xref: /linux/fs/btrfs/relocation.c (revision 27258e448eb301cf89e351df87aa8cb916653bf2)
1 /*
2  * Copyright (C) 2009 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/rbtree.h>
24 #include "ctree.h"
25 #include "disk-io.h"
26 #include "transaction.h"
27 #include "volumes.h"
28 #include "locking.h"
29 #include "btrfs_inode.h"
30 #include "async-thread.h"
31 
32 /*
33  * backref_node, mapping_node and tree_block start with this
34  */
35 struct tree_entry {
36 	struct rb_node rb_node;
37 	u64 bytenr;
38 };
39 
40 /*
41  * present a tree block in the backref cache
42  */
43 struct backref_node {
44 	struct rb_node rb_node;
45 	u64 bytenr;
46 	/* objectid tree block owner */
47 	u64 owner;
48 	/* list of upper level blocks reference this block */
49 	struct list_head upper;
50 	/* list of child blocks in the cache */
51 	struct list_head lower;
52 	/* NULL if this node is not tree root */
53 	struct btrfs_root *root;
54 	/* extent buffer got by COW the block */
55 	struct extent_buffer *eb;
56 	/* level of tree block */
57 	unsigned int level:8;
58 	/* 1 if the block is root of old snapshot */
59 	unsigned int old_root:1;
60 	/* 1 if no child blocks in the cache */
61 	unsigned int lowest:1;
62 	/* is the extent buffer locked */
63 	unsigned int locked:1;
64 	/* has the block been processed */
65 	unsigned int processed:1;
66 	/* have backrefs of this block been checked */
67 	unsigned int checked:1;
68 };
69 
70 /*
71  * present a block pointer in the backref cache
72  */
73 struct backref_edge {
74 	struct list_head list[2];
75 	struct backref_node *node[2];
76 	u64 blockptr;
77 };
78 
79 #define LOWER	0
80 #define UPPER	1
81 
82 struct backref_cache {
83 	/* red black tree of all backref nodes in the cache */
84 	struct rb_root rb_root;
85 	/* list of backref nodes with no child block in the cache */
86 	struct list_head pending[BTRFS_MAX_LEVEL];
87 	spinlock_t lock;
88 };
89 
90 /*
91  * map address of tree root to tree
92  */
93 struct mapping_node {
94 	struct rb_node rb_node;
95 	u64 bytenr;
96 	void *data;
97 };
98 
99 struct mapping_tree {
100 	struct rb_root rb_root;
101 	spinlock_t lock;
102 };
103 
104 /*
105  * present a tree block to process
106  */
107 struct tree_block {
108 	struct rb_node rb_node;
109 	u64 bytenr;
110 	struct btrfs_key key;
111 	unsigned int level:8;
112 	unsigned int key_ready:1;
113 };
114 
115 /* inode vector */
116 #define INODEVEC_SIZE 16
117 
118 struct inodevec {
119 	struct list_head list;
120 	struct inode *inode[INODEVEC_SIZE];
121 	int nr;
122 };
123 
124 struct reloc_control {
125 	/* block group to relocate */
126 	struct btrfs_block_group_cache *block_group;
127 	/* extent tree */
128 	struct btrfs_root *extent_root;
129 	/* inode for moving data */
130 	struct inode *data_inode;
131 	struct btrfs_workers workers;
132 	/* tree blocks have been processed */
133 	struct extent_io_tree processed_blocks;
134 	/* map start of tree root to corresponding reloc tree */
135 	struct mapping_tree reloc_root_tree;
136 	/* list of reloc trees */
137 	struct list_head reloc_roots;
138 	u64 search_start;
139 	u64 extents_found;
140 	u64 extents_skipped;
141 	int stage;
142 	int create_reloc_root;
143 	unsigned int found_file_extent:1;
144 	unsigned int found_old_snapshot:1;
145 };
146 
147 /* stages of data relocation */
148 #define MOVE_DATA_EXTENTS	0
149 #define UPDATE_DATA_PTRS	1
150 
151 /*
152  * merge reloc tree to corresponding fs tree in worker threads
153  */
154 struct async_merge {
155 	struct btrfs_work work;
156 	struct reloc_control *rc;
157 	struct btrfs_root *root;
158 	struct completion *done;
159 	atomic_t *num_pending;
160 };
161 
162 static void mapping_tree_init(struct mapping_tree *tree)
163 {
164 	tree->rb_root.rb_node = NULL;
165 	spin_lock_init(&tree->lock);
166 }
167 
168 static void backref_cache_init(struct backref_cache *cache)
169 {
170 	int i;
171 	cache->rb_root.rb_node = NULL;
172 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
173 		INIT_LIST_HEAD(&cache->pending[i]);
174 	spin_lock_init(&cache->lock);
175 }
176 
177 static void backref_node_init(struct backref_node *node)
178 {
179 	memset(node, 0, sizeof(*node));
180 	INIT_LIST_HEAD(&node->upper);
181 	INIT_LIST_HEAD(&node->lower);
182 	RB_CLEAR_NODE(&node->rb_node);
183 }
184 
185 static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr,
186 				   struct rb_node *node)
187 {
188 	struct rb_node **p = &root->rb_node;
189 	struct rb_node *parent = NULL;
190 	struct tree_entry *entry;
191 
192 	while (*p) {
193 		parent = *p;
194 		entry = rb_entry(parent, struct tree_entry, rb_node);
195 
196 		if (bytenr < entry->bytenr)
197 			p = &(*p)->rb_left;
198 		else if (bytenr > entry->bytenr)
199 			p = &(*p)->rb_right;
200 		else
201 			return parent;
202 	}
203 
204 	rb_link_node(node, parent, p);
205 	rb_insert_color(node, root);
206 	return NULL;
207 }
208 
209 static struct rb_node *tree_search(struct rb_root *root, u64 bytenr)
210 {
211 	struct rb_node *n = root->rb_node;
212 	struct tree_entry *entry;
213 
214 	while (n) {
215 		entry = rb_entry(n, struct tree_entry, rb_node);
216 
217 		if (bytenr < entry->bytenr)
218 			n = n->rb_left;
219 		else if (bytenr > entry->bytenr)
220 			n = n->rb_right;
221 		else
222 			return n;
223 	}
224 	return NULL;
225 }
226 
227 /*
228  * walk up backref nodes until reach node presents tree root
229  */
230 static struct backref_node *walk_up_backref(struct backref_node *node,
231 					    struct backref_edge *edges[],
232 					    int *index)
233 {
234 	struct backref_edge *edge;
235 	int idx = *index;
236 
237 	while (!list_empty(&node->upper)) {
238 		edge = list_entry(node->upper.next,
239 				  struct backref_edge, list[LOWER]);
240 		edges[idx++] = edge;
241 		node = edge->node[UPPER];
242 	}
243 	*index = idx;
244 	return node;
245 }
246 
247 /*
248  * walk down backref nodes to find start of next reference path
249  */
250 static struct backref_node *walk_down_backref(struct backref_edge *edges[],
251 					      int *index)
252 {
253 	struct backref_edge *edge;
254 	struct backref_node *lower;
255 	int idx = *index;
256 
257 	while (idx > 0) {
258 		edge = edges[idx - 1];
259 		lower = edge->node[LOWER];
260 		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
261 			idx--;
262 			continue;
263 		}
264 		edge = list_entry(edge->list[LOWER].next,
265 				  struct backref_edge, list[LOWER]);
266 		edges[idx - 1] = edge;
267 		*index = idx;
268 		return edge->node[UPPER];
269 	}
270 	*index = 0;
271 	return NULL;
272 }
273 
274 static void drop_node_buffer(struct backref_node *node)
275 {
276 	if (node->eb) {
277 		if (node->locked) {
278 			btrfs_tree_unlock(node->eb);
279 			node->locked = 0;
280 		}
281 		free_extent_buffer(node->eb);
282 		node->eb = NULL;
283 	}
284 }
285 
286 static void drop_backref_node(struct backref_cache *tree,
287 			      struct backref_node *node)
288 {
289 	BUG_ON(!node->lowest);
290 	BUG_ON(!list_empty(&node->upper));
291 
292 	drop_node_buffer(node);
293 	list_del(&node->lower);
294 
295 	rb_erase(&node->rb_node, &tree->rb_root);
296 	kfree(node);
297 }
298 
299 /*
300  * remove a backref node from the backref cache
301  */
302 static void remove_backref_node(struct backref_cache *cache,
303 				struct backref_node *node)
304 {
305 	struct backref_node *upper;
306 	struct backref_edge *edge;
307 
308 	if (!node)
309 		return;
310 
311 	BUG_ON(!node->lowest);
312 	while (!list_empty(&node->upper)) {
313 		edge = list_entry(node->upper.next, struct backref_edge,
314 				  list[LOWER]);
315 		upper = edge->node[UPPER];
316 		list_del(&edge->list[LOWER]);
317 		list_del(&edge->list[UPPER]);
318 		kfree(edge);
319 		/*
320 		 * add the node to pending list if no other
321 		 * child block cached.
322 		 */
323 		if (list_empty(&upper->lower)) {
324 			list_add_tail(&upper->lower,
325 				      &cache->pending[upper->level]);
326 			upper->lowest = 1;
327 		}
328 	}
329 	drop_backref_node(cache, node);
330 }
331 
332 /*
333  * find reloc tree by address of tree root
334  */
335 static struct btrfs_root *find_reloc_root(struct reloc_control *rc,
336 					  u64 bytenr)
337 {
338 	struct rb_node *rb_node;
339 	struct mapping_node *node;
340 	struct btrfs_root *root = NULL;
341 
342 	spin_lock(&rc->reloc_root_tree.lock);
343 	rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr);
344 	if (rb_node) {
345 		node = rb_entry(rb_node, struct mapping_node, rb_node);
346 		root = (struct btrfs_root *)node->data;
347 	}
348 	spin_unlock(&rc->reloc_root_tree.lock);
349 	return root;
350 }
351 
352 static int is_cowonly_root(u64 root_objectid)
353 {
354 	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
355 	    root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
356 	    root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
357 	    root_objectid == BTRFS_DEV_TREE_OBJECTID ||
358 	    root_objectid == BTRFS_TREE_LOG_OBJECTID ||
359 	    root_objectid == BTRFS_CSUM_TREE_OBJECTID)
360 		return 1;
361 	return 0;
362 }
363 
364 static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info,
365 					u64 root_objectid)
366 {
367 	struct btrfs_key key;
368 
369 	key.objectid = root_objectid;
370 	key.type = BTRFS_ROOT_ITEM_KEY;
371 	if (is_cowonly_root(root_objectid))
372 		key.offset = 0;
373 	else
374 		key.offset = (u64)-1;
375 
376 	return btrfs_read_fs_root_no_name(fs_info, &key);
377 }
378 
379 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
380 static noinline_for_stack
381 struct btrfs_root *find_tree_root(struct reloc_control *rc,
382 				  struct extent_buffer *leaf,
383 				  struct btrfs_extent_ref_v0 *ref0)
384 {
385 	struct btrfs_root *root;
386 	u64 root_objectid = btrfs_ref_root_v0(leaf, ref0);
387 	u64 generation = btrfs_ref_generation_v0(leaf, ref0);
388 
389 	BUG_ON(root_objectid == BTRFS_TREE_RELOC_OBJECTID);
390 
391 	root = read_fs_root(rc->extent_root->fs_info, root_objectid);
392 	BUG_ON(IS_ERR(root));
393 
394 	if (root->ref_cows &&
395 	    generation != btrfs_root_generation(&root->root_item))
396 		return NULL;
397 
398 	return root;
399 }
400 #endif
401 
402 static noinline_for_stack
403 int find_inline_backref(struct extent_buffer *leaf, int slot,
404 			unsigned long *ptr, unsigned long *end)
405 {
406 	struct btrfs_extent_item *ei;
407 	struct btrfs_tree_block_info *bi;
408 	u32 item_size;
409 
410 	item_size = btrfs_item_size_nr(leaf, slot);
411 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
412 	if (item_size < sizeof(*ei)) {
413 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
414 		return 1;
415 	}
416 #endif
417 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
418 	WARN_ON(!(btrfs_extent_flags(leaf, ei) &
419 		  BTRFS_EXTENT_FLAG_TREE_BLOCK));
420 
421 	if (item_size <= sizeof(*ei) + sizeof(*bi)) {
422 		WARN_ON(item_size < sizeof(*ei) + sizeof(*bi));
423 		return 1;
424 	}
425 
426 	bi = (struct btrfs_tree_block_info *)(ei + 1);
427 	*ptr = (unsigned long)(bi + 1);
428 	*end = (unsigned long)ei + item_size;
429 	return 0;
430 }
431 
432 /*
433  * build backref tree for a given tree block. root of the backref tree
434  * corresponds the tree block, leaves of the backref tree correspond
435  * roots of b-trees that reference the tree block.
436  *
437  * the basic idea of this function is check backrefs of a given block
438  * to find upper level blocks that refernece the block, and then check
439  * bakcrefs of these upper level blocks recursively. the recursion stop
440  * when tree root is reached or backrefs for the block is cached.
441  *
442  * NOTE: if we find backrefs for a block are cached, we know backrefs
443  * for all upper level blocks that directly/indirectly reference the
444  * block are also cached.
