xref: /linux/fs/btrfs/relocation.c (revision 22d55f02b8922a097cd4be1e2f131dfa7ef65901)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2009 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/pagemap.h>
8 #include <linux/writeback.h>
9 #include <linux/blkdev.h>
10 #include <linux/rbtree.h>
11 #include <linux/slab.h>
12 #include "ctree.h"
13 #include "disk-io.h"
14 #include "transaction.h"
15 #include "volumes.h"
16 #include "locking.h"
17 #include "btrfs_inode.h"
18 #include "async-thread.h"
19 #include "free-space-cache.h"
20 #include "inode-map.h"
21 #include "qgroup.h"
22 #include "print-tree.h"
23 
24 /*
25  * backref_node, mapping_node and tree_block start with this
26  */
27 struct tree_entry {
28 	struct rb_node rb_node;
29 	u64 bytenr;
30 };
31 
32 /*
33  * present a tree block in the backref cache
34  */
35 struct backref_node {
36 	struct rb_node rb_node;
37 	u64 bytenr;
38 
39 	u64 new_bytenr;
40 	/* objectid of tree block owner, can be not uptodate */
41 	u64 owner;
42 	/* link to pending, changed or detached list */
43 	struct list_head list;
44 	/* list of upper level blocks reference this block */
45 	struct list_head upper;
46 	/* list of child blocks in the cache */
47 	struct list_head lower;
48 	/* NULL if this node is not tree root */
49 	struct btrfs_root *root;
50 	/* extent buffer got by COW the block */
51 	struct extent_buffer *eb;
52 	/* level of tree block */
53 	unsigned int level:8;
54 	/* is the block in non-reference counted tree */
55 	unsigned int cowonly:1;
56 	/* 1 if no child node in the cache */
57 	unsigned int lowest:1;
58 	/* is the extent buffer locked */
59 	unsigned int locked:1;
60 	/* has the block been processed */
61 	unsigned int processed:1;
62 	/* have backrefs of this block been checked */
63 	unsigned int checked:1;
64 	/*
65 	 * 1 if corresponding block has been cowed but some upper
66 	 * level block pointers may not point to the new location
67 	 */
68 	unsigned int pending:1;
69 	/*
70 	 * 1 if the backref node isn't connected to any other
71 	 * backref node.
72 	 */
73 	unsigned int detached:1;
74 };
75 
76 /*
77  * present a block pointer in the backref cache
78  */
79 struct backref_edge {
80 	struct list_head list[2];
81 	struct backref_node *node[2];
82 };
83 
84 #define LOWER	0
85 #define UPPER	1
86 #define RELOCATION_RESERVED_NODES	256
87 
88 struct backref_cache {
89 	/* red black tree of all backref nodes in the cache */
90 	struct rb_root rb_root;
91 	/* for passing backref nodes to btrfs_reloc_cow_block */
92 	struct backref_node *path[BTRFS_MAX_LEVEL];
93 	/*
94 	 * list of blocks that have been cowed but some block
95 	 * pointers in upper level blocks may not reflect the
96 	 * new location
97 	 */
98 	struct list_head pending[BTRFS_MAX_LEVEL];
99 	/* list of backref nodes with no child node */
100 	struct list_head leaves;
101 	/* list of blocks that have been cowed in current transaction */
102 	struct list_head changed;
103 	/* list of detached backref node. */
104 	struct list_head detached;
105 
106 	u64 last_trans;
107 
108 	int nr_nodes;
109 	int nr_edges;
110 };
111 
112 /*
113  * map address of tree root to tree
114  */
115 struct mapping_node {
116 	struct rb_node rb_node;
117 	u64 bytenr;
118 	void *data;
119 };
120 
121 struct mapping_tree {
122 	struct rb_root rb_root;
123 	spinlock_t lock;
124 };
125 
126 /*
127  * present a tree block to process
128  */
129 struct tree_block {
130 	struct rb_node rb_node;
131 	u64 bytenr;
132 	struct btrfs_key key;
133 	unsigned int level:8;
134 	unsigned int key_ready:1;
135 };
136 
137 #define MAX_EXTENTS 128
138 
139 struct file_extent_cluster {
140 	u64 start;
141 	u64 end;
142 	u64 boundary[MAX_EXTENTS];
143 	unsigned int nr;
144 };
145 
146 struct reloc_control {
147 	/* block group to relocate */
148 	struct btrfs_block_group_cache *block_group;
149 	/* extent tree */
150 	struct btrfs_root *extent_root;
151 	/* inode for moving data */
152 	struct inode *data_inode;
153 
154 	struct btrfs_block_rsv *block_rsv;
155 
156 	struct backref_cache backref_cache;
157 
158 	struct file_extent_cluster cluster;
159 	/* tree blocks have been processed */
160 	struct extent_io_tree processed_blocks;
161 	/* map start of tree root to corresponding reloc tree */
162 	struct mapping_tree reloc_root_tree;
163 	/* list of reloc trees */
164 	struct list_head reloc_roots;
165 	/* list of subvolume trees that get relocated */
166 	struct list_head dirty_subvol_roots;
167 	/* size of metadata reservation for merging reloc trees */
168 	u64 merging_rsv_size;
169 	/* size of relocated tree nodes */
170 	u64 nodes_relocated;
171 	/* reserved size for block group relocation*/
172 	u64 reserved_bytes;
173 
174 	u64 search_start;
175 	u64 extents_found;
176 
177 	unsigned int stage:8;
178 	unsigned int create_reloc_tree:1;
179 	unsigned int merge_reloc_tree:1;
180 	unsigned int found_file_extent:1;
181 };
182 
183 /* stages of data relocation */
184 #define MOVE_DATA_EXTENTS	0
185 #define UPDATE_DATA_PTRS	1
186 
187 static void remove_backref_node(struct backref_cache *cache,
188 				struct backref_node *node);
189 static void __mark_block_processed(struct reloc_control *rc,
190 				   struct backref_node *node);
191 
192 static void mapping_tree_init(struct mapping_tree *tree)
193 {
194 	tree->rb_root = RB_ROOT;
195 	spin_lock_init(&tree->lock);
196 }
197 
198 static void backref_cache_init(struct backref_cache *cache)
199 {
200 	int i;
201 	cache->rb_root = RB_ROOT;
202 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
203 		INIT_LIST_HEAD(&cache->pending[i]);
204 	INIT_LIST_HEAD(&cache->changed);
205 	INIT_LIST_HEAD(&cache->detached);
206 	INIT_LIST_HEAD(&cache->leaves);
207 }
208 
209 static void backref_cache_cleanup(struct backref_cache *cache)
210 {
211 	struct backref_node *node;
212 	int i;
213 
214 	while (!list_empty(&cache->detached)) {
215 		node = list_entry(cache->detached.next,
216 				  struct backref_node, list);
217 		remove_backref_node(cache, node);
218 	}
219 
220 	while (!list_empty(&cache->leaves)) {
221 		node = list_entry(cache->leaves.next,
222 				  struct backref_node, lower);
223 		remove_backref_node(cache, node);
224 	}
225 
226 	cache->last_trans = 0;
227 
228 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
229 		ASSERT(list_empty(&cache->pending[i]));
230 	ASSERT(list_empty(&cache->changed));
231 	ASSERT(list_empty(&cache->detached));
232 	ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
233 	ASSERT(!cache->nr_nodes);
234 	ASSERT(!cache->nr_edges);
235 }
236 
237 static struct backref_node *alloc_backref_node(struct backref_cache *cache)
238 {
239 	struct backref_node *node;
240 
241 	node = kzalloc(sizeof(*node), GFP_NOFS);
242 	if (node) {
243 		INIT_LIST_HEAD(&node->list);
244 		INIT_LIST_HEAD(&node->upper);
245 		INIT_LIST_HEAD(&node->lower);
246 		RB_CLEAR_NODE(&node->rb_node);
247 		cache->nr_nodes++;
248 	}
249 	return node;
250 }
251 
252 static void free_backref_node(struct backref_cache *cache,
253 			      struct backref_node *node)
254 {
255 	if (node) {
256 		cache->nr_nodes--;
257 		kfree(node);
258 	}
259 }
260 
261 static struct backref_edge *alloc_backref_edge(struct backref_cache *cache)
262 {
263 	struct backref_edge *edge;
264 
265 	edge = kzalloc(sizeof(*edge), GFP_NOFS);
266 	if (edge)
267 		cache->nr_edges++;
268 	return edge;
269 }
270 
271 static void free_backref_edge(struct backref_cache *cache,
272 			      struct backref_edge *edge)
273 {
274 	if (edge) {
275 		cache->nr_edges--;
276 		kfree(edge);
277 	}
278 }
279 
280 static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr,
281 				   struct rb_node *node)
282 {
283 	struct rb_node **p = &root->rb_node;
284 	struct rb_node *parent = NULL;
285 	struct tree_entry *entry;
286 
287 	while (*p) {
288 		parent = *p;
289 		entry = rb_entry(parent, struct tree_entry, rb_node);
290 
291 		if (bytenr < entry->bytenr)
292 			p = &(*p)->rb_left;
293 		else if (bytenr > entry->bytenr)
294 			p = &(*p)->rb_right;
295 		else
296 			return parent;
297 	}
298 
299 	rb_link_node(node, parent, p);
300 	rb_insert_color(node, root);
301 	return NULL;
302 }
303 
304 static struct rb_node *tree_search(struct rb_root *root, u64 bytenr)
305 {
306 	struct rb_node *n = root->rb_node;
307 	struct tree_entry *entry;
308 
309 	while (n) {
310 		entry = rb_entry(n, struct tree_entry, rb_node);
311 
312 		if (bytenr < entry->bytenr)
313 			n = n->rb_left;
314 		else if (bytenr > entry->bytenr)
315 			n = n->rb_right;
316 		else
317 			return n;
318 	}
319 	return NULL;
320 }
321 
322 static void backref_tree_panic(struct rb_node *rb_node, int errno, u64 bytenr)
323 {
324 
325 	struct btrfs_fs_info *fs_info = NULL;
326 	struct backref_node *bnode = rb_entry(rb_node, struct backref_node,
327 					      rb_node);
328 	if (bnode->root)
329 		fs_info = bnode->root->fs_info;
330 	btrfs_panic(fs_info, errno,
331 		    "Inconsistency in backref cache found at offset %llu",
332 		    bytenr);
333 }
334 
335 /*
336  * walk up backref nodes until reach node presents tree root
337  */
338 static struct backref_node *walk_up_backref(struct backref_node *node,
339 					    struct backref_edge *edges[],
340 					    int *index)
341 {
342 	struct backref_edge *edge;
343 	int idx = *index;
344 
345 	while (!list_empty(&node->upper)) {
346 		edge = list_entry(node->upper.next,
347 				  struct backref_edge, list[LOWER]);
348 		edges[idx++] = edge;
349 		node = edge->node[UPPER];
350 	}
351 	BUG_ON(node->detached);
352 	*index = idx;
353 	return node;
354 }
355 
356 /*
357  * walk down backref nodes to find start of next reference path
358  */
359 static struct backref_node *walk_down_backref(struct backref_edge *edges[],
360 					      int *index)
361 {
362 	struct backref_edge *edge;
363 	struct backref_node *lower;
364 	int idx = *index;
365 
366 	while (idx > 0) {
367 		edge = edges[idx - 1];
368 		lower = edge->node[LOWER];
369 		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
370 			idx--;
371 			continue;
372 		}
373 		edge = list_entry(edge->list[LOWER].next,
374 				  struct backref_edge, list[LOWER]);
375 		edges[idx - 1] = edge;
376 		*index = idx;
377 		return edge->node[UPPER];
378 	}
379 	*index = 0;
380 	return NULL;
381 }
382 
383 static void unlock_node_buffer(struct backref_node *node)
384 {
385 	if (node->locked) {
386 		btrfs_tree_unlock(node->eb);
387 		node->locked = 0;
388 	}
389 }
390 
391 static void drop_node_buffer(struct backref_node *node)
392 {
393 	if (node->eb) {
394 		unlock_node_buffer(node);
395 		free_extent_buffer(node->eb);
396 		node->eb = NULL;
397 	}
398 }
399 
400 static void drop_backref_node(struct backref_cache *tree,
401 			      struct backref_node *node)
402 {
403 	BUG_ON(!list_empty(&node->upper));
404 
405 	drop_node_buffer(node);
406 	list_del(&node->list);
407 	list_del(&node->lower);
408 	if (!RB_EMPTY_NODE(&node->rb_node))
409 		rb_erase(&node->rb_node, &tree->rb_root);
410 	free_backref_node(tree, node);
411 }
412 
413 /*
414  * remove a backref node from the backref cache
415  */
416 static void remove_backref_node(struct backref_cache *cache,
417 				struct backref_node *node)
418 {
419 	struct backref_node *upper;
420 	struct backref_edge *edge;
421 
422 	if (!node)
423 		return;
424 
425 	BUG_ON(!node->lowest && !node->detached);
426 	while (!list_empty(&node->upper)) {
427 		edge = list_entry(node->upper.next, struct backref_edge,
428 				  list[LOWER]);
429 		upper = edge->node[UPPER];
430 		list_del(&edge->list[LOWER]);
431 		list_del(&edge->list[UPPER]);
432 		free_backref_edge(cache, edge);
433 
434 		if (RB_EMPTY_NODE(&upper->rb_node)) {
435 			BUG_ON(!list_empty(&node->upper));
436 			drop_backref_node(cache, node);
437 			node = upper;
438 			node->lowest = 1;
439 			continue;
440 		}
441 		/*
442 		 * add the node to leaf node list if no other
443 		 * child block cached.
444 		 */
445 		if (list_empty(&upper->lower)) {
446 			list_add_tail(&upper->lower, &cache->leaves);
447 			upper->lowest = 1;
448 		}
449 	}
450 
451 	drop_backref_node(cache, node);
452 }
453 
454 static void update_backref_node(struct backref_cache *cache,
455 				struct backref_node *node, u64 bytenr)
456 {
457 	struct rb_node *rb_node;
458 	rb_erase(&node->rb_node, &cache->rb_root);
459 	node->bytenr = bytenr;
460 	rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node);
461 	if (rb_node)
462 		backref_tree_panic(rb_node, -EEXIST, bytenr);
463 }
464 
465 /*
466  * update backref cache after a transaction commit
467  */
468 static int update_backref_cache(struct btrfs_trans_handle *trans,
469 				struct backref_cache *cache)
470 {
471 	struct backref_node *node;
472 	int level = 0;
473 
474 	if (cache->last_trans == 0) {
475 		cache->last_trans = trans->transid;
476 		return 0;
477 	}
478 
479 	if (cache->last_trans == trans->transid)
480 		return 0;
481 
482 	/*
483 	 * detached nodes are used to avoid unnecessary backref
484 	 * lookup. transaction commit changes the extent tree.
485 	 * so the detached nodes are no longer useful.
486 	 */
487 	while (!list_empty(&cache->detached)) {
488 		node = list_entry(cache->detached.next,
489 				  struct backref_node, list);
490 		remove_backref_node(cache, node);
491 	}
492 
493 	while (!list_empty(&cache->changed)) {
494 		node = list_entry(cache->changed.next,
495 				  struct backref_node, list);
496 		list_del_init(&node->list);
497 		BUG_ON(node->pending);
498 		update_backref_node(cache, node, node->new_bytenr);
499 	}
500 
501 	/*
502 	 * some nodes can be left in the pending list if there were
503 	 * errors during processing the pending nodes.
504 	 */
505 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
506 		list_for_each_entry(node, &cache->pending[level], list) {
507 			BUG_ON(!node->pending);
508 			if (node->bytenr == node->new_bytenr)
509 				continue;
510 			update_backref_node(cache, node, node->new_bytenr);
511 		}
512 	}
513 
514 	cache->last_trans = 0;
515 	return 1;
516 }
517 
518 
519 static int should_ignore_root(struct btrfs_root *root)
520 {
521 	struct btrfs_root *reloc_root;
522 
523 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
524 		return 0;
525 
526 	reloc_root = root->reloc_root;
527 	if (!reloc_root)
528 		return 0;
529 
530 	if (btrfs_root_last_snapshot(&reloc_root->root_item) ==
531 	    root->fs_info->running_transaction->transid - 1)
532 		return 0;
533 	/*
534 	 * if there is reloc tree and it was created in previous
535 	 * transaction backref lookup can find the reloc tree,
536 	 * so backref node for the fs tree root is useless for
537 	 * relocation.
538 	 */
539 	return 1;
540 }
541 /*
542  * find reloc tree by address of tree root
543  */
544 static struct btrfs_root *find_reloc_root(struct reloc_control *rc,
545 					  u64 bytenr)
546 {
547 	struct rb_node *rb_node;
548 	struct mapping_node *node;
549 	struct btrfs_root *root = NULL;
550 
551 	spin_lock(&rc->reloc_root_tree.lock);
552 	rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr);
553 	if (rb_node) {
554 		node = rb_entry(rb_node, struct mapping_node, rb_node);
555 		root = (struct btrfs_root *)node->data;
556 	}
557 	spin_unlock(&rc->reloc_root_tree.lock);
558 	return root;
559 }
560 
561 static int is_cowonly_root(u64 root_objectid)
562 {
563 	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
564 	    root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
565 	    root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
566 	    root_objectid == BTRFS_DEV_TREE_OBJECTID ||
567 	    root_objectid == BTRFS_TREE_LOG_OBJECTID ||
568 	    root_objectid == BTRFS_CSUM_TREE_OBJECTID ||
569 	    root_objectid == BTRFS_UUID_TREE_OBJECTID ||
570 	    root_objectid == BTRFS_QUOTA_TREE_OBJECTID ||
571 	    root_objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
572 		return 1;
573 	return 0;
574 }
575 
576 static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info,
577 					u64 root_objectid)
578 {
579 	struct btrfs_key key;
580 
581 	key.objectid = root_objectid;
582 	key.type = BTRFS_ROOT_ITEM_KEY;
583 	if (is_cowonly_root(root_objectid))
584 		key.offset = 0;
585 	else
586 		key.offset = (u64)-1;
587 
588 	return btrfs_get_fs_root(fs_info, &key, false);
589 }
590 
591 static noinline_for_stack
592 int find_inline_backref(struct extent_buffer *leaf, int slot,
593 			unsigned long *ptr, unsigned long *end)
594 {
595 	struct btrfs_key key;
596 	struct btrfs_extent_item *ei;
597 	struct btrfs_tree_block_info *bi;
598 	u32 item_size;
599 
600 	btrfs_item_key_to_cpu(leaf, &key, slot);
601 
602 	item_size = btrfs_item_size_nr(leaf, slot);
603 	if (item_size < sizeof(*ei)) {
604 		btrfs_print_v0_err(leaf->fs_info);
605 		btrfs_handle_fs_error(leaf->fs_info, -EINVAL, NULL);
606 		return 1;
607 	}
608 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
609 	WARN_ON(!(btrfs_extent_flags(leaf, ei) &
610 		  BTRFS_EXTENT_FLAG_TREE_BLOCK));
611 
612 	if (key.type == BTRFS_EXTENT_ITEM_KEY &&
613 	    item_size <= sizeof(*ei) + sizeof(*bi)) {
614 		WARN_ON(item_size < sizeof(*ei) + sizeof(*bi));
615 		return 1;
616 	}
617 	if (key.type == BTRFS_METADATA_ITEM_KEY &&
618 	    item_size <= sizeof(*ei)) {
619 		WARN_ON(item_size < sizeof(*ei));
620 		return 1;
621 	}
622 
623 	if (key.type == BTRFS_EXTENT_ITEM_KEY) {
624 		bi = (struct btrfs_tree_block_info *)(ei + 1);
625 		*ptr = (unsigned long)(bi + 1);
626 	} else {
627 		*ptr = (unsigned long)(ei + 1);
628 	}
629 	*end = (unsigned long)ei + item_size;
630 	return 0;
631 }
632 
633 /*
634  * build backref tree for a given tree block. root of the backref tree
635  * corresponds the tree block, leaves of the backref tree correspond
636  * roots of b-trees that reference the tree block.
