xref: /linux/fs/btrfs/relocation.c (revision 0d456bad36d42d16022be045c8a53ddbb59ee478)
1 /*
2  * Copyright (C) 2009 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/rbtree.h>
24 #include <linux/slab.h>
25 #include "ctree.h"
26 #include "disk-io.h"
27 #include "transaction.h"
28 #include "volumes.h"
29 #include "locking.h"
30 #include "btrfs_inode.h"
31 #include "async-thread.h"
32 #include "free-space-cache.h"
33 #include "inode-map.h"
34 
35 /*
36  * backref_node, mapping_node and tree_block start with this
37  */
38 struct tree_entry {
39 	struct rb_node rb_node;
40 	u64 bytenr;
41 };
42 
43 /*
44  * present a tree block in the backref cache
45  */
46 struct backref_node {
47 	struct rb_node rb_node;
48 	u64 bytenr;
49 
50 	u64 new_bytenr;
51 	/* objectid of tree block owner, can be not uptodate */
52 	u64 owner;
53 	/* link to pending, changed or detached list */
54 	struct list_head list;
55 	/* list of upper level blocks reference this block */
56 	struct list_head upper;
57 	/* list of child blocks in the cache */
58 	struct list_head lower;
59 	/* NULL if this node is not tree root */
60 	struct btrfs_root *root;
61 	/* extent buffer got by COW the block */
62 	struct extent_buffer *eb;
63 	/* level of tree block */
64 	unsigned int level:8;
65 	/* is the block in non-reference counted tree */
66 	unsigned int cowonly:1;
67 	/* 1 if no child node in the cache */
68 	unsigned int lowest:1;
69 	/* is the extent buffer locked */
70 	unsigned int locked:1;
71 	/* has the block been processed */
72 	unsigned int processed:1;
73 	/* have backrefs of this block been checked */
74 	unsigned int checked:1;
75 	/*
76 	 * 1 if corresponding block has been cowed but some upper
77 	 * level block pointers may not point to the new location
78 	 */
79 	unsigned int pending:1;
80 	/*
81 	 * 1 if the backref node isn't connected to any other
82 	 * backref node.
83 	 */
84 	unsigned int detached:1;
85 };
86 
87 /*
88  * present a block pointer in the backref cache
89  */
90 struct backref_edge {
91 	struct list_head list[2];
92 	struct backref_node *node[2];
93 };
94 
95 #define LOWER	0
96 #define UPPER	1
97 
98 struct backref_cache {
99 	/* red black tree of all backref nodes in the cache */
100 	struct rb_root rb_root;
101 	/* for passing backref nodes to btrfs_reloc_cow_block */
102 	struct backref_node *path[BTRFS_MAX_LEVEL];
103 	/*
104 	 * list of blocks that have been cowed but some block
105 	 * pointers in upper level blocks may not reflect the
106 	 * new location
107 	 */
108 	struct list_head pending[BTRFS_MAX_LEVEL];
109 	/* list of backref nodes with no child node */
110 	struct list_head leaves;
111 	/* list of blocks that have been cowed in current transaction */
112 	struct list_head changed;
113 	/* list of detached backref node. */
114 	struct list_head detached;
115 
116 	u64 last_trans;
117 
118 	int nr_nodes;
119 	int nr_edges;
120 };
121 
122 /*
123  * map address of tree root to tree
124  */
125 struct mapping_node {
126 	struct rb_node rb_node;
127 	u64 bytenr;
128 	void *data;
129 };
130 
131 struct mapping_tree {
132 	struct rb_root rb_root;
133 	spinlock_t lock;
134 };
135 
136 /*
137  * present a tree block to process
138  */
139 struct tree_block {
140 	struct rb_node rb_node;
141 	u64 bytenr;
142 	struct btrfs_key key;
143 	unsigned int level:8;
144 	unsigned int key_ready:1;
145 };
146 
147 #define MAX_EXTENTS 128
148 
149 struct file_extent_cluster {
150 	u64 start;
151 	u64 end;
152 	u64 boundary[MAX_EXTENTS];
153 	unsigned int nr;
154 };
155 
156 struct reloc_control {
157 	/* block group to relocate */
158 	struct btrfs_block_group_cache *block_group;
159 	/* extent tree */
160 	struct btrfs_root *extent_root;
161 	/* inode for moving data */
162 	struct inode *data_inode;
163 
164 	struct btrfs_block_rsv *block_rsv;
165 
166 	struct backref_cache backref_cache;
167 
168 	struct file_extent_cluster cluster;
169 	/* tree blocks have been processed */
170 	struct extent_io_tree processed_blocks;
171 	/* map start of tree root to corresponding reloc tree */
172 	struct mapping_tree reloc_root_tree;
173 	/* list of reloc trees */
174 	struct list_head reloc_roots;
175 	/* size of metadata reservation for merging reloc trees */
176 	u64 merging_rsv_size;
177 	/* size of relocated tree nodes */
178 	u64 nodes_relocated;
179 
180 	u64 search_start;
181 	u64 extents_found;
182 
183 	unsigned int stage:8;
184 	unsigned int create_reloc_tree:1;
185 	unsigned int merge_reloc_tree:1;
186 	unsigned int found_file_extent:1;
187 	unsigned int commit_transaction:1;
188 };
189 
190 /* stages of data relocation */
191 #define MOVE_DATA_EXTENTS	0
192 #define UPDATE_DATA_PTRS	1
193 
194 static void remove_backref_node(struct backref_cache *cache,
195 				struct backref_node *node);
196 static void __mark_block_processed(struct reloc_control *rc,
197 				   struct backref_node *node);
198 
199 static void mapping_tree_init(struct mapping_tree *tree)
200 {
201 	tree->rb_root = RB_ROOT;
202 	spin_lock_init(&tree->lock);
203 }
204 
205 static void backref_cache_init(struct backref_cache *cache)
206 {
207 	int i;
208 	cache->rb_root = RB_ROOT;
209 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
210 		INIT_LIST_HEAD(&cache->pending[i]);
211 	INIT_LIST_HEAD(&cache->changed);
212 	INIT_LIST_HEAD(&cache->detached);
213 	INIT_LIST_HEAD(&cache->leaves);
214 }
215 
216 static void backref_cache_cleanup(struct backref_cache *cache)
217 {
218 	struct backref_node *node;
219 	int i;
220 
221 	while (!list_empty(&cache->detached)) {
222 		node = list_entry(cache->detached.next,
223 				  struct backref_node, list);
224 		remove_backref_node(cache, node);
225 	}
226 
227 	while (!list_empty(&cache->leaves)) {
228 		node = list_entry(cache->leaves.next,
229 				  struct backref_node, lower);
230 		remove_backref_node(cache, node);
231 	}
232 
233 	cache->last_trans = 0;
234 
235 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
236 		BUG_ON(!list_empty(&cache->pending[i]));
237 	BUG_ON(!list_empty(&cache->changed));
238 	BUG_ON(!list_empty(&cache->detached));
239 	BUG_ON(!RB_EMPTY_ROOT(&cache->rb_root));
240 	BUG_ON(cache->nr_nodes);
241 	BUG_ON(cache->nr_edges);
242 }
243 
244 static struct backref_node *alloc_backref_node(struct backref_cache *cache)
245 {
246 	struct backref_node *node;
247 
248 	node = kzalloc(sizeof(*node), GFP_NOFS);
249 	if (node) {
250 		INIT_LIST_HEAD(&node->list);
251 		INIT_LIST_HEAD(&node->upper);
252 		INIT_LIST_HEAD(&node->lower);
253 		RB_CLEAR_NODE(&node->rb_node);
254 		cache->nr_nodes++;
255 	}
256 	return node;
257 }
258 
259 static void free_backref_node(struct backref_cache *cache,
260 			      struct backref_node *node)
261 {
262 	if (node) {
263 		cache->nr_nodes--;
264 		kfree(node);
265 	}
266 }
267 
268 static struct backref_edge *alloc_backref_edge(struct backref_cache *cache)
269 {
270 	struct backref_edge *edge;
271 
272 	edge = kzalloc(sizeof(*edge), GFP_NOFS);
273 	if (edge)
274 		cache->nr_edges++;
275 	return edge;
276 }
277 
278 static void free_backref_edge(struct backref_cache *cache,
279 			      struct backref_edge *edge)
280 {
281 	if (edge) {
282 		cache->nr_edges--;
283 		kfree(edge);
284 	}
285 }
286 
287 static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr,
288 				   struct rb_node *node)
289 {
290 	struct rb_node **p = &root->rb_node;
291 	struct rb_node *parent = NULL;
292 	struct tree_entry *entry;
293 
294 	while (*p) {
295 		parent = *p;
296 		entry = rb_entry(parent, struct tree_entry, rb_node);
297 
298 		if (bytenr < entry->bytenr)
299 			p = &(*p)->rb_left;
300 		else if (bytenr > entry->bytenr)
301 			p = &(*p)->rb_right;
302 		else
303 			return parent;
304 	}
305 
306 	rb_link_node(node, parent, p);
307 	rb_insert_color(node, root);
308 	return NULL;
309 }
310 
311 static struct rb_node *tree_search(struct rb_root *root, u64 bytenr)
312 {
313 	struct rb_node *n = root->rb_node;
314 	struct tree_entry *entry;
315 
316 	while (n) {
317 		entry = rb_entry(n, struct tree_entry, rb_node);
318 
319 		if (bytenr < entry->bytenr)
320 			n = n->rb_left;
321 		else if (bytenr > entry->bytenr)
322 			n = n->rb_right;
323 		else
324 			return n;
325 	}
326 	return NULL;
327 }
328 
329 void backref_tree_panic(struct rb_node *rb_node, int errno,
330 					  u64 bytenr)
331 {
332 
333 	struct btrfs_fs_info *fs_info = NULL;
334 	struct backref_node *bnode = rb_entry(rb_node, struct backref_node,
335 					      rb_node);
336 	if (bnode->root)
337 		fs_info = bnode->root->fs_info;
338 	btrfs_panic(fs_info, errno, "Inconsistency in backref cache "
339 		    "found at offset %llu\n", (unsigned long long)bytenr);
340 }
341 
342 /*
343  * walk up backref nodes until reach node presents tree root
344  */
345 static struct backref_node *walk_up_backref(struct backref_node *node,
346 					    struct backref_edge *edges[],
347 					    int *index)
348 {
349 	struct backref_edge *edge;
350 	int idx = *index;
351 
352 	while (!list_empty(&node->upper)) {
353 		edge = list_entry(node->upper.next,
354 				  struct backref_edge, list[LOWER]);
355 		edges[idx++] = edge;
356 		node = edge->node[UPPER];
357 	}
358 	BUG_ON(node->detached);
359 	*index = idx;
360 	return node;
361 }
362 
363 /*
364  * walk down backref nodes to find start of next reference path
365  */
366 static struct backref_node *walk_down_backref(struct backref_edge *edges[],
367 					      int *index)
368 {
369 	struct backref_edge *edge;
370 	struct backref_node *lower;
371 	int idx = *index;
372 
373 	while (idx > 0) {
374 		edge = edges[idx - 1];
375 		lower = edge->node[LOWER];
376 		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
377 			idx--;
378 			continue;
379 		}
380 		edge = list_entry(edge->list[LOWER].next,
381 				  struct backref_edge, list[LOWER]);
382 		edges[idx - 1] = edge;
383 		*index = idx;
384 		return edge->node[UPPER];
385 	}
386 	*index = 0;
387 	return NULL;
388 }
389 
390 static void unlock_node_buffer(struct backref_node *node)
391 {
392 	if (node->locked) {
393 		btrfs_tree_unlock(node->eb);
394 		node->locked = 0;
395 	}
396 }
397 
398 static void drop_node_buffer(struct backref_node *node)
399 {
400 	if (node->eb) {
401 		unlock_node_buffer(node);
402 		free_extent_buffer(node->eb);
403 		node->eb = NULL;
404 	}
405 }
406 
407 static void drop_backref_node(struct backref_cache *tree,
408 			      struct backref_node *node)
409 {
410 	BUG_ON(!list_empty(&node->upper));
411 
412 	drop_node_buffer(node);
413 	list_del(&node->list);
414 	list_del(&node->lower);
415 	if (!RB_EMPTY_NODE(&node->rb_node))
416 		rb_erase(&node->rb_node, &tree->rb_root);
417 	free_backref_node(tree, node);
418 }
419 
420 /*
421  * remove a backref node from the backref cache
422  */
423 static void remove_backref_node(struct backref_cache *cache,
424 				struct backref_node *node)
425 {
426 	struct backref_node *upper;
427 	struct backref_edge *edge;
428 
429 	if (!node)
430 		return;
431 
432 	BUG_ON(!node->lowest && !node->detached);
433 	while (!list_empty(&node->upper)) {
434 		edge = list_entry(node->upper.next, struct backref_edge,
435 				  list[LOWER]);
436 		upper = edge->node[UPPER];
437 		list_del(&edge->list[LOWER]);
438 		list_del(&edge->list[UPPER]);
439 		free_backref_edge(cache, edge);
440 
441 		if (RB_EMPTY_NODE(&upper->rb_node)) {
442 			BUG_ON(!list_empty(&node->upper));
443 			drop_backref_node(cache, node);
444 			node = upper;
445 			node->lowest = 1;
446 			continue;
447 		}
448 		/*
449 		 * add the node to leaf node list if no other
450 		 * child block cached.
451 		 */
452 		if (list_empty(&upper->lower)) {
453 			list_add_tail(&upper->lower, &cache->leaves);
454 			upper->lowest = 1;
455 		}
456 	}
457 
458 	drop_backref_node(cache, node);
459 }
460 
461 static void update_backref_node(struct backref_cache *cache,
462 				struct backref_node *node, u64 bytenr)
463 {
464 	struct rb_node *rb_node;
465 	rb_erase(&node->rb_node, &cache->rb_root);
466 	node->bytenr = bytenr;
467 	rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node);
468 	if (rb_node)
469 		backref_tree_panic(rb_node, -EEXIST, bytenr);
470 }
471 
472 /*
473  * update backref cache after a transaction commit
474  */
475 static int update_backref_cache(struct btrfs_trans_handle *trans,
476 				struct backref_cache *cache)
477 {
478 	struct backref_node *node;
479 	int level = 0;
480 
481 	if (cache->last_trans == 0) {
482 		cache->last_trans = trans->transid;
483 		return 0;
484 	}
485 
486 	if (cache->last_trans == trans->transid)
487 		return 0;
488 
489 	/*
490 	 * detached nodes are used to avoid unnecessary backref
491 	 * lookup. transaction commit changes the extent tree.
492 	 * so the detached nodes are no longer useful.
493 	 */
494 	while (!list_empty(&cache->detached)) {
495 		node = list_entry(cache->detached.next,
496 				  struct backref_node, list);
497 		remove_backref_node(cache, node);
498 	}
499 
500 	while (!list_empty(&cache->changed)) {
501 		node = list_entry(cache->changed.next,
502 				  struct backref_node, list);
503 		list_del_init(&node->list);
504 		BUG_ON(node->pending);
505 		update_backref_node(cache, node, node->new_bytenr);
506 	}
507 
508 	/*
509 	 * some nodes can be left in the pending list if there were
510 	 * errors during processing the pending nodes.
511 	 */
512 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
513 		list_for_each_entry(node, &cache->pending[level], list) {
514 			BUG_ON(!node->pending);
515 			if (node->bytenr == node->new_bytenr)
516 				continue;
517 			update_backref_node(cache, node, node->new_bytenr);
518 		}
519 	}
520 
521 	cache->last_trans = 0;
522 	return 1;
523 }
524 
525 
526 static int should_ignore_root(struct btrfs_root *root)
527 {
528 	struct btrfs_root *reloc_root;
529 
530 	if (!root->ref_cows)
531 		return 0;
532 
533 	reloc_root = root->reloc_root;
534 	if (!reloc_root)
535 		return 0;
536 
537 	if (btrfs_root_last_snapshot(&reloc_root->root_item) ==
538 	    root->fs_info->running_transaction->transid - 1)
539 		return 0;
540 	/*
541 	 * if there is reloc tree and it was created in previous
542 	 * transaction backref lookup can find the reloc tree,
543 	 * so backref node for the fs tree root is useless for
544 	 * relocation.
545 	 */
546 	return 1;
547 }
548 /*
549  * find reloc tree by address of tree root
550  */
551 static struct btrfs_root *find_reloc_root(struct reloc_control *rc,
552 					  u64 bytenr)
553 {
554 	struct rb_node *rb_node;
555 	struct mapping_node *node;
556 	struct btrfs_root *root = NULL;
557 
558 	spin_lock(&rc->reloc_root_tree.lock);
559 	rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr);
560 	if (rb_node) {
561 		node = rb_entry(rb_node, struct mapping_node, rb_node);
562 		root = (struct btrfs_root *)node->data;
563 	}
564 	spin_unlock(&rc->reloc_root_tree.lock);
565 	return root;
566 }
567 
568 static int is_cowonly_root(u64 root_objectid)
569 {
570 	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
571 	    root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
572 	    root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
573 	    root_objectid == BTRFS_DEV_TREE_OBJECTID ||
574 	    root_objectid == BTRFS_TREE_LOG_OBJECTID ||
575 	    root_objectid == BTRFS_CSUM_TREE_OBJECTID)
576 		return 1;
577 	return 0;
578 }
579 
580 static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info,
581 					u64 root_objectid)
582 {
583 	struct btrfs_key key;
584 
585 	key.objectid = root_objectid;
586 	key.type = BTRFS_ROOT_ITEM_KEY;
587 	if (is_cowonly_root(root_objectid))
588 		key.offset = 0;
589 	else
590 		key.offset = (u64)-1;
591 
592 	return btrfs_read_fs_root_no_name(fs_info, &key);
593 }
594 
595 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
596 static noinline_for_stack
597 struct btrfs_root *find_tree_root(struct reloc_control *rc,
598 				  struct extent_buffer *leaf,
599 				  struct btrfs_extent_ref_v0 *ref0)
600 {
601 	struct btrfs_root *root;
602 	u64 root_objectid = btrfs_ref_root_v0(leaf, ref0);
603 	u64 generation = btrfs_ref_generation_v0(leaf, ref0);
604 
605 	BUG_ON(root_objectid == BTRFS_TREE_RELOC_OBJECTID);
606 
607 	root = read_fs_root(rc->extent_root->fs_info, root_objectid);
608 	BUG_ON(IS_ERR(root));
609 
610 	if (root->ref_cows &&
611 	    generation != btrfs_root_generation(&root->root_item))
612 		return NULL;
613 
614 	return root;
615 }
616 #endif
617 
618 static noinline_for_stack
619 int find_inline_backref(struct extent_buffer *leaf, int slot,
620 			unsigned long *ptr, unsigned long *end)
621 {
622 	struct btrfs_extent_item *ei;
623 	struct btrfs_tree_block_info *bi;
624 	u32 item_size;
625 
626 	item_size = btrfs_item_size_nr(leaf, slot);
627 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
628 	if (item_size < sizeof(*ei)) {
629 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
630 		return 1;
631 	}
632 #endif
633 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
634 	WARN_ON(!(btrfs_extent_flags(leaf, ei) &
635 		  BTRFS_EXTENT_FLAG_TREE_BLOCK));
636 
637 	if (item_size <= sizeof(*ei) + sizeof(*bi)) {
638 		WARN_ON(item_size < sizeof(*ei) + sizeof(*bi));
639 		return 1;
640 	}
641 
642 	bi = (struct btrfs_tree_block_info *)(ei + 1);
643 	*ptr = (unsigned long)(bi + 1);
644 	*end = (unsigned long)ei + item_size;
645 	return 0;
646 }
647 
648 /*
649  * build backref tree for a given tree block. root of the backref tree
650  * corresponds the tree block, leaves of the backref tree correspond
651  * roots of b-trees that reference the tree block.
