1 /* 2 * Copyright (C) 2009 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/sched.h> 20 #include <linux/pagemap.h> 21 #include <linux/writeback.h> 22 #include <linux/blkdev.h> 23 #include <linux/rbtree.h> 24 #include <linux/slab.h> 25 #include "ctree.h" 26 #include "disk-io.h" 27 #include "transaction.h" 28 #include "volumes.h" 29 #include "locking.h" 30 #include "btrfs_inode.h" 31 #include "async-thread.h" 32 #include "free-space-cache.h" 33 #include "inode-map.h" 34 35 /* 36 * backref_node, mapping_node and tree_block start with this 37 */ 38 struct tree_entry { 39 struct rb_node rb_node; 40 u64 bytenr; 41 }; 42 43 /* 44 * present a tree block in the backref cache 45 */ 46 struct backref_node { 47 struct rb_node rb_node; 48 u64 bytenr; 49 50 u64 new_bytenr; 51 /* objectid of tree block owner, can be not uptodate */ 52 u64 owner; 53 /* link to pending, changed or detached list */ 54 struct list_head list; 55 /* list of upper level blocks reference this block */ 56 struct list_head upper; 57 /* list of child blocks in the cache */ 58 struct list_head lower; 59 /* NULL if this node is not tree root */ 60 struct btrfs_root *root; 61 /* extent buffer got by COW the block */ 62 struct extent_buffer *eb; 63 /* level of tree block */ 64 unsigned int level:8; 65 /* is the block in non-reference counted tree */ 66 unsigned int cowonly:1; 67 /* 1 if no child node in the cache */ 68 unsigned int lowest:1; 69 /* is the extent buffer locked */ 70 unsigned int locked:1; 71 /* has the block been processed */ 72 unsigned int processed:1; 73 /* have backrefs of this block been checked */ 74 unsigned int checked:1; 75 /* 76 * 1 if corresponding block has been cowed but some upper 77 * level block pointers may not point to the new location 78 */ 79 unsigned int pending:1; 80 /* 81 * 1 if the backref node isn't connected to any other 82 * backref node. 83 */ 84 unsigned int detached:1; 85 }; 86 87 /* 88 * present a block pointer in the backref cache 89 */ 90 struct backref_edge { 91 struct list_head list[2]; 92 struct backref_node *node[2]; 93 }; 94 95 #define LOWER 0 96 #define UPPER 1 97 98 struct backref_cache { 99 /* red black tree of all backref nodes in the cache */ 100 struct rb_root rb_root; 101 /* for passing backref nodes to btrfs_reloc_cow_block */ 102 struct backref_node *path[BTRFS_MAX_LEVEL]; 103 /* 104 * list of blocks that have been cowed but some block 105 * pointers in upper level blocks may not reflect the 106 * new location 107 */ 108 struct list_head pending[BTRFS_MAX_LEVEL]; 109 /* list of backref nodes with no child node */ 110 struct list_head leaves; 111 /* list of blocks that have been cowed in current transaction */ 112 struct list_head changed; 113 /* list of detached backref node. */ 114 struct list_head detached; 115 116 u64 last_trans; 117 118 int nr_nodes; 119 int nr_edges; 120 }; 121 122 /* 123 * map address of tree root to tree 124 */ 125 struct mapping_node { 126 struct rb_node rb_node; 127 u64 bytenr; 128 void *data; 129 }; 130 131 struct mapping_tree { 132 struct rb_root rb_root; 133 spinlock_t lock; 134 }; 135 136 /* 137 * present a tree block to process 138 */ 139 struct tree_block { 140 struct rb_node rb_node; 141 u64 bytenr; 142 struct btrfs_key key; 143 unsigned int level:8; 144 unsigned int key_ready:1; 145 }; 146 147 #define MAX_EXTENTS 128 148 149 struct file_extent_cluster { 150 u64 start; 151 u64 end; 152 u64 boundary[MAX_EXTENTS]; 153 unsigned int nr; 154 }; 155 156 struct reloc_control { 157 /* block group to relocate */ 158 struct btrfs_block_group_cache *block_group; 159 /* extent tree */ 160 struct btrfs_root *extent_root; 161 /* inode for moving data */ 162 struct inode *data_inode; 163 164 struct btrfs_block_rsv *block_rsv; 165 166 struct backref_cache backref_cache; 167 168 struct file_extent_cluster cluster; 169 /* tree blocks have been processed */ 170 struct extent_io_tree processed_blocks; 171 /* map start of tree root to corresponding reloc tree */ 172 struct mapping_tree reloc_root_tree; 173 /* list of reloc trees */ 174 struct list_head reloc_roots; 175 /* size of metadata reservation for merging reloc trees */ 176 u64 merging_rsv_size; 177 /* size of relocated tree nodes */ 178 u64 nodes_relocated; 179 180 u64 search_start; 181 u64 extents_found; 182 183 unsigned int stage:8; 184 unsigned int create_reloc_tree:1; 185 unsigned int merge_reloc_tree:1; 186 unsigned int found_file_extent:1; 187 unsigned int commit_transaction:1; 188 }; 189 190 /* stages of data relocation */ 191 #define MOVE_DATA_EXTENTS 0 192 #define UPDATE_DATA_PTRS 1 193 194 static void remove_backref_node(struct backref_cache *cache, 195 struct backref_node *node); 196 static void __mark_block_processed(struct reloc_control *rc, 197 struct backref_node *node); 198 199 static void mapping_tree_init(struct mapping_tree *tree) 200 { 201 tree->rb_root = RB_ROOT; 202 spin_lock_init(&tree->lock); 203 } 204 205 static void backref_cache_init(struct backref_cache *cache) 206 { 207 int i; 208 cache->rb_root = RB_ROOT; 209 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 210 INIT_LIST_HEAD(&cache->pending[i]); 211 INIT_LIST_HEAD(&cache->changed); 212 INIT_LIST_HEAD(&cache->detached); 213 INIT_LIST_HEAD(&cache->leaves); 214 } 215 216 static void backref_cache_cleanup(struct backref_cache *cache) 217 { 218 struct backref_node *node; 219 int i; 220 221 while (!list_empty(&cache->detached)) { 222 node = list_entry(cache->detached.next, 223 struct backref_node, list); 224 remove_backref_node(cache, node); 225 } 226 227 while (!list_empty(&cache->leaves)) { 228 node = list_entry(cache->leaves.next, 229 struct backref_node, lower); 230 remove_backref_node(cache, node); 231 } 232 233 cache->last_trans = 0; 234 235 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 236 BUG_ON(!list_empty(&cache->pending[i])); 237 BUG_ON(!list_empty(&cache->changed)); 238 BUG_ON(!list_empty(&cache->detached)); 239 BUG_ON(!RB_EMPTY_ROOT(&cache->rb_root)); 240 BUG_ON(cache->nr_nodes); 241 BUG_ON(cache->nr_edges); 242 } 243 244 static struct backref_node *alloc_backref_node(struct backref_cache *cache) 245 { 246 struct backref_node *node; 247 248 node = kzalloc(sizeof(*node), GFP_NOFS); 249 if (node) { 250 INIT_LIST_HEAD(&node->list); 251 INIT_LIST_HEAD(&node->upper); 252 INIT_LIST_HEAD(&node->lower); 253 RB_CLEAR_NODE(&node->rb_node); 254 cache->nr_nodes++; 255 } 256 return node; 257 } 258 259 static void free_backref_node(struct backref_cache *cache, 260 struct backref_node *node) 261 { 262 if (node) { 263 cache->nr_nodes--; 264 kfree(node); 265 } 266 } 267 268 static struct backref_edge *alloc_backref_edge(struct backref_cache *cache) 269 { 270 struct backref_edge *edge; 271 272 edge = kzalloc(sizeof(*edge), GFP_NOFS); 273 if (edge) 274 cache->nr_edges++; 275 return edge; 276 } 277 278 static void free_backref_edge(struct backref_cache *cache, 279 struct backref_edge *edge) 280 { 281 if (edge) { 282 cache->nr_edges--; 283 kfree(edge); 284 } 285 } 286 287 static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr, 288 struct rb_node *node) 289 { 290 struct rb_node **p = &root->rb_node; 291 struct rb_node *parent = NULL; 292 struct tree_entry *entry; 293 294 while (*p) { 295 parent = *p; 296 entry = rb_entry(parent, struct tree_entry, rb_node); 297 298 if (bytenr < entry->bytenr) 299 p = &(*p)->rb_left; 300 else if (bytenr > entry->bytenr) 301 p = &(*p)->rb_right; 302 else 303 return parent; 304 } 305 306 rb_link_node(node, parent, p); 307 rb_insert_color(node, root); 308 return NULL; 309 } 310 311 static struct rb_node *tree_search(struct rb_root *root, u64 bytenr) 312 { 313 struct rb_node *n = root->rb_node; 314 struct tree_entry *entry; 315 316 while (n) { 317 entry = rb_entry(n, struct tree_entry, rb_node); 318 319 if (bytenr < entry->bytenr) 320 n = n->rb_left; 321 else if (bytenr > entry->bytenr) 322 n = n->rb_right; 323 else 324 return n; 325 } 326 return NULL; 327 } 328 329 /* 330 * walk up backref nodes until reach node presents tree root 331 */ 332 static struct backref_node *walk_up_backref(struct backref_node *node, 333 struct backref_edge *edges[], 334 int *index) 335 { 336 struct backref_edge *edge; 337 int idx = *index; 338 339 while (!list_empty(&node->upper)) { 340 edge = list_entry(node->upper.next, 341 struct backref_edge, list[LOWER]); 342 edges[idx++] = edge; 343 node = edge->node[UPPER]; 344 } 345 BUG_ON(node->detached); 346 *index = idx; 347 return node; 348 } 349 350 /* 351 * walk down backref nodes to find start of next reference path 352 */ 353 static struct backref_node *walk_down_backref(struct backref_edge *edges[], 354 int *index) 355 { 356 struct backref_edge *edge; 357 struct backref_node *lower; 358 int idx = *index; 359 360 while (idx > 0) { 361 edge = edges[idx - 1]; 362 lower = edge->node[LOWER]; 363 if (list_is_last(&edge->list[LOWER], &lower->upper)) { 364 idx--; 365 continue; 366 } 367 edge = list_entry(edge->list[LOWER].next, 368 struct backref_edge, list[LOWER]); 369 edges[idx - 1] = edge; 370 *index = idx; 371 return edge->node[UPPER]; 372 } 373 *index = 0; 374 return NULL; 375 } 376 377 static void unlock_node_buffer(struct backref_node *node) 378 { 379 if (node->locked) { 380 btrfs_tree_unlock(node->eb); 381 node->locked = 0; 382 } 383 } 384 385 static void drop_node_buffer(struct backref_node *node) 386 { 387 if (node->eb) { 388 unlock_node_buffer(node); 389 free_extent_buffer(node->eb); 390 node->eb = NULL; 391 } 392 } 393 394 static void drop_backref_node(struct backref_cache *tree, 395 struct backref_node *node) 396 { 397 BUG_ON(!list_empty(&node->upper)); 398 399 drop_node_buffer(node); 400 list_del(&node->list); 401 list_del(&node->lower); 402 if (!RB_EMPTY_NODE(&node->rb_node)) 403 rb_erase(&node->rb_node, &tree->rb_root); 404 free_backref_node(tree, node); 405 } 406 407 /* 408 * remove a backref node from the backref cache 409 */ 410 static void remove_backref_node(struct backref_cache *cache, 411 struct backref_node *node) 412 { 413 struct backref_node *upper; 414 struct backref_edge *edge; 415 416 if (!node) 417 return; 418 419 BUG_ON(!node->lowest && !node->detached); 420 while (!list_empty(&node->upper)) { 421 edge = list_entry(node->upper.next, struct backref_edge, 422 list[LOWER]); 423 upper = edge->node[UPPER]; 424 list_del(&edge->list[LOWER]); 425 list_del(&edge->list[UPPER]); 426 free_backref_edge(cache, edge); 427 428 if (RB_EMPTY_NODE(&upper->rb_node)) { 429 BUG_ON(!list_empty(&node->upper)); 430 drop_backref_node(cache, node); 431 node = upper; 432 node->lowest = 1; 433 continue; 434 } 435 /* 436 * add the node to leaf node list if no other 437 * child block cached. 438 */ 439 if (list_empty(&upper->lower)) { 440 list_add_tail(&upper->lower, &cache->leaves); 441 upper->lowest = 1; 442 } 443 } 444 445 drop_backref_node(cache, node); 446 } 447 448 static void update_backref_node(struct backref_cache *cache, 449 struct backref_node *node, u64 bytenr) 450 { 451 struct rb_node *rb_node; 452 rb_erase(&node->rb_node, &cache->rb_root); 453 node->bytenr = bytenr; 454 rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node); 455 BUG_ON(rb_node); 456 } 457 458 /* 459 * update backref cache after a transaction commit 460 */ 461 static int update_backref_cache(struct btrfs_trans_handle *trans, 462 struct backref_cache *cache) 463 { 464 struct backref_node *node; 465 int level = 0; 466 467 if (cache->last_trans == 0) { 468 cache->last_trans = trans->transid; 469 return 0; 470 } 471 472 if (cache->last_trans == trans->transid) 473 return 0; 474 475 /* 476 * detached nodes are used to avoid unnecessary backref 477 * lookup. transaction commit changes the extent tree. 478 * so the detached nodes are no longer useful. 479 */ 480 while (!list_empty(&cache->detached)) { 481 node = list_entry(cache->detached.next, 482 struct backref_node, list); 483 remove_backref_node(cache, node); 484 } 485 486 while (!list_empty(&cache->changed)) { 487 node = list_entry(cache->changed.next, 488 struct backref_node, list); 489 list_del_init(&node->list); 490 BUG_ON(node->pending); 491 update_backref_node(cache, node, node->new_bytenr); 492 } 493 494 /* 495 * some nodes can be left in the pending list if there were 496 * errors during processing the pending nodes. 497 */ 498 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 499 list_for_each_entry(node, &cache->pending[level], list) { 500 BUG_ON(!node->pending); 501 if (node->bytenr == node->new_bytenr) 502 continue; 503 update_backref_node(cache, node, node->new_bytenr); 504 } 505 } 506 507 cache->last_trans = 0; 508 return 1; 509 } 510 511 512 static int should_ignore_root(struct btrfs_root *root) 513 { 514 struct btrfs_root *reloc_root; 515 516 if (!root->ref_cows) 517 return 0; 518 519 reloc_root = root->reloc_root; 520 if (!reloc_root) 521 return 0; 522 523 if (btrfs_root_last_snapshot(&reloc_root->root_item) == 524 root->fs_info->running_transaction->transid - 1) 525 return 0; 526 /* 527 * if there is reloc tree and it was created in previous 528 * transaction backref lookup can find the reloc tree, 529 * so backref node for the fs tree root is useless for 530 * relocation. 531 */ 532 return 1; 533 } 534 /* 535 * find reloc tree by address of tree root 536 */ 537 static struct btrfs_root *find_reloc_root(struct reloc_control *rc, 538 u64 bytenr) 539 { 540 struct rb_node *rb_node; 541 struct mapping_node *node; 542 struct btrfs_root *root = NULL; 543 544 spin_lock(&rc->reloc_root_tree.lock); 545 rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr); 546 if (rb_node) { 547 node = rb_entry(rb_node, struct mapping_node, rb_node); 548 root = (struct btrfs_root *)node->data; 549 } 550 spin_unlock(&rc->reloc_root_tree.lock); 551 return root; 552 } 553 554 static int is_cowonly_root(u64 root_objectid) 555 { 556 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID || 557 root_objectid == BTRFS_EXTENT_TREE_OBJECTID || 558 root_objectid == BTRFS_CHUNK_TREE_OBJECTID || 559 root_objectid == BTRFS_DEV_TREE_OBJECTID || 560 root_objectid == BTRFS_TREE_LOG_OBJECTID || 561 root_objectid == BTRFS_CSUM_TREE_OBJECTID) 562 return 1; 563 return 0; 564 } 565 566 static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info, 567 u64 root_objectid) 568 { 569 struct btrfs_key key; 570 571 key.objectid = root_objectid; 572 key.type = BTRFS_ROOT_ITEM_KEY; 573 if (is_cowonly_root(root_objectid)) 574 key.offset = 0; 575 else 576 key.offset = (u64)-1; 577 578 return btrfs_read_fs_root_no_name(fs_info, &key); 579 } 580 581 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 582 static noinline_for_stack 583 struct btrfs_root *find_tree_root(struct reloc_control *rc, 584 struct extent_buffer *leaf, 585 struct btrfs_extent_ref_v0 *ref0) 586 { 587 struct btrfs_root *root; 588 u64 root_objectid = btrfs_ref_root_v0(leaf, ref0); 589 u64 generation = btrfs_ref_generation_v0(leaf, ref0); 590 591 BUG_ON(root_objectid == BTRFS_TREE_RELOC_OBJECTID); 592 593 root = read_fs_root(rc->extent_root->fs_info, root_objectid); 594 BUG_ON(IS_ERR(root)); 595 596 if (root->ref_cows && 597 generation != btrfs_root_generation(&root->root_item)) 598 return NULL; 599 600 return root; 601 } 602 #endif 603 604 static noinline_for_stack 605 int find_inline_backref(struct extent_buffer *leaf, int slot, 606 unsigned long *ptr, unsigned long *end) 607 { 608 struct btrfs_extent_item *ei; 609 struct btrfs_tree_block_info *bi; 610 u32 item_size; 611 612 item_size = btrfs_item_size_nr(leaf, slot); 613 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 614 if (item_size < sizeof(*ei)) { 615 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 616 return 1; 617 } 618 #endif 619 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 620 WARN_ON(!