xref: /linux/fs/btrfs/relocation.c (revision 12871a0bd67dd4db4418e1daafcd46e9d329ef10)
1 /*
2  * Copyright (C) 2009 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/rbtree.h>
24 #include <linux/slab.h>
25 #include "ctree.h"
26 #include "disk-io.h"
27 #include "transaction.h"
28 #include "volumes.h"
29 #include "locking.h"
30 #include "btrfs_inode.h"
31 #include "async-thread.h"
32 #include "free-space-cache.h"
33 #include "inode-map.h"
34 
35 /*
36  * backref_node, mapping_node and tree_block start with this
37  */
38 struct tree_entry {
39 	struct rb_node rb_node;
40 	u64 bytenr;
41 };
42 
43 /*
44  * present a tree block in the backref cache
45  */
46 struct backref_node {
47 	struct rb_node rb_node;
48 	u64 bytenr;
49 
50 	u64 new_bytenr;
51 	/* objectid of tree block owner, can be not uptodate */
52 	u64 owner;
53 	/* link to pending, changed or detached list */
54 	struct list_head list;
55 	/* list of upper level blocks reference this block */
56 	struct list_head upper;
57 	/* list of child blocks in the cache */
58 	struct list_head lower;
59 	/* NULL if this node is not tree root */
60 	struct btrfs_root *root;
61 	/* extent buffer got by COW the block */
62 	struct extent_buffer *eb;
63 	/* level of tree block */
64 	unsigned int level:8;
65 	/* is the block in non-reference counted tree */
66 	unsigned int cowonly:1;
67 	/* 1 if no child node in the cache */
68 	unsigned int lowest:1;
69 	/* is the extent buffer locked */
70 	unsigned int locked:1;
71 	/* has the block been processed */
72 	unsigned int processed:1;
73 	/* have backrefs of this block been checked */
74 	unsigned int checked:1;
75 	/*
76 	 * 1 if corresponding block has been cowed but some upper
77 	 * level block pointers may not point to the new location
78 	 */
79 	unsigned int pending:1;
80 	/*
81 	 * 1 if the backref node isn't connected to any other
82 	 * backref node.
83 	 */
84 	unsigned int detached:1;
85 };
86 
87 /*
88  * present a block pointer in the backref cache
89  */
90 struct backref_edge {
91 	struct list_head list[2];
92 	struct backref_node *node[2];
93 };
94 
95 #define LOWER	0
96 #define UPPER	1
97 
98 struct backref_cache {
99 	/* red black tree of all backref nodes in the cache */
100 	struct rb_root rb_root;
101 	/* for passing backref nodes to btrfs_reloc_cow_block */
102 	struct backref_node *path[BTRFS_MAX_LEVEL];
103 	/*
104 	 * list of blocks that have been cowed but some block
105 	 * pointers in upper level blocks may not reflect the
106 	 * new location
107 	 */
108 	struct list_head pending[BTRFS_MAX_LEVEL];
109 	/* list of backref nodes with no child node */
110 	struct list_head leaves;
111 	/* list of blocks that have been cowed in current transaction */
112 	struct list_head changed;
113 	/* list of detached backref node. */
114 	struct list_head detached;
115 
116 	u64 last_trans;
117 
118 	int nr_nodes;
119 	int nr_edges;
120 };
121 
122 /*
123  * map address of tree root to tree
124  */
125 struct mapping_node {
126 	struct rb_node rb_node;
127 	u64 bytenr;
128 	void *data;
129 };
130 
131 struct mapping_tree {
132 	struct rb_root rb_root;
133 	spinlock_t lock;
134 };
135 
136 /*
137  * present a tree block to process
138  */
139 struct tree_block {
140 	struct rb_node rb_node;
141 	u64 bytenr;
142 	struct btrfs_key key;
143 	unsigned int level:8;
144 	unsigned int key_ready:1;
145 };
146 
147 #define MAX_EXTENTS 128
148 
149 struct file_extent_cluster {
150 	u64 start;
151 	u64 end;
152 	u64 boundary[MAX_EXTENTS];
153 	unsigned int nr;
154 };
155 
156 struct reloc_control {
157 	/* block group to relocate */
158 	struct btrfs_block_group_cache *block_group;
159 	/* extent tree */
160 	struct btrfs_root *extent_root;
161 	/* inode for moving data */
162 	struct inode *data_inode;
163 
164 	struct btrfs_block_rsv *block_rsv;
165 
166 	struct backref_cache backref_cache;
167 
168 	struct file_extent_cluster cluster;
169 	/* tree blocks have been processed */
170 	struct extent_io_tree processed_blocks;
171 	/* map start of tree root to corresponding reloc tree */
172 	struct mapping_tree reloc_root_tree;
173 	/* list of reloc trees */
174 	struct list_head reloc_roots;
175 	/* size of metadata reservation for merging reloc trees */
176 	u64 merging_rsv_size;
177 	/* size of relocated tree nodes */
178 	u64 nodes_relocated;
179 
180 	u64 search_start;
181 	u64 extents_found;
182 
183 	unsigned int stage:8;
184 	unsigned int create_reloc_tree:1;
185 	unsigned int merge_reloc_tree:1;
186 	unsigned int found_file_extent:1;
187 	unsigned int commit_transaction:1;
188 };
189 
190 /* stages of data relocation */
191 #define MOVE_DATA_EXTENTS	0
192 #define UPDATE_DATA_PTRS	1
193 
194 static void remove_backref_node(struct backref_cache *cache,
195 				struct backref_node *node);
196 static void __mark_block_processed(struct reloc_control *rc,
197 				   struct backref_node *node);
198 
199 static void mapping_tree_init(struct mapping_tree *tree)
200 {
201 	tree->rb_root = RB_ROOT;
202 	spin_lock_init(&tree->lock);
203 }
204 
205 static void backref_cache_init(struct backref_cache *cache)
206 {
207 	int i;
208 	cache->rb_root = RB_ROOT;
209 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
210 		INIT_LIST_HEAD(&cache->pending[i]);
211 	INIT_LIST_HEAD(&cache->changed);
212 	INIT_LIST_HEAD(&cache->detached);
213 	INIT_LIST_HEAD(&cache->leaves);
214 }
215 
216 static void backref_cache_cleanup(struct backref_cache *cache)
217 {
218 	struct backref_node *node;
219 	int i;
220 
221 	while (!list_empty(&cache->detached)) {
222 		node = list_entry(cache->detached.next,
223 				  struct backref_node, list);
224 		remove_backref_node(cache, node);
225 	}
226 
227 	while (!list_empty(&cache->leaves)) {
228 		node = list_entry(cache->leaves.next,
229 				  struct backref_node, lower);
230 		remove_backref_node(cache, node);
231 	}
232 
233 	cache->last_trans = 0;
234 
235 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
236 		BUG_ON(!list_empty(&cache->pending[i]));
237 	BUG_ON(!list_empty(&cache->changed));
238 	BUG_ON(!list_empty(&cache->detached));
239 	BUG_ON(!RB_EMPTY_ROOT(&cache->rb_root));
240 	BUG_ON(cache->nr_nodes);
241 	BUG_ON(cache->nr_edges);
242 }
243 
244 static struct backref_node *alloc_backref_node(struct backref_cache *cache)
245 {
246 	struct backref_node *node;
247 
248 	node = kzalloc(sizeof(*node), GFP_NOFS);
249 	if (node) {
250 		INIT_LIST_HEAD(&node->list);
251 		INIT_LIST_HEAD(&node->upper);
252 		INIT_LIST_HEAD(&node->lower);
253 		RB_CLEAR_NODE(&node->rb_node);
254 		cache->nr_nodes++;
255 	}
256 	return node;
257 }
258 
259 static void free_backref_node(struct backref_cache *cache,
260 			      struct backref_node *node)
261 {
262 	if (node) {
263 		cache->nr_nodes--;
264 		kfree(node);
265 	}
266 }
267 
268 static struct backref_edge *alloc_backref_edge(struct backref_cache *cache)
269 {
270 	struct backref_edge *edge;
271 
272 	edge = kzalloc(sizeof(*edge), GFP_NOFS);
273 	if (edge)
274 		cache->nr_edges++;
275 	return edge;
276 }
277 
278 static void free_backref_edge(struct backref_cache *cache,
279 			      struct backref_edge *edge)
280 {
281 	if (edge) {
282 		cache->nr_edges--;
283 		kfree(edge);
284 	}
285 }
286 
287 static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr,
288 				   struct rb_node *node)
289 {
290 	struct rb_node **p = &root->rb_node;
291 	struct rb_node *parent = NULL;
292 	struct tree_entry *entry;
293 
294 	while (*p) {
295 		parent = *p;
296 		entry = rb_entry(parent, struct tree_entry, rb_node);
297 
298 		if (bytenr < entry->bytenr)
299 			p = &(*p)->rb_left;
300 		else if (bytenr > entry->bytenr)
301 			p = &(*p)->rb_right;
302 		else
303 			return parent;
304 	}
305 
306 	rb_link_node(node, parent, p);
307 	rb_insert_color(node, root);
308 	return NULL;
309 }
310 
311 static struct rb_node *tree_search(struct rb_root *root, u64 bytenr)
312 {
313 	struct rb_node *n = root->rb_node;
314 	struct tree_entry *entry;
315 
316 	while (n) {
317 		entry = rb_entry(n, struct tree_entry, rb_node);
318 
319 		if (bytenr < entry->bytenr)
320 			n = n->rb_left;
321 		else if (bytenr > entry->bytenr)
322 			n = n->rb_right;
323 		else
324 			return n;
325 	}
326 	return NULL;
327 }
328 
329 /*
330  * walk up backref nodes until reach node presents tree root
331  */
332 static struct backref_node *walk_up_backref(struct backref_node *node,
333 					    struct backref_edge *edges[],
334 					    int *index)
335 {
336 	struct backref_edge *edge;
337 	int idx = *index;
338 
339 	while (!list_empty(&node->upper)) {
340 		edge = list_entry(node->upper.next,
341 				  struct backref_edge, list[LOWER]);
342 		edges[idx++] = edge;
343 		node = edge->node[UPPER];
344 	}
345 	BUG_ON(node->detached);
346 	*index = idx;
347 	return node;
348 }
349 
350 /*
351  * walk down backref nodes to find start of next reference path
352  */
353 static struct backref_node *walk_down_backref(struct backref_edge *edges[],
354 					      int *index)
355 {
356 	struct backref_edge *edge;
357 	struct backref_node *lower;
358 	int idx = *index;
359 
360 	while (idx > 0) {
361 		edge = edges[idx - 1];
362 		lower = edge->node[LOWER];
363 		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
364 			idx--;
365 			continue;
366 		}
367 		edge = list_entry(edge->list[LOWER].next,
368 				  struct backref_edge, list[LOWER]);
369 		edges[idx - 1] = edge;
370 		*index = idx;
371 		return edge->node[UPPER];
372 	}
373 	*index = 0;
374 	return NULL;
375 }
376 
377 static void unlock_node_buffer(struct backref_node *node)
378 {
379 	if (node->locked) {
380 		btrfs_tree_unlock(node->eb);
381 		node->locked = 0;
382 	}
383 }
384 
385 static void drop_node_buffer(struct backref_node *node)
386 {
387 	if (node->eb) {
388 		unlock_node_buffer(node);
389 		free_extent_buffer(node->eb);
390 		node->eb = NULL;
391 	}
392 }
393 
394 static void drop_backref_node(struct backref_cache *tree,
395 			      struct backref_node *node)
396 {
397 	BUG_ON(!list_empty(&node->upper));
398 
399 	drop_node_buffer(node);
400 	list_del(&node->list);
401 	list_del(&node->lower);
402 	if (!RB_EMPTY_NODE(&node->rb_node))
403 		rb_erase(&node->rb_node, &tree->rb_root);
404 	free_backref_node(tree, node);
405 }
406 
407 /*
408  * remove a backref node from the backref cache
409  */
410 static void remove_backref_node(struct backref_cache *cache,
411 				struct backref_node *node)
412 {
413 	struct backref_node *upper;
414 	struct backref_edge *edge;
415 
416 	if (!node)
417 		return;
418 
419 	BUG_ON(!node->lowest && !node->detached);
420 	while (!list_empty(&node->upper)) {
421 		edge = list_entry(node->upper.next, struct backref_edge,
422 				  list[LOWER]);
423 		upper = edge->node[UPPER];
424 		list_del(&edge->list[LOWER]);
425 		list_del(&edge->list[UPPER]);
426 		free_backref_edge(cache, edge);
427 
428 		if (RB_EMPTY_NODE(&upper->rb_node)) {
429 			BUG_ON(!list_empty(&node->upper));
430 			drop_backref_node(cache, node);
431 			node = upper;
432 			node->lowest = 1;
433 			continue;
434 		}
435 		/*
436 		 * add the node to leaf node list if no other
437 		 * child block cached.
438 		 */
439 		if (list_empty(&upper->lower)) {
440 			list_add_tail(&upper->lower, &cache->leaves);
441 			upper->lowest = 1;
442 		}
443 	}
444 
445 	drop_backref_node(cache, node);
446 }
447 
448 static void update_backref_node(struct backref_cache *cache,
449 				struct backref_node *node, u64 bytenr)
450 {
451 	struct rb_node *rb_node;
452 	rb_erase(&node->rb_node, &cache->rb_root);
453 	node->bytenr = bytenr;
454 	rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node);
455 	BUG_ON(rb_node);
456 }
457 
458 /*
459  * update backref cache after a transaction commit
460  */
461 static int update_backref_cache(struct btrfs_trans_handle *trans,
462 				struct backref_cache *cache)
463 {
464 	struct backref_node *node;
465 	int level = 0;
466 
467 	if (cache->last_trans == 0) {
468 		cache->last_trans = trans->transid;
469 		return 0;
470 	}
471 
472 	if (cache->last_trans == trans->transid)
473 		return 0;
474 
475 	/*
476 	 * detached nodes are used to avoid unnecessary backref
477 	 * lookup. transaction commit changes the extent tree.
478 	 * so the detached nodes are no longer useful.
479 	 */
480 	while (!list_empty(&cache->detached)) {
481 		node = list_entry(cache->detached.next,
482 				  struct backref_node, list);
483 		remove_backref_node(cache, node);
484 	}
485 
486 	while (!list_empty(&cache->changed)) {
487 		node = list_entry(cache->changed.next,
488 				  struct backref_node, list);
489 		list_del_init(&node->list);
490 		BUG_ON(node->pending);
491 		update_backref_node(cache, node, node->new_bytenr);
492 	}
493 
494 	/*
495 	 * some nodes can be left in the pending list if there were
496 	 * errors during processing the pending nodes.
497 	 */
498 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
499 		list_for_each_entry(node, &cache->pending[level], list) {
500 			BUG_ON(!node->pending);
501 			if (node->bytenr == node->new_bytenr)
502 				continue;
503 			update_backref_node(cache, node, node->new_bytenr);
504 		}
505 	}
506 
507 	cache->last_trans = 0;
508 	return 1;
509 }
510 
511 
512 static int should_ignore_root(struct btrfs_root *root)
513 {
514 	struct btrfs_root *reloc_root;
515 
516 	if (!root->ref_cows)
517 		return 0;
518 
519 	reloc_root = root->reloc_root;
520 	if (!reloc_root)
521 		return 0;
522 
523 	if (btrfs_root_last_snapshot(&reloc_root->root_item) ==
524 	    root->fs_info->running_transaction->transid - 1)
525 		return 0;
526 	/*
527 	 * if there is reloc tree and it was created in previous
528 	 * transaction backref lookup can find the reloc tree,
529 	 * so backref node for the fs tree root is useless for
530 	 * relocation.
531 	 */
532 	return 1;
533 }
534 /*
535  * find reloc tree by address of tree root
536  */
537 static struct btrfs_root *find_reloc_root(struct reloc_control *rc,
538 					  u64 bytenr)
539 {
540 	struct rb_node *rb_node;
541 	struct mapping_node *node;
542 	struct btrfs_root *root = NULL;
543 
544 	spin_lock(&rc->reloc_root_tree.lock);
545 	rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr);
546 	if (rb_node) {
547 		node = rb_entry(rb_node, struct mapping_node, rb_node);
548 		root = (struct btrfs_root *)node->data;
549 	}
550 	spin_unlock(&rc->reloc_root_tree.lock);
551 	return root;
552 }
553 
554 static int is_cowonly_root(u64 root_objectid)
555 {
556 	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
557 	    root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
558 	    root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
559 	    root_objectid == BTRFS_DEV_TREE_OBJECTID ||
560 	    root_objectid == BTRFS_TREE_LOG_OBJECTID ||
561 	    root_objectid == BTRFS_CSUM_TREE_OBJECTID)
562 		return 1;
563 	return 0;
564 }
565 
566 static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info,
567 					u64 root_objectid)
568 {
569 	struct btrfs_key key;
570 
571 	key.objectid = root_objectid;
572 	key.type = BTRFS_ROOT_ITEM_KEY;
573 	if (is_cowonly_root(root_objectid))
574 		key.offset = 0;
575 	else
576 		key.offset = (u64)-1;
577 
578 	return btrfs_read_fs_root_no_name(fs_info, &key);
579 }
580 
581 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
582 static noinline_for_stack
583 struct btrfs_root *find_tree_root(struct reloc_control *rc,
584 				  struct extent_buffer *leaf,
585 				  struct btrfs_extent_ref_v0 *ref0)
586 {
587 	struct btrfs_root *root;
588 	u64 root_objectid = btrfs_ref_root_v0(leaf, ref0);
589 	u64 generation = btrfs_ref_generation_v0(leaf, ref0);
590 
591 	BUG_ON(root_objectid == BTRFS_TREE_RELOC_OBJECTID);
592 
593 	root = read_fs_root(rc->extent_root->fs_info, root_objectid);
594 	BUG_ON(IS_ERR(root));
595 
596 	if (root->ref_cows &&
597 	    generation != btrfs_root_generation(&root->root_item))
598 		return NULL;
599 
600 	return root;
601 }
602 #endif
603 
604 static noinline_for_stack
605 int find_inline_backref(struct extent_buffer *leaf, int slot,
606 			unsigned long *ptr, unsigned long *end)
607 {
608 	struct btrfs_extent_item *ei;
609 	struct btrfs_tree_block_info *bi;
610 	u32 item_size;
611 
612 	item_size = btrfs_item_size_nr(leaf, slot);
613 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
614 	if (item_size < sizeof(*ei)) {
615 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
616 		return 1;
617 	}
618 #endif
619 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
620 	WARN_ON(!(btrfs_extent_flags(leaf, ei) &
621 		  BTRFS_EXTENT_FLAG_TREE_BLOCK));
622 
623 	if (item_size <= sizeof(*ei) + sizeof(*bi)) {
624 		WARN_ON(item_size < sizeof(*ei) + sizeof(*bi));
625 		return 1;
626 	}
627 
628 	bi = (struct btrfs_tree_block_info *)(ei + 1);
629 	*ptr = (unsigned long)(bi + 1);
630 	*end = (unsigned long)ei + item_size;
631 	return 0;
632 }
633 
634 /*
635  * build backref tree for a given tree block. root of the backref tree
636  * corresponds the tree block, leaves of the backref tree correspond
637  * roots of b-trees that reference the tree block.