652  *
653  * the basic idea of this function is check backrefs of a given block
654  * to find upper level blocks that refernece the block, and then check
655  * bakcrefs of these upper level blocks recursively. the recursion stop
656  * when tree root is reached or backrefs for the block is cached.
657  *
658  * NOTE: if we find backrefs for a block are cached, we know backrefs
659  * for all upper level blocks that directly/indirectly reference the
660  * block are also cached.
661  */
662 static noinline_for_stack
663 struct backref_node *build_backref_tree(struct reloc_control *rc,
664 					struct btrfs_key *node_key,
665 					int level, u64 bytenr)
666 {
667 	struct backref_cache *cache = &rc->backref_cache;
668 	struct btrfs_path *path1;
669 	struct btrfs_path *path2;
670 	struct extent_buffer *eb;
671 	struct btrfs_root *root;
672 	struct backref_node *cur;
673 	struct backref_node *upper;
674 	struct backref_node *lower;
675 	struct backref_node *node = NULL;
676 	struct backref_node *exist = NULL;
677 	struct backref_edge *edge;
678 	struct rb_node *rb_node;
679 	struct btrfs_key key;
680 	unsigned long end;
681 	unsigned long ptr;
682 	LIST_HEAD(list);
683 	LIST_HEAD(useless);
684 	int cowonly;
685 	int ret;
686 	int err = 0;
687 
688 	path1 = btrfs_alloc_path();
689 	path2 = btrfs_alloc_path();
690 	if (!path1 || !path2) {
691 		err = -ENOMEM;
692 		goto out;
693 	}
694 	path1->reada = 1;
695 	path2->reada = 2;
696 
697 	node = alloc_backref_node(cache);
698 	if (!node) {
699 		err = -ENOMEM;
700 		goto out;
701 	}
702 
703 	node->bytenr = bytenr;
704 	node->level = level;
705 	node->lowest = 1;
706 	cur = node;
707 again:
708 	end = 0;
709 	ptr = 0;
710 	key.objectid = cur->bytenr;
711 	key.type = BTRFS_EXTENT_ITEM_KEY;
712 	key.offset = (u64)-1;
713 
714 	path1->search_commit_root = 1;
715 	path1->skip_locking = 1;
716 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1,
717 				0, 0);
718 	if (ret < 0) {
719 		err = ret;
720 		goto out;
721 	}
722 	BUG_ON(!ret || !path1->slots[0]);
723 
724 	path1->slots[0]--;
725 
726 	WARN_ON(cur->checked);
727 	if (!list_empty(&cur->upper)) {
728 		/*
729 		 * the backref was added previously when processing
730 		 * backref of type BTRFS_TREE_BLOCK_REF_KEY
731 		 */
732 		BUG_ON(!list_is_singular(&cur->upper));
733 		edge = list_entry(cur->upper.next, struct backref_edge,
734 				  list[LOWER]);
735 		BUG_ON(!list_empty(&edge->list[UPPER]));
736 		exist = edge->node[UPPER];
737 		/*
738 		 * add the upper level block to pending list if we need
739 		 * check its backrefs
740 		 */
741 		if (!exist->checked)
742 			list_add_tail(&edge->list[UPPER], &list);
743 	} else {
744 		exist = NULL;
745 	}
746 
747 	while (1) {
748 		cond_resched();
749 		eb = path1->nodes[0];
750 
751 		if (ptr >= end) {
752 			if (path1->slots[0] >= btrfs_header_nritems(eb)) {
753 				ret = btrfs_next_leaf(rc->extent_root, path1);
754 				if (ret < 0) {
755 					err = ret;
756 					goto out;
757 				}
758 				if (ret > 0)
759 					break;
760 				eb = path1->nodes[0];
761 			}
762 
763 			btrfs_item_key_to_cpu(eb, &key, path1->slots[0]);
764 			if (key.objectid != cur->bytenr) {
765 				WARN_ON(exist);
766 				break;
767 			}
768 
769 			if (key.type == BTRFS_EXTENT_ITEM_KEY) {
770 				ret = find_inline_backref(eb, path1->slots[0],
771 							  &ptr, &end);
772 				if (ret)
773 					goto next;
774 			}
775 		}
776 
777 		if (ptr < end) {
778 			/* update key for inline back ref */
779 			struct btrfs_extent_inline_ref *iref;
780 			iref = (struct btrfs_extent_inline_ref *)ptr;
781 			key.type = btrfs_extent_inline_ref_type(eb, iref);
782 			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
783 			WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY &&
784 				key.type != BTRFS_SHARED_BLOCK_REF_KEY);
785 		}
786 
787 		if (exist &&
788 		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
789 		      exist->owner == key.offset) ||
790 		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
791 		      exist->bytenr == key.offset))) {
792 			exist = NULL;
793 			goto next;
794 		}
795 
796 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
797 		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY ||
798 		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
799 			if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
800 				struct btrfs_extent_ref_v0 *ref0;
801 				ref0 = btrfs_item_ptr(eb, path1->slots[0],
802 						struct btrfs_extent_ref_v0);
803 				if (key.objectid == key.offset) {
804 					root = find_tree_root(rc, eb, ref0);
805 					if (root && !should_ignore_root(root))
806 						cur->root = root;
807 					else
808 						list_add(&cur->list, &useless);
809 					break;
810 				}
811 				if (is_cowonly_root(btrfs_ref_root_v0(eb,
812 								      ref0)))
813 					cur->cowonly = 1;
814 			}
815 #else
816 		BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
817 		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
818 #endif
819 			if (key.objectid == key.offset) {
820 				/*
821 				 * only root blocks of reloc trees use
822 				 * backref of this type.
823 				 */
824 				root = find_reloc_root(rc, cur->bytenr);
825 				BUG_ON(!root);
826 				cur->root = root;
827 				break;
828 			}
829 
830 			edge = alloc_backref_edge(cache);
831 			if (!edge) {
832 				err = -ENOMEM;
833 				goto out;
834 			}
835 			rb_node = tree_search(&cache->rb_root, key.offset);
836 			if (!rb_node) {
837 				upper = alloc_backref_node(cache);
838 				if (!upper) {
839 					free_backref_edge(cache, edge);
840 					err = -ENOMEM;
841 					goto out;
842 				}
843 				upper->bytenr = key.offset;
844 				upper->level = cur->level + 1;
845 				/*
846 				 *  backrefs for the upper level block isn't
847 				 *  cached, add the block to pending list
848 				 */
849 				list_add_tail(&edge->list[UPPER], &list);
850 			} else {
851 				upper = rb_entry(rb_node, struct backref_node,
852 						 rb_node);
853 				BUG_ON(!upper->checked);
854 				INIT_LIST_HEAD(&edge->list[UPPER]);
855 			}
856 			list_add_tail(&edge->list[LOWER], &cur->upper);
857 			edge->node[LOWER] = cur;
858 			edge->node[UPPER] = upper;
859 
860 			goto next;
861 		} else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
862 			goto next;
863 		}
864 
865 		/* key.type == BTRFS_TREE_BLOCK_REF_KEY */
866 		root = read_fs_root(rc->extent_root->fs_info, key.offset);
867 		if (IS_ERR(root)) {
868 			err = PTR_ERR(root);
869 			goto out;
870 		}
871 
872 		if (!root->ref_cows)
873 			cur->cowonly = 1;
874 
875 		if (btrfs_root_level(&root->root_item) == cur->level) {
876 			/* tree root */
877 			BUG_ON(btrfs_root_bytenr(&root->root_item) !=
878 			       cur->bytenr);
879 			if (should_ignore_root(root))
880 				list_add(&cur->list, &useless);
881 			else
882 				cur->root = root;
883 			break;
884 		}
885 
886 		level = cur->level + 1;
887 
888 		/*
889 		 * searching the tree to find upper level blocks
890 		 * reference the block.
891 		 */
892 		path2->search_commit_root = 1;
893 		path2->skip_locking = 1;
894 		path2->lowest_level = level;
895 		ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0);
896 		path2->lowest_level = 0;
897 		if (ret < 0) {
898 			err = ret;
899 			goto out;
900 		}
901 		if (ret > 0 && path2->slots[level] > 0)
902 			path2->slots[level]--;
903 
904 		eb = path2->nodes[level];
905 		WARN_ON(btrfs_node_blockptr(eb, path2->slots[level]) !=
906 			cur->bytenr);
907 
908 		lower = cur;
909 		for (; level < BTRFS_MAX_LEVEL; level++) {
910 			if (!path2->nodes[level]) {
911 				BUG_ON(btrfs_root_bytenr(&root->root_item) !=
912 				       lower->bytenr);
913 				if (should_ignore_root(root))
914 					list_add(&lower->list, &useless);
915 				else
916 					lower->root = root;
917 				break;
918 			}
919 
920 			edge = alloc_backref_edge(cache);
921 			if (!edge) {
922 				err = -ENOMEM;
923 				goto out;
924 			}
925 
926 			eb = path2->nodes[level];
927 			rb_node = tree_search(&cache->rb_root, eb->start);
928 			if (!rb_node) {
929 				upper = alloc_backref_node(cache);
930 				if (!upper) {
931 					free_backref_edge(cache, edge);
932 					err = -ENOMEM;
933 					goto out;
934 				}
935 				upper->bytenr = eb->start;
936 				upper->owner = btrfs_header_owner(eb);
937 				upper->level = lower->level + 1;
938 				if (!root->ref_cows)
939 					upper->cowonly = 1;
940 
941 				/*
942 				 * if we know the block isn't shared
943 				 * we can void checking its backrefs.
944 				 */
945 				if (btrfs_block_can_be_shared(root, eb))
946 					upper->checked = 0;
947 				else
948 					upper->checked = 1;
949 
950 				/*
951 				 * add the block to pending list if we
952 				 * need check its backrefs. only block
953 				 * at 'cur->level + 1' is added to the
954 				 * tail of pending list. this guarantees
955 				 * we check backrefs from lower level
956 				 * blocks to upper level blocks.
957 				 */
958 				if (!upper->checked &&
959 				    level == cur->level + 1) {
960 					list_add_tail(&edge->list[UPPER],
961 						      &list);
962 				} else
963 					INIT_LIST_HEAD(&edge->list[UPPER]);
964 			} else {
965 				upper = rb_entry(rb_node, struct backref_node,
966 						 rb_node);
967 				BUG_ON(!upper->checked);
968 				INIT_LIST_HEAD(&edge->list[UPPER]);
969 				if (!upper->owner)
970 					upper->owner = btrfs_header_owner(eb);
971 			}
972 			list_add_tail(&edge->list[LOWER], &lower->upper);
973 			edge->node[LOWER] = lower;
974 			edge->node[UPPER] = upper;
975 
976 			if (rb_node)
977 				break;
978 			lower = upper;
979 			upper = NULL;
980 		}
981 		btrfs_release_path(path2);
982 next:
983 		if (ptr < end) {
984 			ptr += btrfs_extent_inline_ref_size(key.type);
985 			if (ptr >= end) {
986 				WARN_ON(ptr > end);
987 				ptr = 0;
988 				end = 0;
989 			}
990 		}
991 		if (ptr >= end)
992 			path1->slots[0]++;
993 	}
994 	btrfs_release_path(path1);
995 
996 	cur->checked = 1;
997 	WARN_ON(exist);
998 
999 	/* the pending list isn't empty, take the first block to process */
1000 	if (!list_empty(&list)) {
1001 		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1002 		list_del_init(&edge->list[UPPER]);
1003 		cur = edge->node[UPPER];
1004 		goto again;
1005 	}
1006 
1007 	/*
1008 	 * everything goes well, connect backref nodes and insert backref nodes
1009 	 * into the cache.
1010 	 */
1011 	BUG_ON(!node->checked);
1012 	cowonly = node->cowonly;
1013 	if (!cowonly) {
1014 		rb_node = tree_insert(&cache->rb_root, node->bytenr,
1015 				      &node->rb_node);
1016 		if (rb_node)
1017 			backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1018 		list_add_tail(&node->lower, &cache->leaves);
1019 	}
1020 
1021 	list_for_each_entry(edge, &node->upper, list[LOWER])
1022 		list_add_tail(&edge->list[UPPER], &list);
1023 
1024 	while (!list_empty(&list)) {
1025 		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1026 		list_del_init(&edge->list[UPPER]);
1027 		upper = edge->node[UPPER];
1028 		if (upper->detached) {
1029 			list_del(&edge->list[LOWER]);
1030 			lower = edge->node[LOWER];
1031 			free_backref_edge(cache, edge);
1032 			if (list_empty(&lower->upper))
1033 				list_add(&lower->list, &useless);
1034 			continue;
1035 		}
1036 
1037 		if (!RB_EMPTY_NODE(&upper->rb_node)) {
1038 			if (upper->lowest) {
1039 				list_del_init(&upper->lower);
1040 				upper->lowest = 0;
1041 			}
1042 
1043 			list_add_tail(&edge->list[UPPER], &upper->lower);
1044 			continue;
1045 		}
1046 
1047 		BUG_ON(!upper->checked);
1048 		BUG_ON(cowonly != upper->cowonly);
1049 		if (!cowonly) {
1050 			rb_node = tree_insert(&cache->rb_root, upper->bytenr,
1051 					      &upper->rb_node);
1052 			if (rb_node)
1053 				backref_tree_panic(rb_node, -EEXIST,
1054 						   upper->bytenr);
1055 		}
1056 
1057 		list_add_tail(&edge->list[UPPER], &upper->lower);
1058 
1059 		list_for_each_entry(edge, &upper->upper, list[LOWER])
1060 			list_add_tail(&edge->list[UPPER], &list);
1061 	}
1062 	/*
1063 	 * process useless backref nodes. backref nodes for tree leaves
1064 	 * are deleted from the cache. backref nodes for upper level
1065 	 * tree blocks are left in the cache to avoid unnecessary backref
1066 	 * lookup.
1067 	 */
1068 	while (!list_empty(&useless)) {
1069 		upper = list_entry(useless.next, struct backref_node, list);
1070 		list_del_init(&upper->list);
1071 		BUG_ON(!list_empty(&upper->upper));
1072 		if (upper == node)
1073 			node = NULL;
1074 		if (upper->lowest) {
1075 			list_del_init(&upper->lower);
1076 			upper->lowest = 0;
1077 		}
1078 		while (!list_empty(&upper->lower)) {
1079 			edge = list_entry(upper->lower.next,
1080 					  struct backref_edge, list[UPPER]);
1081 			list_del(&edge->list[UPPER]);
1082 			list_del(&edge->list[LOWER]);
1083 			lower = edge->node[LOWER];
1084 			free_backref_edge(cache, edge);
1085 
1086 			if (list_empty(&lower->upper))
1087 				list_add(&lower->list, &useless);
1088 		}
1089 		__mark_block_processed(rc, upper);
1090 		if (upper->level > 0) {
1091 			list_add(&upper->list, &cache->detached);
1092 			upper->detached = 1;
1093 		} else {
1094 			rb_erase(&upper->rb_node, &cache->rb_root);
1095 			free_backref_node(cache, upper);
1096 		}
1097 	}
1098 out:
1099 	btrfs_free_path(path1);
1100 	btrfs_free_path(path2);
1101 	if (err) {
1102 		while (!list_empty(&useless)) {
1103 			lower = list_entry(useless.next,
1104 					   struct backref_node, upper);
1105 			list_del_init(&lower->upper);
1106 		}
1107 		upper = node;
1108 		INIT_LIST_HEAD(&list);
1109 		while (upper) {
1110 			if (RB_EMPTY_NODE(&upper->rb_node)) {
1111 				list_splice_tail(&upper->upper, &list);
1112 				free_backref_node(cache, upper);
1113 			}
1114 
1115 			if (list_empty(&list))
1116 				break;
1117 
1118 			edge = list_entry(list.next, struct backref_edge,
1119 					  list[LOWER]);
1120 			list_del(&edge->list[LOWER]);
1121 			upper = edge->node[UPPER];
1122 			free_backref_edge(cache, edge);
1123 		}
1124 		return ERR_PTR(err);
1125 	}
1126 	BUG_ON(node && node->detached);
1127 	return node;
1128 }
1129 
1130 /*
1131  * helper to add backref node for the newly created snapshot.