637  *
638  * the basic idea of this function is check backrefs of a given block
639  * to find upper level blocks that reference the block, and then check
640  * backrefs of these upper level blocks recursively. the recursion stop
641  * when tree root is reached or backrefs for the block is cached.
642  *
643  * NOTE: if we find backrefs for a block are cached, we know backrefs
644  * for all upper level blocks that directly/indirectly reference the
645  * block are also cached.
646  */
647 static noinline_for_stack
648 struct backref_node *build_backref_tree(struct reloc_control *rc,
649 					struct btrfs_key *node_key,
650 					int level, u64 bytenr)
651 {
652 	struct backref_cache *cache = &rc->backref_cache;
653 	struct btrfs_path *path1; /* For searching extent root */
654 	struct btrfs_path *path2; /* For searching parent of TREE_BLOCK_REF */
655 	struct extent_buffer *eb;
656 	struct btrfs_root *root;
657 	struct backref_node *cur;
658 	struct backref_node *upper;
659 	struct backref_node *lower;
660 	struct backref_node *node = NULL;
661 	struct backref_node *exist = NULL;
662 	struct backref_edge *edge;
663 	struct rb_node *rb_node;
664 	struct btrfs_key key;
665 	unsigned long end;
666 	unsigned long ptr;
667 	LIST_HEAD(list); /* Pending edge list, upper node needs to be checked */
668 	LIST_HEAD(useless);
669 	int cowonly;
670 	int ret;
671 	int err = 0;
672 	bool need_check = true;
673 
674 	path1 = btrfs_alloc_path();
675 	path2 = btrfs_alloc_path();
676 	if (!path1 || !path2) {
677 		err = -ENOMEM;
678 		goto out;
679 	}
680 	path1->reada = READA_FORWARD;
681 	path2->reada = READA_FORWARD;
682 
683 	node = alloc_backref_node(cache);
684 	if (!node) {
685 		err = -ENOMEM;
686 		goto out;
687 	}
688 
689 	node->bytenr = bytenr;
690 	node->level = level;
691 	node->lowest = 1;
692 	cur = node;
693 again:
694 	end = 0;
695 	ptr = 0;
696 	key.objectid = cur->bytenr;
697 	key.type = BTRFS_METADATA_ITEM_KEY;
698 	key.offset = (u64)-1;
699 
700 	path1->search_commit_root = 1;
701 	path1->skip_locking = 1;
702 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1,
703 				0, 0);
704 	if (ret < 0) {
705 		err = ret;
706 		goto out;
707 	}
708 	ASSERT(ret);
709 	ASSERT(path1->slots[0]);
710 
711 	path1->slots[0]--;
712 
713 	WARN_ON(cur->checked);
714 	if (!list_empty(&cur->upper)) {
715 		/*
716 		 * the backref was added previously when processing
717 		 * backref of type BTRFS_TREE_BLOCK_REF_KEY
718 		 */
719 		ASSERT(list_is_singular(&cur->upper));
720 		edge = list_entry(cur->upper.next, struct backref_edge,
721 				  list[LOWER]);
722 		ASSERT(list_empty(&edge->list[UPPER]));
723 		exist = edge->node[UPPER];
724 		/*
725 		 * add the upper level block to pending list if we need
726 		 * check its backrefs
727 		 */
728 		if (!exist->checked)
729 			list_add_tail(&edge->list[UPPER], &list);
730 	} else {
731 		exist = NULL;
732 	}
733 
734 	while (1) {
735 		cond_resched();
736 		eb = path1->nodes[0];
737 
738 		if (ptr >= end) {
739 			if (path1->slots[0] >= btrfs_header_nritems(eb)) {
740 				ret = btrfs_next_leaf(rc->extent_root, path1);
741 				if (ret < 0) {
742 					err = ret;
743 					goto out;
744 				}
745 				if (ret > 0)
746 					break;
747 				eb = path1->nodes[0];
748 			}
749 
750 			btrfs_item_key_to_cpu(eb, &key, path1->slots[0]);
751 			if (key.objectid != cur->bytenr) {
752 				WARN_ON(exist);
753 				break;
754 			}
755 
756 			if (key.type == BTRFS_EXTENT_ITEM_KEY ||
757 			    key.type == BTRFS_METADATA_ITEM_KEY) {
758 				ret = find_inline_backref(eb, path1->slots[0],
759 							  &ptr, &end);
760 				if (ret)
761 					goto next;
762 			}
763 		}
764 
765 		if (ptr < end) {
766 			/* update key for inline back ref */
767 			struct btrfs_extent_inline_ref *iref;
768 			int type;
769 			iref = (struct btrfs_extent_inline_ref *)ptr;
770 			type = btrfs_get_extent_inline_ref_type(eb, iref,
771 							BTRFS_REF_TYPE_BLOCK);
772 			if (type == BTRFS_REF_TYPE_INVALID) {
773 				err = -EUCLEAN;
774 				goto out;
775 			}
776 			key.type = type;
777 			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
778 
779 			WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY &&
780 				key.type != BTRFS_SHARED_BLOCK_REF_KEY);
781 		}
782 
783 		/*
784 		 * Parent node found and matches current inline ref, no need to
785 		 * rebuild this node for this inline ref.
786 		 */
787 		if (exist &&
788 		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
789 		      exist->owner == key.offset) ||
790 		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
791 		      exist->bytenr == key.offset))) {
792 			exist = NULL;
793 			goto next;
794 		}
795 
796 		/* SHARED_BLOCK_REF means key.offset is the parent bytenr */
797 		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
798 			if (key.objectid == key.offset) {
799 				/*
800 				 * Only root blocks of reloc trees use backref
801 				 * pointing to itself.
802 				 */
803 				root = find_reloc_root(rc, cur->bytenr);
804 				ASSERT(root);
805 				cur->root = root;
806 				break;
807 			}
808 
809 			edge = alloc_backref_edge(cache);
810 			if (!edge) {
811 				err = -ENOMEM;
812 				goto out;
813 			}
814 			rb_node = tree_search(&cache->rb_root, key.offset);
815 			if (!rb_node) {
816 				upper = alloc_backref_node(cache);
817 				if (!upper) {
818 					free_backref_edge(cache, edge);
819 					err = -ENOMEM;
820 					goto out;
821 				}
822 				upper->bytenr = key.offset;
823 				upper->level = cur->level + 1;
824 				/*
825 				 *  backrefs for the upper level block isn't
826 				 *  cached, add the block to pending list
827 				 */
828 				list_add_tail(&edge->list[UPPER], &list);
829 			} else {
830 				upper = rb_entry(rb_node, struct backref_node,
831 						 rb_node);
832 				ASSERT(upper->checked);
833 				INIT_LIST_HEAD(&edge->list[UPPER]);
834 			}
835 			list_add_tail(&edge->list[LOWER], &cur->upper);
836 			edge->node[LOWER] = cur;
837 			edge->node[UPPER] = upper;
838 
839 			goto next;
840 		} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
841 			err = -EINVAL;
842 			btrfs_print_v0_err(rc->extent_root->fs_info);
843 			btrfs_handle_fs_error(rc->extent_root->fs_info, err,
844 					      NULL);
845 			goto out;
846 		} else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
847 			goto next;
848 		}
849 
850 		/*
851 		 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref offset
852 		 * means the root objectid. We need to search the tree to get
853 		 * its parent bytenr.
854 		 */
855 		root = read_fs_root(rc->extent_root->fs_info, key.offset);
856 		if (IS_ERR(root)) {
857 			err = PTR_ERR(root);
858 			goto out;
859 		}
860 
861 		if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
862 			cur->cowonly = 1;
863 
864 		if (btrfs_root_level(&root->root_item) == cur->level) {
865 			/* tree root */
866 			ASSERT(btrfs_root_bytenr(&root->root_item) ==
867 			       cur->bytenr);
868 			if (should_ignore_root(root))
869 				list_add(&cur->list, &useless);
870 			else
871 				cur->root = root;
872 			break;
873 		}
874 
875 		level = cur->level + 1;
876 
877 		/* Search the tree to find parent blocks referring the block. */
878 		path2->search_commit_root = 1;
879 		path2->skip_locking = 1;
880 		path2->lowest_level = level;
881 		ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0);
882 		path2->lowest_level = 0;
883 		if (ret < 0) {
884 			err = ret;
885 			goto out;
886 		}
887 		if (ret > 0 && path2->slots[level] > 0)
888 			path2->slots[level]--;
889 
890 		eb = path2->nodes[level];
891 		if (btrfs_node_blockptr(eb, path2->slots[level]) !=
892 		    cur->bytenr) {
893 			btrfs_err(root->fs_info,
894 	"couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
895 				  cur->bytenr, level - 1,
896 				  root->root_key.objectid,
897 				  node_key->objectid, node_key->type,
898 				  node_key->offset);
899 			err = -ENOENT;
900 			goto out;
901 		}
902 		lower = cur;
903 		need_check = true;
904 
905 		/* Add all nodes and edges in the path */
906 		for (; level < BTRFS_MAX_LEVEL; level++) {
907 			if (!path2->nodes[level]) {
908 				ASSERT(btrfs_root_bytenr(&root->root_item) ==
909 				       lower->bytenr);
910 				if (should_ignore_root(root))
911 					list_add(&lower->list, &useless);
912 				else
913 					lower->root = root;
914 				break;
915 			}
916 
917 			edge = alloc_backref_edge(cache);
918 			if (!edge) {
919 				err = -ENOMEM;
920 				goto out;
921 			}
922 
923 			eb = path2->nodes[level];
924 			rb_node = tree_search(&cache->rb_root, eb->start);
925 			if (!rb_node) {
926 				upper = alloc_backref_node(cache);
927 				if (!upper) {
928 					free_backref_edge(cache, edge);
929 					err = -ENOMEM;
930 					goto out;
931 				}
932 				upper->bytenr = eb->start;
933 				upper->owner = btrfs_header_owner(eb);
934 				upper->level = lower->level + 1;
935 				if (!test_bit(BTRFS_ROOT_REF_COWS,
936 					      &root->state))
937 					upper->cowonly = 1;
938 
939 				/*
940 				 * if we know the block isn't shared
941 				 * we can void checking its backrefs.
942 				 */
943 				if (btrfs_block_can_be_shared(root, eb))
944 					upper->checked = 0;
945 				else
946 					upper->checked = 1;
947 
948 				/*
949 				 * add the block to pending list if we
950 				 * need check its backrefs, we only do this once
951 				 * while walking up a tree as we will catch
952 				 * anything else later on.
953 				 */
954 				if (!upper->checked && need_check) {
955 					need_check = false;
956 					list_add_tail(&edge->list[UPPER],
957 						      &list);
958 				} else {
959 					if (upper->checked)
960 						need_check = true;
961 					INIT_LIST_HEAD(&edge->list[UPPER]);
962 				}
963 			} else {
964 				upper = rb_entry(rb_node, struct backref_node,
965 						 rb_node);
966 				ASSERT(upper->checked);
967 				INIT_LIST_HEAD(&edge->list[UPPER]);
968 				if (!upper->owner)
969 					upper->owner = btrfs_header_owner(eb);
970 			}
971 			list_add_tail(&edge->list[LOWER], &lower->upper);
972 			edge->node[LOWER] = lower;
973 			edge->node[UPPER] = upper;
974 
975 			if (rb_node)
976 				break;
977 			lower = upper;
978 			upper = NULL;
979 		}
980 		btrfs_release_path(path2);
981 next:
982 		if (ptr < end) {
983 			ptr += btrfs_extent_inline_ref_size(key.type);
984 			if (ptr >= end) {
985 				WARN_ON(ptr > end);
986 				ptr = 0;
987 				end = 0;
988 			}
989 		}
990 		if (ptr >= end)
991 			path1->slots[0]++;
992 	}
993 	btrfs_release_path(path1);
994 
995 	cur->checked = 1;
996 	WARN_ON(exist);
997 
998 	/* the pending list isn't empty, take the first block to process */
999 	if (!list_empty(&list)) {
1000 		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1001 		list_del_init(&edge->list[UPPER]);
1002 		cur = edge->node[UPPER];
1003 		goto again;
1004 	}
1005 
1006 	/*
1007 	 * everything goes well, connect backref nodes and insert backref nodes
1008 	 * into the cache.
1009 	 */
1010 	ASSERT(node->checked);
1011 	cowonly = node->cowonly;
1012 	if (!cowonly) {
1013 		rb_node = tree_insert(&cache->rb_root, node->bytenr,
1014 				      &node->rb_node);
1015 		if (rb_node)
1016 			backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1017 		list_add_tail(&node->lower, &cache->leaves);
1018 	}
1019 
1020 	list_for_each_entry(edge, &node->upper, list[LOWER])
1021 		list_add_tail(&edge->list[UPPER], &list);
1022 
1023 	while (!list_empty(&list)) {
1024 		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1025 		list_del_init(&edge->list[UPPER]);
1026 		upper = edge->node[UPPER];
1027 		if (upper->detached) {
1028 			list_del(&edge->list[LOWER]);
1029 			lower = edge->node[LOWER];
1030 			free_backref_edge(cache, edge);
1031 			if (list_empty(&lower->upper))
1032 				list_add(&lower->list, &useless);
1033 			continue;
1034 		}
1035 
1036 		if (!RB_EMPTY_NODE(&upper->rb_node)) {
1037 			if (upper->lowest) {
1038 				list_del_init(&upper->lower);
1039 				upper->lowest = 0;
1040 			}
1041 
1042 			list_add_tail(&edge->list[UPPER], &upper->lower);
1043 			continue;
1044 		}
1045 
1046 		if (!upper->checked) {
1047 			/*
1048 			 * Still want to blow up for developers since this is a
1049 			 * logic bug.
1050 			 */
1051 			ASSERT(0);
1052 			err = -EINVAL;
1053 			goto out;
1054 		}
1055 		if (cowonly != upper->cowonly) {
1056 			ASSERT(0);
1057 			err = -EINVAL;
1058 			goto out;
1059 		}
1060 
1061 		if (!cowonly) {
1062 			rb_node = tree_insert(&cache->rb_root, upper->bytenr,
1063 					      &upper->rb_node);
1064 			if (rb_node)
1065 				backref_tree_panic(rb_node, -EEXIST,
1066 						   upper->bytenr);
1067 		}
1068 
1069 		list_add_tail(&edge->list[UPPER], &upper->lower);
1070 
1071 		list_for_each_entry(edge, &upper->upper, list[LOWER])
1072 			list_add_tail(&edge->list[UPPER], &list);
1073 	}
1074 	/*
1075 	 * process useless backref nodes. backref nodes for tree leaves
1076 	 * are deleted from the cache. backref nodes for upper level
1077 	 * tree blocks are left in the cache to avoid unnecessary backref
1078 	 * lookup.
1079 	 */
1080 	while (!list_empty(&useless)) {
1081 		upper = list_entry(useless.next, struct backref_node, list);
1082 		list_del_init(&upper->list);
1083 		ASSERT(list_empty(&upper->upper));
1084 		if (upper == node)
1085 			node = NULL;
1086 		if (upper->lowest) {
1087 			list_del_init(&upper->lower);
1088 			upper->lowest = 0;
1089 		}
1090 		while (!list_empty(&upper->lower)) {
1091 			edge = list_entry(upper->lower.next,
1092 					  struct backref_edge, list[UPPER]);
1093 			list_del(&edge->list[UPPER]);
1094 			list_del(&edge->list[LOWER]);
1095 			lower = edge->node[LOWER];
1096 			free_backref_edge(cache, edge);
1097 
1098 			if (list_empty(&lower->upper))
1099 				list_add(&lower->list, &useless);
1100 		}
1101 		__mark_block_processed(rc, upper);
1102 		if (upper->level > 0) {
1103 			list_add(&upper->list, &cache->detached);
1104 			upper->detached = 1;
1105 		} else {
1106 			rb_erase(&upper->rb_node, &cache->rb_root);
1107 			free_backref_node(cache, upper);
1108 		}
1109 	}
1110 out:
1111 	btrfs_free_path(path1);
1112 	btrfs_free_path(path2);
1113 	if (err) {
1114 		while (!list_empty(&useless)) {
1115 			lower = list_entry(useless.next,
1116 					   struct backref_node, list);
1117 			list_del_init(&lower->list);
1118 		}
1119 		while (!list_empty(&list)) {
1120 			edge = list_first_entry(&list, struct backref_edge,
1121 						list[UPPER]);
1122 			list_del(&edge->list[UPPER]);
1123 			list_del(&edge->list[LOWER]);
1124 			lower = edge->node[LOWER];
1125 			upper = edge->node[UPPER];
1126 			free_backref_edge(cache, edge);
1127 
1128 			/*
1129 			 * Lower is no longer linked to any upper backref nodes
1130 			 * and isn't in the cache, we can free it ourselves.
1131 			 */
1132 			if (list_empty(&lower->upper) &&
1133 			    RB_EMPTY_NODE(&lower->rb_node))
1134 				list_add(&lower->list, &useless);
1135 
1136 			if (!RB_EMPTY_NODE(&upper->rb_node))
1137 				continue;
1138 
1139 			/* Add this guy's upper edges to the list to process */
1140 			list_for_each_entry(edge, &upper->upper, list[LOWER])
1141 				list_add_tail(&edge->list[UPPER], &list);
1142 			if (list_empty(&upper->upper))
1143 				list_add(&upper->list, &useless);
1144 		}
1145 
1146 		while (!list_empty(&useless)) {
1147 			lower = list_entry(useless.next,
1148 					   struct backref_node, list);
1149 			list_del_init(&lower->list);
1150 			if (lower == node)
1151 				node = NULL;
1152 			free_backref_node(cache, lower);
1153 		}
1154 
1155 		free_backref_node(cache, node);
1156 		return ERR_PTR(err);
1157 	}
1158 	ASSERT(!node || !node->detached);
1159 	return node;
1160 }
1161 
1162 /*
1163  * helper to add backref node for the newly created snapshot.