445  */
446 static struct backref_node *build_backref_tree(struct reloc_control *rc,
447 					       struct backref_cache *cache,
448 					       struct btrfs_key *node_key,
449 					       int level, u64 bytenr)
450 {
451 	struct btrfs_path *path1;
452 	struct btrfs_path *path2;
453 	struct extent_buffer *eb;
454 	struct btrfs_root *root;
455 	struct backref_node *cur;
456 	struct backref_node *upper;
457 	struct backref_node *lower;
458 	struct backref_node *node = NULL;
459 	struct backref_node *exist = NULL;
460 	struct backref_edge *edge;
461 	struct rb_node *rb_node;
462 	struct btrfs_key key;
463 	unsigned long end;
464 	unsigned long ptr;
465 	LIST_HEAD(list);
466 	int ret;
467 	int err = 0;
468 
469 	path1 = btrfs_alloc_path();
470 	path2 = btrfs_alloc_path();
471 	if (!path1 || !path2) {
472 		err = -ENOMEM;
473 		goto out;
474 	}
475 
476 	node = kmalloc(sizeof(*node), GFP_NOFS);
477 	if (!node) {
478 		err = -ENOMEM;
479 		goto out;
480 	}
481 
482 	backref_node_init(node);
483 	node->bytenr = bytenr;
484 	node->owner = 0;
485 	node->level = level;
486 	node->lowest = 1;
487 	cur = node;
488 again:
489 	end = 0;
490 	ptr = 0;
491 	key.objectid = cur->bytenr;
492 	key.type = BTRFS_EXTENT_ITEM_KEY;
493 	key.offset = (u64)-1;
494 
495 	path1->search_commit_root = 1;
496 	path1->skip_locking = 1;
497 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1,
498 				0, 0);
499 	if (ret < 0) {
500 		err = ret;
501 		goto out;
502 	}
503 	BUG_ON(!ret || !path1->slots[0]);
504 
505 	path1->slots[0]--;
506 
507 	WARN_ON(cur->checked);
508 	if (!list_empty(&cur->upper)) {
509 		/*
510 		 * the backref was added previously when processsing
511 		 * backref of type BTRFS_TREE_BLOCK_REF_KEY
512 		 */
513 		BUG_ON(!list_is_singular(&cur->upper));
514 		edge = list_entry(cur->upper.next, struct backref_edge,
515 				  list[LOWER]);
516 		BUG_ON(!list_empty(&edge->list[UPPER]));
517 		exist = edge->node[UPPER];
518 		/*
519 		 * add the upper level block to pending list if we need
520 		 * check its backrefs
521 		 */
522 		if (!exist->checked)
523 			list_add_tail(&edge->list[UPPER], &list);
524 	} else {
525 		exist = NULL;
526 	}
527 
528 	while (1) {
529 		cond_resched();
530 		eb = path1->nodes[0];
531 
532 		if (ptr >= end) {
533 			if (path1->slots[0] >= btrfs_header_nritems(eb)) {
534 				ret = btrfs_next_leaf(rc->extent_root, path1);
535 				if (ret < 0) {
536 					err = ret;
537 					goto out;
538 				}
539 				if (ret > 0)
540 					break;
541 				eb = path1->nodes[0];
542 			}
543 
544 			btrfs_item_key_to_cpu(eb, &key, path1->slots[0]);
545 			if (key.objectid != cur->bytenr) {
546 				WARN_ON(exist);
547 				break;
548 			}
549 
550 			if (key.type == BTRFS_EXTENT_ITEM_KEY) {
551 				ret = find_inline_backref(eb, path1->slots[0],
552 							  &ptr, &end);
553 				if (ret)
554 					goto next;
555 			}
556 		}
557 
558 		if (ptr < end) {
559 			/* update key for inline back ref */
560 			struct btrfs_extent_inline_ref *iref;
561 			iref = (struct btrfs_extent_inline_ref *)ptr;
562 			key.type = btrfs_extent_inline_ref_type(eb, iref);
563 			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
564 			WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY &&
565 				key.type != BTRFS_SHARED_BLOCK_REF_KEY);
566 		}
567 
568 		if (exist &&
569 		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
570 		      exist->owner == key.offset) ||
571 		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
572 		      exist->bytenr == key.offset))) {
573 			exist = NULL;
574 			goto next;
575 		}
576 
577 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
578 		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY ||
579 		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
580 			if (key.objectid == key.offset &&
581 			    key.type == BTRFS_EXTENT_REF_V0_KEY) {
582 				struct btrfs_extent_ref_v0 *ref0;
583 				ref0 = btrfs_item_ptr(eb, path1->slots[0],
584 						struct btrfs_extent_ref_v0);
585 				root = find_tree_root(rc, eb, ref0);
586 				if (root)
587 					cur->root = root;
588 				else
589 					cur->old_root = 1;
590 				break;
591 			}
592 #else
593 		BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
594 		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
595 #endif
596 			if (key.objectid == key.offset) {
597 				/*
598 				 * only root blocks of reloc trees use
599 				 * backref of this type.
600 				 */
601 				root = find_reloc_root(rc, cur->bytenr);
602 				BUG_ON(!root);
603 				cur->root = root;
604 				break;
605 			}
606 
607 			edge = kzalloc(sizeof(*edge), GFP_NOFS);
608 			if (!edge) {
609 				err = -ENOMEM;
610 				goto out;
611 			}
612 			rb_node = tree_search(&cache->rb_root, key.offset);
613 			if (!rb_node) {
614 				upper = kmalloc(sizeof(*upper), GFP_NOFS);
615 				if (!upper) {
616 					kfree(edge);
617 					err = -ENOMEM;
618 					goto out;
619 				}
620 				backref_node_init(upper);
621 				upper->bytenr = key.offset;
622 				upper->owner = 0;
623 				upper->level = cur->level + 1;
624 				/*
625 				 *  backrefs for the upper level block isn't
626 				 *  cached, add the block to pending list
627 				 */
628 				list_add_tail(&edge->list[UPPER], &list);
629 			} else {
630 				upper = rb_entry(rb_node, struct backref_node,
631 						 rb_node);
632 				INIT_LIST_HEAD(&edge->list[UPPER]);
633 			}
634 			list_add(&edge->list[LOWER], &cur->upper);
635 			edge->node[UPPER] = upper;
636 			edge->node[LOWER] = cur;
637 
638 			goto next;
639 		} else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
640 			goto next;
641 		}
642 
643 		/* key.type == BTRFS_TREE_BLOCK_REF_KEY */
644 		root = read_fs_root(rc->extent_root->fs_info, key.offset);
645 		if (IS_ERR(root)) {
646 			err = PTR_ERR(root);
647 			goto out;
648 		}
649 
650 		if (btrfs_root_level(&root->root_item) == cur->level) {
651 			/* tree root */
652 			BUG_ON(btrfs_root_bytenr(&root->root_item) !=
653 			       cur->bytenr);
654 			cur->root = root;
655 			break;
656 		}
657 
658 		level = cur->level + 1;
659 
660 		/*
661 		 * searching the tree to find upper level blocks
662 		 * reference the block.
663 		 */
664 		path2->search_commit_root = 1;
665 		path2->skip_locking = 1;
666 		path2->lowest_level = level;
667 		ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0);
668 		path2->lowest_level = 0;
669 		if (ret < 0) {
670 			err = ret;
671 			goto out;
672 		}
673 		if (ret > 0 && path2->slots[level] > 0)
674 			path2->slots[level]--;
675 
676 		eb = path2->nodes[level];
677 		WARN_ON(btrfs_node_blockptr(eb, path2->slots[level]) !=
678 			cur->bytenr);
679 
680 		lower = cur;
681 		for (; level < BTRFS_MAX_LEVEL; level++) {
682 			if (!path2->nodes[level]) {
683 				BUG_ON(btrfs_root_bytenr(&root->root_item) !=
684 				       lower->bytenr);
685 				lower->root = root;
686 				break;
687 			}
688 
689 			edge = kzalloc(sizeof(*edge), GFP_NOFS);
690 			if (!edge) {
691 				err = -ENOMEM;
692 				goto out;
693 			}
694 
695 			eb = path2->nodes[level];
696 			rb_node = tree_search(&cache->rb_root, eb->start);
697 			if (!rb_node) {
698 				upper = kmalloc(sizeof(*upper), GFP_NOFS);
699 				if (!upper) {
700 					kfree(edge);
701 					err = -ENOMEM;
702 					goto out;
703 				}
704 				backref_node_init(upper);
705 				upper->bytenr = eb->start;
706 				upper->owner = btrfs_header_owner(eb);
707 				upper->level = lower->level + 1;
708 
709 				/*
710 				 * if we know the block isn't shared
711 				 * we can void checking its backrefs.
712 				 */
713 				if (btrfs_block_can_be_shared(root, eb))
714 					upper->checked = 0;
715 				else
716 					upper->checked = 1;
717 
718 				/*
719 				 * add the block to pending list if we
720 				 * need check its backrefs. only block
721 				 * at 'cur->level + 1' is added to the
722 				 * tail of pending list. this guarantees
723 				 * we check backrefs from lower level
724 				 * blocks to upper level blocks.
725 				 */
726 				if (!upper->checked &&
727 				    level == cur->level + 1) {
728 					list_add_tail(&edge->list[UPPER],
729 						      &list);
730 				} else
731 					INIT_LIST_HEAD(&edge->list[UPPER]);
732 			} else {
733 				upper = rb_entry(rb_node, struct backref_node,
734 						 rb_node);
735 				BUG_ON(!upper->checked);
736 				INIT_LIST_HEAD(&edge->list[UPPER]);
737 			}
738 			list_add_tail(&edge->list[LOWER], &lower->upper);
739 			edge->node[UPPER] = upper;
740 			edge->node[LOWER] = lower;
741 
742 			if (rb_node)
743 				break;
744 			lower = upper;
745 			upper = NULL;
746 		}
747 		btrfs_release_path(root, path2);
748 next:
749 		if (ptr < end) {
750 			ptr += btrfs_extent_inline_ref_size(key.type);
751 			if (ptr >= end) {
752 				WARN_ON(ptr > end);
753 				ptr = 0;
754 				end = 0;
755 			}
756 		}
757 		if (ptr >= end)
758 			path1->slots[0]++;
759 	}
760 	btrfs_release_path(rc->extent_root, path1);
761 
762 	cur->checked = 1;
763 	WARN_ON(exist);
764 
765 	/* the pending list isn't empty, take the first block to process */
766 	if (!list_empty(&list)) {
767 		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
768 		list_del_init(&edge->list[UPPER]);
769 		cur = edge->node[UPPER];
770 		goto again;
771 	}
772 
773 	/*
774 	 * everything goes well, connect backref nodes and insert backref nodes
775 	 * into the cache.
776 	 */
777 	BUG_ON(!node->checked);
778 	rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node);
779 	BUG_ON(rb_node);
780 
781 	list_for_each_entry(edge, &node->upper, list[LOWER])
782 		list_add_tail(&edge->list[UPPER], &list);
783 
784 	while (!list_empty(&list)) {
785 		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
786 		list_del_init(&edge->list[UPPER]);
787 		upper = edge->node[UPPER];
788 
789 		if (!RB_EMPTY_NODE(&upper->rb_node)) {
790 			if (upper->lowest) {
791 				list_del_init(&upper->lower);
792 				upper->lowest = 0;
793 			}
794 
795 			list_add_tail(&edge->list[UPPER], &upper->lower);
796 			continue;
797 		}
798 
799 		BUG_ON(!upper->checked);
800 		rb_node = tree_insert(&cache->rb_root, upper->bytenr,
801 				      &upper->rb_node);
802 		BUG_ON(rb_node);
803 
804 		list_add_tail(&edge->list[UPPER], &upper->lower);
805 
806 		list_for_each_entry(edge, &upper->upper, list[LOWER])
807 			list_add_tail(&edge->list[UPPER], &list);
808 	}
809 out:
810 	btrfs_free_path(path1);
811 	btrfs_free_path(path2);
812 	if (err) {
813 		INIT_LIST_HEAD(&list);
814 		upper = node;
815 		while (upper) {
816 			if (RB_EMPTY_NODE(&upper->rb_node)) {
817 				list_splice_tail(&upper->upper, &list);
818 				kfree(upper);
819 			}
820 
821 			if (list_empty(&list))
822 				break;
823 
824 			edge = list_entry(list.next, struct backref_edge,
825 					  list[LOWER]);
826 			upper = edge->node[UPPER];
827 			kfree(edge);
828 		}
829 		return ERR_PTR(err);
830 	}
831 	return node;
832 }
833 
834 /*
835  * helper to add 'address of tree root -> reloc tree' mapping
836  */
837 static int __add_reloc_root(struct btrfs_root *root)
838 {
839 	struct rb_node *rb_node;
840 	struct mapping_node *node;
841 	struct reloc_control *rc = root->fs_info->reloc_ctl;
842 
843 	node = kmalloc(sizeof(*node), GFP_NOFS);
844 	BUG_ON(!node);
845 
846 	node->bytenr = root->node->start;
847 	node->data = root;
848 
849 	spin_lock(&rc->reloc_root_tree.lock);
850 	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
851 			      node->bytenr, &node->rb_node);
852 	spin_unlock(&rc->reloc_root_tree.lock);
853 	BUG_ON(rb_node);
854 
855 	list_add_tail(&root->root_list, &rc->reloc_roots);
856 	return 0;
857 }
858 
859 /*
860  * helper to update/delete the 'address of tree root -> reloc tree'
861  * mapping
862  */
863 static int __update_reloc_root(struct btrfs_root *root, int del)
864 {
865 	struct rb_node *rb_node;
866 	struct mapping_node *node = NULL;
867 	struct reloc_control *rc = root->fs_info->reloc_ctl;
868 
869 	spin_lock(&rc->reloc_root_tree.lock);
870 	rb_node = tree_search(&rc->reloc_root_tree.rb_root,
871 			      root->commit_root->start);
872 	if (rb_node) {
873 		node = rb_entry(rb_node, struct mapping_node, rb_node);
874 		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
875 	}
876 	spin_unlock(&rc->reloc_root_tree.lock);
877 
878 	BUG_ON((struct btrfs_root *)node->data != root);
879 
880 	if (!del) {
881 		spin_lock(&rc->reloc_root_tree.lock);
882 		node->bytenr = root->node->start;
883 		rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
884 				      node->bytenr, &node->rb_node);
885 		spin_unlock(&rc->reloc_root_tree.lock);
886 		BUG_ON(rb_node);
887 	} else {
888 		list_del_init(&root->root_list);
889 		kfree(node);
890 	}
891 	return 0;
892 }
893 
894 /*
895  * create reloc tree for a given fs tree. reloc tree is just a
896  * snapshot of the fs tree with special root objectid.