1132  * the backref node is created by cloning backref node that
1133  * corresponds to root of source tree
1134  */
1135 static int clone_backref_node(struct btrfs_trans_handle *trans,
1136 			      struct reloc_control *rc,
1137 			      struct btrfs_root *src,
1138 			      struct btrfs_root *dest)
1139 {
1140 	struct btrfs_root *reloc_root = src->reloc_root;
1141 	struct backref_cache *cache = &rc->backref_cache;
1142 	struct backref_node *node = NULL;
1143 	struct backref_node *new_node;
1144 	struct backref_edge *edge;
1145 	struct backref_edge *new_edge;
1146 	struct rb_node *rb_node;
1147 
1148 	if (cache->last_trans > 0)
1149 		update_backref_cache(trans, cache);
1150 
1151 	rb_node = tree_search(&cache->rb_root, src->commit_root->start);
1152 	if (rb_node) {
1153 		node = rb_entry(rb_node, struct backref_node, rb_node);
1154 		if (node->detached)
1155 			node = NULL;
1156 		else
1157 			BUG_ON(node->new_bytenr != reloc_root->node->start);
1158 	}
1159 
1160 	if (!node) {
1161 		rb_node = tree_search(&cache->rb_root,
1162 				      reloc_root->commit_root->start);
1163 		if (rb_node) {
1164 			node = rb_entry(rb_node, struct backref_node,
1165 					rb_node);
1166 			BUG_ON(node->detached);
1167 		}
1168 	}
1169 
1170 	if (!node)
1171 		return 0;
1172 
1173 	new_node = alloc_backref_node(cache);
1174 	if (!new_node)
1175 		return -ENOMEM;
1176 
1177 	new_node->bytenr = dest->node->start;
1178 	new_node->level = node->level;
1179 	new_node->lowest = node->lowest;
1180 	new_node->checked = 1;
1181 	new_node->root = dest;
1182 
1183 	if (!node->lowest) {
1184 		list_for_each_entry(edge, &node->lower, list[UPPER]) {
1185 			new_edge = alloc_backref_edge(cache);
1186 			if (!new_edge)
1187 				goto fail;
1188 
1189 			new_edge->node[UPPER] = new_node;
1190 			new_edge->node[LOWER] = edge->node[LOWER];
1191 			list_add_tail(&new_edge->list[UPPER],
1192 				      &new_node->lower);
1193 		}
1194 	} else {
1195 		list_add_tail(&new_node->lower, &cache->leaves);
1196 	}
1197 
1198 	rb_node = tree_insert(&cache->rb_root, new_node->bytenr,
1199 			      &new_node->rb_node);
1200 	if (rb_node)
1201 		backref_tree_panic(rb_node, -EEXIST, new_node->bytenr);
1202 
1203 	if (!new_node->lowest) {
1204 		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
1205 			list_add_tail(&new_edge->list[LOWER],
1206 				      &new_edge->node[LOWER]->upper);
1207 		}
1208 	}
1209 	return 0;
1210 fail:
1211 	while (!list_empty(&new_node->lower)) {
1212 		new_edge = list_entry(new_node->lower.next,
1213 				      struct backref_edge, list[UPPER]);
1214 		list_del(&new_edge->list[UPPER]);
1215 		free_backref_edge(cache, new_edge);
1216 	}
1217 	free_backref_node(cache, new_node);
1218 	return -ENOMEM;
1219 }
1220 
1221 /*
1222  * helper to add 'address of tree root -> reloc tree' mapping
1223  */
1224 static int __must_check __add_reloc_root(struct btrfs_root *root)
1225 {
1226 	struct rb_node *rb_node;
1227 	struct mapping_node *node;
1228 	struct reloc_control *rc = root->fs_info->reloc_ctl;
1229 
1230 	node = kmalloc(sizeof(*node), GFP_NOFS);
1231 	if (!node)
1232 		return -ENOMEM;
1233 
1234 	node->bytenr = root->node->start;
1235 	node->data = root;
1236 
1237 	spin_lock(&rc->reloc_root_tree.lock);
1238 	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1239 			      node->bytenr, &node->rb_node);
1240 	spin_unlock(&rc->reloc_root_tree.lock);
1241 	if (rb_node) {
1242 		btrfs_panic(root->fs_info, -EEXIST, "Duplicate root found "
1243 			    "for start=%llu while inserting into relocation "
1244 			    "tree\n", node->bytenr);
1245 		kfree(node);
1246 		return -EEXIST;
1247 	}
1248 
1249 	list_add_tail(&root->root_list, &rc->reloc_roots);
1250 	return 0;
1251 }
1252 
1253 /*
1254  * helper to update/delete the 'address of tree root -> reloc tree'
1255  * mapping
1256  */
1257 static int __update_reloc_root(struct btrfs_root *root, int del)
1258 {
1259 	struct rb_node *rb_node;
1260 	struct mapping_node *node = NULL;
1261 	struct reloc_control *rc = root->fs_info->reloc_ctl;
1262 
1263 	spin_lock(&rc->reloc_root_tree.lock);
1264 	rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1265 			      root->commit_root->start);
1266 	if (rb_node) {
1267 		node = rb_entry(rb_node, struct mapping_node, rb_node);
1268 		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1269 	}
1270 	spin_unlock(&rc->reloc_root_tree.lock);
1271 
1272 	BUG_ON((struct btrfs_root *)node->data != root);
1273 
1274 	if (!del) {
1275 		spin_lock(&rc->reloc_root_tree.lock);
1276 		node->bytenr = root->node->start;
1277 		rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1278 				      node->bytenr, &node->rb_node);
1279 		spin_unlock(&rc->reloc_root_tree.lock);
1280 		if (rb_node)
1281 			backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1282 	} else {
1283 		spin_lock(&root->fs_info->trans_lock);
1284 		list_del_init(&root->root_list);
1285 		spin_unlock(&root->fs_info->trans_lock);
1286 		kfree(node);
1287 	}
1288 	return 0;
1289 }
1290 
1291 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
1292 					struct btrfs_root *root, u64 objectid)
1293 {
1294 	struct btrfs_root *reloc_root;
1295 	struct extent_buffer *eb;
1296 	struct btrfs_root_item *root_item;
1297 	struct btrfs_key root_key;
1298 	int ret;
1299 
1300 	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
1301 	BUG_ON(!root_item);
1302 
1303 	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
1304 	root_key.type = BTRFS_ROOT_ITEM_KEY;
1305 	root_key.offset = objectid;
1306 
1307 	if (root->root_key.objectid == objectid) {
1308 		/* called by btrfs_init_reloc_root */
1309 		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
1310 				      BTRFS_TREE_RELOC_OBJECTID);
1311 		BUG_ON(ret);
1312 
1313 		btrfs_set_root_last_snapshot(&root->root_item,
1314 					     trans->transid - 1);
1315 	} else {
1316 		/*
1317 		 * called by btrfs_reloc_post_snapshot_hook.
1318 		 * the source tree is a reloc tree, all tree blocks
1319 		 * modified after it was created have RELOC flag
1320 		 * set in their headers. so it's OK to not update
1321 		 * the 'last_snapshot'.
1322 		 */
1323 		ret = btrfs_copy_root(trans, root, root->node, &eb,
1324 				      BTRFS_TREE_RELOC_OBJECTID);
1325 		BUG_ON(ret);
1326 	}
1327 
1328 	memcpy(root_item, &root->root_item, sizeof(*root_item));
1329 	btrfs_set_root_bytenr(root_item, eb->start);
1330 	btrfs_set_root_level(root_item, btrfs_header_level(eb));
1331 	btrfs_set_root_generation(root_item, trans->transid);
1332 
1333 	if (root->root_key.objectid == objectid) {
1334 		btrfs_set_root_refs(root_item, 0);
1335 		memset(&root_item->drop_progress, 0,
1336 		       sizeof(struct btrfs_disk_key));
1337 		root_item->drop_level = 0;
1338 	}
1339 
1340 	btrfs_tree_unlock(eb);
1341 	free_extent_buffer(eb);
1342 
1343 	ret = btrfs_insert_root(trans, root->fs_info->tree_root,
1344 				&root_key, root_item);
1345 	BUG_ON(ret);
1346 	kfree(root_item);
1347 
1348 	reloc_root = btrfs_read_fs_root_no_radix(root->fs_info->tree_root,
1349 						 &root_key);
1350 	BUG_ON(IS_ERR(reloc_root));
1351 	reloc_root->last_trans = trans->transid;
1352 	return reloc_root;
1353 }
1354 
1355 /*
1356  * create reloc tree for a given fs tree. reloc tree is just a
1357  * snapshot of the fs tree with special root objectid.
1358  */
1359 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
1360 			  struct btrfs_root *root)
1361 {
1362 	struct btrfs_root *reloc_root;
1363 	struct reloc_control *rc = root->fs_info->reloc_ctl;
1364 	int clear_rsv = 0;
1365 	int ret;
1366 
1367 	if (root->reloc_root) {
1368 		reloc_root = root->reloc_root;
1369 		reloc_root->last_trans = trans->transid;
1370 		return 0;
1371 	}
1372 
1373 	if (!rc || !rc->create_reloc_tree ||
1374 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1375 		return 0;
1376 
1377 	if (!trans->block_rsv) {
1378 		trans->block_rsv = rc->block_rsv;
1379 		clear_rsv = 1;
1380 	}
1381 	reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
1382 	if (clear_rsv)
1383 		trans->block_rsv = NULL;
1384 
1385 	ret = __add_reloc_root(reloc_root);
1386 	BUG_ON(ret < 0);
1387 	root->reloc_root = reloc_root;
1388 	return 0;
1389 }
1390 
1391 /*
1392  * update root item of reloc tree
1393  */
1394 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
1395 			    struct btrfs_root *root)
1396 {
1397 	struct btrfs_root *reloc_root;
1398 	struct btrfs_root_item *root_item;
1399 	int del = 0;
1400 	int ret;
1401 
1402 	if (!root->reloc_root)
1403 		goto out;
1404 
1405 	reloc_root = root->reloc_root;
1406 	root_item = &reloc_root->root_item;
1407 
1408 	if (root->fs_info->reloc_ctl->merge_reloc_tree &&
1409 	    btrfs_root_refs(root_item) == 0) {
1410 		root->reloc_root = NULL;
1411 		del = 1;
1412 	}
1413 
1414 	__update_reloc_root(reloc_root, del);
1415 
1416 	if (reloc_root->commit_root != reloc_root->node) {
1417 		btrfs_set_root_node(root_item, reloc_root->node);
1418 		free_extent_buffer(reloc_root->commit_root);
1419 		reloc_root->commit_root = btrfs_root_node(reloc_root);
1420 	}
1421 
1422 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
1423 				&reloc_root->root_key, root_item);
1424 	BUG_ON(ret);
1425 
1426 out:
1427 	return 0;
1428 }
1429 
1430 /*
1431  * helper to find first cached inode with inode number >= objectid
1432  * in a subvolume
1433  */
1434 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
1435 {
1436 	struct rb_node *node;
1437 	struct rb_node *prev;
1438 	struct btrfs_inode *entry;
1439 	struct inode *inode;
1440 
1441 	spin_lock(&root->inode_lock);
1442 again:
1443 	node = root->inode_tree.rb_node;
1444 	prev = NULL;
1445 	while (node) {
1446 		prev = node;
1447 		entry = rb_entry(node, struct btrfs_inode, rb_node);
1448 
1449 		if (objectid < btrfs_ino(&entry->vfs_inode))
1450 			node = node->rb_left;
1451 		else if (objectid > btrfs_ino(&entry->vfs_inode))
1452 			node = node->rb_right;
1453 		else
1454 			break;
1455 	}
1456 	if (!node) {
1457 		while (prev) {
1458 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
1459 			if (objectid <= btrfs_ino(&entry->vfs_inode)) {
1460 				node = prev;
1461 				break;
1462 			}
1463 			prev = rb_next(prev);
1464 		}
1465 	}
1466 	while (node) {
1467 		entry = rb_entry(node, struct btrfs_inode, rb_node);
1468 		inode = igrab(&entry->vfs_inode);
1469 		if (inode) {
1470 			spin_unlock(&root->inode_lock);
1471 			return inode;
1472 		}
1473 
1474 		objectid = btrfs_ino(&entry->vfs_inode) + 1;
1475 		if (cond_resched_lock(&root->inode_lock))
1476 			goto again;
1477 
1478 		node = rb_next(node);
1479 	}
1480 	spin_unlock(&root->inode_lock);
1481 	return NULL;
1482 }
1483 
1484 static int in_block_group(u64 bytenr,
1485 			  struct btrfs_block_group_cache *block_group)
1486 {
1487 	if (bytenr >= block_group->key.objectid &&
1488 	    bytenr < block_group->key.objectid + block_group->key.offset)
1489 		return 1;
1490 	return 0;
1491 }
1492 
1493 /*
1494  * get new location of data
1495  */
1496 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1497 			    u64 bytenr, u64 num_bytes)
1498 {
1499 	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1500 	struct btrfs_path *path;
1501 	struct btrfs_file_extent_item *fi;
1502 	struct extent_buffer *leaf;
1503 	int ret;
1504 
1505 	path = btrfs_alloc_path();
1506 	if (!path)
1507 		return -ENOMEM;
1508 
1509 	bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1510 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(reloc_inode),
1511 				       bytenr, 0);
1512 	if (ret < 0)
1513 		goto out;
1514 	if (ret > 0) {
1515 		ret = -ENOENT;
1516 		goto out;
1517 	}
1518 
1519 	leaf = path->nodes[0];
1520 	fi = btrfs_item_ptr(leaf, path->slots[0],
1521 			    struct btrfs_file_extent_item);
1522 
1523 	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1524 	       btrfs_file_extent_compression(leaf, fi) ||
1525 	       btrfs_file_extent_encryption(leaf, fi) ||
1526 	       btrfs_file_extent_other_encoding(leaf, fi));
1527 
1528 	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1529 		ret = 1;
1530 		goto out;
1531 	}
1532 
1533 	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1534 	ret = 0;
1535 out:
1536 	btrfs_free_path(path);
1537 	return ret;
1538 }
1539 
1540 /*
1541  * update file extent items in the tree leaf to point to
1542  * the new locations.
1543  */
1544 static noinline_for_stack
1545 int replace_file_extents(struct btrfs_trans_handle *trans,
1546 			 struct reloc_control *rc,
1547 			 struct btrfs_root *root,
1548 			 struct extent_buffer *leaf)
1549 {
1550 	struct btrfs_key key;
1551 	struct btrfs_file_extent_item *fi;
1552 	struct inode *inode = NULL;
1553 	u64 parent;
1554 	u64 bytenr;
1555 	u64 new_bytenr = 0;
1556 	u64 num_bytes;
1557 	u64 end;
1558 	u32 nritems;
1559 	u32 i;
1560 	int ret;
1561 	int first = 1;
1562 	int dirty = 0;
1563 
1564 	if (rc->stage != UPDATE_DATA_PTRS)
1565 		return 0;
1566 
1567 	/* reloc trees always use full backref */
1568 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1569 		parent = leaf->start;
1570 	else
1571 		parent = 0;
1572 
1573 	nritems = btrfs_header_nritems(leaf);
1574 	for (i = 0; i < nritems; i++) {
1575 		cond_resched();
1576 		btrfs_item_key_to_cpu(leaf, &key, i);
1577 		if (key.type != BTRFS_EXTENT_DATA_KEY)
1578 			continue;
1579 		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1580 		if (btrfs_file_extent_type(leaf, fi) ==
1581 		    BTRFS_FILE_EXTENT_INLINE)
1582 			continue;
1583 		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1584 		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1585 		if (bytenr == 0)
1586 			continue;
1587 		if (!in_block_group(bytenr, rc->block_group))
1588 			continue;
1589 
1590 		/*
1591 		 * if we are modifying block in fs tree, wait for readpage
1592 		 * to complete and drop the extent cache
1593 		 */
1594 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1595 			if (first) {
1596 				inode = find_next_inode(root, key.objectid);
1597 				first = 0;
1598 			} else if (inode && btrfs_ino(inode) < key.objectid) {
1599 				btrfs_add_delayed_iput(inode);
1600 				inode = find_next_inode(root, key.objectid);
1601 			}
1602 			if (inode && btrfs_ino(inode) == key.objectid) {
1603 				end = key.offset +
1604 				      btrfs_file_extent_num_bytes(leaf, fi);
1605 				WARN_ON(!IS_ALIGNED(key.offset,
1606 						    root->sectorsize));
1607 				WARN_ON(!IS_ALIGNED(end, root->sectorsize));
1608 				end--;
1609 				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1610 						      key.offset, end);
1611 				if (!ret)
1612 					continue;
1613 
1614 				btrfs_drop_extent_cache(inode, key.offset, end,
1615 							1);
1616 				unlock_extent(&BTRFS_I(inode)->io_tree,
1617 					      key.offset, end);
1618 			}
1619 		}
1620 
1621 		ret = get_new_location(rc->data_inode, &new_bytenr,
1622 				       bytenr, num_bytes);
1623 		if (ret > 0) {
1624 			WARN_ON(1);
1625 			continue;
1626 		}
1627 		BUG_ON(ret < 0);
1628 
1629 		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1630 		dirty = 1;
1631 
1632 		key.offset -= btrfs_file_extent_offset(leaf, fi);
1633 		ret = btrfs_inc_extent_ref(trans, root, new_bytenr,
1634 					   num_bytes, parent,
1635 					   btrfs_header_owner(leaf),
1636 					   key.objectid, key.offset, 1);
1637 		BUG_ON(ret);
1638 
1639 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1640 					parent, btrfs_header_owner(leaf),
1641 					key.objectid, key.offset, 1);
1642 		BUG_ON(ret);
1643 	}
1644 	if (dirty)
1645 		btrfs_mark_buffer_dirty(leaf);
1646 	if (inode)
1647 		btrfs_add_delayed_iput(inode);
1648 	return 0;
1649 }
1650 
1651 static noinline_for_stack
1652 int memcmp_node_keys(struct extent_buffer *eb, int slot,
1653 		     struct btrfs_path *path, int level)
1654 {
1655 	struct btrfs_disk_key key1;
1656 	struct btrfs_disk_key key2;
1657 	btrfs_node_key(eb, &key1, slot);
1658 	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1659 	return memcmp(&key1, &key2, sizeof(key1));
1660 }
1661 
1662 /*
1663  * try to replace tree blocks in fs tree with the new blocks
1664  * in reloc tree. tree blocks haven't been modified since the
1665  * reloc tree was create can be replaced.
1666  *
1667  * if a block was replaced, level of the block + 1 is returned.
1668  * if no block got replaced, 0 is returned. if there are other
1669  * errors, a negative error number is returned.
