606 4607 /* 4608 * Get the current bytenr for the block group which is being relocated. 4609 * 4610 * Return U64_MAX if no running relocation. 4611 */ 4612 u64 btrfs_get_reloc_bg_bytenr(const struct btrfs_fs_info *fs_info) 4613 { 4614 u64 logical = U64_MAX; 4615 4616 lockdep_assert_held(&fs_info->reloc_mutex); 4617 4618 if (fs_info->reloc_ctl && fs_info->reloc_ctl->block_group) 4619 logical = fs_info->reloc_ctl->block_group->start; 4620 return logical; 4621 } 4622