897  */
898 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
899 			  struct btrfs_root *root)
900 {
901 	struct btrfs_root *reloc_root;
902 	struct extent_buffer *eb;
903 	struct btrfs_root_item *root_item;
904 	struct btrfs_key root_key;
905 	int ret;
906 
907 	if (root->reloc_root) {
908 		reloc_root = root->reloc_root;
909 		reloc_root->last_trans = trans->transid;
910 		return 0;
911 	}
912 
913 	if (!root->fs_info->reloc_ctl ||
914 	    !root->fs_info->reloc_ctl->create_reloc_root ||
915 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
916 		return 0;
917 
918 	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
919 	BUG_ON(!root_item);
920 
921 	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
922 	root_key.type = BTRFS_ROOT_ITEM_KEY;
923 	root_key.offset = root->root_key.objectid;
924 
925 	ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
926 			      BTRFS_TREE_RELOC_OBJECTID);
927 	BUG_ON(ret);
928 
929 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid - 1);
930 	memcpy(root_item, &root->root_item, sizeof(*root_item));
931 	btrfs_set_root_refs(root_item, 1);
932 	btrfs_set_root_bytenr(root_item, eb->start);
933 	btrfs_set_root_level(root_item, btrfs_header_level(eb));
934 	btrfs_set_root_generation(root_item, trans->transid);
935 	memset(&root_item->drop_progress, 0, sizeof(struct btrfs_disk_key));
936 	root_item->drop_level = 0;
937 
938 	btrfs_tree_unlock(eb);
939 	free_extent_buffer(eb);
940 
941 	ret = btrfs_insert_root(trans, root->fs_info->tree_root,
942 				&root_key, root_item);
943 	BUG_ON(ret);
944 	kfree(root_item);
945 
946 	reloc_root = btrfs_read_fs_root_no_radix(root->fs_info->tree_root,
947 						 &root_key);
948 	BUG_ON(IS_ERR(reloc_root));
949 	reloc_root->last_trans = trans->transid;
950 
951 	__add_reloc_root(reloc_root);
952 	root->reloc_root = reloc_root;
953 	return 0;
954 }
955 
956 /*
957  * update root item of reloc tree
958  */
959 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
960 			    struct btrfs_root *root)
961 {
962 	struct btrfs_root *reloc_root;
963 	struct btrfs_root_item *root_item;
964 	int del = 0;
965 	int ret;
966 
967 	if (!root->reloc_root)
968 		return 0;
969 
970 	reloc_root = root->reloc_root;
971 	root_item = &reloc_root->root_item;
972 
973 	if (btrfs_root_refs(root_item) == 0) {
974 		root->reloc_root = NULL;
975 		del = 1;
976 	}
977 
978 	__update_reloc_root(reloc_root, del);
979 
980 	if (reloc_root->commit_root != reloc_root->node) {
981 		btrfs_set_root_node(root_item, reloc_root->node);
982 		free_extent_buffer(reloc_root->commit_root);
983 		reloc_root->commit_root = btrfs_root_node(reloc_root);
984 	}
985 
986 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
987 				&reloc_root->root_key, root_item);
988 	BUG_ON(ret);
989 	return 0;
990 }
991 
992 /*
993  * helper to find first cached inode with inode number >= objectid
994  * in a subvolume
995  */
996 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
997 {
998 	struct rb_node *node;
999 	struct rb_node *prev;
1000 	struct btrfs_inode *entry;
1001 	struct inode *inode;
1002 
1003 	spin_lock(&root->inode_lock);
1004 again:
1005 	node = root->inode_tree.rb_node;
1006 	prev = NULL;
1007 	while (node) {
1008 		prev = node;
1009 		entry = rb_entry(node, struct btrfs_inode, rb_node);
1010 
1011 		if (objectid < entry->vfs_inode.i_ino)
1012 			node = node->rb_left;
1013 		else if (objectid > entry->vfs_inode.i_ino)
1014 			node = node->rb_right;
1015 		else
1016 			break;
1017 	}
1018 	if (!node) {
1019 		while (prev) {
1020 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
1021 			if (objectid <= entry->vfs_inode.i_ino) {
1022 				node = prev;
1023 				break;
1024 			}
1025 			prev = rb_next(prev);
1026 		}
1027 	}
1028 	while (node) {
1029 		entry = rb_entry(node, struct btrfs_inode, rb_node);
1030 		inode = igrab(&entry->vfs_inode);
1031 		if (inode) {
1032 			spin_unlock(&root->inode_lock);
1033 			return inode;
1034 		}
1035 
1036 		objectid = entry->vfs_inode.i_ino + 1;
1037 		if (cond_resched_lock(&root->inode_lock))
1038 			goto again;
1039 
1040 		node = rb_next(node);
1041 	}
1042 	spin_unlock(&root->inode_lock);
1043 	return NULL;
1044 }
1045 
1046 static int in_block_group(u64 bytenr,
1047 			  struct btrfs_block_group_cache *block_group)
1048 {
1049 	if (bytenr >= block_group->key.objectid &&
1050 	    bytenr < block_group->key.objectid + block_group->key.offset)
1051 		return 1;
1052 	return 0;
1053 }
1054 
1055 /*
1056  * get new location of data
1057  */
1058 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1059 			    u64 bytenr, u64 num_bytes)
1060 {
1061 	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1062 	struct btrfs_path *path;
1063 	struct btrfs_file_extent_item *fi;
1064 	struct extent_buffer *leaf;
1065 	int ret;
1066 
1067 	path = btrfs_alloc_path();
1068 	if (!path)
1069 		return -ENOMEM;
1070 
1071 	bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1072 	ret = btrfs_lookup_file_extent(NULL, root, path, reloc_inode->i_ino,
1073 				       bytenr, 0);
1074 	if (ret < 0)
1075 		goto out;
1076 	if (ret > 0) {
1077 		ret = -ENOENT;
1078 		goto out;
1079 	}
1080 
1081 	leaf = path->nodes[0];
1082 	fi = btrfs_item_ptr(leaf, path->slots[0],
1083 			    struct btrfs_file_extent_item);
1084 
1085 	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1086 	       btrfs_file_extent_compression(leaf, fi) ||
1087 	       btrfs_file_extent_encryption(leaf, fi) ||
1088 	       btrfs_file_extent_other_encoding(leaf, fi));
1089 
1090 	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1091 		ret = 1;
1092 		goto out;
1093 	}
1094 
1095 	if (new_bytenr)
1096 		*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1097 	ret = 0;
1098 out:
1099 	btrfs_free_path(path);
1100 	return ret;
1101 }
1102 
1103 /*
1104  * update file extent items in the tree leaf to point to
1105  * the new locations.
1106  */
1107 static int replace_file_extents(struct btrfs_trans_handle *trans,
1108 				struct reloc_control *rc,
1109 				struct btrfs_root *root,
1110 				struct extent_buffer *leaf,
1111 				struct list_head *inode_list)
1112 {
1113 	struct btrfs_key key;
1114 	struct btrfs_file_extent_item *fi;
1115 	struct inode *inode = NULL;
1116 	struct inodevec *ivec = NULL;
1117 	u64 parent;
1118 	u64 bytenr;
1119 	u64 new_bytenr;
1120 	u64 num_bytes;
1121 	u64 end;
1122 	u32 nritems;
1123 	u32 i;
1124 	int ret;
1125 	int first = 1;
1126 	int dirty = 0;
1127 
1128 	if (rc->stage != UPDATE_DATA_PTRS)
1129 		return 0;
1130 
1131 	/* reloc trees always use full backref */
1132 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1133 		parent = leaf->start;
1134 	else
1135 		parent = 0;
1136 
1137 	nritems = btrfs_header_nritems(leaf);
1138 	for (i = 0; i < nritems; i++) {
1139 		cond_resched();
1140 		btrfs_item_key_to_cpu(leaf, &key, i);
1141 		if (key.type != BTRFS_EXTENT_DATA_KEY)
1142 			continue;
1143 		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1144 		if (btrfs_file_extent_type(leaf, fi) ==
1145 		    BTRFS_FILE_EXTENT_INLINE)
1146 			continue;
1147 		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1148 		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1149 		if (bytenr == 0)
1150 			continue;
1151 		if (!in_block_group(bytenr, rc->block_group))
1152 			continue;
1153 
1154 		/*
1155 		 * if we are modifying block in fs tree, wait for readpage
1156 		 * to complete and drop the extent cache
1157 		 */
1158 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1159 			if (!ivec || ivec->nr == INODEVEC_SIZE) {
1160 				ivec = kmalloc(sizeof(*ivec), GFP_NOFS);
1161 				BUG_ON(!ivec);
1162 				ivec->nr = 0;
1163 				list_add_tail(&ivec->list, inode_list);
1164 			}
1165 			if (first) {
1166 				inode = find_next_inode(root, key.objectid);
1167 				if (inode)
1168 					ivec->inode[ivec->nr++] = inode;
1169 				first = 0;
1170 			} else if (inode && inode->i_ino < key.objectid) {
1171 				inode = find_next_inode(root, key.objectid);
1172 				if (inode)
1173 					ivec->inode[ivec->nr++] = inode;
1174 			}
1175 			if (inode && inode->i_ino == key.objectid) {
1176 				end = key.offset +
1177 				      btrfs_file_extent_num_bytes(leaf, fi);
1178 				WARN_ON(!IS_ALIGNED(key.offset,
1179 						    root->sectorsize));
1180 				WARN_ON(!IS_ALIGNED(end, root->sectorsize));
1181 				end--;
1182 				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1183 						      key.offset, end,
1184 						      GFP_NOFS);
1185 				if (!ret)
1186 					continue;
1187 
1188 				btrfs_drop_extent_cache(inode, key.offset, end,
1189 							1);
1190 				unlock_extent(&BTRFS_I(inode)->io_tree,
1191 					      key.offset, end, GFP_NOFS);
1192 			}
1193 		}
1194 
1195 		ret = get_new_location(rc->data_inode, &new_bytenr,
1196 				       bytenr, num_bytes);
1197 		if (ret > 0)
1198 			continue;
1199 		BUG_ON(ret < 0);
1200 
1201 		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1202 		dirty = 1;
1203 
1204 		key.offset -= btrfs_file_extent_offset(leaf, fi);
1205 		ret = btrfs_inc_extent_ref(trans, root, new_bytenr,
1206 					   num_bytes, parent,
1207 					   btrfs_header_owner(leaf),
1208 					   key.objectid, key.offset);
1209 		BUG_ON(ret);
1210 
1211 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1212 					parent, btrfs_header_owner(leaf),
1213 					key.objectid, key.offset);
1214 		BUG_ON(ret);
1215 	}
1216 	if (dirty)
1217 		btrfs_mark_buffer_dirty(leaf);
1218 	return 0;
1219 }
1220 
1221 static noinline_for_stack
1222 int memcmp_node_keys(struct extent_buffer *eb, int slot,
1223 		     struct btrfs_path *path, int level)
1224 {
1225 	struct btrfs_disk_key key1;
1226 	struct btrfs_disk_key key2;
1227 	btrfs_node_key(eb, &key1, slot);
1228 	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1229 	return memcmp(&key1, &key2, sizeof(key1));
1230 }
1231 
1232 /*
1233  * try to replace tree blocks in fs tree with the new blocks
1234  * in reloc tree. tree blocks haven't been modified since the
1235  * reloc tree was create can be replaced.
1236  *
1237  * if a block was replaced, level of the block + 1 is returned.
1238  * if no block got replaced, 0 is returned. if there are other
1239  * errors, a negative error number is returned.
1240  */
1241 static int replace_path(struct btrfs_trans_handle *trans,
1242 			struct btrfs_root *dest, struct btrfs_root *src,
1243 			struct btrfs_path *path, struct btrfs_key *next_key,
1244 			struct extent_buffer **leaf,
1245 			int lowest_level, int max_level)
1246 {
1247 	struct extent_buffer *eb;
1248 	struct extent_buffer *parent;
1249 	struct btrfs_key key;
1250 	u64 old_bytenr;
1251 	u64 new_bytenr;
1252 	u64 old_ptr_gen;
1253 	u64 new_ptr_gen;
1254 	u64 last_snapshot;
1255 	u32 blocksize;
1256 	int level;
1257 	int ret;
1258 	int slot;
1259 
1260 	BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1261 	BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1262 	BUG_ON(lowest_level > 1 && leaf);
1263 
1264 	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1265 
1266 	slot = path->slots[lowest_level];
1267 	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1268 
1269 	eb = btrfs_lock_root_node(dest);
1270 	btrfs_set_lock_blocking(eb);
1271 	level = btrfs_header_level(eb);
1272 
1273 	if (level < lowest_level) {
1274 		btrfs_tree_unlock(eb);
1275 		free_extent_buffer(eb);
1276 		return 0;
1277 	}
1278 
1279 	ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
1280 	BUG_ON(ret);
1281 	btrfs_set_lock_blocking(eb);
1282 
1283 	if (next_key) {
1284 		next_key->objectid = (u64)-1;
1285 		next_key->type = (u8)-1;
1286 		next_key->offset = (u64)-1;
1287 	}
1288 
1289 	parent = eb;
1290 	while (1) {
1291 		level = btrfs_header_level(parent);
1292 		BUG_ON(level < lowest_level);
1293 
1294 		ret = btrfs_bin_search(parent, &key, level, &slot);
1295 		if (ret && slot > 0)
1296 			slot--;
1297 
1298 		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1299 			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1300 
1301 		old_bytenr = btrfs_node_blockptr(parent, slot);
1302 		blocksize = btrfs_level_size(dest, level - 1);
1303 		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1304 
1305 		if (level <= max_level) {
1306 			eb = path->nodes[level];
1307 			new_bytenr = btrfs_node_blockptr(eb,
1308 							path->slots[level]);
1309 			new_ptr_gen = btrfs_node_ptr_generation(eb,
1310 							path->slots[level]);
1311 		} else {
1312 			new_bytenr = 0;
1313 			new_ptr_gen = 0;
1314 		}
1315 
1316 		if (new_bytenr > 0 && new_bytenr == old_bytenr) {
1317 			WARN_ON(1);
1318 			ret = level;
1319 			break;
1320 		}
1321 
1322 		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1323 		    memcmp_node_keys(parent, slot, path, level)) {
1324 			if (level <= lowest_level && !leaf) {
1325 				ret = 0;
1326 				break;
1327 			}
1328 
1329 			eb = read_tree_block(dest, old_bytenr, blocksize,
1330 					     old_ptr_gen);
1331 			btrfs_tree_lock(eb);
1332 			ret = btrfs_cow_block(trans, dest, eb, parent,
1333 					      slot, &eb);
1334 			BUG_ON(ret);
1335 			btrfs_set_lock_blocking(eb);
1336 
1337 			if (level <= lowest_level) {
1338 				*leaf = eb;
1339 				ret = 0;
1340 				break;
1341 			}
1342 
1343 			btrfs_tree_unlock(parent);
1344 			free_extent_buffer(parent);
1345 
1346 			parent = eb;
1347 			continue;
1348 		}
1349 
1350 		btrfs_node_key_to_cpu(path->nodes[level], &key,
1351 				      path->slots[level]);
1352 		btrfs_release_path(src, path);
1353 
1354 		path->lowest_level = level;
1355 		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1356 		path->lowest_level = 0;
1357 		BUG_ON(ret);
1358 
1359 		/*
1360 		 * swap blocks in fs tree and reloc tree.