638  *
639  * the basic idea of this function is check backrefs of a given block
640  * to find upper level blocks that refernece the block, and then check
641  * bakcrefs of these upper level blocks recursively. the recursion stop
642  * when tree root is reached or backrefs for the block is cached.
643  *
644  * NOTE: if we find backrefs for a block are cached, we know backrefs
645  * for all upper level blocks that directly/indirectly reference the
646  * block are also cached.
647  */
648 static noinline_for_stack
649 struct backref_node *build_backref_tree(struct reloc_control *rc,
650 					struct btrfs_key *node_key,
651 					int level, u64 bytenr)
652 {
653 	struct backref_cache *cache = &rc->backref_cache;
654 	struct btrfs_path *path1;
655 	struct btrfs_path *path2;
656 	struct extent_buffer *eb;
657 	struct btrfs_root *root;
658 	struct backref_node *cur;
659 	struct backref_node *upper;
660 	struct backref_node *lower;
661 	struct backref_node *node = NULL;
662 	struct backref_node *exist = NULL;
663 	struct backref_edge *edge;
664 	struct rb_node *rb_node;
665 	struct btrfs_key key;
666 	unsigned long end;
667 	unsigned long ptr;
668 	LIST_HEAD(list);
669 	LIST_HEAD(useless);
670 	int cowonly;
671 	int ret;
672 	int err = 0;
673 
674 	path1 = btrfs_alloc_path();
675 	path2 = btrfs_alloc_path();
676 	if (!path1 || !path2) {
677 		err = -ENOMEM;
678 		goto out;
679 	}
680 	path1->reada = 1;
681 	path2->reada = 2;
682 
683 	node = alloc_backref_node(cache);
684 	if (!node) {
685 		err = -ENOMEM;
686 		goto out;
687 	}
688 
689 	node->bytenr = bytenr;
690 	node->level = level;
691 	node->lowest = 1;
692 	cur = node;
693 again:
694 	end = 0;
695 	ptr = 0;
696 	key.objectid = cur->bytenr;
697 	key.type = BTRFS_EXTENT_ITEM_KEY;
698 	key.offset = (u64)-1;
699 
700 	path1->search_commit_root = 1;
701 	path1->skip_locking = 1;
702 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1,
703 				0, 0);
704 	if (ret < 0) {
705 		err = ret;
706 		goto out;
707 	}
708 	BUG_ON(!ret || !path1->slots[0]);
709 
710 	path1->slots[0]--;
711 
712 	WARN_ON(cur->checked);
713 	if (!list_empty(&cur->upper)) {
714 		/*
715 		 * the backref was added previously when processing
716 		 * backref of type BTRFS_TREE_BLOCK_REF_KEY
717 		 */
718 		BUG_ON(!list_is_singular(&cur->upper));
719 		edge = list_entry(cur->upper.next, struct backref_edge,
720 				  list[LOWER]);
721 		BUG_ON(!list_empty(&edge->list[UPPER]));
722 		exist = edge->node[UPPER];
723 		/*
724 		 * add the upper level block to pending list if we need
725 		 * check its backrefs
726 		 */
727 		if (!exist->checked)
728 			list_add_tail(&edge->list[UPPER], &list);
729 	} else {
730 		exist = NULL;
731 	}
732 
733 	while (1) {
734 		cond_resched();
735 		eb = path1->nodes[0];
736 
737 		if (ptr >= end) {
738 			if (path1->slots[0] >= btrfs_header_nritems(eb)) {
739 				ret = btrfs_next_leaf(rc->extent_root, path1);
740 				if (ret < 0) {
741 					err = ret;
742 					goto out;
743 				}
744 				if (ret > 0)
745 					break;
746 				eb = path1->nodes[0];
747 			}
748 
749 			btrfs_item_key_to_cpu(eb, &key, path1->slots[0]);
750 			if (key.objectid != cur->bytenr) {
751 				WARN_ON(exist);
752 				break;
753 			}
754 
755 			if (key.type == BTRFS_EXTENT_ITEM_KEY) {
756 				ret = find_inline_backref(eb, path1->slots[0],
757 							  &ptr, &end);
758 				if (ret)
759 					goto next;
760 			}
761 		}
762 
763 		if (ptr < end) {
764 			/* update key for inline back ref */
765 			struct btrfs_extent_inline_ref *iref;
766 			iref = (struct btrfs_extent_inline_ref *)ptr;
767 			key.type = btrfs_extent_inline_ref_type(eb, iref);
768 			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
769 			WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY &&
770 				key.type != BTRFS_SHARED_BLOCK_REF_KEY);
771 		}
772 
773 		if (exist &&
774 		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
775 		      exist->owner == key.offset) ||
776 		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
777 		      exist->bytenr == key.offset))) {
778 			exist = NULL;
779 			goto next;
780 		}
781 
782 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
783 		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY ||
784 		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
785 			if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
786 				struct btrfs_extent_ref_v0 *ref0;
787 				ref0 = btrfs_item_ptr(eb, path1->slots[0],
788 						struct btrfs_extent_ref_v0);
789 				if (key.objectid == key.offset) {
790 					root = find_tree_root(rc, eb, ref0);
791 					if (root && !should_ignore_root(root))
792 						cur->root = root;
793 					else
794 						list_add(&cur->list, &useless);
795 					break;
796 				}
797 				if (is_cowonly_root(btrfs_ref_root_v0(eb,
798 								      ref0)))
799 					cur->cowonly = 1;
800 			}
801 #else
802 		BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
803 		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
804 #endif
805 			if (key.objectid == key.offset) {
806 				/*
807 				 * only root blocks of reloc trees use
808 				 * backref of this type.
809 				 */
810 				root = find_reloc_root(rc, cur->bytenr);
811 				BUG_ON(!root);
812 				cur->root = root;
813 				break;
814 			}
815 
816 			edge = alloc_backref_edge(cache);
817 			if (!edge) {
818 				err = -ENOMEM;
819 				goto out;
820 			}
821 			rb_node = tree_search(&cache->rb_root, key.offset);
822 			if (!rb_node) {
823 				upper = alloc_backref_node(cache);
824 				if (!upper) {
825 					free_backref_edge(cache, edge);
826 					err = -ENOMEM;
827 					goto out;
828 				}
829 				upper->bytenr = key.offset;
830 				upper->level = cur->level + 1;
831 				/*
832 				 *  backrefs for the upper level block isn't
833 				 *  cached, add the block to pending list
834 				 */
835 				list_add_tail(&edge->list[UPPER], &list);
836 			} else {
837 				upper = rb_entry(rb_node, struct backref_node,
838 						 rb_node);
839 				BUG_ON(!upper->checked);
840 				INIT_LIST_HEAD(&edge->list[UPPER]);
841 			}
842 			list_add_tail(&edge->list[LOWER], &cur->upper);
843 			edge->node[LOWER] = cur;
844 			edge->node[UPPER] = upper;
845 
846 			goto next;
847 		} else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
848 			goto next;
849 		}
850 
851 		/* key.type == BTRFS_TREE_BLOCK_REF_KEY */
852 		root = read_fs_root(rc->extent_root->fs_info, key.offset);
853 		if (IS_ERR(root)) {
854 			err = PTR_ERR(root);
855 			goto out;
856 		}
857 
858 		if (!root->ref_cows)
859 			cur->cowonly = 1;
860 
861 		if (btrfs_root_level(&root->root_item) == cur->level) {
862 			/* tree root */
863 			BUG_ON(btrfs_root_bytenr(&root->root_item) !=
864 			       cur->bytenr);
865 			if (should_ignore_root(root))
866 				list_add(&cur->list, &useless);
867 			else
868 				cur->root = root;
869 			break;
870 		}
871 
872 		level = cur->level + 1;
873 
874 		/*
875 		 * searching the tree to find upper level blocks
876 		 * reference the block.
877 		 */
878 		path2->search_commit_root = 1;
879 		path2->skip_locking = 1;
880 		path2->lowest_level = level;
881 		ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0);
882 		path2->lowest_level = 0;
883 		if (ret < 0) {
884 			err = ret;
885 			goto out;
886 		}
887 		if (ret > 0 && path2->slots[level] > 0)
888 			path2->slots[level]--;
889 
890 		eb = path2->nodes[level];
891 		WARN_ON(btrfs_node_blockptr(eb, path2->slots[level]) !=
892 			cur->bytenr);
893 
894 		lower = cur;
895 		for (; level < BTRFS_MAX_LEVEL; level++) {
896 			if (!path2->nodes[level]) {
897 				BUG_ON(btrfs_root_bytenr(&root->root_item) !=
898 				       lower->bytenr);
899 				if (should_ignore_root(root))
900 					list_add(&lower->list, &useless);
901 				else
902 					lower->root = root;
903 				break;
904 			}
905 
906 			edge = alloc_backref_edge(cache);
907 			if (!edge) {
908 				err = -ENOMEM;
909 				goto out;
910 			}
911 
912 			eb = path2->nodes[level];
913 			rb_node = tree_search(&cache->rb_root, eb->start);
914 			if (!rb_node) {
915 				upper = alloc_backref_node(cache);
916 				if (!upper) {
917 					free_backref_edge(cache, edge);
918 					err = -ENOMEM;
919 					goto out;
920 				}
921 				upper->bytenr = eb->start;
922 				upper->owner = btrfs_header_owner(eb);
923 				upper->level = lower->level + 1;
924 				if (!root->ref_cows)
925 					upper->cowonly = 1;
926 
927 				/*
928 				 * if we know the block isn't shared
929 				 * we can void checking its backrefs.
930 				 */
931 				if (btrfs_block_can_be_shared(root, eb))
932 					upper->checked = 0;
933 				else
934 					upper->checked = 1;
935 
936 				/*
937 				 * add the block to pending list if we
938 				 * need check its backrefs. only block
939 				 * at 'cur->level + 1' is added to the
940 				 * tail of pending list. this guarantees
941 				 * we check backrefs from lower level
942 				 * blocks to upper level blocks.
943 				 */
944 				if (!upper->checked &&
945 				    level == cur->level + 1) {
946 					list_add_tail(&edge->list[UPPER],
947 						      &list);
948 				} else
949 					INIT_LIST_HEAD(&edge->list[UPPER]);
950 			} else {
951 				upper = rb_entry(rb_node, struct backref_node,
952 						 rb_node);
953 				BUG_ON(!upper->checked);
954 				INIT_LIST_HEAD(&edge->list[UPPER]);
955 				if (!upper->owner)
956 					upper->owner = btrfs_header_owner(eb);
957 			}
958 			list_add_tail(&edge->list[LOWER], &lower->upper);
959 			edge->node[LOWER] = lower;
960 			edge->node[UPPER] = upper;
961 
962 			if (rb_node)
963 				break;
964 			lower = upper;
965 			upper = NULL;
966 		}
967 		btrfs_release_path(path2);
968 next:
969 		if (ptr < end) {
970 			ptr += btrfs_extent_inline_ref_size(key.type);
971 			if (ptr >= end) {
972 				WARN_ON(ptr > end);
973 				ptr = 0;
974 				end = 0;
975 			}
976 		}
977 		if (ptr >= end)
978 			path1->slots[0]++;
979 	}
980 	btrfs_release_path(path1);
981 
982 	cur->checked = 1;
983 	WARN_ON(exist);
984 
985 	/* the pending list isn't empty, take the first block to process */
986 	if (!list_empty(&list)) {
987 		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
988 		list_del_init(&edge->list[UPPER]);
989 		cur = edge->node[UPPER];
990 		goto again;
991 	}
992 
993 	/*
994 	 * everything goes well, connect backref nodes and insert backref nodes
995 	 * into the cache.
996 	 */
997 	BUG_ON(!node->checked);
998 	cowonly = node->cowonly;
999 	if (!cowonly) {
1000 		rb_node = tree_insert(&cache->rb_root, node->bytenr,
1001 				      &node->rb_node);
1002 		BUG_ON(rb_node);
1003 		list_add_tail(&node->lower, &cache->leaves);
1004 	}
1005 
1006 	list_for_each_entry(edge, &node->upper, list[LOWER])
1007 		list_add_tail(&edge->list[UPPER], &list);
1008 
1009 	while (!list_empty(&list)) {
1010 		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1011 		list_del_init(&edge->list[UPPER]);
1012 		upper = edge->node[UPPER];
1013 		if (upper->detached) {
1014 			list_del(&edge->list[LOWER]);
1015 			lower = edge->node[LOWER];
1016 			free_backref_edge(cache, edge);
1017 			if (list_empty(&lower->upper))
1018 				list_add(&lower->list, &useless);
1019 			continue;
1020 		}
1021 
1022 		if (!RB_EMPTY_NODE(&upper->rb_node)) {
1023 			if (upper->lowest) {
1024 				list_del_init(&upper->lower);
1025 				upper->lowest = 0;
1026 			}
1027 
1028 			list_add_tail(&edge->list[UPPER], &upper->lower);
1029 			continue;
1030 		}
1031 
1032 		BUG_ON(!upper->checked);
1033 		BUG_ON(cowonly != upper->cowonly);
1034 		if (!cowonly) {
1035 			rb_node = tree_insert(&cache->rb_root, upper->bytenr,
1036 					      &upper->rb_node);
1037 			BUG_ON(rb_node);
1038 		}
1039 
1040 		list_add_tail(&edge->list[UPPER], &upper->lower);
1041 
1042 		list_for_each_entry(edge, &upper->upper, list[LOWER])
1043 			list_add_tail(&edge->list[UPPER], &list);
1044 	}
1045 	/*
1046 	 * process useless backref nodes. backref nodes for tree leaves
1047 	 * are deleted from the cache. backref nodes for upper level
1048 	 * tree blocks are left in the cache to avoid unnecessary backref
1049 	 * lookup.
1050 	 */
1051 	while (!list_empty(&useless)) {
1052 		upper = list_entry(useless.next, struct backref_node, list);
1053 		list_del_init(&upper->list);
1054 		BUG_ON(!list_empty(&upper->upper));
1055 		if (upper == node)
1056 			node = NULL;
1057 		if (upper->lowest) {
1058 			list_del_init(&upper->lower);
1059 			upper->lowest = 0;
1060 		}
1061 		while (!list_empty(&upper->lower)) {
1062 			edge = list_entry(upper->lower.next,
1063 					  struct backref_edge, list[UPPER]);
1064 			list_del(&edge->list[UPPER]);
1065 			list_del(&edge->list[LOWER]);
1066 			lower = edge->node[LOWER];
1067 			free_backref_edge(cache, edge);
1068 
1069 			if (list_empty(&lower->upper))
1070 				list_add(&lower->list, &useless);
1071 		}
1072 		__mark_block_processed(rc, upper);
1073 		if (upper->level > 0) {
1074 			list_add(&upper->list, &cache->detached);
1075 			upper->detached = 1;
1076 		} else {
1077 			rb_erase(&upper->rb_node, &cache->rb_root);
1078 			free_backref_node(cache, upper);
1079 		}
1080 	}
1081 out:
1082 	btrfs_free_path(path1);
1083 	btrfs_free_path(path2);
1084 	if (err) {
1085 		while (!list_empty(&useless)) {
1086 			lower = list_entry(useless.next,
1087 					   struct backref_node, upper);
1088 			list_del_init(&lower->upper);
1089 		}
1090 		upper = node;
1091 		INIT_LIST_HEAD(&list);
1092 		while (upper) {
1093 			if (RB_EMPTY_NODE(&upper->rb_node)) {
1094 				list_splice_tail(&upper->upper, &list);
1095 				free_backref_node(cache, upper);
1096 			}
1097 
1098 			if (list_empty(&list))
1099 				break;
1100 
1101 			edge = list_entry(list.next, struct backref_edge,
1102 					  list[LOWER]);
1103 			list_del(&edge->list[LOWER]);
1104 			upper = edge->node[UPPER];
1105 			free_backref_edge(cache, edge);
1106 		}
1107 		return ERR_PTR(err);
1108 	}
1109 	BUG_ON(node && node->detached);
1110 	return node;
1111 }
1112 
1113 /*
1114  * helper to add backref node for the newly created snapshot.