1164  * the backref node is created by cloning backref node that
1165  * corresponds to root of source tree
1166  */
1167 static int clone_backref_node(struct btrfs_trans_handle *trans,
1168 			      struct reloc_control *rc,
1169 			      struct btrfs_root *src,
1170 			      struct btrfs_root *dest)
1171 {
1172 	struct btrfs_root *reloc_root = src->reloc_root;
1173 	struct backref_cache *cache = &rc->backref_cache;
1174 	struct backref_node *node = NULL;
1175 	struct backref_node *new_node;
1176 	struct backref_edge *edge;
1177 	struct backref_edge *new_edge;
1178 	struct rb_node *rb_node;
1179 
1180 	if (cache->last_trans > 0)
1181 		update_backref_cache(trans, cache);
1182 
1183 	rb_node = tree_search(&cache->rb_root, src->commit_root->start);
1184 	if (rb_node) {
1185 		node = rb_entry(rb_node, struct backref_node, rb_node);
1186 		if (node->detached)
1187 			node = NULL;
1188 		else
1189 			BUG_ON(node->new_bytenr != reloc_root->node->start);
1190 	}
1191 
1192 	if (!node) {
1193 		rb_node = tree_search(&cache->rb_root,
1194 				      reloc_root->commit_root->start);
1195 		if (rb_node) {
1196 			node = rb_entry(rb_node, struct backref_node,
1197 					rb_node);
1198 			BUG_ON(node->detached);
1199 		}
1200 	}
1201 
1202 	if (!node)
1203 		return 0;
1204 
1205 	new_node = alloc_backref_node(cache);
1206 	if (!new_node)
1207 		return -ENOMEM;
1208 
1209 	new_node->bytenr = dest->node->start;
1210 	new_node->level = node->level;
1211 	new_node->lowest = node->lowest;
1212 	new_node->checked = 1;
1213 	new_node->root = dest;
1214 
1215 	if (!node->lowest) {
1216 		list_for_each_entry(edge, &node->lower, list[UPPER]) {
1217 			new_edge = alloc_backref_edge(cache);
1218 			if (!new_edge)
1219 				goto fail;
1220 
1221 			new_edge->node[UPPER] = new_node;
1222 			new_edge->node[LOWER] = edge->node[LOWER];
1223 			list_add_tail(&new_edge->list[UPPER],
1224 				      &new_node->lower);
1225 		}
1226 	} else {
1227 		list_add_tail(&new_node->lower, &cache->leaves);
1228 	}
1229 
1230 	rb_node = tree_insert(&cache->rb_root, new_node->bytenr,
1231 			      &new_node->rb_node);
1232 	if (rb_node)
1233 		backref_tree_panic(rb_node, -EEXIST, new_node->bytenr);
1234 
1235 	if (!new_node->lowest) {
1236 		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
1237 			list_add_tail(&new_edge->list[LOWER],
1238 				      &new_edge->node[LOWER]->upper);
1239 		}
1240 	}
1241 	return 0;
1242 fail:
1243 	while (!list_empty(&new_node->lower)) {
1244 		new_edge = list_entry(new_node->lower.next,
1245 				      struct backref_edge, list[UPPER]);
1246 		list_del(&new_edge->list[UPPER]);
1247 		free_backref_edge(cache, new_edge);
1248 	}
1249 	free_backref_node(cache, new_node);
1250 	return -ENOMEM;
1251 }
1252 
1253 /*
1254  * helper to add 'address of tree root -> reloc tree' mapping
1255  */
1256 static int __must_check __add_reloc_root(struct btrfs_root *root)
1257 {
1258 	struct btrfs_fs_info *fs_info = root->fs_info;
1259 	struct rb_node *rb_node;
1260 	struct mapping_node *node;
1261 	struct reloc_control *rc = fs_info->reloc_ctl;
1262 
1263 	node = kmalloc(sizeof(*node), GFP_NOFS);
1264 	if (!node)
1265 		return -ENOMEM;
1266 
1267 	node->bytenr = root->node->start;
1268 	node->data = root;
1269 
1270 	spin_lock(&rc->reloc_root_tree.lock);
1271 	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1272 			      node->bytenr, &node->rb_node);
1273 	spin_unlock(&rc->reloc_root_tree.lock);
1274 	if (rb_node) {
1275 		btrfs_panic(fs_info, -EEXIST,
1276 			    "Duplicate root found for start=%llu while inserting into relocation tree",
1277 			    node->bytenr);
1278 	}
1279 
1280 	list_add_tail(&root->root_list, &rc->reloc_roots);
1281 	return 0;
1282 }
1283 
1284 /*
1285  * helper to delete the 'address of tree root -> reloc tree'
1286  * mapping
1287  */
1288 static void __del_reloc_root(struct btrfs_root *root)
1289 {
1290 	struct btrfs_fs_info *fs_info = root->fs_info;
1291 	struct rb_node *rb_node;
1292 	struct mapping_node *node = NULL;
1293 	struct reloc_control *rc = fs_info->reloc_ctl;
1294 
1295 	if (rc && root->node) {
1296 		spin_lock(&rc->reloc_root_tree.lock);
1297 		rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1298 				      root->node->start);
1299 		if (rb_node) {
1300 			node = rb_entry(rb_node, struct mapping_node, rb_node);
1301 			rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1302 		}
1303 		spin_unlock(&rc->reloc_root_tree.lock);
1304 		if (!node)
1305 			return;
1306 		BUG_ON((struct btrfs_root *)node->data != root);
1307 	}
1308 
1309 	spin_lock(&fs_info->trans_lock);
1310 	list_del_init(&root->root_list);
1311 	spin_unlock(&fs_info->trans_lock);
1312 	kfree(node);
1313 }
1314 
1315 /*
1316  * helper to update the 'address of tree root -> reloc tree'
1317  * mapping
1318  */
1319 static int __update_reloc_root(struct btrfs_root *root, u64 new_bytenr)
1320 {
1321 	struct btrfs_fs_info *fs_info = root->fs_info;
1322 	struct rb_node *rb_node;
1323 	struct mapping_node *node = NULL;
1324 	struct reloc_control *rc = fs_info->reloc_ctl;
1325 
1326 	spin_lock(&rc->reloc_root_tree.lock);
1327 	rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1328 			      root->node->start);
1329 	if (rb_node) {
1330 		node = rb_entry(rb_node, struct mapping_node, rb_node);
1331 		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1332 	}
1333 	spin_unlock(&rc->reloc_root_tree.lock);
1334 
1335 	if (!node)
1336 		return 0;
1337 	BUG_ON((struct btrfs_root *)node->data != root);
1338 
1339 	spin_lock(&rc->reloc_root_tree.lock);
1340 	node->bytenr = new_bytenr;
1341 	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1342 			      node->bytenr, &node->rb_node);
1343 	spin_unlock(&rc->reloc_root_tree.lock);
1344 	if (rb_node)
1345 		backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1346 	return 0;
1347 }
1348 
1349 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
1350 					struct btrfs_root *root, u64 objectid)
1351 {
1352 	struct btrfs_fs_info *fs_info = root->fs_info;
1353 	struct btrfs_root *reloc_root;
1354 	struct extent_buffer *eb;
1355 	struct btrfs_root_item *root_item;
1356 	struct btrfs_key root_key;
1357 	int ret;
1358 
1359 	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
1360 	BUG_ON(!root_item);
1361 
1362 	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
1363 	root_key.type = BTRFS_ROOT_ITEM_KEY;
1364 	root_key.offset = objectid;
1365 
1366 	if (root->root_key.objectid == objectid) {
1367 		u64 commit_root_gen;
1368 
1369 		/* called by btrfs_init_reloc_root */
1370 		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
1371 				      BTRFS_TREE_RELOC_OBJECTID);
1372 		BUG_ON(ret);
1373 		/*
1374 		 * Set the last_snapshot field to the generation of the commit
1375 		 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
1376 		 * correctly (returns true) when the relocation root is created
1377 		 * either inside the critical section of a transaction commit
1378 		 * (through transaction.c:qgroup_account_snapshot()) and when
1379 		 * it's created before the transaction commit is started.
1380 		 */
1381 		commit_root_gen = btrfs_header_generation(root->commit_root);
1382 		btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
1383 	} else {
1384 		/*
1385 		 * called by btrfs_reloc_post_snapshot_hook.
1386 		 * the source tree is a reloc tree, all tree blocks
1387 		 * modified after it was created have RELOC flag
1388 		 * set in their headers. so it's OK to not update
1389 		 * the 'last_snapshot'.
1390 		 */
1391 		ret = btrfs_copy_root(trans, root, root->node, &eb,
1392 				      BTRFS_TREE_RELOC_OBJECTID);
1393 		BUG_ON(ret);
1394 	}
1395 
1396 	memcpy(root_item, &root->root_item, sizeof(*root_item));
1397 	btrfs_set_root_bytenr(root_item, eb->start);
1398 	btrfs_set_root_level(root_item, btrfs_header_level(eb));
1399 	btrfs_set_root_generation(root_item, trans->transid);
1400 
1401 	if (root->root_key.objectid == objectid) {
1402 		btrfs_set_root_refs(root_item, 0);
1403 		memset(&root_item->drop_progress, 0,
1404 		       sizeof(struct btrfs_disk_key));
1405 		root_item->drop_level = 0;
1406 	}
1407 
1408 	btrfs_tree_unlock(eb);
1409 	free_extent_buffer(eb);
1410 
1411 	ret = btrfs_insert_root(trans, fs_info->tree_root,
1412 				&root_key, root_item);
1413 	BUG_ON(ret);
1414 	kfree(root_item);
1415 
1416 	reloc_root = btrfs_read_fs_root(fs_info->tree_root, &root_key);
1417 	BUG_ON(IS_ERR(reloc_root));
1418 	reloc_root->last_trans = trans->transid;
1419 	return reloc_root;
1420 }
1421 
1422 /*
1423  * create reloc tree for a given fs tree. reloc tree is just a
1424  * snapshot of the fs tree with special root objectid.
1425  */
1426 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
1427 			  struct btrfs_root *root)
1428 {
1429 	struct btrfs_fs_info *fs_info = root->fs_info;
1430 	struct btrfs_root *reloc_root;
1431 	struct reloc_control *rc = fs_info->reloc_ctl;
1432 	struct btrfs_block_rsv *rsv;
1433 	int clear_rsv = 0;
1434 	int ret;
1435 
1436 	if (root->reloc_root) {
1437 		reloc_root = root->reloc_root;
1438 		reloc_root->last_trans = trans->transid;
1439 		return 0;
1440 	}
1441 
1442 	if (!rc || !rc->create_reloc_tree ||
1443 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1444 		return 0;
1445 
1446 	if (!trans->reloc_reserved) {
1447 		rsv = trans->block_rsv;
1448 		trans->block_rsv = rc->block_rsv;
1449 		clear_rsv = 1;
1450 	}
1451 	reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
1452 	if (clear_rsv)
1453 		trans->block_rsv = rsv;
1454 
1455 	ret = __add_reloc_root(reloc_root);
1456 	BUG_ON(ret < 0);
1457 	root->reloc_root = reloc_root;
1458 	return 0;
1459 }
1460 
1461 /*
1462  * update root item of reloc tree
1463  */
1464 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
1465 			    struct btrfs_root *root)
1466 {
1467 	struct btrfs_fs_info *fs_info = root->fs_info;
1468 	struct btrfs_root *reloc_root;
1469 	struct btrfs_root_item *root_item;
1470 	int ret;
1471 
1472 	if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state) ||
1473 	    !root->reloc_root)
1474 		goto out;
1475 
1476 	reloc_root = root->reloc_root;
1477 	root_item = &reloc_root->root_item;
1478 
1479 	/* root->reloc_root will stay until current relocation finished */
1480 	if (fs_info->reloc_ctl->merge_reloc_tree &&
1481 	    btrfs_root_refs(root_item) == 0) {
1482 		set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
1483 		__del_reloc_root(reloc_root);
1484 	}
1485 
1486 	if (reloc_root->commit_root != reloc_root->node) {
1487 		btrfs_set_root_node(root_item, reloc_root->node);
1488 		free_extent_buffer(reloc_root->commit_root);
1489 		reloc_root->commit_root = btrfs_root_node(reloc_root);
1490 	}
1491 
1492 	ret = btrfs_update_root(trans, fs_info->tree_root,
1493 				&reloc_root->root_key, root_item);
1494 	BUG_ON(ret);
1495 
1496 out:
1497 	return 0;
1498 }
1499 
1500 /*
1501  * helper to find first cached inode with inode number >= objectid
1502  * in a subvolume
1503  */
1504 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
1505 {
1506 	struct rb_node *node;
1507 	struct rb_node *prev;
1508 	struct btrfs_inode *entry;
1509 	struct inode *inode;
1510 
1511 	spin_lock(&root->inode_lock);
1512 again:
1513 	node = root->inode_tree.rb_node;
1514 	prev = NULL;
1515 	while (node) {
1516 		prev = node;
1517 		entry = rb_entry(node, struct btrfs_inode, rb_node);
1518 
1519 		if (objectid < btrfs_ino(entry))
1520 			node = node->rb_left;
1521 		else if (objectid > btrfs_ino(entry))
1522 			node = node->rb_right;
1523 		else
1524 			break;
1525 	}
1526 	if (!node) {
1527 		while (prev) {
1528 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
1529 			if (objectid <= btrfs_ino(entry)) {
1530 				node = prev;
1531 				break;
1532 			}
1533 			prev = rb_next(prev);
1534 		}
1535 	}
1536 	while (node) {
1537 		entry = rb_entry(node, struct btrfs_inode, rb_node);
1538 		inode = igrab(&entry->vfs_inode);
1539 		if (inode) {
1540 			spin_unlock(&root->inode_lock);
1541 			return inode;
1542 		}
1543 
1544 		objectid = btrfs_ino(entry) + 1;
1545 		if (cond_resched_lock(&root->inode_lock))
1546 			goto again;
1547 
1548 		node = rb_next(node);
1549 	}
1550 	spin_unlock(&root->inode_lock);
1551 	return NULL;
1552 }
1553 
1554 static int in_block_group(u64 bytenr,
1555 			  struct btrfs_block_group_cache *block_group)
1556 {
1557 	if (bytenr >= block_group->key.objectid &&
1558 	    bytenr < block_group->key.objectid + block_group->key.offset)
1559 		return 1;
1560 	return 0;
1561 }
1562 
1563 /*
1564  * get new location of data
1565  */
1566 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1567 			    u64 bytenr, u64 num_bytes)
1568 {
1569 	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1570 	struct btrfs_path *path;
1571 	struct btrfs_file_extent_item *fi;
1572 	struct extent_buffer *leaf;
1573 	int ret;
1574 
1575 	path = btrfs_alloc_path();
1576 	if (!path)
1577 		return -ENOMEM;
1578 
1579 	bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1580 	ret = btrfs_lookup_file_extent(NULL, root, path,
1581 			btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
1582 	if (ret < 0)
1583 		goto out;
1584 	if (ret > 0) {
1585 		ret = -ENOENT;
1586 		goto out;
1587 	}
1588 
1589 	leaf = path->nodes[0];
1590 	fi = btrfs_item_ptr(leaf, path->slots[0],
1591 			    struct btrfs_file_extent_item);
1592 
1593 	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1594 	       btrfs_file_extent_compression(leaf, fi) ||
1595 	       btrfs_file_extent_encryption(leaf, fi) ||
1596 	       btrfs_file_extent_other_encoding(leaf, fi));
1597 
1598 	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1599 		ret = -EINVAL;
1600 		goto out;
1601 	}
1602 
1603 	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1604 	ret = 0;
1605 out:
1606 	btrfs_free_path(path);
1607 	return ret;
1608 }
1609 
1610 /*
1611  * update file extent items in the tree leaf to point to
1612  * the new locations.
1613  */
1614 static noinline_for_stack
1615 int replace_file_extents(struct btrfs_trans_handle *trans,
1616 			 struct reloc_control *rc,
1617 			 struct btrfs_root *root,
1618 			 struct extent_buffer *leaf)
1619 {
1620 	struct btrfs_fs_info *fs_info = root->fs_info;
1621 	struct btrfs_key key;
1622 	struct btrfs_file_extent_item *fi;
1623 	struct inode *inode = NULL;
1624 	u64 parent;
1625 	u64 bytenr;
1626 	u64 new_bytenr = 0;
1627 	u64 num_bytes;
1628 	u64 end;
1629 	u32 nritems;
1630 	u32 i;
1631 	int ret = 0;
1632 	int first = 1;
1633 	int dirty = 0;
1634 
1635 	if (rc->stage != UPDATE_DATA_PTRS)
1636 		return 0;
1637 
1638 	/* reloc trees always use full backref */
1639 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1640 		parent = leaf->start;
1641 	else
1642 		parent = 0;
1643 
1644 	nritems = btrfs_header_nritems(leaf);
1645 	for (i = 0; i < nritems; i++) {
1646 		struct btrfs_ref ref = { 0 };
1647 
1648 		cond_resched();
1649 		btrfs_item_key_to_cpu(leaf, &key, i);
1650 		if (key.type != BTRFS_EXTENT_DATA_KEY)
1651 			continue;
1652 		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1653 		if (btrfs_file_extent_type(leaf, fi) ==
1654 		    BTRFS_FILE_EXTENT_INLINE)
1655 			continue;
1656 		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1657 		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1658 		if (bytenr == 0)
1659 			continue;
1660 		if (!in_block_group(bytenr, rc->block_group))
1661 			continue;
1662 
1663 		/*
1664 		 * if we are modifying block in fs tree, wait for readpage
1665 		 * to complete and drop the extent cache
1666 		 */
1667 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1668 			if (first) {
1669 				inode = find_next_inode(root, key.objectid);
1670 				first = 0;
1671 			} else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) {
1672 				btrfs_add_delayed_iput(inode);
1673 				inode = find_next_inode(root, key.objectid);
1674 			}
1675 			if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) {
1676 				end = key.offset +
1677 				      btrfs_file_extent_num_bytes(leaf, fi);
1678 				WARN_ON(!IS_ALIGNED(key.offset,
1679 						    fs_info->sectorsize));
1680 				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1681 				end--;
1682 				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1683 						      key.offset, end);
1684 				if (!ret)
1685 					continue;
1686 
1687 				btrfs_drop_extent_cache(BTRFS_I(inode),
1688 						key.offset,	end, 1);
1689 				unlock_extent(&BTRFS_I(inode)->io_tree,
1690 					      key.offset, end);
1691 			}
1692 		}
1693 
1694 		ret = get_new_location(rc->data_inode, &new_bytenr,
1695 				       bytenr, num_bytes);
1696 		if (ret) {
1697 			/*
1698 			 * Don't have to abort since we've not changed anything
1699 			 * in the file extent yet.
1700 			 */
1701 			break;
1702 		}
1703 
1704 		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1705 		dirty = 1;
1706 
1707 		key.offset -= btrfs_file_extent_offset(leaf, fi);
1708 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1709 				       num_bytes, parent);
1710 		ref.real_root = root->root_key.objectid;
1711 		btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1712 				    key.objectid, key.offset);
1713 		ret = btrfs_inc_extent_ref(trans, &ref);
1714 		if (ret) {
1715 			btrfs_abort_transaction(trans, ret);
1716 			break;
1717 		}
1718 
1719 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1720 				       num_bytes, parent);
1721 		ref.real_root = root->root_key.objectid;
1722 		btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1723 				    key.objectid, key.offset);
1724 		ret = btrfs_free_extent(trans, &ref);
1725 		if (ret) {
1726 			btrfs_abort_transaction(trans, ret);
1727 			break;
1728 		}
1729 	}
1730 	if (dirty)
1731 		btrfs_mark_buffer_dirty(leaf);
1732 	if (inode)
1733 		btrfs_add_delayed_iput(inode);
1734 	return ret;
1735 }
1736 
1737 static noinline_for_stack
1738 int memcmp_node_keys(struct extent_buffer *eb, int slot,
1739 		     struct btrfs_path *path, int level)
1740 {
1741 	struct btrfs_disk_key key1;
1742 	struct btrfs_disk_key key2;
1743 	btrfs_node_key(eb, &key1, slot);
1744 	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1745 	return memcmp(&key1, &key2, sizeof(key1));
1746 }
1747 
1748 /*
1749  * try to replace tree blocks in fs tree with the new blocks
1750  * in reloc tree. tree blocks haven't been modified since the
1751  * reloc tree was create can be replaced.
1752  *
1753  * if a block was replaced, level of the block + 1 is returned.
1754  * if no block got replaced, 0 is returned. if there are other
1755  * errors, a negative error number is returned.