1361 		 */
1362 		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1363 		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1364 		btrfs_mark_buffer_dirty(parent);
1365 
1366 		btrfs_set_node_blockptr(path->nodes[level],
1367 					path->slots[level], old_bytenr);
1368 		btrfs_set_node_ptr_generation(path->nodes[level],
1369 					      path->slots[level], old_ptr_gen);
1370 		btrfs_mark_buffer_dirty(path->nodes[level]);
1371 
1372 		ret = btrfs_inc_extent_ref(trans, src, old_bytenr, blocksize,
1373 					path->nodes[level]->start,
1374 					src->root_key.objectid, level - 1, 0);
1375 		BUG_ON(ret);
1376 		ret = btrfs_inc_extent_ref(trans, dest, new_bytenr, blocksize,
1377 					0, dest->root_key.objectid, level - 1,
1378 					0);
1379 		BUG_ON(ret);
1380 
1381 		ret = btrfs_free_extent(trans, src, new_bytenr, blocksize,
1382 					path->nodes[level]->start,
1383 					src->root_key.objectid, level - 1, 0);
1384 		BUG_ON(ret);
1385 
1386 		ret = btrfs_free_extent(trans, dest, old_bytenr, blocksize,
1387 					0, dest->root_key.objectid, level - 1,
1388 					0);
1389 		BUG_ON(ret);
1390 
1391 		btrfs_unlock_up_safe(path, 0);
1392 
1393 		ret = level;
1394 		break;
1395 	}
1396 	btrfs_tree_unlock(parent);
1397 	free_extent_buffer(parent);
1398 	return ret;
1399 }
1400 
1401 /*
1402  * helper to find next relocated block in reloc tree
1403  */
1404 static noinline_for_stack
1405 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1406 		       int *level)
1407 {
1408 	struct extent_buffer *eb;
1409 	int i;
1410 	u64 last_snapshot;
1411 	u32 nritems;
1412 
1413 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1414 
1415 	for (i = 0; i < *level; i++) {
1416 		free_extent_buffer(path->nodes[i]);
1417 		path->nodes[i] = NULL;
1418 	}
1419 
1420 	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1421 		eb = path->nodes[i];
1422 		nritems = btrfs_header_nritems(eb);
1423 		while (path->slots[i] + 1 < nritems) {
1424 			path->slots[i]++;
1425 			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1426 			    last_snapshot)
1427 				continue;
1428 
1429 			*level = i;
1430 			return 0;
1431 		}
1432 		free_extent_buffer(path->nodes[i]);
1433 		path->nodes[i] = NULL;
1434 	}
1435 	return 1;
1436 }
1437 
1438 /*
1439  * walk down reloc tree to find relocated block of lowest level
1440  */
1441 static noinline_for_stack
1442 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1443 			 int *level)
1444 {
1445 	struct extent_buffer *eb = NULL;
1446 	int i;
1447 	u64 bytenr;
1448 	u64 ptr_gen = 0;
1449 	u64 last_snapshot;
1450 	u32 blocksize;
1451 	u32 nritems;
1452 
1453 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1454 
1455 	for (i = *level; i > 0; i--) {
1456 		eb = path->nodes[i];
1457 		nritems = btrfs_header_nritems(eb);
1458 		while (path->slots[i] < nritems) {
1459 			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1460 			if (ptr_gen > last_snapshot)
1461 				break;
1462 			path->slots[i]++;
1463 		}
1464 		if (path->slots[i] >= nritems) {
1465 			if (i == *level)
1466 				break;
1467 			*level = i + 1;
1468 			return 0;
1469 		}
1470 		if (i == 1) {
1471 			*level = i;
1472 			return 0;
1473 		}
1474 
1475 		bytenr = btrfs_node_blockptr(eb, path->slots[i]);
1476 		blocksize = btrfs_level_size(root, i - 1);
1477 		eb = read_tree_block(root, bytenr, blocksize, ptr_gen);
1478 		BUG_ON(btrfs_header_level(eb) != i - 1);
1479 		path->nodes[i - 1] = eb;
1480 		path->slots[i - 1] = 0;
1481 	}
1482 	return 1;
1483 }
1484 
1485 /*
1486  * invalidate extent cache for file extents whose key in range of
1487  * [min_key, max_key)
1488  */
1489 static int invalidate_extent_cache(struct btrfs_root *root,
1490 				   struct btrfs_key *min_key,
1491 				   struct btrfs_key *max_key)
1492 {
1493 	struct inode *inode = NULL;
1494 	u64 objectid;
1495 	u64 start, end;
1496 
1497 	objectid = min_key->objectid;
1498 	while (1) {
1499 		cond_resched();
1500 		iput(inode);
1501 
1502 		if (objectid > max_key->objectid)
1503 			break;
1504 
1505 		inode = find_next_inode(root, objectid);
1506 		if (!inode)
1507 			break;
1508 
1509 		if (inode->i_ino > max_key->objectid) {
1510 			iput(inode);
1511 			break;
1512 		}
1513 
1514 		objectid = inode->i_ino + 1;
1515 		if (!S_ISREG(inode->i_mode))
1516 			continue;
1517 
1518 		if (unlikely(min_key->objectid == inode->i_ino)) {
1519 			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1520 				continue;
1521 			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1522 				start = 0;
1523 			else {
1524 				start = min_key->offset;
1525 				WARN_ON(!IS_ALIGNED(start, root->sectorsize));
1526 			}
1527 		} else {
1528 			start = 0;
1529 		}
1530 
1531 		if (unlikely(max_key->objectid == inode->i_ino)) {
1532 			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1533 				continue;
1534 			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1535 				end = (u64)-1;
1536 			} else {
1537 				if (max_key->offset == 0)
1538 					continue;
1539 				end = max_key->offset;
1540 				WARN_ON(!IS_ALIGNED(end, root->sectorsize));
1541 				end--;
1542 			}
1543 		} else {
1544 			end = (u64)-1;
1545 		}
1546 
1547 		/* the lock_extent waits for readpage to complete */
1548 		lock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
1549 		btrfs_drop_extent_cache(inode, start, end, 1);
1550 		unlock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
1551 	}
1552 	return 0;
1553 }
1554 
1555 static int find_next_key(struct btrfs_path *path, int level,
1556 			 struct btrfs_key *key)
1557 
1558 {
1559 	while (level < BTRFS_MAX_LEVEL) {
1560 		if (!path->nodes[level])
1561 			break;
1562 		if (path->slots[level] + 1 <
1563 		    btrfs_header_nritems(path->nodes[level])) {
1564 			btrfs_node_key_to_cpu(path->nodes[level], key,
1565 					      path->slots[level] + 1);
1566 			return 0;
1567 		}
1568 		level++;
1569 	}
1570 	return 1;
1571 }
1572 
1573 /*
1574  * merge the relocated tree blocks in reloc tree with corresponding
1575  * fs tree.
1576  */
1577 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
1578 					       struct btrfs_root *root)
1579 {
1580 	LIST_HEAD(inode_list);
1581 	struct btrfs_key key;
1582 	struct btrfs_key next_key;
1583 	struct btrfs_trans_handle *trans;
1584 	struct btrfs_root *reloc_root;
1585 	struct btrfs_root_item *root_item;
1586 	struct btrfs_path *path;
1587 	struct extent_buffer *leaf = NULL;
1588 	unsigned long nr;
1589 	int level;
1590 	int max_level;
1591 	int replaced = 0;
1592 	int ret;
1593 	int err = 0;
1594 
1595 	path = btrfs_alloc_path();
1596 	if (!path)
1597 		return -ENOMEM;
1598 
1599 	reloc_root = root->reloc_root;
1600 	root_item = &reloc_root->root_item;
1601 
1602 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
1603 		level = btrfs_root_level(root_item);
1604 		extent_buffer_get(reloc_root->node);
1605 		path->nodes[level] = reloc_root->node;
1606 		path->slots[level] = 0;
1607 	} else {
1608 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
1609 
1610 		level = root_item->drop_level;
1611 		BUG_ON(level == 0);
1612 		path->lowest_level = level;
1613 		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
1614 		path->lowest_level = 0;
1615 		if (ret < 0) {
1616 			btrfs_free_path(path);
1617 			return ret;
1618 		}
1619 
1620 		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
1621 				      path->slots[level]);
1622 		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
1623 
1624 		btrfs_unlock_up_safe(path, 0);
1625 	}
1626 
1627 	if (level == 0 && rc->stage == UPDATE_DATA_PTRS) {
1628 		trans = btrfs_start_transaction(root, 1);
1629 
1630 		leaf = path->nodes[0];
1631 		btrfs_item_key_to_cpu(leaf, &key, 0);
1632 		btrfs_release_path(reloc_root, path);
1633 
1634 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1635 		if (ret < 0) {
1636 			err = ret;
1637 			goto out;
1638 		}
1639 
1640 		leaf = path->nodes[0];
1641 		btrfs_unlock_up_safe(path, 1);
1642 		ret = replace_file_extents(trans, rc, root, leaf,
1643 					   &inode_list);
1644 		if (ret < 0)
1645 			err = ret;
1646 		goto out;
1647 	}
1648 
1649 	memset(&next_key, 0, sizeof(next_key));
1650 
1651 	while (1) {
1652 		leaf = NULL;
1653 		replaced = 0;
1654 		trans = btrfs_start_transaction(root, 1);
1655 		max_level = level;
1656 
1657 		ret = walk_down_reloc_tree(reloc_root, path, &level);
1658 		if (ret < 0) {
1659 			err = ret;
1660 			goto out;
1661 		}
1662 		if (ret > 0)
1663 			break;
1664 
1665 		if (!find_next_key(path, level, &key) &&
1666 		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
1667 			ret = 0;
1668 		} else if (level == 1 && rc->stage == UPDATE_DATA_PTRS) {
1669 			ret = replace_path(trans, root, reloc_root,
1670 					   path, &next_key, &leaf,
1671 					   level, max_level);
1672 		} else {
1673 			ret = replace_path(trans, root, reloc_root,
1674 					   path, &next_key, NULL,
1675 					   level, max_level);
1676 		}
1677 		if (ret < 0) {
1678 			err = ret;
1679 			goto out;
1680 		}
1681 
1682 		if (ret > 0) {
1683 			level = ret;
1684 			btrfs_node_key_to_cpu(path->nodes[level], &key,
1685 					      path->slots[level]);
1686 			replaced = 1;
1687 		} else if (leaf) {
1688 			/*
1689 			 * no block got replaced, try replacing file extents
1690 			 */
1691 			btrfs_item_key_to_cpu(leaf, &key, 0);
1692 			ret = replace_file_extents(trans, rc, root, leaf,
1693 						   &inode_list);
1694 			btrfs_tree_unlock(leaf);
1695 			free_extent_buffer(leaf);
1696 			BUG_ON(ret < 0);
1697 		}
1698 
1699 		ret = walk_up_reloc_tree(reloc_root, path, &level);
1700 		if (ret > 0)
1701 			break;
1702 
1703 		BUG_ON(level == 0);
1704 		/*
1705 		 * save the merging progress in the drop_progress.
1706 		 * this is OK since root refs == 1 in this case.
1707 		 */
1708 		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
1709 			       path->slots[level]);
1710 		root_item->drop_level = level;
1711 
1712 		nr = trans->blocks_used;
1713 		btrfs_end_transaction(trans, root);
1714 
1715 		btrfs_btree_balance_dirty(root, nr);
1716 
1717 		if (replaced && rc->stage == UPDATE_DATA_PTRS)
1718 			invalidate_extent_cache(root, &key, &next_key);
1719 	}
1720 
1721 	/*
1722 	 * handle the case only one block in the fs tree need to be
1723 	 * relocated and the block is tree root.
1724 	 */
1725 	leaf = btrfs_lock_root_node(root);
1726 	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
1727 	btrfs_tree_unlock(leaf);
1728 	free_extent_buffer(leaf);
1729 	if (ret < 0)
1730 		err = ret;
1731 out:
1732 	btrfs_free_path(path);
1733 
1734 	if (err == 0) {
1735 		memset(&root_item->drop_progress, 0,
1736 		       sizeof(root_item->drop_progress));
1737 		root_item->drop_level = 0;
1738 		btrfs_set_root_refs(root_item, 0);
1739 	}
1740 
1741 	nr = trans->blocks_used;
1742 	btrfs_end_transaction(trans, root);
1743 
1744 	btrfs_btree_balance_dirty(root, nr);
1745 
1746 	/*
1747 	 * put inodes while we aren't holding the tree locks
1748 	 */
1749 	while (!list_empty(&inode_list)) {
1750 		struct inodevec *ivec;
1751 		ivec = list_entry(inode_list.next, struct inodevec, list);
1752 		list_del(&ivec->list);
1753 		while (ivec->nr > 0) {
1754 			ivec->nr--;
1755 			iput(ivec->inode[ivec->nr]);
1756 		}
1757 		kfree(ivec);
1758 	}
1759 
1760 	if (replaced && rc->stage == UPDATE_DATA_PTRS)
1761 		invalidate_extent_cache(root, &key, &next_key);
1762 
1763 	return err;
1764 }
1765 
1766 /*
1767  * callback for the work threads.
1768  * this function merges reloc tree with corresponding fs tree,
1769  * and then drops the reloc tree.
1770  */
1771 static void merge_func(struct btrfs_work *work)
1772 {
1773 	struct btrfs_trans_handle *trans;
1774 	struct btrfs_root *root;
1775 	struct btrfs_root *reloc_root;
1776 	struct async_merge *async;
1777 
1778 	async = container_of(work, struct async_merge, work);
1779 	reloc_root = async->root;
1780 
1781 	if (btrfs_root_refs(&reloc_root->root_item) > 0) {
1782 		root = read_fs_root(reloc_root->fs_info,
1783 				    reloc_root->root_key.offset);
1784 		BUG_ON(IS_ERR(root));
1785 		BUG_ON(root->reloc_root != reloc_root);
1786 
1787 		merge_reloc_root(async->rc, root);
1788 
1789 		trans = btrfs_start_transaction(root, 1);
1790 		btrfs_update_reloc_root(trans, root);
1791 		btrfs_end_transaction(trans, root);
1792 	}
1793 
1794 	btrfs_drop_snapshot(reloc_root, 0);
1795 
1796 	if (atomic_dec_and_test(async->num_pending))
1797 		complete(async->done);
1798 
1799 	kfree(async);
1800 }
1801 
1802 static int merge_reloc_roots(struct reloc_control *rc)
1803 {
1804 	struct async_merge *async;
1805 	struct btrfs_root *root;
1806 	struct completion done;
1807 	atomic_t num_pending;
1808 
1809 	init_completion(&done);
1810 	atomic_set(&num_pending, 1);
1811 
1812 	while (!list_empty(&rc->reloc_roots)) {
1813 		root = list_entry(rc->reloc_roots.next,
1814 				  struct btrfs_root, root_list);
1815 		list_del_init(&root->root_list);
1816 
1817 		async = kmalloc(sizeof(*async), GFP_NOFS);
1818 		BUG_ON(!async);
1819 		async->work.func = merge_func;
1820 		async->work.flags = 0;
1821 		async->rc = rc;
1822 		async->root = root;
1823 		async->done = &done;
1824 		async->num_pending = &num_pending;
1825 		atomic_inc(&num_pending);
1826 		btrfs_queue_worker(&rc->workers, &async->work);
1827 	}
1828 
1829 	if (!atomic_dec_and_test(&num_pending))
1830 		wait_for_completion(&done);
1831 
1832 	BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
1833 	return 0;
1834 }
1835 
1836 static void free_block_list(struct rb_root *blocks)
1837 {
1838 	struct tree_block *block;
1839 	struct rb_node *rb_node;
1840 	while ((rb_node = rb_first(blocks))) {
1841 		block = rb_entry(rb_node, struct tree_block, rb_node);
1842 		rb_erase(rb_node, blocks);
1843 		kfree(block);
1844 	}
1845 }
1846 
1847 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
1848 				      struct btrfs_root *reloc_root)
1849 {
1850 	struct btrfs_root *root;
1851 
1852 	if (reloc_root->last_trans == trans->transid)
1853 		return 0;
1854 
1855 	root = read_fs_root(reloc_root->fs_info, reloc_root->root_key.offset);
1856 	BUG_ON(IS_ERR(root));
1857 	BUG_ON(root->reloc_root != reloc_root);
1858 
1859 	return btrfs_record_root_in_trans(trans, root);
1860 }
1861 
1862 /*
1863  * select one tree from trees that references the block.
1864  * for blocks in refernce counted trees, we preper reloc tree.
1865  * if no reloc tree found and reloc_only is true, NULL is returned.
1866  */
1867 static struct btrfs_root *__select_one_root(struct btrfs_trans_handle *trans,
1868 					    struct backref_node *node,
1869 					    struct backref_edge *edges[],
1870 					    int *nr, int reloc_only)
1871 {
1872 	struct backref_node *next;
1873 	struct btrfs_root *root;
1874 	int index;
1875 	int loop = 0;
1876 again:
1877 	index = 0;
1878 	next = node;
1879 	while (1) {
1880 		cond_resched();
1881 		next = walk_up_backref(next, edges, &index);
1882 		root = next->root;
1883 		if (!root) {
1884 			BUG_ON(!node->old_root);
1885 			goto skip;
1886 		}
1887 
1888 		/* no other choice for non-refernce counted tree */
1889 		if (!root->ref_cows) {
1890 			BUG_ON(reloc_only);
1891 			break;
1892 		}
1893 
1894 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
1895 			record_reloc_root_in_trans(trans, root);
1896 			break;
1897 		}
1898 
1899 		if (loop) {
1900 			btrfs_record_root_in_trans(trans, root);
1901 			break;
1902 		}
1903 
1904 		if (reloc_only || next != node) {
1905 			if (!root->reloc_root)
1906 				btrfs_record_root_in_trans(trans, root);
1907 			root = root->reloc_root;
1908 			/*
1909 			 * if the reloc tree was created in current
1910 			 * transation, there is no node in backref tree
1911 			 * corresponds to the root of the reloc tree.