1115  * the backref node is created by cloning backref node that
1116  * corresponds to root of source tree
1117  */
1118 static int clone_backref_node(struct btrfs_trans_handle *trans,
1119 			      struct reloc_control *rc,
1120 			      struct btrfs_root *src,
1121 			      struct btrfs_root *dest)
1122 {
1123 	struct btrfs_root *reloc_root = src->reloc_root;
1124 	struct backref_cache *cache = &rc->backref_cache;
1125 	struct backref_node *node = NULL;
1126 	struct backref_node *new_node;
1127 	struct backref_edge *edge;
1128 	struct backref_edge *new_edge;
1129 	struct rb_node *rb_node;
1130 
1131 	if (cache->last_trans > 0)
1132 		update_backref_cache(trans, cache);
1133 
1134 	rb_node = tree_search(&cache->rb_root, src->commit_root->start);
1135 	if (rb_node) {
1136 		node = rb_entry(rb_node, struct backref_node, rb_node);
1137 		if (node->detached)
1138 			node = NULL;
1139 		else
1140 			BUG_ON(node->new_bytenr != reloc_root->node->start);
1141 	}
1142 
1143 	if (!node) {
1144 		rb_node = tree_search(&cache->rb_root,
1145 				      reloc_root->commit_root->start);
1146 		if (rb_node) {
1147 			node = rb_entry(rb_node, struct backref_node,
1148 					rb_node);
1149 			BUG_ON(node->detached);
1150 		}
1151 	}
1152 
1153 	if (!node)
1154 		return 0;
1155 
1156 	new_node = alloc_backref_node(cache);
1157 	if (!new_node)
1158 		return -ENOMEM;
1159 
1160 	new_node->bytenr = dest->node->start;
1161 	new_node->level = node->level;
1162 	new_node->lowest = node->lowest;
1163 	new_node->checked = 1;
1164 	new_node->root = dest;
1165 
1166 	if (!node->lowest) {
1167 		list_for_each_entry(edge, &node->lower, list[UPPER]) {
1168 			new_edge = alloc_backref_edge(cache);
1169 			if (!new_edge)
1170 				goto fail;
1171 
1172 			new_edge->node[UPPER] = new_node;
1173 			new_edge->node[LOWER] = edge->node[LOWER];
1174 			list_add_tail(&new_edge->list[UPPER],
1175 				      &new_node->lower);
1176 		}
1177 	}
1178 
1179 	rb_node = tree_insert(&cache->rb_root, new_node->bytenr,
1180 			      &new_node->rb_node);
1181 	BUG_ON(rb_node);
1182 
1183 	if (!new_node->lowest) {
1184 		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
1185 			list_add_tail(&new_edge->list[LOWER],
1186 				      &new_edge->node[LOWER]->upper);
1187 		}
1188 	}
1189 	return 0;
1190 fail:
1191 	while (!list_empty(&new_node->lower)) {
1192 		new_edge = list_entry(new_node->lower.next,
1193 				      struct backref_edge, list[UPPER]);
1194 		list_del(&new_edge->list[UPPER]);
1195 		free_backref_edge(cache, new_edge);
1196 	}
1197 	free_backref_node(cache, new_node);
1198 	return -ENOMEM;
1199 }
1200 
1201 /*
1202  * helper to add 'address of tree root -> reloc tree' mapping
1203  */
1204 static int __add_reloc_root(struct btrfs_root *root)
1205 {
1206 	struct rb_node *rb_node;
1207 	struct mapping_node *node;
1208 	struct reloc_control *rc = root->fs_info->reloc_ctl;
1209 
1210 	node = kmalloc(sizeof(*node), GFP_NOFS);
1211 	BUG_ON(!node);
1212 
1213 	node->bytenr = root->node->start;
1214 	node->data = root;
1215 
1216 	spin_lock(&rc->reloc_root_tree.lock);
1217 	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1218 			      node->bytenr, &node->rb_node);
1219 	spin_unlock(&rc->reloc_root_tree.lock);
1220 	BUG_ON(rb_node);
1221 
1222 	list_add_tail(&root->root_list, &rc->reloc_roots);
1223 	return 0;
1224 }
1225 
1226 /*
1227  * helper to update/delete the 'address of tree root -> reloc tree'
1228  * mapping
1229  */
1230 static int __update_reloc_root(struct btrfs_root *root, int del)
1231 {
1232 	struct rb_node *rb_node;
1233 	struct mapping_node *node = NULL;
1234 	struct reloc_control *rc = root->fs_info->reloc_ctl;
1235 
1236 	spin_lock(&rc->reloc_root_tree.lock);
1237 	rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1238 			      root->commit_root->start);
1239 	if (rb_node) {
1240 		node = rb_entry(rb_node, struct mapping_node, rb_node);
1241 		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1242 	}
1243 	spin_unlock(&rc->reloc_root_tree.lock);
1244 
1245 	BUG_ON((struct btrfs_root *)node->data != root);
1246 
1247 	if (!del) {
1248 		spin_lock(&rc->reloc_root_tree.lock);
1249 		node->bytenr = root->node->start;
1250 		rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1251 				      node->bytenr, &node->rb_node);
1252 		spin_unlock(&rc->reloc_root_tree.lock);
1253 		BUG_ON(rb_node);
1254 	} else {
1255 		list_del_init(&root->root_list);
1256 		kfree(node);
1257 	}
1258 	return 0;
1259 }
1260 
1261 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
1262 					struct btrfs_root *root, u64 objectid)
1263 {
1264 	struct btrfs_root *reloc_root;
1265 	struct extent_buffer *eb;
1266 	struct btrfs_root_item *root_item;
1267 	struct btrfs_key root_key;
1268 	int ret;
1269 
1270 	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
1271 	BUG_ON(!root_item);
1272 
1273 	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
1274 	root_key.type = BTRFS_ROOT_ITEM_KEY;
1275 	root_key.offset = objectid;
1276 
1277 	if (root->root_key.objectid == objectid) {
1278 		/* called by btrfs_init_reloc_root */
1279 		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
1280 				      BTRFS_TREE_RELOC_OBJECTID);
1281 		BUG_ON(ret);
1282 
1283 		btrfs_set_root_last_snapshot(&root->root_item,
1284 					     trans->transid - 1);
1285 	} else {
1286 		/*
1287 		 * called by btrfs_reloc_post_snapshot_hook.
1288 		 * the source tree is a reloc tree, all tree blocks
1289 		 * modified after it was created have RELOC flag
1290 		 * set in their headers. so it's OK to not update
1291 		 * the 'last_snapshot'.
1292 		 */
1293 		ret = btrfs_copy_root(trans, root, root->node, &eb,
1294 				      BTRFS_TREE_RELOC_OBJECTID);
1295 		BUG_ON(ret);
1296 	}
1297 
1298 	memcpy(root_item, &root->root_item, sizeof(*root_item));
1299 	btrfs_set_root_bytenr(root_item, eb->start);
1300 	btrfs_set_root_level(root_item, btrfs_header_level(eb));
1301 	btrfs_set_root_generation(root_item, trans->transid);
1302 
1303 	if (root->root_key.objectid == objectid) {
1304 		btrfs_set_root_refs(root_item, 0);
1305 		memset(&root_item->drop_progress, 0,
1306 		       sizeof(struct btrfs_disk_key));
1307 		root_item->drop_level = 0;
1308 	}
1309 
1310 	btrfs_tree_unlock(eb);
1311 	free_extent_buffer(eb);
1312 
1313 	ret = btrfs_insert_root(trans, root->fs_info->tree_root,
1314 				&root_key, root_item);
1315 	BUG_ON(ret);
1316 	kfree(root_item);
1317 
1318 	reloc_root = btrfs_read_fs_root_no_radix(root->fs_info->tree_root,
1319 						 &root_key);
1320 	BUG_ON(IS_ERR(reloc_root));
1321 	reloc_root->last_trans = trans->transid;
1322 	return reloc_root;
1323 }
1324 
1325 /*
1326  * create reloc tree for a given fs tree. reloc tree is just a
1327  * snapshot of the fs tree with special root objectid.
1328  */
1329 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
1330 			  struct btrfs_root *root)
1331 {
1332 	struct btrfs_root *reloc_root;
1333 	struct reloc_control *rc = root->fs_info->reloc_ctl;
1334 	int clear_rsv = 0;
1335 
1336 	if (root->reloc_root) {
1337 		reloc_root = root->reloc_root;
1338 		reloc_root->last_trans = trans->transid;
1339 		return 0;
1340 	}
1341 
1342 	if (!rc || !rc->create_reloc_tree ||
1343 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1344 		return 0;
1345 
1346 	if (!trans->block_rsv) {
1347 		trans->block_rsv = rc->block_rsv;
1348 		clear_rsv = 1;
1349 	}
1350 	reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
1351 	if (clear_rsv)
1352 		trans->block_rsv = NULL;
1353 
1354 	__add_reloc_root(reloc_root);
1355 	root->reloc_root = reloc_root;
1356 	return 0;
1357 }
1358 
1359 /*
1360  * update root item of reloc tree
1361  */
1362 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
1363 			    struct btrfs_root *root)
1364 {
1365 	struct btrfs_root *reloc_root;
1366 	struct btrfs_root_item *root_item;
1367 	int del = 0;
1368 	int ret;
1369 
1370 	if (!root->reloc_root)
1371 		return 0;
1372 
1373 	reloc_root = root->reloc_root;
1374 	root_item = &reloc_root->root_item;
1375 
1376 	if (root->fs_info->reloc_ctl->merge_reloc_tree &&
1377 	    btrfs_root_refs(root_item) == 0) {
1378 		root->reloc_root = NULL;
1379 		del = 1;
1380 	}
1381 
1382 	__update_reloc_root(reloc_root, del);
1383 
1384 	if (reloc_root->commit_root != reloc_root->node) {
1385 		btrfs_set_root_node(root_item, reloc_root->node);
1386 		free_extent_buffer(reloc_root->commit_root);
1387 		reloc_root->commit_root = btrfs_root_node(reloc_root);
1388 	}
1389 
1390 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
1391 				&reloc_root->root_key, root_item);
1392 	BUG_ON(ret);
1393 	return 0;
1394 }
1395 
1396 /*
1397  * helper to find first cached inode with inode number >= objectid
1398  * in a subvolume
1399  */
1400 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
1401 {
1402 	struct rb_node *node;
1403 	struct rb_node *prev;
1404 	struct btrfs_inode *entry;
1405 	struct inode *inode;
1406 
1407 	spin_lock(&root->inode_lock);
1408 again:
1409 	node = root->inode_tree.rb_node;
1410 	prev = NULL;
1411 	while (node) {
1412 		prev = node;
1413 		entry = rb_entry(node, struct btrfs_inode, rb_node);
1414 
1415 		if (objectid < btrfs_ino(&entry->vfs_inode))
1416 			node = node->rb_left;
1417 		else if (objectid > btrfs_ino(&entry->vfs_inode))
1418 			node = node->rb_right;
1419 		else
1420 			break;
1421 	}
1422 	if (!node) {
1423 		while (prev) {
1424 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
1425 			if (objectid <= btrfs_ino(&entry->vfs_inode)) {
1426 				node = prev;
1427 				break;
1428 			}
1429 			prev = rb_next(prev);
1430 		}
1431 	}
1432 	while (node) {
1433 		entry = rb_entry(node, struct btrfs_inode, rb_node);
1434 		inode = igrab(&entry->vfs_inode);
1435 		if (inode) {
1436 			spin_unlock(&root->inode_lock);
1437 			return inode;
1438 		}
1439 
1440 		objectid = btrfs_ino(&entry->vfs_inode) + 1;
1441 		if (cond_resched_lock(&root->inode_lock))
1442 			goto again;
1443 
1444 		node = rb_next(node);
1445 	}
1446 	spin_unlock(&root->inode_lock);
1447 	return NULL;
1448 }
1449 
1450 static int in_block_group(u64 bytenr,
1451 			  struct btrfs_block_group_cache *block_group)
1452 {
1453 	if (bytenr >= block_group->key.objectid &&
1454 	    bytenr < block_group->key.objectid + block_group->key.offset)
1455 		return 1;
1456 	return 0;
1457 }
1458 
1459 /*
1460  * get new location of data
1461  */
1462 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1463 			    u64 bytenr, u64 num_bytes)
1464 {
1465 	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1466 	struct btrfs_path *path;
1467 	struct btrfs_file_extent_item *fi;
1468 	struct extent_buffer *leaf;
1469 	int ret;
1470 
1471 	path = btrfs_alloc_path();
1472 	if (!path)
1473 		return -ENOMEM;
1474 
1475 	bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1476 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(reloc_inode),
1477 				       bytenr, 0);
1478 	if (ret < 0)
1479 		goto out;
1480 	if (ret > 0) {
1481 		ret = -ENOENT;
1482 		goto out;
1483 	}
1484 
1485 	leaf = path->nodes[0];
1486 	fi = btrfs_item_ptr(leaf, path->slots[0],
1487 			    struct btrfs_file_extent_item);
1488 
1489 	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1490 	       btrfs_file_extent_compression(leaf, fi) ||
1491 	       btrfs_file_extent_encryption(leaf, fi) ||
1492 	       btrfs_file_extent_other_encoding(leaf, fi));
1493 
1494 	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1495 		ret = 1;
1496 		goto out;
1497 	}
1498 
1499 	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1500 	ret = 0;
1501 out:
1502 	btrfs_free_path(path);
1503 	return ret;
1504 }
1505 
1506 /*
1507  * update file extent items in the tree leaf to point to
1508  * the new locations.
1509  */
1510 static noinline_for_stack
1511 int replace_file_extents(struct btrfs_trans_handle *trans,
1512 			 struct reloc_control *rc,
1513 			 struct btrfs_root *root,
1514 			 struct extent_buffer *leaf)
1515 {
1516 	struct btrfs_key key;
1517 	struct btrfs_file_extent_item *fi;
1518 	struct inode *inode = NULL;
1519 	u64 parent;
1520 	u64 bytenr;
1521 	u64 new_bytenr = 0;
1522 	u64 num_bytes;
1523 	u64 end;
1524 	u32 nritems;
1525 	u32 i;
1526 	int ret;
1527 	int first = 1;
1528 	int dirty = 0;
1529 
1530 	if (rc->stage != UPDATE_DATA_PTRS)
1531 		return 0;
1532 
1533 	/* reloc trees always use full backref */
1534 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1535 		parent = leaf->start;
1536 	else
1537 		parent = 0;
1538 
1539 	nritems = btrfs_header_nritems(leaf);
1540 	for (i = 0; i < nritems; i++) {
1541 		cond_resched();
1542 		btrfs_item_key_to_cpu(leaf, &key, i);
1543 		if (key.type != BTRFS_EXTENT_DATA_KEY)
1544 			continue;
1545 		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1546 		if (btrfs_file_extent_type(leaf, fi) ==
1547 		    BTRFS_FILE_EXTENT_INLINE)
1548 			continue;
1549 		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1550 		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1551 		if (bytenr == 0)
1552 			continue;
1553 		if (!in_block_group(bytenr, rc->block_group))
1554 			continue;
1555 
1556 		/*
1557 		 * if we are modifying block in fs tree, wait for readpage
1558 		 * to complete and drop the extent cache
1559 		 */
1560 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1561 			if (first) {
1562 				inode = find_next_inode(root, key.objectid);
1563 				first = 0;
1564 			} else if (inode && btrfs_ino(inode) < key.objectid) {
1565 				btrfs_add_delayed_iput(inode);
1566 				inode = find_next_inode(root, key.objectid);
1567 			}
1568 			if (inode && btrfs_ino(inode) == key.objectid) {
1569 				end = key.offset +
1570 				      btrfs_file_extent_num_bytes(leaf, fi);
1571 				WARN_ON(!IS_ALIGNED(key.offset,
1572 						    root->sectorsize));
1573 				WARN_ON(!IS_ALIGNED(end, root->sectorsize));
1574 				end--;
1575 				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1576 						      key.offset, end,
1577 						      GFP_NOFS);
1578 				if (!ret)
1579 					continue;
1580 
1581 				btrfs_drop_extent_cache(inode, key.offset, end,
1582 							1);
1583 				unlock_extent(&BTRFS_I(inode)->io_tree,
1584 					      key.offset, end, GFP_NOFS);
1585 			}
1586 		}
1587 
1588 		ret = get_new_location(rc->data_inode, &new_bytenr,
1589 				       bytenr, num_bytes);
1590 		if (ret > 0) {
1591 			WARN_ON(1);
1592 			continue;
1593 		}
1594 		BUG_ON(ret < 0);
1595 
1596 		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1597 		dirty = 1;
1598 
1599 		key.offset -= btrfs_file_extent_offset(leaf, fi);
1600 		ret = btrfs_inc_extent_ref(trans, root, new_bytenr,
1601 					   num_bytes, parent,
1602 					   btrfs_header_owner(leaf),
1603 					   key.objectid, key.offset);
1604 		BUG_ON(ret);
1605 
1606 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1607 					parent, btrfs_header_owner(leaf),
1608 					key.objectid, key.offset);
1609 		BUG_ON(ret);
1610 	}
1611 	if (dirty)
1612 		btrfs_mark_buffer_dirty(leaf);
1613 	if (inode)
1614 		btrfs_add_delayed_iput(inode);
1615 	return 0;
1616 }
1617 
1618 static noinline_for_stack
1619 int memcmp_node_keys(struct extent_buffer *eb, int slot,
1620 		     struct btrfs_path *path, int level)
1621 {
1622 	struct btrfs_disk_key key1;
1623 	struct btrfs_disk_key key2;
1624 	btrfs_node_key(eb, &key1, slot);
1625 	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1626 	return memcmp(&key1, &key2, sizeof(key1));
1627 }
1628 
1629 /*
1630  * try to replace tree blocks in fs tree with the new blocks
1631  * in reloc tree. tree blocks haven't been modified since the
1632  * reloc tree was create can be replaced.
1633  *
1634  * if a block was replaced, level of the block + 1 is returned.
1635  * if no block got replaced, 0 is returned. if there are other
1636  * errors, a negative error number is returned.