1756  */
1757 static noinline_for_stack
1758 int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
1759 		 struct btrfs_root *dest, struct btrfs_root *src,
1760 		 struct btrfs_path *path, struct btrfs_key *next_key,
1761 		 int lowest_level, int max_level)
1762 {
1763 	struct btrfs_fs_info *fs_info = dest->fs_info;
1764 	struct extent_buffer *eb;
1765 	struct extent_buffer *parent;
1766 	struct btrfs_ref ref = { 0 };
1767 	struct btrfs_key key;
1768 	u64 old_bytenr;
1769 	u64 new_bytenr;
1770 	u64 old_ptr_gen;
1771 	u64 new_ptr_gen;
1772 	u64 last_snapshot;
1773 	u32 blocksize;
1774 	int cow = 0;
1775 	int level;
1776 	int ret;
1777 	int slot;
1778 
1779 	BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1780 	BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1781 
1782 	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1783 again:
1784 	slot = path->slots[lowest_level];
1785 	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1786 
1787 	eb = btrfs_lock_root_node(dest);
1788 	btrfs_set_lock_blocking_write(eb);
1789 	level = btrfs_header_level(eb);
1790 
1791 	if (level < lowest_level) {
1792 		btrfs_tree_unlock(eb);
1793 		free_extent_buffer(eb);
1794 		return 0;
1795 	}
1796 
1797 	if (cow) {
1798 		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
1799 		BUG_ON(ret);
1800 	}
1801 	btrfs_set_lock_blocking_write(eb);
1802 
1803 	if (next_key) {
1804 		next_key->objectid = (u64)-1;
1805 		next_key->type = (u8)-1;
1806 		next_key->offset = (u64)-1;
1807 	}
1808 
1809 	parent = eb;
1810 	while (1) {
1811 		struct btrfs_key first_key;
1812 
1813 		level = btrfs_header_level(parent);
1814 		BUG_ON(level < lowest_level);
1815 
1816 		ret = btrfs_bin_search(parent, &key, level, &slot);
1817 		if (ret < 0)
1818 			break;
1819 		if (ret && slot > 0)
1820 			slot--;
1821 
1822 		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1823 			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1824 
1825 		old_bytenr = btrfs_node_blockptr(parent, slot);
1826 		blocksize = fs_info->nodesize;
1827 		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1828 		btrfs_node_key_to_cpu(parent, &first_key, slot);
1829 
1830 		if (level <= max_level) {
1831 			eb = path->nodes[level];
1832 			new_bytenr = btrfs_node_blockptr(eb,
1833 							path->slots[level]);
1834 			new_ptr_gen = btrfs_node_ptr_generation(eb,
1835 							path->slots[level]);
1836 		} else {
1837 			new_bytenr = 0;
1838 			new_ptr_gen = 0;
1839 		}
1840 
1841 		if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1842 			ret = level;
1843 			break;
1844 		}
1845 
1846 		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1847 		    memcmp_node_keys(parent, slot, path, level)) {
1848 			if (level <= lowest_level) {
1849 				ret = 0;
1850 				break;
1851 			}
1852 
1853 			eb = read_tree_block(fs_info, old_bytenr, old_ptr_gen,
1854 					     level - 1, &first_key);
1855 			if (IS_ERR(eb)) {
1856 				ret = PTR_ERR(eb);
1857 				break;
1858 			} else if (!extent_buffer_uptodate(eb)) {
1859 				ret = -EIO;
1860 				free_extent_buffer(eb);
1861 				break;
1862 			}
1863 			btrfs_tree_lock(eb);
1864 			if (cow) {
1865 				ret = btrfs_cow_block(trans, dest, eb, parent,
1866 						      slot, &eb);
1867 				BUG_ON(ret);
1868 			}
1869 			btrfs_set_lock_blocking_write(eb);
1870 
1871 			btrfs_tree_unlock(parent);
1872 			free_extent_buffer(parent);
1873 
1874 			parent = eb;
1875 			continue;
1876 		}
1877 
1878 		if (!cow) {
1879 			btrfs_tree_unlock(parent);
1880 			free_extent_buffer(parent);
1881 			cow = 1;
1882 			goto again;
1883 		}
1884 
1885 		btrfs_node_key_to_cpu(path->nodes[level], &key,
1886 				      path->slots[level]);
1887 		btrfs_release_path(path);
1888 
1889 		path->lowest_level = level;
1890 		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1891 		path->lowest_level = 0;
1892 		BUG_ON(ret);
1893 
1894 		/*
1895 		 * Info qgroup to trace both subtrees.
1896 		 *
1897 		 * We must trace both trees.
1898 		 * 1) Tree reloc subtree
1899 		 *    If not traced, we will leak data numbers
1900 		 * 2) Fs subtree
1901 		 *    If not traced, we will double count old data
1902 		 *
1903 		 * We don't scan the subtree right now, but only record
1904 		 * the swapped tree blocks.
1905 		 * The real subtree rescan is delayed until we have new
1906 		 * CoW on the subtree root node before transaction commit.
1907 		 */
1908 		ret = btrfs_qgroup_add_swapped_blocks(trans, dest,
1909 				rc->block_group, parent, slot,
1910 				path->nodes[level], path->slots[level],
1911 				last_snapshot);
1912 		if (ret < 0)
1913 			break;
1914 		/*
1915 		 * swap blocks in fs tree and reloc tree.
1916 		 */
1917 		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1918 		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1919 		btrfs_mark_buffer_dirty(parent);
1920 
1921 		btrfs_set_node_blockptr(path->nodes[level],
1922 					path->slots[level], old_bytenr);
1923 		btrfs_set_node_ptr_generation(path->nodes[level],
1924 					      path->slots[level], old_ptr_gen);
1925 		btrfs_mark_buffer_dirty(path->nodes[level]);
1926 
1927 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr,
1928 				       blocksize, path->nodes[level]->start);
1929 		ref.skip_qgroup = true;
1930 		btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid);
1931 		ret = btrfs_inc_extent_ref(trans, &ref);
1932 		BUG_ON(ret);
1933 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1934 				       blocksize, 0);
1935 		ref.skip_qgroup = true;
1936 		btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid);
1937 		ret = btrfs_inc_extent_ref(trans, &ref);
1938 		BUG_ON(ret);
1939 
1940 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr,
1941 				       blocksize, path->nodes[level]->start);
1942 		btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid);
1943 		ref.skip_qgroup = true;
1944 		ret = btrfs_free_extent(trans, &ref);
1945 		BUG_ON(ret);
1946 
1947 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr,
1948 				       blocksize, 0);
1949 		btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid);
1950 		ref.skip_qgroup = true;
1951 		ret = btrfs_free_extent(trans, &ref);
1952 		BUG_ON(ret);
1953 
1954 		btrfs_unlock_up_safe(path, 0);
1955 
1956 		ret = level;
1957 		break;
1958 	}
1959 	btrfs_tree_unlock(parent);
1960 	free_extent_buffer(parent);
1961 	return ret;
1962 }
1963 
1964 /*
1965  * helper to find next relocated block in reloc tree
1966  */
1967 static noinline_for_stack
1968 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1969 		       int *level)
1970 {
1971 	struct extent_buffer *eb;
1972 	int i;
1973 	u64 last_snapshot;
1974 	u32 nritems;
1975 
1976 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1977 
1978 	for (i = 0; i < *level; i++) {
1979 		free_extent_buffer(path->nodes[i]);
1980 		path->nodes[i] = NULL;
1981 	}
1982 
1983 	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1984 		eb = path->nodes[i];
1985 		nritems = btrfs_header_nritems(eb);
1986 		while (path->slots[i] + 1 < nritems) {
1987 			path->slots[i]++;
1988 			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1989 			    last_snapshot)
1990 				continue;
1991 
1992 			*level = i;
1993 			return 0;
1994 		}
1995 		free_extent_buffer(path->nodes[i]);
1996 		path->nodes[i] = NULL;
1997 	}
1998 	return 1;
1999 }
2000 
2001 /*
2002  * walk down reloc tree to find relocated block of lowest level
2003  */
2004 static noinline_for_stack
2005 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
2006 			 int *level)
2007 {
2008 	struct btrfs_fs_info *fs_info = root->fs_info;
2009 	struct extent_buffer *eb = NULL;
2010 	int i;
2011 	u64 bytenr;
2012 	u64 ptr_gen = 0;
2013 	u64 last_snapshot;
2014 	u32 nritems;
2015 
2016 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2017 
2018 	for (i = *level; i > 0; i--) {
2019 		struct btrfs_key first_key;
2020 
2021 		eb = path->nodes[i];
2022 		nritems = btrfs_header_nritems(eb);
2023 		while (path->slots[i] < nritems) {
2024 			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
2025 			if (ptr_gen > last_snapshot)
2026 				break;
2027 			path->slots[i]++;
2028 		}
2029 		if (path->slots[i] >= nritems) {
2030 			if (i == *level)
2031 				break;
2032 			*level = i + 1;
2033 			return 0;
2034 		}
2035 		if (i == 1) {
2036 			*level = i;
2037 			return 0;
2038 		}
2039 
2040 		bytenr = btrfs_node_blockptr(eb, path->slots[i]);
2041 		btrfs_node_key_to_cpu(eb, &first_key, path->slots[i]);
2042 		eb = read_tree_block(fs_info, bytenr, ptr_gen, i - 1,
2043 				     &first_key);
2044 		if (IS_ERR(eb)) {
2045 			return PTR_ERR(eb);
2046 		} else if (!extent_buffer_uptodate(eb)) {
2047 			free_extent_buffer(eb);
2048 			return -EIO;
2049 		}
2050 		BUG_ON(btrfs_header_level(eb) != i - 1);
2051 		path->nodes[i - 1] = eb;
2052 		path->slots[i - 1] = 0;
2053 	}
2054 	return 1;
2055 }
2056 
2057 /*
2058  * invalidate extent cache for file extents whose key in range of
2059  * [min_key, max_key)
2060  */
2061 static int invalidate_extent_cache(struct btrfs_root *root,
2062 				   struct btrfs_key *min_key,
2063 				   struct btrfs_key *max_key)
2064 {
2065 	struct btrfs_fs_info *fs_info = root->fs_info;
2066 	struct inode *inode = NULL;
2067 	u64 objectid;
2068 	u64 start, end;
2069 	u64 ino;
2070 
2071 	objectid = min_key->objectid;
2072 	while (1) {
2073 		cond_resched();
2074 		iput(inode);
2075 
2076 		if (objectid > max_key->objectid)
2077 			break;
2078 
2079 		inode = find_next_inode(root, objectid);
2080 		if (!inode)
2081 			break;
2082 		ino = btrfs_ino(BTRFS_I(inode));
2083 
2084 		if (ino > max_key->objectid) {
2085 			iput(inode);
2086 			break;
2087 		}
2088 
2089 		objectid = ino + 1;
2090 		if (!S_ISREG(inode->i_mode))
2091 			continue;
2092 
2093 		if (unlikely(min_key->objectid == ino)) {
2094 			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
2095 				continue;
2096 			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
2097 				start = 0;
2098 			else {
2099 				start = min_key->offset;
2100 				WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
2101 			}
2102 		} else {
2103 			start = 0;
2104 		}
2105 
2106 		if (unlikely(max_key->objectid == ino)) {
2107 			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
2108 				continue;
2109 			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
2110 				end = (u64)-1;
2111 			} else {
2112 				if (max_key->offset == 0)
2113 					continue;
2114 				end = max_key->offset;
2115 				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
2116 				end--;
2117 			}
2118 		} else {
2119 			end = (u64)-1;
2120 		}
2121 
2122 		/* the lock_extent waits for readpage to complete */
2123 		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2124 		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1);
2125 		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2126 	}
2127 	return 0;
2128 }
2129 
2130 static int find_next_key(struct btrfs_path *path, int level,
2131 			 struct btrfs_key *key)
2132 
2133 {
2134 	while (level < BTRFS_MAX_LEVEL) {
2135 		if (!path->nodes[level])
2136 			break;
2137 		if (path->slots[level] + 1 <
2138 		    btrfs_header_nritems(path->nodes[level])) {
2139 			btrfs_node_key_to_cpu(path->nodes[level], key,
2140 					      path->slots[level] + 1);
2141 			return 0;
2142 		}
2143 		level++;
2144 	}
2145 	return 1;
2146 }
2147 
2148 /*
2149  * Insert current subvolume into reloc_control::dirty_subvol_roots
2150  */
2151 static void insert_dirty_subvol(struct btrfs_trans_handle *trans,
2152 				struct reloc_control *rc,
2153 				struct btrfs_root *root)
2154 {
2155 	struct btrfs_root *reloc_root = root->reloc_root;
2156 	struct btrfs_root_item *reloc_root_item;
2157 
2158 	/* @root must be a subvolume tree root with a valid reloc tree */
2159 	ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
2160 	ASSERT(reloc_root);
2161 
2162 	reloc_root_item = &reloc_root->root_item;
2163 	memset(&reloc_root_item->drop_progress, 0,
2164 		sizeof(reloc_root_item->drop_progress));
2165 	reloc_root_item->drop_level = 0;
2166 	btrfs_set_root_refs(reloc_root_item, 0);
2167 	btrfs_update_reloc_root(trans, root);
2168 
2169 	if (list_empty(&root->reloc_dirty_list)) {
2170 		btrfs_grab_fs_root(root);
2171 		list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots);
2172 	}
2173 }
2174 
2175 static int clean_dirty_subvols(struct reloc_control *rc)
2176 {
2177 	struct btrfs_root *root;
2178 	struct btrfs_root *next;
2179 	int ret = 0;
2180 	int ret2;
2181 
2182 	list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots,
2183 				 reloc_dirty_list) {
2184 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
2185 			/* Merged subvolume, cleanup its reloc root */
2186 			struct btrfs_root *reloc_root = root->reloc_root;
2187 
2188 			clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
2189 			list_del_init(&root->reloc_dirty_list);
2190 			root->reloc_root = NULL;
2191 			if (reloc_root) {
2192 
2193 				ret2 = btrfs_drop_snapshot(reloc_root, NULL, 0, 1);
2194 				if (ret2 < 0 && !ret)
2195 					ret = ret2;
2196 			}
2197 			btrfs_put_fs_root(root);
2198 		} else {
2199 			/* Orphan reloc tree, just clean it up */
2200 			ret2 = btrfs_drop_snapshot(root, NULL, 0, 1);
2201 			if (ret2 < 0 && !ret)
2202 				ret = ret2;
2203 		}
2204 	}
2205 	return ret;
2206 }
2207 
2208 /*
2209  * merge the relocated tree blocks in reloc tree with corresponding
2210  * fs tree.
2211  */
2212 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
2213 					       struct btrfs_root *root)
2214 {
2215 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2216 	struct btrfs_key key;
2217 	struct btrfs_key next_key;
2218 	struct btrfs_trans_handle *trans = NULL;
2219 	struct btrfs_root *reloc_root;
2220 	struct btrfs_root_item *root_item;
2221 	struct btrfs_path *path;
2222 	struct extent_buffer *leaf;
2223 	int level;
2224 	int max_level;
2225 	int replaced = 0;
2226 	int ret;
2227 	int err = 0;
2228 	u32 min_reserved;
2229 
2230 	path = btrfs_alloc_path();
2231 	if (!path)
2232 		return -ENOMEM;
2233 	path->reada = READA_FORWARD;
2234 
2235 	reloc_root = root->reloc_root;
2236 	root_item = &reloc_root->root_item;
2237 
2238 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2239 		level = btrfs_root_level(root_item);
2240 		extent_buffer_get(reloc_root->node);
2241 		path->nodes[level] = reloc_root->node;
2242 		path->slots[level] = 0;
2243 	} else {
2244 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2245 
2246 		level = root_item->drop_level;
2247 		BUG_ON(level == 0);
2248 		path->lowest_level = level;
2249 		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
2250 		path->lowest_level = 0;
2251 		if (ret < 0) {
2252 			btrfs_free_path(path);
2253 			return ret;
2254 		}
2255 
2256 		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
2257 				      path->slots[level]);
2258 		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
2259 
2260 		btrfs_unlock_up_safe(path, 0);
2261 	}
2262 
2263 	min_reserved = fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2264 	memset(&next_key, 0, sizeof(next_key));
2265 
2266 	while (1) {
2267 		ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
2268 					     BTRFS_RESERVE_FLUSH_ALL);
2269 		if (ret) {
2270 			err = ret;
2271 			goto out;
2272 		}
2273 		trans = btrfs_start_transaction(root, 0);
2274 		if (IS_ERR(trans)) {
2275 			err = PTR_ERR(trans);
2276 			trans = NULL;
2277 			goto out;
2278 		}
2279 		trans->block_rsv = rc->block_rsv;
2280 
2281 		replaced = 0;
2282 		max_level = level;
2283 
2284 		ret = walk_down_reloc_tree(reloc_root, path, &level);
2285 		if (ret < 0) {
2286 			err = ret;
2287 			goto out;
2288 		}
2289 		if (ret > 0)
2290 			break;
2291 
2292 		if (!find_next_key(path, level, &key) &&
2293 		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
2294 			ret = 0;
2295 		} else {
2296 			ret = replace_path(trans, rc, root, reloc_root, path,
2297 					   &next_key, level, max_level);
2298 		}
2299 		if (ret < 0) {
2300 			err = ret;
2301 			goto out;
2302 		}
2303 
2304 		if (ret > 0) {
2305 			level = ret;
2306 			btrfs_node_key_to_cpu(path->nodes[level], &key,
2307 					      path->slots[level]);
2308 			replaced = 1;
2309 		}
2310 
2311 		ret = walk_up_reloc_tree(reloc_root, path, &level);
2312 		if (ret > 0)
2313 			break;
2314 
2315 		BUG_ON(level == 0);
2316 		/*
2317 		 * save the merging progress in the drop_progress.
2318 		 * this is OK since root refs == 1 in this case.
2319 		 */
2320 		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
2321 			       path->slots[level]);
2322 		root_item->drop_level = level;
2323 
2324 		btrfs_end_transaction_throttle(trans);
2325 		trans = NULL;
2326 
2327 		btrfs_btree_balance_dirty(fs_info);
2328 
2329 		if (replaced && rc->stage == UPDATE_DATA_PTRS)
2330 			invalidate_extent_cache(root, &key, &next_key);
2331 	}
2332 
2333 	/*
2334 	 * handle the case only one block in the fs tree need to be
2335 	 * relocated and the block is tree root.