1912 			 */
1913 			if (btrfs_root_last_snapshot(&root->root_item) ==
1914 			    trans->transid - 1)
1915 				break;
1916 		}
1917 skip:
1918 		root = NULL;
1919 		next = walk_down_backref(edges, &index);
1920 		if (!next || next->level <= node->level)
1921 			break;
1922 	}
1923 
1924 	if (!root && !loop && !reloc_only) {
1925 		loop = 1;
1926 		goto again;
1927 	}
1928 
1929 	if (root)
1930 		*nr = index;
1931 	else
1932 		*nr = 0;
1933 
1934 	return root;
1935 }
1936 
1937 static noinline_for_stack
1938 struct btrfs_root *select_one_root(struct btrfs_trans_handle *trans,
1939 				   struct backref_node *node)
1940 {
1941 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
1942 	int nr;
1943 	return __select_one_root(trans, node, edges, &nr, 0);
1944 }
1945 
1946 static noinline_for_stack
1947 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
1948 				     struct backref_node *node,
1949 				     struct backref_edge *edges[], int *nr)
1950 {
1951 	return __select_one_root(trans, node, edges, nr, 1);
1952 }
1953 
1954 static void grab_path_buffers(struct btrfs_path *path,
1955 			      struct backref_node *node,
1956 			      struct backref_edge *edges[], int nr)
1957 {
1958 	int i = 0;
1959 	while (1) {
1960 		drop_node_buffer(node);
1961 		node->eb = path->nodes[node->level];
1962 		BUG_ON(!node->eb);
1963 		if (path->locks[node->level])
1964 			node->locked = 1;
1965 		path->nodes[node->level] = NULL;
1966 		path->locks[node->level] = 0;
1967 
1968 		if (i >= nr)
1969 			break;
1970 
1971 		edges[i]->blockptr = node->eb->start;
1972 		node = edges[i]->node[UPPER];
1973 		i++;
1974 	}
1975 }
1976 
1977 /*
1978  * relocate a block tree, and then update pointers in upper level
1979  * blocks that reference the block to point to the new location.
1980  *
1981  * if called by link_to_upper, the block has already been relocated.
1982  * in that case this function just updates pointers.
1983  */
1984 static int do_relocation(struct btrfs_trans_handle *trans,
1985 			 struct backref_node *node,
1986 			 struct btrfs_key *key,
1987 			 struct btrfs_path *path, int lowest)
1988 {
1989 	struct backref_node *upper;
1990 	struct backref_edge *edge;
1991 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
1992 	struct btrfs_root *root;
1993 	struct extent_buffer *eb;
1994 	u32 blocksize;
1995 	u64 bytenr;
1996 	u64 generation;
1997 	int nr;
1998 	int slot;
1999 	int ret;
2000 	int err = 0;
2001 
2002 	BUG_ON(lowest && node->eb);
2003 
2004 	path->lowest_level = node->level + 1;
2005 	list_for_each_entry(edge, &node->upper, list[LOWER]) {
2006 		cond_resched();
2007 		if (node->eb && node->eb->start == edge->blockptr)
2008 			continue;
2009 
2010 		upper = edge->node[UPPER];
2011 		root = select_reloc_root(trans, upper, edges, &nr);
2012 		if (!root)
2013 			continue;
2014 
2015 		if (upper->eb && !upper->locked)
2016 			drop_node_buffer(upper);
2017 
2018 		if (!upper->eb) {
2019 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2020 			if (ret < 0) {
2021 				err = ret;
2022 				break;
2023 			}
2024 			BUG_ON(ret > 0);
2025 
2026 			slot = path->slots[upper->level];
2027 
2028 			btrfs_unlock_up_safe(path, upper->level + 1);
2029 			grab_path_buffers(path, upper, edges, nr);
2030 
2031 			btrfs_release_path(NULL, path);
2032 		} else {
2033 			ret = btrfs_bin_search(upper->eb, key, upper->level,
2034 					       &slot);
2035 			BUG_ON(ret);
2036 		}
2037 
2038 		bytenr = btrfs_node_blockptr(upper->eb, slot);
2039 		if (!lowest) {
2040 			if (node->eb->start == bytenr) {
2041 				btrfs_tree_unlock(upper->eb);
2042 				upper->locked = 0;
2043 				continue;
2044 			}
2045 		} else {
2046 			BUG_ON(node->bytenr != bytenr);
2047 		}
2048 
2049 		blocksize = btrfs_level_size(root, node->level);
2050 		generation = btrfs_node_ptr_generation(upper->eb, slot);
2051 		eb = read_tree_block(root, bytenr, blocksize, generation);
2052 		btrfs_tree_lock(eb);
2053 		btrfs_set_lock_blocking(eb);
2054 
2055 		if (!node->eb) {
2056 			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2057 					      slot, &eb);
2058 			if (ret < 0) {
2059 				err = ret;
2060 				break;
2061 			}
2062 			btrfs_set_lock_blocking(eb);
2063 			node->eb = eb;
2064 			node->locked = 1;
2065 		} else {
2066 			btrfs_set_node_blockptr(upper->eb, slot,
2067 						node->eb->start);
2068 			btrfs_set_node_ptr_generation(upper->eb, slot,
2069 						      trans->transid);
2070 			btrfs_mark_buffer_dirty(upper->eb);
2071 
2072 			ret = btrfs_inc_extent_ref(trans, root,
2073 						node->eb->start, blocksize,
2074 						upper->eb->start,
2075 						btrfs_header_owner(upper->eb),
2076 						node->level, 0);
2077 			BUG_ON(ret);
2078 
2079 			ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2080 			BUG_ON(ret);
2081 		}
2082 		if (!lowest) {
2083 			btrfs_tree_unlock(upper->eb);
2084 			upper->locked = 0;
2085 		}
2086 	}
2087 	path->lowest_level = 0;
2088 	return err;
2089 }
2090 
2091 static int link_to_upper(struct btrfs_trans_handle *trans,
2092 			 struct backref_node *node,
2093 			 struct btrfs_path *path)
2094 {
2095 	struct btrfs_key key;
2096 	if (!node->eb || list_empty(&node->upper))
2097 		return 0;
2098 
2099 	btrfs_node_key_to_cpu(node->eb, &key, 0);
2100 	return do_relocation(trans, node, &key, path, 0);
2101 }
2102 
2103 static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2104 				struct backref_cache *cache,
2105 				struct btrfs_path *path)
2106 {
2107 	struct backref_node *node;
2108 	int level;
2109 	int ret;
2110 	int err = 0;
2111 
2112 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2113 		while (!list_empty(&cache->pending[level])) {
2114 			node = list_entry(cache->pending[level].next,
2115 					  struct backref_node, lower);
2116 			BUG_ON(node->level != level);
2117 
2118 			ret = link_to_upper(trans, node, path);
2119 			if (ret < 0)
2120 				err = ret;
2121 			/*
2122 			 * this remove the node from the pending list and
2123 			 * may add some other nodes to the level + 1
2124 			 * pending list
2125 			 */
2126 			remove_backref_node(cache, node);
2127 		}
2128 	}
2129 	BUG_ON(!RB_EMPTY_ROOT(&cache->rb_root));
2130 	return err;
2131 }
2132 
2133 static void mark_block_processed(struct reloc_control *rc,
2134 				 struct backref_node *node)
2135 {
2136 	u32 blocksize;
2137 	if (node->level == 0 ||
2138 	    in_block_group(node->bytenr, rc->block_group)) {
2139 		blocksize = btrfs_level_size(rc->extent_root, node->level);
2140 		set_extent_bits(&rc->processed_blocks, node->bytenr,
2141 				node->bytenr + blocksize - 1, EXTENT_DIRTY,
2142 				GFP_NOFS);
2143 	}
2144 	node->processed = 1;
2145 }
2146 
2147 /*
2148  * mark a block and all blocks directly/indirectly reference the block
2149  * as processed.
2150  */
2151 static void update_processed_blocks(struct reloc_control *rc,
2152 				    struct backref_node *node)
2153 {
2154 	struct backref_node *next = node;
2155 	struct backref_edge *edge;
2156 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2157 	int index = 0;
2158 
2159 	while (next) {
2160 		cond_resched();
2161 		while (1) {
2162 			if (next->processed)
2163 				break;
2164 
2165 			mark_block_processed(rc, next);
2166 
2167 			if (list_empty(&next->upper))
2168 				break;
2169 
2170 			edge = list_entry(next->upper.next,
2171 					  struct backref_edge, list[LOWER]);
2172 			edges[index++] = edge;
2173 			next = edge->node[UPPER];
2174 		}
2175 		next = walk_down_backref(edges, &index);
2176 	}
2177 }
2178 
2179 static int tree_block_processed(u64 bytenr, u32 blocksize,
2180 				struct reloc_control *rc)
2181 {
2182 	if (test_range_bit(&rc->processed_blocks, bytenr,
2183 			   bytenr + blocksize - 1, EXTENT_DIRTY, 1))
2184 		return 1;
2185 	return 0;
2186 }
2187 
2188 /*
2189  * check if there are any file extent pointers in the leaf point to
2190  * data require processing
2191  */
2192 static int check_file_extents(struct reloc_control *rc,
2193 			      u64 bytenr, u32 blocksize, u64 ptr_gen)
2194 {
2195 	struct btrfs_key found_key;
2196 	struct btrfs_file_extent_item *fi;
2197 	struct extent_buffer *leaf;
2198 	u32 nritems;
2199 	int i;
2200 	int ret = 0;
2201 
2202 	leaf = read_tree_block(rc->extent_root, bytenr, blocksize, ptr_gen);
2203 
2204 	nritems = btrfs_header_nritems(leaf);
2205 	for (i = 0; i < nritems; i++) {
2206 		cond_resched();
2207 		btrfs_item_key_to_cpu(leaf, &found_key, i);
2208 		if (found_key.type != BTRFS_EXTENT_DATA_KEY)
2209 			continue;
2210 		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
2211 		if (btrfs_file_extent_type(leaf, fi) ==
2212 		    BTRFS_FILE_EXTENT_INLINE)
2213 			continue;
2214 		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
2215 		if (bytenr == 0)
2216 			continue;
2217 		if (in_block_group(bytenr, rc->block_group)) {
2218 			ret = 1;
2219 			break;
2220 		}
2221 	}
2222 	free_extent_buffer(leaf);
2223 	return ret;
2224 }
2225 
2226 /*
2227  * scan child blocks of a given block to find blocks require processing
2228  */
2229 static int add_child_blocks(struct btrfs_trans_handle *trans,
2230 			    struct reloc_control *rc,
2231 			    struct backref_node *node,
2232 			    struct rb_root *blocks)
2233 {
2234 	struct tree_block *block;
2235 	struct rb_node *rb_node;
2236 	u64 bytenr;
2237 	u64 ptr_gen;
2238 	u32 blocksize;
2239 	u32 nritems;
2240 	int i;
2241 	int err = 0;
2242 
2243 	nritems = btrfs_header_nritems(node->eb);
2244 	blocksize = btrfs_level_size(rc->extent_root, node->level - 1);
2245 	for (i = 0; i < nritems; i++) {
2246 		cond_resched();
2247 		bytenr = btrfs_node_blockptr(node->eb, i);
2248 		ptr_gen = btrfs_node_ptr_generation(node->eb, i);
2249 		if (ptr_gen == trans->transid)
2250 			continue;
2251 		if (!in_block_group(bytenr, rc->block_group) &&
2252 		    (node->level > 1 || rc->stage == MOVE_DATA_EXTENTS))
2253 			continue;
2254 		if (tree_block_processed(bytenr, blocksize, rc))
2255 			continue;
2256 
2257 		readahead_tree_block(rc->extent_root,
2258 				     bytenr, blocksize, ptr_gen);
2259 	}
2260 
2261 	for (i = 0; i < nritems; i++) {
2262 		cond_resched();
2263 		bytenr = btrfs_node_blockptr(node->eb, i);
2264 		ptr_gen = btrfs_node_ptr_generation(node->eb, i);
2265 		if (ptr_gen == trans->transid)
2266 			continue;
2267 		if (!in_block_group(bytenr, rc->block_group) &&
2268 		    (node->level > 1 || rc->stage == MOVE_DATA_EXTENTS))
2269 			continue;
2270 		if (tree_block_processed(bytenr, blocksize, rc))
2271 			continue;
2272 		if (!in_block_group(bytenr, rc->block_group) &&
2273 		    !check_file_extents(rc, bytenr, blocksize, ptr_gen))
2274 			continue;
2275 
2276 		block = kmalloc(sizeof(*block), GFP_NOFS);
2277 		if (!block) {
2278 			err = -ENOMEM;
2279 			break;
2280 		}
2281 		block->bytenr = bytenr;
2282 		btrfs_node_key_to_cpu(node->eb, &block->key, i);
2283 		block->level = node->level - 1;
2284 		block->key_ready = 1;
2285 		rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
2286 		BUG_ON(rb_node);
2287 	}
2288 	if (err)
2289 		free_block_list(blocks);
2290 	return err;
2291 }
2292 
2293 /*
2294  * find adjacent blocks require processing
2295  */
2296 static noinline_for_stack
2297 int add_adjacent_blocks(struct btrfs_trans_handle *trans,
2298 			struct reloc_control *rc,
2299 			struct backref_cache *cache,
2300 			struct rb_root *blocks, int level,
2301 			struct backref_node **upper)
2302 {
2303 	struct backref_node *node;
2304 	int ret = 0;
2305 
2306 	WARN_ON(!list_empty(&cache->pending[level]));
2307 
2308 	if (list_empty(&cache->pending[level + 1]))
2309 		return 1;
2310 
2311 	node = list_entry(cache->pending[level + 1].next,
2312 			  struct backref_node, lower);
2313 	if (node->eb)
2314 		ret = add_child_blocks(trans, rc, node, blocks);
2315 
2316 	*upper = node;
2317 	return ret;
2318 }
2319 
2320 static int get_tree_block_key(struct reloc_control *rc,
2321 			      struct tree_block *block)
2322 {
2323 	struct extent_buffer *eb;
2324 
2325 	BUG_ON(block->key_ready);
2326 	eb = read_tree_block(rc->extent_root, block->bytenr,
2327 			     block->key.objectid, block->key.offset);
2328 	WARN_ON(btrfs_header_level(eb) != block->level);
2329 	if (block->level == 0)
2330 		btrfs_item_key_to_cpu(eb, &block->key, 0);
2331 	else
2332 		btrfs_node_key_to_cpu(eb, &block->key, 0);
2333 	free_extent_buffer(eb);
2334 	block->key_ready = 1;
2335 	return 0;
2336 }
2337 
2338 static int reada_tree_block(struct reloc_control *rc,
2339 			    struct tree_block *block)
2340 {
2341 	BUG_ON(block->key_ready);
2342 	readahead_tree_block(rc->extent_root, block->bytenr,
2343 			     block->key.objectid, block->key.offset);
2344 	return 0;
2345 }
2346 
2347 /*
2348  * helper function to relocate a tree block
2349  */
2350 static int relocate_tree_block(struct btrfs_trans_handle *trans,
2351 				struct reloc_control *rc,
2352 				struct backref_node *node,
2353 				struct btrfs_key *key,
2354 				struct btrfs_path *path)
2355 {
2356 	struct btrfs_root *root;
2357 	int ret;
2358 
2359 	root = select_one_root(trans, node);
2360 	if (unlikely(!root)) {
2361 		rc->found_old_snapshot = 1;
2362 		update_processed_blocks(rc, node);
2363 		return 0;
2364 	}
2365 
2366 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2367 		ret = do_relocation(trans, node, key, path, 1);
2368 		if (ret < 0)
2369 			goto out;
2370 		if (node->level == 0 && rc->stage == UPDATE_DATA_PTRS) {
2371 			ret = replace_file_extents(trans, rc, root,
2372 						   node->eb, NULL);
2373 			if (ret < 0)
2374 				goto out;
2375 		}
2376 		drop_node_buffer(node);
2377 	} else if (!root->ref_cows) {
2378 		path->lowest_level = node->level;
2379 		ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2380 		btrfs_release_path(root, path);
2381 		if (ret < 0)
2382 			goto out;
2383 	} else if (root != node->root) {
2384 		WARN_ON(node->level > 0 || rc->stage != UPDATE_DATA_PTRS);
2385 	}
2386 
2387 	update_processed_blocks(rc, node);
2388 	ret = 0;
2389 out:
2390 	drop_node_buffer(node);
2391 	return ret;
2392 }
2393 
2394 /*
2395  * relocate a list of blocks
2396  */
2397 static noinline_for_stack
2398 int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2399 			 struct reloc_control *rc, struct rb_root *blocks)
2400 {
2401 	struct backref_cache *cache;
2402 	struct backref_node *node;
2403 	struct btrfs_path *path;
2404 	struct tree_block *block;
2405 	struct rb_node *rb_node;
2406 	int level = -1;
2407 	int ret;
2408 	int err = 0;
2409 
2410 	path = btrfs_alloc_path();
2411 	if (!path)
2412 		return -ENOMEM;
2413 
2414 	cache = kmalloc(sizeof(*cache), GFP_NOFS);
2415 	if (!cache) {
2416 		btrfs_free_path(path);
2417 		return -ENOMEM;
2418 	}
2419 
2420 	backref_cache_init(cache);
2421 
2422 	rb_node = rb_first(blocks);
2423 	while (rb_node) {
2424 		block = rb_entry(rb_node, struct tree_block, rb_node);
2425 		if (level == -1)
2426 			level = block->level;
2427 		else
2428 			BUG_ON(level != block->level);
2429 		if (!block->key_ready)
2430 			reada_tree_block(rc, block);
2431 		rb_node = rb_next(rb_node);
2432 	}
2433 
2434 	rb_node = rb_first(blocks);
2435 	while (rb_node) {
2436 		block = rb_entry(rb_node, struct tree_block, rb_node);
2437 		if (!block->key_ready)
2438 			get_tree_block_key(rc, block);
2439 		rb_node = rb_next(rb_node);
2440 	}
2441 
2442 	rb_node = rb_first(blocks);
2443 	while (rb_node) {
2444 		block = rb_entry(rb_node, struct tree_block, rb_node);
2445 
2446 		node = build_backref_tree(rc, cache, &block->key,
2447 					  block->level, block->bytenr);
2448 		if (IS_ERR(node)) {
2449 			err = PTR_ERR(node);
2450 			goto out;
2451 		}
2452 
2453 		ret = relocate_tree_block(trans, rc, node, &block->key,
2454 					  path);
2455 		if (ret < 0) {
2456 			err = ret;
2457 			goto out;
2458 		}
2459 		remove_backref_node(cache, node);
2460 		rb_node = rb_next(rb_node);
2461 	}
2462 
2463 	if (level > 0)
2464 		goto out;
2465 
2466 	free_block_list(blocks);
2467 
2468 	/*
2469 	 * now backrefs of some upper level tree blocks have been cached,
2470 	 * try relocating blocks referenced by these upper level blocks.