1637  */
1638 static noinline_for_stack
1639 int replace_path(struct btrfs_trans_handle *trans,
1640 		 struct btrfs_root *dest, struct btrfs_root *src,
1641 		 struct btrfs_path *path, struct btrfs_key *next_key,
1642 		 int lowest_level, int max_level)
1643 {
1644 	struct extent_buffer *eb;
1645 	struct extent_buffer *parent;
1646 	struct btrfs_key key;
1647 	u64 old_bytenr;
1648 	u64 new_bytenr;
1649 	u64 old_ptr_gen;
1650 	u64 new_ptr_gen;
1651 	u64 last_snapshot;
1652 	u32 blocksize;
1653 	int cow = 0;
1654 	int level;
1655 	int ret;
1656 	int slot;
1657 
1658 	BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1659 	BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1660 
1661 	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1662 again:
1663 	slot = path->slots[lowest_level];
1664 	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1665 
1666 	eb = btrfs_lock_root_node(dest);
1667 	btrfs_set_lock_blocking(eb);
1668 	level = btrfs_header_level(eb);
1669 
1670 	if (level < lowest_level) {
1671 		btrfs_tree_unlock(eb);
1672 		free_extent_buffer(eb);
1673 		return 0;
1674 	}
1675 
1676 	if (cow) {
1677 		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
1678 		BUG_ON(ret);
1679 	}
1680 	btrfs_set_lock_blocking(eb);
1681 
1682 	if (next_key) {
1683 		next_key->objectid = (u64)-1;
1684 		next_key->type = (u8)-1;
1685 		next_key->offset = (u64)-1;
1686 	}
1687 
1688 	parent = eb;
1689 	while (1) {
1690 		level = btrfs_header_level(parent);
1691 		BUG_ON(level < lowest_level);
1692 
1693 		ret = btrfs_bin_search(parent, &key, level, &slot);
1694 		if (ret && slot > 0)
1695 			slot--;
1696 
1697 		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1698 			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1699 
1700 		old_bytenr = btrfs_node_blockptr(parent, slot);
1701 		blocksize = btrfs_level_size(dest, level - 1);
1702 		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1703 
1704 		if (level <= max_level) {
1705 			eb = path->nodes[level];
1706 			new_bytenr = btrfs_node_blockptr(eb,
1707 							path->slots[level]);
1708 			new_ptr_gen = btrfs_node_ptr_generation(eb,
1709 							path->slots[level]);
1710 		} else {
1711 			new_bytenr = 0;
1712 			new_ptr_gen = 0;
1713 		}
1714 
1715 		if (new_bytenr > 0 && new_bytenr == old_bytenr) {
1716 			WARN_ON(1);
1717 			ret = level;
1718 			break;
1719 		}
1720 
1721 		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1722 		    memcmp_node_keys(parent, slot, path, level)) {
1723 			if (level <= lowest_level) {
1724 				ret = 0;
1725 				break;
1726 			}
1727 
1728 			eb = read_tree_block(dest, old_bytenr, blocksize,
1729 					     old_ptr_gen);
1730 			BUG_ON(!eb);
1731 			btrfs_tree_lock(eb);
1732 			if (cow) {
1733 				ret = btrfs_cow_block(trans, dest, eb, parent,
1734 						      slot, &eb);
1735 				BUG_ON(ret);
1736 			}
1737 			btrfs_set_lock_blocking(eb);
1738 
1739 			btrfs_tree_unlock(parent);
1740 			free_extent_buffer(parent);
1741 
1742 			parent = eb;
1743 			continue;
1744 		}
1745 
1746 		if (!cow) {
1747 			btrfs_tree_unlock(parent);
1748 			free_extent_buffer(parent);
1749 			cow = 1;
1750 			goto again;
1751 		}
1752 
1753 		btrfs_node_key_to_cpu(path->nodes[level], &key,
1754 				      path->slots[level]);
1755 		btrfs_release_path(path);
1756 
1757 		path->lowest_level = level;
1758 		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1759 		path->lowest_level = 0;
1760 		BUG_ON(ret);
1761 
1762 		/*
1763 		 * swap blocks in fs tree and reloc tree.
1764 		 */
1765 		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1766 		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1767 		btrfs_mark_buffer_dirty(parent);
1768 
1769 		btrfs_set_node_blockptr(path->nodes[level],
1770 					path->slots[level], old_bytenr);
1771 		btrfs_set_node_ptr_generation(path->nodes[level],
1772 					      path->slots[level], old_ptr_gen);
1773 		btrfs_mark_buffer_dirty(path->nodes[level]);
1774 
1775 		ret = btrfs_inc_extent_ref(trans, src, old_bytenr, blocksize,
1776 					path->nodes[level]->start,
1777 					src->root_key.objectid, level - 1, 0);
1778 		BUG_ON(ret);
1779 		ret = btrfs_inc_extent_ref(trans, dest, new_bytenr, blocksize,
1780 					0, dest->root_key.objectid, level - 1,
1781 					0);
1782 		BUG_ON(ret);
1783 
1784 		ret = btrfs_free_extent(trans, src, new_bytenr, blocksize,
1785 					path->nodes[level]->start,
1786 					src->root_key.objectid, level - 1, 0);
1787 		BUG_ON(ret);
1788 
1789 		ret = btrfs_free_extent(trans, dest, old_bytenr, blocksize,
1790 					0, dest->root_key.objectid, level - 1,
1791 					0);
1792 		BUG_ON(ret);
1793 
1794 		btrfs_unlock_up_safe(path, 0);
1795 
1796 		ret = level;
1797 		break;
1798 	}
1799 	btrfs_tree_unlock(parent);
1800 	free_extent_buffer(parent);
1801 	return ret;
1802 }
1803 
1804 /*
1805  * helper to find next relocated block in reloc tree
1806  */
1807 static noinline_for_stack
1808 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1809 		       int *level)
1810 {
1811 	struct extent_buffer *eb;
1812 	int i;
1813 	u64 last_snapshot;
1814 	u32 nritems;
1815 
1816 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1817 
1818 	for (i = 0; i < *level; i++) {
1819 		free_extent_buffer(path->nodes[i]);
1820 		path->nodes[i] = NULL;
1821 	}
1822 
1823 	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1824 		eb = path->nodes[i];
1825 		nritems = btrfs_header_nritems(eb);
1826 		while (path->slots[i] + 1 < nritems) {
1827 			path->slots[i]++;
1828 			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1829 			    last_snapshot)
1830 				continue;
1831 
1832 			*level = i;
1833 			return 0;
1834 		}
1835 		free_extent_buffer(path->nodes[i]);
1836 		path->nodes[i] = NULL;
1837 	}
1838 	return 1;
1839 }
1840 
1841 /*
1842  * walk down reloc tree to find relocated block of lowest level
1843  */
1844 static noinline_for_stack
1845 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1846 			 int *level)
1847 {
1848 	struct extent_buffer *eb = NULL;
1849 	int i;
1850 	u64 bytenr;
1851 	u64 ptr_gen = 0;
1852 	u64 last_snapshot;
1853 	u32 blocksize;
1854 	u32 nritems;
1855 
1856 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1857 
1858 	for (i = *level; i > 0; i--) {
1859 		eb = path->nodes[i];
1860 		nritems = btrfs_header_nritems(eb);
1861 		while (path->slots[i] < nritems) {
1862 			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1863 			if (ptr_gen > last_snapshot)
1864 				break;
1865 			path->slots[i]++;
1866 		}
1867 		if (path->slots[i] >= nritems) {
1868 			if (i == *level)
1869 				break;
1870 			*level = i + 1;
1871 			return 0;
1872 		}
1873 		if (i == 1) {
1874 			*level = i;
1875 			return 0;
1876 		}
1877 
1878 		bytenr = btrfs_node_blockptr(eb, path->slots[i]);
1879 		blocksize = btrfs_level_size(root, i - 1);
1880 		eb = read_tree_block(root, bytenr, blocksize, ptr_gen);
1881 		BUG_ON(btrfs_header_level(eb) != i - 1);
1882 		path->nodes[i - 1] = eb;
1883 		path->slots[i - 1] = 0;
1884 	}
1885 	return 1;
1886 }
1887 
1888 /*
1889  * invalidate extent cache for file extents whose key in range of
1890  * [min_key, max_key)
1891  */
1892 static int invalidate_extent_cache(struct btrfs_root *root,
1893 				   struct btrfs_key *min_key,
1894 				   struct btrfs_key *max_key)
1895 {
1896 	struct inode *inode = NULL;
1897 	u64 objectid;
1898 	u64 start, end;
1899 	u64 ino;
1900 
1901 	objectid = min_key->objectid;
1902 	while (1) {
1903 		cond_resched();
1904 		iput(inode);
1905 
1906 		if (objectid > max_key->objectid)
1907 			break;
1908 
1909 		inode = find_next_inode(root, objectid);
1910 		if (!inode)
1911 			break;
1912 		ino = btrfs_ino(inode);
1913 
1914 		if (ino > max_key->objectid) {
1915 			iput(inode);
1916 			break;
1917 		}
1918 
1919 		objectid = ino + 1;
1920 		if (!S_ISREG(inode->i_mode))
1921 			continue;
1922 
1923 		if (unlikely(min_key->objectid == ino)) {
1924 			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1925 				continue;
1926 			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1927 				start = 0;
1928 			else {
1929 				start = min_key->offset;
1930 				WARN_ON(!IS_ALIGNED(start, root->sectorsize));
1931 			}
1932 		} else {
1933 			start = 0;
1934 		}
1935 
1936 		if (unlikely(max_key->objectid == ino)) {
1937 			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1938 				continue;
1939 			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1940 				end = (u64)-1;
1941 			} else {
1942 				if (max_key->offset == 0)
1943 					continue;
1944 				end = max_key->offset;
1945 				WARN_ON(!IS_ALIGNED(end, root->sectorsize));
1946 				end--;
1947 			}
1948 		} else {
1949 			end = (u64)-1;
1950 		}
1951 
1952 		/* the lock_extent waits for readpage to complete */
1953 		lock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
1954 		btrfs_drop_extent_cache(inode, start, end, 1);
1955 		unlock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
1956 	}
1957 	return 0;
1958 }
1959 
1960 static int find_next_key(struct btrfs_path *path, int level,
1961 			 struct btrfs_key *key)
1962 
1963 {
1964 	while (level < BTRFS_MAX_LEVEL) {
1965 		if (!path->nodes[level])
1966 			break;
1967 		if (path->slots[level] + 1 <
1968 		    btrfs_header_nritems(path->nodes[level])) {
1969 			btrfs_node_key_to_cpu(path->nodes[level], key,
1970 					      path->slots[level] + 1);
1971 			return 0;
1972 		}
1973 		level++;
1974 	}
1975 	return 1;
1976 }
1977 
1978 /*
1979  * merge the relocated tree blocks in reloc tree with corresponding
1980  * fs tree.
1981  */
1982 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
1983 					       struct btrfs_root *root)
1984 {
1985 	LIST_HEAD(inode_list);
1986 	struct btrfs_key key;
1987 	struct btrfs_key next_key;
1988 	struct btrfs_trans_handle *trans;
1989 	struct btrfs_root *reloc_root;
1990 	struct btrfs_root_item *root_item;
1991 	struct btrfs_path *path;
1992 	struct extent_buffer *leaf;
1993 	unsigned long nr;
1994 	int level;
1995 	int max_level;
1996 	int replaced = 0;
1997 	int ret;
1998 	int err = 0;
1999 	u32 min_reserved;
2000 
2001 	path = btrfs_alloc_path();
2002 	if (!path)
2003 		return -ENOMEM;
2004 	path->reada = 1;
2005 
2006 	reloc_root = root->reloc_root;
2007 	root_item = &reloc_root->root_item;
2008 
2009 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2010 		level = btrfs_root_level(root_item);
2011 		extent_buffer_get(reloc_root->node);
2012 		path->nodes[level] = reloc_root->node;
2013 		path->slots[level] = 0;
2014 	} else {
2015 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2016 
2017 		level = root_item->drop_level;
2018 		BUG_ON(level == 0);
2019 		path->lowest_level = level;
2020 		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
2021 		path->lowest_level = 0;
2022 		if (ret < 0) {
2023 			btrfs_free_path(path);
2024 			return ret;
2025 		}
2026 
2027 		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
2028 				      path->slots[level]);
2029 		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
2030 
2031 		btrfs_unlock_up_safe(path, 0);
2032 	}
2033 
2034 	min_reserved = root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2035 	memset(&next_key, 0, sizeof(next_key));
2036 
2037 	while (1) {
2038 		trans = btrfs_start_transaction(root, 0);
2039 		BUG_ON(IS_ERR(trans));
2040 		trans->block_rsv = rc->block_rsv;
2041 
2042 		ret = btrfs_block_rsv_check(trans, root, rc->block_rsv,
2043 					    min_reserved, 0);
2044 		if (ret) {
2045 			BUG_ON(ret != -EAGAIN);
2046 			ret = btrfs_commit_transaction(trans, root);
2047 			BUG_ON(ret);
2048 			continue;
2049 		}
2050 
2051 		replaced = 0;
2052 		max_level = level;
2053 
2054 		ret = walk_down_reloc_tree(reloc_root, path, &level);
2055 		if (ret < 0) {
2056 			err = ret;
2057 			goto out;
2058 		}
2059 		if (ret > 0)
2060 			break;
2061 
2062 		if (!find_next_key(path, level, &key) &&
2063 		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
2064 			ret = 0;
2065 		} else {
2066 			ret = replace_path(trans, root, reloc_root, path,
2067 					   &next_key, level, max_level);
2068 		}
2069 		if (ret < 0) {
2070 			err = ret;
2071 			goto out;
2072 		}
2073 
2074 		if (ret > 0) {
2075 			level = ret;
2076 			btrfs_node_key_to_cpu(path->nodes[level], &key,
2077 					      path->slots[level]);
2078 			replaced = 1;
2079 		}
2080 
2081 		ret = walk_up_reloc_tree(reloc_root, path, &level);
2082 		if (ret > 0)
2083 			break;
2084 
2085 		BUG_ON(level == 0);
2086 		/*
2087 		 * save the merging progress in the drop_progress.
2088 		 * this is OK since root refs == 1 in this case.
2089 		 */
2090 		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
2091 			       path->slots[level]);
2092 		root_item->drop_level = level;
2093 
2094 		nr = trans->blocks_used;
2095 		btrfs_end_transaction_throttle(trans, root);
2096 
2097 		btrfs_btree_balance_dirty(root, nr);
2098 
2099 		if (replaced && rc->stage == UPDATE_DATA_PTRS)
2100 			invalidate_extent_cache(root, &key, &next_key);
2101 	}
2102 
2103 	/*
2104 	 * handle the case only one block in the fs tree need to be
2105 	 * relocated and the block is tree root.
2106 	 */
2107 	leaf = btrfs_lock_root_node(root);
2108 	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
2109 	btrfs_tree_unlock(leaf);
2110 	free_extent_buffer(leaf);
2111 	if (ret < 0)
2112 		err = ret;
2113 out:
2114 	btrfs_free_path(path);
2115 
2116 	if (err == 0) {
2117 		memset(&root_item->drop_progress, 0,
2118 		       sizeof(root_item->drop_progress));
2119 		root_item->drop_level = 0;
2120 		btrfs_set_root_refs(root_item, 0);
2121 		btrfs_update_reloc_root(trans, root);
2122 	}
2123 
2124 	nr = trans->blocks_used;
2125 	btrfs_end_transaction_throttle(trans, root);
2126 
2127 	btrfs_btree_balance_dirty(root, nr);
2128 
2129 	if (replaced && rc->stage == UPDATE_DATA_PTRS)
2130 		invalidate_extent_cache(root, &key, &next_key);
2131 
2132 	return err;
2133 }
2134 
2135 static noinline_for_stack
2136 int prepare_to_merge(struct reloc_control *rc, int err)
2137 {
2138 	struct btrfs_root *root = rc->extent_root;
2139 	struct btrfs_root *reloc_root;
2140 	struct btrfs_trans_handle *trans;
2141 	LIST_HEAD(reloc_roots);
2142 	u64 num_bytes = 0;
2143 	int ret;
2144 
2145 	spin_lock(&root->fs_info->trans_lock);
2146 	rc->merging_rsv_size += root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2147 	rc->merging_rsv_size += rc->nodes_relocated * 2;
2148 	spin_unlock(&root->fs_info->trans_lock);
2149 again:
2150 	if (!err) {
2151 		num_bytes = rc->merging_rsv_size;
2152 		ret = btrfs_block_rsv_add(NULL, root, rc->block_rsv,
2153 					  num_bytes);
2154 		if (ret)
2155 			err = ret;
2156 	}
2157 
2158 	trans = btrfs_join_transaction(rc->extent_root);
2159 	if (IS_ERR(trans)) {
2160 		if (!err)
2161 			btrfs_block_rsv_release(rc->extent_root,
2162 						rc->block_rsv, num_bytes);
2163 		return PTR_ERR(trans);
2164 	}
2165 
2166 	if (!err) {
2167 		if (num_bytes != rc->merging_rsv_size) {
2168 			btrfs_end_transaction(trans, rc->extent_root);
2169 			btrfs_block_rsv_release(rc->extent_root,
2170 						rc->block_rsv, num_bytes);
2171 			goto again;
2172 		}
2173 	}
2174 
2175 	rc->merge_reloc_tree = 1;
2176 
2177 	while (!list_empty(&rc->reloc_roots)) {
2178 		reloc_root = list_entry(rc->reloc_roots.next,
2179 					struct btrfs_root, root_list);
2180 		list_del_init(&reloc_root->root_list);
2181 
2182 		root = read_fs_root(reloc_root->fs_info,
2183 				    reloc_root->root_key.offset);
2184 		BUG_ON(IS_ERR(root));
2185 		BUG_ON(root->reloc_root != reloc_root);
2186 
2187 		/*
2188 		 * set reference count to 1, so btrfs_recover_relocation
2189 		 * knows it should resumes merging
2190 		 */
2191 		if (!err)
2192 			btrfs_set_root_refs(&reloc_root->root_item, 1);
2193 		btrfs_update_reloc_root(trans, root);
2194 
2195 		list_add(&reloc_root->root_list, &reloc_roots);
2196 	}
2197 
2198 	list_splice(&reloc_roots, &rc->reloc_roots);
2199 
2200 	if (!err)
2201 		btrfs_commit_transaction(trans, rc->extent_root);
2202 	else
2203 		btrfs_end_transaction(trans, rc->extent_root);
2204 	return err;
2205 }
2206 
2207 static noinline_for_stack
2208 int merge_reloc_roots(struct reloc_control *rc)
2209 {
2210 	struct btrfs_root *root;
2211 	struct btrfs_root *reloc_root;
2212 	LIST_HEAD(reloc_roots);
2213 	int found = 0;
2214 	int ret;
2215 again:
2216 	root = rc->extent_root;
2217 	spin_lock(&root->fs_info->trans_lock);
2218 	list_splice_init(&rc->reloc_roots, &reloc_roots);
2219 	spin_unlock(&root->fs_info->trans_lock);
2220 
2221 	while (!list_empty(&reloc_roots)) {
2222 		found = 1;
2223 		reloc_root = list_entry(reloc_roots.next,
2224 					struct btrfs_root, root_list);
2225 
2226 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
2227 			root = read_fs_root(reloc_root->fs_info,
2228 					    reloc_root->root_key.offset);
2229 			BUG_ON(IS_ERR(root));
2230 			BUG_ON(root->reloc_root != reloc_root);
2231 
2232 			ret = merge_reloc_root(rc, root);
2233 			BUG_ON(ret);
2234 		} else {
2235 			list_del_init(&reloc_root->root_list);
2236 		}
2237 		btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0);
2238 	}
2239 
2240 	if (found) {
2241 		found = 0;
2242 		goto again;
2243 	}
2244 	BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2245 	return 0;
2246 }
2247 
2248 static void free_block_list(struct rb_root *blocks)
2249 {
2250 	struct tree_block *block;
2251 	struct rb_node *rb_node;
2252 	while ((rb_node = rb_first(blocks))) {
2253 		block = rb_entry(rb_node, struct tree_block, rb_node);
2254 		rb_erase(rb_node, blocks);
2255 		kfree(block);
2256 	}
2257 }
2258 
2259 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2260 				      struct btrfs_root *reloc_root)
2261 {
2262 	struct btrfs_root *root;
2263 
2264 	if (reloc_root->last_trans == trans->transid)
2265 		return 0;
2266 
2267 	root = read_fs_root(reloc_root->fs_info, reloc_root->root_key.offset);
2268 	BUG_ON(IS_ERR(root));
2269 	BUG_ON(root->reloc_root != reloc_root);
2270 
2271 	return btrfs_record_root_in_trans(trans, root);
2272 }
2273 
2274 static noinline_for_stack
2275 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2276 				     struct reloc_control *rc,
2277 				     struct backref_node *node,
2278 				     struct backref_edge *edges[], int *nr)
2279 {
2280 	struct backref_node *next;
2281 	struct btrfs_root *root;
2282 	int index = 0;
2283 
2284 	next = node;
2285 	while (1) {
2286 		cond_resched();
2287 		next = walk_up_backref(next, edges, &index);
2288 		root = next->root;
2289 		BUG_ON(!root);
2290 		BUG_ON(!root->ref_cows);
2291 
2292 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2293 			record_reloc_root_in_trans(trans, root);
2294 			break;
2295 		}
2296 
2297 		btrfs_record_root_in_trans(trans, root);
2298 		root = root->reloc_root;
2299 
2300 		if (next->new_bytenr != root->node->start) {
2301 			BUG_ON(next->new_bytenr);
2302 			BUG_ON(!list_empty(&next->list));
2303 			next->new_bytenr = root->node->start;
2304 			next->root = root;
2305 			list_add_tail(&next->list,
2306 				      &rc->backref_cache.changed);
2307 			__mark_block_processed(rc, next);
2308 			break;
2309 		}
2310 
2311 		WARN_ON(1);
2312 		root = NULL;
2313 		next = walk_down_backref(edges, &index);
2314 		if (!next || next->level <= node->level)
2315 			break;
2316 	}
2317 	if (!root)
2318 		return NULL;
2319 
2320 	*nr = index;
2321 	next = node;
2322 	/* setup backref node path for btrfs_reloc_cow_block */
2323 	while (1) {
2324 		rc->backref_cache.path[next->level] = next;
2325 		if (--index < 0)
2326 			break;
2327 		next = edges[index]->node[UPPER];
2328 	}
2329 	return root;
2330 }
2331 
2332 /*
2333  * select a tree root for relocation. return NULL if the block
2334  * is reference counted. we should use do_relocation() in this
2335  * case. return a tree root pointer if the block isn't reference
2336  * counted. return -ENOENT if the block is root of reloc tree.