2336 	 */
2337 	leaf = btrfs_lock_root_node(root);
2338 	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
2339 	btrfs_tree_unlock(leaf);
2340 	free_extent_buffer(leaf);
2341 	if (ret < 0)
2342 		err = ret;
2343 out:
2344 	btrfs_free_path(path);
2345 
2346 	if (err == 0)
2347 		insert_dirty_subvol(trans, rc, root);
2348 
2349 	if (trans)
2350 		btrfs_end_transaction_throttle(trans);
2351 
2352 	btrfs_btree_balance_dirty(fs_info);
2353 
2354 	if (replaced && rc->stage == UPDATE_DATA_PTRS)
2355 		invalidate_extent_cache(root, &key, &next_key);
2356 
2357 	return err;
2358 }
2359 
2360 static noinline_for_stack
2361 int prepare_to_merge(struct reloc_control *rc, int err)
2362 {
2363 	struct btrfs_root *root = rc->extent_root;
2364 	struct btrfs_fs_info *fs_info = root->fs_info;
2365 	struct btrfs_root *reloc_root;
2366 	struct btrfs_trans_handle *trans;
2367 	LIST_HEAD(reloc_roots);
2368 	u64 num_bytes = 0;
2369 	int ret;
2370 
2371 	mutex_lock(&fs_info->reloc_mutex);
2372 	rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2373 	rc->merging_rsv_size += rc->nodes_relocated * 2;
2374 	mutex_unlock(&fs_info->reloc_mutex);
2375 
2376 again:
2377 	if (!err) {
2378 		num_bytes = rc->merging_rsv_size;
2379 		ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
2380 					  BTRFS_RESERVE_FLUSH_ALL);
2381 		if (ret)
2382 			err = ret;
2383 	}
2384 
2385 	trans = btrfs_join_transaction(rc->extent_root);
2386 	if (IS_ERR(trans)) {
2387 		if (!err)
2388 			btrfs_block_rsv_release(fs_info, rc->block_rsv,
2389 						num_bytes);
2390 		return PTR_ERR(trans);
2391 	}
2392 
2393 	if (!err) {
2394 		if (num_bytes != rc->merging_rsv_size) {
2395 			btrfs_end_transaction(trans);
2396 			btrfs_block_rsv_release(fs_info, rc->block_rsv,
2397 						num_bytes);
2398 			goto again;
2399 		}
2400 	}
2401 
2402 	rc->merge_reloc_tree = 1;
2403 
2404 	while (!list_empty(&rc->reloc_roots)) {
2405 		reloc_root = list_entry(rc->reloc_roots.next,
2406 					struct btrfs_root, root_list);
2407 		list_del_init(&reloc_root->root_list);
2408 
2409 		root = read_fs_root(fs_info, reloc_root->root_key.offset);
2410 		BUG_ON(IS_ERR(root));
2411 		BUG_ON(root->reloc_root != reloc_root);
2412 
2413 		/*
2414 		 * set reference count to 1, so btrfs_recover_relocation
2415 		 * knows it should resumes merging
2416 		 */
2417 		if (!err)
2418 			btrfs_set_root_refs(&reloc_root->root_item, 1);
2419 		btrfs_update_reloc_root(trans, root);
2420 
2421 		list_add(&reloc_root->root_list, &reloc_roots);
2422 	}
2423 
2424 	list_splice(&reloc_roots, &rc->reloc_roots);
2425 
2426 	if (!err)
2427 		btrfs_commit_transaction(trans);
2428 	else
2429 		btrfs_end_transaction(trans);
2430 	return err;
2431 }
2432 
2433 static noinline_for_stack
2434 void free_reloc_roots(struct list_head *list)
2435 {
2436 	struct btrfs_root *reloc_root;
2437 
2438 	while (!list_empty(list)) {
2439 		reloc_root = list_entry(list->next, struct btrfs_root,
2440 					root_list);
2441 		__del_reloc_root(reloc_root);
2442 		free_extent_buffer(reloc_root->node);
2443 		free_extent_buffer(reloc_root->commit_root);
2444 		reloc_root->node = NULL;
2445 		reloc_root->commit_root = NULL;
2446 	}
2447 }
2448 
2449 static noinline_for_stack
2450 void merge_reloc_roots(struct reloc_control *rc)
2451 {
2452 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2453 	struct btrfs_root *root;
2454 	struct btrfs_root *reloc_root;
2455 	LIST_HEAD(reloc_roots);
2456 	int found = 0;
2457 	int ret = 0;
2458 again:
2459 	root = rc->extent_root;
2460 
2461 	/*
2462 	 * this serializes us with btrfs_record_root_in_transaction,
2463 	 * we have to make sure nobody is in the middle of
2464 	 * adding their roots to the list while we are
2465 	 * doing this splice
2466 	 */
2467 	mutex_lock(&fs_info->reloc_mutex);
2468 	list_splice_init(&rc->reloc_roots, &reloc_roots);
2469 	mutex_unlock(&fs_info->reloc_mutex);
2470 
2471 	while (!list_empty(&reloc_roots)) {
2472 		found = 1;
2473 		reloc_root = list_entry(reloc_roots.next,
2474 					struct btrfs_root, root_list);
2475 
2476 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
2477 			root = read_fs_root(fs_info,
2478 					    reloc_root->root_key.offset);
2479 			BUG_ON(IS_ERR(root));
2480 			BUG_ON(root->reloc_root != reloc_root);
2481 
2482 			ret = merge_reloc_root(rc, root);
2483 			if (ret) {
2484 				if (list_empty(&reloc_root->root_list))
2485 					list_add_tail(&reloc_root->root_list,
2486 						      &reloc_roots);
2487 				goto out;
2488 			}
2489 		} else {
2490 			list_del_init(&reloc_root->root_list);
2491 			/* Don't forget to queue this reloc root for cleanup */
2492 			list_add_tail(&reloc_root->reloc_dirty_list,
2493 				      &rc->dirty_subvol_roots);
2494 		}
2495 	}
2496 
2497 	if (found) {
2498 		found = 0;
2499 		goto again;
2500 	}
2501 out:
2502 	if (ret) {
2503 		btrfs_handle_fs_error(fs_info, ret, NULL);
2504 		if (!list_empty(&reloc_roots))
2505 			free_reloc_roots(&reloc_roots);
2506 
2507 		/* new reloc root may be added */
2508 		mutex_lock(&fs_info->reloc_mutex);
2509 		list_splice_init(&rc->reloc_roots, &reloc_roots);
2510 		mutex_unlock(&fs_info->reloc_mutex);
2511 		if (!list_empty(&reloc_roots))
2512 			free_reloc_roots(&reloc_roots);
2513 	}
2514 
2515 	BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2516 }
2517 
2518 static void free_block_list(struct rb_root *blocks)
2519 {
2520 	struct tree_block *block;
2521 	struct rb_node *rb_node;
2522 	while ((rb_node = rb_first(blocks))) {
2523 		block = rb_entry(rb_node, struct tree_block, rb_node);
2524 		rb_erase(rb_node, blocks);
2525 		kfree(block);
2526 	}
2527 }
2528 
2529 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2530 				      struct btrfs_root *reloc_root)
2531 {
2532 	struct btrfs_fs_info *fs_info = reloc_root->fs_info;
2533 	struct btrfs_root *root;
2534 
2535 	if (reloc_root->last_trans == trans->transid)
2536 		return 0;
2537 
2538 	root = read_fs_root(fs_info, reloc_root->root_key.offset);
2539 	BUG_ON(IS_ERR(root));
2540 	BUG_ON(root->reloc_root != reloc_root);
2541 
2542 	return btrfs_record_root_in_trans(trans, root);
2543 }
2544 
2545 static noinline_for_stack
2546 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2547 				     struct reloc_control *rc,
2548 				     struct backref_node *node,
2549 				     struct backref_edge *edges[])
2550 {
2551 	struct backref_node *next;
2552 	struct btrfs_root *root;
2553 	int index = 0;
2554 
2555 	next = node;
2556 	while (1) {
2557 		cond_resched();
2558 		next = walk_up_backref(next, edges, &index);
2559 		root = next->root;
2560 		BUG_ON(!root);
2561 		BUG_ON(!test_bit(BTRFS_ROOT_REF_COWS, &root->state));
2562 
2563 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2564 			record_reloc_root_in_trans(trans, root);
2565 			break;
2566 		}
2567 
2568 		btrfs_record_root_in_trans(trans, root);
2569 		root = root->reloc_root;
2570 
2571 		if (next->new_bytenr != root->node->start) {
2572 			BUG_ON(next->new_bytenr);
2573 			BUG_ON(!list_empty(&next->list));
2574 			next->new_bytenr = root->node->start;
2575 			next->root = root;
2576 			list_add_tail(&next->list,
2577 				      &rc->backref_cache.changed);
2578 			__mark_block_processed(rc, next);
2579 			break;
2580 		}
2581 
2582 		WARN_ON(1);
2583 		root = NULL;
2584 		next = walk_down_backref(edges, &index);
2585 		if (!next || next->level <= node->level)
2586 			break;
2587 	}
2588 	if (!root)
2589 		return NULL;
2590 
2591 	next = node;
2592 	/* setup backref node path for btrfs_reloc_cow_block */
2593 	while (1) {
2594 		rc->backref_cache.path[next->level] = next;
2595 		if (--index < 0)
2596 			break;
2597 		next = edges[index]->node[UPPER];
2598 	}
2599 	return root;
2600 }
2601 
2602 /*
2603  * select a tree root for relocation. return NULL if the block
2604  * is reference counted. we should use do_relocation() in this
2605  * case. return a tree root pointer if the block isn't reference
2606  * counted. return -ENOENT if the block is root of reloc tree.
2607  */
2608 static noinline_for_stack
2609 struct btrfs_root *select_one_root(struct backref_node *node)
2610 {
2611 	struct backref_node *next;
2612 	struct btrfs_root *root;
2613 	struct btrfs_root *fs_root = NULL;
2614 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2615 	int index = 0;
2616 
2617 	next = node;
2618 	while (1) {
2619 		cond_resched();
2620 		next = walk_up_backref(next, edges, &index);
2621 		root = next->root;
2622 		BUG_ON(!root);
2623 
2624 		/* no other choice for non-references counted tree */
2625 		if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
2626 			return root;
2627 
2628 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2629 			fs_root = root;
2630 
2631 		if (next != node)
2632 			return NULL;
2633 
2634 		next = walk_down_backref(edges, &index);
2635 		if (!next || next->level <= node->level)
2636 			break;
2637 	}
2638 
2639 	if (!fs_root)
2640 		return ERR_PTR(-ENOENT);
2641 	return fs_root;
2642 }
2643 
2644 static noinline_for_stack
2645 u64 calcu_metadata_size(struct reloc_control *rc,
2646 			struct backref_node *node, int reserve)
2647 {
2648 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2649 	struct backref_node *next = node;
2650 	struct backref_edge *edge;
2651 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2652 	u64 num_bytes = 0;
2653 	int index = 0;
2654 
2655 	BUG_ON(reserve && node->processed);
2656 
2657 	while (next) {
2658 		cond_resched();
2659 		while (1) {
2660 			if (next->processed && (reserve || next != node))
2661 				break;
2662 
2663 			num_bytes += fs_info->nodesize;
2664 
2665 			if (list_empty(&next->upper))
2666 				break;
2667 
2668 			edge = list_entry(next->upper.next,
2669 					  struct backref_edge, list[LOWER]);
2670 			edges[index++] = edge;
2671 			next = edge->node[UPPER];
2672 		}
2673 		next = walk_down_backref(edges, &index);
2674 	}
2675 	return num_bytes;
2676 }
2677 
2678 static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2679 				  struct reloc_control *rc,
2680 				  struct backref_node *node)
2681 {
2682 	struct btrfs_root *root = rc->extent_root;
2683 	struct btrfs_fs_info *fs_info = root->fs_info;
2684 	u64 num_bytes;
2685 	int ret;
2686 	u64 tmp;
2687 
2688 	num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2689 
2690 	trans->block_rsv = rc->block_rsv;
2691 	rc->reserved_bytes += num_bytes;
2692 
2693 	/*
2694 	 * We are under a transaction here so we can only do limited flushing.
2695 	 * If we get an enospc just kick back -EAGAIN so we know to drop the
2696 	 * transaction and try to refill when we can flush all the things.
2697 	 */
2698 	ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
2699 				BTRFS_RESERVE_FLUSH_LIMIT);
2700 	if (ret) {
2701 		tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2702 		while (tmp <= rc->reserved_bytes)
2703 			tmp <<= 1;
2704 		/*
2705 		 * only one thread can access block_rsv at this point,
2706 		 * so we don't need hold lock to protect block_rsv.
2707 		 * we expand more reservation size here to allow enough
2708 		 * space for relocation and we will return earlier in
2709 		 * enospc case.
2710 		 */
2711 		rc->block_rsv->size = tmp + fs_info->nodesize *
2712 				      RELOCATION_RESERVED_NODES;
2713 		return -EAGAIN;
2714 	}
2715 
2716 	return 0;
2717 }
2718 
2719 /*
2720  * relocate a block tree, and then update pointers in upper level
2721  * blocks that reference the block to point to the new location.
2722  *
2723  * if called by link_to_upper, the block has already been relocated.
2724  * in that case this function just updates pointers.
2725  */
2726 static int do_relocation(struct btrfs_trans_handle *trans,
2727 			 struct reloc_control *rc,
2728 			 struct backref_node *node,
2729 			 struct btrfs_key *key,
2730 			 struct btrfs_path *path, int lowest)
2731 {
2732 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2733 	struct backref_node *upper;
2734 	struct backref_edge *edge;
2735 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2736 	struct btrfs_root *root;
2737 	struct extent_buffer *eb;
2738 	u32 blocksize;
2739 	u64 bytenr;
2740 	u64 generation;
2741 	int slot;
2742 	int ret;
2743 	int err = 0;
2744 
2745 	BUG_ON(lowest && node->eb);
2746 
2747 	path->lowest_level = node->level + 1;
2748 	rc->backref_cache.path[node->level] = node;
2749 	list_for_each_entry(edge, &node->upper, list[LOWER]) {
2750 		struct btrfs_key first_key;
2751 		struct btrfs_ref ref = { 0 };
2752 
2753 		cond_resched();
2754 
2755 		upper = edge->node[UPPER];
2756 		root = select_reloc_root(trans, rc, upper, edges);
2757 		BUG_ON(!root);
2758 
2759 		if (upper->eb && !upper->locked) {
2760 			if (!lowest) {
2761 				ret = btrfs_bin_search(upper->eb, key,
2762 						       upper->level, &slot);
2763 				if (ret < 0) {
2764 					err = ret;
2765 					goto next;
2766 				}
2767 				BUG_ON(ret);
2768 				bytenr = btrfs_node_blockptr(upper->eb, slot);
2769 				if (node->eb->start == bytenr)
2770 					goto next;
2771 			}
2772 			drop_node_buffer(upper);
2773 		}
2774 
2775 		if (!upper->eb) {
2776 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2777 			if (ret) {
2778 				if (ret < 0)
2779 					err = ret;
2780 				else
2781 					err = -ENOENT;
2782 
2783 				btrfs_release_path(path);
2784 				break;
2785 			}
2786 
2787 			if (!upper->eb) {
2788 				upper->eb = path->nodes[upper->level];
2789 				path->nodes[upper->level] = NULL;
2790 			} else {
2791 				BUG_ON(upper->eb != path->nodes[upper->level]);
2792 			}
2793 
2794 			upper->locked = 1;
2795 			path->locks[upper->level] = 0;
2796 
2797 			slot = path->slots[upper->level];
2798 			btrfs_release_path(path);
2799 		} else {
2800 			ret = btrfs_bin_search(upper->eb, key, upper->level,
2801 					       &slot);
2802 			if (ret < 0) {
2803 				err = ret;
2804 				goto next;
2805 			}
2806 			BUG_ON(ret);
2807 		}
2808 
2809 		bytenr = btrfs_node_blockptr(upper->eb, slot);
2810 		if (lowest) {
2811 			if (bytenr != node->bytenr) {
2812 				btrfs_err(root->fs_info,
2813 		"lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2814 					  bytenr, node->bytenr, slot,
2815 					  upper->eb->start);
2816 				err = -EIO;
2817 				goto next;
2818 			}
2819 		} else {
2820 			if (node->eb->start == bytenr)
2821 				goto next;
2822 		}
2823 
2824 		blocksize = root->fs_info->nodesize;
2825 		generation = btrfs_node_ptr_generation(upper->eb, slot);
2826 		btrfs_node_key_to_cpu(upper->eb, &first_key, slot);
2827 		eb = read_tree_block(fs_info, bytenr, generation,
2828 				     upper->level - 1, &first_key);
2829 		if (IS_ERR(eb)) {
2830 			err = PTR_ERR(eb);
2831 			goto next;
2832 		} else if (!extent_buffer_uptodate(eb)) {
2833 			free_extent_buffer(eb);
2834 			err = -EIO;
2835 			goto next;
2836 		}
2837 		btrfs_tree_lock(eb);
2838 		btrfs_set_lock_blocking_write(eb);
2839 
2840 		if (!node->eb) {
2841 			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2842 					      slot, &eb);
2843 			btrfs_tree_unlock(eb);
2844 			free_extent_buffer(eb);
2845 			if (ret < 0) {
2846 				err = ret;
2847 				goto next;
2848 			}
2849 			BUG_ON(node->eb != eb);
2850 		} else {
2851 			btrfs_set_node_blockptr(upper->eb, slot,
2852 						node->eb->start);
2853 			btrfs_set_node_ptr_generation(upper->eb, slot,
2854 						      trans->transid);
2855 			btrfs_mark_buffer_dirty(upper->eb);
2856 
2857 			btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2858 					       node->eb->start, blocksize,
2859 					       upper->eb->start);
2860 			ref.real_root = root->root_key.objectid;
2861 			btrfs_init_tree_ref(&ref, node->level,
2862 					    btrfs_header_owner(upper->eb));
2863 			ret = btrfs_inc_extent_ref(trans, &ref);
2864 			BUG_ON(ret);
2865 
2866 			ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2867 			BUG_ON(ret);
2868 		}
2869 next:
2870 		if (!upper->pending)
2871 			drop_node_buffer(upper);
2872 		else
2873 			unlock_node_buffer(upper);
2874 		if (err)
2875 			break;
2876 	}
2877 
2878 	if (!err && node->pending) {
2879 		drop_node_buffer(node);
2880 		list_move_tail(&node->list, &rc->backref_cache.changed);
2881 		node->pending = 0;
2882 	}
2883 
2884 	path->lowest_level = 0;
2885 	BUG_ON(err == -ENOSPC);
2886 	return err;
2887 }
2888 
2889 static int link_to_upper(struct btrfs_trans_handle *trans,
2890 			 struct reloc_control *rc,
2891 			 struct backref_node *node,
2892 			 struct btrfs_path *path)
2893 {
2894 	struct btrfs_key key;
2895 
2896 	btrfs_node_key_to_cpu(node->eb, &key, 0);
2897 	return do_relocation(trans, rc, node, &key, path, 0);
2898 }
2899 
2900 static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2901 				struct reloc_control *rc,
2902 				struct btrfs_path *path, int err)
2903 {
2904 	LIST_HEAD(list);
2905 	struct backref_cache *cache = &rc->backref_cache;
2906 	struct backref_node *node;
2907 	int level;
2908 	int ret;
2909 
2910 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2911 		while (!list_empty(&cache->pending[level])) {
2912 			node = list_entry(cache->pending[level].next,
2913 					  struct backref_node, list);
2914 			list_move_tail(&node->list, &list);
2915 			BUG_ON(!node->pending);
2916 
2917 			if (!err) {
2918 				ret = link_to_upper(trans, rc, node, path);
2919 				if (ret < 0)
2920 					err = ret;
2921 			}
2922 		}
2923 		list_splice_init(&list, &cache->pending[level]);
2924 	}
2925 	return err;
2926 }
2927 
2928 static void mark_block_processed(struct reloc_control *rc,
2929 				 u64 bytenr, u32 blocksize)
2930 {
2931 	set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1,
2932 			EXTENT_DIRTY);
2933 }
2934 
2935 static void __mark_block_processed(struct reloc_control *rc,
2936 				   struct backref_node *node)
2937 {
2938 	u32 blocksize;
2939 	if (node->level == 0 ||
2940 	    in_block_group(node->bytenr, rc->block_group)) {
2941 		blocksize = rc->extent_root->fs_info->nodesize;
2942 		mark_block_processed(rc, node->bytenr, blocksize);
2943 	}
2944 	node->processed = 1;
2945 }
2946 
2947 /*
2948  * mark a block and all blocks directly/indirectly reference the block
2949  * as processed.