2471 	 */
2472 	while (1) {
2473 		struct backref_node *upper = NULL;
2474 		if (trans->transaction->in_commit ||
2475 		    trans->transaction->delayed_refs.flushing)
2476 			break;
2477 
2478 		ret = add_adjacent_blocks(trans, rc, cache, blocks, level,
2479 					  &upper);
2480 		if (ret < 0)
2481 			err = ret;
2482 		if (ret != 0)
2483 			break;
2484 
2485 		rb_node = rb_first(blocks);
2486 		while (rb_node) {
2487 			block = rb_entry(rb_node, struct tree_block, rb_node);
2488 			if (trans->transaction->in_commit ||
2489 			    trans->transaction->delayed_refs.flushing)
2490 				goto out;
2491 			BUG_ON(!block->key_ready);
2492 			node = build_backref_tree(rc, cache, &block->key,
2493 						  level, block->bytenr);
2494 			if (IS_ERR(node)) {
2495 				err = PTR_ERR(node);
2496 				goto out;
2497 			}
2498 
2499 			ret = relocate_tree_block(trans, rc, node,
2500 						  &block->key, path);
2501 			if (ret < 0) {
2502 				err = ret;
2503 				goto out;
2504 			}
2505 			remove_backref_node(cache, node);
2506 			rb_node = rb_next(rb_node);
2507 		}
2508 		free_block_list(blocks);
2509 
2510 		if (upper) {
2511 			ret = link_to_upper(trans, upper, path);
2512 			if (ret < 0) {
2513 				err = ret;
2514 				break;
2515 			}
2516 			remove_backref_node(cache, upper);
2517 		}
2518 	}
2519 out:
2520 	free_block_list(blocks);
2521 
2522 	ret = finish_pending_nodes(trans, cache, path);
2523 	if (ret < 0)
2524 		err = ret;
2525 
2526 	kfree(cache);
2527 	btrfs_free_path(path);
2528 	return err;
2529 }
2530 
2531 static noinline_for_stack
2532 int relocate_inode_pages(struct inode *inode, u64 start, u64 len)
2533 {
2534 	u64 page_start;
2535 	u64 page_end;
2536 	unsigned long i;
2537 	unsigned long first_index;
2538 	unsigned long last_index;
2539 	unsigned int total_read = 0;
2540 	unsigned int total_dirty = 0;
2541 	struct page *page;
2542 	struct file_ra_state *ra;
2543 	struct btrfs_ordered_extent *ordered;
2544 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2545 	int ret = 0;
2546 
2547 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
2548 	if (!ra)
2549 		return -ENOMEM;
2550 
2551 	mutex_lock(&inode->i_mutex);
2552 	first_index = start >> PAGE_CACHE_SHIFT;
2553 	last_index = (start + len - 1) >> PAGE_CACHE_SHIFT;
2554 
2555 	/* make sure the dirty trick played by the caller work */
2556 	while (1) {
2557 		ret = invalidate_inode_pages2_range(inode->i_mapping,
2558 						    first_index, last_index);
2559 		if (ret != -EBUSY)
2560 			break;
2561 		schedule_timeout(HZ/10);
2562 	}
2563 	if (ret)
2564 		goto out_unlock;
2565 
2566 	file_ra_state_init(ra, inode->i_mapping);
2567 
2568 	for (i = first_index ; i <= last_index; i++) {
2569 		if (total_read % ra->ra_pages == 0) {
2570 			btrfs_force_ra(inode->i_mapping, ra, NULL, i,
2571 				min(last_index, ra->ra_pages + i - 1));
2572 		}
2573 		total_read++;
2574 again:
2575 		if (((u64)i << PAGE_CACHE_SHIFT) > i_size_read(inode))
2576 			BUG_ON(1);
2577 		page = grab_cache_page(inode->i_mapping, i);
2578 		if (!page) {
2579 			ret = -ENOMEM;
2580 			goto out_unlock;
2581 		}
2582 		if (!PageUptodate(page)) {
2583 			btrfs_readpage(NULL, page);
2584 			lock_page(page);
2585 			if (!PageUptodate(page)) {
2586 				unlock_page(page);
2587 				page_cache_release(page);
2588 				ret = -EIO;
2589 				goto out_unlock;
2590 			}
2591 		}
2592 		wait_on_page_writeback(page);
2593 
2594 		page_start = (u64)page->index << PAGE_CACHE_SHIFT;
2595 		page_end = page_start + PAGE_CACHE_SIZE - 1;
2596 		lock_extent(io_tree, page_start, page_end, GFP_NOFS);
2597 
2598 		ordered = btrfs_lookup_ordered_extent(inode, page_start);
2599 		if (ordered) {
2600 			unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2601 			unlock_page(page);
2602 			page_cache_release(page);
2603 			btrfs_start_ordered_extent(inode, ordered, 1);
2604 			btrfs_put_ordered_extent(ordered);
2605 			goto again;
2606 		}
2607 		set_page_extent_mapped(page);
2608 
2609 		if (i == first_index)
2610 			set_extent_bits(io_tree, page_start, page_end,
2611 					EXTENT_BOUNDARY, GFP_NOFS);
2612 		btrfs_set_extent_delalloc(inode, page_start, page_end);
2613 
2614 		set_page_dirty(page);
2615 		total_dirty++;
2616 
2617 		unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2618 		unlock_page(page);
2619 		page_cache_release(page);
2620 	}
2621 out_unlock:
2622 	mutex_unlock(&inode->i_mutex);
2623 	kfree(ra);
2624 	balance_dirty_pages_ratelimited_nr(inode->i_mapping, total_dirty);
2625 	return ret;
2626 }
2627 
2628 static noinline_for_stack
2629 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key)
2630 {
2631 	struct btrfs_root *root = BTRFS_I(inode)->root;
2632 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2633 	struct extent_map *em;
2634 	u64 start = extent_key->objectid - BTRFS_I(inode)->index_cnt;
2635 	u64 end = start + extent_key->offset - 1;
2636 
2637 	em = alloc_extent_map(GFP_NOFS);
2638 	em->start = start;
2639 	em->len = extent_key->offset;
2640 	em->block_len = extent_key->offset;
2641 	em->block_start = extent_key->objectid;
2642 	em->bdev = root->fs_info->fs_devices->latest_bdev;
2643 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
2644 
2645 	/* setup extent map to cheat btrfs_readpage */
2646 	lock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
2647 	while (1) {
2648 		int ret;
2649 		spin_lock(&em_tree->lock);
2650 		ret = add_extent_mapping(em_tree, em);
2651 		spin_unlock(&em_tree->lock);
2652 		if (ret != -EEXIST) {
2653 			free_extent_map(em);
2654 			break;
2655 		}
2656 		btrfs_drop_extent_cache(inode, start, end, 0);
2657 	}
2658 	unlock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
2659 
2660 	return relocate_inode_pages(inode, start, extent_key->offset);
2661 }
2662 
2663 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2664 static int get_ref_objectid_v0(struct reloc_control *rc,
2665 			       struct btrfs_path *path,
2666 			       struct btrfs_key *extent_key,
2667 			       u64 *ref_objectid, int *path_change)
2668 {
2669 	struct btrfs_key key;
2670 	struct extent_buffer *leaf;
2671 	struct btrfs_extent_ref_v0 *ref0;
2672 	int ret;
2673 	int slot;
2674 
2675 	leaf = path->nodes[0];
2676 	slot = path->slots[0];
2677 	while (1) {
2678 		if (slot >= btrfs_header_nritems(leaf)) {
2679 			ret = btrfs_next_leaf(rc->extent_root, path);
2680 			if (ret < 0)
2681 				return ret;
2682 			BUG_ON(ret > 0);
2683 			leaf = path->nodes[0];
2684 			slot = path->slots[0];
2685 			if (path_change)
2686 				*path_change = 1;
2687 		}
2688 		btrfs_item_key_to_cpu(leaf, &key, slot);
2689 		if (key.objectid != extent_key->objectid)
2690 			return -ENOENT;
2691 
2692 		if (key.type != BTRFS_EXTENT_REF_V0_KEY) {
2693 			slot++;
2694 			continue;
2695 		}
2696 		ref0 = btrfs_item_ptr(leaf, slot,
2697 				struct btrfs_extent_ref_v0);
2698 		*ref_objectid = btrfs_ref_objectid_v0(leaf, ref0);
2699 		break;
2700 	}
2701 	return 0;
2702 }
2703 #endif
2704 
2705 /*
2706  * helper to add a tree block to the list.