2337  */
2338 static noinline_for_stack
2339 struct btrfs_root *select_one_root(struct btrfs_trans_handle *trans,
2340 				   struct backref_node *node)
2341 {
2342 	struct backref_node *next;
2343 	struct btrfs_root *root;
2344 	struct btrfs_root *fs_root = NULL;
2345 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2346 	int index = 0;
2347 
2348 	next = node;
2349 	while (1) {
2350 		cond_resched();
2351 		next = walk_up_backref(next, edges, &index);
2352 		root = next->root;
2353 		BUG_ON(!root);
2354 
2355 		/* no other choice for non-references counted tree */
2356 		if (!root->ref_cows)
2357 			return root;
2358 
2359 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2360 			fs_root = root;
2361 
2362 		if (next != node)
2363 			return NULL;
2364 
2365 		next = walk_down_backref(edges, &index);
2366 		if (!next || next->level <= node->level)
2367 			break;
2368 	}
2369 
2370 	if (!fs_root)
2371 		return ERR_PTR(-ENOENT);
2372 	return fs_root;
2373 }
2374 
2375 static noinline_for_stack
2376 u64 calcu_metadata_size(struct reloc_control *rc,
2377 			struct backref_node *node, int reserve)
2378 {
2379 	struct backref_node *next = node;
2380 	struct backref_edge *edge;
2381 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2382 	u64 num_bytes = 0;
2383 	int index = 0;
2384 
2385 	BUG_ON(reserve && node->processed);
2386 
2387 	while (next) {
2388 		cond_resched();
2389 		while (1) {
2390 			if (next->processed && (reserve || next != node))
2391 				break;
2392 
2393 			num_bytes += btrfs_level_size(rc->extent_root,
2394 						      next->level);
2395 
2396 			if (list_empty(&next->upper))
2397 				break;
2398 
2399 			edge = list_entry(next->upper.next,
2400 					  struct backref_edge, list[LOWER]);
2401 			edges[index++] = edge;
2402 			next = edge->node[UPPER];
2403 		}
2404 		next = walk_down_backref(edges, &index);
2405 	}
2406 	return num_bytes;
2407 }
2408 
2409 static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2410 				  struct reloc_control *rc,
2411 				  struct backref_node *node)
2412 {
2413 	struct btrfs_root *root = rc->extent_root;
2414 	u64 num_bytes;
2415 	int ret;
2416 
2417 	num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2418 
2419 	trans->block_rsv = rc->block_rsv;
2420 	ret = btrfs_block_rsv_add(trans, root, rc->block_rsv, num_bytes);
2421 	if (ret) {
2422 		if (ret == -EAGAIN)
2423 			rc->commit_transaction = 1;
2424 		return ret;
2425 	}
2426 
2427 	return 0;
2428 }
2429 
2430 static void release_metadata_space(struct reloc_control *rc,
2431 				   struct backref_node *node)
2432 {
2433 	u64 num_bytes = calcu_metadata_size(rc, node, 0) * 2;
2434 	btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, num_bytes);
2435 }
2436 
2437 /*
2438  * relocate a block tree, and then update pointers in upper level
2439  * blocks that reference the block to point to the new location.
2440  *
2441  * if called by link_to_upper, the block has already been relocated.
2442  * in that case this function just updates pointers.
2443  */
2444 static int do_relocation(struct btrfs_trans_handle *trans,
2445 			 struct reloc_control *rc,
2446 			 struct backref_node *node,
2447 			 struct btrfs_key *key,
2448 			 struct btrfs_path *path, int lowest)
2449 {
2450 	struct backref_node *upper;
2451 	struct backref_edge *edge;
2452 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2453 	struct btrfs_root *root;
2454 	struct extent_buffer *eb;
2455 	u32 blocksize;
2456 	u64 bytenr;
2457 	u64 generation;
2458 	int nr;
2459 	int slot;
2460 	int ret;
2461 	int err = 0;
2462 
2463 	BUG_ON(lowest && node->eb);
2464 
2465 	path->lowest_level = node->level + 1;
2466 	rc->backref_cache.path[node->level] = node;
2467 	list_for_each_entry(edge, &node->upper, list[LOWER]) {
2468 		cond_resched();
2469 
2470 		upper = edge->node[UPPER];
2471 		root = select_reloc_root(trans, rc, upper, edges, &nr);
2472 		BUG_ON(!root);
2473 
2474 		if (upper->eb && !upper->locked) {
2475 			if (!lowest) {
2476 				ret = btrfs_bin_search(upper->eb, key,
2477 						       upper->level, &slot);
2478 				BUG_ON(ret);
2479 				bytenr = btrfs_node_blockptr(upper->eb, slot);
2480 				if (node->eb->start == bytenr)
2481 					goto next;
2482 			}
2483 			drop_node_buffer(upper);
2484 		}
2485 
2486 		if (!upper->eb) {
2487 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2488 			if (ret < 0) {
2489 				err = ret;
2490 				break;
2491 			}
2492 			BUG_ON(ret > 0);
2493 
2494 			if (!upper->eb) {
2495 				upper->eb = path->nodes[upper->level];
2496 				path->nodes[upper->level] = NULL;
2497 			} else {
2498 				BUG_ON(upper->eb != path->nodes[upper->level]);
2499 			}
2500 
2501 			upper->locked = 1;
2502 			path->locks[upper->level] = 0;
2503 
2504 			slot = path->slots[upper->level];
2505 			btrfs_release_path(path);
2506 		} else {
2507 			ret = btrfs_bin_search(upper->eb, key, upper->level,
2508 					       &slot);
2509 			BUG_ON(ret);
2510 		}
2511 
2512 		bytenr = btrfs_node_blockptr(upper->eb, slot);
2513 		if (lowest) {
2514 			BUG_ON(bytenr != node->bytenr);
2515 		} else {
2516 			if (node->eb->start == bytenr)
2517 				goto next;
2518 		}
2519 
2520 		blocksize = btrfs_level_size(root, node->level);
2521 		generation = btrfs_node_ptr_generation(upper->eb, slot);
2522 		eb = read_tree_block(root, bytenr, blocksize, generation);
2523 		if (!eb) {
2524 			err = -EIO;
2525 			goto next;
2526 		}
2527 		btrfs_tree_lock(eb);
2528 		btrfs_set_lock_blocking(eb);
2529 
2530 		if (!node->eb) {
2531 			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2532 					      slot, &eb);
2533 			btrfs_tree_unlock(eb);
2534 			free_extent_buffer(eb);
2535 			if (ret < 0) {
2536 				err = ret;
2537 				goto next;
2538 			}
2539 			BUG_ON(node->eb != eb);
2540 		} else {
2541 			btrfs_set_node_blockptr(upper->eb, slot,
2542 						node->eb->start);
2543 			btrfs_set_node_ptr_generation(upper->eb, slot,
2544 						      trans->transid);
2545 			btrfs_mark_buffer_dirty(upper->eb);
2546 
2547 			ret = btrfs_inc_extent_ref(trans, root,
2548 						node->eb->start, blocksize,
2549 						upper->eb->start,
2550 						btrfs_header_owner(upper->eb),
2551 						node->level, 0);
2552 			BUG_ON(ret);
2553 
2554 			ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2555 			BUG_ON(ret);
2556 		}
2557 next:
2558 		if (!upper->pending)
2559 			drop_node_buffer(upper);
2560 		else
2561 			unlock_node_buffer(upper);
2562 		if (err)
2563 			break;
2564 	}
2565 
2566 	if (!err && node->pending) {
2567 		drop_node_buffer(node);
2568 		list_move_tail(&node->list, &rc->backref_cache.changed);
2569 		node->pending = 0;
2570 	}
2571 
2572 	path->lowest_level = 0;
2573 	BUG_ON(err == -ENOSPC);
2574 	return err;
2575 }
2576 
2577 static int link_to_upper(struct btrfs_trans_handle *trans,
2578 			 struct reloc_control *rc,
2579 			 struct backref_node *node,
2580 			 struct btrfs_path *path)
2581 {
2582 	struct btrfs_key key;
2583 
2584 	btrfs_node_key_to_cpu(node->eb, &key, 0);
2585 	return do_relocation(trans, rc, node, &key, path, 0);
2586 }
2587 
2588 static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2589 				struct reloc_control *rc,
2590 				struct btrfs_path *path, int err)
2591 {
2592 	LIST_HEAD(list);
2593 	struct backref_cache *cache = &rc->backref_cache;
2594 	struct backref_node *node;
2595 	int level;
2596 	int ret;
2597 
2598 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2599 		while (!list_empty(&cache->pending[level])) {
2600 			node = list_entry(cache->pending[level].next,
2601 					  struct backref_node, list);
2602 			list_move_tail(&node->list, &list);
2603 			BUG_ON(!node->pending);
2604 
2605 			if (!err) {
2606 				ret = link_to_upper(trans, rc, node, path);
2607 				if (ret < 0)
2608 					err = ret;
2609 			}
2610 		}
2611 		list_splice_init(&list, &cache->pending[level]);
2612 	}
2613 	return err;
2614 }
2615 
2616 static void mark_block_processed(struct reloc_control *rc,
2617 				 u64 bytenr, u32 blocksize)
2618 {
2619 	set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1,
2620 			EXTENT_DIRTY, GFP_NOFS);
2621 }
2622 
2623 static void __mark_block_processed(struct reloc_control *rc,
2624 				   struct backref_node *node)
2625 {
2626 	u32 blocksize;
2627 	if (node->level == 0 ||
2628 	    in_block_group(node->bytenr, rc->block_group)) {
2629 		blocksize = btrfs_level_size(rc->extent_root, node->level);
2630 		mark_block_processed(rc, node->bytenr, blocksize);
2631 	}
2632 	node->processed = 1;
2633 }
2634 
2635 /*
2636  * mark a block and all blocks directly/indirectly reference the block
2637  * as processed.