2950  */
2951 static void update_processed_blocks(struct reloc_control *rc,
2952 				    struct backref_node *node)
2953 {
2954 	struct backref_node *next = node;
2955 	struct backref_edge *edge;
2956 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2957 	int index = 0;
2958 
2959 	while (next) {
2960 		cond_resched();
2961 		while (1) {
2962 			if (next->processed)
2963 				break;
2964 
2965 			__mark_block_processed(rc, next);
2966 
2967 			if (list_empty(&next->upper))
2968 				break;
2969 
2970 			edge = list_entry(next->upper.next,
2971 					  struct backref_edge, list[LOWER]);
2972 			edges[index++] = edge;
2973 			next = edge->node[UPPER];
2974 		}
2975 		next = walk_down_backref(edges, &index);
2976 	}
2977 }
2978 
2979 static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2980 {
2981 	u32 blocksize = rc->extent_root->fs_info->nodesize;
2982 
2983 	if (test_range_bit(&rc->processed_blocks, bytenr,
2984 			   bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2985 		return 1;
2986 	return 0;
2987 }
2988 
2989 static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2990 			      struct tree_block *block)
2991 {
2992 	struct extent_buffer *eb;
2993 
2994 	BUG_ON(block->key_ready);
2995 	eb = read_tree_block(fs_info, block->bytenr, block->key.offset,
2996 			     block->level, NULL);
2997 	if (IS_ERR(eb)) {
2998 		return PTR_ERR(eb);
2999 	} else if (!extent_buffer_uptodate(eb)) {
3000 		free_extent_buffer(eb);
3001 		return -EIO;
3002 	}
3003 	if (block->level == 0)
3004 		btrfs_item_key_to_cpu(eb, &block->key, 0);
3005 	else
3006 		btrfs_node_key_to_cpu(eb, &block->key, 0);
3007 	free_extent_buffer(eb);
3008 	block->key_ready = 1;
3009 	return 0;
3010 }
3011 
3012 /*
3013  * helper function to relocate a tree block
3014  */
3015 static int relocate_tree_block(struct btrfs_trans_handle *trans,
3016 				struct reloc_control *rc,
3017 				struct backref_node *node,
3018 				struct btrfs_key *key,
3019 				struct btrfs_path *path)
3020 {
3021 	struct btrfs_root *root;
3022 	int ret = 0;
3023 
3024 	if (!node)
3025 		return 0;
3026 
3027 	BUG_ON(node->processed);
3028 	root = select_one_root(node);
3029 	if (root == ERR_PTR(-ENOENT)) {
3030 		update_processed_blocks(rc, node);
3031 		goto out;
3032 	}
3033 
3034 	if (!root || test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
3035 		ret = reserve_metadata_space(trans, rc, node);
3036 		if (ret)
3037 			goto out;
3038 	}
3039 
3040 	if (root) {
3041 		if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
3042 			BUG_ON(node->new_bytenr);
3043 			BUG_ON(!list_empty(&node->list));
3044 			btrfs_record_root_in_trans(trans, root);
3045 			root = root->reloc_root;
3046 			node->new_bytenr = root->node->start;
3047 			node->root = root;
3048 			list_add_tail(&node->list, &rc->backref_cache.changed);
3049 		} else {
3050 			path->lowest_level = node->level;
3051 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
3052 			btrfs_release_path(path);
3053 			if (ret > 0)
3054 				ret = 0;
3055 		}
3056 		if (!ret)
3057 			update_processed_blocks(rc, node);
3058 	} else {
3059 		ret = do_relocation(trans, rc, node, key, path, 1);
3060 	}
3061 out:
3062 	if (ret || node->level == 0 || node->cowonly)
3063 		remove_backref_node(&rc->backref_cache, node);
3064 	return ret;
3065 }
3066 
3067 /*
3068  * relocate a list of blocks
3069  */
3070 static noinline_for_stack
3071 int relocate_tree_blocks(struct btrfs_trans_handle *trans,
3072 			 struct reloc_control *rc, struct rb_root *blocks)
3073 {
3074 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3075 	struct backref_node *node;
3076 	struct btrfs_path *path;
3077 	struct tree_block *block;
3078 	struct tree_block *next;
3079 	int ret;
3080 	int err = 0;
3081 
3082 	path = btrfs_alloc_path();
3083 	if (!path) {
3084 		err = -ENOMEM;
3085 		goto out_free_blocks;
3086 	}
3087 
3088 	/* Kick in readahead for tree blocks with missing keys */
3089 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
3090 		if (!block->key_ready)
3091 			readahead_tree_block(fs_info, block->bytenr);
3092 	}
3093 
3094 	/* Get first keys */
3095 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
3096 		if (!block->key_ready) {
3097 			err = get_tree_block_key(fs_info, block);
3098 			if (err)
3099 				goto out_free_path;
3100 		}
3101 	}
3102 
3103 	/* Do tree relocation */
3104 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
3105 		node = build_backref_tree(rc, &block->key,
3106 					  block->level, block->bytenr);
3107 		if (IS_ERR(node)) {
3108 			err = PTR_ERR(node);
3109 			goto out;
3110 		}
3111 
3112 		ret = relocate_tree_block(trans, rc, node, &block->key,
3113 					  path);
3114 		if (ret < 0) {
3115 			if (ret != -EAGAIN || &block->rb_node == rb_first(blocks))
3116 				err = ret;
3117 			goto out;
3118 		}
3119 	}
3120 out:
3121 	err = finish_pending_nodes(trans, rc, path, err);
3122 
3123 out_free_path:
3124 	btrfs_free_path(path);
3125 out_free_blocks:
3126 	free_block_list(blocks);
3127 	return err;
3128 }
3129 
3130 static noinline_for_stack
3131 int prealloc_file_extent_cluster(struct inode *inode,
3132 				 struct file_extent_cluster *cluster)
3133 {
3134 	u64 alloc_hint = 0;
3135 	u64 start;
3136 	u64 end;
3137 	u64 offset = BTRFS_I(inode)->index_cnt;
3138 	u64 num_bytes;
3139 	int nr = 0;
3140 	int ret = 0;
3141 	u64 prealloc_start = cluster->start - offset;
3142 	u64 prealloc_end = cluster->end - offset;
3143 	u64 cur_offset;
3144 	struct extent_changeset *data_reserved = NULL;
3145 
3146 	BUG_ON(cluster->start != cluster->boundary[0]);
3147 	inode_lock(inode);
3148 
3149 	ret = btrfs_check_data_free_space(inode, &data_reserved, prealloc_start,
3150 					  prealloc_end + 1 - prealloc_start);
3151 	if (ret)
3152 		goto out;
3153 
3154 	cur_offset = prealloc_start;
3155 	while (nr < cluster->nr) {
3156 		start = cluster->boundary[nr] - offset;
3157 		if (nr + 1 < cluster->nr)
3158 			end = cluster->boundary[nr + 1] - 1 - offset;
3159 		else
3160 			end = cluster->end - offset;
3161 
3162 		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3163 		num_bytes = end + 1 - start;
3164 		if (cur_offset < start)
3165 			btrfs_free_reserved_data_space(inode, data_reserved,
3166 					cur_offset, start - cur_offset);
3167 		ret = btrfs_prealloc_file_range(inode, 0, start,
3168 						num_bytes, num_bytes,
3169 						end + 1, &alloc_hint);
3170 		cur_offset = end + 1;
3171 		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3172 		if (ret)
3173 			break;
3174 		nr++;
3175 	}
3176 	if (cur_offset < prealloc_end)
3177 		btrfs_free_reserved_data_space(inode, data_reserved,
3178 				cur_offset, prealloc_end + 1 - cur_offset);
3179 out:
3180 	inode_unlock(inode);
3181 	extent_changeset_free(data_reserved);
3182 	return ret;
3183 }
3184 
3185 static noinline_for_stack
3186 int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
3187 			 u64 block_start)
3188 {
3189 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3190 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3191 	struct extent_map *em;
3192 	int ret = 0;
3193 
3194 	em = alloc_extent_map();
3195 	if (!em)
3196 		return -ENOMEM;
3197 
3198 	em->start = start;
3199 	em->len = end + 1 - start;
3200 	em->block_len = em->len;
3201 	em->block_start = block_start;
3202 	em->bdev = fs_info->fs_devices->latest_bdev;
3203 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
3204 
3205 	lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3206 	while (1) {
3207 		write_lock(&em_tree->lock);
3208 		ret = add_extent_mapping(em_tree, em, 0);
3209 		write_unlock(&em_tree->lock);
3210 		if (ret != -EEXIST) {
3211 			free_extent_map(em);
3212 			break;
3213 		}
3214 		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
3215 	}
3216 	unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3217 	return ret;
3218 }
3219 
3220 static int relocate_file_extent_cluster(struct inode *inode,
3221 					struct file_extent_cluster *cluster)
3222 {
3223 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3224 	u64 page_start;
3225 	u64 page_end;
3226 	u64 offset = BTRFS_I(inode)->index_cnt;
3227 	unsigned long index;
3228 	unsigned long last_index;
3229 	struct page *page;
3230 	struct file_ra_state *ra;
3231 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
3232 	int nr = 0;
3233 	int ret = 0;
3234 
3235 	if (!cluster->nr)
3236 		return 0;
3237 
3238 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
3239 	if (!ra)
3240 		return -ENOMEM;
3241 
3242 	ret = prealloc_file_extent_cluster(inode, cluster);
3243 	if (ret)
3244 		goto out;
3245 
3246 	file_ra_state_init(ra, inode->i_mapping);
3247 
3248 	ret = setup_extent_mapping(inode, cluster->start - offset,
3249 				   cluster->end - offset, cluster->start);
3250 	if (ret)
3251 		goto out;
3252 
3253 	index = (cluster->start - offset) >> PAGE_SHIFT;
3254 	last_index = (cluster->end - offset) >> PAGE_SHIFT;
3255 	while (index <= last_index) {
3256 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
3257 				PAGE_SIZE);
3258 		if (ret)
3259 			goto out;
3260 
3261 		page = find_lock_page(inode->i_mapping, index);
3262 		if (!page) {
3263 			page_cache_sync_readahead(inode->i_mapping,
3264 						  ra, NULL, index,
3265 						  last_index + 1 - index);
3266 			page = find_or_create_page(inode->i_mapping, index,
3267 						   mask);
3268 			if (!page) {
3269 				btrfs_delalloc_release_metadata(BTRFS_I(inode),
3270 							PAGE_SIZE, true);
3271 				ret = -ENOMEM;
3272 				goto out;
3273 			}
3274 		}
3275 
3276 		if (PageReadahead(page)) {
3277 			page_cache_async_readahead(inode->i_mapping,
3278 						   ra, NULL, page, index,
3279 						   last_index + 1 - index);
3280 		}
3281 
3282 		if (!PageUptodate(page)) {
3283 			btrfs_readpage(NULL, page);
3284 			lock_page(page);
3285 			if (!PageUptodate(page)) {
3286 				unlock_page(page);
3287 				put_page(page);
3288 				btrfs_delalloc_release_metadata(BTRFS_I(inode),
3289 							PAGE_SIZE, true);
3290 				btrfs_delalloc_release_extents(BTRFS_I(inode),
3291 							       PAGE_SIZE, true);
3292 				ret = -EIO;
3293 				goto out;
3294 			}
3295 		}
3296 
3297 		page_start = page_offset(page);
3298 		page_end = page_start + PAGE_SIZE - 1;
3299 
3300 		lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
3301 
3302 		set_page_extent_mapped(page);
3303 
3304 		if (nr < cluster->nr &&
3305 		    page_start + offset == cluster->boundary[nr]) {
3306 			set_extent_bits(&BTRFS_I(inode)->io_tree,
3307 					page_start, page_end,
3308 					EXTENT_BOUNDARY);
3309 			nr++;
3310 		}
3311 
3312 		ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
3313 						NULL, 0);
3314 		if (ret) {
3315 			unlock_page(page);
3316 			put_page(page);
3317 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
3318 							 PAGE_SIZE, true);
3319 			btrfs_delalloc_release_extents(BTRFS_I(inode),
3320 			                               PAGE_SIZE, true);
3321 
3322 			clear_extent_bits(&BTRFS_I(inode)->io_tree,
3323 					  page_start, page_end,
3324 					  EXTENT_LOCKED | EXTENT_BOUNDARY);
3325 			goto out;
3326 
3327 		}
3328 		set_page_dirty(page);
3329 
3330 		unlock_extent(&BTRFS_I(inode)->io_tree,
3331 			      page_start, page_end);
3332 		unlock_page(page);
3333 		put_page(page);
3334 
3335 		index++;
3336 		btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE,
3337 					       false);
3338 		balance_dirty_pages_ratelimited(inode->i_mapping);
3339 		btrfs_throttle(fs_info);
3340 	}
3341 	WARN_ON(nr != cluster->nr);
3342 out:
3343 	kfree(ra);
3344 	return ret;
3345 }
3346 
3347 static noinline_for_stack
3348 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3349 			 struct file_extent_cluster *cluster)
3350 {
3351 	int ret;
3352 
3353 	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3354 		ret = relocate_file_extent_cluster(inode, cluster);
3355 		if (ret)
3356 			return ret;
3357 		cluster->nr = 0;
3358 	}
3359 
3360 	if (!cluster->nr)
3361 		cluster->start = extent_key->objectid;
3362 	else
3363 		BUG_ON(cluster->nr >= MAX_EXTENTS);
3364 	cluster->end = extent_key->objectid + extent_key->offset - 1;
3365 	cluster->boundary[cluster->nr] = extent_key->objectid;
3366 	cluster->nr++;
3367 
3368 	if (cluster->nr >= MAX_EXTENTS) {
3369 		ret = relocate_file_extent_cluster(inode, cluster);
3370 		if (ret)
3371 			return ret;
3372 		cluster->nr = 0;
3373 	}
3374 	return 0;
3375 }
3376 
3377 /*
3378  * helper to add a tree block to the list.
3379  * the major work is getting the generation and level of the block
3380  */
3381 static int add_tree_block(struct reloc_control *rc,
3382 			  struct btrfs_key *extent_key,
3383 			  struct btrfs_path *path,
3384 			  struct rb_root *blocks)
3385 {
3386 	struct extent_buffer *eb;
3387 	struct btrfs_extent_item *ei;
3388 	struct btrfs_tree_block_info *bi;
3389 	struct tree_block *block;
3390 	struct rb_node *rb_node;
3391 	u32 item_size;
3392 	int level = -1;
3393 	u64 generation;
3394 
3395 	eb =  path->nodes[0];
3396 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
3397 
3398 	if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3399 	    item_size >= sizeof(*ei) + sizeof(*bi)) {
3400 		ei = btrfs_item_ptr(eb, path->slots[0],
3401 				struct btrfs_extent_item);
3402 		if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3403 			bi = (struct btrfs_tree_block_info *)(ei + 1);
3404 			level = btrfs_tree_block_level(eb, bi);
3405 		} else {
3406 			level = (int)extent_key->offset;
3407 		}
3408 		generation = btrfs_extent_generation(eb, ei);
3409 	} else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
3410 		btrfs_print_v0_err(eb->fs_info);
3411 		btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
3412 		return -EINVAL;
3413 	} else {
3414 		BUG();
3415 	}
3416 
3417 	btrfs_release_path(path);
3418 
3419 	BUG_ON(level == -1);
3420 
3421 	block = kmalloc(sizeof(*block), GFP_NOFS);
3422 	if (!block)
3423 		return -ENOMEM;
3424 
3425 	block->bytenr = extent_key->objectid;
3426 	block->key.objectid = rc->extent_root->fs_info->nodesize;
3427 	block->key.offset = generation;
3428 	block->level = level;
3429 	block->key_ready = 0;
3430 
3431 	rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
3432 	if (rb_node)
3433 		backref_tree_panic(rb_node, -EEXIST, block->bytenr);
3434 
3435 	return 0;
3436 }
3437 
3438 /*
3439  * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3440  */
3441 static int __add_tree_block(struct reloc_control *rc,
3442 			    u64 bytenr, u32 blocksize,
3443 			    struct rb_root *blocks)
3444 {
3445 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3446 	struct btrfs_path *path;
3447 	struct btrfs_key key;
3448 	int ret;
3449 	bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3450 
3451 	if (tree_block_processed(bytenr, rc))
3452 		return 0;
3453 
3454 	if (tree_search(blocks, bytenr))
3455 		return 0;
3456 
3457 	path = btrfs_alloc_path();
3458 	if (!path)
3459 		return -ENOMEM;
3460 again:
3461 	key.objectid = bytenr;
3462 	if (skinny) {
3463 		key.type = BTRFS_METADATA_ITEM_KEY;
3464 		key.offset = (u64)-1;
3465 	} else {
3466 		key.type = BTRFS_EXTENT_ITEM_KEY;
3467 		key.offset = blocksize;
3468 	}
3469 
3470 	path->search_commit_root = 1;
3471 	path->skip_locking = 1;
3472 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3473 	if (ret < 0)
3474 		goto out;
3475 
3476 	if (ret > 0 && skinny) {
3477 		if (path->slots[0]) {
3478 			path->slots[0]--;
3479 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3480 					      path->slots[0]);
3481 			if (key.objectid == bytenr &&
3482 			    (key.type == BTRFS_METADATA_ITEM_KEY ||
3483 			     (key.type == BTRFS_EXTENT_ITEM_KEY &&
3484 			      key.offset == blocksize)))
3485 				ret = 0;
3486 		}
3487 
3488 		if (ret) {
3489 			skinny = false;
3490 			btrfs_release_path(path);
3491 			goto again;
3492 		}
3493 	}
3494 	if (ret) {
3495 		ASSERT(ret == 1);
3496 		btrfs_print_leaf(path->nodes[0]);
3497 		btrfs_err(fs_info,
3498 	     "tree block extent item (%llu) is not found in extent tree",
3499 		     bytenr);
3500 		WARN_ON(1);
3501 		ret = -EINVAL;
3502 		goto out;
3503 	}
3504 
3505 	ret = add_tree_block(rc, &key, path, blocks);
3506 out:
3507 	btrfs_free_path(path);
3508 	return ret;
3509 }
3510 
3511 /*
3512  * helper to check if the block use full backrefs for pointers in it
3513  */
3514 static int block_use_full_backref(struct reloc_control *rc,
3515 				  struct extent_buffer *eb)
3516 {
3517 	u64 flags;
3518 	int ret;
3519 
3520 	if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) ||
3521 	    btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV)
3522 		return 1;
3523 
3524 	ret = btrfs_lookup_extent_info(NULL, rc->extent_root->fs_info,
3525 				       eb->start, btrfs_header_level(eb), 1,
3526 				       NULL, &flags);
3527 	BUG_ON(ret);
3528 
3529 	if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
3530 		ret = 1;
3531 	else
3532 		ret = 0;
3533 	return ret;
3534 }
3535 
3536 static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3537 				    struct btrfs_block_group_cache *block_group,
3538 				    struct inode *inode,
3539 				    u64 ino)
3540 {
3541 	struct btrfs_key key;
3542 	struct btrfs_root *root = fs_info->tree_root;
3543 	struct btrfs_trans_handle *trans;
3544 	int ret = 0;
3545 
3546 	if (inode)
3547 		goto truncate;
3548 
3549 	key.objectid = ino;
3550 	key.type = BTRFS_INODE_ITEM_KEY;
3551 	key.offset = 0;
3552 
3553 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
3554 	if (IS_ERR(inode))
3555 		return -ENOENT;
3556 
3557 truncate:
3558 	ret = btrfs_check_trunc_cache_free_space(fs_info,
3559 						 &fs_info->global_block_rsv);
3560 	if (ret)
3561 		goto out;
3562 
3563 	trans = btrfs_join_transaction(root);
3564 	if (IS_ERR(trans)) {
3565 		ret = PTR_ERR(trans);
3566 		goto out;
3567 	}
3568 
3569 	ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
3570 
3571 	btrfs_end_transaction(trans);
3572 	btrfs_btree_balance_dirty(fs_info);
3573 out:
3574 	iput(inode);
3575 	return ret;
3576 }
3577 
3578 /*
3579  * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY
3580  * this function scans fs tree to find blocks reference the data extent
3581  */
3582 static int find_data_references(struct reloc_control *rc,
3583 				struct btrfs_key *extent_key,
3584 				struct extent_buffer *leaf,
3585 				struct btrfs_extent_data_ref *ref,
3586 				struct rb_root *blocks)
3587 {
3588 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3589 	struct btrfs_path *path;
3590 	struct tree_block *block;
3591 	struct btrfs_root *root;
3592 	struct btrfs_file_extent_item *fi;
3593 	struct rb_node *rb_node;
3594 	struct btrfs_key key;
3595 	u64 ref_root;
3596 	u64 ref_objectid;
3597 	u64 ref_offset;
3598 	u32 ref_count;
3599 	u32 nritems;
3600 	int err = 0;
3601 	int added = 0;
3602 	int counted;
3603 	int ret;
3604 
3605 	ref_root = btrfs_extent_data_ref_root(leaf, ref);
3606 	ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref);
3607 	ref_offset = btrfs_extent_data_ref_offset(leaf, ref);
3608 	ref_count = btrfs_extent_data_ref_count(leaf, ref);
3609 
3610 	/*
3611 	 * This is an extent belonging to the free space cache, lets just delete
3612 	 * it and redo the search.
