xref: /linux/fs/btrfs/relocation.c (revision 3fd6c59042dbba50391e30862beac979491145fe)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2009 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/pagemap.h>
8 #include <linux/writeback.h>
9 #include <linux/blkdev.h>
10 #include <linux/rbtree.h>
11 #include <linux/slab.h>
12 #include <linux/error-injection.h>
13 #include "ctree.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "volumes.h"
17 #include "locking.h"
18 #include "btrfs_inode.h"
19 #include "async-thread.h"
20 #include "free-space-cache.h"
21 #include "qgroup.h"
22 #include "print-tree.h"
23 #include "delalloc-space.h"
24 #include "block-group.h"
25 #include "backref.h"
26 #include "misc.h"
27 #include "subpage.h"
28 #include "zoned.h"
29 #include "inode-item.h"
30 #include "space-info.h"
31 #include "fs.h"
32 #include "accessors.h"
33 #include "extent-tree.h"
34 #include "root-tree.h"
35 #include "file-item.h"
36 #include "relocation.h"
37 #include "super.h"
38 #include "tree-checker.h"
39 #include "raid-stripe-tree.h"
40 
41 /*
42  * Relocation overview
43  *
44  * [What does relocation do]
45  *
46  * The objective of relocation is to relocate all extents of the target block
47  * group to other block groups.
48  * This is utilized by resize (shrink only), profile converting, compacting
49  * space, or balance routine to spread chunks over devices.
50  *
51  * 		Before		|		After
52  * ------------------------------------------------------------------
53  *  BG A: 10 data extents	| BG A: deleted
54  *  BG B:  2 data extents	| BG B: 10 data extents (2 old + 8 relocated)
55  *  BG C:  1 extents		| BG C:  3 data extents (1 old + 2 relocated)
56  *
57  * [How does relocation work]
58  *
59  * 1.   Mark the target block group read-only
60  *      New extents won't be allocated from the target block group.
61  *
62  * 2.1  Record each extent in the target block group
63  *      To build a proper map of extents to be relocated.
64  *
65  * 2.2  Build data reloc tree and reloc trees
66  *      Data reloc tree will contain an inode, recording all newly relocated
67  *      data extents.
68  *      There will be only one data reloc tree for one data block group.
69  *
70  *      Reloc tree will be a special snapshot of its source tree, containing
71  *      relocated tree blocks.
72  *      Each tree referring to a tree block in target block group will get its
73  *      reloc tree built.
74  *
75  * 2.3  Swap source tree with its corresponding reloc tree
76  *      Each involved tree only refers to new extents after swap.
77  *
78  * 3.   Cleanup reloc trees and data reloc tree.
79  *      As old extents in the target block group are still referenced by reloc
80  *      trees, we need to clean them up before really freeing the target block
81  *      group.
82  *
83  * The main complexity is in steps 2.2 and 2.3.
84  *
85  * The entry point of relocation is relocate_block_group() function.
86  */
87 
88 #define RELOCATION_RESERVED_NODES	256
89 /*
90  * map address of tree root to tree
91  */
92 struct mapping_node {
93 	struct {
94 		struct rb_node rb_node;
95 		u64 bytenr;
96 	}; /* Use rb_simle_node for search/insert */
97 	void *data;
98 };
99 
100 struct mapping_tree {
101 	struct rb_root rb_root;
102 	spinlock_t lock;
103 };
104 
105 /*
106  * present a tree block to process
107  */
108 struct tree_block {
109 	struct {
110 		struct rb_node rb_node;
111 		u64 bytenr;
112 	}; /* Use rb_simple_node for search/insert */
113 	u64 owner;
114 	struct btrfs_key key;
115 	u8 level;
116 	bool key_ready;
117 };
118 
119 #define MAX_EXTENTS 128
120 
121 struct file_extent_cluster {
122 	u64 start;
123 	u64 end;
124 	u64 boundary[MAX_EXTENTS];
125 	unsigned int nr;
126 	u64 owning_root;
127 };
128 
129 /* Stages of data relocation. */
130 enum reloc_stage {
131 	MOVE_DATA_EXTENTS,
132 	UPDATE_DATA_PTRS
133 };
134 
135 struct reloc_control {
136 	/* block group to relocate */
137 	struct btrfs_block_group *block_group;
138 	/* extent tree */
139 	struct btrfs_root *extent_root;
140 	/* inode for moving data */
141 	struct inode *data_inode;
142 
143 	struct btrfs_block_rsv *block_rsv;
144 
145 	struct btrfs_backref_cache backref_cache;
146 
147 	struct file_extent_cluster cluster;
148 	/* tree blocks have been processed */
149 	struct extent_io_tree processed_blocks;
150 	/* map start of tree root to corresponding reloc tree */
151 	struct mapping_tree reloc_root_tree;
152 	/* list of reloc trees */
153 	struct list_head reloc_roots;
154 	/* list of subvolume trees that get relocated */
155 	struct list_head dirty_subvol_roots;
156 	/* size of metadata reservation for merging reloc trees */
157 	u64 merging_rsv_size;
158 	/* size of relocated tree nodes */
159 	u64 nodes_relocated;
160 	/* reserved size for block group relocation*/
161 	u64 reserved_bytes;
162 
163 	u64 search_start;
164 	u64 extents_found;
165 
166 	enum reloc_stage stage;
167 	bool create_reloc_tree;
168 	bool merge_reloc_tree;
169 	bool found_file_extent;
170 };
171 
172 static void mark_block_processed(struct reloc_control *rc,
173 				 struct btrfs_backref_node *node)
174 {
175 	u32 blocksize;
176 
177 	if (node->level == 0 ||
178 	    in_range(node->bytenr, rc->block_group->start,
179 		     rc->block_group->length)) {
180 		blocksize = rc->extent_root->fs_info->nodesize;
181 		set_extent_bit(&rc->processed_blocks, node->bytenr,
182 			       node->bytenr + blocksize - 1, EXTENT_DIRTY, NULL);
183 	}
184 	node->processed = 1;
185 }
186 
187 /*
188  * walk up backref nodes until reach node presents tree root
189  */
190 static struct btrfs_backref_node *walk_up_backref(
191 		struct btrfs_backref_node *node,
192 		struct btrfs_backref_edge *edges[], int *index)
193 {
194 	struct btrfs_backref_edge *edge;
195 	int idx = *index;
196 
197 	while (!list_empty(&node->upper)) {
198 		edge = list_entry(node->upper.next,
199 				  struct btrfs_backref_edge, list[LOWER]);
200 		edges[idx++] = edge;
201 		node = edge->node[UPPER];
202 	}
203 	BUG_ON(node->detached);
204 	*index = idx;
205 	return node;
206 }
207 
208 /*
209  * walk down backref nodes to find start of next reference path
210  */
211 static struct btrfs_backref_node *walk_down_backref(
212 		struct btrfs_backref_edge *edges[], int *index)
213 {
214 	struct btrfs_backref_edge *edge;
215 	struct btrfs_backref_node *lower;
216 	int idx = *index;
217 
218 	while (idx > 0) {
219 		edge = edges[idx - 1];
220 		lower = edge->node[LOWER];
221 		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
222 			idx--;
223 			continue;
224 		}
225 		edge = list_entry(edge->list[LOWER].next,
226 				  struct btrfs_backref_edge, list[LOWER]);
227 		edges[idx - 1] = edge;
228 		*index = idx;
229 		return edge->node[UPPER];
230 	}
231 	*index = 0;
232 	return NULL;
233 }
234 
235 static void update_backref_node(struct btrfs_backref_cache *cache,
236 				struct btrfs_backref_node *node, u64 bytenr)
237 {
238 	struct rb_node *rb_node;
239 	rb_erase(&node->rb_node, &cache->rb_root);
240 	node->bytenr = bytenr;
241 	rb_node = rb_simple_insert(&cache->rb_root, node->bytenr, &node->rb_node);
242 	if (rb_node)
243 		btrfs_backref_panic(cache->fs_info, bytenr, -EEXIST);
244 }
245 
246 /*
247  * update backref cache after a transaction commit
248  */
249 static int update_backref_cache(struct btrfs_trans_handle *trans,
250 				struct btrfs_backref_cache *cache)
251 {
252 	struct btrfs_backref_node *node;
253 	int level = 0;
254 
255 	if (cache->last_trans == 0) {
256 		cache->last_trans = trans->transid;
257 		return 0;
258 	}
259 
260 	if (cache->last_trans == trans->transid)
261 		return 0;
262 
263 	/*
264 	 * detached nodes are used to avoid unnecessary backref
265 	 * lookup. transaction commit changes the extent tree.
266 	 * so the detached nodes are no longer useful.
267 	 */
268 	while (!list_empty(&cache->detached)) {
269 		node = list_entry(cache->detached.next,
270 				  struct btrfs_backref_node, list);
271 		btrfs_backref_cleanup_node(cache, node);
272 	}
273 
274 	while (!list_empty(&cache->changed)) {
275 		node = list_entry(cache->changed.next,
276 				  struct btrfs_backref_node, list);
277 		list_del_init(&node->list);
278 		BUG_ON(node->pending);
279 		update_backref_node(cache, node, node->new_bytenr);
280 	}
281 
282 	/*
283 	 * some nodes can be left in the pending list if there were
284 	 * errors during processing the pending nodes.
285 	 */
286 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
287 		list_for_each_entry(node, &cache->pending[level], list) {
288 			BUG_ON(!node->pending);
289 			if (node->bytenr == node->new_bytenr)
290 				continue;
291 			update_backref_node(cache, node, node->new_bytenr);
292 		}
293 	}
294 
295 	cache->last_trans = 0;
296 	return 1;
297 }
298 
299 static bool reloc_root_is_dead(const struct btrfs_root *root)
300 {
301 	/*
302 	 * Pair with set_bit/clear_bit in clean_dirty_subvols and
303 	 * btrfs_update_reloc_root. We need to see the updated bit before
304 	 * trying to access reloc_root
305 	 */
306 	smp_rmb();
307 	if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state))
308 		return true;
309 	return false;
310 }
311 
312 /*
313  * Check if this subvolume tree has valid reloc tree.
314  *
315  * Reloc tree after swap is considered dead, thus not considered as valid.
316  * This is enough for most callers, as they don't distinguish dead reloc root
317  * from no reloc root.  But btrfs_should_ignore_reloc_root() below is a
318  * special case.
319  */
320 static bool have_reloc_root(const struct btrfs_root *root)
321 {
322 	if (reloc_root_is_dead(root))
323 		return false;
324 	if (!root->reloc_root)
325 		return false;
326 	return true;
327 }
328 
329 bool btrfs_should_ignore_reloc_root(const struct btrfs_root *root)
330 {
331 	struct btrfs_root *reloc_root;
332 
333 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
334 		return false;
335 
336 	/* This root has been merged with its reloc tree, we can ignore it */
337 	if (reloc_root_is_dead(root))
338 		return true;
339 
340 	reloc_root = root->reloc_root;
341 	if (!reloc_root)
342 		return false;
343 
344 	if (btrfs_header_generation(reloc_root->commit_root) ==
345 	    root->fs_info->running_transaction->transid)
346 		return false;
347 	/*
348 	 * If there is reloc tree and it was created in previous transaction
349 	 * backref lookup can find the reloc tree, so backref node for the fs
350 	 * tree root is useless for relocation.
351 	 */
352 	return true;
353 }
354 
355 /*
356  * find reloc tree by address of tree root
357  */
358 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr)
359 {
360 	struct reloc_control *rc = fs_info->reloc_ctl;
361 	struct rb_node *rb_node;
362 	struct mapping_node *node;
363 	struct btrfs_root *root = NULL;
364 
365 	ASSERT(rc);
366 	spin_lock(&rc->reloc_root_tree.lock);
367 	rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr);
368 	if (rb_node) {
369 		node = rb_entry(rb_node, struct mapping_node, rb_node);
370 		root = node->data;
371 	}
372 	spin_unlock(&rc->reloc_root_tree.lock);
373 	return btrfs_grab_root(root);
374 }
375 
376 /*
377  * For useless nodes, do two major clean ups:
378  *
379  * - Cleanup the children edges and nodes
380  *   If child node is also orphan (no parent) during cleanup, then the child
381  *   node will also be cleaned up.
382  *
383  * - Freeing up leaves (level 0), keeps nodes detached
384  *   For nodes, the node is still cached as "detached"
385  *
386  * Return false if @node is not in the @useless_nodes list.
387  * Return true if @node is in the @useless_nodes list.
388  */
389 static bool handle_useless_nodes(struct reloc_control *rc,
390 				 struct btrfs_backref_node *node)
391 {
392 	struct btrfs_backref_cache *cache = &rc->backref_cache;
393 	struct list_head *useless_node = &cache->useless_node;
394 	bool ret = false;
395 
396 	while (!list_empty(useless_node)) {
397 		struct btrfs_backref_node *cur;
398 
399 		cur = list_first_entry(useless_node, struct btrfs_backref_node,
400 				 list);
401 		list_del_init(&cur->list);
402 
403 		/* Only tree root nodes can be added to @useless_nodes */
404 		ASSERT(list_empty(&cur->upper));
405 
406 		if (cur == node)
407 			ret = true;
408 
409 		/* The node is the lowest node */
410 		if (cur->lowest) {
411 			list_del_init(&cur->lower);
412 			cur->lowest = 0;
413 		}
414 
415 		/* Cleanup the lower edges */
416 		while (!list_empty(&cur->lower)) {
417 			struct btrfs_backref_edge *edge;
418 			struct btrfs_backref_node *lower;
419 
420 			edge = list_entry(cur->lower.next,
421 					struct btrfs_backref_edge, list[UPPER]);
422 			list_del(&edge->list[UPPER]);
423 			list_del(&edge->list[LOWER]);
424 			lower = edge->node[LOWER];
425 			btrfs_backref_free_edge(cache, edge);
426 
427 			/* Child node is also orphan, queue for cleanup */
428 			if (list_empty(&lower->upper))
429 				list_add(&lower->list, useless_node);
430 		}
431 		/* Mark this block processed for relocation */
432 		mark_block_processed(rc, cur);
433 
434 		/*
435 		 * Backref nodes for tree leaves are deleted from the cache.
436 		 * Backref nodes for upper level tree blocks are left in the
437 		 * cache to avoid unnecessary backref lookup.
438 		 */
439 		if (cur->level > 0) {
440 			list_add(&cur->list, &cache->detached);
441 			cur->detached = 1;
442 		} else {
443 			rb_erase(&cur->rb_node, &cache->rb_root);
444 			btrfs_backref_free_node(cache, cur);
445 		}
446 	}
447 	return ret;
448 }
449 
450 /*
451  * Build backref tree for a given tree block. Root of the backref tree
452  * corresponds the tree block, leaves of the backref tree correspond roots of
453  * b-trees that reference the tree block.
454  *
455  * The basic idea of this function is check backrefs of a given block to find
456  * upper level blocks that reference the block, and then check backrefs of
457  * these upper level blocks recursively. The recursion stops when tree root is
458  * reached or backrefs for the block is cached.
459  *
460  * NOTE: if we find that backrefs for a block are cached, we know backrefs for
461  * all upper level blocks that directly/indirectly reference the block are also
462  * cached.
463  */
464 static noinline_for_stack struct btrfs_backref_node *build_backref_tree(
465 			struct btrfs_trans_handle *trans,
466 			struct reloc_control *rc, struct btrfs_key *node_key,
467 			int level, u64 bytenr)
468 {
469 	struct btrfs_backref_iter *iter;
470 	struct btrfs_backref_cache *cache = &rc->backref_cache;
471 	/* For searching parent of TREE_BLOCK_REF */
472 	struct btrfs_path *path;
473 	struct btrfs_backref_node *cur;
474 	struct btrfs_backref_node *node = NULL;
475 	struct btrfs_backref_edge *edge;
476 	int ret;
477 
478 	iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info);
479 	if (!iter)
480 		return ERR_PTR(-ENOMEM);
481 	path = btrfs_alloc_path();
482 	if (!path) {
483 		ret = -ENOMEM;
484 		goto out;
485 	}
486 
487 	node = btrfs_backref_alloc_node(cache, bytenr, level);
488 	if (!node) {
489 		ret = -ENOMEM;
490 		goto out;
491 	}
492 
493 	node->lowest = 1;
494 	cur = node;
495 
496 	/* Breadth-first search to build backref cache */
497 	do {
498 		ret = btrfs_backref_add_tree_node(trans, cache, path, iter,
499 						  node_key, cur);
500 		if (ret < 0)
501 			goto out;
502 
503 		edge = list_first_entry_or_null(&cache->pending_edge,
504 				struct btrfs_backref_edge, list[UPPER]);
505 		/*
506 		 * The pending list isn't empty, take the first block to
507 		 * process
508 		 */
509 		if (edge) {
510 			list_del_init(&edge->list[UPPER]);
511 			cur = edge->node[UPPER];
512 		}
513 	} while (edge);
514 
515 	/* Finish the upper linkage of newly added edges/nodes */
516 	ret = btrfs_backref_finish_upper_links(cache, node);
517 	if (ret < 0)
518 		goto out;
519 
520 	if (handle_useless_nodes(rc, node))
521 		node = NULL;
522 out:
523 	btrfs_free_path(iter->path);
524 	kfree(iter);
525 	btrfs_free_path(path);
526 	if (ret) {
527 		btrfs_backref_error_cleanup(cache, node);
528 		return ERR_PTR(ret);
529 	}
530 	ASSERT(!node || !node->detached);
531 	ASSERT(list_empty(&cache->useless_node) &&
532 	       list_empty(&cache->pending_edge));
533 	return node;
534 }
535 
536 /*
537  * helper to add backref node for the newly created snapshot.