1670  */
1671 static noinline_for_stack
1672 int replace_path(struct btrfs_trans_handle *trans,
1673 		 struct btrfs_root *dest, struct btrfs_root *src,
1674 		 struct btrfs_path *path, struct btrfs_key *next_key,
1675 		 int lowest_level, int max_level)
1676 {
1677 	struct extent_buffer *eb;
1678 	struct extent_buffer *parent;
1679 	struct btrfs_key key;
1680 	u64 old_bytenr;
1681 	u64 new_bytenr;
1682 	u64 old_ptr_gen;
1683 	u64 new_ptr_gen;
1684 	u64 last_snapshot;
1685 	u32 blocksize;
1686 	int cow = 0;
1687 	int level;
1688 	int ret;
1689 	int slot;
1690 
1691 	BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1692 	BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1693 
1694 	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1695 again:
1696 	slot = path->slots[lowest_level];
1697 	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1698 
1699 	eb = btrfs_lock_root_node(dest);
1700 	btrfs_set_lock_blocking(eb);
1701 	level = btrfs_header_level(eb);
1702 
1703 	if (level < lowest_level) {
1704 		btrfs_tree_unlock(eb);
1705 		free_extent_buffer(eb);
1706 		return 0;
1707 	}
1708 
1709 	if (cow) {
1710 		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
1711 		BUG_ON(ret);
1712 	}
1713 	btrfs_set_lock_blocking(eb);
1714 
1715 	if (next_key) {
1716 		next_key->objectid = (u64)-1;
1717 		next_key->type = (u8)-1;
1718 		next_key->offset = (u64)-1;
1719 	}
1720 
1721 	parent = eb;
1722 	while (1) {
1723 		level = btrfs_header_level(parent);
1724 		BUG_ON(level < lowest_level);
1725 
1726 		ret = btrfs_bin_search(parent, &key, level, &slot);
1727 		if (ret && slot > 0)
1728 			slot--;
1729 
1730 		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1731 			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1732 
1733 		old_bytenr = btrfs_node_blockptr(parent, slot);
1734 		blocksize = btrfs_level_size(dest, level - 1);
1735 		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1736 
1737 		if (level <= max_level) {
1738 			eb = path->nodes[level];
1739 			new_bytenr = btrfs_node_blockptr(eb,
1740 							path->slots[level]);
1741 			new_ptr_gen = btrfs_node_ptr_generation(eb,
1742 							path->slots[level]);
1743 		} else {
1744 			new_bytenr = 0;
1745 			new_ptr_gen = 0;
1746 		}
1747 
1748 		if (new_bytenr > 0 && new_bytenr == old_bytenr) {
1749 			WARN_ON(1);
1750 			ret = level;
1751 			break;
1752 		}
1753 
1754 		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1755 		    memcmp_node_keys(parent, slot, path, level)) {
1756 			if (level <= lowest_level) {
1757 				ret = 0;
1758 				break;
1759 			}
1760 
1761 			eb = read_tree_block(dest, old_bytenr, blocksize,
1762 					     old_ptr_gen);
1763 			BUG_ON(!eb);
1764 			btrfs_tree_lock(eb);
1765 			if (cow) {
1766 				ret = btrfs_cow_block(trans, dest, eb, parent,
1767 						      slot, &eb);
1768 				BUG_ON(ret);
1769 			}
1770 			btrfs_set_lock_blocking(eb);
1771 
1772 			btrfs_tree_unlock(parent);
1773 			free_extent_buffer(parent);
1774 
1775 			parent = eb;
1776 			continue;
1777 		}
1778 
1779 		if (!cow) {
1780 			btrfs_tree_unlock(parent);
1781 			free_extent_buffer(parent);
1782 			cow = 1;
1783 			goto again;
1784 		}
1785 
1786 		btrfs_node_key_to_cpu(path->nodes[level], &key,
1787 				      path->slots[level]);
1788 		btrfs_release_path(path);
1789 
1790 		path->lowest_level = level;
1791 		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1792 		path->lowest_level = 0;
1793 		BUG_ON(ret);
1794 
1795 		/*
1796 		 * swap blocks in fs tree and reloc tree.
1797 		 */
1798 		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1799 		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1800 		btrfs_mark_buffer_dirty(parent);
1801 
1802 		btrfs_set_node_blockptr(path->nodes[level],
1803 					path->slots[level], old_bytenr);
1804 		btrfs_set_node_ptr_generation(path->nodes[level],
1805 					      path->slots[level], old_ptr_gen);
1806 		btrfs_mark_buffer_dirty(path->nodes[level]);
1807 
1808 		ret = btrfs_inc_extent_ref(trans, src, old_bytenr, blocksize,
1809 					path->nodes[level]->start,
1810 					src->root_key.objectid, level - 1, 0,
1811 					1);
1812 		BUG_ON(ret);
1813 		ret = btrfs_inc_extent_ref(trans, dest, new_bytenr, blocksize,
1814 					0, dest->root_key.objectid, level - 1,
1815 					0, 1);
1816 		BUG_ON(ret);
1817 
1818 		ret = btrfs_free_extent(trans, src, new_bytenr, blocksize,
1819 					path->nodes[level]->start,
1820 					src->root_key.objectid, level - 1, 0,
1821 					1);
1822 		BUG_ON(ret);
1823 
1824 		ret = btrfs_free_extent(trans, dest, old_bytenr, blocksize,
1825 					0, dest->root_key.objectid, level - 1,
1826 					0, 1);
1827 		BUG_ON(ret);
1828 
1829 		btrfs_unlock_up_safe(path, 0);
1830 
1831 		ret = level;
1832 		break;
1833 	}
1834 	btrfs_tree_unlock(parent);
1835 	free_extent_buffer(parent);
1836 	return ret;
1837 }
1838 
1839 /*
1840  * helper to find next relocated block in reloc tree
1841  */
1842 static noinline_for_stack
1843 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1844 		       int *level)
1845 {
1846 	struct extent_buffer *eb;
1847 	int i;
1848 	u64 last_snapshot;
1849 	u32 nritems;
1850 
1851 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1852 
1853 	for (i = 0; i < *level; i++) {
1854 		free_extent_buffer(path->nodes[i]);
1855 		path->nodes[i] = NULL;
1856 	}
1857 
1858 	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1859 		eb = path->nodes[i];
1860 		nritems = btrfs_header_nritems(eb);
1861 		while (path->slots[i] + 1 < nritems) {
1862 			path->slots[i]++;
1863 			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1864 			    last_snapshot)
1865 				continue;
1866 
1867 			*level = i;
1868 			return 0;
1869 		}
1870 		free_extent_buffer(path->nodes[i]);
1871 		path->nodes[i] = NULL;
1872 	}
1873 	return 1;
1874 }
1875 
1876 /*
1877  * walk down reloc tree to find relocated block of lowest level
1878  */
1879 static noinline_for_stack
1880 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1881 			 int *level)
1882 {
1883 	struct extent_buffer *eb = NULL;
1884 	int i;
1885 	u64 bytenr;
1886 	u64 ptr_gen = 0;
1887 	u64 last_snapshot;
1888 	u32 blocksize;
1889 	u32 nritems;
1890 
1891 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1892 
1893 	for (i = *level; i > 0; i--) {
1894 		eb = path->nodes[i];
1895 		nritems = btrfs_header_nritems(eb);
1896 		while (path->slots[i] < nritems) {
1897 			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1898 			if (ptr_gen > last_snapshot)
1899 				break;
1900 			path->slots[i]++;
1901 		}
1902 		if (path->slots[i] >= nritems) {
1903 			if (i == *level)
1904 				break;
1905 			*level = i + 1;
1906 			return 0;
1907 		}
1908 		if (i == 1) {
1909 			*level = i;
1910 			return 0;
1911 		}
1912 
1913 		bytenr = btrfs_node_blockptr(eb, path->slots[i]);
1914 		blocksize = btrfs_level_size(root, i - 1);
1915 		eb = read_tree_block(root, bytenr, blocksize, ptr_gen);
1916 		BUG_ON(btrfs_header_level(eb) != i - 1);
1917 		path->nodes[i - 1] = eb;
1918 		path->slots[i - 1] = 0;
1919 	}
1920 	return 1;
1921 }
1922 
1923 /*
1924  * invalidate extent cache for file extents whose key in range of
1925  * [min_key, max_key)
1926  */
1927 static int invalidate_extent_cache(struct btrfs_root *root,
1928 				   struct btrfs_key *min_key,
1929 				   struct btrfs_key *max_key)
1930 {
1931 	struct inode *inode = NULL;
1932 	u64 objectid;
1933 	u64 start, end;
1934 	u64 ino;
1935 
1936 	objectid = min_key->objectid;
1937 	while (1) {
1938 		cond_resched();
1939 		iput(inode);
1940 
1941 		if (objectid > max_key->objectid)
1942 			break;
1943 
1944 		inode = find_next_inode(root, objectid);
1945 		if (!inode)
1946 			break;
1947 		ino = btrfs_ino(inode);
1948 
1949 		if (ino > max_key->objectid) {
1950 			iput(inode);
1951 			break;
1952 		}
1953 
1954 		objectid = ino + 1;
1955 		if (!S_ISREG(inode->i_mode))
1956 			continue;
1957 
1958 		if (unlikely(min_key->objectid == ino)) {
1959 			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1960 				continue;
1961 			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1962 				start = 0;
1963 			else {
1964 				start = min_key->offset;
1965 				WARN_ON(!IS_ALIGNED(start, root->sectorsize));
1966 			}
1967 		} else {
1968 			start = 0;
1969 		}
1970 
1971 		if (unlikely(max_key->objectid == ino)) {
1972 			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1973 				continue;
1974 			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1975 				end = (u64)-1;
1976 			} else {
1977 				if (max_key->offset == 0)
1978 					continue;
1979 				end = max_key->offset;
1980 				WARN_ON(!IS_ALIGNED(end, root->sectorsize));
1981 				end--;
1982 			}
1983 		} else {
1984 			end = (u64)-1;
1985 		}
1986 
1987 		/* the lock_extent waits for readpage to complete */
1988 		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
1989 		btrfs_drop_extent_cache(inode, start, end, 1);
1990 		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
1991 	}
1992 	return 0;
1993 }
1994 
1995 static int find_next_key(struct btrfs_path *path, int level,
1996 			 struct btrfs_key *key)
1997 
1998 {
1999 	while (level < BTRFS_MAX_LEVEL) {
2000 		if (!path->nodes[level])
2001 			break;
2002 		if (path->slots[level] + 1 <
2003 		    btrfs_header_nritems(path->nodes[level])) {
2004 			btrfs_node_key_to_cpu(path->nodes[level], key,
2005 					      path->slots[level] + 1);
2006 			return 0;
2007 		}
2008 		level++;
2009 	}
2010 	return 1;
2011 }
2012 
2013 /*
2014  * merge the relocated tree blocks in reloc tree with corresponding
2015  * fs tree.
2016  */
2017 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
2018 					       struct btrfs_root *root)
2019 {
2020 	LIST_HEAD(inode_list);
2021 	struct btrfs_key key;
2022 	struct btrfs_key next_key;
2023 	struct btrfs_trans_handle *trans;
2024 	struct btrfs_root *reloc_root;
2025 	struct btrfs_root_item *root_item;
2026 	struct btrfs_path *path;
2027 	struct extent_buffer *leaf;
2028 	int level;
2029 	int max_level;
2030 	int replaced = 0;
2031 	int ret;
2032 	int err = 0;
2033 	u32 min_reserved;
2034 
2035 	path = btrfs_alloc_path();
2036 	if (!path)
2037 		return -ENOMEM;
2038 	path->reada = 1;
2039 
2040 	reloc_root = root->reloc_root;
2041 	root_item = &reloc_root->root_item;
2042 
2043 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2044 		level = btrfs_root_level(root_item);
2045 		extent_buffer_get(reloc_root->node);
2046 		path->nodes[level] = reloc_root->node;
2047 		path->slots[level] = 0;
2048 	} else {
2049 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2050 
2051 		level = root_item->drop_level;
2052 		BUG_ON(level == 0);
2053 		path->lowest_level = level;
2054 		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
2055 		path->lowest_level = 0;
2056 		if (ret < 0) {
2057 			btrfs_free_path(path);
2058 			return ret;
2059 		}
2060 
2061 		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
2062 				      path->slots[level]);
2063 		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
2064 
2065 		btrfs_unlock_up_safe(path, 0);
2066 	}
2067 
2068 	min_reserved = root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2069 	memset(&next_key, 0, sizeof(next_key));
2070 
2071 	while (1) {
2072 		trans = btrfs_start_transaction(root, 0);
2073 		BUG_ON(IS_ERR(trans));
2074 		trans->block_rsv = rc->block_rsv;
2075 
2076 		ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
2077 					     BTRFS_RESERVE_FLUSH_ALL);
2078 		if (ret) {
2079 			BUG_ON(ret != -EAGAIN);
2080 			ret = btrfs_commit_transaction(trans, root);
2081 			BUG_ON(ret);
2082 			continue;
2083 		}
2084 
2085 		replaced = 0;
2086 		max_level = level;
2087 
2088 		ret = walk_down_reloc_tree(reloc_root, path, &level);
2089 		if (ret < 0) {
2090 			err = ret;
2091 			goto out;
2092 		}
2093 		if (ret > 0)
2094 			break;
2095 
2096 		if (!find_next_key(path, level, &key) &&
2097 		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
2098 			ret = 0;
2099 		} else {
2100 			ret = replace_path(trans, root, reloc_root, path,
2101 					   &next_key, level, max_level);
2102 		}
2103 		if (ret < 0) {
2104 			err = ret;
2105 			goto out;
2106 		}
2107 
2108 		if (ret > 0) {
2109 			level = ret;
2110 			btrfs_node_key_to_cpu(path->nodes[level], &key,
2111 					      path->slots[level]);
2112 			replaced = 1;
2113 		}
2114 
2115 		ret = walk_up_reloc_tree(reloc_root, path, &level);
2116 		if (ret > 0)
2117 			break;
2118 
2119 		BUG_ON(level == 0);
2120 		/*
2121 		 * save the merging progress in the drop_progress.
2122 		 * this is OK since root refs == 1 in this case.
2123 		 */
2124 		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
2125 			       path->slots[level]);
2126 		root_item->drop_level = level;
2127 
2128 		btrfs_end_transaction_throttle(trans, root);
2129 
2130 		btrfs_btree_balance_dirty(root);
2131 
2132 		if (replaced && rc->stage == UPDATE_DATA_PTRS)
2133 			invalidate_extent_cache(root, &key, &next_key);
2134 	}
2135 
2136 	/*
2137 	 * handle the case only one block in the fs tree need to be
2138 	 * relocated and the block is tree root.