2638  */
2639 static void update_processed_blocks(struct reloc_control *rc,
2640 				    struct backref_node *node)
2641 {
2642 	struct backref_node *next = node;
2643 	struct backref_edge *edge;
2644 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2645 	int index = 0;
2646 
2647 	while (next) {
2648 		cond_resched();
2649 		while (1) {
2650 			if (next->processed)
2651 				break;
2652 
2653 			__mark_block_processed(rc, next);
2654 
2655 			if (list_empty(&next->upper))
2656 				break;
2657 
2658 			edge = list_entry(next->upper.next,
2659 					  struct backref_edge, list[LOWER]);
2660 			edges[index++] = edge;
2661 			next = edge->node[UPPER];
2662 		}
2663 		next = walk_down_backref(edges, &index);
2664 	}
2665 }
2666 
2667 static int tree_block_processed(u64 bytenr, u32 blocksize,
2668 				struct reloc_control *rc)
2669 {
2670 	if (test_range_bit(&rc->processed_blocks, bytenr,
2671 			   bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2672 		return 1;
2673 	return 0;
2674 }
2675 
2676 static int get_tree_block_key(struct reloc_control *rc,
2677 			      struct tree_block *block)
2678 {
2679 	struct extent_buffer *eb;
2680 
2681 	BUG_ON(block->key_ready);
2682 	eb = read_tree_block(rc->extent_root, block->bytenr,
2683 			     block->key.objectid, block->key.offset);
2684 	BUG_ON(!eb);
2685 	WARN_ON(btrfs_header_level(eb) != block->level);
2686 	if (block->level == 0)
2687 		btrfs_item_key_to_cpu(eb, &block->key, 0);
2688 	else
2689 		btrfs_node_key_to_cpu(eb, &block->key, 0);
2690 	free_extent_buffer(eb);
2691 	block->key_ready = 1;
2692 	return 0;
2693 }
2694 
2695 static int reada_tree_block(struct reloc_control *rc,
2696 			    struct tree_block *block)
2697 {
2698 	BUG_ON(block->key_ready);
2699 	readahead_tree_block(rc->extent_root, block->bytenr,
2700 			     block->key.objectid, block->key.offset);
2701 	return 0;
2702 }
2703 
2704 /*
2705  * helper function to relocate a tree block
2706  */
2707 static int relocate_tree_block(struct btrfs_trans_handle *trans,
2708 				struct reloc_control *rc,
2709 				struct backref_node *node,
2710 				struct btrfs_key *key,
2711 				struct btrfs_path *path)
2712 {
2713 	struct btrfs_root *root;
2714 	int release = 0;
2715 	int ret = 0;
2716 
2717 	if (!node)
2718 		return 0;
2719 
2720 	BUG_ON(node->processed);
2721 	root = select_one_root(trans, node);
2722 	if (root == ERR_PTR(-ENOENT)) {
2723 		update_processed_blocks(rc, node);
2724 		goto out;
2725 	}
2726 
2727 	if (!root || root->ref_cows) {
2728 		ret = reserve_metadata_space(trans, rc, node);
2729 		if (ret)
2730 			goto out;
2731 		release = 1;
2732 	}
2733 
2734 	if (root) {
2735 		if (root->ref_cows) {
2736 			BUG_ON(node->new_bytenr);
2737 			BUG_ON(!list_empty(&node->list));
2738 			btrfs_record_root_in_trans(trans, root);
2739 			root = root->reloc_root;
2740 			node->new_bytenr = root->node->start;
2741 			node->root = root;
2742 			list_add_tail(&node->list, &rc->backref_cache.changed);
2743 		} else {
2744 			path->lowest_level = node->level;
2745 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2746 			btrfs_release_path(path);
2747 			if (ret > 0)
2748 				ret = 0;
2749 		}
2750 		if (!ret)
2751 			update_processed_blocks(rc, node);
2752 	} else {
2753 		ret = do_relocation(trans, rc, node, key, path, 1);
2754 	}
2755 out:
2756 	if (ret || node->level == 0 || node->cowonly) {
2757 		if (release)
2758 			release_metadata_space(rc, node);
2759 		remove_backref_node(&rc->backref_cache, node);
2760 	}
2761 	return ret;
2762 }
2763 
2764 /*
2765  * relocate a list of blocks
2766  */
2767 static noinline_for_stack
2768 int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2769 			 struct reloc_control *rc, struct rb_root *blocks)
2770 {
2771 	struct backref_node *node;
2772 	struct btrfs_path *path;
2773 	struct tree_block *block;
2774 	struct rb_node *rb_node;
2775 	int ret;
2776 	int err = 0;
2777 
2778 	path = btrfs_alloc_path();
2779 	if (!path)
2780 		return -ENOMEM;
2781 
2782 	rb_node = rb_first(blocks);
2783 	while (rb_node) {
2784 		block = rb_entry(rb_node, struct tree_block, rb_node);
2785 		if (!block->key_ready)
2786 			reada_tree_block(rc, block);
2787 		rb_node = rb_next(rb_node);
2788 	}
2789 
2790 	rb_node = rb_first(blocks);
2791 	while (rb_node) {
2792 		block = rb_entry(rb_node, struct tree_block, rb_node);
2793 		if (!block->key_ready)
2794 			get_tree_block_key(rc, block);
2795 		rb_node = rb_next(rb_node);
2796 	}
2797 
2798 	rb_node = rb_first(blocks);
2799 	while (rb_node) {
2800 		block = rb_entry(rb_node, struct tree_block, rb_node);
2801 
2802 		node = build_backref_tree(rc, &block->key,
2803 					  block->level, block->bytenr);
2804 		if (IS_ERR(node)) {
2805 			err = PTR_ERR(node);
2806 			goto out;
2807 		}
2808 
2809 		ret = relocate_tree_block(trans, rc, node, &block->key,
2810 					  path);
2811 		if (ret < 0) {
2812 			if (ret != -EAGAIN || rb_node == rb_first(blocks))
2813 				err = ret;
2814 			goto out;
2815 		}
2816 		rb_node = rb_next(rb_node);
2817 	}
2818 out:
2819 	free_block_list(blocks);
2820 	err = finish_pending_nodes(trans, rc, path, err);
2821 
2822 	btrfs_free_path(path);
2823 	return err;
2824 }
2825 
2826 static noinline_for_stack
2827 int prealloc_file_extent_cluster(struct inode *inode,
2828 				 struct file_extent_cluster *cluster)
2829 {
2830 	u64 alloc_hint = 0;
2831 	u64 start;
2832 	u64 end;
2833 	u64 offset = BTRFS_I(inode)->index_cnt;
2834 	u64 num_bytes;
2835 	int nr = 0;
2836 	int ret = 0;
2837 
2838 	BUG_ON(cluster->start != cluster->boundary[0]);
2839 	mutex_lock(&inode->i_mutex);
2840 
2841 	ret = btrfs_check_data_free_space(inode, cluster->end +
2842 					  1 - cluster->start);
2843 	if (ret)
2844 		goto out;
2845 
2846 	while (nr < cluster->nr) {
2847 		start = cluster->boundary[nr] - offset;
2848 		if (nr + 1 < cluster->nr)
2849 			end = cluster->boundary[nr + 1] - 1 - offset;
2850 		else
2851 			end = cluster->end - offset;
2852 
2853 		lock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
2854 		num_bytes = end + 1 - start;
2855 		ret = btrfs_prealloc_file_range(inode, 0, start,
2856 						num_bytes, num_bytes,
2857 						end + 1, &alloc_hint);
2858 		unlock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
2859 		if (ret)
2860 			break;
2861 		nr++;
2862 	}
2863 	btrfs_free_reserved_data_space(inode, cluster->end +
2864 				       1 - cluster->start);
2865 out:
2866 	mutex_unlock(&inode->i_mutex);
2867 	return ret;
2868 }
2869 
2870 static noinline_for_stack
2871 int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
2872 			 u64 block_start)
2873 {
2874 	struct btrfs_root *root = BTRFS_I(inode)->root;
2875 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2876 	struct extent_map *em;
2877 	int ret = 0;
2878 
2879 	em = alloc_extent_map();
2880 	if (!em)
2881 		return -ENOMEM;
2882 
2883 	em->start = start;
2884 	em->len = end + 1 - start;
2885 	em->block_len = em->len;
2886 	em->block_start = block_start;
2887 	em->bdev = root->fs_info->fs_devices->latest_bdev;
2888 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
2889 
2890 	lock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
2891 	while (1) {
2892 		write_lock(&em_tree->lock);
2893 		ret = add_extent_mapping(em_tree, em);
2894 		write_unlock(&em_tree->lock);
2895 		if (ret != -EEXIST) {
2896 			free_extent_map(em);
2897 			break;
2898 		}
2899 		btrfs_drop_extent_cache(inode, start, end, 0);
2900 	}
2901 	unlock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
2902 	return ret;
2903 }
2904 
2905 static int relocate_file_extent_cluster(struct inode *inode,
2906 					struct file_extent_cluster *cluster)
2907 {
2908 	u64 page_start;
2909 	u64 page_end;
2910 	u64 offset = BTRFS_I(inode)->index_cnt;
2911 	unsigned long index;
2912 	unsigned long last_index;
2913 	struct page *page;
2914 	struct file_ra_state *ra;
2915 	int nr = 0;
2916 	int ret = 0;
2917 
2918 	if (!cluster->nr)
2919 		return 0;
2920 
2921 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
2922 	if (!ra)
2923 		return -ENOMEM;
2924 
2925 	ret = prealloc_file_extent_cluster(inode, cluster);
2926 	if (ret)
2927 		goto out;
2928 
2929 	file_ra_state_init(ra, inode->i_mapping);
2930 
2931 	ret = setup_extent_mapping(inode, cluster->start - offset,
2932 				   cluster->end - offset, cluster->start);
2933 	if (ret)
2934 		goto out;
2935 
2936 	index = (cluster->start - offset) >> PAGE_CACHE_SHIFT;
2937 	last_index = (cluster->end - offset) >> PAGE_CACHE_SHIFT;
2938 	while (index <= last_index) {
2939 		ret = btrfs_delalloc_reserve_metadata(inode, PAGE_CACHE_SIZE);
2940 		if (ret)
2941 			goto out;
2942 
2943 		page = find_lock_page(inode->i_mapping, index);
2944 		if (!page) {
2945 			page_cache_sync_readahead(inode->i_mapping,
2946 						  ra, NULL, index,
2947 						  last_index + 1 - index);
2948 			page = grab_cache_page(inode->i_mapping, index);
2949 			if (!page) {
2950 				btrfs_delalloc_release_metadata(inode,
2951 							PAGE_CACHE_SIZE);
2952 				ret = -ENOMEM;
2953 				goto out;
2954 			}
2955 		}
2956 
2957 		if (PageReadahead(page)) {
2958 			page_cache_async_readahead(inode->i_mapping,
2959 						   ra, NULL, page, index,
2960 						   last_index + 1 - index);
2961 		}
2962 
2963 		if (!PageUptodate(page)) {
2964 			btrfs_readpage(NULL, page);
2965 			lock_page(page);
2966 			if (!PageUptodate(page)) {
2967 				unlock_page(page);
2968 				page_cache_release(page);
2969 				btrfs_delalloc_release_metadata(inode,
2970 							PAGE_CACHE_SIZE);
2971 				ret = -EIO;
2972 				goto out;
2973 			}
2974 		}
2975 
2976 		page_start = (u64)page->index << PAGE_CACHE_SHIFT;
2977 		page_end = page_start + PAGE_CACHE_SIZE - 1;
2978 
2979 		lock_extent(&BTRFS_I(inode)->io_tree,
2980 			    page_start, page_end, GFP_NOFS);
2981 
2982 		set_page_extent_mapped(page);
2983 
2984 		if (nr < cluster->nr &&
2985 		    page_start + offset == cluster->boundary[nr]) {
2986 			set_extent_bits(&BTRFS_I(inode)->io_tree,
2987 					page_start, page_end,
2988 					EXTENT_BOUNDARY, GFP_NOFS);
2989 			nr++;
2990 		}
2991 
2992 		btrfs_set_extent_delalloc(inode, page_start, page_end, NULL);
2993 		set_page_dirty(page);
2994 
2995 		unlock_extent(&BTRFS_I(inode)->io_tree,
2996 			      page_start, page_end, GFP_NOFS);
2997 		unlock_page(page);
2998 		page_cache_release(page);
2999 
3000 		index++;
3001 		balance_dirty_pages_ratelimited(inode->i_mapping);
3002 		btrfs_throttle(BTRFS_I(inode)->root);
3003 	}
3004 	WARN_ON(nr != cluster->nr);
3005 out:
3006 	kfree(ra);
3007 	return ret;
3008 }
3009 
3010 static noinline_for_stack
3011 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3012 			 struct file_extent_cluster *cluster)
3013 {
3014 	int ret;
3015 
3016 	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3017 		ret = relocate_file_extent_cluster(inode, cluster);
3018 		if (ret)
3019 			return ret;
3020 		cluster->nr = 0;
3021 	}
3022 
3023 	if (!cluster->nr)
3024 		cluster->start = extent_key->objectid;
3025 	else
3026 		BUG_ON(cluster->nr >= MAX_EXTENTS);
3027 	cluster->end = extent_key->objectid + extent_key->offset - 1;
3028 	cluster->boundary[cluster->nr] = extent_key->objectid;
3029 	cluster->nr++;
3030 
3031 	if (cluster->nr >= MAX_EXTENTS) {
3032 		ret = relocate_file_extent_cluster(inode, cluster);
3033 		if (ret)
3034 			return ret;
3035 		cluster->nr = 0;
3036 	}
3037 	return 0;
3038 }
3039 
3040 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3041 static int get_ref_objectid_v0(struct reloc_control *rc,
3042 			       struct btrfs_path *path,
3043 			       struct btrfs_key *extent_key,
3044 			       u64 *ref_objectid, int *path_change)
3045 {
3046 	struct btrfs_key key;
3047 	struct extent_buffer *leaf;
3048 	struct btrfs_extent_ref_v0 *ref0;
3049 	int ret;
3050 	int slot;
3051 
3052 	leaf = path->nodes[0];
3053 	slot = path->slots[0];
3054 	while (1) {
3055 		if (slot >= btrfs_header_nritems(leaf)) {
3056 			ret = btrfs_next_leaf(rc->extent_root, path);
3057 			if (ret < 0)
3058 				return ret;
3059 			BUG_ON(ret > 0);
3060 			leaf = path->nodes[0];
3061 			slot = path->slots[0];
3062 			if (path_change)
3063 				*path_change = 1;
3064 		}
3065 		btrfs_item_key_to_cpu(leaf, &key, slot);
3066 		if (key.objectid != extent_key->objectid)
3067 			return -ENOENT;
3068 
3069 		if (key.type != BTRFS_EXTENT_REF_V0_KEY) {
3070 			slot++;
3071 			continue;
3072 		}
3073 		ref0 = btrfs_item_ptr(leaf, slot,
3074 				struct btrfs_extent_ref_v0);
3075 		*ref_objectid = btrfs_ref_objectid_v0(leaf, ref0);
3076 		break;
3077 	}
3078 	return 0;
3079 }
3080 #endif
3081 
3082 /*
3083  * helper to add a tree block to the list.
3084  * the major work is getting the generation and level of the block
3085  */
3086 static int add_tree_block(struct reloc_control *rc,
3087 			  struct btrfs_key *extent_key,
3088 			  struct btrfs_path *path,
3089 			  struct rb_root *blocks)
3090 {
3091 	struct extent_buffer *eb;
3092 	struct btrfs_extent_item *ei;
3093 	struct btrfs_tree_block_info *bi;
3094 	struct tree_block *block;
3095 	struct rb_node *rb_node;
3096 	u32 item_size;
3097 	int level = -1;
3098 	int generation;
3099 
3100 	eb =  path->nodes[0];
3101 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
3102 
3103 	if (item_size >= sizeof(*ei) + sizeof(*bi)) {
3104 		ei = btrfs_item_ptr(eb, path->slots[0],
3105 				struct btrfs_extent_item);
3106 		bi = (struct btrfs_tree_block_info *)(ei + 1);
3107 		generation = btrfs_extent_generation(eb, ei);
3108 		level = btrfs_tree_block_level(eb, bi);
3109 	} else {
3110 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3111 		u64 ref_owner;
3112 		int ret;
3113 
3114 		BUG_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3115 		ret = get_ref_objectid_v0(rc, path, extent_key,
3116 					  &ref_owner, NULL);
3117 		if (ret < 0)
3118 			return ret;
3119 		BUG_ON(ref_owner >= BTRFS_MAX_LEVEL);
3120 		level = (int)ref_owner;
3121 		/* FIXME: get real generation */
3122 		generation = 0;
3123 #else
3124 		BUG();
3125 #endif
3126 	}
3127 
3128 	btrfs_release_path(path);
3129 
3130 	BUG_ON(level == -1);
3131 
3132 	block = kmalloc(sizeof(*block), GFP_NOFS);
3133 	if (!block)
3134 		return -ENOMEM;
3135 
3136 	block->bytenr = extent_key->objectid;
3137 	block->key.objectid = extent_key->offset;
3138 	block->key.offset = generation;
3139 	block->level = level;
3140 	block->key_ready = 0;
3141 
3142 	rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
3143 	BUG_ON(rb_node);
3144 
3145 	return 0;
3146 }
3147 
3148 /*
3149  * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3150  */
3151 static int __add_tree_block(struct reloc_control *rc,
3152 			    u64 bytenr, u32 blocksize,
3153 			    struct rb_root *blocks)
3154 {
3155 	struct btrfs_path *path;
3156 	struct btrfs_key key;
3157 	int ret;
3158 
3159 	if (tree_block_processed(bytenr, blocksize, rc))
3160 		return 0;
3161 
3162 	if (tree_search(blocks, bytenr))
3163 		return 0;
3164 
3165 	path = btrfs_alloc_path();
3166 	if (!path)
3167 		return -ENOMEM;
3168 
3169 	key.objectid = bytenr;
3170 	key.type = BTRFS_EXTENT_ITEM_KEY;
3171 	key.offset = blocksize;
3172 
3173 	path->search_commit_root = 1;
3174 	path->skip_locking = 1;
3175 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3176 	if (ret < 0)
3177 		goto out;
3178 	BUG_ON(ret);
3179 
3180 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3181 	ret = add_tree_block(rc, &key, path, blocks);
3182 out:
3183 	btrfs_free_path(path);
3184 	return ret;
3185 }
3186 
3187 /*
3188  * helper to check if the block use full backrefs for pointers in it
3189  */
3190 static int block_use_full_backref(struct reloc_control *rc,
3191 				  struct extent_buffer *eb)
3192 {
3193 	u64 flags;
3194 	int ret;
3195 
3196 	if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) ||
3197 	    btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV)
3198 		return 1;
3199 
3200 	ret = btrfs_lookup_extent_info(NULL, rc->extent_root,
3201 				       eb->start, eb->len, NULL, &flags);
3202 	BUG_ON(ret);
3203 
3204 	if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
3205 		ret = 1;
3206 	else
3207 		ret = 0;
3208 	return ret;
3209 }
3210 
3211 static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3212 				    struct inode *inode, u64 ino)
3213 {
3214 	struct btrfs_key key;
3215 	struct btrfs_path *path;
3216 	struct btrfs_root *root = fs_info->tree_root;
3217 	struct btrfs_trans_handle *trans;
3218 	unsigned long nr;
3219 	int ret = 0;
3220 
3221 	if (inode)
3222 		goto truncate;
3223 
3224 	key.objectid = ino;
3225 	key.type = BTRFS_INODE_ITEM_KEY;
3226 	key.offset = 0;
3227 
3228 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
3229 	if (IS_ERR_OR_NULL(inode) || is_bad_inode(inode)) {
3230 		if (inode && !IS_ERR(inode))
3231 			iput(inode);
3232 		return -ENOENT;
3233 	}
3234 
3235 truncate:
3236 	path = btrfs_alloc_path();
3237 	if (!path) {
3238 		ret = -ENOMEM;
3239 		goto out;
3240 	}
3241 
3242 	trans = btrfs_join_transaction(root);
3243 	if (IS_ERR(trans)) {
3244 		btrfs_free_path(path);
3245 		ret = PTR_ERR(trans);
3246 		goto out;
3247 	}
3248 
3249 	ret = btrfs_truncate_free_space_cache(root, trans, path, inode);
3250 
3251 	btrfs_free_path(path);
3252 	nr = trans->blocks_used;
3253 	btrfs_end_transaction(trans, root);
3254 	btrfs_btree_balance_dirty(root, nr);
3255 out:
3256 	iput(inode);
3257 	return ret;
3258 }
3259 
3260 /*
3261  * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY
3262  * this function scans fs tree to find blocks reference the data extent
3263  */
3264 static int find_data_references(struct reloc_control *rc,
3265 				struct btrfs_key *extent_key,
3266 				struct extent_buffer *leaf,
3267 				struct btrfs_extent_data_ref *ref,
3268 				struct rb_root *blocks)
3269 {
3270 	struct btrfs_path *path;
3271 	struct tree_block *block;
3272 	struct btrfs_root *root;
3273 	struct btrfs_file_extent_item *fi;
3274 	struct rb_node *rb_node;
3275 	struct btrfs_key key;
3276 	u64 ref_root;
3277 	u64 ref_objectid;
3278 	u64 ref_offset;
3279 	u32 ref_count;
3280 	u32 nritems;
3281 	int err = 0;
3282 	int added = 0;
3283 	int counted;
3284 	int ret;
3285 
3286 	ref_root = btrfs_extent_data_ref_root(leaf, ref);
3287 	ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref);
3288 	ref_offset = btrfs_extent_data_ref_offset(leaf, ref);
3289 	ref_count = btrfs_extent_data_ref_count(leaf, ref);
3290 
3291 	/*
3292 	 * This is an extent belonging to the free space cache, lets just delete
3293 	 * it and redo the search.