538  * the backref node is created by cloning backref node that
539  * corresponds to root of source tree
540  */
541 static int clone_backref_node(struct btrfs_trans_handle *trans,
542 			      struct reloc_control *rc,
543 			      const struct btrfs_root *src,
544 			      struct btrfs_root *dest)
545 {
546 	struct btrfs_root *reloc_root = src->reloc_root;
547 	struct btrfs_backref_cache *cache = &rc->backref_cache;
548 	struct btrfs_backref_node *node = NULL;
549 	struct btrfs_backref_node *new_node;
550 	struct btrfs_backref_edge *edge;
551 	struct btrfs_backref_edge *new_edge;
552 	struct rb_node *rb_node;
553 
554 	if (cache->last_trans > 0)
555 		update_backref_cache(trans, cache);
556 
557 	rb_node = rb_simple_search(&cache->rb_root, src->commit_root->start);
558 	if (rb_node) {
559 		node = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
560 		if (node->detached)
561 			node = NULL;
562 		else
563 			BUG_ON(node->new_bytenr != reloc_root->node->start);
564 	}
565 
566 	if (!node) {
567 		rb_node = rb_simple_search(&cache->rb_root,
568 					   reloc_root->commit_root->start);
569 		if (rb_node) {
570 			node = rb_entry(rb_node, struct btrfs_backref_node,
571 					rb_node);
572 			BUG_ON(node->detached);
573 		}
574 	}
575 
576 	if (!node)
577 		return 0;
578 
579 	new_node = btrfs_backref_alloc_node(cache, dest->node->start,
580 					    node->level);
581 	if (!new_node)
582 		return -ENOMEM;
583 
584 	new_node->lowest = node->lowest;
585 	new_node->checked = 1;
586 	new_node->root = btrfs_grab_root(dest);
587 	ASSERT(new_node->root);
588 
589 	if (!node->lowest) {
590 		list_for_each_entry(edge, &node->lower, list[UPPER]) {
591 			new_edge = btrfs_backref_alloc_edge(cache);
592 			if (!new_edge)
593 				goto fail;
594 
595 			btrfs_backref_link_edge(new_edge, edge->node[LOWER],
596 						new_node, LINK_UPPER);
597 		}
598 	} else {
599 		list_add_tail(&new_node->lower, &cache->leaves);
600 	}
601 
602 	rb_node = rb_simple_insert(&cache->rb_root, new_node->bytenr,
603 				   &new_node->rb_node);
604 	if (rb_node)
605 		btrfs_backref_panic(trans->fs_info, new_node->bytenr, -EEXIST);
606 
607 	if (!new_node->lowest) {
608 		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
609 			list_add_tail(&new_edge->list[LOWER],
610 				      &new_edge->node[LOWER]->upper);
611 		}
612 	}
613 	return 0;
614 fail:
615 	while (!list_empty(&new_node->lower)) {
616 		new_edge = list_entry(new_node->lower.next,
617 				      struct btrfs_backref_edge, list[UPPER]);
618 		list_del(&new_edge->list[UPPER]);
619 		btrfs_backref_free_edge(cache, new_edge);
620 	}
621 	btrfs_backref_free_node(cache, new_node);
622 	return -ENOMEM;
623 }
624 
625 /*
626  * helper to add 'address of tree root -> reloc tree' mapping
627  */
628 static int __add_reloc_root(struct btrfs_root *root)
629 {
630 	struct btrfs_fs_info *fs_info = root->fs_info;
631 	struct rb_node *rb_node;
632 	struct mapping_node *node;
633 	struct reloc_control *rc = fs_info->reloc_ctl;
634 
635 	node = kmalloc(sizeof(*node), GFP_NOFS);
636 	if (!node)
637 		return -ENOMEM;
638 
639 	node->bytenr = root->commit_root->start;
640 	node->data = root;
641 
642 	spin_lock(&rc->reloc_root_tree.lock);
643 	rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
644 				   node->bytenr, &node->rb_node);
645 	spin_unlock(&rc->reloc_root_tree.lock);
646 	if (rb_node) {
647 		btrfs_err(fs_info,
648 			    "Duplicate root found for start=%llu while inserting into relocation tree",
649 			    node->bytenr);
650 		return -EEXIST;
651 	}
652 
653 	list_add_tail(&root->root_list, &rc->reloc_roots);
654 	return 0;
655 }
656 
657 /*
658  * helper to delete the 'address of tree root -> reloc tree'
659  * mapping
660  */
661 static void __del_reloc_root(struct btrfs_root *root)
662 {
663 	struct btrfs_fs_info *fs_info = root->fs_info;
664 	struct rb_node *rb_node;
665 	struct mapping_node *node = NULL;
666 	struct reloc_control *rc = fs_info->reloc_ctl;
667 	bool put_ref = false;
668 
669 	if (rc && root->node) {
670 		spin_lock(&rc->reloc_root_tree.lock);
671 		rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
672 					   root->commit_root->start);
673 		if (rb_node) {
674 			node = rb_entry(rb_node, struct mapping_node, rb_node);
675 			rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
676 			RB_CLEAR_NODE(&node->rb_node);
677 		}
678 		spin_unlock(&rc->reloc_root_tree.lock);
679 		ASSERT(!node || (struct btrfs_root *)node->data == root);
680 	}
681 
682 	/*
683 	 * We only put the reloc root here if it's on the list.  There's a lot
684 	 * of places where the pattern is to splice the rc->reloc_roots, process
685 	 * the reloc roots, and then add the reloc root back onto
686 	 * rc->reloc_roots.  If we call __del_reloc_root while it's off of the
687 	 * list we don't want the reference being dropped, because the guy
688 	 * messing with the list is in charge of the reference.
689 	 */
690 	spin_lock(&fs_info->trans_lock);
691 	if (!list_empty(&root->root_list)) {
692 		put_ref = true;
693 		list_del_init(&root->root_list);
694 	}
695 	spin_unlock(&fs_info->trans_lock);
696 	if (put_ref)
697 		btrfs_put_root(root);
698 	kfree(node);
699 }
700 
701 /*
702  * helper to update the 'address of tree root -> reloc tree'
703  * mapping
704  */
705 static int __update_reloc_root(struct btrfs_root *root)
706 {
707 	struct btrfs_fs_info *fs_info = root->fs_info;
708 	struct rb_node *rb_node;
709 	struct mapping_node *node = NULL;
710 	struct reloc_control *rc = fs_info->reloc_ctl;
711 
712 	spin_lock(&rc->reloc_root_tree.lock);
713 	rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
714 				   root->commit_root->start);
715 	if (rb_node) {
716 		node = rb_entry(rb_node, struct mapping_node, rb_node);
717 		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
718 	}
719 	spin_unlock(&rc->reloc_root_tree.lock);
720 
721 	if (!node)
722 		return 0;
723 	BUG_ON((struct btrfs_root *)node->data != root);
724 
725 	spin_lock(&rc->reloc_root_tree.lock);
726 	node->bytenr = root->node->start;
727 	rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
728 				   node->bytenr, &node->rb_node);
729 	spin_unlock(&rc->reloc_root_tree.lock);
730 	if (rb_node)
731 		btrfs_backref_panic(fs_info, node->bytenr, -EEXIST);
732 	return 0;
733 }
734 
735 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
736 					struct btrfs_root *root, u64 objectid)
737 {
738 	struct btrfs_fs_info *fs_info = root->fs_info;
739 	struct btrfs_root *reloc_root;
740 	struct extent_buffer *eb;
741 	struct btrfs_root_item *root_item;
742 	struct btrfs_key root_key;
743 	int ret = 0;
744 	bool must_abort = false;
745 
746 	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
747 	if (!root_item)
748 		return ERR_PTR(-ENOMEM);
749 
750 	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
751 	root_key.type = BTRFS_ROOT_ITEM_KEY;
752 	root_key.offset = objectid;
753 
754 	if (btrfs_root_id(root) == objectid) {
755 		u64 commit_root_gen;
756 
757 		/* called by btrfs_init_reloc_root */
758 		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
759 				      BTRFS_TREE_RELOC_OBJECTID);
760 		if (ret)
761 			goto fail;
762 
763 		/*
764 		 * Set the last_snapshot field to the generation of the commit
765 		 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
766 		 * correctly (returns true) when the relocation root is created
767 		 * either inside the critical section of a transaction commit
768 		 * (through transaction.c:qgroup_account_snapshot()) and when
769 		 * it's created before the transaction commit is started.
770 		 */
771 		commit_root_gen = btrfs_header_generation(root->commit_root);
772 		btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
773 	} else {
774 		/*
775 		 * called by btrfs_reloc_post_snapshot_hook.
776 		 * the source tree is a reloc tree, all tree blocks
777 		 * modified after it was created have RELOC flag
778 		 * set in their headers. so it's OK to not update
779 		 * the 'last_snapshot'.
780 		 */
781 		ret = btrfs_copy_root(trans, root, root->node, &eb,
782 				      BTRFS_TREE_RELOC_OBJECTID);
783 		if (ret)
784 			goto fail;
785 	}
786 
787 	/*
788 	 * We have changed references at this point, we must abort the
789 	 * transaction if anything fails.
790 	 */
791 	must_abort = true;
792 
793 	memcpy(root_item, &root->root_item, sizeof(*root_item));
794 	btrfs_set_root_bytenr(root_item, eb->start);
795 	btrfs_set_root_level(root_item, btrfs_header_level(eb));
796 	btrfs_set_root_generation(root_item, trans->transid);
797 
798 	if (btrfs_root_id(root) == objectid) {
799 		btrfs_set_root_refs(root_item, 0);
800 		memset(&root_item->drop_progress, 0,
801 		       sizeof(struct btrfs_disk_key));
802 		btrfs_set_root_drop_level(root_item, 0);
803 	}
804 
805 	btrfs_tree_unlock(eb);
806 	free_extent_buffer(eb);
807 
808 	ret = btrfs_insert_root(trans, fs_info->tree_root,
809 				&root_key, root_item);
810 	if (ret)
811 		goto fail;
812 
813 	kfree(root_item);
814 
815 	reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key);
816 	if (IS_ERR(reloc_root)) {
817 		ret = PTR_ERR(reloc_root);
818 		goto abort;
819 	}
820 	set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
821 	btrfs_set_root_last_trans(reloc_root, trans->transid);
822 	return reloc_root;
823 fail:
824 	kfree(root_item);
825 abort:
826 	if (must_abort)
827 		btrfs_abort_transaction(trans, ret);
828 	return ERR_PTR(ret);
829 }
830 
831 /*
832  * create reloc tree for a given fs tree. reloc tree is just a
833  * snapshot of the fs tree with special root objectid.
834  *
835  * The reloc_root comes out of here with two references, one for
836  * root->reloc_root, and another for being on the rc->reloc_roots list.
837  */
838 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
839 			  struct btrfs_root *root)
840 {
841 	struct btrfs_fs_info *fs_info = root->fs_info;
842 	struct btrfs_root *reloc_root;
843 	struct reloc_control *rc = fs_info->reloc_ctl;
844 	struct btrfs_block_rsv *rsv;
845 	int clear_rsv = 0;
846 	int ret;
847 
848 	if (!rc)
849 		return 0;
850 
851 	/*
852 	 * The subvolume has reloc tree but the swap is finished, no need to
853 	 * create/update the dead reloc tree
854 	 */
855 	if (reloc_root_is_dead(root))
856 		return 0;
857 
858 	/*
859 	 * This is subtle but important.  We do not do
860 	 * record_root_in_transaction for reloc roots, instead we record their
861 	 * corresponding fs root, and then here we update the last trans for the
862 	 * reloc root.  This means that we have to do this for the entire life
863 	 * of the reloc root, regardless of which stage of the relocation we are
864 	 * in.
865 	 */
866 	if (root->reloc_root) {
867 		reloc_root = root->reloc_root;
868 		btrfs_set_root_last_trans(reloc_root, trans->transid);
869 		return 0;
870 	}
871 
872 	/*
873 	 * We are merging reloc roots, we do not need new reloc trees.  Also
874 	 * reloc trees never need their own reloc tree.
875 	 */
876 	if (!rc->create_reloc_tree || btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
877 		return 0;
878 
879 	if (!trans->reloc_reserved) {
880 		rsv = trans->block_rsv;
881 		trans->block_rsv = rc->block_rsv;
882 		clear_rsv = 1;
883 	}
884 	reloc_root = create_reloc_root(trans, root, btrfs_root_id(root));
885 	if (clear_rsv)
886 		trans->block_rsv = rsv;
887 	if (IS_ERR(reloc_root))
888 		return PTR_ERR(reloc_root);
889 
890 	ret = __add_reloc_root(reloc_root);
891 	ASSERT(ret != -EEXIST);
892 	if (ret) {
893 		/* Pairs with create_reloc_root */
894 		btrfs_put_root(reloc_root);
895 		return ret;
896 	}
897 	root->reloc_root = btrfs_grab_root(reloc_root);
898 	return 0;
899 }
900 
901 /*
902  * update root item of reloc tree
903  */
904 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
905 			    struct btrfs_root *root)
906 {
907 	struct btrfs_fs_info *fs_info = root->fs_info;
908 	struct btrfs_root *reloc_root;
909 	struct btrfs_root_item *root_item;
910 	int ret;
911 
912 	if (!have_reloc_root(root))
913 		return 0;
914 
915 	reloc_root = root->reloc_root;
916 	root_item = &reloc_root->root_item;
917 
918 	/*
919 	 * We are probably ok here, but __del_reloc_root() will drop its ref of
920 	 * the root.  We have the ref for root->reloc_root, but just in case
921 	 * hold it while we update the reloc root.
922 	 */
923 	btrfs_grab_root(reloc_root);
924 
925 	/* root->reloc_root will stay until current relocation finished */
926 	if (fs_info->reloc_ctl->merge_reloc_tree &&
927 	    btrfs_root_refs(root_item) == 0) {
928 		set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
929 		/*
930 		 * Mark the tree as dead before we change reloc_root so
931 		 * have_reloc_root will not touch it from now on.
932 		 */
933 		smp_wmb();
934 		__del_reloc_root(reloc_root);
935 	}
936 
937 	if (reloc_root->commit_root != reloc_root->node) {
938 		__update_reloc_root(reloc_root);
939 		btrfs_set_root_node(root_item, reloc_root->node);
940 		free_extent_buffer(reloc_root->commit_root);
941 		reloc_root->commit_root = btrfs_root_node(reloc_root);
942 	}
943 
944 	ret = btrfs_update_root(trans, fs_info->tree_root,
945 				&reloc_root->root_key, root_item);
946 	btrfs_put_root(reloc_root);
947 	return ret;
948 }
949 
950 /*
951  * get new location of data
952  */
953 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
954 			    u64 bytenr, u64 num_bytes)
955 {
956 	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
957 	struct btrfs_path *path;
958 	struct btrfs_file_extent_item *fi;
959 	struct extent_buffer *leaf;
960 	int ret;
961 
962 	path = btrfs_alloc_path();
963 	if (!path)
964 		return -ENOMEM;
965 
966 	bytenr -= BTRFS_I(reloc_inode)->reloc_block_group_start;
967 	ret = btrfs_lookup_file_extent(NULL, root, path,
968 			btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
969 	if (ret < 0)
970 		goto out;
971 	if (ret > 0) {
972 		ret = -ENOENT;
973 		goto out;
974 	}
975 
976 	leaf = path->nodes[0];
977 	fi = btrfs_item_ptr(leaf, path->slots[0],
978 			    struct btrfs_file_extent_item);
979 
980 	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
981 	       btrfs_file_extent_compression(leaf, fi) ||
982 	       btrfs_file_extent_encryption(leaf, fi) ||
983 	       btrfs_file_extent_other_encoding(leaf, fi));
984 
985 	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
986 		ret = -EINVAL;
987 		goto out;
988 	}
989 
990 	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
991 	ret = 0;
992 out:
993 	btrfs_free_path(path);
994 	return ret;
995 }
996 
997 /*
998  * update file extent items in the tree leaf to point to
999  * the new locations.
1000  */
1001 static noinline_for_stack
1002 int replace_file_extents(struct btrfs_trans_handle *trans,
1003 			 struct reloc_control *rc,
1004 			 struct btrfs_root *root,
1005 			 struct extent_buffer *leaf)
1006 {
1007 	struct btrfs_fs_info *fs_info = root->fs_info;
1008 	struct btrfs_key key;
1009 	struct btrfs_file_extent_item *fi;
1010 	struct btrfs_inode *inode = NULL;
1011 	u64 parent;
1012 	u64 bytenr;
1013 	u64 new_bytenr = 0;
1014 	u64 num_bytes;
1015 	u64 end;
1016 	u32 nritems;
1017 	u32 i;
1018 	int ret = 0;
1019 	int first = 1;
1020 	int dirty = 0;
1021 
1022 	if (rc->stage != UPDATE_DATA_PTRS)
1023 		return 0;
1024 
1025 	/* reloc trees always use full backref */
1026 	if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
1027 		parent = leaf->start;
1028 	else
1029 		parent = 0;
1030 
1031 	nritems = btrfs_header_nritems(leaf);
1032 	for (i = 0; i < nritems; i++) {
1033 		struct btrfs_ref ref = { 0 };
1034 
1035 		cond_resched();
1036 		btrfs_item_key_to_cpu(leaf, &key, i);
1037 		if (key.type != BTRFS_EXTENT_DATA_KEY)
1038 			continue;
1039 		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1040 		if (btrfs_file_extent_type(leaf, fi) ==
1041 		    BTRFS_FILE_EXTENT_INLINE)
1042 			continue;
1043 		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1044 		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1045 		if (bytenr == 0)
1046 			continue;
1047 		if (!in_range(bytenr, rc->block_group->start,
1048 			      rc->block_group->length))
1049 			continue;
1050 
1051 		/*
1052 		 * if we are modifying block in fs tree, wait for read_folio
1053 		 * to complete and drop the extent cache
1054 		 */
1055 		if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID) {
1056 			if (first) {
1057 				inode = btrfs_find_first_inode(root, key.objectid);
1058 				first = 0;
1059 			} else if (inode && btrfs_ino(inode) < key.objectid) {
1060 				btrfs_add_delayed_iput(inode);
1061 				inode = btrfs_find_first_inode(root, key.objectid);
1062 			}
1063 			if (inode && btrfs_ino(inode) == key.objectid) {
1064 				struct extent_state *cached_state = NULL;
1065 
1066 				end = key.offset +
1067 				      btrfs_file_extent_num_bytes(leaf, fi);
1068 				WARN_ON(!IS_ALIGNED(key.offset,
1069 						    fs_info->sectorsize));
1070 				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1071 				end--;
1072 				/* Take mmap lock to serialize with reflinks. */
1073 				if (!down_read_trylock(&inode->i_mmap_lock))
1074 					continue;
1075 				ret = try_lock_extent(&inode->io_tree, key.offset,
1076 						      end, &cached_state);
1077 				if (!ret) {
1078 					up_read(&inode->i_mmap_lock);
1079 					continue;
1080 				}
1081 
1082 				btrfs_drop_extent_map_range(inode, key.offset, end, true);
1083 				unlock_extent(&inode->io_tree, key.offset, end,
1084 					      &cached_state);
1085 				up_read(&inode->i_mmap_lock);
1086 			}
1087 		}
1088 
1089 		ret = get_new_location(rc->data_inode, &new_bytenr,
1090 				       bytenr, num_bytes);
1091 		if (ret) {
1092 			/*
1093 			 * Don't have to abort since we've not changed anything
1094 			 * in the file extent yet.
1095 			 */
1096 			break;
1097 		}
1098 
1099 		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1100 		dirty = 1;
1101 
1102 		key.offset -= btrfs_file_extent_offset(leaf, fi);
1103 		ref.action = BTRFS_ADD_DELAYED_REF;
1104 		ref.bytenr = new_bytenr;
1105 		ref.num_bytes = num_bytes;
1106 		ref.parent = parent;
1107 		ref.owning_root = btrfs_root_id(root);
1108 		ref.ref_root = btrfs_header_owner(leaf);
1109 		btrfs_init_data_ref(&ref, key.objectid, key.offset,
1110 				    btrfs_root_id(root), false);
1111 		ret = btrfs_inc_extent_ref(trans, &ref);
1112 		if (ret) {
1113 			btrfs_abort_transaction(trans, ret);
1114 			break;
1115 		}
1116 
1117 		ref.action = BTRFS_DROP_DELAYED_REF;
1118 		ref.bytenr = bytenr;
1119 		ref.num_bytes = num_bytes;
1120 		ref.parent = parent;
1121 		ref.owning_root = btrfs_root_id(root);
1122 		ref.ref_root = btrfs_header_owner(leaf);
1123 		btrfs_init_data_ref(&ref, key.objectid, key.offset,
1124 				    btrfs_root_id(root), false);
1125 		ret = btrfs_free_extent(trans, &ref);
1126 		if (ret) {
1127 			btrfs_abort_transaction(trans, ret);
1128 			break;
1129 		}
1130 	}
1131 	if (dirty)
1132 		btrfs_mark_buffer_dirty(trans, leaf);
1133 	if (inode)
1134 		btrfs_add_delayed_iput(inode);
1135 	return ret;
1136 }
1137 
1138 static noinline_for_stack int memcmp_node_keys(const struct extent_buffer *eb,
1139 					       int slot, const struct btrfs_path *path,
1140 					       int level)
1141 {
1142 	struct btrfs_disk_key key1;
1143 	struct btrfs_disk_key key2;
1144 	btrfs_node_key(eb, &key1, slot);
1145 	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1146 	return memcmp(&key1, &key2, sizeof(key1));
1147 }
1148 
1149 /*
1150  * try to replace tree blocks in fs tree with the new blocks
1151  * in reloc tree. tree blocks haven't been modified since the
1152  * reloc tree was create can be replaced.
1153  *
1154  * if a block was replaced, level of the block + 1 is returned.