(btrfs_extent_flags(leaf, ei) & 621 BTRFS_EXTENT_FLAG_TREE_BLOCK)); 622 623 if (item_size <= sizeof(*ei) + sizeof(*bi)) { 624 WARN_ON(item_size < sizeof(*ei) + sizeof(*bi)); 625 return 1; 626 } 627 628 bi = (struct btrfs_tree_block_info *)(ei + 1); 629 *ptr = (unsigned long)(bi + 1); 630 *end = (unsigned long)ei + item_size; 631 return 0; 632 } 633 634 /* 635 * build backref tree for a given tree block. root of the backref tree 636 * corresponds the tree block, leaves of the backref tree correspond 637 * roots of b-trees that reference the tree block. 638 * 639 * the basic idea of this function is check backrefs of a given block 640 * to find upper level blocks that refernece the block, and then check 641 * bakcrefs of these upper level blocks recursively. the recursion stop 642 * when tree root is reached or backrefs for the block is cached. 643 * 644 * NOTE: if we find backrefs for a block are cached, we know backrefs 645 * for all upper level blocks that directly/indirectly reference the 646 * block are also cached. 647 */ 648 static noinline_for_stack 649 struct backref_node *build_backref_tree(struct reloc_control *rc, 650 struct btrfs_key *node_key, 651 int level, u64 bytenr) 652 { 653 struct backref_cache *cache = &rc->backref_cache; 654 struct btrfs_path *path1; 655 struct btrfs_path *path2; 656 struct extent_buffer *eb; 657 struct btrfs_root *root; 658 struct backref_node *cur; 659 struct backref_node *upper; 660 struct backref_node *lower; 661 struct backref_node *node = NULL; 662 struct backref_node *exist = NULL; 663 struct backref_edge *edge; 664 struct rb_node *rb_node; 665 struct btrfs_key key; 666 unsigned long end; 667 unsigned long ptr; 668 LIST_HEAD(list); 669 LIST_HEAD(useless); 670 int cowonly; 671 int ret; 672 int err = 0; 673 674 path1 = btrfs_alloc_path(); 675 path2 = btrfs_alloc_path(); 676 if (!path1 || !path2) { 677 err = -ENOMEM; 678 goto out; 679 } 680 path1->reada = 1; 681 path2->reada = 2; 682 683 node = alloc_backref_node(cache); 684 if (!node) { 685 err = -ENOMEM; 686 goto out; 687 } 688 689 node->bytenr = bytenr; 690 node->level = level; 691 node->lowest = 1; 692 cur = node; 693 again: 694 end = 0; 695 ptr = 0; 696 key.objectid = cur->bytenr; 697 key.type = BTRFS_EXTENT_ITEM_KEY; 698 key.offset = (u64)-1; 699 700 path1->search_commit_root = 1; 701 path1->skip_locking = 1; 702 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1, 703 0, 0); 704 if (ret < 0) { 705 err = ret; 706 goto out; 707 } 708 BUG_ON(!ret || !path1->slots[0]); 709 710 path1->slots[0]--; 711 712 WARN_ON(cur->checked); 713 if (!list_empty(&cur->upper)) { 714 /* 715 * the backref was added previously when processing 716 * backref of type BTRFS_TREE_BLOCK_REF_KEY 717 */ 718 BUG_ON(!list_is_singular(&cur->upper)); 719 edge = list_entry(cur->upper.next, struct backref_edge, 720 list[LOWER]); 721 BUG_ON(!list_empty(&edge->list[UPPER])); 722 exist = edge->node[UPPER]; 723 /* 724 * add the upper level block to pending list if we need 725 * check its backrefs 726 */ 727 if (!exist->checked) 728 list_add_tail(&edge->list[UPPER], &list); 729 } else { 730 exist = NULL; 731 } 732 733 while (1) { 734 cond_resched(); 735 eb = path1->nodes[0]; 736 737 if (ptr >= end) { 738 if (path1->slots[0] >= btrfs_header_nritems(eb)) { 739 ret = btrfs_next_leaf(rc->extent_root, path1); 740 if (ret < 0) { 741 err = ret; 742 goto out; 743 } 744 if (ret > 0) 745 break; 746 eb = path1->nodes[0]; 747 } 748 749 btrfs_item_key_to_cpu(eb, &key, path1->slots[0]); 750 if (key.objectid != cur->bytenr) { 751 WARN_ON(exist); 752 break; 753 } 754 755 if (key.type == BTRFS_EXTENT_ITEM_KEY) { 756 ret = find_inline_backref(eb, path1->slots[0], 757 &ptr, &end); 758 if (ret) 759 goto next; 760 } 761 } 762 763 if (ptr < end) { 764 /* update key for inline back ref */ 765 struct btrfs_extent_inline_ref *iref; 766 iref = (struct btrfs_extent_inline_ref *)ptr; 767 key.type = btrfs_extent_inline_ref_type(eb, iref); 768 key.offset = btrfs_extent_inline_ref_offset(eb, iref); 769 WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY && 770 key.type != BTRFS_SHARED_BLOCK_REF_KEY); 771 } 772 773 if (exist && 774 ((key.type == BTRFS_TREE_BLOCK_REF_KEY && 775 exist->owner == key.offset) || 776 (key.type == BTRFS_SHARED_BLOCK_REF_KEY && 777 exist->bytenr == key.offset))) { 778 exist = NULL; 779 goto next; 780 } 781 782 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 783 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY || 784 key.type == BTRFS_EXTENT_REF_V0_KEY) { 785 if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 786 struct btrfs_extent_ref_v0 *ref0; 787 ref0 = btrfs_item_ptr(eb, path1->slots[0], 788 struct btrfs_extent_ref_v0); 789 if (key.objectid == key.offset) { 790 root = find_tree_root(rc, eb, ref0); 791 if (root && !should_ignore_root(root)) 792 cur->root = root; 793 else 794 list_add(&cur->list, &useless); 795 break; 796 } 797 if (is_cowonly_root(btrfs_ref_root_v0(eb, 798 ref0))) 799 cur->cowonly = 1; 800 } 801 #else 802 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY); 803 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) { 804 #endif 805 if (key.objectid == key.offset) { 806 /* 807 * only root blocks of reloc trees use 808 * backref of this type. 809 */ 810 root = find_reloc_root(rc, cur->bytenr); 811 BUG_ON(!root); 812 cur->root = root; 813 break; 814 } 815 816 edge = alloc_backref_edge(cache); 817 if (!edge) { 818 err = -ENOMEM; 819 goto out; 820 } 821 rb_node = tree_search(&cache->rb_root, key.offset); 822 if (!rb_node) { 823 upper = alloc_backref_node(cache); 824 if (!upper) { 825 free_backref_edge(cache, edge); 826 err = -ENOMEM; 827 goto out; 828 } 829 upper->bytenr = key.offset; 830 upper->level = cur->level + 1; 831 /* 832 * backrefs for the upper level block isn't 833 * cached, add the block to pending list 834 */ 835 list_add_tail(&edge->list[UPPER], &list); 836 } else { 837 upper = rb_entry(rb_node, struct backref_node, 838 rb_node); 839 BUG_ON(!upper->checked); 840 INIT_LIST_HEAD(&edge->list[UPPER]); 841 } 842 list_add_tail(&edge->list[LOWER], &cur->upper); 843 edge->node[LOWER] = cur; 844 edge->node[UPPER] = upper; 845 846 goto next; 847 } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) { 848 goto next; 849 } 850 851 /* key.type == BTRFS_TREE_BLOCK_REF_KEY */ 852 root = read_fs_root(rc->extent_root->fs_info, key.offset); 853 if (IS_ERR(root)) { 854 err = PTR_ERR(root); 855 goto out; 856 } 857 858 if (!root->ref_cows) 859 cur->cowonly = 1; 860 861 if (btrfs_root_level(&root->root_item) == cur->level) { 862 /* tree root */ 863 BUG_ON(btrfs_root_bytenr(&root->root_item) != 864 cur->bytenr); 865 if (should_ignore_root(root)) 866 list_add(&cur->list, &useless); 867 else 868 cur->root = root; 869 break; 870 } 871 872 level = cur->level + 1; 873 874 /* 875 * searching the tree to find upper level blocks 876 * reference the block. 877 */ 878 path2->search_commit_root = 1; 879 path2->skip_locking = 1; 880 path2->lowest_level = level; 881 ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0); 882 path2->lowest_level = 0; 883 if (ret < 0) { 884 err = ret; 885 goto out; 886 } 887 if (ret > 0 && path2->slots[level] > 0) 888 path2->slots[level]--; 889 890 eb = path2->nodes[level]; 891 WARN_ON(btrfs_node_blockptr(eb, path2->slots[level]) != 892 cur->bytenr); 893 894 lower = cur; 895 for (; level < BTRFS_MAX_LEVEL; level++) { 896 if (!path2->nodes[level]) { 897 BUG_ON(btrfs_root_bytenr(&root->root_item) != 898 lower->bytenr); 899 if (should_ignore_root(root)) 900 list_add(&lower->list, &useless); 901 else 902 lower->root = root; 903 break; 904 } 905 906 edge = alloc_backref_edge(cache); 907 if (!edge) { 908 err = -ENOMEM; 909 goto out; 910 } 911 912 eb = path2->nodes[level]; 913 rb_node = tree_search(&cache->rb_root, eb->start); 914 if (!rb_node) { 915 upper = alloc_backref_node(cache); 916 if (!upper) { 917 free_backref_edge(cache, edge); 918 err = -ENOMEM; 919 goto out; 920 } 921 upper->bytenr = eb->start; 922 upper->owner = btrfs_header_owner(eb); 923 upper->level = lower->level + 1; 924 if (!root->ref_cows) 925 upper->cowonly = 1; 926 927 /* 928 * if we know the block isn't shared 929 * we can void checking its backrefs. 930 */ 931 if (btrfs_block_can_be_shared(root, eb)) 932 upper->checked = 0; 933 else 934 upper->checked = 1; 935 936 /* 937 * add the block to pending list if we 938 * need check its backrefs. only block 939 * at 'cur->level + 1' is added to the 940 * tail of pending list. this guarantees 941 * we check backrefs from lower level 942 * blocks to upper level blocks. 943 */ 944 if (!upper->checked && 945 level == cur->level + 1) { 946 list_add_tail(&edge->list[UPPER], 947 &list); 948 } else 949 INIT_LIST_HEAD(&edge->list[UPPER]); 950 } else { 951 upper = rb_entry(rb_node, struct backref_node, 952 rb_node); 953 BUG_ON(!upper->checked); 954 INIT_LIST_HEAD(&edge->list[UPPER]); 955 if (!upper->owner) 956 upper->owner = btrfs_header_owner(eb); 957 } 958 list_add_tail(&edge->list[LOWER], &lower->upper); 959 edge->node[LOWER] = lower; 960 edge->node[UPPER] = upper; 961 962 if (rb_node) 963 break; 964 lower = upper; 965 upper = NULL; 966 } 967 btrfs_release_path(path2); 968 next: 969 if (ptr < end) { 970 ptr += btrfs_extent_inline_ref_size(key.type); 971 if (ptr >= end) { 972 WARN_ON(ptr > end); 973 ptr = 0; 974 end = 0; 975 } 976 } 977 if (ptr >= end) 978 path1->slots[0]++; 979 } 980 btrfs_release_path(path1); 981 982 cur->checked = 1; 983 WARN_ON(exist); 984 985 /* the pending list isn't empty, take the first block to process */ 986 if (!list_empty(&list)) { 987 edge = list_entry(list.next, struct backref_edge, list[UPPER]); 988 list_del_init(&edge->list[UPPER]); 989 cur = edge->node[UPPER]; 990 goto again; 991 } 992 993 /* 994 * everything goes well, connect backref nodes and insert backref nodes 995 * into the cache. 996 */ 997 BUG_ON(!node->checked); 998 cowonly = node->cowonly; 999 if (!cowonly) { 1000 rb_node = tree_insert(&cache->rb_root, node->bytenr, 1001 &node->rb_node); 1002 BUG_ON(rb_node); 1003 list_add_tail(&node->lower, &cache->leaves); 1004 } 1005 1006 list_for_each_entry(edge, &node->upper, list[LOWER]) 1007 list_add_tail(&edge->list[UPPER], &list); 1008 1009 while (!list_empty(&list)) { 1010 edge = list_entry(list.next, struct backref_edge, list[UPPER]); 1011 list_del_init(&edge->list[UPPER]); 1012 upper = edge->node[UPPER]; 1013 if (upper->detached) { 1014 list_del(&edge->list[LOWER]); 1015 lower = edge->node[LOWER]; 1016 free_backref_edge(cache, edge); 1017 if (list_empty(&lower->upper)) 1018 list_add(&lower->list, &useless); 1019 continue; 1020 } 1021 1022 if (!RB_EMPTY_NODE(&upper->rb_node)) { 1023 if (upper->lowest) { 1024 list_del_init(&upper->lower); 1025 upper->lowest = 0; 1026 } 1027 1028 list_add_tail(&edge->list[UPPER], &upper->lower); 1029 continue; 1030 } 1031 1032 BUG_ON(!upper->checked); 1033 BUG_ON(cowonly != upper->cowonly); 1034 if (!cowonly) { 1035 rb_node = tree_insert(&cache->rb_root, upper->bytenr, 1036 &upper->rb_node); 1037 BUG_ON(rb_node); 1038 } 1039 1040 list_add_tail(&edge->list[UPPER], &upper->lower); 1041 1042 list_for_each_entry(edge, &upper->upper, list[LOWER]) 1043 list_add_tail(&edge->list[UPPER], &list); 1044 } 1045 /* 1046 * process useless backref nodes. backref nodes for tree leaves 1047 * are deleted from the cache. backref nodes for upper level 1048 * tree blocks are left in the cache to avoid unnecessary backref 1049 * lookup. 1050 */ 1051 while (!list_empty(&useless)) { 1052 upper = list_entry(useless.next, struct backref_node, list); 1053 list_del_init(&upper->list); 1054 BUG_ON(!list_empty(&upper->upper)); 1055 if (upper == node) 1056 node = NULL; 1057 if (upper->lowest) { 1058 list_del_init(&upper->lower); 1059 upper->lowest = 0; 1060 } 1061 while (!list_empty(&upper->lower)) { 1062 edge = list_entry(upper->lower.next, 1063 struct backref_edge, list[UPPER]); 1064 list_del(&edge->list[UPPER]); 1065 list_del(&edge->list[LOWER]); 1066 lower = edge->node[LOWER]; 1067 free_backref_edge(cache, edge); 1068 1069 if (list_empty(&lower->upper)) 1070 list_add(&lower->list, &useless); 1071 } 1072 __mark_block_processed(rc, upper); 1073 if (upper->level > 0) { 1074 list_add(&upper->list, &cache->detached); 1075 upper->detached = 1; 1076 } else { 1077 rb_erase(&upper->rb_node, &cache->rb_root); 1078 free_backref_node(cache, upper); 1079 } 1080 } 1081 out: 1082 btrfs_free_path(path1); 1083 btrfs_free_path(path2); 1084 if (err) { 1085 while (!list_empty(&useless)) { 1086 lower = list_entry(useless.next, 1087 struct backref_node, upper); 1088 list_del_init(&lower->upper); 1089 } 1090 upper = node; 1091 INIT_LIST_HEAD(&list); 1092 while (upper) { 1093 if (RB_EMPTY_NODE(&upper->rb_node)) { 1094 list_splice_tail(&upper->upper, &list); 1095 free_backref_node(cache, upper); 1096 } 1097 1098 if (list_empty(&list)) 1099 break; 1100 1101 edge = list_entry(list.next, struct backref_edge, 1102 list[LOWER]); 1103 list_del(&edge->list[LOWER]); 1104 upper = edge->node[UPPER]; 1105 free_backref_edge(cache, edge); 1106 } 1107 return ERR_PTR(err); 1108 } 1109 BUG_ON(node && node->detached); 1110 return node; 1111 } 1112 1113 /* 1114 * helper to add backref node for the newly created snapshot. 