2139 	 */
2140 	leaf = btrfs_lock_root_node(root);
2141 	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
2142 	btrfs_tree_unlock(leaf);
2143 	free_extent_buffer(leaf);
2144 	if (ret < 0)
2145 		err = ret;
2146 out:
2147 	btrfs_free_path(path);
2148 
2149 	if (err == 0) {
2150 		memset(&root_item->drop_progress, 0,
2151 		       sizeof(root_item->drop_progress));
2152 		root_item->drop_level = 0;
2153 		btrfs_set_root_refs(root_item, 0);
2154 		btrfs_update_reloc_root(trans, root);
2155 	}
2156 
2157 	btrfs_end_transaction_throttle(trans, root);
2158 
2159 	btrfs_btree_balance_dirty(root);
2160 
2161 	if (replaced && rc->stage == UPDATE_DATA_PTRS)
2162 		invalidate_extent_cache(root, &key, &next_key);
2163 
2164 	return err;
2165 }
2166 
2167 static noinline_for_stack
2168 int prepare_to_merge(struct reloc_control *rc, int err)
2169 {
2170 	struct btrfs_root *root = rc->extent_root;
2171 	struct btrfs_root *reloc_root;
2172 	struct btrfs_trans_handle *trans;
2173 	LIST_HEAD(reloc_roots);
2174 	u64 num_bytes = 0;
2175 	int ret;
2176 
2177 	mutex_lock(&root->fs_info->reloc_mutex);
2178 	rc->merging_rsv_size += root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2179 	rc->merging_rsv_size += rc->nodes_relocated * 2;
2180 	mutex_unlock(&root->fs_info->reloc_mutex);
2181 
2182 again:
2183 	if (!err) {
2184 		num_bytes = rc->merging_rsv_size;
2185 		ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
2186 					  BTRFS_RESERVE_FLUSH_ALL);
2187 		if (ret)
2188 			err = ret;
2189 	}
2190 
2191 	trans = btrfs_join_transaction(rc->extent_root);
2192 	if (IS_ERR(trans)) {
2193 		if (!err)
2194 			btrfs_block_rsv_release(rc->extent_root,
2195 						rc->block_rsv, num_bytes);
2196 		return PTR_ERR(trans);
2197 	}
2198 
2199 	if (!err) {
2200 		if (num_bytes != rc->merging_rsv_size) {
2201 			btrfs_end_transaction(trans, rc->extent_root);
2202 			btrfs_block_rsv_release(rc->extent_root,
2203 						rc->block_rsv, num_bytes);
2204 			goto again;
2205 		}
2206 	}
2207 
2208 	rc->merge_reloc_tree = 1;
2209 
2210 	while (!list_empty(&rc->reloc_roots)) {
2211 		reloc_root = list_entry(rc->reloc_roots.next,
2212 					struct btrfs_root, root_list);
2213 		list_del_init(&reloc_root->root_list);
2214 
2215 		root = read_fs_root(reloc_root->fs_info,
2216 				    reloc_root->root_key.offset);
2217 		BUG_ON(IS_ERR(root));
2218 		BUG_ON(root->reloc_root != reloc_root);
2219 
2220 		/*
2221 		 * set reference count to 1, so btrfs_recover_relocation
2222 		 * knows it should resumes merging
2223 		 */
2224 		if (!err)
2225 			btrfs_set_root_refs(&reloc_root->root_item, 1);
2226 		btrfs_update_reloc_root(trans, root);
2227 
2228 		list_add(&reloc_root->root_list, &reloc_roots);
2229 	}
2230 
2231 	list_splice(&reloc_roots, &rc->reloc_roots);
2232 
2233 	if (!err)
2234 		btrfs_commit_transaction(trans, rc->extent_root);
2235 	else
2236 		btrfs_end_transaction(trans, rc->extent_root);
2237 	return err;
2238 }
2239 
2240 static noinline_for_stack
2241 int merge_reloc_roots(struct reloc_control *rc)
2242 {
2243 	struct btrfs_root *root;
2244 	struct btrfs_root *reloc_root;
2245 	LIST_HEAD(reloc_roots);
2246 	int found = 0;
2247 	int ret;
2248 again:
2249 	root = rc->extent_root;
2250 
2251 	/*
2252 	 * this serializes us with btrfs_record_root_in_transaction,
2253 	 * we have to make sure nobody is in the middle of
2254 	 * adding their roots to the list while we are
2255 	 * doing this splice
2256 	 */
2257 	mutex_lock(&root->fs_info->reloc_mutex);
2258 	list_splice_init(&rc->reloc_roots, &reloc_roots);
2259 	mutex_unlock(&root->fs_info->reloc_mutex);
2260 
2261 	while (!list_empty(&reloc_roots)) {
2262 		found = 1;
2263 		reloc_root = list_entry(reloc_roots.next,
2264 					struct btrfs_root, root_list);
2265 
2266 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
2267 			root = read_fs_root(reloc_root->fs_info,
2268 					    reloc_root->root_key.offset);
2269 			BUG_ON(IS_ERR(root));
2270 			BUG_ON(root->reloc_root != reloc_root);
2271 
2272 			ret = merge_reloc_root(rc, root);
2273 			BUG_ON(ret);
2274 		} else {
2275 			list_del_init(&reloc_root->root_list);
2276 		}
2277 		ret = btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0, 1);
2278 		BUG_ON(ret < 0);
2279 	}
2280 
2281 	if (found) {
2282 		found = 0;
2283 		goto again;
2284 	}
2285 	BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2286 	return 0;
2287 }
2288 
2289 static void free_block_list(struct rb_root *blocks)
2290 {
2291 	struct tree_block *block;
2292 	struct rb_node *rb_node;
2293 	while ((rb_node = rb_first(blocks))) {
2294 		block = rb_entry(rb_node, struct tree_block, rb_node);
2295 		rb_erase(rb_node, blocks);
2296 		kfree(block);
2297 	}
2298 }
2299 
2300 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2301 				      struct btrfs_root *reloc_root)
2302 {
2303 	struct btrfs_root *root;
2304 
2305 	if (reloc_root->last_trans == trans->transid)
2306 		return 0;
2307 
2308 	root = read_fs_root(reloc_root->fs_info, reloc_root->root_key.offset);
2309 	BUG_ON(IS_ERR(root));
2310 	BUG_ON(root->reloc_root != reloc_root);
2311 
2312 	return btrfs_record_root_in_trans(trans, root);
2313 }
2314 
2315 static noinline_for_stack
2316 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2317 				     struct reloc_control *rc,
2318 				     struct backref_node *node,
2319 				     struct backref_edge *edges[], int *nr)
2320 {
2321 	struct backref_node *next;
2322 	struct btrfs_root *root;
2323 	int index = 0;
2324 
2325 	next = node;
2326 	while (1) {
2327 		cond_resched();
2328 		next = walk_up_backref(next, edges, &index);
2329 		root = next->root;
2330 		BUG_ON(!root);
2331 		BUG_ON(!root->ref_cows);
2332 
2333 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2334 			record_reloc_root_in_trans(trans, root);
2335 			break;
2336 		}
2337 
2338 		btrfs_record_root_in_trans(trans, root);
2339 		root = root->reloc_root;
2340 
2341 		if (next->new_bytenr != root->node->start) {
2342 			BUG_ON(next->new_bytenr);
2343 			BUG_ON(!list_empty(&next->list));
2344 			next->new_bytenr = root->node->start;
2345 			next->root = root;
2346 			list_add_tail(&next->list,
2347 				      &rc->backref_cache.changed);
2348 			__mark_block_processed(rc, next);
2349 			break;
2350 		}
2351 
2352 		WARN_ON(1);
2353 		root = NULL;
2354 		next = walk_down_backref(edges, &index);
2355 		if (!next || next->level <= node->level)
2356 			break;
2357 	}
2358 	if (!root)
2359 		return NULL;
2360 
2361 	*nr = index;
2362 	next = node;
2363 	/* setup backref node path for btrfs_reloc_cow_block */
2364 	while (1) {
2365 		rc->backref_cache.path[next->level] = next;
2366 		if (--index < 0)
2367 			break;
2368 		next = edges[index]->node[UPPER];
2369 	}
2370 	return root;
2371 }
2372 
2373 /*
2374  * select a tree root for relocation. return NULL if the block
2375  * is reference counted. we should use do_relocation() in this
2376  * case. return a tree root pointer if the block isn't reference
2377  * counted. return -ENOENT if the block is root of reloc tree.
2378  */
2379 static noinline_for_stack
2380 struct btrfs_root *select_one_root(struct btrfs_trans_handle *trans,
2381 				   struct backref_node *node)
2382 {
2383 	struct backref_node *next;
2384 	struct btrfs_root *root;
2385 	struct btrfs_root *fs_root = NULL;
2386 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2387 	int index = 0;
2388 
2389 	next = node;
2390 	while (1) {
2391 		cond_resched();
2392 		next = walk_up_backref(next, edges, &index);
2393 		root = next->root;
2394 		BUG_ON(!root);
2395 
2396 		/* no other choice for non-references counted tree */
2397 		if (!root->ref_cows)
2398 			return root;
2399 
2400 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2401 			fs_root = root;
2402 
2403 		if (next != node)
2404 			return NULL;
2405 
2406 		next = walk_down_backref(edges, &index);
2407 		if (!next || next->level <= node->level)
2408 			break;
2409 	}
2410 
2411 	if (!fs_root)
2412 		return ERR_PTR(-ENOENT);
2413 	return fs_root;
2414 }
2415 
2416 static noinline_for_stack
2417 u64 calcu_metadata_size(struct reloc_control *rc,
2418 			struct backref_node *node, int reserve)
2419 {
2420 	struct backref_node *next = node;
2421 	struct backref_edge *edge;
2422 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2423 	u64 num_bytes = 0;
2424 	int index = 0;
2425 
2426 	BUG_ON(reserve && node->processed);
2427 
2428 	while (next) {
2429 		cond_resched();
2430 		while (1) {
2431 			if (next->processed && (reserve || next != node))
2432 				break;
2433 
2434 			num_bytes += btrfs_level_size(rc->extent_root,
2435 						      next->level);
2436 
2437 			if (list_empty(&next->upper))
2438 				break;
2439 
2440 			edge = list_entry(next->upper.next,
2441 					  struct backref_edge, list[LOWER]);
2442 			edges[index++] = edge;
2443 			next = edge->node[UPPER];
2444 		}
2445 		next = walk_down_backref(edges, &index);
2446 	}
2447 	return num_bytes;
2448 }
2449 
2450 static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2451 				  struct reloc_control *rc,
2452 				  struct backref_node *node)
2453 {
2454 	struct btrfs_root *root = rc->extent_root;
2455 	u64 num_bytes;
2456 	int ret;
2457 
2458 	num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2459 
2460 	trans->block_rsv = rc->block_rsv;
2461 	ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
2462 				  BTRFS_RESERVE_FLUSH_ALL);
2463 	if (ret) {
2464 		if (ret == -EAGAIN)
2465 			rc->commit_transaction = 1;
2466 		return ret;
2467 	}
2468 
2469 	return 0;
2470 }
2471 
2472 static void release_metadata_space(struct reloc_control *rc,
2473 				   struct backref_node *node)
2474 {
2475 	u64 num_bytes = calcu_metadata_size(rc, node, 0) * 2;
2476 	btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, num_bytes);
2477 }
2478 
2479 /*
2480  * relocate a block tree, and then update pointers in upper level
2481  * blocks that reference the block to point to the new location.
2482  *
2483  * if called by link_to_upper, the block has already been relocated.
2484  * in that case this function just updates pointers.
2485  */
2486 static int do_relocation(struct btrfs_trans_handle *trans,
2487 			 struct reloc_control *rc,
2488 			 struct backref_node *node,
2489 			 struct btrfs_key *key,
2490 			 struct btrfs_path *path, int lowest)
2491 {
2492 	struct backref_node *upper;
2493 	struct backref_edge *edge;
2494 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2495 	struct btrfs_root *root;
2496 	struct extent_buffer *eb;
2497 	u32 blocksize;
2498 	u64 bytenr;
2499 	u64 generation;
2500 	int nr;
2501 	int slot;
2502 	int ret;
2503 	int err = 0;
2504 
2505 	BUG_ON(lowest && node->eb);
2506 
2507 	path->lowest_level = node->level + 1;
2508 	rc->backref_cache.path[node->level] = node;
2509 	list_for_each_entry(edge, &node->upper, list[LOWER]) {
2510 		cond_resched();
2511 
2512 		upper = edge->node[UPPER];
2513 		root = select_reloc_root(trans, rc, upper, edges, &nr);
2514 		BUG_ON(!root);
2515 
2516 		if (upper->eb && !upper->locked) {
2517 			if (!lowest) {
2518 				ret = btrfs_bin_search(upper->eb, key,
2519 						       upper->level, &slot);
2520 				BUG_ON(ret);
2521 				bytenr = btrfs_node_blockptr(upper->eb, slot);
2522 				if (node->eb->start == bytenr)
2523 					goto next;
2524 			}
2525 			drop_node_buffer(upper);
2526 		}
2527 
2528 		if (!upper->eb) {
2529 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2530 			if (ret < 0) {
2531 				err = ret;
2532 				break;
2533 			}
2534 			BUG_ON(ret > 0);
2535 
2536 			if (!upper->eb) {
2537 				upper->eb = path->nodes[upper->level];
2538 				path->nodes[upper->level] = NULL;
2539 			} else {
2540 				BUG_ON(upper->eb != path->nodes[upper->level]);
2541 			}
2542 
2543 			upper->locked = 1;
2544 			path->locks[upper->level] = 0;
2545 
2546 			slot = path->slots[upper->level];
2547 			btrfs_release_path(path);
2548 		} else {
2549 			ret = btrfs_bin_search(upper->eb, key, upper->level,
2550 					       &slot);
2551 			BUG_ON(ret);
2552 		}
2553 
2554 		bytenr = btrfs_node_blockptr(upper->eb, slot);
2555 		if (lowest) {
2556 			BUG_ON(bytenr != node->bytenr);
2557 		} else {
2558 			if (node->eb->start == bytenr)
2559 				goto next;
2560 		}
2561 
2562 		blocksize = btrfs_level_size(root, node->level);
2563 		generation = btrfs_node_ptr_generation(upper->eb, slot);
2564 		eb = read_tree_block(root, bytenr, blocksize, generation);
2565 		if (!eb) {
2566 			err = -EIO;
2567 			goto next;
2568 		}
2569 		btrfs_tree_lock(eb);
2570 		btrfs_set_lock_blocking(eb);
2571 
2572 		if (!node->eb) {
2573 			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2574 					      slot, &eb);
2575 			btrfs_tree_unlock(eb);
2576 			free_extent_buffer(eb);
2577 			if (ret < 0) {
2578 				err = ret;
2579 				goto next;
2580 			}
2581 			BUG_ON(node->eb != eb);
2582 		} else {
2583 			btrfs_set_node_blockptr(upper->eb, slot,
2584 						node->eb->start);
2585 			btrfs_set_node_ptr_generation(upper->eb, slot,
2586 						      trans->transid);
2587 			btrfs_mark_buffer_dirty(upper->eb);
2588 
2589 			ret = btrfs_inc_extent_ref(trans, root,
2590 						node->eb->start, blocksize,
2591 						upper->eb->start,
2592 						btrfs_header_owner(upper->eb),
2593 						node->level, 0, 1);
2594 			BUG_ON(ret);
2595 
2596 			ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2597 			BUG_ON(ret);
2598 		}
2599 next:
2600 		if (!upper->pending)
2601 			drop_node_buffer(upper);
2602 		else
2603 			unlock_node_buffer(upper);
2604 		if (err)
2605 			break;
2606 	}
2607 
2608 	if (!err && node->pending) {
2609 		drop_node_buffer(node);
2610 		list_move_tail(&node->list, &rc->backref_cache.changed);
2611 		node->pending = 0;
2612 	}
2613 
2614 	path->lowest_level = 0;
2615 	BUG_ON(err == -ENOSPC);
2616 	return err;
2617 }
2618 
2619 static int link_to_upper(struct btrfs_trans_handle *trans,
2620 			 struct reloc_control *rc,
2621 			 struct backref_node *node,
2622 			 struct btrfs_path *path)
2623 {
2624 	struct btrfs_key key;
2625 
2626 	btrfs_node_key_to_cpu(node->eb, &key, 0);
2627 	return do_relocation(trans, rc, node, &key, path, 0);
2628 }
2629 
2630 static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2631 				struct reloc_control *rc,
2632 				struct btrfs_path *path, int err)
2633 {
2634 	LIST_HEAD(list);
2635 	struct backref_cache *cache = &rc->backref_cache;
2636 	struct backref_node *node;
2637 	int level;
2638 	int ret;
2639 
2640 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2641 		while (!list_empty(&cache->pending[level])) {
2642 			node = list_entry(cache->pending[level].next,
2643 					  struct backref_node, list);
2644 			list_move_tail(&node->list, &list);
2645 			BUG_ON(!node->pending);
2646 
2647 			if (!err) {
2648 				ret = link_to_upper(trans, rc, node, path);
2649 				if (ret < 0)
2650 					err = ret;
2651 			}
2652 		}
2653 		list_splice_init(&list, &cache->pending[level]);
2654 	}
2655 	return err;
2656 }
2657 
2658 static void mark_block_processed(struct reloc_control *rc,
2659 				 u64 bytenr, u32 blocksize)
2660 {
2661 	set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1,
2662 			EXTENT_DIRTY, GFP_NOFS);
2663 }
2664 
2665 static void __mark_block_processed(struct reloc_control *rc,
2666 				   struct backref_node *node)
2667 {
2668 	u32 blocksize;
2669 	if (node->level == 0 ||
2670 	    in_block_group(node->bytenr, rc->block_group)) {
2671 		blocksize = btrfs_level_size(rc->extent_root, node->level);
2672 		mark_block_processed(rc, node->bytenr, blocksize);
2673 	}
2674 	node->processed = 1;
2675 }
2676 
2677 /*
2678  * mark a block and all blocks directly/indirectly reference the block
2679  * as processed.