1155  * if no block got replaced, 0 is returned. if there are other
1156  * errors, a negative error number is returned.
1157  */
1158 static noinline_for_stack
1159 int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
1160 		 struct btrfs_root *dest, struct btrfs_root *src,
1161 		 struct btrfs_path *path, struct btrfs_key *next_key,
1162 		 int lowest_level, int max_level)
1163 {
1164 	struct btrfs_fs_info *fs_info = dest->fs_info;
1165 	struct extent_buffer *eb;
1166 	struct extent_buffer *parent;
1167 	struct btrfs_ref ref = { 0 };
1168 	struct btrfs_key key;
1169 	u64 old_bytenr;
1170 	u64 new_bytenr;
1171 	u64 old_ptr_gen;
1172 	u64 new_ptr_gen;
1173 	u64 last_snapshot;
1174 	u32 blocksize;
1175 	int cow = 0;
1176 	int level;
1177 	int ret;
1178 	int slot;
1179 
1180 	ASSERT(btrfs_root_id(src) == BTRFS_TREE_RELOC_OBJECTID);
1181 	ASSERT(btrfs_root_id(dest) != BTRFS_TREE_RELOC_OBJECTID);
1182 
1183 	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1184 again:
1185 	slot = path->slots[lowest_level];
1186 	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1187 
1188 	eb = btrfs_lock_root_node(dest);
1189 	level = btrfs_header_level(eb);
1190 
1191 	if (level < lowest_level) {
1192 		btrfs_tree_unlock(eb);
1193 		free_extent_buffer(eb);
1194 		return 0;
1195 	}
1196 
1197 	if (cow) {
1198 		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb,
1199 				      BTRFS_NESTING_COW);
1200 		if (ret) {
1201 			btrfs_tree_unlock(eb);
1202 			free_extent_buffer(eb);
1203 			return ret;
1204 		}
1205 	}
1206 
1207 	if (next_key) {
1208 		next_key->objectid = (u64)-1;
1209 		next_key->type = (u8)-1;
1210 		next_key->offset = (u64)-1;
1211 	}
1212 
1213 	parent = eb;
1214 	while (1) {
1215 		level = btrfs_header_level(parent);
1216 		ASSERT(level >= lowest_level);
1217 
1218 		ret = btrfs_bin_search(parent, 0, &key, &slot);
1219 		if (ret < 0)
1220 			break;
1221 		if (ret && slot > 0)
1222 			slot--;
1223 
1224 		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1225 			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1226 
1227 		old_bytenr = btrfs_node_blockptr(parent, slot);
1228 		blocksize = fs_info->nodesize;
1229 		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1230 
1231 		if (level <= max_level) {
1232 			eb = path->nodes[level];
1233 			new_bytenr = btrfs_node_blockptr(eb,
1234 							path->slots[level]);
1235 			new_ptr_gen = btrfs_node_ptr_generation(eb,
1236 							path->slots[level]);
1237 		} else {
1238 			new_bytenr = 0;
1239 			new_ptr_gen = 0;
1240 		}
1241 
1242 		if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1243 			ret = level;
1244 			break;
1245 		}
1246 
1247 		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1248 		    memcmp_node_keys(parent, slot, path, level)) {
1249 			if (level <= lowest_level) {
1250 				ret = 0;
1251 				break;
1252 			}
1253 
1254 			eb = btrfs_read_node_slot(parent, slot);
1255 			if (IS_ERR(eb)) {
1256 				ret = PTR_ERR(eb);
1257 				break;
1258 			}
1259 			btrfs_tree_lock(eb);
1260 			if (cow) {
1261 				ret = btrfs_cow_block(trans, dest, eb, parent,
1262 						      slot, &eb,
1263 						      BTRFS_NESTING_COW);
1264 				if (ret) {
1265 					btrfs_tree_unlock(eb);
1266 					free_extent_buffer(eb);
1267 					break;
1268 				}
1269 			}
1270 
1271 			btrfs_tree_unlock(parent);
1272 			free_extent_buffer(parent);
1273 
1274 			parent = eb;
1275 			continue;
1276 		}
1277 
1278 		if (!cow) {
1279 			btrfs_tree_unlock(parent);
1280 			free_extent_buffer(parent);
1281 			cow = 1;
1282 			goto again;
1283 		}
1284 
1285 		btrfs_node_key_to_cpu(path->nodes[level], &key,
1286 				      path->slots[level]);
1287 		btrfs_release_path(path);
1288 
1289 		path->lowest_level = level;
1290 		set_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state);
1291 		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1292 		clear_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state);
1293 		path->lowest_level = 0;
1294 		if (ret) {
1295 			if (ret > 0)
1296 				ret = -ENOENT;
1297 			break;
1298 		}
1299 
1300 		/*
1301 		 * Info qgroup to trace both subtrees.
1302 		 *
1303 		 * We must trace both trees.
1304 		 * 1) Tree reloc subtree
1305 		 *    If not traced, we will leak data numbers
1306 		 * 2) Fs subtree
1307 		 *    If not traced, we will double count old data
1308 		 *
1309 		 * We don't scan the subtree right now, but only record
1310 		 * the swapped tree blocks.
1311 		 * The real subtree rescan is delayed until we have new
1312 		 * CoW on the subtree root node before transaction commit.
1313 		 */
1314 		ret = btrfs_qgroup_add_swapped_blocks(trans, dest,
1315 				rc->block_group, parent, slot,
1316 				path->nodes[level], path->slots[level],
1317 				last_snapshot);
1318 		if (ret < 0)
1319 			break;
1320 		/*
1321 		 * swap blocks in fs tree and reloc tree.
1322 		 */
1323 		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1324 		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1325 		btrfs_mark_buffer_dirty(trans, parent);
1326 
1327 		btrfs_set_node_blockptr(path->nodes[level],
1328 					path->slots[level], old_bytenr);
1329 		btrfs_set_node_ptr_generation(path->nodes[level],
1330 					      path->slots[level], old_ptr_gen);
1331 		btrfs_mark_buffer_dirty(trans, path->nodes[level]);
1332 
1333 		ref.action = BTRFS_ADD_DELAYED_REF;
1334 		ref.bytenr = old_bytenr;
1335 		ref.num_bytes = blocksize;
1336 		ref.parent = path->nodes[level]->start;
1337 		ref.owning_root = btrfs_root_id(src);
1338 		ref.ref_root = btrfs_root_id(src);
1339 		btrfs_init_tree_ref(&ref, level - 1, 0, true);
1340 		ret = btrfs_inc_extent_ref(trans, &ref);
1341 		if (ret) {
1342 			btrfs_abort_transaction(trans, ret);
1343 			break;
1344 		}
1345 
1346 		ref.action = BTRFS_ADD_DELAYED_REF;
1347 		ref.bytenr = new_bytenr;
1348 		ref.num_bytes = blocksize;
1349 		ref.parent = 0;
1350 		ref.owning_root = btrfs_root_id(dest);
1351 		ref.ref_root = btrfs_root_id(dest);
1352 		btrfs_init_tree_ref(&ref, level - 1, 0, true);
1353 		ret = btrfs_inc_extent_ref(trans, &ref);
1354 		if (ret) {
1355 			btrfs_abort_transaction(trans, ret);
1356 			break;
1357 		}
1358 
1359 		/* We don't know the real owning_root, use 0. */
1360 		ref.action = BTRFS_DROP_DELAYED_REF;
1361 		ref.bytenr = new_bytenr;
1362 		ref.num_bytes = blocksize;
1363 		ref.parent = path->nodes[level]->start;
1364 		ref.owning_root = 0;
1365 		ref.ref_root = btrfs_root_id(src);
1366 		btrfs_init_tree_ref(&ref, level - 1, 0, true);
1367 		ret = btrfs_free_extent(trans, &ref);
1368 		if (ret) {
1369 			btrfs_abort_transaction(trans, ret);
1370 			break;
1371 		}
1372 
1373 		/* We don't know the real owning_root, use 0. */
1374 		ref.action = BTRFS_DROP_DELAYED_REF;
1375 		ref.bytenr = old_bytenr;
1376 		ref.num_bytes = blocksize;
1377 		ref.parent = 0;
1378 		ref.owning_root = 0;
1379 		ref.ref_root = btrfs_root_id(dest);
1380 		btrfs_init_tree_ref(&ref, level - 1, 0, true);
1381 		ret = btrfs_free_extent(trans, &ref);
1382 		if (ret) {
1383 			btrfs_abort_transaction(trans, ret);
1384 			break;
1385 		}
1386 
1387 		btrfs_unlock_up_safe(path, 0);
1388 
1389 		ret = level;
1390 		break;
1391 	}
1392 	btrfs_tree_unlock(parent);
1393 	free_extent_buffer(parent);
1394 	return ret;
1395 }
1396 
1397 /*
1398  * helper to find next relocated block in reloc tree
1399  */
1400 static noinline_for_stack
1401 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1402 		       int *level)
1403 {
1404 	struct extent_buffer *eb;
1405 	int i;
1406 	u64 last_snapshot;
1407 	u32 nritems;
1408 
1409 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1410 
1411 	for (i = 0; i < *level; i++) {
1412 		free_extent_buffer(path->nodes[i]);
1413 		path->nodes[i] = NULL;
1414 	}
1415 
1416 	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1417 		eb = path->nodes[i];
1418 		nritems = btrfs_header_nritems(eb);
1419 		while (path->slots[i] + 1 < nritems) {
1420 			path->slots[i]++;
1421 			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1422 			    last_snapshot)
1423 				continue;
1424 
1425 			*level = i;
1426 			return 0;
1427 		}
1428 		free_extent_buffer(path->nodes[i]);
1429 		path->nodes[i] = NULL;
1430 	}
1431 	return 1;
1432 }
1433 
1434 /*
1435  * walk down reloc tree to find relocated block of lowest level
1436  */
1437 static noinline_for_stack
1438 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1439 			 int *level)
1440 {
1441 	struct extent_buffer *eb = NULL;
1442 	int i;
1443 	u64 ptr_gen = 0;
1444 	u64 last_snapshot;
1445 	u32 nritems;
1446 
1447 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1448 
1449 	for (i = *level; i > 0; i--) {
1450 		eb = path->nodes[i];
1451 		nritems = btrfs_header_nritems(eb);
1452 		while (path->slots[i] < nritems) {
1453 			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1454 			if (ptr_gen > last_snapshot)
1455 				break;
1456 			path->slots[i]++;
1457 		}
1458 		if (path->slots[i] >= nritems) {
1459 			if (i == *level)
1460 				break;
1461 			*level = i + 1;
1462 			return 0;
1463 		}
1464 		if (i == 1) {
1465 			*level = i;
1466 			return 0;
1467 		}
1468 
1469 		eb = btrfs_read_node_slot(eb, path->slots[i]);
1470 		if (IS_ERR(eb))
1471 			return PTR_ERR(eb);
1472 		BUG_ON(btrfs_header_level(eb) != i - 1);
1473 		path->nodes[i - 1] = eb;
1474 		path->slots[i - 1] = 0;
1475 	}
1476 	return 1;
1477 }
1478 
1479 /*
1480  * invalidate extent cache for file extents whose key in range of
1481  * [min_key, max_key)
1482  */
1483 static int invalidate_extent_cache(struct btrfs_root *root,
1484 				   const struct btrfs_key *min_key,
1485 				   const struct btrfs_key *max_key)
1486 {
1487 	struct btrfs_fs_info *fs_info = root->fs_info;
1488 	struct btrfs_inode *inode = NULL;
1489 	u64 objectid;
1490 	u64 start, end;
1491 	u64 ino;
1492 
1493 	objectid = min_key->objectid;
1494 	while (1) {
1495 		struct extent_state *cached_state = NULL;
1496 
1497 		cond_resched();
1498 		if (inode)
1499 			iput(&inode->vfs_inode);
1500 
1501 		if (objectid > max_key->objectid)
1502 			break;
1503 
1504 		inode = btrfs_find_first_inode(root, objectid);
1505 		if (!inode)
1506 			break;
1507 		ino = btrfs_ino(inode);
1508 
1509 		if (ino > max_key->objectid) {
1510 			iput(&inode->vfs_inode);
1511 			break;
1512 		}
1513 
1514 		objectid = ino + 1;
1515 		if (!S_ISREG(inode->vfs_inode.i_mode))
1516 			continue;
1517 
1518 		if (unlikely(min_key->objectid == ino)) {
1519 			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1520 				continue;
1521 			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1522 				start = 0;
1523 			else {
1524 				start = min_key->offset;
1525 				WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
1526 			}
1527 		} else {
1528 			start = 0;
1529 		}
1530 
1531 		if (unlikely(max_key->objectid == ino)) {
1532 			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1533 				continue;
1534 			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1535 				end = (u64)-1;
1536 			} else {
1537 				if (max_key->offset == 0)
1538 					continue;
1539 				end = max_key->offset;
1540 				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1541 				end--;
1542 			}
1543 		} else {
1544 			end = (u64)-1;
1545 		}
1546 
1547 		/* the lock_extent waits for read_folio to complete */
1548 		lock_extent(&inode->io_tree, start, end, &cached_state);
1549 		btrfs_drop_extent_map_range(inode, start, end, true);
1550 		unlock_extent(&inode->io_tree, start, end, &cached_state);
1551 	}
1552 	return 0;
1553 }
1554 
1555 static int find_next_key(struct btrfs_path *path, int level,
1556 			 struct btrfs_key *key)
1557 
1558 {
1559 	while (level < BTRFS_MAX_LEVEL) {
1560 		if (!path->nodes[level])
1561 			break;
1562 		if (path->slots[level] + 1 <
1563 		    btrfs_header_nritems(path->nodes[level])) {
1564 			btrfs_node_key_to_cpu(path->nodes[level], key,
1565 					      path->slots[level] + 1);
1566 			return 0;
1567 		}
1568 		level++;
1569 	}
1570 	return 1;
1571 }
1572 
1573 /*
1574  * Insert current subvolume into reloc_control::dirty_subvol_roots
1575  */
1576 static int insert_dirty_subvol(struct btrfs_trans_handle *trans,
1577 			       struct reloc_control *rc,
1578 			       struct btrfs_root *root)
1579 {
1580 	struct btrfs_root *reloc_root = root->reloc_root;
1581 	struct btrfs_root_item *reloc_root_item;
1582 	int ret;
1583 
1584 	/* @root must be a subvolume tree root with a valid reloc tree */
1585 	ASSERT(btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID);
1586 	ASSERT(reloc_root);
1587 
1588 	reloc_root_item = &reloc_root->root_item;
1589 	memset(&reloc_root_item->drop_progress, 0,
1590 		sizeof(reloc_root_item->drop_progress));
1591 	btrfs_set_root_drop_level(reloc_root_item, 0);
1592 	btrfs_set_root_refs(reloc_root_item, 0);
1593 	ret = btrfs_update_reloc_root(trans, root);
1594 	if (ret)
1595 		return ret;
1596 
1597 	if (list_empty(&root->reloc_dirty_list)) {
1598 		btrfs_grab_root(root);
1599 		list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots);
1600 	}
1601 
1602 	return 0;
1603 }
1604 
1605 static int clean_dirty_subvols(struct reloc_control *rc)
1606 {
1607 	struct btrfs_root *root;
1608 	struct btrfs_root *next;
1609 	int ret = 0;
1610 	int ret2;
1611 
1612 	list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots,
1613 				 reloc_dirty_list) {
1614 		if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID) {
1615 			/* Merged subvolume, cleanup its reloc root */
1616 			struct btrfs_root *reloc_root = root->reloc_root;
1617 
1618 			list_del_init(&root->reloc_dirty_list);
1619 			root->reloc_root = NULL;
1620 			/*
1621 			 * Need barrier to ensure clear_bit() only happens after
1622 			 * root->reloc_root = NULL. Pairs with have_reloc_root.
1623 			 */
1624 			smp_wmb();
1625 			clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
1626 			if (reloc_root) {
1627 				/*
1628 				 * btrfs_drop_snapshot drops our ref we hold for
1629 				 * ->reloc_root.  If it fails however we must
1630 				 * drop the ref ourselves.
1631 				 */
1632 				ret2 = btrfs_drop_snapshot(reloc_root, 0, 1);
1633 				if (ret2 < 0) {
1634 					btrfs_put_root(reloc_root);
1635 					if (!ret)
1636 						ret = ret2;
1637 				}
1638 			}
1639 			btrfs_put_root(root);
1640 		} else {
1641 			/* Orphan reloc tree, just clean it up */
1642 			ret2 = btrfs_drop_snapshot(root, 0, 1);
1643 			if (ret2 < 0) {
1644 				btrfs_put_root(root);
1645 				if (!ret)
1646 					ret = ret2;
1647 			}
1648 		}
1649 	}
1650 	return ret;
1651 }
1652 
1653 /*
1654  * merge the relocated tree blocks in reloc tree with corresponding
1655  * fs tree.
1656  */
1657 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
1658 					       struct btrfs_root *root)
1659 {
1660 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1661 	struct btrfs_key key;
1662 	struct btrfs_key next_key;
1663 	struct btrfs_trans_handle *trans = NULL;
1664 	struct btrfs_root *reloc_root;
1665 	struct btrfs_root_item *root_item;
1666 	struct btrfs_path *path;
1667 	struct extent_buffer *leaf;
1668 	int reserve_level;
1669 	int level;
1670 	int max_level;
1671 	int replaced = 0;
1672 	int ret = 0;
1673 	u32 min_reserved;
1674 
1675 	path = btrfs_alloc_path();
1676 	if (!path)
1677 		return -ENOMEM;
1678 	path->reada = READA_FORWARD;
1679 
1680 	reloc_root = root->reloc_root;
1681 	root_item = &reloc_root->root_item;
1682 
1683 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
1684 		level = btrfs_root_level(root_item);
1685 		atomic_inc(&reloc_root->node->refs);
1686 		path->nodes[level] = reloc_root->node;
1687 		path->slots[level] = 0;
1688 	} else {
1689 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
1690 
1691 		level = btrfs_root_drop_level(root_item);
1692 		BUG_ON(level == 0);
1693 		path->lowest_level = level;
1694 		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
1695 		path->lowest_level = 0;
1696 		if (ret < 0) {
1697 			btrfs_free_path(path);
1698 			return ret;
1699 		}
1700 
1701 		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
1702 				      path->slots[level]);
1703 		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
1704 
1705 		btrfs_unlock_up_safe(path, 0);
1706 	}
1707 
1708 	/*
1709 	 * In merge_reloc_root(), we modify the upper level pointer to swap the
1710 	 * tree blocks between reloc tree and subvolume tree.  Thus for tree
1711 	 * block COW, we COW at most from level 1 to root level for each tree.
1712 	 *
1713 	 * Thus the needed metadata size is at most root_level * nodesize,
1714 	 * and * 2 since we have two trees to COW.
1715 	 */
1716 	reserve_level = max_t(int, 1, btrfs_root_level(root_item));
1717 	min_reserved = fs_info->nodesize * reserve_level * 2;
1718 	memset(&next_key, 0, sizeof(next_key));
1719 
1720 	while (1) {
1721 		ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv,
1722 					     min_reserved,
1723 					     BTRFS_RESERVE_FLUSH_LIMIT);
1724 		if (ret)
1725 			goto out;
1726 		trans = btrfs_start_transaction(root, 0);
1727 		if (IS_ERR(trans)) {
1728 			ret = PTR_ERR(trans);
1729 			trans = NULL;
1730 			goto out;
1731 		}
1732 
1733 		/*
1734 		 * At this point we no longer have a reloc_control, so we can't
1735 		 * depend on btrfs_init_reloc_root to update our last_trans.
1736 		 *
1737 		 * But that's ok, we started the trans handle on our
1738 		 * corresponding fs_root, which means it's been added to the
1739 		 * dirty list.  At commit time we'll still call
1740 		 * btrfs_update_reloc_root() and update our root item
1741 		 * appropriately.