1115 * the backref node is created by cloning backref node that 1116 * corresponds to root of source tree 1117 */ 1118 static int clone_backref_node(struct btrfs_trans_handle *trans, 1119 struct reloc_control *rc, 1120 struct btrfs_root *src, 1121 struct btrfs_root *dest) 1122 { 1123 struct btrfs_root *reloc_root = src->reloc_root; 1124 struct backref_cache *cache = &rc->backref_cache; 1125 struct backref_node *node = NULL; 1126 struct backref_node *new_node; 1127 struct backref_edge *edge; 1128 struct backref_edge *new_edge; 1129 struct rb_node *rb_node; 1130 1131 if (cache->last_trans > 0) 1132 update_backref_cache(trans, cache); 1133 1134 rb_node = tree_search(&cache->rb_root, src->commit_root->start); 1135 if (rb_node) { 1136 node = rb_entry(rb_node, struct backref_node, rb_node); 1137 if (node->detached) 1138 node = NULL; 1139 else 1140 BUG_ON(node->new_bytenr != reloc_root->node->start); 1141 } 1142 1143 if (!node) { 1144 rb_node = tree_search(&cache->rb_root, 1145 reloc_root->commit_root->start); 1146 if (rb_node) { 1147 node = rb_entry(rb_node, struct backref_node, 1148 rb_node); 1149 BUG_ON(node->detached); 1150 } 1151 } 1152 1153 if (!node) 1154 return 0; 1155 1156 new_node = alloc_backref_node(cache); 1157 if (!new_node) 1158 return -ENOMEM; 1159 1160 new_node->bytenr = dest->node->start; 1161 new_node->level = node->level; 1162 new_node->lowest = node->lowest; 1163 new_node->checked = 1; 1164 new_node->root = dest; 1165 1166 if (!node->lowest) { 1167 list_for_each_entry(edge, &node->lower, list[UPPER]) { 1168 new_edge = alloc_backref_edge(cache); 1169 if (!new_edge) 1170 goto fail; 1171 1172 new_edge->node[UPPER] = new_node; 1173 new_edge->node[LOWER] = edge->node[LOWER]; 1174 list_add_tail(&new_edge->list[UPPER], 1175 &new_node->lower); 1176 } 1177 } 1178 1179 rb_node = tree_insert(&cache->rb_root, new_node->bytenr, 1180 &new_node->rb_node); 1181 BUG_ON(rb_node); 1182 1183 if (!new_node->lowest) { 1184 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) { 1185 list_add_tail(&new_edge->list[LOWER], 1186 &new_edge->node[LOWER]->upper); 1187 } 1188 } 1189 return 0; 1190 fail: 1191 while (!list_empty(&new_node->lower)) { 1192 new_edge = list_entry(new_node->lower.next, 1193 struct backref_edge, list[UPPER]); 1194 list_del(&new_edge->list[UPPER]); 1195 free_backref_edge(cache, new_edge); 1196 } 1197 free_backref_node(cache, new_node); 1198 return -ENOMEM; 1199 } 1200 1201 /* 1202 * helper to add 'address of tree root -> reloc tree' mapping 1203 */ 1204 static int __add_reloc_root(struct btrfs_root *root) 1205 { 1206 struct rb_node *rb_node; 1207 struct mapping_node *node; 1208 struct reloc_control *rc = root->fs_info->reloc_ctl; 1209 1210 node = kmalloc(sizeof(*node), GFP_NOFS); 1211 BUG_ON(!node); 1212 1213 node->bytenr = root->node->start; 1214 node->data = root; 1215 1216 spin_lock(&rc->reloc_root_tree.lock); 1217 rb_node = tree_insert(&rc->reloc_root_tree.rb_root, 1218 node->bytenr, &node->rb_node); 1219 spin_unlock(&rc->reloc_root_tree.lock); 1220 BUG_ON(rb_node); 1221 1222 list_add_tail(&root->root_list, &rc->reloc_roots); 1223 return 0; 1224 } 1225 1226 /* 1227 * helper to update/delete the 'address of tree root -> reloc tree' 1228 * mapping 1229 */ 1230 static int __update_reloc_root(struct btrfs_root *root, int del) 1231 { 1232 struct rb_node *rb_node; 1233 struct mapping_node *node = NULL; 1234 struct reloc_control *rc = root->fs_info->reloc_ctl; 1235 1236 spin_lock(&rc->reloc_root_tree.lock); 1237 rb_node = tree_search(&rc->reloc_root_tree.rb_root, 1238 root->commit_root->start); 1239 if (rb_node) { 1240 node = rb_entry(rb_node, struct mapping_node, rb_node); 1241 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); 1242 } 1243 spin_unlock(&rc->reloc_root_tree.lock); 1244 1245 BUG_ON((struct btrfs_root *)node->data != root); 1246 1247 if (!del) { 1248 spin_lock(&rc->reloc_root_tree.lock); 1249 node->bytenr = root->node->start; 1250 rb_node = tree_insert(&rc->reloc_root_tree.rb_root, 1251 node->bytenr, &node->rb_node); 1252 spin_unlock(&rc->reloc_root_tree.lock); 1253 BUG_ON(rb_node); 1254 } else { 1255 list_del_init(&root->root_list); 1256 kfree(node); 1257 } 1258 return 0; 1259 } 1260 1261 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans, 1262 struct btrfs_root *root, u64 objectid) 1263 { 1264 struct btrfs_root *reloc_root; 1265 struct extent_buffer *eb; 1266 struct btrfs_root_item *root_item; 1267 struct btrfs_key root_key; 1268 int ret; 1269 1270 root_item = kmalloc(sizeof(*root_item), GFP_NOFS); 1271 BUG_ON(!root_item); 1272 1273 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID; 1274 root_key.type = BTRFS_ROOT_ITEM_KEY; 1275 root_key.offset = objectid; 1276 1277 if (root->root_key.objectid == objectid) { 1278 /* called by btrfs_init_reloc_root */ 1279 ret = btrfs_copy_root(trans, root, root->commit_root, &eb, 1280 BTRFS_TREE_RELOC_OBJECTID); 1281 BUG_ON(ret); 1282 1283 btrfs_set_root_last_snapshot(&root->root_item, 1284 trans->transid - 1); 1285 } else { 1286 /* 1287 * called by btrfs_reloc_post_snapshot_hook. 1288 * the source tree is a reloc tree, all tree blocks 1289 * modified after it was created have RELOC flag 1290 * set in their headers. so it's OK to not update 1291 * the 'last_snapshot'. 1292 */ 1293 ret = btrfs_copy_root(trans, root, root->node, &eb, 1294 BTRFS_TREE_RELOC_OBJECTID); 1295 BUG_ON(ret); 1296 } 1297 1298 memcpy(root_item, &root->root_item, sizeof(*root_item)); 1299 btrfs_set_root_bytenr(root_item, eb->start); 1300 btrfs_set_root_level(root_item, btrfs_header_level(eb)); 1301 btrfs_set_root_generation(root_item, trans->transid); 1302 1303 if (root->root_key.objectid == objectid) { 1304 btrfs_set_root_refs(root_item, 0); 1305 memset(&root_item->drop_progress, 0, 1306 sizeof(struct btrfs_disk_key)); 1307 root_item->drop_level = 0; 1308 } 1309 1310 btrfs_tree_unlock(eb); 1311 free_extent_buffer(eb); 1312 1313 ret = btrfs_insert_root(trans, root->fs_info->tree_root, 1314 &root_key, root_item); 1315 BUG_ON(ret); 1316 kfree(root_item); 1317 1318 reloc_root = btrfs_read_fs_root_no_radix(root->fs_info->tree_root, 1319 &root_key); 1320 BUG_ON(IS_ERR(reloc_root)); 1321 reloc_root->last_trans = trans->transid; 1322 return reloc_root; 1323 } 1324 1325 /* 1326 * create reloc tree for a given fs tree. reloc tree is just a 1327 * snapshot of the fs tree with special root objectid. 1328 */ 1329 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans, 1330 struct btrfs_root *root) 1331 { 1332 struct btrfs_root *reloc_root; 1333 struct reloc_control *rc = root->fs_info->reloc_ctl; 1334 int clear_rsv = 0; 1335 1336 if (root->reloc_root) { 1337 reloc_root = root->reloc_root; 1338 reloc_root->last_trans = trans->transid; 1339 return 0; 1340 } 1341 1342 if (!rc || !rc->create_reloc_tree || 1343 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1344 return 0; 1345 1346 if (!trans->block_rsv) { 1347 trans->block_rsv = rc->block_rsv; 1348 clear_rsv = 1; 1349 } 1350 reloc_root = create_reloc_root(trans, root, root->root_key.objectid); 1351 if (clear_rsv) 1352 trans->block_rsv = NULL; 1353 1354 __add_reloc_root(reloc_root); 1355 root->reloc_root = reloc_root; 1356 return 0; 1357 } 1358 1359 /* 1360 * update root item of reloc tree 1361 */ 1362 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans, 1363 struct btrfs_root *root) 1364 { 1365 struct btrfs_root *reloc_root; 1366 struct btrfs_root_item *root_item; 1367 int del = 0; 1368 int ret; 1369 1370 if (!root->reloc_root) 1371 return 0; 1372 1373 reloc_root = root->reloc_root; 1374 root_item = &reloc_root->root_item; 1375 1376 if (root->fs_info->reloc_ctl->merge_reloc_tree && 1377 btrfs_root_refs(root_item) == 0) { 1378 root->reloc_root = NULL; 1379 del = 1; 1380 } 1381 1382 __update_reloc_root(reloc_root, del); 1383 1384 if (reloc_root->commit_root != reloc_root->node) { 1385 btrfs_set_root_node(root_item, reloc_root->node); 1386 free_extent_buffer(reloc_root->commit_root); 1387 reloc_root->commit_root = btrfs_root_node(reloc_root); 1388 } 1389 1390 ret = btrfs_update_root(trans, root->fs_info->tree_root, 1391 &reloc_root->root_key, root_item); 1392 BUG_ON(ret); 1393 return 0; 1394 } 1395 1396 /* 1397 * helper to find first cached inode with inode number >= objectid 1398 * in a subvolume 1399 */ 1400 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid) 1401 { 1402 struct rb_node *node; 1403 struct rb_node *prev; 1404 struct btrfs_inode *entry; 1405 struct inode *inode; 1406 1407 spin_lock(&root->inode_lock); 1408 again: 1409 node = root->inode_tree.rb_node; 1410 prev = NULL; 1411 while (node) { 1412 prev = node; 1413 entry = rb_entry(node, struct btrfs_inode, rb_node); 1414 1415 if (objectid < btrfs_ino(&entry->vfs_inode)) 1416 node = node->rb_left; 1417 else if (objectid > btrfs_ino(&entry->vfs_inode)) 1418 node = node->rb_right; 1419 else 1420 break; 1421 } 1422 if (!node) { 1423 while (prev) { 1424 entry = rb_entry(prev, struct btrfs_inode, rb_node); 1425 if (objectid <= btrfs_ino(&entry->vfs_inode)) { 1426 node = prev; 1427 break; 1428 } 1429 prev = rb_next(prev); 1430 } 1431 } 1432 while (node) { 1433 entry = rb_entry(node, struct btrfs_inode, rb_node); 1434 inode = igrab(&entry->vfs_inode); 1435 if (inode) { 1436 spin_unlock(&root->inode_lock); 1437 return inode; 1438 } 1439 1440 objectid = btrfs_ino(&entry->vfs_inode) + 1; 1441 if (cond_resched_lock(&root->inode_lock)) 1442 goto again; 1443 1444 node = rb_next(node); 1445 } 1446 spin_unlock(&root->inode_lock); 1447 return NULL; 1448 } 1449 1450 static int in_block_group(u64 bytenr, 1451 struct btrfs_block_group_cache *block_group) 1452 { 1453 if (bytenr >= block_group->key.objectid && 1454 bytenr < block_group->key.objectid + block_group->key.offset) 1455 return 1; 1456 return 0; 1457 } 1458 1459 /* 1460 * get new location of data 1461 */ 1462 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr, 1463 u64 bytenr, u64 num_bytes) 1464 { 1465 struct btrfs_root *root = BTRFS_I(reloc_inode)->root; 1466 struct btrfs_path *path; 1467 struct btrfs_file_extent_item *fi; 1468 struct extent_buffer *leaf; 1469 int ret; 1470 1471 path = btrfs_alloc_path(); 1472 if (!path) 1473 return -ENOMEM; 1474 1475 bytenr -= BTRFS_I(reloc_inode)->index_cnt; 1476 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(reloc_inode), 1477 bytenr, 0); 1478 if (ret < 0) 1479 goto out; 1480 if (ret > 0) { 1481 ret = -ENOENT; 1482 goto out; 1483 } 1484 1485 leaf = path->nodes[0]; 1486 fi = btrfs_item_ptr(leaf, path->slots[0], 1487 struct btrfs_file_extent_item); 1488 1489 BUG_ON(btrfs_file_extent_offset(leaf, fi) || 1490 btrfs_file_extent_compression(leaf, fi) || 1491 btrfs_file_extent_encryption(leaf, fi) || 1492 btrfs_file_extent_other_encoding(leaf, fi)); 1493 1494 if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) { 1495 ret = 1; 1496 goto out; 1497 } 1498 1499 *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1500 ret = 0; 1501 out: 1502 btrfs_free_path(path); 1503 return ret; 1504 } 1505 1506 /* 1507 * update file extent items in the tree leaf to point to 1508 * the new locations. 1509 */ 1510 static noinline_for_stack 1511 int replace_file_extents(struct btrfs_trans_handle *trans, 1512 struct reloc_control *rc, 1513 struct btrfs_root *root, 1514 struct extent_buffer *leaf) 1515 { 1516 struct btrfs_key key; 1517 struct btrfs_file_extent_item *fi; 1518 struct inode *inode = NULL; 1519 u64 parent; 1520 u64 bytenr; 1521 u64 new_bytenr = 0; 1522 u64 num_bytes; 1523 u64 end; 1524 u32 nritems; 1525 u32 i; 1526 int ret; 1527 int first = 1; 1528 int dirty = 0; 1529 1530 if (rc->stage != UPDATE_DATA_PTRS) 1531 return 0; 1532 1533 /* reloc trees always use full backref */ 1534 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1535 parent = leaf->start; 1536 else 1537 parent = 0; 1538 1539 nritems = btrfs_header_nritems(leaf); 1540 for (i = 0; i < nritems; i++) { 1541 cond_resched(); 1542 btrfs_item_key_to_cpu(leaf, &key, i); 1543 if (key.type != BTRFS_EXTENT_DATA_KEY) 1544 continue; 1545 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); 1546 if (btrfs_file_extent_type(leaf, fi) == 1547 BTRFS_FILE_EXTENT_INLINE) 1548 continue; 1549 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1550 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1551 if (bytenr == 0) 1552 continue; 1553 if (!in_block_group(bytenr, rc->block_group)) 1554 continue; 1555 1556 /* 1557 * if we are modifying block in fs tree, wait for readpage 1558 * to complete and drop the extent cache 1559 */ 1560 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 1561 if (first) { 1562 inode = find_next_inode(root, key.objectid); 1563 first = 0; 1564 } else if (inode && btrfs_ino(inode) < key.objectid) { 1565 btrfs_add_delayed_iput(inode); 1566 inode = find_next_inode(root, key.objectid); 1567 } 1568 if (inode && btrfs_ino(inode) == key.objectid) { 1569 end = key.offset + 1570 btrfs_file_extent_num_bytes(leaf, fi); 1571 WARN_ON(!IS_ALIGNED(key.offset, 1572 root->sectorsize)); 1573 WARN_ON(!IS_ALIGNED(end, root->sectorsize)); 1574 end--; 1575 ret = try_lock_extent(&BTRFS_I(inode)->io_tree, 1576 key.offset, end, 1577 GFP_NOFS); 1578 if (!ret) 1579 continue; 1580 1581 btrfs_drop_extent_cache(inode, key.offset, end, 1582 1); 1583 unlock_extent(&BTRFS_I(inode)->io_tree, 1584 key.offset, end, GFP_NOFS); 1585 } 1586 } 1587 1588 ret = get_new_location(rc->data_inode, &new_bytenr, 1589 bytenr, num_bytes); 1590 if (ret > 0) { 1591 WARN_ON(1); 1592 continue; 1593 } 1594 BUG_ON(ret < 0); 1595 1596 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr); 1597 dirty = 1; 1598 1599 key.offset -= btrfs_file_extent_offset(leaf, fi); 1600 ret = btrfs_inc_extent_ref(trans, root, new_bytenr, 1601 num_bytes, parent, 1602 btrfs_header_owner(leaf), 1603 key.objectid, key.offset); 1604 BUG_ON(ret); 1605 1606 ret = btrfs_free_extent(trans, root, bytenr, num_bytes, 1607 parent, btrfs_header_owner(leaf), 1608 key.objectid, key.offset); 1609 BUG_ON(ret); 1610 } 1611 if (dirty) 1612 btrfs_mark_buffer_dirty(leaf); 1613 if (inode) 1614 btrfs_add_delayed_iput(inode); 1615 return 0; 1616 } 1617 1618 static noinline_for_stack 1619 int memcmp_node_keys(struct extent_buffer *eb, int slot, 1620 struct btrfs_path *path, int level) 1621 { 1622 struct btrfs_disk_key key1; 1623 struct btrfs_disk_key key2; 1624 btrfs_node_key(eb, &key1, slot); 1625 btrfs_node_key(path->nodes[level], &key2, path->slots[level]); 1626 return memcmp(&key1, &key2, sizeof(key1)); 1627 } 1628 1629 /* 1630 * try to replace tree blocks in fs tree with the new blocks 1631 * in reloc tree. tree blocks haven't been modified since the 1632 * reloc tree was create can be replaced. 1633 * 1634 * if a block was replaced, level of the block + 1 is returned. 1635 * if no block got replaced, 0 is returned. if there are other 1636 * errors, a negative error number is returned. 