3294 	 */
3295 	if (ref_root == BTRFS_ROOT_TREE_OBJECTID) {
3296 		ret = delete_block_group_cache(rc->extent_root->fs_info,
3297 					       NULL, ref_objectid);
3298 		if (ret != -ENOENT)
3299 			return ret;
3300 		ret = 0;
3301 	}
3302 
3303 	path = btrfs_alloc_path();
3304 	if (!path)
3305 		return -ENOMEM;
3306 	path->reada = 1;
3307 
3308 	root = read_fs_root(rc->extent_root->fs_info, ref_root);
3309 	if (IS_ERR(root)) {
3310 		err = PTR_ERR(root);
3311 		goto out;
3312 	}
3313 
3314 	key.objectid = ref_objectid;
3315 	key.offset = ref_offset;
3316 	key.type = BTRFS_EXTENT_DATA_KEY;
3317 
3318 	path->search_commit_root = 1;
3319 	path->skip_locking = 1;
3320 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3321 	if (ret < 0) {
3322 		err = ret;
3323 		goto out;
3324 	}
3325 
3326 	leaf = path->nodes[0];
3327 	nritems = btrfs_header_nritems(leaf);
3328 	/*
3329 	 * the references in tree blocks that use full backrefs
3330 	 * are not counted in
3331 	 */
3332 	if (block_use_full_backref(rc, leaf))
3333 		counted = 0;
3334 	else
3335 		counted = 1;
3336 	rb_node = tree_search(blocks, leaf->start);
3337 	if (rb_node) {
3338 		if (counted)
3339 			added = 1;
3340 		else
3341 			path->slots[0] = nritems;
3342 	}
3343 
3344 	while (ref_count > 0) {
3345 		while (path->slots[0] >= nritems) {
3346 			ret = btrfs_next_leaf(root, path);
3347 			if (ret < 0) {
3348 				err = ret;
3349 				goto out;
3350 			}
3351 			if (ret > 0) {
3352 				WARN_ON(1);
3353 				goto out;
3354 			}
3355 
3356 			leaf = path->nodes[0];
3357 			nritems = btrfs_header_nritems(leaf);
3358 			added = 0;
3359 
3360 			if (block_use_full_backref(rc, leaf))
3361 				counted = 0;
3362 			else
3363 				counted = 1;
3364 			rb_node = tree_search(blocks, leaf->start);
3365 			if (rb_node) {
3366 				if (counted)
3367 					added = 1;
3368 				else
3369 					path->slots[0] = nritems;
3370 			}
3371 		}
3372 
3373 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3374 		if (key.objectid != ref_objectid ||
3375 		    key.type != BTRFS_EXTENT_DATA_KEY) {
3376 			WARN_ON(1);
3377 			break;
3378 		}
3379 
3380 		fi = btrfs_item_ptr(leaf, path->slots[0],
3381 				    struct btrfs_file_extent_item);
3382 
3383 		if (btrfs_file_extent_type(leaf, fi) ==
3384 		    BTRFS_FILE_EXTENT_INLINE)
3385 			goto next;
3386 
3387 		if (btrfs_file_extent_disk_bytenr(leaf, fi) !=
3388 		    extent_key->objectid)
3389 			goto next;
3390 
3391 		key.offset -= btrfs_file_extent_offset(leaf, fi);
3392 		if (key.offset != ref_offset)
3393 			goto next;
3394 
3395 		if (counted)
3396 			ref_count--;
3397 		if (added)
3398 			goto next;
3399 
3400 		if (!tree_block_processed(leaf->start, leaf->len, rc)) {
3401 			block = kmalloc(sizeof(*block), GFP_NOFS);
3402 			if (!block) {
3403 				err = -ENOMEM;
3404 				break;
3405 			}
3406 			block->bytenr = leaf->start;
3407 			btrfs_item_key_to_cpu(leaf, &block->key, 0);
3408 			block->level = 0;
3409 			block->key_ready = 1;
3410 			rb_node = tree_insert(blocks, block->bytenr,
3411 					      &block->rb_node);
3412 			BUG_ON(rb_node);
3413 		}
3414 		if (counted)
3415 			added = 1;
3416 		else
3417 			path->slots[0] = nritems;
3418 next:
3419 		path->slots[0]++;
3420 
3421 	}
3422 out:
3423 	btrfs_free_path(path);
3424 	return err;
3425 }
3426 
3427 /*
3428  * hepler to find all tree blocks that reference a given data extent
3429  */
3430 static noinline_for_stack
3431 int add_data_references(struct reloc_control *rc,
3432 			struct btrfs_key *extent_key,
3433 			struct btrfs_path *path,
3434 			struct rb_root *blocks)
3435 {
3436 	struct btrfs_key key;
3437 	struct extent_buffer *eb;
3438 	struct btrfs_extent_data_ref *dref;
3439 	struct btrfs_extent_inline_ref *iref;
3440 	unsigned long ptr;
3441 	unsigned long end;
3442 	u32 blocksize = btrfs_level_size(rc->extent_root, 0);
3443 	int ret;
3444 	int err = 0;
3445 
3446 	eb = path->nodes[0];
3447 	ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
3448 	end = ptr + btrfs_item_size_nr(eb, path->slots[0]);
3449 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3450 	if (ptr + sizeof(struct btrfs_extent_item_v0) == end)
3451 		ptr = end;
3452 	else
3453 #endif
3454 		ptr += sizeof(struct btrfs_extent_item);
3455 
3456 	while (ptr < end) {
3457 		iref = (struct btrfs_extent_inline_ref *)ptr;
3458 		key.type = btrfs_extent_inline_ref_type(eb, iref);
3459 		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3460 			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3461 			ret = __add_tree_block(rc, key.offset, blocksize,
3462 					       blocks);
3463 		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3464 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
3465 			ret = find_data_references(rc, extent_key,
3466 						   eb, dref, blocks);
3467 		} else {
3468 			BUG();
3469 		}
3470 		ptr += btrfs_extent_inline_ref_size(key.type);
3471 	}
3472 	WARN_ON(ptr > end);
3473 
3474 	while (1) {
3475 		cond_resched();
3476 		eb = path->nodes[0];
3477 		if (path->slots[0] >= btrfs_header_nritems(eb)) {
3478 			ret = btrfs_next_leaf(rc->extent_root, path);
3479 			if (ret < 0) {
3480 				err = ret;
3481 				break;
3482 			}
3483 			if (ret > 0)
3484 				break;
3485 			eb = path->nodes[0];
3486 		}
3487 
3488 		btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
3489 		if (key.objectid != extent_key->objectid)
3490 			break;
3491 
3492 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3493 		if (key.type == BTRFS_SHARED_DATA_REF_KEY ||
3494 		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
3495 #else
3496 		BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
3497 		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3498 #endif
3499 			ret = __add_tree_block(rc, key.offset, blocksize,
3500 					       blocks);
3501 		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3502 			dref = btrfs_item_ptr(eb, path->slots[0],
3503 					      struct btrfs_extent_data_ref);
3504 			ret = find_data_references(rc, extent_key,
3505 						   eb, dref, blocks);
3506 		} else {
3507 			ret = 0;
3508 		}
3509 		if (ret) {
3510 			err = ret;
3511 			break;
3512 		}
3513 		path->slots[0]++;
3514 	}
3515 	btrfs_release_path(path);
3516 	if (err)
3517 		free_block_list(blocks);
3518 	return err;
3519 }
3520 
3521 /*
3522  * hepler to find next unprocessed extent
3523  */
3524 static noinline_for_stack
3525 int find_next_extent(struct btrfs_trans_handle *trans,
3526 		     struct reloc_control *rc, struct btrfs_path *path,
3527 		     struct btrfs_key *extent_key)
3528 {
3529 	struct btrfs_key key;
3530 	struct extent_buffer *leaf;
3531 	u64 start, end, last;
3532 	int ret;
3533 
3534 	last = rc->block_group->key.objectid + rc->block_group->key.offset;
3535 	while (1) {
3536 		cond_resched();
3537 		if (rc->search_start >= last) {
3538 			ret = 1;
3539 			break;
3540 		}
3541 
3542 		key.objectid = rc->search_start;
3543 		key.type = BTRFS_EXTENT_ITEM_KEY;
3544 		key.offset = 0;
3545 
3546 		path->search_commit_root = 1;
3547 		path->skip_locking = 1;
3548 		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3549 					0, 0);
3550 		if (ret < 0)
3551 			break;
3552 next:
3553 		leaf = path->nodes[0];
3554 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3555 			ret = btrfs_next_leaf(rc->extent_root, path);
3556 			if (ret != 0)
3557 				break;
3558 			leaf = path->nodes[0];
3559 		}
3560 
3561 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3562 		if (key.objectid >= last) {
3563 			ret = 1;
3564 			break;
3565 		}
3566 
3567 		if (key.type != BTRFS_EXTENT_ITEM_KEY ||
3568 		    key.objectid + key.offset <= rc->search_start) {
3569 			path->slots[0]++;
3570 			goto next;
3571 		}
3572 
3573 		ret = find_first_extent_bit(&rc->processed_blocks,
3574 					    key.objectid, &start, &end,
3575 					    EXTENT_DIRTY);
3576 
3577 		if (ret == 0 && start <= key.objectid) {
3578 			btrfs_release_path(path);
3579 			rc->search_start = end + 1;
3580 		} else {
3581 			rc->search_start = key.objectid + key.offset;
3582 			memcpy(extent_key, &key, sizeof(key));
3583 			return 0;
3584 		}
3585 	}
3586 	btrfs_release_path(path);
3587 	return ret;
3588 }
3589 
3590 static void set_reloc_control(struct reloc_control *rc)
3591 {
3592 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3593 	spin_lock(&fs_info->trans_lock);
3594 	fs_info->reloc_ctl = rc;
3595 	spin_unlock(&fs_info->trans_lock);
3596 }
3597 
3598 static void unset_reloc_control(struct reloc_control *rc)
3599 {
3600 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3601 	spin_lock(&fs_info->trans_lock);
3602 	fs_info->reloc_ctl = NULL;
3603 	spin_unlock(&fs_info->trans_lock);
3604 }
3605 
3606 static int check_extent_flags(u64 flags)
3607 {
3608 	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3609 	    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3610 		return 1;
3611 	if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
3612 	    !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3613 		return 1;
3614 	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3615 	    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
3616 		return 1;
3617 	return 0;
3618 }
3619 
3620 static noinline_for_stack
3621 int prepare_to_relocate(struct reloc_control *rc)
3622 {
3623 	struct btrfs_trans_handle *trans;
3624 	int ret;
3625 
3626 	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root);
3627 	if (!rc->block_rsv)
3628 		return -ENOMEM;
3629 
3630 	/*
3631 	 * reserve some space for creating reloc trees.
3632 	 * btrfs_init_reloc_root will use them when there
3633 	 * is no reservation in transaction handle.
3634 	 */
3635 	ret = btrfs_block_rsv_add(NULL, rc->extent_root, rc->block_rsv,
3636 				  rc->extent_root->nodesize * 256);
3637 	if (ret)
3638 		return ret;
3639 
3640 	rc->block_rsv->refill_used = 1;
3641 	btrfs_add_durable_block_rsv(rc->extent_root->fs_info, rc->block_rsv);
3642 
3643 	memset(&rc->cluster, 0, sizeof(rc->cluster));
3644 	rc->search_start = rc->block_group->key.objectid;
3645 	rc->extents_found = 0;
3646 	rc->nodes_relocated = 0;
3647 	rc->merging_rsv_size = 0;
3648 
3649 	rc->create_reloc_tree = 1;
3650 	set_reloc_control(rc);
3651 
3652 	trans = btrfs_join_transaction(rc->extent_root);
3653 	BUG_ON(IS_ERR(trans));
3654 	btrfs_commit_transaction(trans, rc->extent_root);
3655 	return 0;
3656 }
3657 
3658 static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3659 {
3660 	struct rb_root blocks = RB_ROOT;
3661 	struct btrfs_key key;
3662 	struct btrfs_trans_handle *trans = NULL;
3663 	struct btrfs_path *path;
3664 	struct btrfs_extent_item *ei;
3665 	unsigned long nr;
3666 	u64 flags;
3667 	u32 item_size;
3668 	int ret;
3669 	int err = 0;
3670 	int progress = 0;
3671 
3672 	path = btrfs_alloc_path();
3673 	if (!path)
3674 		return -ENOMEM;
3675 	path->reada = 1;
3676 
3677 	ret = prepare_to_relocate(rc);
3678 	if (ret) {
3679 		err = ret;
3680 		goto out_free;
3681 	}
3682 
3683 	while (1) {
3684 		progress++;
3685 		trans = btrfs_start_transaction(rc->extent_root, 0);
3686 		BUG_ON(IS_ERR(trans));
3687 restart:
3688 		if (update_backref_cache(trans, &rc->backref_cache)) {
3689 			btrfs_end_transaction(trans, rc->extent_root);
3690 			continue;
3691 		}
3692 
3693 		ret = find_next_extent(trans, rc, path, &key);
3694 		if (ret < 0)
3695 			err = ret;
3696 		if (ret != 0)
3697 			break;
3698 
3699 		rc->extents_found++;
3700 
3701 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3702 				    struct btrfs_extent_item);
3703 		item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
3704 		if (item_size >= sizeof(*ei)) {
3705 			flags = btrfs_extent_flags(path->nodes[0], ei);
3706 			ret = check_extent_flags(flags);
3707 			BUG_ON(ret);
3708 
3709 		} else {
3710 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3711 			u64 ref_owner;
3712 			int path_change = 0;
3713 
3714 			BUG_ON(item_size !=
3715 			       sizeof(struct btrfs_extent_item_v0));
3716 			ret = get_ref_objectid_v0(rc, path, &key, &ref_owner,
3717 						  &path_change);
3718 			if (ref_owner < BTRFS_FIRST_FREE_OBJECTID)
3719 				flags = BTRFS_EXTENT_FLAG_TREE_BLOCK;
3720 			else
3721 				flags = BTRFS_EXTENT_FLAG_DATA;
3722 
3723 			if (path_change) {
3724 				btrfs_release_path(path);
3725 
3726 				path->search_commit_root = 1;
3727 				path->skip_locking = 1;
3728 				ret = btrfs_search_slot(NULL, rc->extent_root,
3729 							&key, path, 0, 0);
3730 				if (ret < 0) {
3731 					err = ret;
3732 					break;
3733 				}
3734 				BUG_ON(ret > 0);
3735 			}
3736 #else
3737 			BUG();
3738 #endif
3739 		}
3740 
3741 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3742 			ret = add_tree_block(rc, &key, path, &blocks);
3743 		} else if (rc->stage == UPDATE_DATA_PTRS &&
3744 			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
3745 			ret = add_data_references(rc, &key, path, &blocks);
3746 		} else {
3747 			btrfs_release_path(path);
3748 			ret = 0;
3749 		}
3750 		if (ret < 0) {
3751 			err = ret;
3752 			break;
3753 		}
3754 
3755 		if (!RB_EMPTY_ROOT(&blocks)) {
3756 			ret = relocate_tree_blocks(trans, rc, &blocks);
3757 			if (ret < 0) {
3758 				if (ret != -EAGAIN) {
3759 					err = ret;
3760 					break;
3761 				}
3762 				rc->extents_found--;
3763 				rc->search_start = key.objectid;
3764 			}
3765 		}
3766 
3767 		ret = btrfs_block_rsv_check(trans, rc->extent_root,
3768 					    rc->block_rsv, 0, 5);
3769 		if (ret < 0) {
3770 			if (ret != -EAGAIN) {
3771 				err = ret;
3772 				WARN_ON(1);
3773 				break;
3774 			}
3775 			rc->commit_transaction = 1;
3776 		}
3777 
3778 		if (rc->commit_transaction) {
3779 			rc->commit_transaction = 0;
3780 			ret = btrfs_commit_transaction(trans, rc->extent_root);
3781 			BUG_ON(ret);
3782 		} else {
3783 			nr = trans->blocks_used;
3784 			btrfs_end_transaction_throttle(trans, rc->extent_root);
3785 			btrfs_btree_balance_dirty(rc->extent_root, nr);
3786 		}
3787 		trans = NULL;
3788 
3789 		if (rc->stage == MOVE_DATA_EXTENTS &&
3790 		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
3791 			rc->found_file_extent = 1;
3792 			ret = relocate_data_extent(rc->data_inode,
3793 						   &key, &rc->cluster);
3794 			if (ret < 0) {
3795 				err = ret;
3796 				break;
3797 			}
3798 		}
3799 	}
3800 	if (trans && progress && err == -ENOSPC) {
3801 		ret = btrfs_force_chunk_alloc(trans, rc->extent_root,
3802 					      rc->block_group->flags);
3803 		if (ret == 0) {
3804 			err = 0;
3805 			progress = 0;
3806 			goto restart;
3807 		}
3808 	}
3809 
3810 	btrfs_release_path(path);
3811 	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY,
3812 			  GFP_NOFS);
3813 
3814 	if (trans) {
3815 		nr = trans->blocks_used;
3816 		btrfs_end_transaction_throttle(trans, rc->extent_root);
3817 		btrfs_btree_balance_dirty(rc->extent_root, nr);
3818 	}
3819 
3820 	if (!err) {
3821 		ret = relocate_file_extent_cluster(rc->data_inode,
3822 						   &rc->cluster);
3823 		if (ret < 0)
3824 			err = ret;
3825 	}
3826 
3827 	rc->create_reloc_tree = 0;
3828 	set_reloc_control(rc);
3829 
3830 	backref_cache_cleanup(&rc->backref_cache);
3831 	btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1);
3832 
3833 	err = prepare_to_merge(rc, err);
3834 
3835 	merge_reloc_roots(rc);
3836 
3837 	rc->merge_reloc_tree = 0;
3838 	unset_reloc_control(rc);
3839 	btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1);
3840 
3841 	/* get rid of pinned extents */
3842 	trans = btrfs_join_transaction(rc->extent_root);
3843 	if (IS_ERR(trans))
3844 		err = PTR_ERR(trans);
3845 	else
3846 		btrfs_commit_transaction(trans, rc->extent_root);
3847 out_free:
3848 	btrfs_free_block_rsv(rc->extent_root, rc->block_rsv);
3849 	btrfs_free_path(path);
3850 	return err;
3851 }
3852 
3853 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3854 				 struct btrfs_root *root, u64 objectid)
3855 {
3856 	struct btrfs_path *path;
3857 	struct btrfs_inode_item *item;
3858 	struct extent_buffer *leaf;
3859 	int ret;
3860 
3861 	path = btrfs_alloc_path();
3862 	if (!path)
3863 		return -ENOMEM;
3864 
3865 	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
3866 	if (ret)
3867 		goto out;
3868 
3869 	leaf = path->nodes[0];
3870 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3871 	memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
3872 	btrfs_set_inode_generation(leaf, item, 1);
3873 	btrfs_set_inode_size(leaf, item, 0);
3874 	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
3875 	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
3876 					  BTRFS_INODE_PREALLOC);
3877 	btrfs_mark_buffer_dirty(leaf);
3878 	btrfs_release_path(path);
3879 out:
3880 	btrfs_free_path(path);
3881 	return ret;
3882 }
3883 
3884 /*
3885  * helper to create inode for data relocation.