1742 		 */
1743 		btrfs_set_root_last_trans(reloc_root, trans->transid);
1744 		trans->block_rsv = rc->block_rsv;
1745 
1746 		replaced = 0;
1747 		max_level = level;
1748 
1749 		ret = walk_down_reloc_tree(reloc_root, path, &level);
1750 		if (ret < 0)
1751 			goto out;
1752 		if (ret > 0)
1753 			break;
1754 
1755 		if (!find_next_key(path, level, &key) &&
1756 		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
1757 			ret = 0;
1758 		} else {
1759 			ret = replace_path(trans, rc, root, reloc_root, path,
1760 					   &next_key, level, max_level);
1761 		}
1762 		if (ret < 0)
1763 			goto out;
1764 		if (ret > 0) {
1765 			level = ret;
1766 			btrfs_node_key_to_cpu(path->nodes[level], &key,
1767 					      path->slots[level]);
1768 			replaced = 1;
1769 		}
1770 
1771 		ret = walk_up_reloc_tree(reloc_root, path, &level);
1772 		if (ret > 0)
1773 			break;
1774 
1775 		BUG_ON(level == 0);
1776 		/*
1777 		 * save the merging progress in the drop_progress.
1778 		 * this is OK since root refs == 1 in this case.
1779 		 */
1780 		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
1781 			       path->slots[level]);
1782 		btrfs_set_root_drop_level(root_item, level);
1783 
1784 		btrfs_end_transaction_throttle(trans);
1785 		trans = NULL;
1786 
1787 		btrfs_btree_balance_dirty(fs_info);
1788 
1789 		if (replaced && rc->stage == UPDATE_DATA_PTRS)
1790 			invalidate_extent_cache(root, &key, &next_key);
1791 	}
1792 
1793 	/*
1794 	 * handle the case only one block in the fs tree need to be
1795 	 * relocated and the block is tree root.
1796 	 */
1797 	leaf = btrfs_lock_root_node(root);
1798 	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf,
1799 			      BTRFS_NESTING_COW);
1800 	btrfs_tree_unlock(leaf);
1801 	free_extent_buffer(leaf);
1802 out:
1803 	btrfs_free_path(path);
1804 
1805 	if (ret == 0) {
1806 		ret = insert_dirty_subvol(trans, rc, root);
1807 		if (ret)
1808 			btrfs_abort_transaction(trans, ret);
1809 	}
1810 
1811 	if (trans)
1812 		btrfs_end_transaction_throttle(trans);
1813 
1814 	btrfs_btree_balance_dirty(fs_info);
1815 
1816 	if (replaced && rc->stage == UPDATE_DATA_PTRS)
1817 		invalidate_extent_cache(root, &key, &next_key);
1818 
1819 	return ret;
1820 }
1821 
1822 static noinline_for_stack
1823 int prepare_to_merge(struct reloc_control *rc, int err)
1824 {
1825 	struct btrfs_root *root = rc->extent_root;
1826 	struct btrfs_fs_info *fs_info = root->fs_info;
1827 	struct btrfs_root *reloc_root;
1828 	struct btrfs_trans_handle *trans;
1829 	LIST_HEAD(reloc_roots);
1830 	u64 num_bytes = 0;
1831 	int ret;
1832 
1833 	mutex_lock(&fs_info->reloc_mutex);
1834 	rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
1835 	rc->merging_rsv_size += rc->nodes_relocated * 2;
1836 	mutex_unlock(&fs_info->reloc_mutex);
1837 
1838 again:
1839 	if (!err) {
1840 		num_bytes = rc->merging_rsv_size;
1841 		ret = btrfs_block_rsv_add(fs_info, rc->block_rsv, num_bytes,
1842 					  BTRFS_RESERVE_FLUSH_ALL);
1843 		if (ret)
1844 			err = ret;
1845 	}
1846 
1847 	trans = btrfs_join_transaction(rc->extent_root);
1848 	if (IS_ERR(trans)) {
1849 		if (!err)
1850 			btrfs_block_rsv_release(fs_info, rc->block_rsv,
1851 						num_bytes, NULL);
1852 		return PTR_ERR(trans);
1853 	}
1854 
1855 	if (!err) {
1856 		if (num_bytes != rc->merging_rsv_size) {
1857 			btrfs_end_transaction(trans);
1858 			btrfs_block_rsv_release(fs_info, rc->block_rsv,
1859 						num_bytes, NULL);
1860 			goto again;
1861 		}
1862 	}
1863 
1864 	rc->merge_reloc_tree = true;
1865 
1866 	while (!list_empty(&rc->reloc_roots)) {
1867 		reloc_root = list_entry(rc->reloc_roots.next,
1868 					struct btrfs_root, root_list);
1869 		list_del_init(&reloc_root->root_list);
1870 
1871 		root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1872 				false);
1873 		if (IS_ERR(root)) {
1874 			/*
1875 			 * Even if we have an error we need this reloc root
1876 			 * back on our list so we can clean up properly.
1877 			 */
1878 			list_add(&reloc_root->root_list, &reloc_roots);
1879 			btrfs_abort_transaction(trans, (int)PTR_ERR(root));
1880 			if (!err)
1881 				err = PTR_ERR(root);
1882 			break;
1883 		}
1884 
1885 		if (unlikely(root->reloc_root != reloc_root)) {
1886 			if (root->reloc_root) {
1887 				btrfs_err(fs_info,
1888 "reloc tree mismatch, root %lld has reloc root key (%lld %u %llu) gen %llu, expect reloc root key (%lld %u %llu) gen %llu",
1889 					  btrfs_root_id(root),
1890 					  btrfs_root_id(root->reloc_root),
1891 					  root->reloc_root->root_key.type,
1892 					  root->reloc_root->root_key.offset,
1893 					  btrfs_root_generation(
1894 						  &root->reloc_root->root_item),
1895 					  btrfs_root_id(reloc_root),
1896 					  reloc_root->root_key.type,
1897 					  reloc_root->root_key.offset,
1898 					  btrfs_root_generation(
1899 						  &reloc_root->root_item));
1900 			} else {
1901 				btrfs_err(fs_info,
1902 "reloc tree mismatch, root %lld has no reloc root, expect reloc root key (%lld %u %llu) gen %llu",
1903 					  btrfs_root_id(root),
1904 					  btrfs_root_id(reloc_root),
1905 					  reloc_root->root_key.type,
1906 					  reloc_root->root_key.offset,
1907 					  btrfs_root_generation(
1908 						  &reloc_root->root_item));
1909 			}
1910 			list_add(&reloc_root->root_list, &reloc_roots);
1911 			btrfs_put_root(root);
1912 			btrfs_abort_transaction(trans, -EUCLEAN);
1913 			if (!err)
1914 				err = -EUCLEAN;
1915 			break;
1916 		}
1917 
1918 		/*
1919 		 * set reference count to 1, so btrfs_recover_relocation
1920 		 * knows it should resumes merging
1921 		 */
1922 		if (!err)
1923 			btrfs_set_root_refs(&reloc_root->root_item, 1);
1924 		ret = btrfs_update_reloc_root(trans, root);
1925 
1926 		/*
1927 		 * Even if we have an error we need this reloc root back on our
1928 		 * list so we can clean up properly.
1929 		 */
1930 		list_add(&reloc_root->root_list, &reloc_roots);
1931 		btrfs_put_root(root);
1932 
1933 		if (ret) {
1934 			btrfs_abort_transaction(trans, ret);
1935 			if (!err)
1936 				err = ret;
1937 			break;
1938 		}
1939 	}
1940 
1941 	list_splice(&reloc_roots, &rc->reloc_roots);
1942 
1943 	if (!err)
1944 		err = btrfs_commit_transaction(trans);
1945 	else
1946 		btrfs_end_transaction(trans);
1947 	return err;
1948 }
1949 
1950 static noinline_for_stack
1951 void free_reloc_roots(struct list_head *list)
1952 {
1953 	struct btrfs_root *reloc_root, *tmp;
1954 
1955 	list_for_each_entry_safe(reloc_root, tmp, list, root_list)
1956 		__del_reloc_root(reloc_root);
1957 }
1958 
1959 static noinline_for_stack
1960 void merge_reloc_roots(struct reloc_control *rc)
1961 {
1962 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1963 	struct btrfs_root *root;
1964 	struct btrfs_root *reloc_root;
1965 	LIST_HEAD(reloc_roots);
1966 	int found = 0;
1967 	int ret = 0;
1968 again:
1969 	root = rc->extent_root;
1970 
1971 	/*
1972 	 * this serializes us with btrfs_record_root_in_transaction,
1973 	 * we have to make sure nobody is in the middle of
1974 	 * adding their roots to the list while we are
1975 	 * doing this splice
1976 	 */
1977 	mutex_lock(&fs_info->reloc_mutex);
1978 	list_splice_init(&rc->reloc_roots, &reloc_roots);
1979 	mutex_unlock(&fs_info->reloc_mutex);
1980 
1981 	while (!list_empty(&reloc_roots)) {
1982 		found = 1;
1983 		reloc_root = list_entry(reloc_roots.next,
1984 					struct btrfs_root, root_list);
1985 
1986 		root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1987 					 false);
1988 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
1989 			if (WARN_ON(IS_ERR(root))) {
1990 				/*
1991 				 * For recovery we read the fs roots on mount,
1992 				 * and if we didn't find the root then we marked
1993 				 * the reloc root as a garbage root.  For normal
1994 				 * relocation obviously the root should exist in
1995 				 * memory.  However there's no reason we can't
1996 				 * handle the error properly here just in case.
1997 				 */
1998 				ret = PTR_ERR(root);
1999 				goto out;
2000 			}
2001 			if (WARN_ON(root->reloc_root != reloc_root)) {
2002 				/*
2003 				 * This can happen if on-disk metadata has some
2004 				 * corruption, e.g. bad reloc tree key offset.
2005 				 */
2006 				ret = -EINVAL;
2007 				goto out;
2008 			}
2009 			ret = merge_reloc_root(rc, root);
2010 			btrfs_put_root(root);
2011 			if (ret) {
2012 				if (list_empty(&reloc_root->root_list))
2013 					list_add_tail(&reloc_root->root_list,
2014 						      &reloc_roots);
2015 				goto out;
2016 			}
2017 		} else {
2018 			if (!IS_ERR(root)) {
2019 				if (root->reloc_root == reloc_root) {
2020 					root->reloc_root = NULL;
2021 					btrfs_put_root(reloc_root);
2022 				}
2023 				clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE,
2024 					  &root->state);
2025 				btrfs_put_root(root);
2026 			}
2027 
2028 			list_del_init(&reloc_root->root_list);
2029 			/* Don't forget to queue this reloc root for cleanup */
2030 			list_add_tail(&reloc_root->reloc_dirty_list,
2031 				      &rc->dirty_subvol_roots);
2032 		}
2033 	}
2034 
2035 	if (found) {
2036 		found = 0;
2037 		goto again;
2038 	}
2039 out:
2040 	if (ret) {
2041 		btrfs_handle_fs_error(fs_info, ret, NULL);
2042 		free_reloc_roots(&reloc_roots);
2043 
2044 		/* new reloc root may be added */
2045 		mutex_lock(&fs_info->reloc_mutex);
2046 		list_splice_init(&rc->reloc_roots, &reloc_roots);
2047 		mutex_unlock(&fs_info->reloc_mutex);
2048 		free_reloc_roots(&reloc_roots);
2049 	}
2050 
2051 	/*
2052 	 * We used to have
2053 	 *
2054 	 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2055 	 *
2056 	 * here, but it's wrong.  If we fail to start the transaction in
2057 	 * prepare_to_merge() we will have only 0 ref reloc roots, none of which
2058 	 * have actually been removed from the reloc_root_tree rb tree.  This is
2059 	 * fine because we're bailing here, and we hold a reference on the root
2060 	 * for the list that holds it, so these roots will be cleaned up when we
2061 	 * do the reloc_dirty_list afterwards.  Meanwhile the root->reloc_root
2062 	 * will be cleaned up on unmount.
2063 	 *
2064 	 * The remaining nodes will be cleaned up by free_reloc_control.
2065 	 */
2066 }
2067 
2068 static void free_block_list(struct rb_root *blocks)
2069 {
2070 	struct tree_block *block;
2071 	struct rb_node *rb_node;
2072 	while ((rb_node = rb_first(blocks))) {
2073 		block = rb_entry(rb_node, struct tree_block, rb_node);
2074 		rb_erase(rb_node, blocks);
2075 		kfree(block);
2076 	}
2077 }
2078 
2079 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2080 				      struct btrfs_root *reloc_root)
2081 {
2082 	struct btrfs_fs_info *fs_info = reloc_root->fs_info;
2083 	struct btrfs_root *root;
2084 	int ret;
2085 
2086 	if (btrfs_get_root_last_trans(reloc_root) == trans->transid)
2087 		return 0;
2088 
2089 	root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false);
2090 
2091 	/*
2092 	 * This should succeed, since we can't have a reloc root without having
2093 	 * already looked up the actual root and created the reloc root for this
2094 	 * root.
2095 	 *
2096 	 * However if there's some sort of corruption where we have a ref to a
2097 	 * reloc root without a corresponding root this could return ENOENT.
2098 	 */
2099 	if (IS_ERR(root)) {
2100 		ASSERT(0);
2101 		return PTR_ERR(root);
2102 	}
2103 	if (root->reloc_root != reloc_root) {
2104 		ASSERT(0);
2105 		btrfs_err(fs_info,
2106 			  "root %llu has two reloc roots associated with it",
2107 			  reloc_root->root_key.offset);
2108 		btrfs_put_root(root);
2109 		return -EUCLEAN;
2110 	}
2111 	ret = btrfs_record_root_in_trans(trans, root);
2112 	btrfs_put_root(root);
2113 
2114 	return ret;
2115 }
2116 
2117 static noinline_for_stack
2118 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2119 				     struct reloc_control *rc,
2120 				     struct btrfs_backref_node *node,
2121 				     struct btrfs_backref_edge *edges[])
2122 {
2123 	struct btrfs_backref_node *next;
2124 	struct btrfs_root *root;
2125 	int index = 0;
2126 	int ret;
2127 
2128 	next = node;
2129 	while (1) {
2130 		cond_resched();
2131 		next = walk_up_backref(next, edges, &index);
2132 		root = next->root;
2133 
2134 		/*
2135 		 * If there is no root, then our references for this block are
2136 		 * incomplete, as we should be able to walk all the way up to a
2137 		 * block that is owned by a root.
2138 		 *
2139 		 * This path is only for SHAREABLE roots, so if we come upon a
2140 		 * non-SHAREABLE root then we have backrefs that resolve
2141 		 * improperly.
2142 		 *
2143 		 * Both of these cases indicate file system corruption, or a bug
2144 		 * in the backref walking code.
2145 		 */
2146 		if (!root) {
2147 			ASSERT(0);
2148 			btrfs_err(trans->fs_info,
2149 		"bytenr %llu doesn't have a backref path ending in a root",
2150 				  node->bytenr);
2151 			return ERR_PTR(-EUCLEAN);
2152 		}
2153 		if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2154 			ASSERT(0);
2155 			btrfs_err(trans->fs_info,
2156 	"bytenr %llu has multiple refs with one ending in a non-shareable root",
2157 				  node->bytenr);
2158 			return ERR_PTR(-EUCLEAN);
2159 		}
2160 
2161 		if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) {
2162 			ret = record_reloc_root_in_trans(trans, root);
2163 			if (ret)
2164 				return ERR_PTR(ret);
2165 			break;
2166 		}
2167 
2168 		ret = btrfs_record_root_in_trans(trans, root);
2169 		if (ret)
2170 			return ERR_PTR(ret);
2171 		root = root->reloc_root;
2172 
2173 		/*
2174 		 * We could have raced with another thread which failed, so
2175 		 * root->reloc_root may not be set, return ENOENT in this case.
2176 		 */
2177 		if (!root)
2178 			return ERR_PTR(-ENOENT);
2179 
2180 		if (next->new_bytenr != root->node->start) {
2181 			/*
2182 			 * We just created the reloc root, so we shouldn't have
2183 			 * ->new_bytenr set and this shouldn't be in the changed
2184 			 *  list.  If it is then we have multiple roots pointing
2185 			 *  at the same bytenr which indicates corruption, or
2186 			 *  we've made a mistake in the backref walking code.
2187 			 */
2188 			ASSERT(next->new_bytenr == 0);
2189 			ASSERT(list_empty(&next->list));
2190 			if (next->new_bytenr || !list_empty(&next->list)) {
2191 				btrfs_err(trans->fs_info,
2192 	"bytenr %llu possibly has multiple roots pointing at the same bytenr %llu",
2193 					  node->bytenr, next->bytenr);
2194 				return ERR_PTR(-EUCLEAN);
2195 			}
2196 
2197 			next->new_bytenr = root->node->start;
2198 			btrfs_put_root(next->root);
2199 			next->root = btrfs_grab_root(root);
2200 			ASSERT(next->root);
2201 			list_add_tail(&next->list,
2202 				      &rc->backref_cache.changed);
2203 			mark_block_processed(rc, next);
2204 			break;
2205 		}
2206 
2207 		WARN_ON(1);
2208 		root = NULL;
2209 		next = walk_down_backref(edges, &index);
2210 		if (!next || next->level <= node->level)
2211 			break;
2212 	}
2213 	if (!root) {
2214 		/*
2215 		 * This can happen if there's fs corruption or if there's a bug
2216 		 * in the backref lookup code.
2217 		 */
2218 		ASSERT(0);
2219 		return ERR_PTR(-ENOENT);
2220 	}
2221 
2222 	next = node;
2223 	/* setup backref node path for btrfs_reloc_cow_block */
2224 	while (1) {
2225 		rc->backref_cache.path[next->level] = next;
2226 		if (--index < 0)
2227 			break;
2228 		next = edges[index]->node[UPPER];
2229 	}
2230 	return root;
2231 }
2232 
2233 /*
2234  * Select a tree root for relocation.
2235  *
2236  * Return NULL if the block is not shareable. We should use do_relocation() in
2237  * this case.
2238  *
2239  * Return a tree root pointer if the block is shareable.
2240  * Return -ENOENT if the block is root of reloc tree.
2241  */
2242 static noinline_for_stack
2243 struct btrfs_root *select_one_root(struct btrfs_backref_node *node)
2244 {
2245 	struct btrfs_backref_node *next;
2246 	struct btrfs_root *root;
2247 	struct btrfs_root *fs_root = NULL;
2248 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2249 	int index = 0;
2250 
2251 	next = node;
2252 	while (1) {
2253 		cond_resched();
2254 		next = walk_up_backref(next, edges, &index);
2255 		root = next->root;
2256 
2257 		/*
2258 		 * This can occur if we have incomplete extent refs leading all
2259 		 * the way up a particular path, in this case return -EUCLEAN.