2680  */
2681 static void update_processed_blocks(struct reloc_control *rc,
2682 				    struct backref_node *node)
2683 {
2684 	struct backref_node *next = node;
2685 	struct backref_edge *edge;
2686 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2687 	int index = 0;
2688 
2689 	while (next) {
2690 		cond_resched();
2691 		while (1) {
2692 			if (next->processed)
2693 				break;
2694 
2695 			__mark_block_processed(rc, next);
2696 
2697 			if (list_empty(&next->upper))
2698 				break;
2699 
2700 			edge = list_entry(next->upper.next,
2701 					  struct backref_edge, list[LOWER]);
2702 			edges[index++] = edge;
2703 			next = edge->node[UPPER];
2704 		}
2705 		next = walk_down_backref(edges, &index);
2706 	}
2707 }
2708 
2709 static int tree_block_processed(u64 bytenr, u32 blocksize,
2710 				struct reloc_control *rc)
2711 {
2712 	if (test_range_bit(&rc->processed_blocks, bytenr,
2713 			   bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2714 		return 1;
2715 	return 0;
2716 }
2717 
2718 static int get_tree_block_key(struct reloc_control *rc,
2719 			      struct tree_block *block)
2720 {
2721 	struct extent_buffer *eb;
2722 
2723 	BUG_ON(block->key_ready);
2724 	eb = read_tree_block(rc->extent_root, block->bytenr,
2725 			     block->key.objectid, block->key.offset);
2726 	BUG_ON(!eb);
2727 	WARN_ON(btrfs_header_level(eb) != block->level);
2728 	if (block->level == 0)
2729 		btrfs_item_key_to_cpu(eb, &block->key, 0);
2730 	else
2731 		btrfs_node_key_to_cpu(eb, &block->key, 0);
2732 	free_extent_buffer(eb);
2733 	block->key_ready = 1;
2734 	return 0;
2735 }
2736 
2737 static int reada_tree_block(struct reloc_control *rc,
2738 			    struct tree_block *block)
2739 {
2740 	BUG_ON(block->key_ready);
2741 	readahead_tree_block(rc->extent_root, block->bytenr,
2742 			     block->key.objectid, block->key.offset);
2743 	return 0;
2744 }
2745 
2746 /*
2747  * helper function to relocate a tree block
2748  */
2749 static int relocate_tree_block(struct btrfs_trans_handle *trans,
2750 				struct reloc_control *rc,
2751 				struct backref_node *node,
2752 				struct btrfs_key *key,
2753 				struct btrfs_path *path)
2754 {
2755 	struct btrfs_root *root;
2756 	int release = 0;
2757 	int ret = 0;
2758 
2759 	if (!node)
2760 		return 0;
2761 
2762 	BUG_ON(node->processed);
2763 	root = select_one_root(trans, node);
2764 	if (root == ERR_PTR(-ENOENT)) {
2765 		update_processed_blocks(rc, node);
2766 		goto out;
2767 	}
2768 
2769 	if (!root || root->ref_cows) {
2770 		ret = reserve_metadata_space(trans, rc, node);
2771 		if (ret)
2772 			goto out;
2773 		release = 1;
2774 	}
2775 
2776 	if (root) {
2777 		if (root->ref_cows) {
2778 			BUG_ON(node->new_bytenr);
2779 			BUG_ON(!list_empty(&node->list));
2780 			btrfs_record_root_in_trans(trans, root);
2781 			root = root->reloc_root;
2782 			node->new_bytenr = root->node->start;
2783 			node->root = root;
2784 			list_add_tail(&node->list, &rc->backref_cache.changed);
2785 		} else {
2786 			path->lowest_level = node->level;
2787 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2788 			btrfs_release_path(path);
2789 			if (ret > 0)
2790 				ret = 0;
2791 		}
2792 		if (!ret)
2793 			update_processed_blocks(rc, node);
2794 	} else {
2795 		ret = do_relocation(trans, rc, node, key, path, 1);
2796 	}
2797 out:
2798 	if (ret || node->level == 0 || node->cowonly) {
2799 		if (release)
2800 			release_metadata_space(rc, node);
2801 		remove_backref_node(&rc->backref_cache, node);
2802 	}
2803 	return ret;
2804 }
2805 
2806 /*
2807  * relocate a list of blocks
2808  */
2809 static noinline_for_stack
2810 int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2811 			 struct reloc_control *rc, struct rb_root *blocks)
2812 {
2813 	struct backref_node *node;
2814 	struct btrfs_path *path;
2815 	struct tree_block *block;
2816 	struct rb_node *rb_node;
2817 	int ret;
2818 	int err = 0;
2819 
2820 	path = btrfs_alloc_path();
2821 	if (!path)
2822 		return -ENOMEM;
2823 
2824 	rb_node = rb_first(blocks);
2825 	while (rb_node) {
2826 		block = rb_entry(rb_node, struct tree_block, rb_node);
2827 		if (!block->key_ready)
2828 			reada_tree_block(rc, block);
2829 		rb_node = rb_next(rb_node);
2830 	}
2831 
2832 	rb_node = rb_first(blocks);
2833 	while (rb_node) {
2834 		block = rb_entry(rb_node, struct tree_block, rb_node);
2835 		if (!block->key_ready)
2836 			get_tree_block_key(rc, block);
2837 		rb_node = rb_next(rb_node);
2838 	}
2839 
2840 	rb_node = rb_first(blocks);
2841 	while (rb_node) {
2842 		block = rb_entry(rb_node, struct tree_block, rb_node);
2843 
2844 		node = build_backref_tree(rc, &block->key,
2845 					  block->level, block->bytenr);
2846 		if (IS_ERR(node)) {
2847 			err = PTR_ERR(node);
2848 			goto out;
2849 		}
2850 
2851 		ret = relocate_tree_block(trans, rc, node, &block->key,
2852 					  path);
2853 		if (ret < 0) {
2854 			if (ret != -EAGAIN || rb_node == rb_first(blocks))
2855 				err = ret;
2856 			goto out;
2857 		}
2858 		rb_node = rb_next(rb_node);
2859 	}
2860 out:
2861 	free_block_list(blocks);
2862 	err = finish_pending_nodes(trans, rc, path, err);
2863 
2864 	btrfs_free_path(path);
2865 	return err;
2866 }
2867 
2868 static noinline_for_stack
2869 int prealloc_file_extent_cluster(struct inode *inode,
2870 				 struct file_extent_cluster *cluster)
2871 {
2872 	u64 alloc_hint = 0;
2873 	u64 start;
2874 	u64 end;
2875 	u64 offset = BTRFS_I(inode)->index_cnt;
2876 	u64 num_bytes;
2877 	int nr = 0;
2878 	int ret = 0;
2879 
2880 	BUG_ON(cluster->start != cluster->boundary[0]);
2881 	mutex_lock(&inode->i_mutex);
2882 
2883 	ret = btrfs_check_data_free_space(inode, cluster->end +
2884 					  1 - cluster->start);
2885 	if (ret)
2886 		goto out;
2887 
2888 	while (nr < cluster->nr) {
2889 		start = cluster->boundary[nr] - offset;
2890 		if (nr + 1 < cluster->nr)
2891 			end = cluster->boundary[nr + 1] - 1 - offset;
2892 		else
2893 			end = cluster->end - offset;
2894 
2895 		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2896 		num_bytes = end + 1 - start;
2897 		ret = btrfs_prealloc_file_range(inode, 0, start,
2898 						num_bytes, num_bytes,
2899 						end + 1, &alloc_hint);
2900 		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2901 		if (ret)
2902 			break;
2903 		nr++;
2904 	}
2905 	btrfs_free_reserved_data_space(inode, cluster->end +
2906 				       1 - cluster->start);
2907 out:
2908 	mutex_unlock(&inode->i_mutex);
2909 	return ret;
2910 }
2911 
2912 static noinline_for_stack
2913 int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
2914 			 u64 block_start)
2915 {
2916 	struct btrfs_root *root = BTRFS_I(inode)->root;
2917 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2918 	struct extent_map *em;
2919 	int ret = 0;
2920 
2921 	em = alloc_extent_map();
2922 	if (!em)
2923 		return -ENOMEM;
2924 
2925 	em->start = start;
2926 	em->len = end + 1 - start;
2927 	em->block_len = em->len;
2928 	em->block_start = block_start;
2929 	em->bdev = root->fs_info->fs_devices->latest_bdev;
2930 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
2931 
2932 	lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2933 	while (1) {
2934 		write_lock(&em_tree->lock);
2935 		ret = add_extent_mapping(em_tree, em);
2936 		write_unlock(&em_tree->lock);
2937 		if (ret != -EEXIST) {
2938 			free_extent_map(em);
2939 			break;
2940 		}
2941 		btrfs_drop_extent_cache(inode, start, end, 0);
2942 	}
2943 	unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2944 	return ret;
2945 }
2946 
2947 static int relocate_file_extent_cluster(struct inode *inode,
2948 					struct file_extent_cluster *cluster)
2949 {
2950 	u64 page_start;
2951 	u64 page_end;
2952 	u64 offset = BTRFS_I(inode)->index_cnt;
2953 	unsigned long index;
2954 	unsigned long last_index;
2955 	struct page *page;
2956 	struct file_ra_state *ra;
2957 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
2958 	int nr = 0;
2959 	int ret = 0;
2960 
2961 	if (!cluster->nr)
2962 		return 0;
2963 
2964 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
2965 	if (!ra)
2966 		return -ENOMEM;
2967 
2968 	ret = prealloc_file_extent_cluster(inode, cluster);
2969 	if (ret)
2970 		goto out;
2971 
2972 	file_ra_state_init(ra, inode->i_mapping);
2973 
2974 	ret = setup_extent_mapping(inode, cluster->start - offset,
2975 				   cluster->end - offset, cluster->start);
2976 	if (ret)
2977 		goto out;
2978 
2979 	index = (cluster->start - offset) >> PAGE_CACHE_SHIFT;
2980 	last_index = (cluster->end - offset) >> PAGE_CACHE_SHIFT;
2981 	while (index <= last_index) {
2982 		ret = btrfs_delalloc_reserve_metadata(inode, PAGE_CACHE_SIZE);
2983 		if (ret)
2984 			goto out;
2985 
2986 		page = find_lock_page(inode->i_mapping, index);
2987 		if (!page) {
2988 			page_cache_sync_readahead(inode->i_mapping,
2989 						  ra, NULL, index,
2990 						  last_index + 1 - index);
2991 			page = find_or_create_page(inode->i_mapping, index,
2992 						   mask);
2993 			if (!page) {
2994 				btrfs_delalloc_release_metadata(inode,
2995 							PAGE_CACHE_SIZE);
2996 				ret = -ENOMEM;
2997 				goto out;
2998 			}
2999 		}
3000 
3001 		if (PageReadahead(page)) {
3002 			page_cache_async_readahead(inode->i_mapping,
3003 						   ra, NULL, page, index,
3004 						   last_index + 1 - index);
3005 		}
3006 
3007 		if (!PageUptodate(page)) {
3008 			btrfs_readpage(NULL, page);
3009 			lock_page(page);
3010 			if (!PageUptodate(page)) {
3011 				unlock_page(page);
3012 				page_cache_release(page);
3013 				btrfs_delalloc_release_metadata(inode,
3014 							PAGE_CACHE_SIZE);
3015 				ret = -EIO;
3016 				goto out;
3017 			}
3018 		}
3019 
3020 		page_start = (u64)page->index << PAGE_CACHE_SHIFT;
3021 		page_end = page_start + PAGE_CACHE_SIZE - 1;
3022 
3023 		lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
3024 
3025 		set_page_extent_mapped(page);
3026 
3027 		if (nr < cluster->nr &&
3028 		    page_start + offset == cluster->boundary[nr]) {
3029 			set_extent_bits(&BTRFS_I(inode)->io_tree,
3030 					page_start, page_end,
3031 					EXTENT_BOUNDARY, GFP_NOFS);
3032 			nr++;
3033 		}
3034 
3035 		btrfs_set_extent_delalloc(inode, page_start, page_end, NULL);
3036 		set_page_dirty(page);
3037 
3038 		unlock_extent(&BTRFS_I(inode)->io_tree,
3039 			      page_start, page_end);
3040 		unlock_page(page);
3041 		page_cache_release(page);
3042 
3043 		index++;
3044 		balance_dirty_pages_ratelimited(inode->i_mapping);
3045 		btrfs_throttle(BTRFS_I(inode)->root);
3046 	}
3047 	WARN_ON(nr != cluster->nr);
3048 out:
3049 	kfree(ra);
3050 	return ret;
3051 }
3052 
3053 static noinline_for_stack
3054 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3055 			 struct file_extent_cluster *cluster)
3056 {
3057 	int ret;
3058 
3059 	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3060 		ret = relocate_file_extent_cluster(inode, cluster);
3061 		if (ret)
3062 			return ret;
3063 		cluster->nr = 0;
3064 	}
3065 
3066 	if (!cluster->nr)
3067 		cluster->start = extent_key->objectid;
3068 	else
3069 		BUG_ON(cluster->nr >= MAX_EXTENTS);
3070 	cluster->end = extent_key->objectid + extent_key->offset - 1;
3071 	cluster->boundary[cluster->nr] = extent_key->objectid;
3072 	cluster->nr++;
3073 
3074 	if (cluster->nr >= MAX_EXTENTS) {
3075 		ret = relocate_file_extent_cluster(inode, cluster);
3076 		if (ret)
3077 			return ret;
3078 		cluster->nr = 0;
3079 	}
3080 	return 0;
3081 }
3082 
3083 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3084 static int get_ref_objectid_v0(struct reloc_control *rc,
3085 			       struct btrfs_path *path,
3086 			       struct btrfs_key *extent_key,
3087 			       u64 *ref_objectid, int *path_change)
3088 {
3089 	struct btrfs_key key;
3090 	struct extent_buffer *leaf;
3091 	struct btrfs_extent_ref_v0 *ref0;
3092 	int ret;
3093 	int slot;
3094 
3095 	leaf = path->nodes[0];
3096 	slot = path->slots[0];
3097 	while (1) {
3098 		if (slot >= btrfs_header_nritems(leaf)) {
3099 			ret = btrfs_next_leaf(rc->extent_root, path);
3100 			if (ret < 0)
3101 				return ret;
3102 			BUG_ON(ret > 0);
3103 			leaf = path->nodes[0];
3104 			slot = path->slots[0];
3105 			if (path_change)
3106 				*path_change = 1;
3107 		}
3108 		btrfs_item_key_to_cpu(leaf, &key, slot);
3109 		if (key.objectid != extent_key->objectid)
3110 			return -ENOENT;
3111 
3112 		if (key.type != BTRFS_EXTENT_REF_V0_KEY) {
3113 			slot++;
3114 			continue;
3115 		}
3116 		ref0 = btrfs_item_ptr(leaf, slot,
3117 				struct btrfs_extent_ref_v0);
3118 		*ref_objectid = btrfs_ref_objectid_v0(leaf, ref0);
3119 		break;
3120 	}
3121 	return 0;
3122 }
3123 #endif
3124 
3125 /*
3126  * helper to add a tree block to the list.
3127  * the major work is getting the generation and level of the block
3128  */
3129 static int add_tree_block(struct reloc_control *rc,
3130 			  struct btrfs_key *extent_key,
3131 			  struct btrfs_path *path,
3132 			  struct rb_root *blocks)
3133 {
3134 	struct extent_buffer *eb;
3135 	struct btrfs_extent_item *ei;
3136 	struct btrfs_tree_block_info *bi;
3137 	struct tree_block *block;
3138 	struct rb_node *rb_node;
3139 	u32 item_size;
3140 	int level = -1;
3141 	int generation;
3142 
3143 	eb =  path->nodes[0];
3144 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
3145 
3146 	if (item_size >= sizeof(*ei) + sizeof(*bi)) {
3147 		ei = btrfs_item_ptr(eb, path->slots[0],
3148 				struct btrfs_extent_item);
3149 		bi = (struct btrfs_tree_block_info *)(ei + 1);
3150 		generation = btrfs_extent_generation(eb, ei);
3151 		level = btrfs_tree_block_level(eb, bi);
3152 	} else {
3153 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3154 		u64 ref_owner;
3155 		int ret;
3156 
3157 		BUG_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3158 		ret = get_ref_objectid_v0(rc, path, extent_key,
3159 					  &ref_owner, NULL);
3160 		if (ret < 0)
3161 			return ret;
3162 		BUG_ON(ref_owner >= BTRFS_MAX_LEVEL);
3163 		level = (int)ref_owner;
3164 		/* FIXME: get real generation */
3165 		generation = 0;
3166 #else
3167 		BUG();
3168 #endif
3169 	}
3170 
3171 	btrfs_release_path(path);
3172 
3173 	BUG_ON(level == -1);
3174 
3175 	block = kmalloc(sizeof(*block), GFP_NOFS);
3176 	if (!block)
3177 		return -ENOMEM;
3178 
3179 	block->bytenr = extent_key->objectid;
3180 	block->key.objectid = extent_key->offset;
3181 	block->key.offset = generation;
3182 	block->level = level;
3183 	block->key_ready = 0;
3184 
3185 	rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
3186 	if (rb_node)
3187 		backref_tree_panic(rb_node, -EEXIST, block->bytenr);
3188 
3189 	return 0;
3190 }
3191 
3192 /*
3193  * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3194  */
3195 static int __add_tree_block(struct reloc_control *rc,
3196 			    u64 bytenr, u32 blocksize,
3197 			    struct rb_root *blocks)
3198 {
3199 	struct btrfs_path *path;
3200 	struct btrfs_key key;
3201 	int ret;
3202 
3203 	if (tree_block_processed(bytenr, blocksize, rc))
3204 		return 0;
3205 
3206 	if (tree_search(blocks, bytenr))
3207 		return 0;
3208 
3209 	path = btrfs_alloc_path();
3210 	if (!path)
3211 		return -ENOMEM;
3212 
3213 	key.objectid = bytenr;
3214 	key.type = BTRFS_EXTENT_ITEM_KEY;
3215 	key.offset = blocksize;
3216 
3217 	path->search_commit_root = 1;
3218 	path->skip_locking = 1;
3219 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3220 	if (ret < 0)
3221 		goto out;
3222 	BUG_ON(ret);
3223 
3224 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3225 	ret = add_tree_block(rc, &key, path, blocks);
3226 out:
3227 	btrfs_free_path(path);
3228 	return ret;
3229 }
3230 
3231 /*
3232  * helper to check if the block use full backrefs for pointers in it
3233  */
3234 static int block_use_full_backref(struct reloc_control *rc,
3235 				  struct extent_buffer *eb)
3236 {
3237 	u64 flags;
3238 	int ret;
3239 
3240 	if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) ||
3241 	    btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV)
3242 		return 1;
3243 
3244 	ret = btrfs_lookup_extent_info(NULL, rc->extent_root,
3245 				       eb->start, eb->len, NULL, &flags);
3246 	BUG_ON(ret);
3247 
3248 	if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
3249 		ret = 1;
3250 	else
3251 		ret = 0;
3252 	return ret;
3253 }
3254 
3255 static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3256 				    struct inode *inode, u64 ino)
3257 {
3258 	struct btrfs_key key;
3259 	struct btrfs_path *path;
3260 	struct btrfs_root *root = fs_info->tree_root;
3261 	struct btrfs_trans_handle *trans;
3262 	int ret = 0;
3263 
3264 	if (inode)
3265 		goto truncate;
3266 
3267 	key.objectid = ino;
3268 	key.type = BTRFS_INODE_ITEM_KEY;
3269 	key.offset = 0;
3270 
3271 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
3272 	if (IS_ERR(inode) || is_bad_inode(inode)) {
3273 		if (!IS_ERR(inode))
3274 			iput(inode);
3275 		return -ENOENT;
3276 	}
3277 
3278 truncate:
3279 	path = btrfs_alloc_path();
3280 	if (!path) {
3281 		ret = -ENOMEM;
3282 		goto out;
3283 	}
3284 
3285 	trans = btrfs_join_transaction(root);
3286 	if (IS_ERR(trans)) {
3287 		btrfs_free_path(path);
3288 		ret = PTR_ERR(trans);
3289 		goto out;
3290 	}
3291 
3292 	ret = btrfs_truncate_free_space_cache(root, trans, path, inode);
3293 
3294 	btrfs_free_path(path);
3295 	btrfs_end_transaction(trans, root);
3296 	btrfs_btree_balance_dirty(root);
3297 out:
3298 	iput(inode);
3299 	return ret;
3300 }
3301 
3302 /*
3303  * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY
3304  * this function scans fs tree to find blocks reference the data extent
3305  */
3306 static int find_data_references(struct reloc_control *rc,
3307 				struct btrfs_key *extent_key,
3308 				struct extent_buffer *leaf,
3309 				struct btrfs_extent_data_ref *ref,
3310 				struct rb_root *blocks)
3311 {
3312 	struct btrfs_path *path;
3313 	struct tree_block *block;
3314 	struct btrfs_root *root;
3315 	struct btrfs_file_extent_item *fi;
3316 	struct rb_node *rb_node;
3317 	struct btrfs_key key;
3318 	u64 ref_root;
3319 	u64 ref_objectid;
3320 	u64 ref_offset;
3321 	u32 ref_count;
3322 	u32 nritems;
3323 	int err = 0;
3324 	int added = 0;
3325 	int counted;
3326 	int ret;
3327 
3328 	ref_root = btrfs_extent_data_ref_root(leaf, ref);
3329 	ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref);
3330 	ref_offset = btrfs_extent_data_ref_offset(leaf, ref);
3331 	ref_count = btrfs_extent_data_ref_count(leaf, ref);
3332 
3333 	/*
3334 	 * This is an extent belonging to the free space cache, lets just delete
3335 	 * it and redo the search.