1637 */ 1638 static noinline_for_stack 1639 int replace_path(struct btrfs_trans_handle *trans, 1640 struct btrfs_root *dest, struct btrfs_root *src, 1641 struct btrfs_path *path, struct btrfs_key *next_key, 1642 int lowest_level, int max_level) 1643 { 1644 struct extent_buffer *eb; 1645 struct extent_buffer *parent; 1646 struct btrfs_key key; 1647 u64 old_bytenr; 1648 u64 new_bytenr; 1649 u64 old_ptr_gen; 1650 u64 new_ptr_gen; 1651 u64 last_snapshot; 1652 u32 blocksize; 1653 int cow = 0; 1654 int level; 1655 int ret; 1656 int slot; 1657 1658 BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 1659 BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID); 1660 1661 last_snapshot = btrfs_root_last_snapshot(&src->root_item); 1662 again: 1663 slot = path->slots[lowest_level]; 1664 btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot); 1665 1666 eb = btrfs_lock_root_node(dest); 1667 btrfs_set_lock_blocking(eb); 1668 level = btrfs_header_level(eb); 1669 1670 if (level < lowest_level) { 1671 btrfs_tree_unlock(eb); 1672 free_extent_buffer(eb); 1673 return 0; 1674 } 1675 1676 if (cow) { 1677 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb); 1678 BUG_ON(ret); 1679 } 1680 btrfs_set_lock_blocking(eb); 1681 1682 if (next_key) { 1683 next_key->objectid = (u64)-1; 1684 next_key->type = (u8)-1; 1685 next_key->offset = (u64)-1; 1686 } 1687 1688 parent = eb; 1689 while (1) { 1690 level = btrfs_header_level(parent); 1691 BUG_ON(level < lowest_level); 1692 1693 ret = btrfs_bin_search(parent, &key, level, &slot); 1694 if (ret && slot > 0) 1695 slot--; 1696 1697 if (next_key && slot + 1 < btrfs_header_nritems(parent)) 1698 btrfs_node_key_to_cpu(parent, next_key, slot + 1); 1699 1700 old_bytenr = btrfs_node_blockptr(parent, slot); 1701 blocksize = btrfs_level_size(dest, level - 1); 1702 old_ptr_gen = btrfs_node_ptr_generation(parent, slot); 1703 1704 if (level <= max_level) { 1705 eb = path->nodes[level]; 1706 new_bytenr = btrfs_node_blockptr(eb, 1707 path->slots[level]); 1708 new_ptr_gen = btrfs_node_ptr_generation(eb, 1709 path->slots[level]); 1710 } else { 1711 new_bytenr = 0; 1712 new_ptr_gen = 0; 1713 } 1714 1715 if (new_bytenr > 0 && new_bytenr == old_bytenr) { 1716 WARN_ON(1); 1717 ret = level; 1718 break; 1719 } 1720 1721 if (new_bytenr == 0 || old_ptr_gen > last_snapshot || 1722 memcmp_node_keys(parent, slot, path, level)) { 1723 if (level <= lowest_level) { 1724 ret = 0; 1725 break; 1726 } 1727 1728 eb = read_tree_block(dest, old_bytenr, blocksize, 1729 old_ptr_gen); 1730 BUG_ON(!eb); 1731 btrfs_tree_lock(eb); 1732 if (cow) { 1733 ret = btrfs_cow_block(trans, dest, eb, parent, 1734 slot, &eb); 1735 BUG_ON(ret); 1736 } 1737 btrfs_set_lock_blocking(eb); 1738 1739 btrfs_tree_unlock(parent); 1740 free_extent_buffer(parent); 1741 1742 parent = eb; 1743 continue; 1744 } 1745 1746 if (!cow) { 1747 btrfs_tree_unlock(parent); 1748 free_extent_buffer(parent); 1749 cow = 1; 1750 goto again; 1751 } 1752 1753 btrfs_node_key_to_cpu(path->nodes[level], &key, 1754 path->slots[level]); 1755 btrfs_release_path(path); 1756 1757 path->lowest_level = level; 1758 ret = btrfs_search_slot(trans, src, &key, path, 0, 1); 1759 path->lowest_level = 0; 1760 BUG_ON(ret); 1761 1762 /* 1763 * swap blocks in fs tree and reloc tree. 1764 */ 1765 btrfs_set_node_blockptr(parent, slot, new_bytenr); 1766 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen); 1767 btrfs_mark_buffer_dirty(parent); 1768 1769 btrfs_set_node_blockptr(path->nodes[level], 1770 path->slots[level], old_bytenr); 1771 btrfs_set_node_ptr_generation(path->nodes[level], 1772 path->slots[level], old_ptr_gen); 1773 btrfs_mark_buffer_dirty(path->nodes[level]); 1774 1775 ret = btrfs_inc_extent_ref(trans, src, old_bytenr, blocksize, 1776 path->nodes[level]->start, 1777 src->root_key.objectid, level - 1, 0); 1778 BUG_ON(ret); 1779 ret = btrfs_inc_extent_ref(trans, dest, new_bytenr, blocksize, 1780 0, dest->root_key.objectid, level - 1, 1781 0); 1782 BUG_ON(ret); 1783 1784 ret = btrfs_free_extent(trans, src, new_bytenr, blocksize, 1785 path->nodes[level]->start, 1786 src->root_key.objectid, level - 1, 0); 1787 BUG_ON(ret); 1788 1789 ret = btrfs_free_extent(trans, dest, old_bytenr, blocksize, 1790 0, dest->root_key.objectid, level - 1, 1791 0); 1792 BUG_ON(ret); 1793 1794 btrfs_unlock_up_safe(path, 0); 1795 1796 ret = level; 1797 break; 1798 } 1799 btrfs_tree_unlock(parent); 1800 free_extent_buffer(parent); 1801 return ret; 1802 } 1803 1804 /* 1805 * helper to find next relocated block in reloc tree 1806 */ 1807 static noinline_for_stack 1808 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 1809 int *level) 1810 { 1811 struct extent_buffer *eb; 1812 int i; 1813 u64 last_snapshot; 1814 u32 nritems; 1815 1816 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 1817 1818 for (i = 0; i < *level; i++) { 1819 free_extent_buffer(path->nodes[i]); 1820 path->nodes[i] = NULL; 1821 } 1822 1823 for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) { 1824 eb = path->nodes[i]; 1825 nritems = btrfs_header_nritems(eb); 1826 while (path->slots[i] + 1 < nritems) { 1827 path->slots[i]++; 1828 if (btrfs_node_ptr_generation(eb, path->slots[i]) <= 1829 last_snapshot) 1830 continue; 1831 1832 *level = i; 1833 return 0; 1834 } 1835 free_extent_buffer(path->nodes[i]); 1836 path->nodes[i] = NULL; 1837 } 1838 return 1; 1839 } 1840 1841 /* 1842 * walk down reloc tree to find relocated block of lowest level 1843 */ 1844 static noinline_for_stack 1845 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 1846 int *level) 1847 { 1848 struct extent_buffer *eb = NULL; 1849 int i; 1850 u64 bytenr; 1851 u64 ptr_gen = 0; 1852 u64 last_snapshot; 1853 u32 blocksize; 1854 u32 nritems; 1855 1856 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 1857 1858 for (i = *level; i > 0; i--) { 1859 eb = path->nodes[i]; 1860 nritems = btrfs_header_nritems(eb); 1861 while (path->slots[i] < nritems) { 1862 ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]); 1863 if (ptr_gen > last_snapshot) 1864 break; 1865 path->slots[i]++; 1866 } 1867 if (path->slots[i] >= nritems) { 1868 if (i == *level) 1869 break; 1870 *level = i + 1; 1871 return 0; 1872 } 1873 if (i == 1) { 1874 *level = i; 1875 return 0; 1876 } 1877 1878 bytenr = btrfs_node_blockptr(eb, path->slots[i]); 1879 blocksize = btrfs_level_size(root, i - 1); 1880 eb = read_tree_block(root, bytenr, blocksize, ptr_gen); 1881 BUG_ON(btrfs_header_level(eb) != i - 1); 1882 path->nodes[i - 1] = eb; 1883 path->slots[i - 1] = 0; 1884 } 1885 return 1; 1886 } 1887 1888 /* 1889 * invalidate extent cache for file extents whose key in range of 1890 * [min_key, max_key) 1891 */ 1892 static int invalidate_extent_cache(struct btrfs_root *root, 1893 struct btrfs_key *min_key, 1894 struct btrfs_key *max_key) 1895 { 1896 struct inode *inode = NULL; 1897 u64 objectid; 1898 u64 start, end; 1899 u64 ino; 1900 1901 objectid = min_key->objectid; 1902 while (1) { 1903 cond_resched(); 1904 iput(inode); 1905 1906 if (objectid > max_key->objectid) 1907 break; 1908 1909 inode = find_next_inode(root, objectid); 1910 if (!inode) 1911 break; 1912 ino = btrfs_ino(inode); 1913 1914 if (ino > max_key->objectid) { 1915 iput(inode); 1916 break; 1917 } 1918 1919 objectid = ino + 1; 1920 if (!S_ISREG(inode->i_mode)) 1921 continue; 1922 1923 if (unlikely(min_key->objectid == ino)) { 1924 if (min_key->type > BTRFS_EXTENT_DATA_KEY) 1925 continue; 1926 if (min_key->type < BTRFS_EXTENT_DATA_KEY) 1927 start = 0; 1928 else { 1929 start = min_key->offset; 1930 WARN_ON(!IS_ALIGNED(start, root->sectorsize)); 1931 } 1932 } else { 1933 start = 0; 1934 } 1935 1936 if (unlikely(max_key->objectid == ino)) { 1937 if (max_key->type < BTRFS_EXTENT_DATA_KEY) 1938 continue; 1939 if (max_key->type > BTRFS_EXTENT_DATA_KEY) { 1940 end = (u64)-1; 1941 } else { 1942 if (max_key->offset == 0) 1943 continue; 1944 end = max_key->offset; 1945 WARN_ON(!IS_ALIGNED(end, root->sectorsize)); 1946 end--; 1947 } 1948 } else { 1949 end = (u64)-1; 1950 } 1951 1952 /* the lock_extent waits for readpage to complete */ 1953 lock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS); 1954 btrfs_drop_extent_cache(inode, start, end, 1); 1955 unlock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS); 1956 } 1957 return 0; 1958 } 1959 1960 static int find_next_key(struct btrfs_path *path, int level, 1961 struct btrfs_key *key) 1962 1963 { 1964 while (level < BTRFS_MAX_LEVEL) { 1965 if (!path->nodes[level]) 1966 break; 1967 if (path->slots[level] + 1 < 1968 btrfs_header_nritems(path->nodes[level])) { 1969 btrfs_node_key_to_cpu(path->nodes[level], key, 1970 path->slots[level] + 1); 1971 return 0; 1972 } 1973 level++; 1974 } 1975 return 1; 1976 } 1977 1978 /* 1979 * merge the relocated tree blocks in reloc tree with corresponding 1980 * fs tree. 1981 */ 1982 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc, 1983 struct btrfs_root *root) 1984 { 1985 LIST_HEAD(inode_list); 1986 struct btrfs_key key; 1987 struct btrfs_key next_key; 1988 struct btrfs_trans_handle *trans; 1989 struct btrfs_root *reloc_root; 1990 struct btrfs_root_item *root_item; 1991 struct btrfs_path *path; 1992 struct extent_buffer *leaf; 1993 unsigned long nr; 1994 int level; 1995 int max_level; 1996 int replaced = 0; 1997 int ret; 1998 int err = 0; 1999 u32 min_reserved; 2000 2001 path = btrfs_alloc_path(); 2002 if (!path) 2003 return -ENOMEM; 2004 path->reada = 1; 2005 2006 reloc_root = root->reloc_root; 2007 root_item = &reloc_root->root_item; 2008 2009 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 2010 level = btrfs_root_level(root_item); 2011 extent_buffer_get(reloc_root->node); 2012 path->nodes[level] = reloc_root->node; 2013 path->slots[level] = 0; 2014 } else { 2015 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 2016 2017 level = root_item->drop_level; 2018 BUG_ON(level == 0); 2019 path->lowest_level = level; 2020 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0); 2021 path->lowest_level = 0; 2022 if (ret < 0) { 2023 btrfs_free_path(path); 2024 return ret; 2025 } 2026 2027 btrfs_node_key_to_cpu(path->nodes[level], &next_key, 2028 path->slots[level]); 2029 WARN_ON(memcmp(&key, &next_key, sizeof(key))); 2030 2031 btrfs_unlock_up_safe(path, 0); 2032 } 2033 2034 min_reserved = root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2; 2035 memset(&next_key, 0, sizeof(next_key)); 2036 2037 while (1) { 2038 trans = btrfs_start_transaction(root, 0); 2039 BUG_ON(IS_ERR(trans)); 2040 trans->block_rsv = rc->block_rsv; 2041 2042 ret = btrfs_block_rsv_check(trans, root, rc->block_rsv, 2043 min_reserved, 0); 2044 if (ret) { 2045 BUG_ON(ret != -EAGAIN); 2046 ret = btrfs_commit_transaction(trans, root); 2047 BUG_ON(ret); 2048 continue; 2049 } 2050 2051 replaced = 0; 2052 max_level = level; 2053 2054 ret = walk_down_reloc_tree(reloc_root, path, &level); 2055 if (ret < 0) { 2056 err = ret; 2057 goto out; 2058 } 2059 if (ret > 0) 2060 break; 2061 2062 if (!find_next_key(path, level, &key) && 2063 btrfs_comp_cpu_keys(&next_key, &key) >= 0) { 2064 ret = 0; 2065 } else { 2066 ret = replace_path(trans, root, reloc_root, path, 2067 &next_key, level, max_level); 2068 } 2069 if (ret < 0) { 2070 err = ret; 2071 goto out; 2072 } 2073 2074 if (ret > 0) { 2075 level = ret; 2076 btrfs_node_key_to_cpu(path->nodes[level], &key, 2077 path->slots[level]); 2078 replaced = 1; 2079 } 2080 2081 ret = walk_up_reloc_tree(reloc_root, path, &level); 2082 if (ret > 0) 2083 break; 2084 2085 BUG_ON(level == 0); 2086 /* 2087 * save the merging progress in the drop_progress. 2088 * this is OK since root refs == 1 in this case. 2089 */ 2090 btrfs_node_key(path->nodes[level], &root_item->drop_progress, 2091 path->slots[level]); 2092 root_item->drop_level = level; 2093 2094 nr = trans->blocks_used; 2095 btrfs_end_transaction_throttle(trans, root); 2096 2097 btrfs_btree_balance_dirty(root, nr); 2098 2099 if (replaced && rc->stage == UPDATE_DATA_PTRS) 2100 invalidate_extent_cache(root, &key, &next_key); 2101 } 2102 2103 /* 2104 * handle the case only one block in the fs tree need to be 2105 * relocated and the block is tree root. 2106 */ 2107 leaf = btrfs_lock_root_node(root); 2108 ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf); 2109 btrfs_tree_unlock(leaf); 2110 free_extent_buffer(leaf); 2111 if (ret < 0) 2112 err = ret; 2113 out: 2114 btrfs_free_path(path); 2115 2116 if (err == 0) { 2117 memset(&root_item->drop_progress, 0, 2118 sizeof(root_item->drop_progress)); 2119 root_item->drop_level = 0; 2120 btrfs_set_root_refs(root_item, 0); 2121 btrfs_update_reloc_root(trans, root); 2122 } 2123 2124 nr = trans->blocks_used; 2125 btrfs_end_transaction_throttle(trans, root); 2126 2127 btrfs_btree_balance_dirty(root, nr); 2128 2129 if (replaced && rc->stage == UPDATE_DATA_PTRS) 2130 invalidate_extent_cache(root, &key, &next_key); 2131 2132 return err; 2133 } 2134 2135 static noinline_for_stack 2136 int prepare_to_merge(struct reloc_control *rc, int err) 2137 { 2138 struct btrfs_root *root = rc->extent_root; 2139 struct btrfs_root *reloc_root; 2140 struct btrfs_trans_handle *trans; 2141 LIST_HEAD(reloc_roots); 2142 u64 num_bytes = 0; 2143 int ret; 2144 2145 spin_lock(&root->fs_info->trans_lock); 2146 rc->merging_rsv_size += root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2; 2147 rc->merging_rsv_size += rc->nodes_relocated * 2; 2148 spin_unlock(&root->fs_info->trans_lock); 2149 again: 2150 if (!err) { 2151 num_bytes = rc->merging_rsv_size; 2152 ret = btrfs_block_rsv_add(NULL, root, rc->block_rsv, 2153 num_bytes); 2154 if (ret) 2155 err = ret; 2156 } 2157 2158 trans = btrfs_join_transaction(rc->extent_root); 2159 if (IS_ERR(trans)) { 2160 if (!err) 2161 btrfs_block_rsv_release(rc->extent_root, 2162 rc->block_rsv, num_bytes); 2163 return PTR_ERR(trans); 2164 } 2165 2166 if (!err) { 2167 if (num_bytes != rc->merging_rsv_size) { 2168 btrfs_end_transaction(trans, rc->extent_root); 2169 btrfs_block_rsv_release(rc->extent_root, 2170 rc->block_rsv, num_bytes); 2171 goto again; 2172 } 2173 } 2174 2175 rc->merge_reloc_tree = 1; 2176 2177 while (!list_empty(&rc->reloc_roots)) { 2178 reloc_root = list_entry(rc->reloc_roots.next, 2179 struct btrfs_root, root_list); 2180 list_del_init(&reloc_root->root_list); 2181 2182 root = read_fs_root(reloc_root->fs_info, 2183 reloc_root->root_key.offset); 2184 BUG_ON(IS_ERR(root)); 2185 BUG_ON(root->reloc_root != reloc_root); 2186 2187 /* 2188 * set reference count to 1, so btrfs_recover_relocation 2189 * knows it should resumes merging 2190 */ 2191 if (!err) 2192 btrfs_set_root_refs(&reloc_root->root_item, 1); 2193 btrfs_update_reloc_root(trans, root); 2194 2195 list_add(&reloc_root->root_list, &reloc_roots); 2196 } 2197 2198 list_splice(&reloc_roots, &rc->reloc_roots); 2199 2200 if (!err) 2201 btrfs_commit_transaction(trans, rc->extent_root); 2202 else 2203 btrfs_end_transaction(trans, rc->extent_root); 2204 return