2260 		 */
2261 		if (!root)
2262 			return ERR_PTR(-EUCLEAN);
2263 
2264 		/* No other choice for non-shareable tree */
2265 		if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2266 			return root;
2267 
2268 		if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID)
2269 			fs_root = root;
2270 
2271 		if (next != node)
2272 			return NULL;
2273 
2274 		next = walk_down_backref(edges, &index);
2275 		if (!next || next->level <= node->level)
2276 			break;
2277 	}
2278 
2279 	if (!fs_root)
2280 		return ERR_PTR(-ENOENT);
2281 	return fs_root;
2282 }
2283 
2284 static noinline_for_stack u64 calcu_metadata_size(struct reloc_control *rc,
2285 						  struct btrfs_backref_node *node)
2286 {
2287 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2288 	struct btrfs_backref_node *next = node;
2289 	struct btrfs_backref_edge *edge;
2290 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2291 	u64 num_bytes = 0;
2292 	int index = 0;
2293 
2294 	BUG_ON(node->processed);
2295 
2296 	while (next) {
2297 		cond_resched();
2298 		while (1) {
2299 			if (next->processed)
2300 				break;
2301 
2302 			num_bytes += fs_info->nodesize;
2303 
2304 			if (list_empty(&next->upper))
2305 				break;
2306 
2307 			edge = list_entry(next->upper.next,
2308 					struct btrfs_backref_edge, list[LOWER]);
2309 			edges[index++] = edge;
2310 			next = edge->node[UPPER];
2311 		}
2312 		next = walk_down_backref(edges, &index);
2313 	}
2314 	return num_bytes;
2315 }
2316 
2317 static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2318 				  struct reloc_control *rc,
2319 				  struct btrfs_backref_node *node)
2320 {
2321 	struct btrfs_root *root = rc->extent_root;
2322 	struct btrfs_fs_info *fs_info = root->fs_info;
2323 	u64 num_bytes;
2324 	int ret;
2325 	u64 tmp;
2326 
2327 	num_bytes = calcu_metadata_size(rc, node) * 2;
2328 
2329 	trans->block_rsv = rc->block_rsv;
2330 	rc->reserved_bytes += num_bytes;
2331 
2332 	/*
2333 	 * We are under a transaction here so we can only do limited flushing.
2334 	 * If we get an enospc just kick back -EAGAIN so we know to drop the
2335 	 * transaction and try to refill when we can flush all the things.
2336 	 */
2337 	ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv, num_bytes,
2338 				     BTRFS_RESERVE_FLUSH_LIMIT);
2339 	if (ret) {
2340 		tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2341 		while (tmp <= rc->reserved_bytes)
2342 			tmp <<= 1;
2343 		/*
2344 		 * only one thread can access block_rsv at this point,
2345 		 * so we don't need hold lock to protect block_rsv.
2346 		 * we expand more reservation size here to allow enough
2347 		 * space for relocation and we will return earlier in
2348 		 * enospc case.
2349 		 */
2350 		rc->block_rsv->size = tmp + fs_info->nodesize *
2351 				      RELOCATION_RESERVED_NODES;
2352 		return -EAGAIN;
2353 	}
2354 
2355 	return 0;
2356 }
2357 
2358 /*
2359  * relocate a block tree, and then update pointers in upper level
2360  * blocks that reference the block to point to the new location.
2361  *
2362  * if called by link_to_upper, the block has already been relocated.
2363  * in that case this function just updates pointers.
2364  */
2365 static int do_relocation(struct btrfs_trans_handle *trans,
2366 			 struct reloc_control *rc,
2367 			 struct btrfs_backref_node *node,
2368 			 struct btrfs_key *key,
2369 			 struct btrfs_path *path, int lowest)
2370 {
2371 	struct btrfs_backref_node *upper;
2372 	struct btrfs_backref_edge *edge;
2373 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2374 	struct btrfs_root *root;
2375 	struct extent_buffer *eb;
2376 	u32 blocksize;
2377 	u64 bytenr;
2378 	int slot;
2379 	int ret = 0;
2380 
2381 	/*
2382 	 * If we are lowest then this is the first time we're processing this
2383 	 * block, and thus shouldn't have an eb associated with it yet.
2384 	 */
2385 	ASSERT(!lowest || !node->eb);
2386 
2387 	path->lowest_level = node->level + 1;
2388 	rc->backref_cache.path[node->level] = node;
2389 	list_for_each_entry(edge, &node->upper, list[LOWER]) {
2390 		cond_resched();
2391 
2392 		upper = edge->node[UPPER];
2393 		root = select_reloc_root(trans, rc, upper, edges);
2394 		if (IS_ERR(root)) {
2395 			ret = PTR_ERR(root);
2396 			goto next;
2397 		}
2398 
2399 		if (upper->eb && !upper->locked) {
2400 			if (!lowest) {
2401 				ret = btrfs_bin_search(upper->eb, 0, key, &slot);
2402 				if (ret < 0)
2403 					goto next;
2404 				BUG_ON(ret);
2405 				bytenr = btrfs_node_blockptr(upper->eb, slot);
2406 				if (node->eb->start == bytenr)
2407 					goto next;
2408 			}
2409 			btrfs_backref_drop_node_buffer(upper);
2410 		}
2411 
2412 		if (!upper->eb) {
2413 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2414 			if (ret) {
2415 				if (ret > 0)
2416 					ret = -ENOENT;
2417 
2418 				btrfs_release_path(path);
2419 				break;
2420 			}
2421 
2422 			if (!upper->eb) {
2423 				upper->eb = path->nodes[upper->level];
2424 				path->nodes[upper->level] = NULL;
2425 			} else {
2426 				BUG_ON(upper->eb != path->nodes[upper->level]);
2427 			}
2428 
2429 			upper->locked = 1;
2430 			path->locks[upper->level] = 0;
2431 
2432 			slot = path->slots[upper->level];
2433 			btrfs_release_path(path);
2434 		} else {
2435 			ret = btrfs_bin_search(upper->eb, 0, key, &slot);
2436 			if (ret < 0)
2437 				goto next;
2438 			BUG_ON(ret);
2439 		}
2440 
2441 		bytenr = btrfs_node_blockptr(upper->eb, slot);
2442 		if (lowest) {
2443 			if (bytenr != node->bytenr) {
2444 				btrfs_err(root->fs_info,
2445 		"lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2446 					  bytenr, node->bytenr, slot,
2447 					  upper->eb->start);
2448 				ret = -EIO;
2449 				goto next;
2450 			}
2451 		} else {
2452 			if (node->eb->start == bytenr)
2453 				goto next;
2454 		}
2455 
2456 		blocksize = root->fs_info->nodesize;
2457 		eb = btrfs_read_node_slot(upper->eb, slot);
2458 		if (IS_ERR(eb)) {
2459 			ret = PTR_ERR(eb);
2460 			goto next;
2461 		}
2462 		btrfs_tree_lock(eb);
2463 
2464 		if (!node->eb) {
2465 			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2466 					      slot, &eb, BTRFS_NESTING_COW);
2467 			btrfs_tree_unlock(eb);
2468 			free_extent_buffer(eb);
2469 			if (ret < 0)
2470 				goto next;
2471 			/*
2472 			 * We've just COWed this block, it should have updated
2473 			 * the correct backref node entry.
2474 			 */
2475 			ASSERT(node->eb == eb);
2476 		} else {
2477 			struct btrfs_ref ref = {
2478 				.action = BTRFS_ADD_DELAYED_REF,
2479 				.bytenr = node->eb->start,
2480 				.num_bytes = blocksize,
2481 				.parent = upper->eb->start,
2482 				.owning_root = btrfs_header_owner(upper->eb),
2483 				.ref_root = btrfs_header_owner(upper->eb),
2484 			};
2485 
2486 			btrfs_set_node_blockptr(upper->eb, slot,
2487 						node->eb->start);
2488 			btrfs_set_node_ptr_generation(upper->eb, slot,
2489 						      trans->transid);
2490 			btrfs_mark_buffer_dirty(trans, upper->eb);
2491 
2492 			btrfs_init_tree_ref(&ref, node->level,
2493 					    btrfs_root_id(root), false);
2494 			ret = btrfs_inc_extent_ref(trans, &ref);
2495 			if (!ret)
2496 				ret = btrfs_drop_subtree(trans, root, eb,
2497 							 upper->eb);
2498 			if (ret)
2499 				btrfs_abort_transaction(trans, ret);
2500 		}
2501 next:
2502 		if (!upper->pending)
2503 			btrfs_backref_drop_node_buffer(upper);
2504 		else
2505 			btrfs_backref_unlock_node_buffer(upper);
2506 		if (ret)
2507 			break;
2508 	}
2509 
2510 	if (!ret && node->pending) {
2511 		btrfs_backref_drop_node_buffer(node);
2512 		list_move_tail(&node->list, &rc->backref_cache.changed);
2513 		node->pending = 0;
2514 	}
2515 
2516 	path->lowest_level = 0;
2517 
2518 	/*
2519 	 * We should have allocated all of our space in the block rsv and thus
2520 	 * shouldn't ENOSPC.
2521 	 */
2522 	ASSERT(ret != -ENOSPC);
2523 	return ret;
2524 }
2525 
2526 static int link_to_upper(struct btrfs_trans_handle *trans,
2527 			 struct reloc_control *rc,
2528 			 struct btrfs_backref_node *node,
2529 			 struct btrfs_path *path)
2530 {
2531 	struct btrfs_key key;
2532 
2533 	btrfs_node_key_to_cpu(node->eb, &key, 0);
2534 	return do_relocation(trans, rc, node, &key, path, 0);
2535 }
2536 
2537 static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2538 				struct reloc_control *rc,
2539 				struct btrfs_path *path, int err)
2540 {
2541 	LIST_HEAD(list);
2542 	struct btrfs_backref_cache *cache = &rc->backref_cache;
2543 	struct btrfs_backref_node *node;
2544 	int level;
2545 	int ret;
2546 
2547 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2548 		while (!list_empty(&cache->pending[level])) {
2549 			node = list_entry(cache->pending[level].next,
2550 					  struct btrfs_backref_node, list);
2551 			list_move_tail(&node->list, &list);
2552 			BUG_ON(!node->pending);
2553 
2554 			if (!err) {
2555 				ret = link_to_upper(trans, rc, node, path);
2556 				if (ret < 0)
2557 					err = ret;
2558 			}
2559 		}
2560 		list_splice_init(&list, &cache->pending[level]);
2561 	}
2562 	return err;
2563 }
2564 
2565 /*
2566  * mark a block and all blocks directly/indirectly reference the block
2567  * as processed.
2568  */
2569 static void update_processed_blocks(struct reloc_control *rc,
2570 				    struct btrfs_backref_node *node)
2571 {
2572 	struct btrfs_backref_node *next = node;
2573 	struct btrfs_backref_edge *edge;
2574 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2575 	int index = 0;
2576 
2577 	while (next) {
2578 		cond_resched();
2579 		while (1) {
2580 			if (next->processed)
2581 				break;
2582 
2583 			mark_block_processed(rc, next);
2584 
2585 			if (list_empty(&next->upper))
2586 				break;
2587 
2588 			edge = list_entry(next->upper.next,
2589 					struct btrfs_backref_edge, list[LOWER]);
2590 			edges[index++] = edge;
2591 			next = edge->node[UPPER];
2592 		}
2593 		next = walk_down_backref(edges, &index);
2594 	}
2595 }
2596 
2597 static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2598 {
2599 	u32 blocksize = rc->extent_root->fs_info->nodesize;
2600 
2601 	if (test_range_bit(&rc->processed_blocks, bytenr,
2602 			   bytenr + blocksize - 1, EXTENT_DIRTY, NULL))
2603 		return 1;
2604 	return 0;
2605 }
2606 
2607 static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2608 			      struct tree_block *block)
2609 {
2610 	struct btrfs_tree_parent_check check = {
2611 		.level = block->level,
2612 		.owner_root = block->owner,
2613 		.transid = block->key.offset
2614 	};
2615 	struct extent_buffer *eb;
2616 
2617 	eb = read_tree_block(fs_info, block->bytenr, &check);
2618 	if (IS_ERR(eb))
2619 		return PTR_ERR(eb);
2620 	if (!extent_buffer_uptodate(eb)) {
2621 		free_extent_buffer(eb);
2622 		return -EIO;
2623 	}
2624 	if (block->level == 0)
2625 		btrfs_item_key_to_cpu(eb, &block->key, 0);
2626 	else
2627 		btrfs_node_key_to_cpu(eb, &block->key, 0);
2628 	free_extent_buffer(eb);
2629 	block->key_ready = true;
2630 	return 0;
2631 }
2632 
2633 /*
2634  * helper function to relocate a tree block
2635  */
2636 static int relocate_tree_block(struct btrfs_trans_handle *trans,
2637 				struct reloc_control *rc,
2638 				struct btrfs_backref_node *node,
2639 				struct btrfs_key *key,
2640 				struct btrfs_path *path)
2641 {
2642 	struct btrfs_root *root;
2643 	int ret = 0;
2644 
2645 	if (!node)
2646 		return 0;
2647 
2648 	/*
2649 	 * If we fail here we want to drop our backref_node because we are going
2650 	 * to start over and regenerate the tree for it.
2651 	 */
2652 	ret = reserve_metadata_space(trans, rc, node);
2653 	if (ret)
2654 		goto out;
2655 
2656 	BUG_ON(node->processed);
2657 	root = select_one_root(node);
2658 	if (IS_ERR(root)) {
2659 		ret = PTR_ERR(root);
2660 
2661 		/* See explanation in select_one_root for the -EUCLEAN case. */
2662 		ASSERT(ret == -ENOENT);
2663 		if (ret == -ENOENT) {
2664 			ret = 0;
2665 			update_processed_blocks(rc, node);
2666 		}
2667 		goto out;
2668 	}
2669 
2670 	if (root) {
2671 		if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2672 			/*
2673 			 * This block was the root block of a root, and this is
2674 			 * the first time we're processing the block and thus it
2675 			 * should not have had the ->new_bytenr modified and
2676 			 * should have not been included on the changed list.
2677 			 *
2678 			 * However in the case of corruption we could have
2679 			 * multiple refs pointing to the same block improperly,
2680 			 * and thus we would trip over these checks.  ASSERT()
2681 			 * for the developer case, because it could indicate a
2682 			 * bug in the backref code, however error out for a
2683 			 * normal user in the case of corruption.
2684 			 */
2685 			ASSERT(node->new_bytenr == 0);
2686 			ASSERT(list_empty(&node->list));
2687 			if (node->new_bytenr || !list_empty(&node->list)) {
2688 				btrfs_err(root->fs_info,
2689 				  "bytenr %llu has improper references to it",
2690 					  node->bytenr);
2691 				ret = -EUCLEAN;
2692 				goto out;
2693 			}
2694 			ret = btrfs_record_root_in_trans(trans, root);
2695 			if (ret)
2696 				goto out;
2697 			/*
2698 			 * Another thread could have failed, need to check if we
2699 			 * have reloc_root actually set.
2700 			 */
2701 			if (!root->reloc_root) {
2702 				ret = -ENOENT;
2703 				goto out;
2704 			}
2705 			root = root->reloc_root;
2706 			node->new_bytenr = root->node->start;
2707 			btrfs_put_root(node->root);
2708 			node->root = btrfs_grab_root(root);
2709 			ASSERT(node->root);
2710 			list_add_tail(&node->list, &rc->backref_cache.changed);
2711 		} else {
2712 			path->lowest_level = node->level;
2713 			if (root == root->fs_info->chunk_root)
2714 				btrfs_reserve_chunk_metadata(trans, false);
2715 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2716 			btrfs_release_path(path);
2717 			if (root == root->fs_info->chunk_root)
2718 				btrfs_trans_release_chunk_metadata(trans);
2719 			if (ret > 0)
2720 				ret = 0;
2721 		}
2722 		if (!ret)
2723 			update_processed_blocks(rc, node);
2724 	} else {
2725 		ret = do_relocation(trans, rc, node, key, path, 1);
2726 	}
2727 out:
2728 	if (ret || node->level == 0 || node->cowonly)
2729 		btrfs_backref_cleanup_node(&rc->backref_cache, node);
2730 	return ret;
2731 }
2732 
2733 /*
2734  * relocate a list of blocks
2735  */
2736 static noinline_for_stack
2737 int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2738 			 struct reloc_control *rc, struct rb_root *blocks)
2739 {
2740 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2741 	struct btrfs_backref_node *node;
2742 	struct btrfs_path *path;
2743 	struct tree_block *block;
2744 	struct tree_block *next;
2745 	int ret = 0;
2746 
2747 	path = btrfs_alloc_path();
2748 	if (!path) {
2749 		ret = -ENOMEM;
2750 		goto out_free_blocks;
2751 	}
2752 
2753 	/* Kick in readahead for tree blocks with missing keys */
2754 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2755 		if (!block->key_ready)
2756 			btrfs_readahead_tree_block(fs_info, block->bytenr,
2757 						   block->owner, 0,
2758 						   block->level);
2759 	}
2760 
2761 	/* Get first keys */
2762 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2763 		if (!block->key_ready) {
2764 			ret = get_tree_block_key(fs_info, block);
2765 			if (ret)
2766 				goto out_free_path;
2767 		}
2768 	}
2769 
2770 	/* Do tree relocation */
2771 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2772 		node = build_backref_tree(trans, rc, &block->key,
2773 					  block->level, block->bytenr);
2774 		if (IS_ERR(node)) {
2775 			ret = PTR_ERR(node);
2776 			goto out;
2777 		}
2778 
2779 		ret = relocate_tree_block(trans, rc, node, &block->key,
2780 					  path);
2781 		if (ret < 0)
2782 			break;
2783 	}
2784 out:
2785 	ret = finish_pending_nodes(trans, rc, path, ret);
2786 
2787 out_free_path:
2788 	btrfs_free_path(path);
2789 out_free_blocks:
2790 	free_block_list(blocks);
2791 	return ret;
2792 }
2793 
2794 static noinline_for_stack int prealloc_file_extent_cluster(struct reloc_control *rc)
2795 {
2796 	const struct file_extent_cluster *cluster = &rc->cluster;
2797 	struct btrfs_inode *inode = BTRFS_I(rc->data_inode);
2798 	u64 alloc_hint = 0;
2799 	u64 start;
2800 	u64 end;
2801 	u64 offset = inode->reloc_block_group_start;
2802 	u64 num_bytes;
2803 	int nr;
2804 	int ret = 0;
2805 	u64 i_size = i_size_read(&inode->vfs_inode);
2806 	u64 prealloc_start = cluster->start - offset;
2807 	u64 prealloc_end = cluster->end - offset;
2808 	u64 cur_offset = prealloc_start;
2809 
2810 	/*
2811 	 * For subpage case, previous i_size may not be aligned to PAGE_SIZE.
2812 	 * This means the range [i_size, PAGE_END + 1) is filled with zeros by
2813 	 * btrfs_do_readpage() call of previously relocated file cluster.
2814 	 *
2815 	 * If the current cluster starts in the above range, btrfs_do_readpage()
2816 	 * will skip the read, and relocate_one_folio() will later writeback
2817 	 * the padding zeros as new data, causing data corruption.
2818 	 *
2819 	 * Here we have to manually invalidate the range (i_size, PAGE_END + 1).
2820 	 */
2821 	if (!PAGE_ALIGNED(i_size)) {
2822 		struct address_space *mapping = inode->vfs_inode.i_mapping;
2823 		struct btrfs_fs_info *fs_info = inode->root->fs_info;
2824 		const u32 sectorsize = fs_info->sectorsize;
2825 		struct folio *folio;
2826 
2827 		ASSERT(sectorsize < PAGE_SIZE);
2828 		ASSERT(IS_ALIGNED(i_size, sectorsize));
2829 
2830 		/*
2831 		 * Subpage can't handle page with DIRTY but without UPTODATE
2832 		 * bit as it can lead to the following deadlock:
2833 		 *
2834 		 * btrfs_read_folio()
2835 		 * | Page already *locked*
2836 		 * |- btrfs_lock_and_flush_ordered_range()
2837 		 *    |- btrfs_start_ordered_extent()
2838 		 *       |- extent_write_cache_pages()
2839 		 *          |- lock_page()
2840 		 *             We try to lock the page we already hold.
2841 		 *
2842 		 * Here we just writeback the whole data reloc inode, so that
2843 		 * we will be ensured to have no dirty range in the page, and
2844 		 * are safe to clear the uptodate bits.
2845 		 *
2846 		 * This shouldn't cause too much overhead, as we need to write
2847 		 * the data back anyway.