3886  * the inode is in data relocation tree and its link count is 0
3887  */
3888 static noinline_for_stack
3889 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
3890 				 struct btrfs_block_group_cache *group)
3891 {
3892 	struct inode *inode = NULL;
3893 	struct btrfs_trans_handle *trans;
3894 	struct btrfs_root *root;
3895 	struct btrfs_key key;
3896 	unsigned long nr;
3897 	u64 objectid = BTRFS_FIRST_FREE_OBJECTID;
3898 	int err = 0;
3899 
3900 	root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
3901 	if (IS_ERR(root))
3902 		return ERR_CAST(root);
3903 
3904 	trans = btrfs_start_transaction(root, 6);
3905 	if (IS_ERR(trans))
3906 		return ERR_CAST(trans);
3907 
3908 	err = btrfs_find_free_objectid(root, &objectid);
3909 	if (err)
3910 		goto out;
3911 
3912 	err = __insert_orphan_inode(trans, root, objectid);
3913 	BUG_ON(err);
3914 
3915 	key.objectid = objectid;
3916 	key.type = BTRFS_INODE_ITEM_KEY;
3917 	key.offset = 0;
3918 	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
3919 	BUG_ON(IS_ERR(inode) || is_bad_inode(inode));
3920 	BTRFS_I(inode)->index_cnt = group->key.objectid;
3921 
3922 	err = btrfs_orphan_add(trans, inode);
3923 out:
3924 	nr = trans->blocks_used;
3925 	btrfs_end_transaction(trans, root);
3926 	btrfs_btree_balance_dirty(root, nr);
3927 	if (err) {
3928 		if (inode)
3929 			iput(inode);
3930 		inode = ERR_PTR(err);
3931 	}
3932 	return inode;
3933 }
3934 
3935 static struct reloc_control *alloc_reloc_control(void)
3936 {
3937 	struct reloc_control *rc;
3938 
3939 	rc = kzalloc(sizeof(*rc), GFP_NOFS);
3940 	if (!rc)
3941 		return NULL;
3942 
3943 	INIT_LIST_HEAD(&rc->reloc_roots);
3944 	backref_cache_init(&rc->backref_cache);
3945 	mapping_tree_init(&rc->reloc_root_tree);
3946 	extent_io_tree_init(&rc->processed_blocks, NULL);
3947 	return rc;
3948 }
3949 
3950 /*
3951  * function to relocate all extents in a block group.
3952  */
3953 int btrfs_relocate_block_group(struct btrfs_root *extent_root, u64 group_start)
3954 {
3955 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
3956 	struct reloc_control *rc;
3957 	struct inode *inode;
3958 	struct btrfs_path *path;
3959 	int ret;
3960 	int rw = 0;
3961 	int err = 0;
3962 
3963 	rc = alloc_reloc_control();
3964 	if (!rc)
3965 		return -ENOMEM;
3966 
3967 	rc->extent_root = extent_root;
3968 
3969 	rc->block_group = btrfs_lookup_block_group(fs_info, group_start);
3970 	BUG_ON(!rc->block_group);
3971 
3972 	if (!rc->block_group->ro) {
3973 		ret = btrfs_set_block_group_ro(extent_root, rc->block_group);
3974 		if (ret) {
3975 			err = ret;
3976 			goto out;
3977 		}
3978 		rw = 1;
3979 	}
3980 
3981 	path = btrfs_alloc_path();
3982 	if (!path) {
3983 		err = -ENOMEM;
3984 		goto out;
3985 	}
3986 
3987 	inode = lookup_free_space_inode(fs_info->tree_root, rc->block_group,
3988 					path);
3989 	btrfs_free_path(path);
3990 
3991 	if (!IS_ERR(inode))
3992 		ret = delete_block_group_cache(fs_info, inode, 0);
3993 	else
3994 		ret = PTR_ERR(inode);
3995 
3996 	if (ret && ret != -ENOENT) {
3997 		err = ret;
3998 		goto out;
3999 	}
4000 
4001 	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4002 	if (IS_ERR(rc->data_inode)) {
4003 		err = PTR_ERR(rc->data_inode);
4004 		rc->data_inode = NULL;
4005 		goto out;
4006 	}
4007 
4008 	printk(KERN_INFO "btrfs: relocating block group %llu flags %llu\n",
4009 	       (unsigned long long)rc->block_group->key.objectid,
4010 	       (unsigned long long)rc->block_group->flags);
4011 
4012 	btrfs_start_delalloc_inodes(fs_info->tree_root, 0);
4013 	btrfs_wait_ordered_extents(fs_info->tree_root, 0, 0);
4014 
4015 	while (1) {
4016 		mutex_lock(&fs_info->cleaner_mutex);
4017 
4018 		btrfs_clean_old_snapshots(fs_info->tree_root);
4019 		ret = relocate_block_group(rc);
4020 
4021 		mutex_unlock(&fs_info->cleaner_mutex);
4022 		if (ret < 0) {
4023 			err = ret;
4024 			goto out;
4025 		}
4026 
4027 		if (rc->extents_found == 0)
4028 			break;
4029 
4030 		printk(KERN_INFO "btrfs: found %llu extents\n",
4031 			(unsigned long long)rc->extents_found);
4032 
4033 		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4034 			btrfs_wait_ordered_range(rc->data_inode, 0, (u64)-1);
4035 			invalidate_mapping_pages(rc->data_inode->i_mapping,
4036 						 0, -1);
4037 			rc->stage = UPDATE_DATA_PTRS;
4038 		}
4039 	}
4040 
4041 	filemap_write_and_wait_range(fs_info->btree_inode->i_mapping,
4042 				     rc->block_group->key.objectid,
4043 				     rc->block_group->key.objectid +
4044 				     rc->block_group->key.offset - 1);
4045 
4046 	WARN_ON(rc->block_group->pinned > 0);
4047 	WARN_ON(rc->block_group->reserved > 0);
4048 	WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0);
4049 out:
4050 	if (err && rw)
4051 		btrfs_set_block_group_rw(extent_root, rc->block_group);
4052 	iput(rc->data_inode);
4053 	btrfs_put_block_group(rc->block_group);
4054 	kfree(rc);
4055 	return err;
4056 }
4057 
4058 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4059 {
4060 	struct btrfs_trans_handle *trans;
4061 	int ret;
4062 
4063 	trans = btrfs_start_transaction(root->fs_info->tree_root, 0);
4064 	BUG_ON(IS_ERR(trans));
4065 
4066 	memset(&root->root_item.drop_progress, 0,
4067 		sizeof(root->root_item.drop_progress));
4068 	root->root_item.drop_level = 0;
4069 	btrfs_set_root_refs(&root->root_item, 0);
4070 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
4071 				&root->root_key, &root->root_item);
4072 	BUG_ON(ret);
4073 
4074 	ret = btrfs_end_transaction(trans, root->fs_info->tree_root);
4075 	BUG_ON(ret);
4076 	return 0;
4077 }
4078 
4079 /*
4080  * recover relocation interrupted by system crash.
4081  *
4082  * this function resumes merging reloc trees with corresponding fs trees.
4083  * this is important for keeping the sharing of tree blocks
4084  */
4085 int btrfs_recover_relocation(struct btrfs_root *root)
4086 {
4087 	LIST_HEAD(reloc_roots);
4088 	struct btrfs_key key;
4089 	struct btrfs_root *fs_root;
4090 	struct btrfs_root *reloc_root;
4091 	struct btrfs_path *path;
4092 	struct extent_buffer *leaf;
4093 	struct reloc_control *rc = NULL;
4094 	struct btrfs_trans_handle *trans;
4095 	int ret;
4096 	int err = 0;
4097 
4098 	path = btrfs_alloc_path();
4099 	if (!path)
4100 		return -ENOMEM;
4101 	path->reada = -1;
4102 
4103 	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4104 	key.type = BTRFS_ROOT_ITEM_KEY;
4105 	key.offset = (u64)-1;
4106 
4107 	while (1) {
4108 		ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key,
4109 					path, 0, 0);
4110 		if (ret < 0) {
4111 			err = ret;
4112 			goto out;
4113 		}
4114 		if (ret > 0) {
4115 			if (path->slots[0] == 0)
4116 				break;
4117 			path->slots[0]--;
4118 		}
4119 		leaf = path->nodes[0];
4120 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4121 		btrfs_release_path(path);
4122 
4123 		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4124 		    key.type != BTRFS_ROOT_ITEM_KEY)
4125 			break;
4126 
4127 		reloc_root = btrfs_read_fs_root_no_radix(root, &key);
4128 		if (IS_ERR(reloc_root)) {
4129 			err = PTR_ERR(reloc_root);
4130 			goto out;
4131 		}
4132 
4133 		list_add(&reloc_root->root_list, &reloc_roots);
4134 
4135 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4136 			fs_root = read_fs_root(root->fs_info,
4137 					       reloc_root->root_key.offset);
4138 			if (IS_ERR(fs_root)) {
4139 				ret = PTR_ERR(fs_root);
4140 				if (ret != -ENOENT) {
4141 					err = ret;
4142 					goto out;
4143 				}
4144 				mark_garbage_root(reloc_root);
4145 			}
4146 		}
4147 
4148 		if (key.offset == 0)
4149 			break;
4150 
4151 		key.offset--;
4152 	}
4153 	btrfs_release_path(path);
4154 
4155 	if (list_empty(&reloc_roots))
4156 		goto out;
4157 
4158 	rc = alloc_reloc_control();
4159 	if (!rc) {
4160 		err = -ENOMEM;
4161 		goto out;
4162 	}
4163 
4164 	rc->extent_root = root->fs_info->extent_root;
4165 
4166 	set_reloc_control(rc);
4167 
4168 	trans = btrfs_join_transaction(rc->extent_root);
4169 	if (IS_ERR(trans)) {
4170 		unset_reloc_control(rc);
4171 		err = PTR_ERR(trans);
4172 		goto out_free;
4173 	}
4174 
4175 	rc->merge_reloc_tree = 1;
4176 
4177 	while (!list_empty(&reloc_roots)) {
4178 		reloc_root = list_entry(reloc_roots.next,
4179 					struct btrfs_root, root_list);
4180 		list_del(&reloc_root->root_list);
4181 
4182 		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4183 			list_add_tail(&reloc_root->root_list,
4184 				      &rc->reloc_roots);
4185 			continue;
4186 		}
4187 
4188 		fs_root = read_fs_root(root->fs_info,
4189 				       reloc_root->root_key.offset);
4190 		BUG_ON(IS_ERR(fs_root));
4191 
4192 		__add_reloc_root(reloc_root);
4193 		fs_root->reloc_root = reloc_root;
4194 	}
4195 
4196 	btrfs_commit_transaction(trans, rc->extent_root);
4197 
4198 	merge_reloc_roots(rc);
4199 
4200 	unset_reloc_control(rc);
4201 
4202 	trans = btrfs_join_transaction(rc->extent_root);
4203 	if (IS_ERR(trans))
4204 		err = PTR_ERR(trans);
4205 	else
4206 		btrfs_commit_transaction(trans, rc->extent_root);
4207 out_free:
4208 	kfree(rc);
4209 out:
4210 	while (!list_empty(&reloc_roots)) {
4211 		reloc_root = list_entry(reloc_roots.next,
4212 					struct btrfs_root, root_list);
4213 		list_del(&reloc_root->root_list);
4214 		free_extent_buffer(reloc_root->node);
4215 		free_extent_buffer(reloc_root->commit_root);
4216 		kfree(reloc_root);
4217 	}
4218 	btrfs_free_path(path);
4219 
4220 	if (err == 0) {
4221 		/* cleanup orphan inode in data relocation tree */
4222 		fs_root = read_fs_root(root->fs_info,
4223 				       BTRFS_DATA_RELOC_TREE_OBJECTID);
4224 		if (IS_ERR(fs_root))
4225 			err = PTR_ERR(fs_root);
4226 		else
4227 			err = btrfs_orphan_cleanup(fs_root);
4228 	}
4229 	return err;
4230 }
4231 
4232 /*
4233  * helper to add ordered checksum for data relocation.
4234  *
4235  * cloning checksum properly handles the nodatasum extents.
4236  * it also saves CPU time to re-calculate the checksum.
4237  */
4238 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
4239 {
4240 	struct btrfs_ordered_sum *sums;
4241 	struct btrfs_sector_sum *sector_sum;
4242 	struct btrfs_ordered_extent *ordered;
4243 	struct btrfs_root *root = BTRFS_I(inode)->root;
4244 	size_t offset;
4245 	int ret;
4246 	u64 disk_bytenr;
4247 	LIST_HEAD(list);
4248 
4249 	ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4250 	BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
4251 
4252 	disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
4253 	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, disk_bytenr,
4254 				       disk_bytenr + len - 1, &list, 0);
4255 
4256 	while (!list_empty(&list)) {
4257 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4258 		list_del_init(&sums->list);
4259 
4260 		sector_sum = sums->sums;
4261 		sums->bytenr = ordered->start;
4262 
4263 		offset = 0;
4264 		while (offset < sums->len) {
4265 			sector_sum->bytenr += ordered->start - disk_bytenr;
4266 			sector_sum++;
4267 			offset += root->sectorsize;
4268 		}
4269 
4270 		btrfs_add_ordered_sum(inode, ordered, sums);
4271 	}
4272 	btrfs_put_ordered_extent(ordered);
4273 	return ret;
4274 }
4275 
4276 void btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4277 			   struct btrfs_root *root, struct extent_buffer *buf,
4278 			   struct extent_buffer *cow)
4279 {
4280 	struct reloc_control *rc;
4281 	struct backref_node *node;
4282 	int first_cow = 0;
4283 	int level;
4284 	int ret;
4285 
4286 	rc = root->fs_info->reloc_ctl;
4287 	if (!rc)
4288 		return;
4289 
4290 	BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
4291 	       root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
4292 
4293 	level = btrfs_header_level(buf);
4294 	if (btrfs_header_generation(buf) <=
4295 	    btrfs_root_last_snapshot(&root->root_item))
4296 		first_cow = 1;
4297 
4298 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4299 	    rc->create_reloc_tree) {
4300 		WARN_ON(!first_cow && level == 0);
4301 
4302 		node = rc->backref_cache.path[level];
4303 		BUG_ON(node->bytenr != buf->start &&
4304 		       node->new_bytenr != buf->start);
4305 
4306 		drop_node_buffer(node);
4307 		extent_buffer_get(cow);
4308 		node->eb = cow;
4309 		node->new_bytenr = cow->start;
4310 
4311 		if (!node->pending) {
4312 			list_move_tail(&node->list,
4313 				       &rc->backref_cache.pending[level]);
4314 			node->pending = 1;
4315 		}
4316 
4317 		if (first_cow)
4318 			__mark_block_processed(rc, node);
4319 
4320 		if (first_cow && level > 0)
4321 			rc->nodes_relocated += buf->len;
4322 	}
4323 
4324 	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS) {
4325 		ret = replace_file_extents(trans, rc, root, cow);
4326 		BUG_ON(ret);
4327 	}
4328 }
4329 
4330 /*
4331  * called before creating snapshot. it calculates metadata reservation
4332  * requried for relocating tree blocks in the snapshot
4333  */
4334 void btrfs_reloc_pre_snapshot(struct btrfs_trans_handle *trans,
4335 			      struct btrfs_pending_snapshot *pending,
4336 			      u64 *bytes_to_reserve)
4337 {
4338 	struct btrfs_root *root;
4339 	struct reloc_control *rc;
4340 
4341 	root = pending->root;
4342 	if (!root->reloc_root)
4343 		return;
4344 
4345 	rc = root->fs_info->reloc_ctl;
4346 	if (!rc->merge_reloc_tree)
4347 		return;
4348 
4349 	root = root->reloc_root;
4350 	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4351 	/*
4352 	 * relocation is in the stage of merging trees. the space
4353 	 * used by merging a reloc tree is twice the size of
4354 	 * relocated tree nodes in the worst case. half for cowing
4355 	 * the reloc tree, half for cowing the fs tree. the space
4356 	 * used by cowing the reloc tree will be freed after the
4357 	 * tree is dropped. if we create snapshot, cowing the fs
4358 	 * tree may use more space than it frees. so we need
4359 	 * reserve extra space.
4360 	 */
4361 	*bytes_to_reserve += rc->nodes_relocated;
4362 }
4363 
4364 /*
4365  * called after snapshot is created. migrate block reservation
4366  * and create reloc root for the newly created snapshot
4367  */
4368 void btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4369 			       struct btrfs_pending_snapshot *pending)
4370 {
4371 	struct btrfs_root *root = pending->root;
4372 	struct btrfs_root *reloc_root;
4373 	struct btrfs_root *new_root;
4374 	struct reloc_control *rc;
4375 	int ret;
4376 
4377 	if (!root->reloc_root)
4378 		return;
4379 
4380 	rc = root->fs_info->reloc_ctl;
4381 	rc->merging_rsv_size += rc->nodes_relocated;
4382 
4383 	if (rc->merge_reloc_tree) {
4384 		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4385 					      rc->block_rsv,
4386 					      rc->nodes_relocated);
4387 		BUG_ON(ret);
4388 	}
4389 
4390 	new_root = pending->snap;
4391 	reloc_root = create_reloc_root(trans, root->reloc_root,
4392 				       new_root->root_key.objectid);
4393 
4394 	__add_reloc_root(reloc_root);
4395 	new_root->reloc_root = reloc_root;
4396 
4397 	if (rc->create_reloc_tree) {
4398 		ret = clone_backref_node(trans, rc, root, reloc_root);
4399 		BUG_ON(ret);
4400 	}
4401 }
4402