err; 2205 } 2206 2207 static noinline_for_stack 2208 int merge_reloc_roots(struct reloc_control *rc) 2209 { 2210 struct btrfs_root *root; 2211 struct btrfs_root *reloc_root; 2212 LIST_HEAD(reloc_roots); 2213 int found = 0; 2214 int ret; 2215 again: 2216 root = rc->extent_root; 2217 spin_lock(&root->fs_info->trans_lock); 2218 list_splice_init(&rc->reloc_roots, &reloc_roots); 2219 spin_unlock(&root->fs_info->trans_lock); 2220 2221 while (!list_empty(&reloc_roots)) { 2222 found = 1; 2223 reloc_root = list_entry(reloc_roots.next, 2224 struct btrfs_root, root_list); 2225 2226 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 2227 root = read_fs_root(reloc_root->fs_info, 2228 reloc_root->root_key.offset); 2229 BUG_ON(IS_ERR(root)); 2230 BUG_ON(root->reloc_root != reloc_root); 2231 2232 ret = merge_reloc_root(rc, root); 2233 BUG_ON(ret); 2234 } else { 2235 list_del_init(&reloc_root->root_list); 2236 } 2237 btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0); 2238 } 2239 2240 if (found) { 2241 found = 0; 2242 goto again; 2243 } 2244 BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root)); 2245 return 0; 2246 } 2247 2248 static void free_block_list(struct rb_root *blocks) 2249 { 2250 struct tree_block *block; 2251 struct rb_node *rb_node; 2252 while ((rb_node = rb_first(blocks))) { 2253 block = rb_entry(rb_node, struct tree_block, rb_node); 2254 rb_erase(rb_node, blocks); 2255 kfree(block); 2256 } 2257 } 2258 2259 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans, 2260 struct btrfs_root *reloc_root) 2261 { 2262 struct btrfs_root *root; 2263 2264 if (reloc_root->last_trans == trans->transid) 2265 return 0; 2266 2267 root = read_fs_root(reloc_root->fs_info, reloc_root->root_key.offset); 2268 BUG_ON(IS_ERR(root)); 2269 BUG_ON(root->reloc_root != reloc_root); 2270 2271 return btrfs_record_root_in_trans(trans, root); 2272 } 2273 2274 static noinline_for_stack 2275 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans, 2276 struct reloc_control *rc, 2277 struct backref_node *node, 2278 struct backref_edge *edges[], int *nr) 2279 { 2280 struct backref_node *next; 2281 struct btrfs_root *root; 2282 int index = 0; 2283 2284 next = node; 2285 while (1) { 2286 cond_resched(); 2287 next = walk_up_backref(next, edges, &index); 2288 root = next->root; 2289 BUG_ON(!root); 2290 BUG_ON(!root->ref_cows); 2291 2292 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 2293 record_reloc_root_in_trans(trans, root); 2294 break; 2295 } 2296 2297 btrfs_record_root_in_trans(trans, root); 2298 root = root->reloc_root; 2299 2300 if (next->new_bytenr != root->node->start) { 2301 BUG_ON(next->new_bytenr); 2302 BUG_ON(!list_empty(&next->list)); 2303 next->new_bytenr = root->node->start; 2304 next->root = root; 2305 list_add_tail(&next->list, 2306 &rc->backref_cache.changed); 2307 __mark_block_processed(rc, next); 2308 break; 2309 } 2310 2311 WARN_ON(1); 2312 root = NULL; 2313 next = walk_down_backref(edges, &index); 2314 if (!next || next->level <= node->level) 2315 break; 2316 } 2317 if (!root) 2318 return NULL; 2319 2320 *nr = index; 2321 next = node; 2322 /* setup backref node path for btrfs_reloc_cow_block */ 2323 while (1) { 2324 rc->backref_cache.path[next->level] = next; 2325 if (--index < 0) 2326 break; 2327 next = edges[index]->node[UPPER]; 2328 } 2329 return root; 2330 } 2331 2332 /* 2333 * select a tree root for relocation. return NULL if the block 2334 * is reference counted. we should use do_relocation() in this 2335 * case. return a tree root pointer if the block isn't reference 2336 * counted. return -ENOENT if the block is root of reloc tree. 2337 */ 2338 static noinline_for_stack 2339 struct btrfs_root *select_one_root(struct btrfs_trans_handle *trans, 2340 struct backref_node *node) 2341 { 2342 struct backref_node *next; 2343 struct btrfs_root *root; 2344 struct btrfs_root *fs_root = NULL; 2345 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2346 int index = 0; 2347 2348 next = node; 2349 while (1) { 2350 cond_resched(); 2351 next = walk_up_backref(next, edges, &index); 2352 root = next->root; 2353 BUG_ON(!root); 2354 2355 /* no other choice for non-references counted tree */ 2356 if (!root->ref_cows) 2357 return root; 2358 2359 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) 2360 fs_root = root; 2361 2362 if (next != node) 2363 return NULL; 2364 2365 next = walk_down_backref(edges, &index); 2366 if (!next || next->level <= node->level) 2367 break; 2368 } 2369 2370 if (!fs_root) 2371 return ERR_PTR(-ENOENT); 2372 return fs_root; 2373 } 2374 2375 static noinline_for_stack 2376 u64 calcu_metadata_size(struct reloc_control *rc, 2377 struct backref_node *node, int reserve) 2378 { 2379 struct backref_node *next = node; 2380 struct backref_edge *edge; 2381 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2382 u64 num_bytes = 0; 2383 int index = 0; 2384 2385 BUG_ON(reserve && node->processed); 2386 2387 while (next) { 2388 cond_resched(); 2389 while (1) { 2390 if (next->processed && (reserve || next != node)) 2391 break; 2392 2393 num_bytes += btrfs_level_size(rc->extent_root, 2394 next->level); 2395 2396 if (list_empty(&next->upper)) 2397 break; 2398 2399 edge = list_entry(next->upper.next, 2400 struct backref_edge, list[LOWER]); 2401 edges[index++] = edge; 2402 next = edge->node[UPPER]; 2403 } 2404 next = walk_down_backref(edges, &index); 2405 } 2406 return num_bytes; 2407 } 2408 2409 static int reserve_metadata_space(struct btrfs_trans_handle *trans, 2410 struct reloc_control *rc, 2411 struct backref_node *node) 2412 { 2413 struct btrfs_root *root = rc->extent_root; 2414 u64 num_bytes; 2415 int ret; 2416 2417 num_bytes = calcu_metadata_size(rc, node, 1) * 2; 2418 2419 trans->block_rsv = rc->block_rsv; 2420 ret = btrfs_block_rsv_add(trans, root, rc->block_rsv, num_bytes); 2421 if (ret) { 2422 if (ret == -EAGAIN) 2423 rc->commit_transaction = 1; 2424 return ret; 2425 } 2426 2427 return 0; 2428 } 2429 2430 static void release_metadata_space(struct reloc_control *rc, 2431 struct backref_node *node) 2432 { 2433 u64 num_bytes = calcu_metadata_size(rc, node, 0) * 2; 2434 btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, num_bytes); 2435 } 2436 2437 /* 2438 * relocate a block tree, and then update pointers in upper level 2439 * blocks that reference the block to point to the new location. 2440 * 2441 * if called by link_to_upper, the block has already been relocated. 2442 * in that case this function just updates pointers. 2443 */ 2444 static int do_relocation(struct btrfs_trans_handle *trans, 2445 struct reloc_control *rc, 2446 struct backref_node *node, 2447 struct btrfs_key *key, 2448 struct btrfs_path *path, int lowest) 2449 { 2450 struct backref_node *upper; 2451 struct backref_edge *edge; 2452 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2453 struct btrfs_root *root; 2454 struct extent_buffer *eb; 2455 u32 blocksize; 2456 u64 bytenr; 2457 u64 generation; 2458 int nr; 2459 int slot; 2460 int ret; 2461 int err = 0; 2462 2463 BUG_ON(lowest && node->eb); 2464 2465 path->lowest_level = node->level + 1; 2466 rc->backref_cache.path[node->level] = node; 2467 list_for_each_entry(edge, &node->upper, list[LOWER]) { 2468 cond_resched(); 2469 2470 upper = edge->node[UPPER]; 2471 root = select_reloc_root(trans, rc, upper, edges, &nr); 2472 BUG_ON(!root); 2473 2474 if (upper->eb && !upper->locked) { 2475 if (!lowest) { 2476 ret = btrfs_bin_search(upper->eb, key, 2477 upper->level, &slot); 2478 BUG_ON(ret); 2479 bytenr = btrfs_node_blockptr(upper->eb, slot); 2480 if (node->eb->start == bytenr) 2481 goto next; 2482 } 2483 drop_node_buffer(upper); 2484 } 2485 2486 if (!upper->eb) { 2487 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2488 if (ret < 0) { 2489 err = ret; 2490 break; 2491 } 2492 BUG_ON(ret > 0); 2493 2494 if (!upper->eb) { 2495 upper->eb = path->nodes[upper->level]; 2496 path->nodes[upper->level] = NULL; 2497 } else { 2498 BUG_ON(upper->eb != path->nodes[upper->level]); 2499 } 2500 2501 upper->locked = 1; 2502 path->locks[upper->level] = 0; 2503 2504 slot = path->slots[upper->level]; 2505 btrfs_release_path(path); 2506 } else { 2507 ret = btrfs_bin_search(upper->eb, key, upper->level, 2508 &slot); 2509 BUG_ON(ret); 2510 } 2511 2512 bytenr = btrfs_node_blockptr(upper->eb, slot); 2513 if (lowest) { 2514 BUG_ON(bytenr != node->bytenr); 2515 } else { 2516 if (node->eb->start == bytenr) 2517 goto next; 2518 } 2519 2520 blocksize = btrfs_level_size(root, node->level); 2521 generation = btrfs_node_ptr_generation(upper->eb, slot); 2522 eb = read_tree_block(root, bytenr, blocksize, generation); 2523 if (!eb) { 2524 err = -EIO; 2525 goto next; 2526 } 2527 btrfs_tree_lock(eb); 2528 btrfs_set_lock_blocking(eb); 2529 2530 if (!node->eb) { 2531 ret = btrfs_cow_block(trans, root, eb, upper->eb, 2532 slot, &eb); 2533 btrfs_tree_unlock(eb); 2534 free_extent_buffer(eb); 2535 if (ret < 0) { 2536 err = ret; 2537 goto next; 2538 } 2539 BUG_ON(node->eb != eb); 2540 } else { 2541 btrfs_set_node_blockptr(upper->eb, slot, 2542 node->eb->start); 2543 btrfs_set_node_ptr_generation(upper->eb, slot, 2544 trans->transid); 2545 btrfs_mark_buffer_dirty(upper->eb); 2546 2547 ret = btrfs_inc_extent_ref(trans, root, 2548 node->eb->start, blocksize, 2549 upper->eb->start, 2550 btrfs_header_owner(upper->eb), 2551 node->level, 0); 2552 BUG_ON(ret); 2553 2554 ret = btrfs_drop_subtree(trans, root, eb, upper->eb); 2555 BUG_ON(ret); 2556 } 2557 next: 2558 if (!upper->pending) 2559 drop_node_buffer(upper); 2560 else 2561 unlock_node_buffer(upper); 2562 if (err) 2563 break; 2564 } 2565 2566 if (!err && node->pending) { 2567 drop_node_buffer(node); 2568 list_move_tail(&node->list, &rc->backref_cache.changed); 2569 node->pending = 0; 2570 } 2571 2572 path->lowest_level = 0; 2573 BUG_ON(err == -ENOSPC); 2574 return err; 2575 } 2576 2577 static int link_to_upper(struct btrfs_trans_handle *trans, 2578 struct reloc_control *rc, 2579 struct backref_node *node, 2580 struct btrfs_path *path) 2581 { 2582 struct btrfs_key key; 2583 2584 btrfs_node_key_to_cpu(node->eb, &key, 0); 2585 return do_relocation(trans, rc, node, &key, path, 0); 2586 } 2587 2588 static int finish_pending_nodes(struct btrfs_trans_handle *trans, 2589 struct reloc_control *rc, 2590 struct btrfs_path *path, int err) 2591 { 2592 LIST_HEAD(list); 2593 struct backref_cache *cache = &rc->backref_cache; 2594 struct backref_node *node; 2595 int level; 2596 int ret; 2597 2598 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 2599 while (!list_empty(&cache->pending[level])) { 2600 node = list_entry(cache->pending[level].next, 2601 struct backref_node, list); 2602 list_move_tail(&node->list, &list); 2603 BUG_ON(!node->pending); 2604 2605 if (!err) { 2606 ret = link_to_upper(trans, rc, node, path); 2607 if (ret < 0) 2608 err = ret; 2609 } 2610 } 2611 list_splice_init(&list, &cache->pending[level]); 2612 } 2613 return err; 2614 } 2615 2616 static void mark_block_processed(struct reloc_control *rc, 2617 u64 bytenr, u32 blocksize) 2618 { 2619 set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1, 2620 EXTENT_DIRTY, GFP_NOFS); 2621 } 2622 2623 static void __mark_block_processed(struct reloc_control *rc, 2624 struct backref_node *node) 2625 { 2626 u32 blocksize; 2627 if (node->level == 0 || 2628 in_block_group(node->bytenr, rc->block_group)) { 2629 blocksize = btrfs_level_size(rc->extent_root, node->level); 2630 mark_block_processed(rc, node->bytenr, blocksize); 2631 } 2632 node->processed = 1; 2633 } 2634 2635 /* 2636 * mark a block and all blocks directly/indirectly reference the block 2637 * as processed. 2638 */ 2639 static void update_processed_blocks(struct reloc_control *rc, 2640 struct backref_node *node) 2641 { 2642 struct backref_node *next = node; 2643 struct backref_edge *edge; 2644 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2645 int index = 0; 2646 2647 while (next) { 2648 cond_resched(); 2649 while (1) { 2650 if (next->processed) 2651 break; 2652 2653 __mark_block_processed(rc, next); 2654 2655 if (list_empty(&next->upper)) 2656 break; 2657 2658 edge = list_entry(next->upper.next, 2659 struct backref_edge, list[LOWER]); 2660 edges[index++] = edge; 2661 next = edge->node[UPPER]; 2662 } 2663 next = walk_down_backref(edges, &index); 2664 } 2665 } 2666 2667 static int tree_block_processed(u64 bytenr, u32 blocksize, 2668 struct reloc_control *rc) 2669 { 2670 if (test_range_bit(&rc->processed_blocks, bytenr, 2671 bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL)) 2672 return 1; 2673 return 0; 2674 } 2675 2676 static int get_tree_block_key(struct reloc_control *rc, 2677 struct tree_block *block) 2678 { 2679 struct extent_buffer *eb; 2680 2681 BUG_ON(block->key_ready); 2682 eb = read_tree_block(rc->extent_root, block->bytenr, 2683 block->key.objectid, block->key.offset); 2684 BUG_ON(!eb); 2685 WARN_ON(btrfs_header_level(eb) != block->level); 2686 if (block->level == 0) 2687 btrfs_item_key_to_cpu(eb, &block->key, 0); 2688 else 2689 btrfs_node_key_to_cpu(eb, &block->key, 0); 2690 free_extent_buffer(eb); 2691 block->key_ready = 1; 2692 return 0; 2693 } 2694 2695 static int reada_tree_block(struct reloc_control *rc, 2696 struct tree_block *block) 2697 { 2698 BUG_ON(block->key_ready); 2699 readahead_tree_block(rc->extent_root, block->bytenr, 2700 block->key.objectid, block->key.offset); 2701 return 0; 2702 } 2703 2704 /* 2705 * helper function to relocate a tree block 2706 */ 2707 static int relocate_tree_block(struct btrfs_trans_handle *trans, 2708 struct reloc_control *rc, 2709 struct backref_node *node, 2710 struct btrfs_key *key, 2711 struct btrfs_path *path) 2712 { 2713 struct btrfs_root *root; 2714 int release = 0; 2715 int ret = 0; 2716 2717 if (!node) 2718 return 0; 2719 2720 BUG_ON(node->processed); 2721 root = select_one_root(trans, node); 2722 if (root == ERR_PTR(-ENOENT)) { 2723 update_processed_blocks(rc, node); 2724 goto out; 2725 } 2726 2727 if (!root || root->ref_cows) { 2728 ret = reserve_metadata_space(trans, rc, node); 2729 if (ret) 2730 goto out; 2731 release = 1; 2732 } 2733 2734 if (root) { 2735 if (root->ref_cows) { 2736 BUG_ON(node->new_bytenr); 2737 BUG_ON(!list_empty(&node->list)); 2738 btrfs_record_root_in_trans(trans, root); 2739 root = root->reloc_root; 2740 node->new_bytenr = root->node->start; 2741 node->root = root; 2742 list_add_tail(&node->list, &rc->backref_cache.changed); 2743 } else { 2744 path->lowest_level = node->level; 2745 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2746 btrfs_release_path(path); 2747 if (ret > 0) 2748 ret = 0; 2749 } 2750 if (!ret) 2751 update_processed_blocks(rc, node); 2752 } else { 2753 ret = do_relocation(trans, rc, node, key, path, 1); 2754 } 2755 out: 2756 if (ret || node->level == 0 || node->cowonly) { 2757 if (release) 2758 release_metadata_space(rc, node); 2759 remove_backref_node(&rc->backref_cache, node); 2760 } 2761 return ret; 2762 } 2763 2764 /* 2765 * relocate a list of blocks 2766 */ 2767 static noinline_for_stack 2768 int relocate_tree_blocks(struct btrfs_trans_handle *trans, 2769 struct reloc_control *rc, struct rb_root *blocks) 2770 { 2771 struct backref_node *node; 2772 struct btrfs_path *path; 2773 struct tree_block *block; 2774 struct rb_node *rb_node; 2775 int ret; 2776 int err = 0; 2777 2778 path = btrfs_alloc_path(); 2779 if (!path) 2780 return -ENOMEM; 2781 2782 rb_node = rb_first(blocks); 2783 while (rb_node) { 2784 block = rb_entry(rb_node, struct tree_block, rb_node); 2785 if (!block->key_ready) 2786 reada_tree_block(rc, block); 2787 rb_node = rb_next(rb_node); 2788 } 2789 2790 rb_node = rb_first(blocks); 2791 while (rb_node) { 2792 block = rb_entry(rb_node, struct tree_block, rb_node); 2793 if (!block->key_ready) 2794 get_tree_block_key(rc, block); 2795 rb_node = rb_next(rb_node); 2796 } 2797 2798 rb_node = rb_first(blocks); 2799 while (rb_node) { 2800 block = rb_entry(rb_node, struct tree_block, rb_node); 2801 2802 node = build_backref_tree(rc, &block->key, 2803 block->level, block->bytenr); 2804 if (IS_ERR(node)) { 2805 err = PTR_ERR(node); 2806 goto out; 2807 } 2808 2809 ret = relocate_tree_block(trans, rc, node, &block->key, 2810 path); 2811 if (ret < 0) { 2812 if (ret != -EAGAIN || rb_node == rb_first(blocks)) 2813 err = ret; 2814 goto out; 2815 } 2816 rb_node = rb_next(rb_node); 2817 } 2818 out: 2819 free_block_list(blocks); 2820 err = finish_pending_nodes(trans, rc, path, err); 2821 2822 btrfs_free_path(path); 2823 return err; 2824 } 2825 2826 static noinline_for_stack 2827 int prealloc_file_extent_cluster(struct inode *inode, 2828 struct file_extent_cluster *cluster) 2829 { 2830 u64 alloc_hint = 0; 2831 u64 start; 2832 u64 end; 2833 u64 offset = BTRFS_I(inode)->index_cnt; 2834 u64 num_bytes; 2835 int nr = 0; 2836 int ret = 0; 2837 2838 BUG_ON(cluster->start != cluster->boundary[0]); 2839 mutex_lock(&inode->i_mutex); 2840 2841 ret = btrfs_check_data_free_space(inode, cluster->end + 2842 1 - cluster->start); 2843 if (ret) 2844 goto out; 2845 2846 while (nr < cluster->nr) { 2847 start = cluster->boundary[nr] - offset; 2848 if (nr + 1 < cluster->nr) 2849 end = cluster->boundary[nr + 1] - 1 - offset; 2850 else 2851 end = cluster->end - offset; 2852 2853 lock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS); 2854 num_bytes = end + 1 - start; 2855 ret = btrfs_prealloc_file_range(inode, 0, start, 2856 num_bytes, num_bytes, 2857 end + 1, &alloc_hint); 2858 unlock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS); 2859 if (ret) 2860 break; 2861 nr++; 2862 } 2863 btrfs_free_reserved_data_space(inode, cluster->end + 2864 1 - cluster->start); 2865 out: 2866 mutex_unlock(&inode->i_mutex); 2867 return ret; 2868 } 2869 2870 static noinline_for_stack 2871 int setup_extent_mapping(struct inode *inode, u64 start, u64 end, 2872 u64 block_start) 2873 { 2874 struct btrfs_root *root = BTRFS_I(inode)->root; 2875 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2876 struct extent_map *em; 2877 int ret = 0; 2878 2879 em = alloc_extent_map(); 2880 if (!em) 2881 return -ENOMEM; 2882 2883 em->start = start; 2884 em->len = end + 1 - start; 2885 em->block_len = em->len; 2886 em->block_start = block_start; 2887 em->bdev = root->fs_info->fs_devices->latest_bdev; 2888 set_bit(EXTENT_FLAG_PINNED, &em->flags); 2889 2890 lock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS); 2891 while (1) { 2892 write_lock(&em_tree->lock); 2893 ret = add_extent_mapping(em_tree, em); 2894 write_unlock(&em_tree->lock); 2895 if (ret != -EEXIST) { 2896 free_extent_map(em); 2897 break; 2898 } 2899 btrfs_drop_extent_cache(inode, start, end, 0); 2900 } 2901 unlock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS); 2902 return ret; 2903 } 2904 2905 static int relocate_file_extent_cluster(struct inode *inode, 2906 struct file_extent_cluster *cluster) 2907 { 2908 u64 page_start; 2909 u64 page_end; 2910 u64 offset = BTRFS_I(inode)->index_cnt; 2911 unsigned long index; 2912 unsigned long last_index; 2913 struct page *page; 2914 struct file_ra_state *ra; 2915 int nr = 0; 2916 int ret = 0; 2917 2918 if (!cluster->nr) 2919 return 0; 2920 2921 ra = kzalloc(sizeof(*ra), GFP_NOFS); 2922 if (!ra) 2923 return -ENOMEM; 2924 2925 ret = prealloc_file_extent_cluster(inode, cluster); 2926 if (ret) 2927 goto out; 2928 2929 file_ra_state_init(ra, inode->i_mapping); 2930 2931 ret = setup_extent_mapping(inode, cluster->start - offset, 2932 cluster->end - offset, cluster->start); 2933 if (ret) 2934 goto out; 2935 2936 index = (cluster->start - offset) >> PAGE_CACHE_SHIFT; 2937 last_index = (cluster->end - offset) >> PAGE_CACHE_SHIFT; 2938 while (index <= last_index) { 2939 ret = btrfs_delalloc_reserve_metadata(inode, PAGE_CACHE_SIZE); 2940 if (ret) 2941 goto out; 2942 2943 page = find_lock_page(inode->i_mapping, index); 2944 if (!page) { 2945 page_cache_sync_readahead(inode->i_mapping, 2946 ra, NULL, index, 2947 last_index + 1 - index); 2948 page = grab_cache_page(inode->i_mapping, index); 2949 if (!page) { 2950 btrfs_delalloc_release_metadata(inode, 2951 PAGE_CACHE_SIZE); 2952 ret = -ENOMEM; 2953 goto out; 2954 } 2955 } 2956 2957 if (PageReadahead(page)) { 2958 page_cache_async_readahead(inode->i_mapping, 2959 ra, NULL, page, index, 2960 last_index + 1 - index); 2961 } 2962 2963 if (!PageUptodate(page)) { 2964 btrfs_readpage(NULL, page); 2965 lock_page(page); 2966 if (!PageUptodate(page)) { 2967 unlock_page(page); 2968 page_cache_release(page); 2969 btrfs_delalloc_release_metadata(inode, 2970 PAGE_CACHE_SIZE); 2971 ret = -EIO; 2972 goto out; 2973 } 2974 } 2975 2976 page_start = (u64)page->index << PAGE_CACHE_SHIFT; 2977 page_end = page_start + PAGE_CACHE_SIZE - 1; 2978 2979 lock_extent(&BTRFS_I(inode)->io_tree, 2980 page_start, page_end, GFP_NOFS); 2981 2982 set_page_extent_mapped(page); 2983 2984 if (nr < cluster->nr && 2985 page_start + offset == cluster->boundary[nr]) { 2986 set_extent_bits(&BTRFS_I(inode)->io_tree, 2987 page_start, page_end, 2988 EXTENT_BOUNDARY, GFP_NOFS); 2989 nr++; 2990 } 2991 2992 btrfs_set_extent_delalloc(inode, page_start, page_end, NULL); 2993 set_page_dirty(page); 2994 2995 unlock_extent(&BTRFS_I(inode)->io_tree, 2996 page_start, page_end, GFP_NOFS); 2997 unlock_page(page); 2998 page_cache_release(page); 2999 3000 index++; 3001 balance_dirty_pages_ratelimited(inode->i_mapping); 3002 btrfs_throttle(BTRFS_I(inode)->root); 3003 } 3004 WARN_ON(nr != cluster->nr); 3005 out: 3006 kfree(ra); 3007 return ret; 3008 } 3009 3010 static noinline_for_stack 3011 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key, 3012 struct file_extent_cluster *cluster) 3013 { 3014 int ret; 3015 3016 if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) { 3017 ret = relocate_file_extent_cluster(inode, cluster); 3018 if (ret) 3019 return ret; 3020 cluster->nr = 0; 3021 } 3022 3023 if (!cluster->nr) 3024 cluster->start = extent_key->objectid; 3025 else 3026 BUG_ON(cluster->nr >= MAX_EXTENTS); 3027 cluster->end = extent_key->objectid + extent_key->offset - 1; 3028 cluster->boundary[cluster->nr] = extent_key->objectid; 3029 cluster->nr++; 3030 3031 if (cluster->nr >= MAX_EXTENTS) { 3032 ret = relocate_file_extent_cluster(inode, cluster); 3033 if (ret) 3034 return ret; 3035 cluster->nr = 0; 3036 } 3037 return 0; 3038 } 3039 3040 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3041 static int get_ref_objectid_v0(struct reloc_control *rc, 3042 struct btrfs_path *path, 3043 struct btrfs_key *extent_key, 3044 u64 *ref_objectid, int *path_change) 3045 { 3046 struct btrfs_key key; 3047 struct extent_buffer *leaf; 3048 struct btrfs_extent_ref_v0 *ref0; 3049 int ret; 3050 int slot; 3051 3052 leaf = path->nodes[0]; 3053 slot = path->slots[0]; 3054 while (1) { 3055 if (slot >= btrfs_header_nritems(leaf)) { 3056 ret = btrfs_next_leaf(rc->extent_root, path); 3057 if (ret < 0) 3058 return ret; 3059 BUG_ON(ret > 0); 3060 leaf = path->nodes[0]; 3061 slot = path->slots[0]; 3062 if (path_change) 3063 *path_change = 1; 3064 } 3065 btrfs_item_key_to_cpu(leaf, &key, slot); 3066 if (key.objectid != extent_key->objectid) 3067 return -ENOENT; 3068 3069 if (key.type != BTRFS_EXTENT_REF_V0_KEY) { 3070 slot++; 3071 continue; 3072 } 3073 ref0 = btrfs_item_ptr(leaf, slot, 3074 struct btrfs_extent_ref_v0); 3075 *ref_objectid = btrfs_ref_objectid_v0(leaf, ref0); 3076 break; 3077 } 3078 return 0; 3079 } 3080 #endif 3081 3082 /* 3083 * helper to add a tree block to the list. 3084 * the major work is getting the generation and level of the block 3085 */ 3086 static int add_tree_block(struct reloc_control *rc, 3087 struct btrfs_key *extent_key, 3088 struct btrfs_path *path, 3089 struct rb_root *blocks) 3090 { 3091 struct extent_buffer *eb; 3092 struct btrfs_extent_item *ei; 3093 struct btrfs_tree_block_info *bi; 3094 struct tree_block *block; 3095 struct rb_node *rb_node; 3096 u32 item_size; 3097 int level = -1; 3098 int generation; 3099 3100 eb = path->nodes[0]; 3101 item_size = btrfs_item_size_nr(eb, path->slots[0]); 3102 3103 if (item_size >= sizeof(*ei) + sizeof(*bi)) { 3104 ei = btrfs_item_ptr(eb, path->slots[0], 3105 struct btrfs_extent_item); 3106 bi = (struct btrfs_tree_block_info *)(ei + 1); 3107 generation = btrfs_extent_generation(eb, ei); 3108 level = btrfs_tree_block_level(eb, bi); 3109 } else { 3110 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3111 u64 ref_owner; 3112 int ret; 3113 3114 BUG_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 3115 ret = get_ref_objectid_v0(rc, path, extent_key, 3116 &ref_owner, NULL); 3117 if (ret < 0) 3118 return ret; 3119 BUG_ON(ref_owner >= BTRFS_MAX_LEVEL); 3120 level = (int)ref_owner; 3121 /* FIXME: get real generation */ 3122 generation = 0; 3123 #else 3124 BUG(); 3125 #endif 3126 } 3127 3128 btrfs_release_path(path); 3129 3130 BUG_ON(level == -1); 3131 3132 block = kmalloc(sizeof(*block), GFP_NOFS); 3133 if (!block) 3134 return -ENOMEM; 3135 3136 block->bytenr = extent_key->objectid; 3137 block->key.objectid = extent_key->offset; 3138 block->key.offset = generation; 3139 block->level = level; 3140 block->key_ready = 0; 3141 3142 rb_node = tree_insert(blocks, block->bytenr, &block->rb_node); 3143 BUG_ON(rb_node); 3144 3145 return 0; 3146 } 3147 3148 /* 3149 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY 3150 */ 3151 static int __add_tree_block(struct reloc_control *rc, 3152 u64 bytenr, u32 blocksize, 3153 struct rb_root *blocks) 3154 { 3155 struct btrfs_path *path; 3156 struct btrfs_key key; 3157 int ret; 3158 3159 if (tree_block_processed(bytenr, blocksize, rc)) 3160 return 0; 3161 3162 if (tree_search(blocks, bytenr)) 3163 return 0; 3164 3165 path = btrfs_alloc_path(); 3166 if (!path) 3167 return -ENOMEM; 3168 3169 key.objectid = bytenr; 3170 key.type = BTRFS_EXTENT_ITEM_KEY; 3171 key.offset = blocksize; 3172 3173 path->search_commit_root = 1; 3174 path->skip_locking = 1; 3175 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0); 3176 if (ret < 0) 3177 goto out; 3178 BUG_ON(ret); 3179 3180 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 3181 ret = add_tree_block(rc, &key, path, blocks); 3182 out: 3183 btrfs_free_path(path); 3184 return ret; 3185 } 3186 3187 /* 3188 * helper to check if the block use full backrefs for pointers in it 3189 */ 3190 static int block_use_full_backref(struct reloc_control *rc, 3191 struct extent_buffer *eb) 3192 { 3193 u64 flags; 3194 int ret; 3195 3196 if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) || 3197 btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV) 3198 return 1; 3199 3200 ret = btrfs_lookup_extent_info(NULL, rc->extent_root, 3201 eb->start, eb->len, NULL, &flags); 3202 BUG_ON(ret); 3203 3204 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) 3205 ret = 1; 3206 else 3207 ret = 0; 3208 return ret; 3209 } 3210 3211 static int delete_block_group_cache(struct btrfs_fs_info *fs_info, 3212 struct inode *inode, u64 ino) 3213 { 3214 struct btrfs_key key; 3215 struct btrfs_path *path; 3216 struct btrfs_root *root = fs_info->tree_root; 3217 struct btrfs_trans_handle *trans; 3218 unsigned long nr; 3219 int ret = 0; 3220 3221 if (inode) 3222 goto truncate; 3223 3224 key.objectid = ino; 3225 key.type = BTRFS_INODE_ITEM_KEY; 3226 key.offset = 0; 3227 3228 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 3229 if (IS_ERR_OR_NULL(inode) || is_bad_inode(inode)) { 3230 if (inode && !IS_ERR(inode)) 3231 iput(inode); 3232 return -ENOENT; 3233 } 3234 3235 truncate: 3236 path = btrfs_alloc_path(); 3237 if (!path) { 3238 ret = -ENOMEM; 3239 goto out; 3240 } 3241 3242 trans = btrfs_join_transaction(root); 3243 if (IS_ERR(trans)) { 3244 btrfs_free_path(path); 3245 ret = PTR_ERR(trans); 3246 goto out; 3247 } 3248 3249 ret = btrfs_truncate_free_space_cache(root, trans, path, inode); 3250 3251 btrfs_free_path(path); 3252 nr = trans->blocks_used; 3253 btrfs_end_transaction(trans, root); 3254 btrfs_btree_balance_dirty(root, nr); 3255 out: 3256 iput(inode); 3257 return ret; 3258 } 3259 3260 /* 3261 * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY 3262 * this function scans fs tree to find blocks reference the data extent 3263 */ 3264 static int find_data_references(struct reloc_control *rc, 3265 struct btrfs_key *extent_key, 3266 struct extent_buffer *leaf, 3267 struct btrfs_extent_data_ref *ref, 3268 struct rb_root *blocks) 3269 { 3270 struct btrfs_path *path; 3271 struct tree_block *block; 3272 struct btrfs_root *root; 3273 struct btrfs_file_extent_item *fi; 3274 struct rb_node *rb_node; 3275 struct btrfs_key key; 3276 u64 ref_root; 3277 u64 ref_objectid; 3278 u64 ref_offset; 3279 u32 ref_count; 3280 u32 nritems; 3281 int err = 0; 3282 int added = 0; 3283 int counted; 3284 int ret; 3285 3286 ref_root = btrfs_extent_data_ref_root(leaf, ref); 3287 ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref); 3288 ref_offset = btrfs_extent_data_ref_offset(leaf, ref); 3289 ref_count = btrfs_extent_data_ref_count(leaf, ref); 3290 3291 /* 3292 * This is an extent belonging to the free space cache, lets just delete 3293 * it and redo the search. 