3336 	 */
3337 	if (ref_root == BTRFS_ROOT_TREE_OBJECTID) {
3338 		ret = delete_block_group_cache(rc->extent_root->fs_info,
3339 					       NULL, ref_objectid);
3340 		if (ret != -ENOENT)
3341 			return ret;
3342 		ret = 0;
3343 	}
3344 
3345 	path = btrfs_alloc_path();
3346 	if (!path)
3347 		return -ENOMEM;
3348 	path->reada = 1;
3349 
3350 	root = read_fs_root(rc->extent_root->fs_info, ref_root);
3351 	if (IS_ERR(root)) {
3352 		err = PTR_ERR(root);
3353 		goto out;
3354 	}
3355 
3356 	key.objectid = ref_objectid;
3357 	key.type = BTRFS_EXTENT_DATA_KEY;
3358 	if (ref_offset > ((u64)-1 << 32))
3359 		key.offset = 0;
3360 	else
3361 		key.offset = ref_offset;
3362 
3363 	path->search_commit_root = 1;
3364 	path->skip_locking = 1;
3365 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3366 	if (ret < 0) {
3367 		err = ret;
3368 		goto out;
3369 	}
3370 
3371 	leaf = path->nodes[0];
3372 	nritems = btrfs_header_nritems(leaf);
3373 	/*
3374 	 * the references in tree blocks that use full backrefs
3375 	 * are not counted in
3376 	 */
3377 	if (block_use_full_backref(rc, leaf))
3378 		counted = 0;
3379 	else
3380 		counted = 1;
3381 	rb_node = tree_search(blocks, leaf->start);
3382 	if (rb_node) {
3383 		if (counted)
3384 			added = 1;
3385 		else
3386 			path->slots[0] = nritems;
3387 	}
3388 
3389 	while (ref_count > 0) {
3390 		while (path->slots[0] >= nritems) {
3391 			ret = btrfs_next_leaf(root, path);
3392 			if (ret < 0) {
3393 				err = ret;
3394 				goto out;
3395 			}
3396 			if (ret > 0) {
3397 				WARN_ON(1);
3398 				goto out;
3399 			}
3400 
3401 			leaf = path->nodes[0];
3402 			nritems = btrfs_header_nritems(leaf);
3403 			added = 0;
3404 
3405 			if (block_use_full_backref(rc, leaf))
3406 				counted = 0;
3407 			else
3408 				counted = 1;
3409 			rb_node = tree_search(blocks, leaf->start);
3410 			if (rb_node) {
3411 				if (counted)
3412 					added = 1;
3413 				else
3414 					path->slots[0] = nritems;
3415 			}
3416 		}
3417 
3418 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3419 		if (key.objectid != ref_objectid ||
3420 		    key.type != BTRFS_EXTENT_DATA_KEY) {
3421 			WARN_ON(1);
3422 			break;
3423 		}
3424 
3425 		fi = btrfs_item_ptr(leaf, path->slots[0],
3426 				    struct btrfs_file_extent_item);
3427 
3428 		if (btrfs_file_extent_type(leaf, fi) ==
3429 		    BTRFS_FILE_EXTENT_INLINE)
3430 			goto next;
3431 
3432 		if (btrfs_file_extent_disk_bytenr(leaf, fi) !=
3433 		    extent_key->objectid)
3434 			goto next;
3435 
3436 		key.offset -= btrfs_file_extent_offset(leaf, fi);
3437 		if (key.offset != ref_offset)
3438 			goto next;
3439 
3440 		if (counted)
3441 			ref_count--;
3442 		if (added)
3443 			goto next;
3444 
3445 		if (!tree_block_processed(leaf->start, leaf->len, rc)) {
3446 			block = kmalloc(sizeof(*block), GFP_NOFS);
3447 			if (!block) {
3448 				err = -ENOMEM;
3449 				break;
3450 			}
3451 			block->bytenr = leaf->start;
3452 			btrfs_item_key_to_cpu(leaf, &block->key, 0);
3453 			block->level = 0;
3454 			block->key_ready = 1;
3455 			rb_node = tree_insert(blocks, block->bytenr,
3456 					      &block->rb_node);
3457 			if (rb_node)
3458 				backref_tree_panic(rb_node, -EEXIST,
3459 						   block->bytenr);
3460 		}
3461 		if (counted)
3462 			added = 1;
3463 		else
3464 			path->slots[0] = nritems;
3465 next:
3466 		path->slots[0]++;
3467 
3468 	}
3469 out:
3470 	btrfs_free_path(path);
3471 	return err;
3472 }
3473 
3474 /*
3475  * hepler to find all tree blocks that reference a given data extent
3476  */
3477 static noinline_for_stack
3478 int add_data_references(struct reloc_control *rc,
3479 			struct btrfs_key *extent_key,
3480 			struct btrfs_path *path,
3481 			struct rb_root *blocks)
3482 {
3483 	struct btrfs_key key;
3484 	struct extent_buffer *eb;
3485 	struct btrfs_extent_data_ref *dref;
3486 	struct btrfs_extent_inline_ref *iref;
3487 	unsigned long ptr;
3488 	unsigned long end;
3489 	u32 blocksize = btrfs_level_size(rc->extent_root, 0);
3490 	int ret;
3491 	int err = 0;
3492 
3493 	eb = path->nodes[0];
3494 	ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
3495 	end = ptr + btrfs_item_size_nr(eb, path->slots[0]);
3496 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3497 	if (ptr + sizeof(struct btrfs_extent_item_v0) == end)
3498 		ptr = end;
3499 	else
3500 #endif
3501 		ptr += sizeof(struct btrfs_extent_item);
3502 
3503 	while (ptr < end) {
3504 		iref = (struct btrfs_extent_inline_ref *)ptr;
3505 		key.type = btrfs_extent_inline_ref_type(eb, iref);
3506 		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3507 			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3508 			ret = __add_tree_block(rc, key.offset, blocksize,
3509 					       blocks);
3510 		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3511 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
3512 			ret = find_data_references(rc, extent_key,
3513 						   eb, dref, blocks);
3514 		} else {
3515 			BUG();
3516 		}
3517 		ptr += btrfs_extent_inline_ref_size(key.type);
3518 	}
3519 	WARN_ON(ptr > end);
3520 
3521 	while (1) {
3522 		cond_resched();
3523 		eb = path->nodes[0];
3524 		if (path->slots[0] >= btrfs_header_nritems(eb)) {
3525 			ret = btrfs_next_leaf(rc->extent_root, path);
3526 			if (ret < 0) {
3527 				err = ret;
3528 				break;
3529 			}
3530 			if (ret > 0)
3531 				break;
3532 			eb = path->nodes[0];
3533 		}
3534 
3535 		btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
3536 		if (key.objectid != extent_key->objectid)
3537 			break;
3538 
3539 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3540 		if (key.type == BTRFS_SHARED_DATA_REF_KEY ||
3541 		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
3542 #else
3543 		BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
3544 		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3545 #endif
3546 			ret = __add_tree_block(rc, key.offset, blocksize,
3547 					       blocks);
3548 		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3549 			dref = btrfs_item_ptr(eb, path->slots[0],
3550 					      struct btrfs_extent_data_ref);
3551 			ret = find_data_references(rc, extent_key,
3552 						   eb, dref, blocks);
3553 		} else {
3554 			ret = 0;
3555 		}
3556 		if (ret) {
3557 			err = ret;
3558 			break;
3559 		}
3560 		path->slots[0]++;
3561 	}
3562 	btrfs_release_path(path);
3563 	if (err)
3564 		free_block_list(blocks);
3565 	return err;
3566 }
3567 
3568 /*
3569  * hepler to find next unprocessed extent
3570  */
3571 static noinline_for_stack
3572 int find_next_extent(struct btrfs_trans_handle *trans,
3573 		     struct reloc_control *rc, struct btrfs_path *path,
3574 		     struct btrfs_key *extent_key)
3575 {
3576 	struct btrfs_key key;
3577 	struct extent_buffer *leaf;
3578 	u64 start, end, last;
3579 	int ret;
3580 
3581 	last = rc->block_group->key.objectid + rc->block_group->key.offset;
3582 	while (1) {
3583 		cond_resched();
3584 		if (rc->search_start >= last) {
3585 			ret = 1;
3586 			break;
3587 		}
3588 
3589 		key.objectid = rc->search_start;
3590 		key.type = BTRFS_EXTENT_ITEM_KEY;
3591 		key.offset = 0;
3592 
3593 		path->search_commit_root = 1;
3594 		path->skip_locking = 1;
3595 		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3596 					0, 0);
3597 		if (ret < 0)
3598 			break;
3599 next:
3600 		leaf = path->nodes[0];
3601 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3602 			ret = btrfs_next_leaf(rc->extent_root, path);
3603 			if (ret != 0)
3604 				break;
3605 			leaf = path->nodes[0];
3606 		}
3607 
3608 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3609 		if (key.objectid >= last) {
3610 			ret = 1;
3611 			break;
3612 		}
3613 
3614 		if (key.type != BTRFS_EXTENT_ITEM_KEY ||
3615 		    key.objectid + key.offset <= rc->search_start) {
3616 			path->slots[0]++;
3617 			goto next;
3618 		}
3619 
3620 		ret = find_first_extent_bit(&rc->processed_blocks,
3621 					    key.objectid, &start, &end,
3622 					    EXTENT_DIRTY, NULL);
3623 
3624 		if (ret == 0 && start <= key.objectid) {
3625 			btrfs_release_path(path);
3626 			rc->search_start = end + 1;
3627 		} else {
3628 			rc->search_start = key.objectid + key.offset;
3629 			memcpy(extent_key, &key, sizeof(key));
3630 			return 0;
3631 		}
3632 	}
3633 	btrfs_release_path(path);
3634 	return ret;
3635 }
3636 
3637 static void set_reloc_control(struct reloc_control *rc)
3638 {
3639 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3640 
3641 	mutex_lock(&fs_info->reloc_mutex);
3642 	fs_info->reloc_ctl = rc;
3643 	mutex_unlock(&fs_info->reloc_mutex);
3644 }
3645 
3646 static void unset_reloc_control(struct reloc_control *rc)
3647 {
3648 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3649 
3650 	mutex_lock(&fs_info->reloc_mutex);
3651 	fs_info->reloc_ctl = NULL;
3652 	mutex_unlock(&fs_info->reloc_mutex);
3653 }
3654 
3655 static int check_extent_flags(u64 flags)
3656 {
3657 	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3658 	    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3659 		return 1;
3660 	if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
3661 	    !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3662 		return 1;
3663 	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3664 	    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
3665 		return 1;
3666 	return 0;
3667 }
3668 
3669 static noinline_for_stack
3670 int prepare_to_relocate(struct reloc_control *rc)
3671 {
3672 	struct btrfs_trans_handle *trans;
3673 	int ret;
3674 
3675 	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root,
3676 					      BTRFS_BLOCK_RSV_TEMP);
3677 	if (!rc->block_rsv)
3678 		return -ENOMEM;
3679 
3680 	/*
3681 	 * reserve some space for creating reloc trees.
3682 	 * btrfs_init_reloc_root will use them when there
3683 	 * is no reservation in transaction handle.
3684 	 */
3685 	ret = btrfs_block_rsv_add(rc->extent_root, rc->block_rsv,
3686 				  rc->extent_root->nodesize * 256,
3687 				  BTRFS_RESERVE_FLUSH_ALL);
3688 	if (ret)
3689 		return ret;
3690 
3691 	memset(&rc->cluster, 0, sizeof(rc->cluster));
3692 	rc->search_start = rc->block_group->key.objectid;
3693 	rc->extents_found = 0;
3694 	rc->nodes_relocated = 0;
3695 	rc->merging_rsv_size = 0;
3696 
3697 	rc->create_reloc_tree = 1;
3698 	set_reloc_control(rc);
3699 
3700 	trans = btrfs_join_transaction(rc->extent_root);
3701 	BUG_ON(IS_ERR(trans));
3702 	btrfs_commit_transaction(trans, rc->extent_root);
3703 	return 0;
3704 }
3705 
3706 static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3707 {
3708 	struct rb_root blocks = RB_ROOT;
3709 	struct btrfs_key key;
3710 	struct btrfs_trans_handle *trans = NULL;
3711 	struct btrfs_path *path;
3712 	struct btrfs_extent_item *ei;
3713 	u64 flags;
3714 	u32 item_size;
3715 	int ret;
3716 	int err = 0;
3717 	int progress = 0;
3718 
3719 	path = btrfs_alloc_path();
3720 	if (!path)
3721 		return -ENOMEM;
3722 	path->reada = 1;
3723 
3724 	ret = prepare_to_relocate(rc);
3725 	if (ret) {
3726 		err = ret;
3727 		goto out_free;
3728 	}
3729 
3730 	while (1) {
3731 		progress++;
3732 		trans = btrfs_start_transaction(rc->extent_root, 0);
3733 		BUG_ON(IS_ERR(trans));
3734 restart:
3735 		if (update_backref_cache(trans, &rc->backref_cache)) {
3736 			btrfs_end_transaction(trans, rc->extent_root);
3737 			continue;
3738 		}
3739 
3740 		ret = find_next_extent(trans, rc, path, &key);
3741 		if (ret < 0)
3742 			err = ret;
3743 		if (ret != 0)
3744 			break;
3745 
3746 		rc->extents_found++;
3747 
3748 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3749 				    struct btrfs_extent_item);
3750 		item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
3751 		if (item_size >= sizeof(*ei)) {
3752 			flags = btrfs_extent_flags(path->nodes[0], ei);
3753 			ret = check_extent_flags(flags);
3754 			BUG_ON(ret);
3755 
3756 		} else {
3757 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3758 			u64 ref_owner;
3759 			int path_change = 0;
3760 
3761 			BUG_ON(item_size !=
3762 			       sizeof(struct btrfs_extent_item_v0));
3763 			ret = get_ref_objectid_v0(rc, path, &key, &ref_owner,
3764 						  &path_change);
3765 			if (ref_owner < BTRFS_FIRST_FREE_OBJECTID)
3766 				flags = BTRFS_EXTENT_FLAG_TREE_BLOCK;
3767 			else
3768 				flags = BTRFS_EXTENT_FLAG_DATA;
3769 
3770 			if (path_change) {
3771 				btrfs_release_path(path);
3772 
3773 				path->search_commit_root = 1;
3774 				path->skip_locking = 1;
3775 				ret = btrfs_search_slot(NULL, rc->extent_root,
3776 							&key, path, 0, 0);
3777 				if (ret < 0) {
3778 					err = ret;
3779 					break;
3780 				}
3781 				BUG_ON(ret > 0);
3782 			}
3783 #else
3784 			BUG();
3785 #endif
3786 		}
3787 
3788 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3789 			ret = add_tree_block(rc, &key, path, &blocks);
3790 		} else if (rc->stage == UPDATE_DATA_PTRS &&
3791 			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
3792 			ret = add_data_references(rc, &key, path, &blocks);
3793 		} else {
3794 			btrfs_release_path(path);
3795 			ret = 0;
3796 		}
3797 		if (ret < 0) {
3798 			err = ret;
3799 			break;
3800 		}
3801 
3802 		if (!RB_EMPTY_ROOT(&blocks)) {
3803 			ret = relocate_tree_blocks(trans, rc, &blocks);
3804 			if (ret < 0) {
3805 				if (ret != -EAGAIN) {
3806 					err = ret;
3807 					break;
3808 				}
3809 				rc->extents_found--;
3810 				rc->search_start = key.objectid;
3811 			}
3812 		}
3813 
3814 		ret = btrfs_block_rsv_check(rc->extent_root, rc->block_rsv, 5);
3815 		if (ret < 0) {
3816 			if (ret != -ENOSPC) {
3817 				err = ret;
3818 				WARN_ON(1);
3819 				break;
3820 			}
3821 			rc->commit_transaction = 1;
3822 		}
3823 
3824 		if (rc->commit_transaction) {
3825 			rc->commit_transaction = 0;
3826 			ret = btrfs_commit_transaction(trans, rc->extent_root);
3827 			BUG_ON(ret);
3828 		} else {
3829 			btrfs_end_transaction_throttle(trans, rc->extent_root);
3830 			btrfs_btree_balance_dirty(rc->extent_root);
3831 		}
3832 		trans = NULL;
3833 
3834 		if (rc->stage == MOVE_DATA_EXTENTS &&
3835 		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
3836 			rc->found_file_extent = 1;
3837 			ret = relocate_data_extent(rc->data_inode,
3838 						   &key, &rc->cluster);
3839 			if (ret < 0) {
3840 				err = ret;
3841 				break;
3842 			}
3843 		}
3844 	}
3845 	if (trans && progress && err == -ENOSPC) {
3846 		ret = btrfs_force_chunk_alloc(trans, rc->extent_root,
3847 					      rc->block_group->flags);
3848 		if (ret == 0) {
3849 			err = 0;
3850 			progress = 0;
3851 			goto restart;
3852 		}
3853 	}
3854 
3855 	btrfs_release_path(path);
3856 	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY,
3857 			  GFP_NOFS);
3858 
3859 	if (trans) {
3860 		btrfs_end_transaction_throttle(trans, rc->extent_root);
3861 		btrfs_btree_balance_dirty(rc->extent_root);
3862 	}
3863 
3864 	if (!err) {
3865 		ret = relocate_file_extent_cluster(rc->data_inode,
3866 						   &rc->cluster);
3867 		if (ret < 0)
3868 			err = ret;
3869 	}
3870 
3871 	rc->create_reloc_tree = 0;
3872 	set_reloc_control(rc);
3873 
3874 	backref_cache_cleanup(&rc->backref_cache);
3875 	btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1);
3876 
3877 	err = prepare_to_merge(rc, err);
3878 
3879 	merge_reloc_roots(rc);
3880 
3881 	rc->merge_reloc_tree = 0;
3882 	unset_reloc_control(rc);
3883 	btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1);
3884 
3885 	/* get rid of pinned extents */
3886 	trans = btrfs_join_transaction(rc->extent_root);
3887 	if (IS_ERR(trans))
3888 		err = PTR_ERR(trans);
3889 	else
3890 		btrfs_commit_transaction(trans, rc->extent_root);
3891 out_free:
3892 	btrfs_free_block_rsv(rc->extent_root, rc->block_rsv);
3893 	btrfs_free_path(path);
3894 	return err;
3895 }
3896 
3897 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3898 				 struct btrfs_root *root, u64 objectid)
3899 {
3900 	struct btrfs_path *path;
3901 	struct btrfs_inode_item *item;
3902 	struct extent_buffer *leaf;
3903 	int ret;
3904 
3905 	path = btrfs_alloc_path();
3906 	if (!path)
3907 		return -ENOMEM;
3908 
3909 	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
3910 	if (ret)
3911 		goto out;
3912 
3913 	leaf = path->nodes[0];
3914 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3915 	memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
3916 	btrfs_set_inode_generation(leaf, item, 1);
3917 	btrfs_set_inode_size(leaf, item, 0);
3918 	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
3919 	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
3920 					  BTRFS_INODE_PREALLOC);
3921 	btrfs_mark_buffer_dirty(leaf);
3922 	btrfs_release_path(path);
3923 out:
3924 	btrfs_free_path(path);
3925 	return ret;
3926 }
3927 
3928 /*
3929  * helper to create inode for data relocation.