2707  * the major work is getting the generation and level of the block
2708  */
2709 static int add_tree_block(struct reloc_control *rc,
2710 			  struct btrfs_key *extent_key,
2711 			  struct btrfs_path *path,
2712 			  struct rb_root *blocks)
2713 {
2714 	struct extent_buffer *eb;
2715 	struct btrfs_extent_item *ei;
2716 	struct btrfs_tree_block_info *bi;
2717 	struct tree_block *block;
2718 	struct rb_node *rb_node;
2719 	u32 item_size;
2720 	int level = -1;
2721 	int generation;
2722 
2723 	eb =  path->nodes[0];
2724 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
2725 
2726 	if (item_size >= sizeof(*ei) + sizeof(*bi)) {
2727 		ei = btrfs_item_ptr(eb, path->slots[0],
2728 				struct btrfs_extent_item);
2729 		bi = (struct btrfs_tree_block_info *)(ei + 1);
2730 		generation = btrfs_extent_generation(eb, ei);
2731 		level = btrfs_tree_block_level(eb, bi);
2732 	} else {
2733 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2734 		u64 ref_owner;
2735 		int ret;
2736 
2737 		BUG_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2738 		ret = get_ref_objectid_v0(rc, path, extent_key,
2739 					  &ref_owner, NULL);
2740 		BUG_ON(ref_owner >= BTRFS_MAX_LEVEL);
2741 		level = (int)ref_owner;
2742 		/* FIXME: get real generation */
2743 		generation = 0;
2744 #else
2745 		BUG();
2746 #endif
2747 	}
2748 
2749 	btrfs_release_path(rc->extent_root, path);
2750 
2751 	BUG_ON(level == -1);
2752 
2753 	block = kmalloc(sizeof(*block), GFP_NOFS);
2754 	if (!block)
2755 		return -ENOMEM;
2756 
2757 	block->bytenr = extent_key->objectid;
2758 	block->key.objectid = extent_key->offset;
2759 	block->key.offset = generation;
2760 	block->level = level;
2761 	block->key_ready = 0;
2762 
2763 	rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
2764 	BUG_ON(rb_node);
2765 
2766 	return 0;
2767 }
2768 
2769 /*
2770  * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
2771  */
2772 static int __add_tree_block(struct reloc_control *rc,
2773 			    u64 bytenr, u32 blocksize,
2774 			    struct rb_root *blocks)
2775 {
2776 	struct btrfs_path *path;
2777 	struct btrfs_key key;
2778 	int ret;
2779 
2780 	if (tree_block_processed(bytenr, blocksize, rc))
2781 		return 0;
2782 
2783 	if (tree_search(blocks, bytenr))
2784 		return 0;
2785 
2786 	path = btrfs_alloc_path();
2787 	if (!path)
2788 		return -ENOMEM;
2789 
2790 	key.objectid = bytenr;
2791 	key.type = BTRFS_EXTENT_ITEM_KEY;
2792 	key.offset = blocksize;
2793 
2794 	path->search_commit_root = 1;
2795 	path->skip_locking = 1;
2796 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
2797 	if (ret < 0)
2798 		goto out;
2799 	BUG_ON(ret);
2800 
2801 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2802 	ret = add_tree_block(rc, &key, path, blocks);
2803 out:
2804 	btrfs_free_path(path);
2805 	return ret;
2806 }
2807 
2808 /*
2809  * helper to check if the block use full backrefs for pointers in it
2810  */
2811 static int block_use_full_backref(struct reloc_control *rc,
2812 				  struct extent_buffer *eb)
2813 {
2814 	struct btrfs_path *path;
2815 	struct btrfs_extent_item *ei;
2816 	struct btrfs_key key;
2817 	u64 flags;
2818 	int ret;
2819 
2820 	if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) ||
2821 	    btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV)
2822 		return 1;
2823 
2824 	path = btrfs_alloc_path();
2825 	BUG_ON(!path);
2826 
2827 	key.objectid = eb->start;
2828 	key.type = BTRFS_EXTENT_ITEM_KEY;
2829 	key.offset = eb->len;
2830 
2831 	path->search_commit_root = 1;
2832 	path->skip_locking = 1;
2833 	ret = btrfs_search_slot(NULL, rc->extent_root,
2834 				&key, path, 0, 0);
2835 	BUG_ON(ret);
2836 
2837 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
2838 			    struct btrfs_extent_item);
2839 	flags = btrfs_extent_flags(path->nodes[0], ei);
2840 	BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2841 	if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
2842 		ret = 1;
2843 	else
2844 		ret = 0;
2845 	btrfs_free_path(path);
2846 	return ret;
2847 }
2848 
2849 /*
2850  * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY
2851  * this function scans fs tree to find blocks reference the data extent
2852  */
2853 static int find_data_references(struct reloc_control *rc,
2854 				struct btrfs_key *extent_key,
2855 				struct extent_buffer *leaf,
2856 				struct btrfs_extent_data_ref *ref,
2857 				struct rb_root *blocks)
2858 {
2859 	struct btrfs_path *path;
2860 	struct tree_block *block;
2861 	struct btrfs_root *root;
2862 	struct btrfs_file_extent_item *fi;
2863 	struct rb_node *rb_node;
2864 	struct btrfs_key key;
2865 	u64 ref_root;
2866 	u64 ref_objectid;
2867 	u64 ref_offset;
2868 	u32 ref_count;
2869 	u32 nritems;
2870 	int err = 0;
2871 	int added = 0;
2872 	int counted;
2873 	int ret;
2874 
2875 	path = btrfs_alloc_path();
2876 	if (!path)
2877 		return -ENOMEM;
2878 
2879 	ref_root = btrfs_extent_data_ref_root(leaf, ref);
2880 	ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref);
2881 	ref_offset = btrfs_extent_data_ref_offset(leaf, ref);
2882 	ref_count = btrfs_extent_data_ref_count(leaf, ref);
2883 
2884 	root = read_fs_root(rc->extent_root->fs_info, ref_root);
2885 	if (IS_ERR(root)) {
2886 		err = PTR_ERR(root);
2887 		goto out;
2888 	}
2889 
2890 	key.objectid = ref_objectid;
2891 	key.offset = ref_offset;
2892 	key.type = BTRFS_EXTENT_DATA_KEY;
2893 
2894 	path->search_commit_root = 1;
2895 	path->skip_locking = 1;
2896 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2897 	if (ret < 0) {
2898 		err = ret;
2899 		goto out;
2900 	}
2901 
2902 	leaf = path->nodes[0];
2903 	nritems = btrfs_header_nritems(leaf);
2904 	/*
2905 	 * the references in tree blocks that use full backrefs
2906 	 * are not counted in
2907 	 */
2908 	if (block_use_full_backref(rc, leaf))
2909 		counted = 0;
2910 	else
2911 		counted = 1;
2912 	rb_node = tree_search(blocks, leaf->start);
2913 	if (rb_node) {
2914 		if (counted)
2915 			added = 1;
2916 		else
2917 			path->slots[0] = nritems;
2918 	}
2919 
2920 	while (ref_count > 0) {
2921 		while (path->slots[0] >= nritems) {
2922 			ret = btrfs_next_leaf(root, path);
2923 			if (ret < 0) {
2924 				err = ret;
2925 				goto out;
2926 			}
2927 			if (ret > 0) {
2928 				WARN_ON(1);
2929 				goto out;
2930 			}
2931 
2932 			leaf = path->nodes[0];
2933 			nritems = btrfs_header_nritems(leaf);
2934 			added = 0;
2935 
2936 			if (block_use_full_backref(rc, leaf))
2937 				counted = 0;
2938 			else
2939 				counted = 1;
2940 			rb_node = tree_search(blocks, leaf->start);
2941 			if (rb_node) {
2942 				if (counted)
2943 					added = 1;
2944 				else
2945 					path->slots[0] = nritems;
2946 			}
2947 		}
2948 
2949 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2950 		if (key.objectid != ref_objectid ||
2951 		    key.type != BTRFS_EXTENT_DATA_KEY) {
2952 			WARN_ON(1);
2953 			break;
2954 		}
2955 
2956 		fi = btrfs_item_ptr(leaf, path->slots[0],
2957 				    struct btrfs_file_extent_item);
2958 
2959 		if (btrfs_file_extent_type(leaf, fi) ==
2960 		    BTRFS_FILE_EXTENT_INLINE)
2961 			goto next;
2962 
2963 		if (btrfs_file_extent_disk_bytenr(leaf, fi) !=
2964 		    extent_key->objectid)
2965 			goto next;
2966 
2967 		key.offset -= btrfs_file_extent_offset(leaf, fi);
2968 		if (key.offset != ref_offset)
2969 			goto next;
2970 
2971 		if (counted)
2972 			ref_count--;
2973 		if (added)
2974 			goto next;
2975 
2976 		if (!tree_block_processed(leaf->start, leaf->len, rc)) {
2977 			block = kmalloc(sizeof(*block), GFP_NOFS);
2978 			if (!block) {
2979 				err = -ENOMEM;
2980 				break;
2981 			}
2982 			block->bytenr = leaf->start;
2983 			btrfs_item_key_to_cpu(leaf, &block->key, 0);
2984 			block->level = 0;
2985 			block->key_ready = 1;
2986 			rb_node = tree_insert(blocks, block->bytenr,
2987 					      &block->rb_node);
2988 			BUG_ON(rb_node);
2989 		}
2990 		if (counted)
2991 			added = 1;
2992 		else
2993 			path->slots[0] = nritems;
2994 next:
2995 		path->slots[0]++;
2996 
2997 	}
2998 out:
2999 	btrfs_free_path(path);
3000 	return err;
3001 }
3002 
3003 /*
3004  * hepler to find all tree blocks that reference a given data extent
3005  */
3006 static noinline_for_stack
3007 int add_data_references(struct reloc_control *rc,
3008 			struct btrfs_key *extent_key,
3009 			struct btrfs_path *path,
3010 			struct rb_root *blocks)
3011 {
3012 	struct btrfs_key key;
3013 	struct extent_buffer *eb;
3014 	struct btrfs_extent_data_ref *dref;
3015 	struct btrfs_extent_inline_ref *iref;
3016 	unsigned long ptr;
3017 	unsigned long end;
3018 	u32 blocksize;
3019 	int ret;
3020 	int err = 0;
3021 
3022 	ret = get_new_location(rc->data_inode, NULL, extent_key->objectid,
3023 			       extent_key->offset);
3024 	BUG_ON(ret < 0);
3025 	if (ret > 0) {
3026 		/* the relocated data is fragmented */
3027 		rc->extents_skipped++;
3028 		btrfs_release_path(rc->extent_root, path);
3029 		return 0;
3030 	}
3031 
3032 	blocksize = btrfs_level_size(rc->extent_root, 0);
3033 
3034 	eb = path->nodes[0];
3035 	ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
3036 	end = ptr + btrfs_item_size_nr(eb, path->slots[0]);
3037 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3038 	if (ptr + sizeof(struct btrfs_extent_item_v0) == end)
3039 		ptr = end;
3040 	else
3041 #endif
3042 		ptr += sizeof(struct btrfs_extent_item);
3043 
3044 	while (ptr < end) {
3045 		iref = (struct btrfs_extent_inline_ref *)ptr;
3046 		key.type = btrfs_extent_inline_ref_type(eb, iref);
3047 		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3048 			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3049 			ret = __add_tree_block(rc, key.offset, blocksize,
3050 					       blocks);
3051 		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3052 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
3053 			ret = find_data_references(rc, extent_key,
3054 						   eb, dref, blocks);
3055 		} else {
3056 			BUG();
3057 		}
3058 		ptr += btrfs_extent_inline_ref_size(key.type);
3059 	}
3060 	WARN_ON(ptr > end);
3061 
3062 	while (1) {
3063 		cond_resched();
3064 		eb = path->nodes[0];
3065 		if (path->slots[0] >= btrfs_header_nritems(eb)) {
3066 			ret = btrfs_next_leaf(rc->extent_root, path);
3067 			if (ret < 0) {
3068 				err = ret;
3069 				break;
3070 			}
3071 			if (ret > 0)
3072 				break;
3073 			eb = path->nodes[0];
3074 		}
3075 
3076 		btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
3077 		if (key.objectid != extent_key->objectid)
3078 			break;
3079 
3080 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3081 		if (key.type == BTRFS_SHARED_DATA_REF_KEY ||
3082 		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
3083 #else
3084 		BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
3085 		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3086 #endif
3087 			ret = __add_tree_block(rc, key.offset, blocksize,
3088 					       blocks);
3089 		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3090 			dref = btrfs_item_ptr(eb, path->slots[0],
3091 					      struct btrfs_extent_data_ref);
3092 			ret = find_data_references(rc, extent_key,
3093 						   eb, dref, blocks);
3094 		} else {
3095 			ret = 0;
3096 		}
3097 		if (ret) {
3098 			err = ret;
3099 			break;
3100 		}
3101 		path->slots[0]++;
3102 	}
3103 	btrfs_release_path(rc->extent_root, path);
3104 	if (err)
3105 		free_block_list(blocks);
3106 	return err;
3107 }
3108 
3109 /*
3110  * hepler to find next unprocessed extent
3111  */
3112 static noinline_for_stack
3113 int find_next_extent(struct btrfs_trans_handle *trans,
3114 		     struct reloc_control *rc, struct btrfs_path *path)
3115 {
3116 	struct btrfs_key key;
3117 	struct extent_buffer *leaf;
3118 	u64 start, end, last;
3119 	int ret;
3120 
3121 	last = rc->block_group->key.objectid + rc->block_group->key.offset;
3122 	while (1) {
3123 		cond_resched();
3124 		if (rc->search_start >= last) {
3125 			ret = 1;
3126 			break;
3127 		}
3128 
3129 		key.objectid = rc->search_start;
3130 		key.type = BTRFS_EXTENT_ITEM_KEY;
3131 		key.offset = 0;
3132 
3133 		path->search_commit_root = 1;
3134 		path->skip_locking = 1;
3135 		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3136 					0, 0);
3137 		if (ret < 0)
3138 			break;
3139 next:
3140 		leaf = path->nodes[0];
3141 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3142 			ret = btrfs_next_leaf(rc->extent_root, path);
3143 			if (ret != 0)
3144 				break;
3145 			leaf = path->nodes[0];
3146 		}
3147 
3148 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3149 		if (key.objectid >= last) {
3150 			ret = 1;
3151 			break;
3152 		}
3153 
3154 		if (key.type != BTRFS_EXTENT_ITEM_KEY ||
3155 		    key.objectid + key.offset <= rc->search_start) {
3156 			path->slots[0]++;
3157 			goto next;
3158 		}
3159 
3160 		ret = find_first_extent_bit(&rc->processed_blocks,
3161 					    key.objectid, &start, &end,
3162 					    EXTENT_DIRTY);
3163 
3164 		if (ret == 0 && start <= key.objectid) {
3165 			btrfs_release_path(rc->extent_root, path);
3166 			rc->search_start = end + 1;
3167 		} else {
3168 			rc->search_start = key.objectid + key.offset;
3169 			return 0;
3170 		}
3171 	}
3172 	btrfs_release_path(rc->extent_root, path);
3173 	return ret;
3174 }
3175 
3176 static void set_reloc_control(struct reloc_control *rc)
3177 {
3178 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3179 	mutex_lock(&fs_info->trans_mutex);
3180 	fs_info->reloc_ctl = rc;
3181 	mutex_unlock(&fs_info->trans_mutex);
3182 }
3183 
3184 static void unset_reloc_control(struct reloc_control *rc)
3185 {
3186 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3187 	mutex_lock(&fs_info->trans_mutex);
3188 	fs_info->reloc_ctl = NULL;
3189 	mutex_unlock(&fs_info->trans_mutex);
3190 }
3191 
3192 static int check_extent_flags(u64 flags)
3193 {
3194 	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3195 	    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3196 		return 1;
3197 	if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
3198 	    !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3199 		return 1;
3200 	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3201 	    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
3202 		return 1;
3203 	return 0;
3204 }
3205 
3206 static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3207 {
3208 	struct rb_root blocks = RB_ROOT;
3209 	struct btrfs_key key;
3210 	struct btrfs_trans_handle *trans = NULL;
3211 	struct btrfs_path *path;
3212 	struct btrfs_extent_item *ei;
3213 	unsigned long nr;
3214 	u64 flags;
3215 	u32 item_size;
3216 	int ret;
3217 	int err = 0;
3218 
3219 	path = btrfs_alloc_path();
3220 	if (!path)
3221 		return -ENOMEM;
3222 
3223 	rc->search_start = rc->block_group->key.objectid;
3224 	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY,
3225 			  GFP_NOFS);
3226 
3227 	rc->create_reloc_root = 1;
3228 	set_reloc_control(rc);
3229 
3230 	trans = btrfs_start_transaction(rc->extent_root, 1);
3231 	btrfs_commit_transaction(trans, rc->extent_root);
3232 
3233 	while (1) {
3234 		trans = btrfs_start_transaction(rc->extent_root, 1);
3235 
3236 		ret = find_next_extent(trans, rc, path);
3237 		if (ret < 0)
3238 			err = ret;
3239 		if (ret != 0)
3240 			break;
3241 
3242 		rc->extents_found++;
3243 
3244 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3245 				    struct btrfs_extent_item);
3246 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3247 		item_size = btrfs_item_size_nr(path->nodes[0],
3248 					       path->slots[0]);
3249 		if (item_size >= sizeof(*ei)) {
3250 			flags = btrfs_extent_flags(path->nodes[0], ei);
3251 			ret = check_extent_flags(flags);
3252 			BUG_ON(ret);
3253 
3254 		} else {
3255 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3256 			u64 ref_owner;
3257 			int path_change = 0;
3258 
3259 			BUG_ON(item_size !=
3260 			       sizeof(struct btrfs_extent_item_v0));
3261 			ret = get_ref_objectid_v0(rc, path, &key, &ref_owner,
3262 						  &path_change);
3263 			if (ref_owner < BTRFS_FIRST_FREE_OBJECTID)
3264 				flags = BTRFS_EXTENT_FLAG_TREE_BLOCK;
3265 			else
3266 				flags = BTRFS_EXTENT_FLAG_DATA;
3267 
3268 			if (path_change) {
3269 				btrfs_release_path(rc->extent_root, path);
3270 
3271 				path->search_commit_root = 1;
3272 				path->skip_locking = 1;
3273 				ret = btrfs_search_slot(NULL, rc->extent_root,
3274 							&key, path, 0, 0);
3275 				if (ret < 0) {
3276 					err = ret;
3277 					break;
3278 				}
3279 				BUG_ON(ret > 0);
3280 			}
3281 #else
3282 			BUG();
3283 #endif
3284 		}
3285 
3286 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3287 			ret = add_tree_block(rc, &key, path, &blocks);
3288 		} else if (rc->stage == UPDATE_DATA_PTRS &&
3289 			 (flags & BTRFS_EXTENT_FLAG_DATA)) {
3290 			ret = add_data_references(rc, &key, path, &blocks);
3291 		} else {
3292 			btrfs_release_path(rc->extent_root, path);
3293 			ret = 0;
3294 		}
3295 		if (ret < 0) {
3296 			err = 0;
3297 			break;
3298 		}
3299 
3300 		if (!RB_EMPTY_ROOT(&blocks)) {
3301 			ret = relocate_tree_blocks(trans, rc, &blocks);
3302 			if (ret < 0) {
3303 				err = ret;
3304 				break;
3305 			}
3306 		}
3307 
3308 		nr = trans->blocks_used;
3309 		btrfs_end_transaction_throttle(trans, rc->extent_root);
3310 		trans = NULL;
3311 		btrfs_btree_balance_dirty(rc->extent_root, nr);
3312 
3313 		if (rc->stage == MOVE_DATA_EXTENTS &&
3314 		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
3315 			rc->found_file_extent = 1;
3316 			ret = relocate_data_extent(rc->data_inode, &key);
3317 			if (ret < 0) {
3318 				err = ret;
3319 				break;
3320 			}
3321 		}
3322 	}
3323 	btrfs_free_path(path);
3324 
3325 	if (trans) {
3326 		nr = trans->blocks_used;
3327 		btrfs_end_transaction(trans, rc->extent_root);
3328 		btrfs_btree_balance_dirty(rc->extent_root, nr);
3329 	}
3330 
3331 	rc->create_reloc_root = 0;
3332 	smp_mb();
3333 
3334 	if (rc->extents_found > 0) {
3335 		trans = btrfs_start_transaction(rc->extent_root, 1);
3336 		btrfs_commit_transaction(trans, rc->extent_root);
3337 	}
3338 
3339 	merge_reloc_roots(rc);
3340 
3341 	unset_reloc_control(rc);
3342 
3343 	/* get rid of pinned extents */
3344 	trans = btrfs_start_transaction(rc->extent_root, 1);
3345 	btrfs_commit_transaction(trans, rc->extent_root);
3346 
3347 	return err;
3348 }
3349 
3350 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3351 				 struct btrfs_root *root,
3352 				 u64 objectid, u64 size)
3353 {
3354 	struct btrfs_path *path;
3355 	struct btrfs_inode_item *item;
3356 	struct extent_buffer *leaf;
3357 	int ret;
3358 
3359 	path = btrfs_alloc_path();
3360 	if (!path)
3361 		return -ENOMEM;
3362 
3363 	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
3364 	if (ret)
3365 		goto out;
3366 
3367 	leaf = path->nodes[0];
3368 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3369 	memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
3370 	btrfs_set_inode_generation(leaf, item, 1);
3371 	btrfs_set_inode_size(leaf, item, size);
3372 	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
3373 	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS);
3374 	btrfs_mark_buffer_dirty(leaf);
3375 	btrfs_release_path(root, path);
3376 out:
3377 	btrfs_free_path(path);
3378 	return ret;
3379 }
3380 
3381 /*
3382  * helper to create inode for data relocation.