3294 */ 3295 if (ref_root == BTRFS_ROOT_TREE_OBJECTID) { 3296 ret = delete_block_group_cache(rc->extent_root->fs_info, 3297 NULL, ref_objectid); 3298 if (ret != -ENOENT) 3299 return ret; 3300 ret = 0; 3301 } 3302 3303 path = btrfs_alloc_path(); 3304 if (!path) 3305 return -ENOMEM; 3306 path->reada = 1; 3307 3308 root = read_fs_root(rc->extent_root->fs_info, ref_root); 3309 if (IS_ERR(root)) { 3310 err = PTR_ERR(root); 3311 goto out; 3312 } 3313 3314 key.objectid = ref_objectid; 3315 key.offset = ref_offset; 3316 key.type = BTRFS_EXTENT_DATA_KEY; 3317 3318 path->search_commit_root = 1; 3319 path->skip_locking = 1; 3320 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3321 if (ret < 0) { 3322 err = ret; 3323 goto out; 3324 } 3325 3326 leaf = path->nodes[0]; 3327 nritems = btrfs_header_nritems(leaf); 3328 /* 3329 * the references in tree blocks that use full backrefs 3330 * are not counted in 3331 */ 3332 if (block_use_full_backref(rc, leaf)) 3333 counted = 0; 3334 else 3335 counted = 1; 3336 rb_node = tree_search(blocks, leaf->start); 3337 if (rb_node) { 3338 if (counted) 3339 added = 1; 3340 else 3341 path->slots[0] = nritems; 3342 } 3343 3344 while (ref_count > 0) { 3345 while (path->slots[0] >= nritems) { 3346 ret = btrfs_next_leaf(root, path); 3347 if (ret < 0) { 3348 err = ret; 3349 goto out; 3350 } 3351 if (ret > 0) { 3352 WARN_ON(1); 3353 goto out; 3354 } 3355 3356 leaf = path->nodes[0]; 3357 nritems = btrfs_header_nritems(leaf); 3358 added = 0; 3359 3360 if (block_use_full_backref(rc, leaf)) 3361 counted = 0; 3362 else 3363 counted = 1; 3364 rb_node = tree_search(blocks, leaf->start); 3365 if (rb_node) { 3366 if (counted) 3367 added = 1; 3368 else 3369 path->slots[0] = nritems; 3370 } 3371 } 3372 3373 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3374 if (key.objectid != ref_objectid || 3375 key.type != BTRFS_EXTENT_DATA_KEY) { 3376 WARN_ON(1); 3377 break; 3378 } 3379 3380 fi = btrfs_item_ptr(leaf, path->slots[0], 3381 struct btrfs_file_extent_item); 3382 3383 if (btrfs_file_extent_type(leaf, fi) == 3384 BTRFS_FILE_EXTENT_INLINE) 3385 goto next; 3386 3387 if (btrfs_file_extent_disk_bytenr(leaf, fi) != 3388 extent_key->objectid) 3389 goto next; 3390 3391 key.offset -= btrfs_file_extent_offset(leaf, fi); 3392 if (key.offset != ref_offset) 3393 goto next; 3394 3395 if (counted) 3396 ref_count--; 3397 if (added) 3398 goto next; 3399 3400 if (!tree_block_processed(leaf->start, leaf->len, rc)) { 3401 block = kmalloc(sizeof(*block), GFP_NOFS); 3402 if (!block) { 3403 err = -ENOMEM; 3404 break; 3405 } 3406 block->bytenr = leaf->start; 3407 btrfs_item_key_to_cpu(leaf, &block->key, 0); 3408 block->level = 0; 3409 block->key_ready = 1; 3410 rb_node = tree_insert(blocks, block->bytenr, 3411 &block->rb_node); 3412 BUG_ON(rb_node); 3413 } 3414 if (counted) 3415 added = 1; 3416 else 3417 path->slots[0] = nritems; 3418 next: 3419 path->slots[0]++; 3420 3421 } 3422 out: 3423 btrfs_free_path(path); 3424 return err; 3425 } 3426 3427 /* 3428 * hepler to find all tree blocks that reference a given data extent 3429 */ 3430 static noinline_for_stack 3431 int add_data_references(struct reloc_control *rc, 3432 struct btrfs_key *extent_key, 3433 struct btrfs_path *path, 3434 struct rb_root *blocks) 3435 { 3436 struct btrfs_key key; 3437 struct extent_buffer *eb; 3438 struct btrfs_extent_data_ref *dref; 3439 struct btrfs_extent_inline_ref *iref; 3440 unsigned long ptr; 3441 unsigned long end; 3442 u32 blocksize = btrfs_level_size(rc->extent_root, 0); 3443 int ret; 3444 int err = 0; 3445 3446 eb = path->nodes[0]; 3447 ptr = btrfs_item_ptr_offset(eb, path->slots[0]); 3448 end = ptr + btrfs_item_size_nr(eb, path->slots[0]); 3449 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3450 if (ptr + sizeof(struct btrfs_extent_item_v0) == end) 3451 ptr = end; 3452 else 3453 #endif 3454 ptr += sizeof(struct btrfs_extent_item); 3455 3456 while (ptr < end) { 3457 iref = (struct btrfs_extent_inline_ref *)ptr; 3458 key.type = btrfs_extent_inline_ref_type(eb, iref); 3459 if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 3460 key.offset = btrfs_extent_inline_ref_offset(eb, iref); 3461 ret = __add_tree_block(rc, key.offset, blocksize, 3462 blocks); 3463 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 3464 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 3465 ret = find_data_references(rc, extent_key, 3466 eb, dref, blocks); 3467 } else { 3468 BUG(); 3469 } 3470 ptr += btrfs_extent_inline_ref_size(key.type); 3471 } 3472 WARN_ON(ptr > end); 3473 3474 while (1) { 3475 cond_resched(); 3476 eb = path->nodes[0]; 3477 if (path->slots[0] >= btrfs_header_nritems(eb)) { 3478 ret = btrfs_next_leaf(rc->extent_root, path); 3479 if (ret < 0) { 3480 err = ret; 3481 break; 3482 } 3483 if (ret > 0) 3484 break; 3485 eb = path->nodes[0]; 3486 } 3487 3488 btrfs_item_key_to_cpu(eb, &key, path->slots[0]); 3489 if (key.objectid != extent_key->objectid) 3490 break; 3491 3492 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3493 if (key.type == BTRFS_SHARED_DATA_REF_KEY || 3494 key.type == BTRFS_EXTENT_REF_V0_KEY) { 3495 #else 3496 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY); 3497 if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 3498 #endif 3499 ret = __add_tree_block(rc, key.offset, blocksize, 3500 blocks); 3501 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 3502 dref = btrfs_item_ptr(eb, path->slots[0], 3503 struct btrfs_extent_data_ref); 3504 ret = find_data_references(rc, extent_key, 3505 eb, dref, blocks); 3506 } else { 3507 ret = 0; 3508 } 3509 if (ret) { 3510 err = ret; 3511 break; 3512 } 3513 path->slots[0]++; 3514 } 3515 btrfs_release_path(path); 3516 if (err) 3517 free_block_list(blocks); 3518 return err; 3519 } 3520 3521 /* 3522 * hepler to find next unprocessed extent 3523 */ 3524 static noinline_for_stack 3525 int find_next_extent(struct btrfs_trans_handle *trans, 3526 struct reloc_control *rc, struct btrfs_path *path, 3527 struct btrfs_key *extent_key) 3528 { 3529 struct btrfs_key key; 3530 struct extent_buffer *leaf; 3531 u64 start, end, last; 3532 int ret; 3533 3534 last = rc->block_group->key.objectid + rc->block_group->key.offset; 3535 while (1) { 3536 cond_resched(); 3537 if (rc->search_start >= last) { 3538 ret = 1; 3539 break; 3540 } 3541 3542 key.objectid = rc->search_start; 3543 key.type = BTRFS_EXTENT_ITEM_KEY; 3544 key.offset = 0; 3545 3546 path->search_commit_root = 1; 3547 path->skip_locking = 1; 3548 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 3549 0, 0); 3550 if (ret < 0) 3551 break; 3552 next: 3553 leaf = path->nodes[0]; 3554 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 3555 ret = btrfs_next_leaf(rc->extent_root, path); 3556 if (ret != 0) 3557 break; 3558 leaf = path->nodes[0]; 3559 } 3560 3561 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3562 if (key.objectid >= last) { 3563 ret = 1; 3564 break; 3565 } 3566 3567 if (key.type != BTRFS_EXTENT_ITEM_KEY || 3568 key.objectid + key.offset <= rc->search_start) { 3569 path->slots[0]++; 3570 goto next; 3571 } 3572 3573 ret = find_first_extent_bit(&rc->processed_blocks, 3574 key.objectid, &start, &end, 3575 EXTENT_DIRTY); 3576 3577 if (ret == 0 && start <= key.objectid) { 3578 btrfs_release_path(path); 3579 rc->search_start = end + 1; 3580 } else { 3581 rc->search_start = key.objectid + key.offset; 3582 memcpy(extent_key, &key, sizeof(key)); 3583 return 0; 3584 } 3585 } 3586 btrfs_release_path(path); 3587 return ret; 3588 } 3589 3590 static void set_reloc_control(struct reloc_control *rc) 3591 { 3592 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3593 spin_lock(&fs_info->trans_lock); 3594 fs_info->reloc_ctl = rc; 3595 spin_unlock(&fs_info->trans_lock); 3596 } 3597 3598 static void unset_reloc_control(struct reloc_control *rc) 3599 { 3600 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3601 spin_lock(&fs_info->trans_lock); 3602 fs_info->reloc_ctl = NULL; 3603 spin_unlock(&fs_info->trans_lock); 3604 } 3605 3606 static int check_extent_flags(u64 flags) 3607 { 3608 if ((flags & BTRFS_EXTENT_FLAG_DATA) && 3609 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) 3610 return 1; 3611 if (!(flags & BTRFS_EXTENT_FLAG_DATA) && 3612 !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) 3613 return 1; 3614 if ((flags & BTRFS_EXTENT_FLAG_DATA) && 3615 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 3616 return 1; 3617 return 0; 3618 } 3619 3620 static noinline_for_stack 3621 int prepare_to_relocate(struct reloc_control *rc) 3622 { 3623 struct btrfs_trans_handle *trans; 3624 int ret; 3625 3626 rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root); 3627 if (!rc->block_rsv) 3628 return -ENOMEM; 3629 3630 /* 3631 * reserve some space for creating reloc trees. 3632 * btrfs_init_reloc_root will use them when there 3633 * is no reservation in transaction handle. 3634 */ 3635 ret = btrfs_block_rsv_add(NULL, rc->extent_root, rc->block_rsv, 3636 rc->extent_root->nodesize * 256); 3637 if (ret) 3638 return ret; 3639 3640 rc->block_rsv->refill_used = 1; 3641 btrfs_add_durable_block_rsv(rc->extent_root->fs_info, rc->block_rsv); 3642 3643 memset(&rc->cluster, 0, sizeof(rc->cluster)); 3644 rc->search_start = rc->block_group->key.objectid; 3645 rc->extents_found = 0; 3646 rc->nodes_relocated = 0; 3647 rc->merging_rsv_size = 0; 3648 3649 rc->create_reloc_tree = 1; 3650 set_reloc_control(rc); 3651 3652 trans = btrfs_join_transaction(rc->extent_root); 3653 BUG_ON(IS_ERR(trans)); 3654 btrfs_commit_transaction(trans, rc->extent_root); 3655 return 0; 3656 } 3657 3658 static noinline_for_stack int relocate_block_group(struct reloc_control *rc) 3659 { 3660 struct rb_root blocks = RB_ROOT; 3661 struct btrfs_key key; 3662 struct btrfs_trans_handle *trans = NULL; 3663 struct btrfs_path *path; 3664 struct btrfs_extent_item *ei; 3665 unsigned long nr; 3666 u64 flags; 3667 u32 item_size; 3668 int ret; 3669 int err = 0; 3670 int progress = 0; 3671 3672 path = btrfs_alloc_path(); 3673 if (!path) 3674 return -ENOMEM; 3675 path->reada = 1; 3676 3677 ret = prepare_to_relocate(rc); 3678 if (ret) { 3679 err = ret; 3680 goto out_free; 3681 } 3682 3683 while (1) { 3684 progress++; 3685 trans = btrfs_start_transaction(rc->extent_root, 0); 3686 BUG_ON(IS_ERR(trans)); 3687 restart: 3688 if (update_backref_cache(trans, &rc->backref_cache)) { 3689 btrfs_end_transaction(trans, rc->extent_root); 3690 continue; 3691 } 3692 3693 ret = find_next_extent(trans, rc, path, &key); 3694 if (ret < 0) 3695 err = ret; 3696 if (ret != 0) 3697 break; 3698 3699 rc->extents_found++; 3700 3701 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 3702 struct btrfs_extent_item); 3703 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]); 3704 if (item_size >= sizeof(*ei)) { 3705 flags = btrfs_extent_flags(path->nodes[0], ei); 3706 ret = check_extent_flags(flags); 3707 BUG_ON(ret); 3708 3709 } else { 3710 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3711 u64 ref_owner; 3712 int path_change = 0; 3713 3714 BUG_ON(item_size != 3715 sizeof(struct btrfs_extent_item_v0)); 3716 ret = get_ref_objectid_v0(rc, path, &key, &ref_owner, 3717 &path_change); 3718 if (ref_owner < BTRFS_FIRST_FREE_OBJECTID) 3719 flags = BTRFS_EXTENT_FLAG_TREE_BLOCK; 3720 else 3721 flags = BTRFS_EXTENT_FLAG_DATA; 3722 3723 if (path_change) { 3724 btrfs_release_path(path); 3725 3726 path->search_commit_root = 1; 3727 path->skip_locking = 1; 3728 ret = btrfs_search_slot(NULL, rc->extent_root, 3729 &key, path, 0, 0); 3730 if (ret < 0) { 3731 err = ret; 3732 break; 3733 } 3734 BUG_ON(ret > 0); 3735 } 3736 #else 3737 BUG(); 3738 #endif 3739 } 3740 3741 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 3742 ret = add_tree_block(rc, &key, path, &blocks); 3743 } else if (rc->stage == UPDATE_DATA_PTRS && 3744 (flags & BTRFS_EXTENT_FLAG_DATA)) { 3745 ret = add_data_references(rc, &key, path, &blocks); 3746 } else { 3747 btrfs_release_path(path); 3748 ret = 0; 3749 } 3750 if (ret < 0) { 3751 err = ret; 3752 break; 3753 } 3754 3755 if (!RB_EMPTY_ROOT(&blocks)) { 3756 ret = relocate_tree_blocks(trans, rc, &blocks); 3757 if (ret < 0) { 3758 if (ret != -EAGAIN) { 3759 err = ret; 3760 break; 3761 } 3762 rc->extents_found--; 3763 rc->search_start = key.objectid; 3764 } 3765 } 3766 3767 ret = btrfs_block_rsv_check(trans, rc->extent_root, 3768 rc->block_rsv, 0, 5); 3769 if (ret < 0) { 3770 if (ret != -EAGAIN) { 3771 err = ret; 3772 WARN_ON(1); 3773 break; 3774 } 3775 rc->commit_transaction = 1; 3776 } 3777 3778 if (rc->commit_transaction) { 3779 rc->commit_transaction = 0; 3780 ret = btrfs_commit_transaction(trans, rc->extent_root); 3781 BUG_ON(ret); 3782 } else { 3783 nr = trans->blocks_used; 3784 btrfs_end_transaction_throttle(trans, rc->extent_root); 3785 btrfs_btree_balance_dirty(rc->extent_root, nr); 3786 } 3787 trans = NULL; 3788 3789 if (rc->stage == MOVE_DATA_EXTENTS && 3790 (flags & BTRFS_EXTENT_FLAG_DATA)) { 3791 rc->found_file_extent = 1; 3792 ret = relocate_data_extent(rc->data_inode, 3793 &key, &rc->cluster); 3794 if (ret < 0) { 3795 err = ret; 3796 break; 3797 } 3798 } 3799 } 3800 if (trans && progress && err == -ENOSPC) { 3801 ret = btrfs_force_chunk_alloc(trans, rc->extent_root, 3802 rc->block_group->flags); 3803 if (ret == 0) { 3804 err = 0; 3805 progress = 0; 3806 goto restart; 3807 } 3808 } 3809 3810 btrfs_release_path(path); 3811 clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY, 3812 GFP_NOFS); 3813 3814 if (trans) { 3815 nr = trans->blocks_used; 3816 btrfs_end_transaction_throttle(trans, rc->extent_root); 3817 btrfs_btree_balance_dirty(rc->extent_root, nr); 3818 } 3819 3820 if (!err) { 3821 ret = relocate_file_extent_cluster(rc->data_inode, 3822 &rc->cluster); 3823 if (ret < 0) 3824 err = ret; 3825 } 3826 3827 rc->create_reloc_tree = 0; 3828 set_reloc_control(rc); 3829 3830 backref_cache_cleanup(&rc->backref_cache); 3831 btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1); 3832 3833 err = prepare_to_merge(rc, err); 3834 3835 merge_reloc_roots(rc); 3836 3837 rc->merge_reloc_tree = 0; 3838 unset_reloc_control(rc); 3839 btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1); 3840 3841 /* get rid of pinned extents */ 3842 trans = btrfs_join_transaction(rc->extent_root); 3843 if (IS_ERR(trans)) 3844 err = PTR_ERR(trans); 3845 else 3846 btrfs_commit_transaction(trans, rc->extent_root); 3847 out_free: 3848 btrfs_free_block_rsv(rc->extent_root, rc->block_rsv); 3849 btrfs_free_path(path); 3850 return err; 3851 } 3852 3853 static int __insert_orphan_inode(struct btrfs_trans_handle *trans, 3854 struct btrfs_root *root, u64 objectid) 3855 { 3856 struct btrfs_path *path; 3857 struct btrfs_inode_item *item; 3858 struct extent_buffer *leaf; 3859 int ret; 3860 3861 path = btrfs_alloc_path(); 3862 if (!path) 3863 return -ENOMEM; 3864 3865 ret = btrfs_insert_empty_inode(trans, root, path, objectid); 3866 if (ret) 3867 goto out; 3868 3869 leaf = path->nodes[0]; 3870 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item); 3871 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item)); 3872 btrfs_set_inode_generation(leaf, item, 1); 3873 btrfs_set_inode_size(leaf, item, 0); 3874 btrfs_set_inode_mode(leaf, item, S_IFREG | 0600); 3875 btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS | 3876 BTRFS_INODE_PREALLOC); 3877 btrfs_mark_buffer_dirty(leaf); 3878 btrfs_release_path(path); 3879 out: 3880 btrfs_free_path(path); 3881 return ret; 3882 } 3883 3884 /* 3885 * helper to create inode for data relocation. 