3930  * the inode is in data relocation tree and its link count is 0
3931  */
3932 static noinline_for_stack
3933 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
3934 				 struct btrfs_block_group_cache *group)
3935 {
3936 	struct inode *inode = NULL;
3937 	struct btrfs_trans_handle *trans;
3938 	struct btrfs_root *root;
3939 	struct btrfs_key key;
3940 	u64 objectid = BTRFS_FIRST_FREE_OBJECTID;
3941 	int err = 0;
3942 
3943 	root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
3944 	if (IS_ERR(root))
3945 		return ERR_CAST(root);
3946 
3947 	trans = btrfs_start_transaction(root, 6);
3948 	if (IS_ERR(trans))
3949 		return ERR_CAST(trans);
3950 
3951 	err = btrfs_find_free_objectid(root, &objectid);
3952 	if (err)
3953 		goto out;
3954 
3955 	err = __insert_orphan_inode(trans, root, objectid);
3956 	BUG_ON(err);
3957 
3958 	key.objectid = objectid;
3959 	key.type = BTRFS_INODE_ITEM_KEY;
3960 	key.offset = 0;
3961 	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
3962 	BUG_ON(IS_ERR(inode) || is_bad_inode(inode));
3963 	BTRFS_I(inode)->index_cnt = group->key.objectid;
3964 
3965 	err = btrfs_orphan_add(trans, inode);
3966 out:
3967 	btrfs_end_transaction(trans, root);
3968 	btrfs_btree_balance_dirty(root);
3969 	if (err) {
3970 		if (inode)
3971 			iput(inode);
3972 		inode = ERR_PTR(err);
3973 	}
3974 	return inode;
3975 }
3976 
3977 static struct reloc_control *alloc_reloc_control(void)
3978 {
3979 	struct reloc_control *rc;
3980 
3981 	rc = kzalloc(sizeof(*rc), GFP_NOFS);
3982 	if (!rc)
3983 		return NULL;
3984 
3985 	INIT_LIST_HEAD(&rc->reloc_roots);
3986 	backref_cache_init(&rc->backref_cache);
3987 	mapping_tree_init(&rc->reloc_root_tree);
3988 	extent_io_tree_init(&rc->processed_blocks, NULL);
3989 	return rc;
3990 }
3991 
3992 /*
3993  * function to relocate all extents in a block group.
3994  */
3995 int btrfs_relocate_block_group(struct btrfs_root *extent_root, u64 group_start)
3996 {
3997 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
3998 	struct reloc_control *rc;
3999 	struct inode *inode;
4000 	struct btrfs_path *path;
4001 	int ret;
4002 	int rw = 0;
4003 	int err = 0;
4004 
4005 	rc = alloc_reloc_control();
4006 	if (!rc)
4007 		return -ENOMEM;
4008 
4009 	rc->extent_root = extent_root;
4010 
4011 	rc->block_group = btrfs_lookup_block_group(fs_info, group_start);
4012 	BUG_ON(!rc->block_group);
4013 
4014 	if (!rc->block_group->ro) {
4015 		ret = btrfs_set_block_group_ro(extent_root, rc->block_group);
4016 		if (ret) {
4017 			err = ret;
4018 			goto out;
4019 		}
4020 		rw = 1;
4021 	}
4022 
4023 	path = btrfs_alloc_path();
4024 	if (!path) {
4025 		err = -ENOMEM;
4026 		goto out;
4027 	}
4028 
4029 	inode = lookup_free_space_inode(fs_info->tree_root, rc->block_group,
4030 					path);
4031 	btrfs_free_path(path);
4032 
4033 	if (!IS_ERR(inode))
4034 		ret = delete_block_group_cache(fs_info, inode, 0);
4035 	else
4036 		ret = PTR_ERR(inode);
4037 
4038 	if (ret && ret != -ENOENT) {
4039 		err = ret;
4040 		goto out;
4041 	}
4042 
4043 	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4044 	if (IS_ERR(rc->data_inode)) {
4045 		err = PTR_ERR(rc->data_inode);
4046 		rc->data_inode = NULL;
4047 		goto out;
4048 	}
4049 
4050 	printk(KERN_INFO "btrfs: relocating block group %llu flags %llu\n",
4051 	       (unsigned long long)rc->block_group->key.objectid,
4052 	       (unsigned long long)rc->block_group->flags);
4053 
4054 	ret = btrfs_start_delalloc_inodes(fs_info->tree_root, 0);
4055 	if (ret < 0) {
4056 		err = ret;
4057 		goto out;
4058 	}
4059 	btrfs_wait_ordered_extents(fs_info->tree_root, 0);
4060 
4061 	while (1) {
4062 		mutex_lock(&fs_info->cleaner_mutex);
4063 
4064 		btrfs_clean_old_snapshots(fs_info->tree_root);
4065 		ret = relocate_block_group(rc);
4066 
4067 		mutex_unlock(&fs_info->cleaner_mutex);
4068 		if (ret < 0) {
4069 			err = ret;
4070 			goto out;
4071 		}
4072 
4073 		if (rc->extents_found == 0)
4074 			break;
4075 
4076 		printk(KERN_INFO "btrfs: found %llu extents\n",
4077 			(unsigned long long)rc->extents_found);
4078 
4079 		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4080 			btrfs_wait_ordered_range(rc->data_inode, 0, (u64)-1);
4081 			invalidate_mapping_pages(rc->data_inode->i_mapping,
4082 						 0, -1);
4083 			rc->stage = UPDATE_DATA_PTRS;
4084 		}
4085 	}
4086 
4087 	filemap_write_and_wait_range(fs_info->btree_inode->i_mapping,
4088 				     rc->block_group->key.objectid,
4089 				     rc->block_group->key.objectid +
4090 				     rc->block_group->key.offset - 1);
4091 
4092 	WARN_ON(rc->block_group->pinned > 0);
4093 	WARN_ON(rc->block_group->reserved > 0);
4094 	WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0);
4095 out:
4096 	if (err && rw)
4097 		btrfs_set_block_group_rw(extent_root, rc->block_group);
4098 	iput(rc->data_inode);
4099 	btrfs_put_block_group(rc->block_group);
4100 	kfree(rc);
4101 	return err;
4102 }
4103 
4104 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4105 {
4106 	struct btrfs_trans_handle *trans;
4107 	int ret, err;
4108 
4109 	trans = btrfs_start_transaction(root->fs_info->tree_root, 0);
4110 	if (IS_ERR(trans))
4111 		return PTR_ERR(trans);
4112 
4113 	memset(&root->root_item.drop_progress, 0,
4114 		sizeof(root->root_item.drop_progress));
4115 	root->root_item.drop_level = 0;
4116 	btrfs_set_root_refs(&root->root_item, 0);
4117 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
4118 				&root->root_key, &root->root_item);
4119 
4120 	err = btrfs_end_transaction(trans, root->fs_info->tree_root);
4121 	if (err)
4122 		return err;
4123 	return ret;
4124 }
4125 
4126 /*
4127  * recover relocation interrupted by system crash.
4128  *
4129  * this function resumes merging reloc trees with corresponding fs trees.
4130  * this is important for keeping the sharing of tree blocks
4131  */
4132 int btrfs_recover_relocation(struct btrfs_root *root)
4133 {
4134 	LIST_HEAD(reloc_roots);
4135 	struct btrfs_key key;
4136 	struct btrfs_root *fs_root;
4137 	struct btrfs_root *reloc_root;
4138 	struct btrfs_path *path;
4139 	struct extent_buffer *leaf;
4140 	struct reloc_control *rc = NULL;
4141 	struct btrfs_trans_handle *trans;
4142 	int ret;
4143 	int err = 0;
4144 
4145 	path = btrfs_alloc_path();
4146 	if (!path)
4147 		return -ENOMEM;
4148 	path->reada = -1;
4149 
4150 	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4151 	key.type = BTRFS_ROOT_ITEM_KEY;
4152 	key.offset = (u64)-1;
4153 
4154 	while (1) {
4155 		ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key,
4156 					path, 0, 0);
4157 		if (ret < 0) {
4158 			err = ret;
4159 			goto out;
4160 		}
4161 		if (ret > 0) {
4162 			if (path->slots[0] == 0)
4163 				break;
4164 			path->slots[0]--;
4165 		}
4166 		leaf = path->nodes[0];
4167 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4168 		btrfs_release_path(path);
4169 
4170 		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4171 		    key.type != BTRFS_ROOT_ITEM_KEY)
4172 			break;
4173 
4174 		reloc_root = btrfs_read_fs_root_no_radix(root, &key);
4175 		if (IS_ERR(reloc_root)) {
4176 			err = PTR_ERR(reloc_root);
4177 			goto out;
4178 		}
4179 
4180 		list_add(&reloc_root->root_list, &reloc_roots);
4181 
4182 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4183 			fs_root = read_fs_root(root->fs_info,
4184 					       reloc_root->root_key.offset);
4185 			if (IS_ERR(fs_root)) {
4186 				ret = PTR_ERR(fs_root);
4187 				if (ret != -ENOENT) {
4188 					err = ret;
4189 					goto out;
4190 				}
4191 				ret = mark_garbage_root(reloc_root);
4192 				if (ret < 0) {
4193 					err = ret;
4194 					goto out;
4195 				}
4196 			}
4197 		}
4198 
4199 		if (key.offset == 0)
4200 			break;
4201 
4202 		key.offset--;
4203 	}
4204 	btrfs_release_path(path);
4205 
4206 	if (list_empty(&reloc_roots))
4207 		goto out;
4208 
4209 	rc = alloc_reloc_control();
4210 	if (!rc) {
4211 		err = -ENOMEM;
4212 		goto out;
4213 	}
4214 
4215 	rc->extent_root = root->fs_info->extent_root;
4216 
4217 	set_reloc_control(rc);
4218 
4219 	trans = btrfs_join_transaction(rc->extent_root);
4220 	if (IS_ERR(trans)) {
4221 		unset_reloc_control(rc);
4222 		err = PTR_ERR(trans);
4223 		goto out_free;
4224 	}
4225 
4226 	rc->merge_reloc_tree = 1;
4227 
4228 	while (!list_empty(&reloc_roots)) {
4229 		reloc_root = list_entry(reloc_roots.next,
4230 					struct btrfs_root, root_list);
4231 		list_del(&reloc_root->root_list);
4232 
4233 		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4234 			list_add_tail(&reloc_root->root_list,
4235 				      &rc->reloc_roots);
4236 			continue;
4237 		}
4238 
4239 		fs_root = read_fs_root(root->fs_info,
4240 				       reloc_root->root_key.offset);
4241 		if (IS_ERR(fs_root)) {
4242 			err = PTR_ERR(fs_root);
4243 			goto out_free;
4244 		}
4245 
4246 		err = __add_reloc_root(reloc_root);
4247 		BUG_ON(err < 0); /* -ENOMEM or logic error */
4248 		fs_root->reloc_root = reloc_root;
4249 	}
4250 
4251 	err = btrfs_commit_transaction(trans, rc->extent_root);
4252 	if (err)
4253 		goto out_free;
4254 
4255 	merge_reloc_roots(rc);
4256 
4257 	unset_reloc_control(rc);
4258 
4259 	trans = btrfs_join_transaction(rc->extent_root);
4260 	if (IS_ERR(trans))
4261 		err = PTR_ERR(trans);
4262 	else
4263 		err = btrfs_commit_transaction(trans, rc->extent_root);
4264 out_free:
4265 	kfree(rc);
4266 out:
4267 	while (!list_empty(&reloc_roots)) {
4268 		reloc_root = list_entry(reloc_roots.next,
4269 					struct btrfs_root, root_list);
4270 		list_del(&reloc_root->root_list);
4271 		free_extent_buffer(reloc_root->node);
4272 		free_extent_buffer(reloc_root->commit_root);
4273 		kfree(reloc_root);
4274 	}
4275 	btrfs_free_path(path);
4276 
4277 	if (err == 0) {
4278 		/* cleanup orphan inode in data relocation tree */
4279 		fs_root = read_fs_root(root->fs_info,
4280 				       BTRFS_DATA_RELOC_TREE_OBJECTID);
4281 		if (IS_ERR(fs_root))
4282 			err = PTR_ERR(fs_root);
4283 		else
4284 			err = btrfs_orphan_cleanup(fs_root);
4285 	}
4286 	return err;
4287 }
4288 
4289 /*
4290  * helper to add ordered checksum for data relocation.
4291  *
4292  * cloning checksum properly handles the nodatasum extents.
4293  * it also saves CPU time to re-calculate the checksum.
4294  */
4295 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
4296 {
4297 	struct btrfs_ordered_sum *sums;
4298 	struct btrfs_sector_sum *sector_sum;
4299 	struct btrfs_ordered_extent *ordered;
4300 	struct btrfs_root *root = BTRFS_I(inode)->root;
4301 	size_t offset;
4302 	int ret;
4303 	u64 disk_bytenr;
4304 	LIST_HEAD(list);
4305 
4306 	ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4307 	BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
4308 
4309 	disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
4310 	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, disk_bytenr,
4311 				       disk_bytenr + len - 1, &list, 0);
4312 	if (ret)
4313 		goto out;
4314 
4315 	while (!list_empty(&list)) {
4316 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4317 		list_del_init(&sums->list);
4318 
4319 		sector_sum = sums->sums;
4320 		sums->bytenr = ordered->start;
4321 
4322 		offset = 0;
4323 		while (offset < sums->len) {
4324 			sector_sum->bytenr += ordered->start - disk_bytenr;
4325 			sector_sum++;
4326 			offset += root->sectorsize;
4327 		}
4328 
4329 		btrfs_add_ordered_sum(inode, ordered, sums);
4330 	}
4331 out:
4332 	btrfs_put_ordered_extent(ordered);
4333 	return ret;
4334 }
4335 
4336 void btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4337 			   struct btrfs_root *root, struct extent_buffer *buf,
4338 			   struct extent_buffer *cow)
4339 {
4340 	struct reloc_control *rc;
4341 	struct backref_node *node;
4342 	int first_cow = 0;
4343 	int level;
4344 	int ret;
4345 
4346 	rc = root->fs_info->reloc_ctl;
4347 	if (!rc)
4348 		return;
4349 
4350 	BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
4351 	       root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
4352 
4353 	level = btrfs_header_level(buf);
4354 	if (btrfs_header_generation(buf) <=
4355 	    btrfs_root_last_snapshot(&root->root_item))
4356 		first_cow = 1;
4357 
4358 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4359 	    rc->create_reloc_tree) {
4360 		WARN_ON(!first_cow && level == 0);
4361 
4362 		node = rc->backref_cache.path[level];
4363 		BUG_ON(node->bytenr != buf->start &&
4364 		       node->new_bytenr != buf->start);
4365 
4366 		drop_node_buffer(node);
4367 		extent_buffer_get(cow);
4368 		node->eb = cow;
4369 		node->new_bytenr = cow->start;
4370 
4371 		if (!node->pending) {
4372 			list_move_tail(&node->list,
4373 				       &rc->backref_cache.pending[level]);
4374 			node->pending = 1;
4375 		}
4376 
4377 		if (first_cow)
4378 			__mark_block_processed(rc, node);
4379 
4380 		if (first_cow && level > 0)
4381 			rc->nodes_relocated += buf->len;
4382 	}
4383 
4384 	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS) {
4385 		ret = replace_file_extents(trans, rc, root, cow);
4386 		BUG_ON(ret);
4387 	}
4388 }
4389 
4390 /*
4391  * called before creating snapshot. it calculates metadata reservation
4392  * requried for relocating tree blocks in the snapshot
4393  */
4394 void btrfs_reloc_pre_snapshot(struct btrfs_trans_handle *trans,
4395 			      struct btrfs_pending_snapshot *pending,
4396 			      u64 *bytes_to_reserve)
4397 {
4398 	struct btrfs_root *root;
4399 	struct reloc_control *rc;
4400 
4401 	root = pending->root;
4402 	if (!root->reloc_root)
4403 		return;
4404 
4405 	rc = root->fs_info->reloc_ctl;
4406 	if (!rc->merge_reloc_tree)
4407 		return;
4408 
4409 	root = root->reloc_root;
4410 	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4411 	/*
4412 	 * relocation is in the stage of merging trees. the space
4413 	 * used by merging a reloc tree is twice the size of
4414 	 * relocated tree nodes in the worst case. half for cowing
4415 	 * the reloc tree, half for cowing the fs tree. the space
4416 	 * used by cowing the reloc tree will be freed after the
4417 	 * tree is dropped. if we create snapshot, cowing the fs
4418 	 * tree may use more space than it frees. so we need
4419 	 * reserve extra space.
4420 	 */
4421 	*bytes_to_reserve += rc->nodes_relocated;
4422 }
4423 
4424 /*
4425  * called after snapshot is created. migrate block reservation
4426  * and create reloc root for the newly created snapshot
4427  */
4428 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4429 			       struct btrfs_pending_snapshot *pending)
4430 {
4431 	struct btrfs_root *root = pending->root;
4432 	struct btrfs_root *reloc_root;
4433 	struct btrfs_root *new_root;
4434 	struct reloc_control *rc;
4435 	int ret;
4436 
4437 	if (!root->reloc_root)
4438 		return 0;
4439 
4440 	rc = root->fs_info->reloc_ctl;
4441 	rc->merging_rsv_size += rc->nodes_relocated;
4442 
4443 	if (rc->merge_reloc_tree) {
4444 		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4445 					      rc->block_rsv,
4446 					      rc->nodes_relocated);
4447 		if (ret)
4448 			return ret;
4449 	}
4450 
4451 	new_root = pending->snap;
4452 	reloc_root = create_reloc_root(trans, root->reloc_root,
4453 				       new_root->root_key.objectid);
4454 	if (IS_ERR(reloc_root))
4455 		return PTR_ERR(reloc_root);
4456 
4457 	ret = __add_reloc_root(reloc_root);
4458 	BUG_ON(ret < 0);
4459 	new_root->reloc_root = reloc_root;
4460 
4461 	if (rc->create_reloc_tree)
4462 		ret = clone_backref_node(trans, rc, root, reloc_root);
4463 	return ret;
4464 }
4465