2848 		 */
2849 		ret = filemap_write_and_wait(mapping);
2850 		if (ret < 0)
2851 			return ret;
2852 
2853 		clear_extent_bits(&inode->io_tree, i_size,
2854 				  round_up(i_size, PAGE_SIZE) - 1,
2855 				  EXTENT_UPTODATE);
2856 		folio = filemap_lock_folio(mapping, i_size >> PAGE_SHIFT);
2857 		/*
2858 		 * If page is freed we don't need to do anything then, as we
2859 		 * will re-read the whole page anyway.
2860 		 */
2861 		if (!IS_ERR(folio)) {
2862 			btrfs_subpage_clear_uptodate(fs_info, folio, i_size,
2863 					round_up(i_size, PAGE_SIZE) - i_size);
2864 			folio_unlock(folio);
2865 			folio_put(folio);
2866 		}
2867 	}
2868 
2869 	BUG_ON(cluster->start != cluster->boundary[0]);
2870 	ret = btrfs_alloc_data_chunk_ondemand(inode,
2871 					      prealloc_end + 1 - prealloc_start);
2872 	if (ret)
2873 		return ret;
2874 
2875 	btrfs_inode_lock(inode, 0);
2876 	for (nr = 0; nr < cluster->nr; nr++) {
2877 		struct extent_state *cached_state = NULL;
2878 
2879 		start = cluster->boundary[nr] - offset;
2880 		if (nr + 1 < cluster->nr)
2881 			end = cluster->boundary[nr + 1] - 1 - offset;
2882 		else
2883 			end = cluster->end - offset;
2884 
2885 		lock_extent(&inode->io_tree, start, end, &cached_state);
2886 		num_bytes = end + 1 - start;
2887 		ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start,
2888 						num_bytes, num_bytes,
2889 						end + 1, &alloc_hint);
2890 		cur_offset = end + 1;
2891 		unlock_extent(&inode->io_tree, start, end, &cached_state);
2892 		if (ret)
2893 			break;
2894 	}
2895 	btrfs_inode_unlock(inode, 0);
2896 
2897 	if (cur_offset < prealloc_end)
2898 		btrfs_free_reserved_data_space_noquota(inode->root->fs_info,
2899 					       prealloc_end + 1 - cur_offset);
2900 	return ret;
2901 }
2902 
2903 static noinline_for_stack int setup_relocation_extent_mapping(struct reloc_control *rc)
2904 {
2905 	struct btrfs_inode *inode = BTRFS_I(rc->data_inode);
2906 	struct extent_map *em;
2907 	struct extent_state *cached_state = NULL;
2908 	u64 offset = inode->reloc_block_group_start;
2909 	u64 start = rc->cluster.start - offset;
2910 	u64 end = rc->cluster.end - offset;
2911 	int ret = 0;
2912 
2913 	em = alloc_extent_map();
2914 	if (!em)
2915 		return -ENOMEM;
2916 
2917 	em->start = start;
2918 	em->len = end + 1 - start;
2919 	em->disk_bytenr = rc->cluster.start;
2920 	em->disk_num_bytes = em->len;
2921 	em->ram_bytes = em->len;
2922 	em->flags |= EXTENT_FLAG_PINNED;
2923 
2924 	lock_extent(&inode->io_tree, start, end, &cached_state);
2925 	ret = btrfs_replace_extent_map_range(inode, em, false);
2926 	unlock_extent(&inode->io_tree, start, end, &cached_state);
2927 	free_extent_map(em);
2928 
2929 	return ret;
2930 }
2931 
2932 /*
2933  * Allow error injection to test balance/relocation cancellation
2934  */
2935 noinline int btrfs_should_cancel_balance(const struct btrfs_fs_info *fs_info)
2936 {
2937 	return atomic_read(&fs_info->balance_cancel_req) ||
2938 		atomic_read(&fs_info->reloc_cancel_req) ||
2939 		fatal_signal_pending(current);
2940 }
2941 ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE);
2942 
2943 static u64 get_cluster_boundary_end(const struct file_extent_cluster *cluster,
2944 				    int cluster_nr)
2945 {
2946 	/* Last extent, use cluster end directly */
2947 	if (cluster_nr >= cluster->nr - 1)
2948 		return cluster->end;
2949 
2950 	/* Use next boundary start*/
2951 	return cluster->boundary[cluster_nr + 1] - 1;
2952 }
2953 
2954 static int relocate_one_folio(struct reloc_control *rc,
2955 			      struct file_ra_state *ra,
2956 			      int *cluster_nr, unsigned long index)
2957 {
2958 	const struct file_extent_cluster *cluster = &rc->cluster;
2959 	struct inode *inode = rc->data_inode;
2960 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2961 	u64 offset = BTRFS_I(inode)->reloc_block_group_start;
2962 	const unsigned long last_index = (cluster->end - offset) >> PAGE_SHIFT;
2963 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
2964 	struct folio *folio;
2965 	u64 folio_start;
2966 	u64 folio_end;
2967 	u64 cur;
2968 	int ret;
2969 	const bool use_rst = btrfs_need_stripe_tree_update(fs_info, rc->block_group->flags);
2970 
2971 	ASSERT(index <= last_index);
2972 	folio = filemap_lock_folio(inode->i_mapping, index);
2973 	if (IS_ERR(folio)) {
2974 
2975 		/*
2976 		 * On relocation we're doing readahead on the relocation inode,
2977 		 * but if the filesystem is backed by a RAID stripe tree we can
2978 		 * get ENOENT (e.g. due to preallocated extents not being
2979 		 * mapped in the RST) from the lookup.
2980 		 *
2981 		 * But readahead doesn't handle the error and submits invalid
2982 		 * reads to the device, causing a assertion failures.
2983 		 */
2984 		if (!use_rst)
2985 			page_cache_sync_readahead(inode->i_mapping, ra, NULL,
2986 						  index, last_index + 1 - index);
2987 		folio = __filemap_get_folio(inode->i_mapping, index,
2988 					    FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
2989 					    mask);
2990 		if (IS_ERR(folio))
2991 			return PTR_ERR(folio);
2992 	}
2993 
2994 	WARN_ON(folio_order(folio));
2995 
2996 	if (folio_test_readahead(folio) && !use_rst)
2997 		page_cache_async_readahead(inode->i_mapping, ra, NULL,
2998 					   folio, last_index + 1 - index);
2999 
3000 	if (!folio_test_uptodate(folio)) {
3001 		btrfs_read_folio(NULL, folio);
3002 		folio_lock(folio);
3003 		if (!folio_test_uptodate(folio)) {
3004 			ret = -EIO;
3005 			goto release_folio;
3006 		}
3007 	}
3008 
3009 	/*
3010 	 * We could have lost folio private when we dropped the lock to read the
3011 	 * folio above, make sure we set_page_extent_mapped here so we have any
3012 	 * of the subpage blocksize stuff we need in place.
3013 	 */
3014 	ret = set_folio_extent_mapped(folio);
3015 	if (ret < 0)
3016 		goto release_folio;
3017 
3018 	folio_start = folio_pos(folio);
3019 	folio_end = folio_start + PAGE_SIZE - 1;
3020 
3021 	/*
3022 	 * Start from the cluster, as for subpage case, the cluster can start
3023 	 * inside the folio.
3024 	 */
3025 	cur = max(folio_start, cluster->boundary[*cluster_nr] - offset);
3026 	while (cur <= folio_end) {
3027 		struct extent_state *cached_state = NULL;
3028 		u64 extent_start = cluster->boundary[*cluster_nr] - offset;
3029 		u64 extent_end = get_cluster_boundary_end(cluster,
3030 						*cluster_nr) - offset;
3031 		u64 clamped_start = max(folio_start, extent_start);
3032 		u64 clamped_end = min(folio_end, extent_end);
3033 		u32 clamped_len = clamped_end + 1 - clamped_start;
3034 
3035 		/* Reserve metadata for this range */
3036 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
3037 						      clamped_len, clamped_len,
3038 						      false);
3039 		if (ret)
3040 			goto release_folio;
3041 
3042 		/* Mark the range delalloc and dirty for later writeback */
3043 		lock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end,
3044 			    &cached_state);
3045 		ret = btrfs_set_extent_delalloc(BTRFS_I(inode), clamped_start,
3046 						clamped_end, 0, &cached_state);
3047 		if (ret) {
3048 			clear_extent_bit(&BTRFS_I(inode)->io_tree,
3049 					 clamped_start, clamped_end,
3050 					 EXTENT_LOCKED | EXTENT_BOUNDARY,
3051 					 &cached_state);
3052 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
3053 							clamped_len, true);
3054 			btrfs_delalloc_release_extents(BTRFS_I(inode),
3055 						       clamped_len);
3056 			goto release_folio;
3057 		}
3058 		btrfs_folio_set_dirty(fs_info, folio, clamped_start, clamped_len);
3059 
3060 		/*
3061 		 * Set the boundary if it's inside the folio.
3062 		 * Data relocation requires the destination extents to have the
3063 		 * same size as the source.
3064 		 * EXTENT_BOUNDARY bit prevents current extent from being merged
3065 		 * with previous extent.
3066 		 */
3067 		if (in_range(cluster->boundary[*cluster_nr] - offset, folio_start, PAGE_SIZE)) {
3068 			u64 boundary_start = cluster->boundary[*cluster_nr] -
3069 						offset;
3070 			u64 boundary_end = boundary_start +
3071 					   fs_info->sectorsize - 1;
3072 
3073 			set_extent_bit(&BTRFS_I(inode)->io_tree,
3074 				       boundary_start, boundary_end,
3075 				       EXTENT_BOUNDARY, NULL);
3076 		}
3077 		unlock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end,
3078 			      &cached_state);
3079 		btrfs_delalloc_release_extents(BTRFS_I(inode), clamped_len);
3080 		cur += clamped_len;
3081 
3082 		/* Crossed extent end, go to next extent */
3083 		if (cur >= extent_end) {
3084 			(*cluster_nr)++;
3085 			/* Just finished the last extent of the cluster, exit. */
3086 			if (*cluster_nr >= cluster->nr)
3087 				break;
3088 		}
3089 	}
3090 	folio_unlock(folio);
3091 	folio_put(folio);
3092 
3093 	balance_dirty_pages_ratelimited(inode->i_mapping);
3094 	btrfs_throttle(fs_info);
3095 	if (btrfs_should_cancel_balance(fs_info))
3096 		ret = -ECANCELED;
3097 	return ret;
3098 
3099 release_folio:
3100 	folio_unlock(folio);
3101 	folio_put(folio);
3102 	return ret;
3103 }
3104 
3105 static int relocate_file_extent_cluster(struct reloc_control *rc)
3106 {
3107 	struct inode *inode = rc->data_inode;
3108 	const struct file_extent_cluster *cluster = &rc->cluster;
3109 	u64 offset = BTRFS_I(inode)->reloc_block_group_start;
3110 	unsigned long index;
3111 	unsigned long last_index;
3112 	struct file_ra_state *ra;
3113 	int cluster_nr = 0;
3114 	int ret = 0;
3115 
3116 	if (!cluster->nr)
3117 		return 0;
3118 
3119 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
3120 	if (!ra)
3121 		return -ENOMEM;
3122 
3123 	ret = prealloc_file_extent_cluster(rc);
3124 	if (ret)
3125 		goto out;
3126 
3127 	file_ra_state_init(ra, inode->i_mapping);
3128 
3129 	ret = setup_relocation_extent_mapping(rc);
3130 	if (ret)
3131 		goto out;
3132 
3133 	last_index = (cluster->end - offset) >> PAGE_SHIFT;
3134 	for (index = (cluster->start - offset) >> PAGE_SHIFT;
3135 	     index <= last_index && !ret; index++)
3136 		ret = relocate_one_folio(rc, ra, &cluster_nr, index);
3137 	if (ret == 0)
3138 		WARN_ON(cluster_nr != cluster->nr);
3139 out:
3140 	kfree(ra);
3141 	return ret;
3142 }
3143 
3144 static noinline_for_stack int relocate_data_extent(struct reloc_control *rc,
3145 					   const struct btrfs_key *extent_key)
3146 {
3147 	struct inode *inode = rc->data_inode;
3148 	struct file_extent_cluster *cluster = &rc->cluster;
3149 	int ret;
3150 	struct btrfs_root *root = BTRFS_I(inode)->root;
3151 
3152 	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3153 		ret = relocate_file_extent_cluster(rc);
3154 		if (ret)
3155 			return ret;
3156 		cluster->nr = 0;
3157 	}
3158 
3159 	/*
3160 	 * Under simple quotas, we set root->relocation_src_root when we find
3161 	 * the extent. If adjacent extents have different owners, we can't merge
3162 	 * them while relocating. Handle this by storing the owning root that
3163 	 * started a cluster and if we see an extent from a different root break
3164 	 * cluster formation (just like the above case of non-adjacent extents).
3165 	 *
3166 	 * Without simple quotas, relocation_src_root is always 0, so we should
3167 	 * never see a mismatch, and it should have no effect on relocation
3168 	 * clusters.
3169 	 */
3170 	if (cluster->nr > 0 && cluster->owning_root != root->relocation_src_root) {
3171 		u64 tmp = root->relocation_src_root;
3172 
3173 		/*
3174 		 * root->relocation_src_root is the state that actually affects
3175 		 * the preallocation we do here, so set it to the root owning
3176 		 * the cluster we need to relocate.
3177 		 */
3178 		root->relocation_src_root = cluster->owning_root;
3179 		ret = relocate_file_extent_cluster(rc);
3180 		if (ret)
3181 			return ret;
3182 		cluster->nr = 0;
3183 		/* And reset it back for the current extent's owning root. */
3184 		root->relocation_src_root = tmp;
3185 	}
3186 
3187 	if (!cluster->nr) {
3188 		cluster->start = extent_key->objectid;
3189 		cluster->owning_root = root->relocation_src_root;
3190 	}
3191 	else
3192 		BUG_ON(cluster->nr >= MAX_EXTENTS);
3193 	cluster->end = extent_key->objectid + extent_key->offset - 1;
3194 	cluster->boundary[cluster->nr] = extent_key->objectid;
3195 	cluster->nr++;
3196 
3197 	if (cluster->nr >= MAX_EXTENTS) {
3198 		ret = relocate_file_extent_cluster(rc);
3199 		if (ret)
3200 			return ret;
3201 		cluster->nr = 0;
3202 	}
3203 	return 0;
3204 }
3205 
3206 /*
3207  * helper to add a tree block to the list.
3208  * the major work is getting the generation and level of the block
3209  */
3210 static int add_tree_block(struct reloc_control *rc,
3211 			  const struct btrfs_key *extent_key,
3212 			  struct btrfs_path *path,
3213 			  struct rb_root *blocks)
3214 {
3215 	struct extent_buffer *eb;
3216 	struct btrfs_extent_item *ei;
3217 	struct btrfs_tree_block_info *bi;
3218 	struct tree_block *block;
3219 	struct rb_node *rb_node;
3220 	u32 item_size;
3221 	int level = -1;
3222 	u64 generation;
3223 	u64 owner = 0;
3224 
3225 	eb =  path->nodes[0];
3226 	item_size = btrfs_item_size(eb, path->slots[0]);
3227 
3228 	if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3229 	    item_size >= sizeof(*ei) + sizeof(*bi)) {
3230 		unsigned long ptr = 0, end;
3231 
3232 		ei = btrfs_item_ptr(eb, path->slots[0],
3233 				struct btrfs_extent_item);
3234 		end = (unsigned long)ei + item_size;
3235 		if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3236 			bi = (struct btrfs_tree_block_info *)(ei + 1);
3237 			level = btrfs_tree_block_level(eb, bi);
3238 			ptr = (unsigned long)(bi + 1);
3239 		} else {
3240 			level = (int)extent_key->offset;
3241 			ptr = (unsigned long)(ei + 1);
3242 		}
3243 		generation = btrfs_extent_generation(eb, ei);
3244 
3245 		/*
3246 		 * We're reading random blocks without knowing their owner ahead
3247 		 * of time.  This is ok most of the time, as all reloc roots and
3248 		 * fs roots have the same lock type.  However normal trees do
3249 		 * not, and the only way to know ahead of time is to read the
3250 		 * inline ref offset.  We know it's an fs root if
3251 		 *
3252 		 * 1. There's more than one ref.
3253 		 * 2. There's a SHARED_DATA_REF_KEY set.
3254 		 * 3. FULL_BACKREF is set on the flags.
3255 		 *
3256 		 * Otherwise it's safe to assume that the ref offset == the
3257 		 * owner of this block, so we can use that when calling
3258 		 * read_tree_block.
3259 		 */
3260 		if (btrfs_extent_refs(eb, ei) == 1 &&
3261 		    !(btrfs_extent_flags(eb, ei) &
3262 		      BTRFS_BLOCK_FLAG_FULL_BACKREF) &&
3263 		    ptr < end) {
3264 			struct btrfs_extent_inline_ref *iref;
3265 			int type;
3266 
3267 			iref = (struct btrfs_extent_inline_ref *)ptr;
3268 			type = btrfs_get_extent_inline_ref_type(eb, iref,
3269 							BTRFS_REF_TYPE_BLOCK);
3270 			if (type == BTRFS_REF_TYPE_INVALID)
3271 				return -EINVAL;
3272 			if (type == BTRFS_TREE_BLOCK_REF_KEY)
3273 				owner = btrfs_extent_inline_ref_offset(eb, iref);
3274 		}
3275 	} else {
3276 		btrfs_print_leaf(eb);
3277 		btrfs_err(rc->block_group->fs_info,
3278 			  "unrecognized tree backref at tree block %llu slot %u",
3279 			  eb->start, path->slots[0]);
3280 		btrfs_release_path(path);
3281 		return -EUCLEAN;
3282 	}
3283 
3284 	btrfs_release_path(path);
3285 
3286 	BUG_ON(level == -1);
3287 
3288 	block = kmalloc(sizeof(*block), GFP_NOFS);
3289 	if (!block)
3290 		return -ENOMEM;
3291 
3292 	block->bytenr = extent_key->objectid;
3293 	block->key.objectid = rc->extent_root->fs_info->nodesize;
3294 	block->key.offset = generation;
3295 	block->level = level;
3296 	block->key_ready = false;
3297 	block->owner = owner;
3298 
3299 	rb_node = rb_simple_insert(blocks, block->bytenr, &block->rb_node);
3300 	if (rb_node)
3301 		btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr,
3302 				    -EEXIST);
3303 
3304 	return 0;
3305 }
3306 
3307 /*
3308  * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3309  */
3310 static int __add_tree_block(struct reloc_control *rc,
3311 			    u64 bytenr, u32 blocksize,
3312 			    struct rb_root *blocks)
3313 {
3314 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3315 	struct btrfs_path *path;
3316 	struct btrfs_key key;
3317 	int ret;
3318 	bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3319 
3320 	if (tree_block_processed(bytenr, rc))
3321 		return 0;
3322 
3323 	if (rb_simple_search(blocks, bytenr))
3324 		return 0;
3325 
3326 	path = btrfs_alloc_path();
3327 	if (!path)
3328 		return -ENOMEM;
3329 again:
3330 	key.objectid = bytenr;
3331 	if (skinny) {
3332 		key.type = BTRFS_METADATA_ITEM_KEY;
3333 		key.offset = (u64)-1;
3334 	} else {
3335 		key.type = BTRFS_EXTENT_ITEM_KEY;
3336 		key.offset = blocksize;
3337 	}
3338 
3339 	path->search_commit_root = 1;
3340 	path->skip_locking = 1;
3341 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3342 	if (ret < 0)
3343 		goto out;
3344 
3345 	if (ret > 0 && skinny) {
3346 		if (path->slots[0]) {
3347 			path->slots[0]--;
3348 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3349 					      path->slots[0]);
3350 			if (key.objectid == bytenr &&
3351 			    (key.type == BTRFS_METADATA_ITEM_KEY ||
3352 			     (key.type == BTRFS_EXTENT_ITEM_KEY &&
3353 			      key.offset == blocksize)))
3354 				ret = 0;
3355 		}
3356 
3357 		if (ret) {
3358 			skinny = false;
3359 			btrfs_release_path(path);
3360 			goto again;
3361 		}
3362 	}
3363 	if (ret) {
3364 		ASSERT(ret == 1);
3365 		btrfs_print_leaf(path->nodes[0]);
3366 		btrfs_err(fs_info,
3367 	     "tree block extent item (%llu) is not found in extent tree",
3368 		     bytenr);
3369 		WARN_ON(1);
3370 		ret = -EINVAL;
3371 		goto out;
3372 	}
3373 
3374 	ret = add_tree_block(rc, &key, path, blocks);
3375 out:
3376 	btrfs_free_path(path);
3377 	return ret;
3378 }
3379 
3380 static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3381 				    struct btrfs_block_group *block_group,
3382 				    struct inode *inode,
3383 				    u64 ino)
3384 {
3385 	struct btrfs_root *root = fs_info->tree_root;
3386 	struct btrfs_trans_handle *trans;
3387 	int ret = 0;
3388 
3389 	if (inode)
3390 		goto truncate;
3391 
3392 	inode = btrfs_iget(ino, root);
3393 	if (IS_ERR(inode))
3394 		return -ENOENT;
3395 
3396 truncate:
3397 	ret = btrfs_check_trunc_cache_free_space(fs_info,
3398 						 &fs_info->global_block_rsv);
3399 	if (ret)
3400 		goto out;
3401 
3402 	trans = btrfs_join_transaction(root);
3403 	if (IS_ERR(trans)) {
3404 		ret = PTR_ERR(trans);
3405 		goto out;
3406 	}
3407 
3408 	ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
3409 
3410 	btrfs_end_transaction(trans);
3411 	btrfs_btree_balance_dirty(fs_info);
3412 out:
3413 	iput(inode);
3414 	return ret;
3415 }
3416 
3417 /*
3418  * Locate the free space cache EXTENT_DATA in root tree leaf and delete the
3419  * cache inode, to avoid free space cache data extent blocking data relocation.