3886 * the inode is in data relocation tree and its link count is 0 3887 */ 3888 static noinline_for_stack 3889 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info, 3890 struct btrfs_block_group_cache *group) 3891 { 3892 struct inode *inode = NULL; 3893 struct btrfs_trans_handle *trans; 3894 struct btrfs_root *root; 3895 struct btrfs_key key; 3896 unsigned long nr; 3897 u64 objectid = BTRFS_FIRST_FREE_OBJECTID; 3898 int err = 0; 3899 3900 root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID); 3901 if (IS_ERR(root)) 3902 return ERR_CAST(root); 3903 3904 trans = btrfs_start_transaction(root, 6); 3905 if (IS_ERR(trans)) 3906 return ERR_CAST(trans); 3907 3908 err = btrfs_find_free_objectid(root, &objectid); 3909 if (err) 3910 goto out; 3911 3912 err = __insert_orphan_inode(trans, root, objectid); 3913 BUG_ON(err); 3914 3915 key.objectid = objectid; 3916 key.type = BTRFS_INODE_ITEM_KEY; 3917 key.offset = 0; 3918 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL); 3919 BUG_ON(IS_ERR(inode) || is_bad_inode(inode)); 3920 BTRFS_I(inode)->index_cnt = group->key.objectid; 3921 3922 err = btrfs_orphan_add(trans, inode); 3923 out: 3924 nr = trans->blocks_used; 3925 btrfs_end_transaction(trans, root); 3926 btrfs_btree_balance_dirty(root, nr); 3927 if (err) { 3928 if (inode) 3929 iput(inode); 3930 inode = ERR_PTR(err); 3931 } 3932 return inode; 3933 } 3934 3935 static struct reloc_control *alloc_reloc_control(void) 3936 { 3937 struct reloc_control *rc; 3938 3939 rc = kzalloc(sizeof(*rc), GFP_NOFS); 3940 if (!rc) 3941 return NULL; 3942 3943 INIT_LIST_HEAD(&rc->reloc_roots); 3944 backref_cache_init(&rc->backref_cache); 3945 mapping_tree_init(&rc->reloc_root_tree); 3946 extent_io_tree_init(&rc->processed_blocks, NULL); 3947 return rc; 3948 } 3949 3950 /* 3951 * function to relocate all extents in a block group. 3952 */ 3953 int btrfs_relocate_block_group(struct btrfs_root *extent_root, u64 group_start) 3954 { 3955 struct btrfs_fs_info *fs_info = extent_root->fs_info; 3956 struct reloc_control *rc; 3957 struct inode *inode; 3958 struct btrfs_path *path; 3959 int ret; 3960 int rw = 0; 3961 int err = 0; 3962 3963 rc = alloc_reloc_control(); 3964 if (!rc) 3965 return -ENOMEM; 3966 3967 rc->extent_root = extent_root; 3968 3969 rc->block_group = btrfs_lookup_block_group(fs_info, group_start); 3970 BUG_ON(!rc->block_group); 3971 3972 if (!rc->block_group->ro) { 3973 ret = btrfs_set_block_group_ro(extent_root, rc->block_group); 3974 if (ret) { 3975 err = ret; 3976 goto out; 3977 } 3978 rw = 1; 3979 } 3980 3981 path = btrfs_alloc_path(); 3982 if (!path) { 3983 err = -ENOMEM; 3984 goto out; 3985 } 3986 3987 inode = lookup_free_space_inode(fs_info->tree_root, rc->block_group, 3988 path); 3989 btrfs_free_path(path); 3990 3991 if (!IS_ERR(inode)) 3992 ret = delete_block_group_cache(fs_info, inode, 0); 3993 else 3994 ret = PTR_ERR(inode); 3995 3996 if (ret && ret != -ENOENT) { 3997 err = ret; 3998 goto out; 3999 } 4000 4001 rc->data_inode = create_reloc_inode(fs_info, rc->block_group); 4002 if (IS_ERR(rc->data_inode)) { 4003 err = PTR_ERR(rc->data_inode); 4004 rc->data_inode = NULL; 4005 goto out; 4006 } 4007 4008 printk(KERN_INFO "btrfs: relocating block group %llu flags %llu\n", 4009 (unsigned long long)rc->block_group->key.objectid, 4010 (unsigned long long)rc->block_group->flags); 4011 4012 btrfs_start_delalloc_inodes(fs_info->tree_root, 0); 4013 btrfs_wait_ordered_extents(fs_info->tree_root, 0, 0); 4014 4015 while (1) { 4016 mutex_lock(&fs_info->cleaner_mutex); 4017 4018 btrfs_clean_old_snapshots(fs_info->tree_root); 4019 ret = relocate_block_group(rc); 4020 4021 mutex_unlock(&fs_info->cleaner_mutex); 4022 if (ret < 0) { 4023 err = ret; 4024 goto out; 4025 } 4026 4027 if (rc->extents_found == 0) 4028 break; 4029 4030 printk(KERN_INFO "btrfs: found %llu extents\n", 4031 (unsigned long long)rc->extents_found); 4032 4033 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) { 4034 btrfs_wait_ordered_range(rc->data_inode, 0, (u64)-1); 4035 invalidate_mapping_pages(rc->data_inode->i_mapping, 4036 0, -1); 4037 rc->stage = UPDATE_DATA_PTRS; 4038 } 4039 } 4040 4041 filemap_write_and_wait_range(fs_info->btree_inode->i_mapping, 4042 rc->block_group->key.objectid, 4043 rc->block_group->key.objectid + 4044 rc->block_group->key.offset - 1); 4045 4046 WARN_ON(rc->block_group->pinned > 0); 4047 WARN_ON(rc->block_group->reserved > 0); 4048 WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0); 4049 out: 4050 if (err && rw) 4051 btrfs_set_block_group_rw(extent_root, rc->block_group); 4052 iput(rc->data_inode); 4053 btrfs_put_block_group(rc->block_group); 4054 kfree(rc); 4055 return err; 4056 } 4057 4058 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root) 4059 { 4060 struct btrfs_trans_handle *trans; 4061 int ret; 4062 4063 trans = btrfs_start_transaction(root->fs_info->tree_root, 0); 4064 BUG_ON(IS_ERR(trans)); 4065 4066 memset(&root->root_item.drop_progress, 0, 4067 sizeof(root->root_item.drop_progress)); 4068 root->root_item.drop_level = 0; 4069 btrfs_set_root_refs(&root->root_item, 0); 4070 ret = btrfs_update_root(trans, root->fs_info->tree_root, 4071 &root->root_key, &root->root_item); 4072 BUG_ON(ret); 4073 4074 ret = btrfs_end_transaction(trans, root->fs_info->tree_root); 4075 BUG_ON(ret); 4076 return 0; 4077 } 4078 4079 /* 4080 * recover relocation interrupted by system crash. 4081 * 4082 * this function resumes merging reloc trees with corresponding fs trees. 4083 * this is important for keeping the sharing of tree blocks 4084 */ 4085 int btrfs_recover_relocation(struct btrfs_root *root) 4086 { 4087 LIST_HEAD(reloc_roots); 4088 struct btrfs_key key; 4089 struct btrfs_root *fs_root; 4090 struct btrfs_root *reloc_root; 4091 struct btrfs_path *path; 4092 struct extent_buffer *leaf; 4093 struct reloc_control *rc = NULL; 4094 struct btrfs_trans_handle *trans; 4095 int ret; 4096 int err = 0; 4097 4098 path = btrfs_alloc_path(); 4099 if (!path) 4100 return -ENOMEM; 4101 path->reada = -1; 4102 4103 key.objectid = BTRFS_TREE_RELOC_OBJECTID; 4104 key.type = BTRFS_ROOT_ITEM_KEY; 4105 key.offset = (u64)-1; 4106 4107 while (1) { 4108 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, 4109 path, 0, 0); 4110 if (ret < 0) { 4111 err = ret; 4112 goto out; 4113 } 4114 if (ret > 0) { 4115 if (path->slots[0] == 0) 4116 break; 4117 path->slots[0]--; 4118 } 4119 leaf = path->nodes[0]; 4120 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4121 btrfs_release_path(path); 4122 4123 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID || 4124 key.type != BTRFS_ROOT_ITEM_KEY) 4125 break; 4126 4127 reloc_root = btrfs_read_fs_root_no_radix(root, &key); 4128 if (IS_ERR(reloc_root)) { 4129 err = PTR_ERR(reloc_root); 4130 goto out; 4131 } 4132 4133 list_add(&reloc_root->root_list, &reloc_roots); 4134 4135 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 4136 fs_root = read_fs_root(root->fs_info, 4137 reloc_root->root_key.offset); 4138 if (IS_ERR(fs_root)) { 4139 ret = PTR_ERR(fs_root); 4140 if (ret != -ENOENT) { 4141 err = ret; 4142 goto out; 4143 } 4144 mark_garbage_root(reloc_root); 4145 } 4146 } 4147 4148 if (key.offset == 0) 4149 break; 4150 4151 key.offset--; 4152 } 4153 btrfs_release_path(path); 4154 4155 if (list_empty(&reloc_roots)) 4156 goto out; 4157 4158 rc = alloc_reloc_control(); 4159 if (!rc) { 4160 err = -ENOMEM; 4161 goto out; 4162 } 4163 4164 rc->extent_root = root->fs_info->extent_root; 4165 4166 set_reloc_control(rc); 4167 4168 trans = btrfs_join_transaction(rc->extent_root); 4169 if (IS_ERR(trans)) { 4170 unset_reloc_control(rc); 4171 err = PTR_ERR(trans); 4172 goto out_free; 4173 } 4174 4175 rc->merge_reloc_tree = 1; 4176 4177 while (!list_empty(&reloc_roots)) { 4178 reloc_root = list_entry(reloc_roots.next, 4179 struct btrfs_root, root_list); 4180 list_del(&reloc_root->root_list); 4181 4182 if (btrfs_root_refs(&reloc_root->root_item) == 0) { 4183 list_add_tail(&reloc_root->root_list, 4184 &rc->reloc_roots); 4185 continue; 4186 } 4187 4188 fs_root = read_fs_root(root->fs_info, 4189 reloc_root->root_key.offset); 4190 BUG_ON(IS_ERR(fs_root)); 4191 4192 __add_reloc_root(reloc_root); 4193 fs_root->reloc_root = reloc_root; 4194 } 4195 4196 btrfs_commit_transaction(trans, rc->extent_root); 4197 4198 merge_reloc_roots(rc); 4199 4200 unset_reloc_control(rc); 4201 4202 trans = btrfs_join_transaction(rc->extent_root); 4203 if (IS_ERR(trans)) 4204 err = PTR_ERR(trans); 4205 else 4206 btrfs_commit_transaction(trans, rc->extent_root); 4207 out_free: 4208 kfree(rc); 4209 out: 4210 while (!list_empty(&reloc_roots)) { 4211 reloc_root = list_entry(reloc_roots.next, 4212 struct btrfs_root, root_list); 4213 list_del(&reloc_root->root_list); 4214 free_extent_buffer(reloc_root->node); 4215 free_extent_buffer(reloc_root->commit_root); 4216 kfree(reloc_root); 4217 } 4218 btrfs_free_path(path); 4219 4220 if (err == 0) { 4221 /* cleanup orphan inode in data relocation tree */ 4222 fs_root = read_fs_root(root->fs_info, 4223 BTRFS_DATA_RELOC_TREE_OBJECTID); 4224 if (IS_ERR(fs_root)) 4225 err = PTR_ERR(fs_root); 4226 else 4227 err = btrfs_orphan_cleanup(fs_root); 4228 } 4229 return err; 4230 } 4231 4232 /* 4233 * helper to add ordered checksum for data relocation. 4234 * 4235 * cloning checksum properly handles the nodatasum extents. 4236 * it also saves CPU time to re-calculate the checksum. 4237 */ 4238 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len) 4239 { 4240 struct btrfs_ordered_sum *sums; 4241 struct btrfs_sector_sum *sector_sum; 4242 struct btrfs_ordered_extent *ordered; 4243 struct btrfs_root *root = BTRFS_I(inode)->root; 4244 size_t offset; 4245 int ret; 4246 u64 disk_bytenr; 4247 LIST_HEAD(list); 4248 4249 ordered = btrfs_lookup_ordered_extent(inode, file_pos); 4250 BUG_ON(ordered->file_offset != file_pos || ordered->len != len); 4251 4252 disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt; 4253 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, disk_bytenr, 4254 disk_bytenr + len - 1, &list, 0); 4255 4256 while (!list_empty(&list)) { 4257 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 4258 list_del_init(&sums->list); 4259 4260 sector_sum = sums->sums; 4261 sums->bytenr = ordered->start; 4262 4263 offset = 0; 4264 while (offset < sums->len) { 4265 sector_sum->bytenr += ordered->start - disk_bytenr; 4266 sector_sum++; 4267 offset += root->sectorsize; 4268 } 4269 4270 btrfs_add_ordered_sum(inode, ordered, sums); 4271 } 4272 btrfs_put_ordered_extent(ordered); 4273 return ret; 4274 } 4275 4276 void btrfs_reloc_cow_block(struct btrfs_trans_handle *trans, 4277 struct btrfs_root *root, struct extent_buffer *buf, 4278 struct extent_buffer *cow) 4279 { 4280 struct reloc_control *rc; 4281 struct backref_node *node; 4282 int first_cow = 0; 4283 int level; 4284 int ret; 4285 4286 rc = root->fs_info->reloc_ctl; 4287 if (!rc) 4288 return; 4289 4290 BUG_ON(rc->stage == UPDATE_DATA_PTRS && 4291 root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID); 4292 4293 level = btrfs_header_level(buf); 4294 if (btrfs_header_generation(buf) <= 4295 btrfs_root_last_snapshot(&root->root_item)) 4296 first_cow = 1; 4297 4298 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID && 4299 rc->create_reloc_tree) { 4300 WARN_ON(!first_cow && level == 0); 4301 4302 node = rc->backref_cache.path[level]; 4303 BUG_ON(node->bytenr != buf->start && 4304 node->new_bytenr != buf->start); 4305 4306 drop_node_buffer(node); 4307 extent_buffer_get(cow); 4308 node->eb = cow; 4309 node->new_bytenr = cow->start; 4310 4311 if (!node->pending) { 4312 list_move_tail(&node->list, 4313 &rc->backref_cache.pending[level]); 4314 node->pending = 1; 4315 } 4316 4317 if (first_cow) 4318 __mark_block_processed(rc, node); 4319 4320 if (first_cow && level > 0) 4321 rc->nodes_relocated += buf->len; 4322 } 4323 4324 if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS) { 4325 ret = replace_file_extents(trans, rc, root, cow); 4326 BUG_ON(ret); 4327 } 4328 } 4329 4330 /* 4331 * called before creating snapshot. it calculates metadata reservation 4332 * requried for relocating tree blocks in the snapshot 4333 */ 4334 void btrfs_reloc_pre_snapshot(struct btrfs_trans_handle *trans, 4335 struct btrfs_pending_snapshot *pending, 4336 u64 *bytes_to_reserve) 4337 { 4338 struct btrfs_root *root; 4339 struct reloc_control *rc; 4340 4341 root = pending->root; 4342 if (!root->reloc_root) 4343 return; 4344 4345 rc = root->fs_info->reloc_ctl; 4346 if (!rc->merge_reloc_tree) 4347 return; 4348 4349 root = root->reloc_root; 4350 BUG_ON(btrfs_root_refs(&root->root_item) == 0); 4351 /* 4352 * relocation is in the stage of merging trees. the space 4353 * used by merging a reloc tree is twice the size of 4354 * relocated tree nodes in the worst case. half for cowing 4355 * the reloc tree, half for cowing the fs tree. the space 4356 * used by cowing the reloc tree will be freed after the 4357 * tree is dropped. if we create snapshot, cowing the fs 4358 * tree may use more space than it frees. so we need 4359 * reserve extra space. 4360 */ 4361 *bytes_to_reserve += rc->nodes_relocated; 4362 } 4363 4364 /* 4365 * called after snapshot is created. migrate block reservation 4366 * and create reloc root for the newly created snapshot 4367 */ 4368 void btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans, 4369 struct btrfs_pending_snapshot *pending) 4370 { 4371 struct btrfs_root *root = pending->root; 4372 struct btrfs_root *reloc_root; 4373 struct btrfs_root *new_root; 4374 struct reloc_control *rc; 4375 int ret; 4376 4377 if (!root->reloc_root) 4378 return; 4379 4380 rc = root->fs_info->reloc_ctl; 4381 rc->merging_rsv_size += rc->nodes_relocated; 4382 4383 if (rc->merge_reloc_tree) { 4384 ret = btrfs_block_rsv_migrate(&pending->block_rsv, 4385 rc->block_rsv, 4386 rc->nodes_relocated); 4387 BUG_ON(ret); 4388 } 4389 4390 new_root = pending->snap; 4391 reloc_root = create_reloc_root(trans, root->reloc_root, 4392 new_root->root_key.objectid); 4393 4394 __add_reloc_root(reloc_root); 4395 new_root->reloc_root = reloc_root; 4396 4397 if (rc->create_reloc_tree) { 4398 ret = clone_backref_node(trans, rc, root, reloc_root); 4399 BUG_ON(ret); 4400 } 4401 } 4402