3613 	 */
3614 	if (ref_root == BTRFS_ROOT_TREE_OBJECTID) {
3615 		ret = delete_block_group_cache(fs_info, rc->block_group,
3616 					       NULL, ref_objectid);
3617 		if (ret != -ENOENT)
3618 			return ret;
3619 		ret = 0;
3620 	}
3621 
3622 	path = btrfs_alloc_path();
3623 	if (!path)
3624 		return -ENOMEM;
3625 	path->reada = READA_FORWARD;
3626 
3627 	root = read_fs_root(fs_info, ref_root);
3628 	if (IS_ERR(root)) {
3629 		err = PTR_ERR(root);
3630 		goto out;
3631 	}
3632 
3633 	key.objectid = ref_objectid;
3634 	key.type = BTRFS_EXTENT_DATA_KEY;
3635 	if (ref_offset > ((u64)-1 << 32))
3636 		key.offset = 0;
3637 	else
3638 		key.offset = ref_offset;
3639 
3640 	path->search_commit_root = 1;
3641 	path->skip_locking = 1;
3642 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3643 	if (ret < 0) {
3644 		err = ret;
3645 		goto out;
3646 	}
3647 
3648 	leaf = path->nodes[0];
3649 	nritems = btrfs_header_nritems(leaf);
3650 	/*
3651 	 * the references in tree blocks that use full backrefs
3652 	 * are not counted in
3653 	 */
3654 	if (block_use_full_backref(rc, leaf))
3655 		counted = 0;
3656 	else
3657 		counted = 1;
3658 	rb_node = tree_search(blocks, leaf->start);
3659 	if (rb_node) {
3660 		if (counted)
3661 			added = 1;
3662 		else
3663 			path->slots[0] = nritems;
3664 	}
3665 
3666 	while (ref_count > 0) {
3667 		while (path->slots[0] >= nritems) {
3668 			ret = btrfs_next_leaf(root, path);
3669 			if (ret < 0) {
3670 				err = ret;
3671 				goto out;
3672 			}
3673 			if (WARN_ON(ret > 0))
3674 				goto out;
3675 
3676 			leaf = path->nodes[0];
3677 			nritems = btrfs_header_nritems(leaf);
3678 			added = 0;
3679 
3680 			if (block_use_full_backref(rc, leaf))
3681 				counted = 0;
3682 			else
3683 				counted = 1;
3684 			rb_node = tree_search(blocks, leaf->start);
3685 			if (rb_node) {
3686 				if (counted)
3687 					added = 1;
3688 				else
3689 					path->slots[0] = nritems;
3690 			}
3691 		}
3692 
3693 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3694 		if (WARN_ON(key.objectid != ref_objectid ||
3695 		    key.type != BTRFS_EXTENT_DATA_KEY))
3696 			break;
3697 
3698 		fi = btrfs_item_ptr(leaf, path->slots[0],
3699 				    struct btrfs_file_extent_item);
3700 
3701 		if (btrfs_file_extent_type(leaf, fi) ==
3702 		    BTRFS_FILE_EXTENT_INLINE)
3703 			goto next;
3704 
3705 		if (btrfs_file_extent_disk_bytenr(leaf, fi) !=
3706 		    extent_key->objectid)
3707 			goto next;
3708 
3709 		key.offset -= btrfs_file_extent_offset(leaf, fi);
3710 		if (key.offset != ref_offset)
3711 			goto next;
3712 
3713 		if (counted)
3714 			ref_count--;
3715 		if (added)
3716 			goto next;
3717 
3718 		if (!tree_block_processed(leaf->start, rc)) {
3719 			block = kmalloc(sizeof(*block), GFP_NOFS);
3720 			if (!block) {
3721 				err = -ENOMEM;
3722 				break;
3723 			}
3724 			block->bytenr = leaf->start;
3725 			btrfs_item_key_to_cpu(leaf, &block->key, 0);
3726 			block->level = 0;
3727 			block->key_ready = 1;
3728 			rb_node = tree_insert(blocks, block->bytenr,
3729 					      &block->rb_node);
3730 			if (rb_node)
3731 				backref_tree_panic(rb_node, -EEXIST,
3732 						   block->bytenr);
3733 		}
3734 		if (counted)
3735 			added = 1;
3736 		else
3737 			path->slots[0] = nritems;
3738 next:
3739 		path->slots[0]++;
3740 
3741 	}
3742 out:
3743 	btrfs_free_path(path);
3744 	return err;
3745 }
3746 
3747 /*
3748  * helper to find all tree blocks that reference a given data extent
3749  */
3750 static noinline_for_stack
3751 int add_data_references(struct reloc_control *rc,
3752 			struct btrfs_key *extent_key,
3753 			struct btrfs_path *path,
3754 			struct rb_root *blocks)
3755 {
3756 	struct btrfs_key key;
3757 	struct extent_buffer *eb;
3758 	struct btrfs_extent_data_ref *dref;
3759 	struct btrfs_extent_inline_ref *iref;
3760 	unsigned long ptr;
3761 	unsigned long end;
3762 	u32 blocksize = rc->extent_root->fs_info->nodesize;
3763 	int ret = 0;
3764 	int err = 0;
3765 
3766 	eb = path->nodes[0];
3767 	ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
3768 	end = ptr + btrfs_item_size_nr(eb, path->slots[0]);
3769 	ptr += sizeof(struct btrfs_extent_item);
3770 
3771 	while (ptr < end) {
3772 		iref = (struct btrfs_extent_inline_ref *)ptr;
3773 		key.type = btrfs_get_extent_inline_ref_type(eb, iref,
3774 							BTRFS_REF_TYPE_DATA);
3775 		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3776 			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3777 			ret = __add_tree_block(rc, key.offset, blocksize,
3778 					       blocks);
3779 		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3780 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
3781 			ret = find_data_references(rc, extent_key,
3782 						   eb, dref, blocks);
3783 		} else {
3784 			ret = -EUCLEAN;
3785 			btrfs_err(rc->extent_root->fs_info,
3786 		     "extent %llu slot %d has an invalid inline ref type",
3787 			     eb->start, path->slots[0]);
3788 		}
3789 		if (ret) {
3790 			err = ret;
3791 			goto out;
3792 		}
3793 		ptr += btrfs_extent_inline_ref_size(key.type);
3794 	}
3795 	WARN_ON(ptr > end);
3796 
3797 	while (1) {
3798 		cond_resched();
3799 		eb = path->nodes[0];
3800 		if (path->slots[0] >= btrfs_header_nritems(eb)) {
3801 			ret = btrfs_next_leaf(rc->extent_root, path);
3802 			if (ret < 0) {
3803 				err = ret;
3804 				break;
3805 			}
3806 			if (ret > 0)
3807 				break;
3808 			eb = path->nodes[0];
3809 		}
3810 
3811 		btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
3812 		if (key.objectid != extent_key->objectid)
3813 			break;
3814 
3815 		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3816 			ret = __add_tree_block(rc, key.offset, blocksize,
3817 					       blocks);
3818 		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3819 			dref = btrfs_item_ptr(eb, path->slots[0],
3820 					      struct btrfs_extent_data_ref);
3821 			ret = find_data_references(rc, extent_key,
3822 						   eb, dref, blocks);
3823 		} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
3824 			btrfs_print_v0_err(eb->fs_info);
3825 			btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
3826 			ret = -EINVAL;
3827 		} else {
3828 			ret = 0;
3829 		}
3830 		if (ret) {
3831 			err = ret;
3832 			break;
3833 		}
3834 		path->slots[0]++;
3835 	}
3836 out:
3837 	btrfs_release_path(path);
3838 	if (err)
3839 		free_block_list(blocks);
3840 	return err;
3841 }
3842 
3843 /*
3844  * helper to find next unprocessed extent
3845  */
3846 static noinline_for_stack
3847 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3848 		     struct btrfs_key *extent_key)
3849 {
3850 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3851 	struct btrfs_key key;
3852 	struct extent_buffer *leaf;
3853 	u64 start, end, last;
3854 	int ret;
3855 
3856 	last = rc->block_group->key.objectid + rc->block_group->key.offset;
3857 	while (1) {
3858 		cond_resched();
3859 		if (rc->search_start >= last) {
3860 			ret = 1;
3861 			break;
3862 		}
3863 
3864 		key.objectid = rc->search_start;
3865 		key.type = BTRFS_EXTENT_ITEM_KEY;
3866 		key.offset = 0;
3867 
3868 		path->search_commit_root = 1;
3869 		path->skip_locking = 1;
3870 		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3871 					0, 0);
3872 		if (ret < 0)
3873 			break;
3874 next:
3875 		leaf = path->nodes[0];
3876 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3877 			ret = btrfs_next_leaf(rc->extent_root, path);
3878 			if (ret != 0)
3879 				break;
3880 			leaf = path->nodes[0];
3881 		}
3882 
3883 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3884 		if (key.objectid >= last) {
3885 			ret = 1;
3886 			break;
3887 		}
3888 
3889 		if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3890 		    key.type != BTRFS_METADATA_ITEM_KEY) {
3891 			path->slots[0]++;
3892 			goto next;
3893 		}
3894 
3895 		if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3896 		    key.objectid + key.offset <= rc->search_start) {
3897 			path->slots[0]++;
3898 			goto next;
3899 		}
3900 
3901 		if (key.type == BTRFS_METADATA_ITEM_KEY &&
3902 		    key.objectid + fs_info->nodesize <=
3903 		    rc->search_start) {
3904 			path->slots[0]++;
3905 			goto next;
3906 		}
3907 
3908 		ret = find_first_extent_bit(&rc->processed_blocks,
3909 					    key.objectid, &start, &end,
3910 					    EXTENT_DIRTY, NULL);
3911 
3912 		if (ret == 0 && start <= key.objectid) {
3913 			btrfs_release_path(path);
3914 			rc->search_start = end + 1;
3915 		} else {
3916 			if (key.type == BTRFS_EXTENT_ITEM_KEY)
3917 				rc->search_start = key.objectid + key.offset;
3918 			else
3919 				rc->search_start = key.objectid +
3920 					fs_info->nodesize;
3921 			memcpy(extent_key, &key, sizeof(key));
3922 			return 0;
3923 		}
3924 	}
3925 	btrfs_release_path(path);
3926 	return ret;
3927 }
3928 
3929 static void set_reloc_control(struct reloc_control *rc)
3930 {
3931 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3932 
3933 	mutex_lock(&fs_info->reloc_mutex);
3934 	fs_info->reloc_ctl = rc;
3935 	mutex_unlock(&fs_info->reloc_mutex);
3936 }
3937 
3938 static void unset_reloc_control(struct reloc_control *rc)
3939 {
3940 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3941 
3942 	mutex_lock(&fs_info->reloc_mutex);
3943 	fs_info->reloc_ctl = NULL;
3944 	mutex_unlock(&fs_info->reloc_mutex);
3945 }
3946 
3947 static int check_extent_flags(u64 flags)
3948 {
3949 	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3950 	    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3951 		return 1;
3952 	if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
3953 	    !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3954 		return 1;
3955 	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3956 	    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
3957 		return 1;
3958 	return 0;
3959 }
3960 
3961 static noinline_for_stack
3962 int prepare_to_relocate(struct reloc_control *rc)
3963 {
3964 	struct btrfs_trans_handle *trans;
3965 	int ret;
3966 
3967 	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3968 					      BTRFS_BLOCK_RSV_TEMP);
3969 	if (!rc->block_rsv)
3970 		return -ENOMEM;
3971 
3972 	memset(&rc->cluster, 0, sizeof(rc->cluster));
3973 	rc->search_start = rc->block_group->key.objectid;
3974 	rc->extents_found = 0;
3975 	rc->nodes_relocated = 0;
3976 	rc->merging_rsv_size = 0;
3977 	rc->reserved_bytes = 0;
3978 	rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3979 			      RELOCATION_RESERVED_NODES;
3980 	ret = btrfs_block_rsv_refill(rc->extent_root,
3981 				     rc->block_rsv, rc->block_rsv->size,
3982 				     BTRFS_RESERVE_FLUSH_ALL);
3983 	if (ret)
3984 		return ret;
3985 
3986 	rc->create_reloc_tree = 1;
3987 	set_reloc_control(rc);
3988 
3989 	trans = btrfs_join_transaction(rc->extent_root);
3990 	if (IS_ERR(trans)) {
3991 		unset_reloc_control(rc);
3992 		/*
3993 		 * extent tree is not a ref_cow tree and has no reloc_root to
3994 		 * cleanup.  And callers are responsible to free the above
3995 		 * block rsv.
3996 		 */
3997 		return PTR_ERR(trans);
3998 	}
3999 	btrfs_commit_transaction(trans);
4000 	return 0;
4001 }
4002 
4003 static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
4004 {
4005 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
4006 	struct rb_root blocks = RB_ROOT;
4007 	struct btrfs_key key;
4008 	struct btrfs_trans_handle *trans = NULL;
4009 	struct btrfs_path *path;
4010 	struct btrfs_extent_item *ei;
4011 	u64 flags;
4012 	u32 item_size;
4013 	int ret;
4014 	int err = 0;
4015 	int progress = 0;
4016 
4017 	path = btrfs_alloc_path();
4018 	if (!path)
4019 		return -ENOMEM;
4020 	path->reada = READA_FORWARD;
4021 
4022 	ret = prepare_to_relocate(rc);
4023 	if (ret) {
4024 		err = ret;
4025 		goto out_free;
4026 	}
4027 
4028 	while (1) {
4029 		rc->reserved_bytes = 0;
4030 		ret = btrfs_block_rsv_refill(rc->extent_root,
4031 					rc->block_rsv, rc->block_rsv->size,
4032 					BTRFS_RESERVE_FLUSH_ALL);
4033 		if (ret) {
4034 			err = ret;
4035 			break;
4036 		}
4037 		progress++;
4038 		trans = btrfs_start_transaction(rc->extent_root, 0);
4039 		if (IS_ERR(trans)) {
4040 			err = PTR_ERR(trans);
4041 			trans = NULL;
4042 			break;
4043 		}
4044 restart:
4045 		if (update_backref_cache(trans, &rc->backref_cache)) {
4046 			btrfs_end_transaction(trans);
4047 			trans = NULL;
4048 			continue;
4049 		}
4050 
4051 		ret = find_next_extent(rc, path, &key);
4052 		if (ret < 0)
4053 			err = ret;
4054 		if (ret != 0)
4055 			break;
4056 
4057 		rc->extents_found++;
4058 
4059 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4060 				    struct btrfs_extent_item);
4061 		item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
4062 		if (item_size >= sizeof(*ei)) {
4063 			flags = btrfs_extent_flags(path->nodes[0], ei);
4064 			ret = check_extent_flags(flags);
4065 			BUG_ON(ret);
4066 		} else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
4067 			err = -EINVAL;
4068 			btrfs_print_v0_err(trans->fs_info);
4069 			btrfs_abort_transaction(trans, err);
4070 			break;
4071 		} else {
4072 			BUG();
4073 		}
4074 
4075 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
4076 			ret = add_tree_block(rc, &key, path, &blocks);
4077 		} else if (rc->stage == UPDATE_DATA_PTRS &&
4078 			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
4079 			ret = add_data_references(rc, &key, path, &blocks);
4080 		} else {
4081 			btrfs_release_path(path);
4082 			ret = 0;
4083 		}
4084 		if (ret < 0) {
4085 			err = ret;
4086 			break;
4087 		}
4088 
4089 		if (!RB_EMPTY_ROOT(&blocks)) {
4090 			ret = relocate_tree_blocks(trans, rc, &blocks);
4091 			if (ret < 0) {
4092 				/*
4093 				 * if we fail to relocate tree blocks, force to update
4094 				 * backref cache when committing transaction.
4095 				 */
4096 				rc->backref_cache.last_trans = trans->transid - 1;
4097 
4098 				if (ret != -EAGAIN) {
4099 					err = ret;
4100 					break;
4101 				}
4102 				rc->extents_found--;
4103 				rc->search_start = key.objectid;
4104 			}
4105 		}
4106 
4107 		btrfs_end_transaction_throttle(trans);
4108 		btrfs_btree_balance_dirty(fs_info);
4109 		trans = NULL;
4110 
4111 		if (rc->stage == MOVE_DATA_EXTENTS &&
4112 		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
4113 			rc->found_file_extent = 1;
4114 			ret = relocate_data_extent(rc->data_inode,
4115 						   &key, &rc->cluster);
4116 			if (ret < 0) {
4117 				err = ret;
4118 				break;
4119 			}
4120 		}
4121 	}
4122 	if (trans && progress && err == -ENOSPC) {
4123 		ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
4124 		if (ret == 1) {
4125 			err = 0;
4126 			progress = 0;
4127 			goto restart;
4128 		}
4129 	}
4130 
4131 	btrfs_release_path(path);
4132 	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
4133 
4134 	if (trans) {
4135 		btrfs_end_transaction_throttle(trans);
4136 		btrfs_btree_balance_dirty(fs_info);
4137 	}
4138 
4139 	if (!err) {
4140 		ret = relocate_file_extent_cluster(rc->data_inode,
4141 						   &rc->cluster);
4142 		if (ret < 0)
4143 			err = ret;
4144 	}
4145 
4146 	rc->create_reloc_tree = 0;
4147 	set_reloc_control(rc);
4148 
4149 	backref_cache_cleanup(&rc->backref_cache);
4150 	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1);
4151 
4152 	err = prepare_to_merge(rc, err);
4153 
4154 	merge_reloc_roots(rc);
4155 
4156 	rc->merge_reloc_tree = 0;
4157 	unset_reloc_control(rc);
4158 	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1);
4159 
4160 	/* get rid of pinned extents */
4161 	trans = btrfs_join_transaction(rc->extent_root);
4162 	if (IS_ERR(trans)) {
4163 		err = PTR_ERR(trans);
4164 		goto out_free;
4165 	}
4166 	btrfs_commit_transaction(trans);
4167 	ret = clean_dirty_subvols(rc);
4168 	if (ret < 0 && !err)
4169 		err = ret;
4170 out_free:
4171 	btrfs_free_block_rsv(fs_info, rc->block_rsv);
4172 	btrfs_free_path(path);
4173 	return err;
4174 }
4175 
4176 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
4177 				 struct btrfs_root *root, u64 objectid)
4178 {
4179 	struct btrfs_path *path;
4180 	struct btrfs_inode_item *item;
4181 	struct extent_buffer *leaf;
4182 	int ret;
4183 
4184 	path = btrfs_alloc_path();
4185 	if (!path)
4186 		return -ENOMEM;
4187 
4188 	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
4189 	if (ret)
4190 		goto out;
4191 
4192 	leaf = path->nodes[0];
4193 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
4194 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
4195 	btrfs_set_inode_generation(leaf, item, 1);
4196 	btrfs_set_inode_size(leaf, item, 0);
4197 	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
4198 	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
4199 					  BTRFS_INODE_PREALLOC);
4200 	btrfs_mark_buffer_dirty(leaf);
4201 out:
4202 	btrfs_free_path(path);
4203 	return ret;
4204 }
4205 
4206 /*
4207  * helper to create inode for data relocation.