3420  */
3421 static int delete_v1_space_cache(struct extent_buffer *leaf,
3422 				 struct btrfs_block_group *block_group,
3423 				 u64 data_bytenr)
3424 {
3425 	u64 space_cache_ino;
3426 	struct btrfs_file_extent_item *ei;
3427 	struct btrfs_key key;
3428 	bool found = false;
3429 	int i;
3430 	int ret;
3431 
3432 	if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID)
3433 		return 0;
3434 
3435 	for (i = 0; i < btrfs_header_nritems(leaf); i++) {
3436 		u8 type;
3437 
3438 		btrfs_item_key_to_cpu(leaf, &key, i);
3439 		if (key.type != BTRFS_EXTENT_DATA_KEY)
3440 			continue;
3441 		ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
3442 		type = btrfs_file_extent_type(leaf, ei);
3443 
3444 		if ((type == BTRFS_FILE_EXTENT_REG ||
3445 		     type == BTRFS_FILE_EXTENT_PREALLOC) &&
3446 		    btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) {
3447 			found = true;
3448 			space_cache_ino = key.objectid;
3449 			break;
3450 		}
3451 	}
3452 	if (!found)
3453 		return -ENOENT;
3454 	ret = delete_block_group_cache(leaf->fs_info, block_group, NULL,
3455 					space_cache_ino);
3456 	return ret;
3457 }
3458 
3459 /*
3460  * helper to find all tree blocks that reference a given data extent
3461  */
3462 static noinline_for_stack int add_data_references(struct reloc_control *rc,
3463 						  const struct btrfs_key *extent_key,
3464 						  struct btrfs_path *path,
3465 						  struct rb_root *blocks)
3466 {
3467 	struct btrfs_backref_walk_ctx ctx = { 0 };
3468 	struct ulist_iterator leaf_uiter;
3469 	struct ulist_node *ref_node = NULL;
3470 	const u32 blocksize = rc->extent_root->fs_info->nodesize;
3471 	int ret = 0;
3472 
3473 	btrfs_release_path(path);
3474 
3475 	ctx.bytenr = extent_key->objectid;
3476 	ctx.skip_inode_ref_list = true;
3477 	ctx.fs_info = rc->extent_root->fs_info;
3478 
3479 	ret = btrfs_find_all_leafs(&ctx);
3480 	if (ret < 0)
3481 		return ret;
3482 
3483 	ULIST_ITER_INIT(&leaf_uiter);
3484 	while ((ref_node = ulist_next(ctx.refs, &leaf_uiter))) {
3485 		struct btrfs_tree_parent_check check = { 0 };
3486 		struct extent_buffer *eb;
3487 
3488 		eb = read_tree_block(ctx.fs_info, ref_node->val, &check);
3489 		if (IS_ERR(eb)) {
3490 			ret = PTR_ERR(eb);
3491 			break;
3492 		}
3493 		ret = delete_v1_space_cache(eb, rc->block_group,
3494 					    extent_key->objectid);
3495 		free_extent_buffer(eb);
3496 		if (ret < 0)
3497 			break;
3498 		ret = __add_tree_block(rc, ref_node->val, blocksize, blocks);
3499 		if (ret < 0)
3500 			break;
3501 	}
3502 	if (ret < 0)
3503 		free_block_list(blocks);
3504 	ulist_free(ctx.refs);
3505 	return ret;
3506 }
3507 
3508 /*
3509  * helper to find next unprocessed extent
3510  */
3511 static noinline_for_stack
3512 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3513 		     struct btrfs_key *extent_key)
3514 {
3515 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3516 	struct btrfs_key key;
3517 	struct extent_buffer *leaf;
3518 	u64 start, end, last;
3519 	int ret;
3520 
3521 	last = rc->block_group->start + rc->block_group->length;
3522 	while (1) {
3523 		bool block_found;
3524 
3525 		cond_resched();
3526 		if (rc->search_start >= last) {
3527 			ret = 1;
3528 			break;
3529 		}
3530 
3531 		key.objectid = rc->search_start;
3532 		key.type = BTRFS_EXTENT_ITEM_KEY;
3533 		key.offset = 0;
3534 
3535 		path->search_commit_root = 1;
3536 		path->skip_locking = 1;
3537 		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3538 					0, 0);
3539 		if (ret < 0)
3540 			break;
3541 next:
3542 		leaf = path->nodes[0];
3543 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3544 			ret = btrfs_next_leaf(rc->extent_root, path);
3545 			if (ret != 0)
3546 				break;
3547 			leaf = path->nodes[0];
3548 		}
3549 
3550 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3551 		if (key.objectid >= last) {
3552 			ret = 1;
3553 			break;
3554 		}
3555 
3556 		if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3557 		    key.type != BTRFS_METADATA_ITEM_KEY) {
3558 			path->slots[0]++;
3559 			goto next;
3560 		}
3561 
3562 		if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3563 		    key.objectid + key.offset <= rc->search_start) {
3564 			path->slots[0]++;
3565 			goto next;
3566 		}
3567 
3568 		if (key.type == BTRFS_METADATA_ITEM_KEY &&
3569 		    key.objectid + fs_info->nodesize <=
3570 		    rc->search_start) {
3571 			path->slots[0]++;
3572 			goto next;
3573 		}
3574 
3575 		block_found = find_first_extent_bit(&rc->processed_blocks,
3576 						    key.objectid, &start, &end,
3577 						    EXTENT_DIRTY, NULL);
3578 
3579 		if (block_found && start <= key.objectid) {
3580 			btrfs_release_path(path);
3581 			rc->search_start = end + 1;
3582 		} else {
3583 			if (key.type == BTRFS_EXTENT_ITEM_KEY)
3584 				rc->search_start = key.objectid + key.offset;
3585 			else
3586 				rc->search_start = key.objectid +
3587 					fs_info->nodesize;
3588 			memcpy(extent_key, &key, sizeof(key));
3589 			return 0;
3590 		}
3591 	}
3592 	btrfs_release_path(path);
3593 	return ret;
3594 }
3595 
3596 static void set_reloc_control(struct reloc_control *rc)
3597 {
3598 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3599 
3600 	mutex_lock(&fs_info->reloc_mutex);
3601 	fs_info->reloc_ctl = rc;
3602 	mutex_unlock(&fs_info->reloc_mutex);
3603 }
3604 
3605 static void unset_reloc_control(struct reloc_control *rc)
3606 {
3607 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3608 
3609 	mutex_lock(&fs_info->reloc_mutex);
3610 	fs_info->reloc_ctl = NULL;
3611 	mutex_unlock(&fs_info->reloc_mutex);
3612 }
3613 
3614 static noinline_for_stack
3615 int prepare_to_relocate(struct reloc_control *rc)
3616 {
3617 	struct btrfs_trans_handle *trans;
3618 	int ret;
3619 
3620 	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3621 					      BTRFS_BLOCK_RSV_TEMP);
3622 	if (!rc->block_rsv)
3623 		return -ENOMEM;
3624 
3625 	memset(&rc->cluster, 0, sizeof(rc->cluster));
3626 	rc->search_start = rc->block_group->start;
3627 	rc->extents_found = 0;
3628 	rc->nodes_relocated = 0;
3629 	rc->merging_rsv_size = 0;
3630 	rc->reserved_bytes = 0;
3631 	rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3632 			      RELOCATION_RESERVED_NODES;
3633 	ret = btrfs_block_rsv_refill(rc->extent_root->fs_info,
3634 				     rc->block_rsv, rc->block_rsv->size,
3635 				     BTRFS_RESERVE_FLUSH_ALL);
3636 	if (ret)
3637 		return ret;
3638 
3639 	rc->create_reloc_tree = true;
3640 	set_reloc_control(rc);
3641 
3642 	trans = btrfs_join_transaction(rc->extent_root);
3643 	if (IS_ERR(trans)) {
3644 		unset_reloc_control(rc);
3645 		/*
3646 		 * extent tree is not a ref_cow tree and has no reloc_root to
3647 		 * cleanup.  And callers are responsible to free the above
3648 		 * block rsv.
3649 		 */
3650 		return PTR_ERR(trans);
3651 	}
3652 
3653 	ret = btrfs_commit_transaction(trans);
3654 	if (ret)
3655 		unset_reloc_control(rc);
3656 
3657 	return ret;
3658 }
3659 
3660 static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3661 {
3662 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3663 	struct rb_root blocks = RB_ROOT;
3664 	struct btrfs_key key;
3665 	struct btrfs_trans_handle *trans = NULL;
3666 	struct btrfs_path *path;
3667 	struct btrfs_extent_item *ei;
3668 	u64 flags;
3669 	int ret;
3670 	int err = 0;
3671 	int progress = 0;
3672 
3673 	path = btrfs_alloc_path();
3674 	if (!path)
3675 		return -ENOMEM;
3676 	path->reada = READA_FORWARD;
3677 
3678 	ret = prepare_to_relocate(rc);
3679 	if (ret) {
3680 		err = ret;
3681 		goto out_free;
3682 	}
3683 
3684 	while (1) {
3685 		rc->reserved_bytes = 0;
3686 		ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv,
3687 					     rc->block_rsv->size,
3688 					     BTRFS_RESERVE_FLUSH_ALL);
3689 		if (ret) {
3690 			err = ret;
3691 			break;
3692 		}
3693 		progress++;
3694 		trans = btrfs_start_transaction(rc->extent_root, 0);
3695 		if (IS_ERR(trans)) {
3696 			err = PTR_ERR(trans);
3697 			trans = NULL;
3698 			break;
3699 		}
3700 restart:
3701 		if (update_backref_cache(trans, &rc->backref_cache)) {
3702 			btrfs_end_transaction(trans);
3703 			trans = NULL;
3704 			continue;
3705 		}
3706 
3707 		ret = find_next_extent(rc, path, &key);
3708 		if (ret < 0)
3709 			err = ret;
3710 		if (ret != 0)
3711 			break;
3712 
3713 		rc->extents_found++;
3714 
3715 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3716 				    struct btrfs_extent_item);
3717 		flags = btrfs_extent_flags(path->nodes[0], ei);
3718 
3719 		/*
3720 		 * If we are relocating a simple quota owned extent item, we
3721 		 * need to note the owner on the reloc data root so that when
3722 		 * we allocate the replacement item, we can attribute it to the
3723 		 * correct eventual owner (rather than the reloc data root).
3724 		 */
3725 		if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE) {
3726 			struct btrfs_root *root = BTRFS_I(rc->data_inode)->root;
3727 			u64 owning_root_id = btrfs_get_extent_owner_root(fs_info,
3728 								 path->nodes[0],
3729 								 path->slots[0]);
3730 
3731 			root->relocation_src_root = owning_root_id;
3732 		}
3733 
3734 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3735 			ret = add_tree_block(rc, &key, path, &blocks);
3736 		} else if (rc->stage == UPDATE_DATA_PTRS &&
3737 			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
3738 			ret = add_data_references(rc, &key, path, &blocks);
3739 		} else {
3740 			btrfs_release_path(path);
3741 			ret = 0;
3742 		}
3743 		if (ret < 0) {
3744 			err = ret;
3745 			break;
3746 		}
3747 
3748 		if (!RB_EMPTY_ROOT(&blocks)) {
3749 			ret = relocate_tree_blocks(trans, rc, &blocks);
3750 			if (ret < 0) {
3751 				if (ret != -EAGAIN) {
3752 					err = ret;
3753 					break;
3754 				}
3755 				rc->extents_found--;
3756 				rc->search_start = key.objectid;
3757 			}
3758 		}
3759 
3760 		btrfs_end_transaction_throttle(trans);
3761 		btrfs_btree_balance_dirty(fs_info);
3762 		trans = NULL;
3763 
3764 		if (rc->stage == MOVE_DATA_EXTENTS &&
3765 		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
3766 			rc->found_file_extent = true;
3767 			ret = relocate_data_extent(rc, &key);
3768 			if (ret < 0) {
3769 				err = ret;
3770 				break;
3771 			}
3772 		}
3773 		if (btrfs_should_cancel_balance(fs_info)) {
3774 			err = -ECANCELED;
3775 			break;
3776 		}
3777 	}
3778 	if (trans && progress && err == -ENOSPC) {
3779 		ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
3780 		if (ret == 1) {
3781 			err = 0;
3782 			progress = 0;
3783 			goto restart;
3784 		}
3785 	}
3786 
3787 	btrfs_release_path(path);
3788 	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
3789 
3790 	if (trans) {
3791 		btrfs_end_transaction_throttle(trans);
3792 		btrfs_btree_balance_dirty(fs_info);
3793 	}
3794 
3795 	if (!err) {
3796 		ret = relocate_file_extent_cluster(rc);
3797 		if (ret < 0)
3798 			err = ret;
3799 	}
3800 
3801 	rc->create_reloc_tree = false;
3802 	set_reloc_control(rc);
3803 
3804 	btrfs_backref_release_cache(&rc->backref_cache);
3805 	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3806 
3807 	/*
3808 	 * Even in the case when the relocation is cancelled, we should all go
3809 	 * through prepare_to_merge() and merge_reloc_roots().
3810 	 *
3811 	 * For error (including cancelled balance), prepare_to_merge() will
3812 	 * mark all reloc trees orphan, then queue them for cleanup in
3813 	 * merge_reloc_roots()
3814 	 */
3815 	err = prepare_to_merge(rc, err);
3816 
3817 	merge_reloc_roots(rc);
3818 
3819 	rc->merge_reloc_tree = false;
3820 	unset_reloc_control(rc);
3821 	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3822 
3823 	/* get rid of pinned extents */
3824 	trans = btrfs_join_transaction(rc->extent_root);
3825 	if (IS_ERR(trans)) {
3826 		err = PTR_ERR(trans);
3827 		goto out_free;
3828 	}
3829 	ret = btrfs_commit_transaction(trans);
3830 	if (ret && !err)
3831 		err = ret;
3832 out_free:
3833 	ret = clean_dirty_subvols(rc);
3834 	if (ret < 0 && !err)
3835 		err = ret;
3836 	btrfs_free_block_rsv(fs_info, rc->block_rsv);
3837 	btrfs_free_path(path);
3838 	return err;
3839 }
3840 
3841 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3842 				 struct btrfs_root *root, u64 objectid)
3843 {
3844 	struct btrfs_path *path;
3845 	struct btrfs_inode_item *item;
3846 	struct extent_buffer *leaf;
3847 	int ret;
3848 
3849 	path = btrfs_alloc_path();
3850 	if (!path)
3851 		return -ENOMEM;
3852 
3853 	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
3854 	if (ret)
3855 		goto out;
3856 
3857 	leaf = path->nodes[0];
3858 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3859 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3860 	btrfs_set_inode_generation(leaf, item, 1);
3861 	btrfs_set_inode_size(leaf, item, 0);
3862 	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
3863 	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
3864 					  BTRFS_INODE_PREALLOC);
3865 	btrfs_mark_buffer_dirty(trans, leaf);
3866 out:
3867 	btrfs_free_path(path);
3868 	return ret;
3869 }
3870 
3871 static void delete_orphan_inode(struct btrfs_trans_handle *trans,
3872 				struct btrfs_root *root, u64 objectid)
3873 {
3874 	struct btrfs_path *path;
3875 	struct btrfs_key key;
3876 	int ret = 0;
3877 
3878 	path = btrfs_alloc_path();
3879 	if (!path) {
3880 		ret = -ENOMEM;
3881 		goto out;
3882 	}
3883 
3884 	key.objectid = objectid;
3885 	key.type = BTRFS_INODE_ITEM_KEY;
3886 	key.offset = 0;
3887 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3888 	if (ret) {
3889 		if (ret > 0)
3890 			ret = -ENOENT;
3891 		goto out;
3892 	}
3893 	ret = btrfs_del_item(trans, root, path);
3894 out:
3895 	if (ret)
3896 		btrfs_abort_transaction(trans, ret);
3897 	btrfs_free_path(path);
3898 }
3899 
3900 /*
3901  * helper to create inode for data relocation.
3902  * the inode is in data relocation tree and its link count is 0
3903  */
3904 static noinline_for_stack struct inode *create_reloc_inode(
3905 					struct btrfs_fs_info *fs_info,
3906 					const struct btrfs_block_group *group)
3907 {
3908 	struct inode *inode = NULL;
3909 	struct btrfs_trans_handle *trans;
3910 	struct btrfs_root *root;
3911 	u64 objectid;
3912 	int ret = 0;
3913 
3914 	root = btrfs_grab_root(fs_info->data_reloc_root);
3915 	trans = btrfs_start_transaction(root, 6);
3916 	if (IS_ERR(trans)) {
3917 		btrfs_put_root(root);
3918 		return ERR_CAST(trans);
3919 	}
3920 
3921 	ret = btrfs_get_free_objectid(root, &objectid);
3922 	if (ret)
3923 		goto out;
3924 
3925 	ret = __insert_orphan_inode(trans, root, objectid);
3926 	if (ret)
3927 		goto out;
3928 
3929 	inode = btrfs_iget(objectid, root);
3930 	if (IS_ERR(inode)) {
3931 		delete_orphan_inode(trans, root, objectid);
3932 		ret = PTR_ERR(inode);
3933 		inode = NULL;
3934 		goto out;
3935 	}
3936 	BTRFS_I(inode)->reloc_block_group_start = group->start;
3937 
3938 	ret = btrfs_orphan_add(trans, BTRFS_I(inode));
3939 out:
3940 	btrfs_put_root(root);
3941 	btrfs_end_transaction(trans);
3942 	btrfs_btree_balance_dirty(fs_info);
3943 	if (ret) {
3944 		iput(inode);
3945 		inode = ERR_PTR(ret);
3946 	}
3947 	return inode;
3948 }
3949 
3950 /*
3951  * Mark start of chunk relocation that is cancellable. Check if the cancellation
3952  * has been requested meanwhile and don't start in that case.