3383  * the inode is in data relocation tree and its link count is 0
3384  */
3385 static struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
3386 					struct btrfs_block_group_cache *group)
3387 {
3388 	struct inode *inode = NULL;
3389 	struct btrfs_trans_handle *trans;
3390 	struct btrfs_root *root;
3391 	struct btrfs_key key;
3392 	unsigned long nr;
3393 	u64 objectid = BTRFS_FIRST_FREE_OBJECTID;
3394 	int err = 0;
3395 
3396 	root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
3397 	if (IS_ERR(root))
3398 		return ERR_CAST(root);
3399 
3400 	trans = btrfs_start_transaction(root, 1);
3401 	BUG_ON(!trans);
3402 
3403 	err = btrfs_find_free_objectid(trans, root, objectid, &objectid);
3404 	if (err)
3405 		goto out;
3406 
3407 	err = __insert_orphan_inode(trans, root, objectid, group->key.offset);
3408 	BUG_ON(err);
3409 
3410 	err = btrfs_insert_file_extent(trans, root, objectid, 0, 0, 0,
3411 				       group->key.offset, 0, group->key.offset,
3412 				       0, 0, 0);
3413 	BUG_ON(err);
3414 
3415 	key.objectid = objectid;
3416 	key.type = BTRFS_INODE_ITEM_KEY;
3417 	key.offset = 0;
3418 	inode = btrfs_iget(root->fs_info->sb, &key, root);
3419 	BUG_ON(IS_ERR(inode) || is_bad_inode(inode));
3420 	BTRFS_I(inode)->index_cnt = group->key.objectid;
3421 
3422 	err = btrfs_orphan_add(trans, inode);
3423 out:
3424 	nr = trans->blocks_used;
3425 	btrfs_end_transaction(trans, root);
3426 
3427 	btrfs_btree_balance_dirty(root, nr);
3428 	if (err) {
3429 		if (inode)
3430 			iput(inode);
3431 		inode = ERR_PTR(err);
3432 	}
3433 	return inode;
3434 }
3435 
3436 /*
3437  * function to relocate all extents in a block group.
3438  */
3439 int btrfs_relocate_block_group(struct btrfs_root *extent_root, u64 group_start)
3440 {
3441 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
3442 	struct reloc_control *rc;
3443 	int ret;
3444 	int err = 0;
3445 
3446 	rc = kzalloc(sizeof(*rc), GFP_NOFS);
3447 	if (!rc)
3448 		return -ENOMEM;
3449 
3450 	mapping_tree_init(&rc->reloc_root_tree);
3451 	extent_io_tree_init(&rc->processed_blocks, NULL, GFP_NOFS);
3452 	INIT_LIST_HEAD(&rc->reloc_roots);
3453 
3454 	rc->block_group = btrfs_lookup_block_group(fs_info, group_start);
3455 	BUG_ON(!rc->block_group);
3456 
3457 	btrfs_init_workers(&rc->workers, "relocate",
3458 			   fs_info->thread_pool_size);
3459 
3460 	rc->extent_root = extent_root;
3461 	btrfs_prepare_block_group_relocation(extent_root, rc->block_group);
3462 
3463 	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
3464 	if (IS_ERR(rc->data_inode)) {
3465 		err = PTR_ERR(rc->data_inode);
3466 		rc->data_inode = NULL;
3467 		goto out;
3468 	}
3469 
3470 	printk(KERN_INFO "btrfs: relocating block group %llu flags %llu\n",
3471 	       (unsigned long long)rc->block_group->key.objectid,
3472 	       (unsigned long long)rc->block_group->flags);
3473 
3474 	btrfs_start_delalloc_inodes(fs_info->tree_root);
3475 	btrfs_wait_ordered_extents(fs_info->tree_root, 0);
3476 
3477 	while (1) {
3478 		mutex_lock(&fs_info->cleaner_mutex);
3479 		btrfs_clean_old_snapshots(fs_info->tree_root);
3480 		mutex_unlock(&fs_info->cleaner_mutex);
3481 
3482 		rc->extents_found = 0;
3483 		rc->extents_skipped = 0;
3484 
3485 		ret = relocate_block_group(rc);
3486 		if (ret < 0) {
3487 			err = ret;
3488 			break;
3489 		}
3490 
3491 		if (rc->extents_found == 0)
3492 			break;
3493 
3494 		printk(KERN_INFO "btrfs: found %llu extents\n",
3495 			(unsigned long long)rc->extents_found);
3496 
3497 		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
3498 			btrfs_wait_ordered_range(rc->data_inode, 0, (u64)-1);
3499 			invalidate_mapping_pages(rc->data_inode->i_mapping,
3500 						 0, -1);
3501 			rc->stage = UPDATE_DATA_PTRS;
3502 		} else if (rc->stage == UPDATE_DATA_PTRS &&
3503 			   rc->extents_skipped >= rc->extents_found) {
3504 			iput(rc->data_inode);
3505 			rc->data_inode = create_reloc_inode(fs_info,
3506 							    rc->block_group);
3507 			if (IS_ERR(rc->data_inode)) {
3508 				err = PTR_ERR(rc->data_inode);
3509 				rc->data_inode = NULL;
3510 				break;
3511 			}
3512 			rc->stage = MOVE_DATA_EXTENTS;
3513 			rc->found_file_extent = 0;
3514 		}
3515 	}
3516 
3517 	filemap_fdatawrite_range(fs_info->btree_inode->i_mapping,
3518 				 rc->block_group->key.objectid,
3519 				 rc->block_group->key.objectid +
3520 				 rc->block_group->key.offset - 1);
3521 
3522 	WARN_ON(rc->block_group->pinned > 0);
3523 	WARN_ON(rc->block_group->reserved > 0);
3524 	WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0);
3525 out:
3526 	iput(rc->data_inode);
3527 	btrfs_stop_workers(&rc->workers);
3528 	btrfs_put_block_group(rc->block_group);
3529 	kfree(rc);
3530 	return err;
3531 }
3532 
3533 /*
3534  * recover relocation interrupted by system crash.
3535  *
3536  * this function resumes merging reloc trees with corresponding fs trees.
3537  * this is important for keeping the sharing of tree blocks
3538  */
3539 int btrfs_recover_relocation(struct btrfs_root *root)
3540 {
3541 	LIST_HEAD(reloc_roots);
3542 	struct btrfs_key key;
3543 	struct btrfs_root *fs_root;
3544 	struct btrfs_root *reloc_root;
3545 	struct btrfs_path *path;
3546 	struct extent_buffer *leaf;
3547 	struct reloc_control *rc = NULL;
3548 	struct btrfs_trans_handle *trans;
3549 	int ret;
3550 	int err = 0;
3551 
3552 	path = btrfs_alloc_path();
3553 	if (!path)
3554 		return -ENOMEM;
3555 
3556 	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
3557 	key.type = BTRFS_ROOT_ITEM_KEY;
3558 	key.offset = (u64)-1;
3559 
3560 	while (1) {
3561 		ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key,
3562 					path, 0, 0);
3563 		if (ret < 0) {
3564 			err = ret;
3565 			goto out;
3566 		}
3567 		if (ret > 0) {
3568 			if (path->slots[0] == 0)
3569 				break;
3570 			path->slots[0]--;
3571 		}
3572 		leaf = path->nodes[0];
3573 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3574 		btrfs_release_path(root->fs_info->tree_root, path);
3575 
3576 		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
3577 		    key.type != BTRFS_ROOT_ITEM_KEY)
3578 			break;
3579 
3580 		reloc_root = btrfs_read_fs_root_no_radix(root, &key);
3581 		if (IS_ERR(reloc_root)) {
3582 			err = PTR_ERR(reloc_root);
3583 			goto out;
3584 		}
3585 
3586 		list_add(&reloc_root->root_list, &reloc_roots);
3587 
3588 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
3589 			fs_root = read_fs_root(root->fs_info,
3590 					       reloc_root->root_key.offset);
3591 			if (IS_ERR(fs_root)) {
3592 				err = PTR_ERR(fs_root);
3593 				goto out;
3594 			}
3595 		}
3596 
3597 		if (key.offset == 0)
3598 			break;
3599 
3600 		key.offset--;
3601 	}
3602 	btrfs_release_path(root->fs_info->tree_root, path);
3603 
3604 	if (list_empty(&reloc_roots))
3605 		goto out;
3606 
3607 	rc = kzalloc(sizeof(*rc), GFP_NOFS);
3608 	if (!rc) {
3609 		err = -ENOMEM;
3610 		goto out;
3611 	}
3612 
3613 	mapping_tree_init(&rc->reloc_root_tree);
3614 	INIT_LIST_HEAD(&rc->reloc_roots);
3615 	btrfs_init_workers(&rc->workers, "relocate",
3616 			   root->fs_info->thread_pool_size);
3617 	rc->extent_root = root->fs_info->extent_root;
3618 
3619 	set_reloc_control(rc);
3620 
3621 	while (!list_empty(&reloc_roots)) {
3622 		reloc_root = list_entry(reloc_roots.next,
3623 					struct btrfs_root, root_list);
3624 		list_del(&reloc_root->root_list);
3625 
3626 		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
3627 			list_add_tail(&reloc_root->root_list,
3628 				      &rc->reloc_roots);
3629 			continue;
3630 		}
3631 
3632 		fs_root = read_fs_root(root->fs_info,
3633 				       reloc_root->root_key.offset);
3634 		BUG_ON(IS_ERR(fs_root));
3635 
3636 		__add_reloc_root(reloc_root);
3637 		fs_root->reloc_root = reloc_root;
3638 	}
3639 
3640 	trans = btrfs_start_transaction(rc->extent_root, 1);
3641 	btrfs_commit_transaction(trans, rc->extent_root);
3642 
3643 	merge_reloc_roots(rc);
3644 
3645 	unset_reloc_control(rc);
3646 
3647 	trans = btrfs_start_transaction(rc->extent_root, 1);
3648 	btrfs_commit_transaction(trans, rc->extent_root);
3649 out:
3650 	if (rc) {
3651 		btrfs_stop_workers(&rc->workers);
3652 		kfree(rc);
3653 	}
3654 	while (!list_empty(&reloc_roots)) {
3655 		reloc_root = list_entry(reloc_roots.next,
3656 					struct btrfs_root, root_list);
3657 		list_del(&reloc_root->root_list);
3658 		free_extent_buffer(reloc_root->node);
3659 		free_extent_buffer(reloc_root->commit_root);
3660 		kfree(reloc_root);
3661 	}
3662 	btrfs_free_path(path);
3663 
3664 	if (err == 0) {
3665 		/* cleanup orphan inode in data relocation tree */
3666 		fs_root = read_fs_root(root->fs_info,
3667 				       BTRFS_DATA_RELOC_TREE_OBJECTID);
3668 		if (IS_ERR(fs_root))
3669 			err = PTR_ERR(fs_root);
3670 	}
3671 	return err;
3672 }
3673 
3674 /*
3675  * helper to add ordered checksum for data relocation.
3676  *
3677  * cloning checksum properly handles the nodatasum extents.
3678  * it also saves CPU time to re-calculate the checksum.
3679  */
3680 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
3681 {
3682 	struct btrfs_ordered_sum *sums;
3683 	struct btrfs_sector_sum *sector_sum;
3684 	struct btrfs_ordered_extent *ordered;
3685 	struct btrfs_root *root = BTRFS_I(inode)->root;
3686 	size_t offset;
3687 	int ret;
3688 	u64 disk_bytenr;
3689 	LIST_HEAD(list);
3690 
3691 	ordered = btrfs_lookup_ordered_extent(inode, file_pos);
3692 	BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
3693 
3694 	disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
3695 	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, disk_bytenr,
3696 				       disk_bytenr + len - 1, &list);
3697 
3698 	while (!list_empty(&list)) {
3699 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
3700 		list_del_init(&sums->list);
3701 
3702 		sector_sum = sums->sums;
3703 		sums->bytenr = ordered->start;
3704 
3705 		offset = 0;
3706 		while (offset < sums->len) {
3707 			sector_sum->bytenr += ordered->start - disk_bytenr;
3708 			sector_sum++;
3709 			offset += root->sectorsize;
3710 		}
3711 
3712 		btrfs_add_ordered_sum(inode, ordered, sums);
3713 	}
3714 	btrfs_put_ordered_extent(ordered);
3715 	return 0;
3716 }
3717