4208  * the inode is in data relocation tree and its link count is 0
4209  */
4210 static noinline_for_stack
4211 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
4212 				 struct btrfs_block_group_cache *group)
4213 {
4214 	struct inode *inode = NULL;
4215 	struct btrfs_trans_handle *trans;
4216 	struct btrfs_root *root;
4217 	struct btrfs_key key;
4218 	u64 objectid;
4219 	int err = 0;
4220 
4221 	root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
4222 	if (IS_ERR(root))
4223 		return ERR_CAST(root);
4224 
4225 	trans = btrfs_start_transaction(root, 6);
4226 	if (IS_ERR(trans))
4227 		return ERR_CAST(trans);
4228 
4229 	err = btrfs_find_free_objectid(root, &objectid);
4230 	if (err)
4231 		goto out;
4232 
4233 	err = __insert_orphan_inode(trans, root, objectid);
4234 	BUG_ON(err);
4235 
4236 	key.objectid = objectid;
4237 	key.type = BTRFS_INODE_ITEM_KEY;
4238 	key.offset = 0;
4239 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4240 	BUG_ON(IS_ERR(inode));
4241 	BTRFS_I(inode)->index_cnt = group->key.objectid;
4242 
4243 	err = btrfs_orphan_add(trans, BTRFS_I(inode));
4244 out:
4245 	btrfs_end_transaction(trans);
4246 	btrfs_btree_balance_dirty(fs_info);
4247 	if (err) {
4248 		if (inode)
4249 			iput(inode);
4250 		inode = ERR_PTR(err);
4251 	}
4252 	return inode;
4253 }
4254 
4255 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
4256 {
4257 	struct reloc_control *rc;
4258 
4259 	rc = kzalloc(sizeof(*rc), GFP_NOFS);
4260 	if (!rc)
4261 		return NULL;
4262 
4263 	INIT_LIST_HEAD(&rc->reloc_roots);
4264 	INIT_LIST_HEAD(&rc->dirty_subvol_roots);
4265 	backref_cache_init(&rc->backref_cache);
4266 	mapping_tree_init(&rc->reloc_root_tree);
4267 	extent_io_tree_init(fs_info, &rc->processed_blocks,
4268 			    IO_TREE_RELOC_BLOCKS, NULL);
4269 	return rc;
4270 }
4271 
4272 /*
4273  * Print the block group being relocated
4274  */
4275 static void describe_relocation(struct btrfs_fs_info *fs_info,
4276 				struct btrfs_block_group_cache *block_group)
4277 {
4278 	char buf[128] = {'\0'};
4279 
4280 	btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf));
4281 
4282 	btrfs_info(fs_info,
4283 		   "relocating block group %llu flags %s",
4284 		   block_group->key.objectid, buf);
4285 }
4286 
4287 /*
4288  * function to relocate all extents in a block group.
4289  */
4290 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
4291 {
4292 	struct btrfs_block_group_cache *bg;
4293 	struct btrfs_root *extent_root = fs_info->extent_root;
4294 	struct reloc_control *rc;
4295 	struct inode *inode;
4296 	struct btrfs_path *path;
4297 	int ret;
4298 	int rw = 0;
4299 	int err = 0;
4300 
4301 	bg = btrfs_lookup_block_group(fs_info, group_start);
4302 	if (!bg)
4303 		return -ENOENT;
4304 
4305 	if (btrfs_pinned_by_swapfile(fs_info, bg)) {
4306 		btrfs_put_block_group(bg);
4307 		return -ETXTBSY;
4308 	}
4309 
4310 	rc = alloc_reloc_control(fs_info);
4311 	if (!rc) {
4312 		btrfs_put_block_group(bg);
4313 		return -ENOMEM;
4314 	}
4315 
4316 	rc->extent_root = extent_root;
4317 	rc->block_group = bg;
4318 
4319 	ret = btrfs_inc_block_group_ro(rc->block_group);
4320 	if (ret) {
4321 		err = ret;
4322 		goto out;
4323 	}
4324 	rw = 1;
4325 
4326 	path = btrfs_alloc_path();
4327 	if (!path) {
4328 		err = -ENOMEM;
4329 		goto out;
4330 	}
4331 
4332 	inode = lookup_free_space_inode(rc->block_group, path);
4333 	btrfs_free_path(path);
4334 
4335 	if (!IS_ERR(inode))
4336 		ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
4337 	else
4338 		ret = PTR_ERR(inode);
4339 
4340 	if (ret && ret != -ENOENT) {
4341 		err = ret;
4342 		goto out;
4343 	}
4344 
4345 	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4346 	if (IS_ERR(rc->data_inode)) {
4347 		err = PTR_ERR(rc->data_inode);
4348 		rc->data_inode = NULL;
4349 		goto out;
4350 	}
4351 
4352 	describe_relocation(fs_info, rc->block_group);
4353 
4354 	btrfs_wait_block_group_reservations(rc->block_group);
4355 	btrfs_wait_nocow_writers(rc->block_group);
4356 	btrfs_wait_ordered_roots(fs_info, U64_MAX,
4357 				 rc->block_group->key.objectid,
4358 				 rc->block_group->key.offset);
4359 
4360 	while (1) {
4361 		mutex_lock(&fs_info->cleaner_mutex);
4362 		ret = relocate_block_group(rc);
4363 		mutex_unlock(&fs_info->cleaner_mutex);
4364 		if (ret < 0)
4365 			err = ret;
4366 
4367 		/*
4368 		 * We may have gotten ENOSPC after we already dirtied some
4369 		 * extents.  If writeout happens while we're relocating a
4370 		 * different block group we could end up hitting the
4371 		 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
4372 		 * btrfs_reloc_cow_block.  Make sure we write everything out
4373 		 * properly so we don't trip over this problem, and then break
4374 		 * out of the loop if we hit an error.
4375 		 */
4376 		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4377 			ret = btrfs_wait_ordered_range(rc->data_inode, 0,
4378 						       (u64)-1);
4379 			if (ret)
4380 				err = ret;
4381 			invalidate_mapping_pages(rc->data_inode->i_mapping,
4382 						 0, -1);
4383 			rc->stage = UPDATE_DATA_PTRS;
4384 		}
4385 
4386 		if (err < 0)
4387 			goto out;
4388 
4389 		if (rc->extents_found == 0)
4390 			break;
4391 
4392 		btrfs_info(fs_info, "found %llu extents", rc->extents_found);
4393 
4394 	}
4395 
4396 	WARN_ON(rc->block_group->pinned > 0);
4397 	WARN_ON(rc->block_group->reserved > 0);
4398 	WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0);
4399 out:
4400 	if (err && rw)
4401 		btrfs_dec_block_group_ro(rc->block_group);
4402 	iput(rc->data_inode);
4403 	btrfs_put_block_group(rc->block_group);
4404 	kfree(rc);
4405 	return err;
4406 }
4407 
4408 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4409 {
4410 	struct btrfs_fs_info *fs_info = root->fs_info;
4411 	struct btrfs_trans_handle *trans;
4412 	int ret, err;
4413 
4414 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
4415 	if (IS_ERR(trans))
4416 		return PTR_ERR(trans);
4417 
4418 	memset(&root->root_item.drop_progress, 0,
4419 		sizeof(root->root_item.drop_progress));
4420 	root->root_item.drop_level = 0;
4421 	btrfs_set_root_refs(&root->root_item, 0);
4422 	ret = btrfs_update_root(trans, fs_info->tree_root,
4423 				&root->root_key, &root->root_item);
4424 
4425 	err = btrfs_end_transaction(trans);
4426 	if (err)
4427 		return err;
4428 	return ret;
4429 }
4430 
4431 /*
4432  * recover relocation interrupted by system crash.
4433  *
4434  * this function resumes merging reloc trees with corresponding fs trees.
4435  * this is important for keeping the sharing of tree blocks
4436  */
4437 int btrfs_recover_relocation(struct btrfs_root *root)
4438 {
4439 	struct btrfs_fs_info *fs_info = root->fs_info;
4440 	LIST_HEAD(reloc_roots);
4441 	struct btrfs_key key;
4442 	struct btrfs_root *fs_root;
4443 	struct btrfs_root *reloc_root;
4444 	struct btrfs_path *path;
4445 	struct extent_buffer *leaf;
4446 	struct reloc_control *rc = NULL;
4447 	struct btrfs_trans_handle *trans;
4448 	int ret;
4449 	int err = 0;
4450 
4451 	path = btrfs_alloc_path();
4452 	if (!path)
4453 		return -ENOMEM;
4454 	path->reada = READA_BACK;
4455 
4456 	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4457 	key.type = BTRFS_ROOT_ITEM_KEY;
4458 	key.offset = (u64)-1;
4459 
4460 	while (1) {
4461 		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
4462 					path, 0, 0);
4463 		if (ret < 0) {
4464 			err = ret;
4465 			goto out;
4466 		}
4467 		if (ret > 0) {
4468 			if (path->slots[0] == 0)
4469 				break;
4470 			path->slots[0]--;
4471 		}
4472 		leaf = path->nodes[0];
4473 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4474 		btrfs_release_path(path);
4475 
4476 		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4477 		    key.type != BTRFS_ROOT_ITEM_KEY)
4478 			break;
4479 
4480 		reloc_root = btrfs_read_fs_root(root, &key);
4481 		if (IS_ERR(reloc_root)) {
4482 			err = PTR_ERR(reloc_root);
4483 			goto out;
4484 		}
4485 
4486 		list_add(&reloc_root->root_list, &reloc_roots);
4487 
4488 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4489 			fs_root = read_fs_root(fs_info,
4490 					       reloc_root->root_key.offset);
4491 			if (IS_ERR(fs_root)) {
4492 				ret = PTR_ERR(fs_root);
4493 				if (ret != -ENOENT) {
4494 					err = ret;
4495 					goto out;
4496 				}
4497 				ret = mark_garbage_root(reloc_root);
4498 				if (ret < 0) {
4499 					err = ret;
4500 					goto out;
4501 				}
4502 			}
4503 		}
4504 
4505 		if (key.offset == 0)
4506 			break;
4507 
4508 		key.offset--;
4509 	}
4510 	btrfs_release_path(path);
4511 
4512 	if (list_empty(&reloc_roots))
4513 		goto out;
4514 
4515 	rc = alloc_reloc_control(fs_info);
4516 	if (!rc) {
4517 		err = -ENOMEM;
4518 		goto out;
4519 	}
4520 
4521 	rc->extent_root = fs_info->extent_root;
4522 
4523 	set_reloc_control(rc);
4524 
4525 	trans = btrfs_join_transaction(rc->extent_root);
4526 	if (IS_ERR(trans)) {
4527 		unset_reloc_control(rc);
4528 		err = PTR_ERR(trans);
4529 		goto out_free;
4530 	}
4531 
4532 	rc->merge_reloc_tree = 1;
4533 
4534 	while (!list_empty(&reloc_roots)) {
4535 		reloc_root = list_entry(reloc_roots.next,
4536 					struct btrfs_root, root_list);
4537 		list_del(&reloc_root->root_list);
4538 
4539 		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4540 			list_add_tail(&reloc_root->root_list,
4541 				      &rc->reloc_roots);
4542 			continue;
4543 		}
4544 
4545 		fs_root = read_fs_root(fs_info, reloc_root->root_key.offset);
4546 		if (IS_ERR(fs_root)) {
4547 			err = PTR_ERR(fs_root);
4548 			goto out_free;
4549 		}
4550 
4551 		err = __add_reloc_root(reloc_root);
4552 		BUG_ON(err < 0); /* -ENOMEM or logic error */
4553 		fs_root->reloc_root = reloc_root;
4554 	}
4555 
4556 	err = btrfs_commit_transaction(trans);
4557 	if (err)
4558 		goto out_free;
4559 
4560 	merge_reloc_roots(rc);
4561 
4562 	unset_reloc_control(rc);
4563 
4564 	trans = btrfs_join_transaction(rc->extent_root);
4565 	if (IS_ERR(trans)) {
4566 		err = PTR_ERR(trans);
4567 		goto out_free;
4568 	}
4569 	err = btrfs_commit_transaction(trans);
4570 
4571 	ret = clean_dirty_subvols(rc);
4572 	if (ret < 0 && !err)
4573 		err = ret;
4574 out_free:
4575 	kfree(rc);
4576 out:
4577 	if (!list_empty(&reloc_roots))
4578 		free_reloc_roots(&reloc_roots);
4579 
4580 	btrfs_free_path(path);
4581 
4582 	if (err == 0) {
4583 		/* cleanup orphan inode in data relocation tree */
4584 		fs_root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
4585 		if (IS_ERR(fs_root))
4586 			err = PTR_ERR(fs_root);
4587 		else
4588 			err = btrfs_orphan_cleanup(fs_root);
4589 	}
4590 	return err;
4591 }
4592 
4593 /*
4594  * helper to add ordered checksum for data relocation.
4595  *
4596  * cloning checksum properly handles the nodatasum extents.
4597  * it also saves CPU time to re-calculate the checksum.
4598  */
4599 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
4600 {
4601 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4602 	struct btrfs_ordered_sum *sums;
4603 	struct btrfs_ordered_extent *ordered;
4604 	int ret;
4605 	u64 disk_bytenr;
4606 	u64 new_bytenr;
4607 	LIST_HEAD(list);
4608 
4609 	ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4610 	BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
4611 
4612 	disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
4613 	ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr,
4614 				       disk_bytenr + len - 1, &list, 0);
4615 	if (ret)
4616 		goto out;
4617 
4618 	while (!list_empty(&list)) {
4619 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4620 		list_del_init(&sums->list);
4621 
4622 		/*
4623 		 * We need to offset the new_bytenr based on where the csum is.
4624 		 * We need to do this because we will read in entire prealloc
4625 		 * extents but we may have written to say the middle of the
4626 		 * prealloc extent, so we need to make sure the csum goes with
4627 		 * the right disk offset.
4628 		 *
4629 		 * We can do this because the data reloc inode refers strictly
4630 		 * to the on disk bytes, so we don't have to worry about
4631 		 * disk_len vs real len like with real inodes since it's all
4632 		 * disk length.
4633 		 */
4634 		new_bytenr = ordered->start + (sums->bytenr - disk_bytenr);
4635 		sums->bytenr = new_bytenr;
4636 
4637 		btrfs_add_ordered_sum(ordered, sums);
4638 	}
4639 out:
4640 	btrfs_put_ordered_extent(ordered);
4641 	return ret;
4642 }
4643 
4644 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4645 			  struct btrfs_root *root, struct extent_buffer *buf,
4646 			  struct extent_buffer *cow)
4647 {
4648 	struct btrfs_fs_info *fs_info = root->fs_info;
4649 	struct reloc_control *rc;
4650 	struct backref_node *node;
4651 	int first_cow = 0;
4652 	int level;
4653 	int ret = 0;
4654 
4655 	rc = fs_info->reloc_ctl;
4656 	if (!rc)
4657 		return 0;
4658 
4659 	BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
4660 	       root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
4661 
4662 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
4663 		if (buf == root->node)
4664 			__update_reloc_root(root, cow->start);
4665 	}
4666 
4667 	level = btrfs_header_level(buf);
4668 	if (btrfs_header_generation(buf) <=
4669 	    btrfs_root_last_snapshot(&root->root_item))
4670 		first_cow = 1;
4671 
4672 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4673 	    rc->create_reloc_tree) {
4674 		WARN_ON(!first_cow && level == 0);
4675 
4676 		node = rc->backref_cache.path[level];
4677 		BUG_ON(node->bytenr != buf->start &&
4678 		       node->new_bytenr != buf->start);
4679 
4680 		drop_node_buffer(node);
4681 		extent_buffer_get(cow);
4682 		node->eb = cow;
4683 		node->new_bytenr = cow->start;
4684 
4685 		if (!node->pending) {
4686 			list_move_tail(&node->list,
4687 				       &rc->backref_cache.pending[level]);
4688 			node->pending = 1;
4689 		}
4690 
4691 		if (first_cow)
4692 			__mark_block_processed(rc, node);
4693 
4694 		if (first_cow && level > 0)
4695 			rc->nodes_relocated += buf->len;
4696 	}
4697 
4698 	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4699 		ret = replace_file_extents(trans, rc, root, cow);
4700 	return ret;
4701 }
4702 
4703 /*
4704  * called before creating snapshot. it calculates metadata reservation
4705  * required for relocating tree blocks in the snapshot
4706  */
4707 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4708 			      u64 *bytes_to_reserve)
4709 {
4710 	struct btrfs_root *root = pending->root;
4711 	struct reloc_control *rc = root->fs_info->reloc_ctl;
4712 
4713 	if (!root->reloc_root || !rc)
4714 		return;
4715 
4716 	if (!rc->merge_reloc_tree)
4717 		return;
4718 
4719 	root = root->reloc_root;
4720 	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4721 	/*
4722 	 * relocation is in the stage of merging trees. the space
4723 	 * used by merging a reloc tree is twice the size of
4724 	 * relocated tree nodes in the worst case. half for cowing
4725 	 * the reloc tree, half for cowing the fs tree. the space
4726 	 * used by cowing the reloc tree will be freed after the
4727 	 * tree is dropped. if we create snapshot, cowing the fs
4728 	 * tree may use more space than it frees. so we need
4729 	 * reserve extra space.
4730 	 */
4731 	*bytes_to_reserve += rc->nodes_relocated;
4732 }
4733 
4734 /*
4735  * called after snapshot is created. migrate block reservation
4736  * and create reloc root for the newly created snapshot
4737  */
4738 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4739 			       struct btrfs_pending_snapshot *pending)
4740 {
4741 	struct btrfs_root *root = pending->root;
4742 	struct btrfs_root *reloc_root;
4743 	struct btrfs_root *new_root;
4744 	struct reloc_control *rc = root->fs_info->reloc_ctl;
4745 	int ret;
4746 
4747 	if (!root->reloc_root || !rc)
4748 		return 0;
4749 
4750 	rc = root->fs_info->reloc_ctl;
4751 	rc->merging_rsv_size += rc->nodes_relocated;
4752 
4753 	if (rc->merge_reloc_tree) {
4754 		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4755 					      rc->block_rsv,
4756 					      rc->nodes_relocated, true);
4757 		if (ret)
4758 			return ret;
4759 	}
4760 
4761 	new_root = pending->snap;
4762 	reloc_root = create_reloc_root(trans, root->reloc_root,
4763 				       new_root->root_key.objectid);
4764 	if (IS_ERR(reloc_root))
4765 		return PTR_ERR(reloc_root);
4766 
4767 	ret = __add_reloc_root(reloc_root);
4768 	BUG_ON(ret < 0);
4769 	new_root->reloc_root = reloc_root;
4770 
4771 	if (rc->create_reloc_tree)
4772 		ret = clone_backref_node(trans, rc, root, reloc_root);
4773 	return ret;
4774 }
4775