3953  *
3954  * Return:
3955  *   0             success
3956  *   -EINPROGRESS  operation is already in progress, that's probably a bug
3957  *   -ECANCELED    cancellation request was set before the operation started
3958  */
3959 static int reloc_chunk_start(struct btrfs_fs_info *fs_info)
3960 {
3961 	if (test_and_set_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) {
3962 		/* This should not happen */
3963 		btrfs_err(fs_info, "reloc already running, cannot start");
3964 		return -EINPROGRESS;
3965 	}
3966 
3967 	if (atomic_read(&fs_info->reloc_cancel_req) > 0) {
3968 		btrfs_info(fs_info, "chunk relocation canceled on start");
3969 		/*
3970 		 * On cancel, clear all requests but let the caller mark
3971 		 * the end after cleanup operations.
3972 		 */
3973 		atomic_set(&fs_info->reloc_cancel_req, 0);
3974 		return -ECANCELED;
3975 	}
3976 	return 0;
3977 }
3978 
3979 /*
3980  * Mark end of chunk relocation that is cancellable and wake any waiters.
3981  */
3982 static void reloc_chunk_end(struct btrfs_fs_info *fs_info)
3983 {
3984 	/* Requested after start, clear bit first so any waiters can continue */
3985 	if (atomic_read(&fs_info->reloc_cancel_req) > 0)
3986 		btrfs_info(fs_info, "chunk relocation canceled during operation");
3987 	clear_and_wake_up_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags);
3988 	atomic_set(&fs_info->reloc_cancel_req, 0);
3989 }
3990 
3991 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
3992 {
3993 	struct reloc_control *rc;
3994 
3995 	rc = kzalloc(sizeof(*rc), GFP_NOFS);
3996 	if (!rc)
3997 		return NULL;
3998 
3999 	INIT_LIST_HEAD(&rc->reloc_roots);
4000 	INIT_LIST_HEAD(&rc->dirty_subvol_roots);
4001 	btrfs_backref_init_cache(fs_info, &rc->backref_cache, true);
4002 	rc->reloc_root_tree.rb_root = RB_ROOT;
4003 	spin_lock_init(&rc->reloc_root_tree.lock);
4004 	extent_io_tree_init(fs_info, &rc->processed_blocks, IO_TREE_RELOC_BLOCKS);
4005 	return rc;
4006 }
4007 
4008 static void free_reloc_control(struct reloc_control *rc)
4009 {
4010 	struct mapping_node *node, *tmp;
4011 
4012 	free_reloc_roots(&rc->reloc_roots);
4013 	rbtree_postorder_for_each_entry_safe(node, tmp,
4014 			&rc->reloc_root_tree.rb_root, rb_node)
4015 		kfree(node);
4016 
4017 	kfree(rc);
4018 }
4019 
4020 /*
4021  * Print the block group being relocated
4022  */
4023 static void describe_relocation(struct btrfs_block_group *block_group)
4024 {
4025 	char buf[128] = {'\0'};
4026 
4027 	btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf));
4028 
4029 	btrfs_info(block_group->fs_info, "relocating block group %llu flags %s",
4030 		   block_group->start, buf);
4031 }
4032 
4033 static const char *stage_to_string(enum reloc_stage stage)
4034 {
4035 	if (stage == MOVE_DATA_EXTENTS)
4036 		return "move data extents";
4037 	if (stage == UPDATE_DATA_PTRS)
4038 		return "update data pointers";
4039 	return "unknown";
4040 }
4041 
4042 /*
4043  * function to relocate all extents in a block group.
4044  */
4045 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
4046 {
4047 	struct btrfs_block_group *bg;
4048 	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, group_start);
4049 	struct reloc_control *rc;
4050 	struct inode *inode;
4051 	struct btrfs_path *path;
4052 	int ret;
4053 	int rw = 0;
4054 	int err = 0;
4055 
4056 	/*
4057 	 * This only gets set if we had a half-deleted snapshot on mount.  We
4058 	 * cannot allow relocation to start while we're still trying to clean up
4059 	 * these pending deletions.
4060 	 */
4061 	ret = wait_on_bit(&fs_info->flags, BTRFS_FS_UNFINISHED_DROPS, TASK_INTERRUPTIBLE);
4062 	if (ret)
4063 		return ret;
4064 
4065 	/* We may have been woken up by close_ctree, so bail if we're closing. */
4066 	if (btrfs_fs_closing(fs_info))
4067 		return -EINTR;
4068 
4069 	bg = btrfs_lookup_block_group(fs_info, group_start);
4070 	if (!bg)
4071 		return -ENOENT;
4072 
4073 	/*
4074 	 * Relocation of a data block group creates ordered extents.  Without
4075 	 * sb_start_write(), we can freeze the filesystem while unfinished
4076 	 * ordered extents are left. Such ordered extents can cause a deadlock
4077 	 * e.g. when syncfs() is waiting for their completion but they can't
4078 	 * finish because they block when joining a transaction, due to the
4079 	 * fact that the freeze locks are being held in write mode.
4080 	 */
4081 	if (bg->flags & BTRFS_BLOCK_GROUP_DATA)
4082 		ASSERT(sb_write_started(fs_info->sb));
4083 
4084 	if (btrfs_pinned_by_swapfile(fs_info, bg)) {
4085 		btrfs_put_block_group(bg);
4086 		return -ETXTBSY;
4087 	}
4088 
4089 	rc = alloc_reloc_control(fs_info);
4090 	if (!rc) {
4091 		btrfs_put_block_group(bg);
4092 		return -ENOMEM;
4093 	}
4094 
4095 	ret = reloc_chunk_start(fs_info);
4096 	if (ret < 0) {
4097 		err = ret;
4098 		goto out_put_bg;
4099 	}
4100 
4101 	rc->extent_root = extent_root;
4102 	rc->block_group = bg;
4103 
4104 	ret = btrfs_inc_block_group_ro(rc->block_group, true);
4105 	if (ret) {
4106 		err = ret;
4107 		goto out;
4108 	}
4109 	rw = 1;
4110 
4111 	path = btrfs_alloc_path();
4112 	if (!path) {
4113 		err = -ENOMEM;
4114 		goto out;
4115 	}
4116 
4117 	inode = lookup_free_space_inode(rc->block_group, path);
4118 	btrfs_free_path(path);
4119 
4120 	if (!IS_ERR(inode))
4121 		ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
4122 	else
4123 		ret = PTR_ERR(inode);
4124 
4125 	if (ret && ret != -ENOENT) {
4126 		err = ret;
4127 		goto out;
4128 	}
4129 
4130 	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4131 	if (IS_ERR(rc->data_inode)) {
4132 		err = PTR_ERR(rc->data_inode);
4133 		rc->data_inode = NULL;
4134 		goto out;
4135 	}
4136 
4137 	describe_relocation(rc->block_group);
4138 
4139 	btrfs_wait_block_group_reservations(rc->block_group);
4140 	btrfs_wait_nocow_writers(rc->block_group);
4141 	btrfs_wait_ordered_roots(fs_info, U64_MAX, rc->block_group);
4142 
4143 	ret = btrfs_zone_finish(rc->block_group);
4144 	WARN_ON(ret && ret != -EAGAIN);
4145 
4146 	while (1) {
4147 		enum reloc_stage finishes_stage;
4148 
4149 		mutex_lock(&fs_info->cleaner_mutex);
4150 		ret = relocate_block_group(rc);
4151 		mutex_unlock(&fs_info->cleaner_mutex);
4152 		if (ret < 0)
4153 			err = ret;
4154 
4155 		finishes_stage = rc->stage;
4156 		/*
4157 		 * We may have gotten ENOSPC after we already dirtied some
4158 		 * extents.  If writeout happens while we're relocating a
4159 		 * different block group we could end up hitting the
4160 		 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
4161 		 * btrfs_reloc_cow_block.  Make sure we write everything out
4162 		 * properly so we don't trip over this problem, and then break
4163 		 * out of the loop if we hit an error.
4164 		 */
4165 		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4166 			ret = btrfs_wait_ordered_range(BTRFS_I(rc->data_inode), 0,
4167 						       (u64)-1);
4168 			if (ret)
4169 				err = ret;
4170 			invalidate_mapping_pages(rc->data_inode->i_mapping,
4171 						 0, -1);
4172 			rc->stage = UPDATE_DATA_PTRS;
4173 		}
4174 
4175 		if (err < 0)
4176 			goto out;
4177 
4178 		if (rc->extents_found == 0)
4179 			break;
4180 
4181 		btrfs_info(fs_info, "found %llu extents, stage: %s",
4182 			   rc->extents_found, stage_to_string(finishes_stage));
4183 	}
4184 
4185 	WARN_ON(rc->block_group->pinned > 0);
4186 	WARN_ON(rc->block_group->reserved > 0);
4187 	WARN_ON(rc->block_group->used > 0);
4188 out:
4189 	if (err && rw)
4190 		btrfs_dec_block_group_ro(rc->block_group);
4191 	iput(rc->data_inode);
4192 out_put_bg:
4193 	btrfs_put_block_group(bg);
4194 	reloc_chunk_end(fs_info);
4195 	free_reloc_control(rc);
4196 	return err;
4197 }
4198 
4199 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4200 {
4201 	struct btrfs_fs_info *fs_info = root->fs_info;
4202 	struct btrfs_trans_handle *trans;
4203 	int ret, err;
4204 
4205 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
4206 	if (IS_ERR(trans))
4207 		return PTR_ERR(trans);
4208 
4209 	memset(&root->root_item.drop_progress, 0,
4210 		sizeof(root->root_item.drop_progress));
4211 	btrfs_set_root_drop_level(&root->root_item, 0);
4212 	btrfs_set_root_refs(&root->root_item, 0);
4213 	ret = btrfs_update_root(trans, fs_info->tree_root,
4214 				&root->root_key, &root->root_item);
4215 
4216 	err = btrfs_end_transaction(trans);
4217 	if (err)
4218 		return err;
4219 	return ret;
4220 }
4221 
4222 /*
4223  * recover relocation interrupted by system crash.
4224  *
4225  * this function resumes merging reloc trees with corresponding fs trees.
4226  * this is important for keeping the sharing of tree blocks
4227  */
4228 int btrfs_recover_relocation(struct btrfs_fs_info *fs_info)
4229 {
4230 	LIST_HEAD(reloc_roots);
4231 	struct btrfs_key key;
4232 	struct btrfs_root *fs_root;
4233 	struct btrfs_root *reloc_root;
4234 	struct btrfs_path *path;
4235 	struct extent_buffer *leaf;
4236 	struct reloc_control *rc = NULL;
4237 	struct btrfs_trans_handle *trans;
4238 	int ret2;
4239 	int ret = 0;
4240 
4241 	path = btrfs_alloc_path();
4242 	if (!path)
4243 		return -ENOMEM;
4244 	path->reada = READA_BACK;
4245 
4246 	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4247 	key.type = BTRFS_ROOT_ITEM_KEY;
4248 	key.offset = (u64)-1;
4249 
4250 	while (1) {
4251 		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
4252 					path, 0, 0);
4253 		if (ret < 0)
4254 			goto out;
4255 		if (ret > 0) {
4256 			if (path->slots[0] == 0)
4257 				break;
4258 			path->slots[0]--;
4259 		}
4260 		ret = 0;
4261 		leaf = path->nodes[0];
4262 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4263 		btrfs_release_path(path);
4264 
4265 		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4266 		    key.type != BTRFS_ROOT_ITEM_KEY)
4267 			break;
4268 
4269 		reloc_root = btrfs_read_tree_root(fs_info->tree_root, &key);
4270 		if (IS_ERR(reloc_root)) {
4271 			ret = PTR_ERR(reloc_root);
4272 			goto out;
4273 		}
4274 
4275 		set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
4276 		list_add(&reloc_root->root_list, &reloc_roots);
4277 
4278 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4279 			fs_root = btrfs_get_fs_root(fs_info,
4280 					reloc_root->root_key.offset, false);
4281 			if (IS_ERR(fs_root)) {
4282 				ret = PTR_ERR(fs_root);
4283 				if (ret != -ENOENT)
4284 					goto out;
4285 				ret = mark_garbage_root(reloc_root);
4286 				if (ret < 0)
4287 					goto out;
4288 				ret = 0;
4289 			} else {
4290 				btrfs_put_root(fs_root);
4291 			}
4292 		}
4293 
4294 		if (key.offset == 0)
4295 			break;
4296 
4297 		key.offset--;
4298 	}
4299 	btrfs_release_path(path);
4300 
4301 	if (list_empty(&reloc_roots))
4302 		goto out;
4303 
4304 	rc = alloc_reloc_control(fs_info);
4305 	if (!rc) {
4306 		ret = -ENOMEM;
4307 		goto out;
4308 	}
4309 
4310 	ret = reloc_chunk_start(fs_info);
4311 	if (ret < 0)
4312 		goto out_end;
4313 
4314 	rc->extent_root = btrfs_extent_root(fs_info, 0);
4315 
4316 	set_reloc_control(rc);
4317 
4318 	trans = btrfs_join_transaction(rc->extent_root);
4319 	if (IS_ERR(trans)) {
4320 		ret = PTR_ERR(trans);
4321 		goto out_unset;
4322 	}
4323 
4324 	rc->merge_reloc_tree = true;
4325 
4326 	while (!list_empty(&reloc_roots)) {
4327 		reloc_root = list_entry(reloc_roots.next,
4328 					struct btrfs_root, root_list);
4329 		list_del(&reloc_root->root_list);
4330 
4331 		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4332 			list_add_tail(&reloc_root->root_list,
4333 				      &rc->reloc_roots);
4334 			continue;
4335 		}
4336 
4337 		fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
4338 					    false);
4339 		if (IS_ERR(fs_root)) {
4340 			ret = PTR_ERR(fs_root);
4341 			list_add_tail(&reloc_root->root_list, &reloc_roots);
4342 			btrfs_end_transaction(trans);
4343 			goto out_unset;
4344 		}
4345 
4346 		ret = __add_reloc_root(reloc_root);
4347 		ASSERT(ret != -EEXIST);
4348 		if (ret) {
4349 			list_add_tail(&reloc_root->root_list, &reloc_roots);
4350 			btrfs_put_root(fs_root);
4351 			btrfs_end_transaction(trans);
4352 			goto out_unset;
4353 		}
4354 		fs_root->reloc_root = btrfs_grab_root(reloc_root);
4355 		btrfs_put_root(fs_root);
4356 	}
4357 
4358 	ret = btrfs_commit_transaction(trans);
4359 	if (ret)
4360 		goto out_unset;
4361 
4362 	merge_reloc_roots(rc);
4363 
4364 	unset_reloc_control(rc);
4365 
4366 	trans = btrfs_join_transaction(rc->extent_root);
4367 	if (IS_ERR(trans)) {
4368 		ret = PTR_ERR(trans);
4369 		goto out_clean;
4370 	}
4371 	ret = btrfs_commit_transaction(trans);
4372 out_clean:
4373 	ret2 = clean_dirty_subvols(rc);
4374 	if (ret2 < 0 && !ret)
4375 		ret = ret2;
4376 out_unset:
4377 	unset_reloc_control(rc);
4378 out_end:
4379 	reloc_chunk_end(fs_info);
4380 	free_reloc_control(rc);
4381 out:
4382 	free_reloc_roots(&reloc_roots);
4383 
4384 	btrfs_free_path(path);
4385 
4386 	if (ret == 0) {
4387 		/* cleanup orphan inode in data relocation tree */
4388 		fs_root = btrfs_grab_root(fs_info->data_reloc_root);
4389 		ASSERT(fs_root);
4390 		ret = btrfs_orphan_cleanup(fs_root);
4391 		btrfs_put_root(fs_root);
4392 	}
4393 	return ret;
4394 }
4395 
4396 /*
4397  * helper to add ordered checksum for data relocation.
4398  *
4399  * cloning checksum properly handles the nodatasum extents.
4400  * it also saves CPU time to re-calculate the checksum.
4401  */
4402 int btrfs_reloc_clone_csums(struct btrfs_ordered_extent *ordered)
4403 {
4404 	struct btrfs_inode *inode = ordered->inode;
4405 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
4406 	u64 disk_bytenr = ordered->file_offset + inode->reloc_block_group_start;
4407 	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, disk_bytenr);
4408 	LIST_HEAD(list);
4409 	int ret;
4410 
4411 	ret = btrfs_lookup_csums_list(csum_root, disk_bytenr,
4412 				      disk_bytenr + ordered->num_bytes - 1,
4413 				      &list, false);
4414 	if (ret < 0) {
4415 		btrfs_mark_ordered_extent_error(ordered);
4416 		return ret;
4417 	}
4418 
4419 	while (!list_empty(&list)) {
4420 		struct btrfs_ordered_sum *sums =
4421 			list_entry(list.next, struct btrfs_ordered_sum, list);
4422 
4423 		list_del_init(&sums->list);
4424 
4425 		/*
4426 		 * We need to offset the new_bytenr based on where the csum is.
4427 		 * We need to do this because we will read in entire prealloc
4428 		 * extents but we may have written to say the middle of the
4429 		 * prealloc extent, so we need to make sure the csum goes with
4430 		 * the right disk offset.
4431 		 *
4432 		 * We can do this because the data reloc inode refers strictly
4433 		 * to the on disk bytes, so we don't have to worry about
4434 		 * disk_len vs real len like with real inodes since it's all
4435 		 * disk length.
4436 		 */
4437 		sums->logical = ordered->disk_bytenr + sums->logical - disk_bytenr;
4438 		btrfs_add_ordered_sum(ordered, sums);
4439 	}
4440 
4441 	return 0;
4442 }
4443 
4444 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4445 			  struct btrfs_root *root,
4446 			  const struct extent_buffer *buf,
4447 			  struct extent_buffer *cow)
4448 {
4449 	struct btrfs_fs_info *fs_info = root->fs_info;
4450 	struct reloc_control *rc;
4451 	struct btrfs_backref_node *node;
4452 	int first_cow = 0;
4453 	int level;
4454 	int ret = 0;
4455 
4456 	rc = fs_info->reloc_ctl;
4457 	if (!rc)
4458 		return 0;
4459 
4460 	BUG_ON(rc->stage == UPDATE_DATA_PTRS && btrfs_is_data_reloc_root(root));
4461 
4462 	level = btrfs_header_level(buf);
4463 	if (btrfs_header_generation(buf) <=
4464 	    btrfs_root_last_snapshot(&root->root_item))
4465 		first_cow = 1;
4466 
4467 	if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID && rc->create_reloc_tree) {
4468 		WARN_ON(!first_cow && level == 0);
4469 
4470 		node = rc->backref_cache.path[level];
4471 		BUG_ON(node->bytenr != buf->start &&
4472 		       node->new_bytenr != buf->start);
4473 
4474 		btrfs_backref_drop_node_buffer(node);
4475 		atomic_inc(&cow->refs);
4476 		node->eb = cow;
4477 		node->new_bytenr = cow->start;
4478 
4479 		if (!node->pending) {
4480 			list_move_tail(&node->list,
4481 				       &rc->backref_cache.pending[level]);
4482 			node->pending = 1;
4483 		}
4484 
4485 		if (first_cow)
4486 			mark_block_processed(rc, node);
4487 
4488 		if (first_cow && level > 0)
4489 			rc->nodes_relocated += buf->len;
4490 	}
4491 
4492 	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4493 		ret = replace_file_extents(trans, rc, root, cow);
4494 	return ret;
4495 }
4496 
4497 /*
4498  * called before creating snapshot. it calculates metadata reservation
4499  * required for relocating tree blocks in the snapshot
4500  */
4501 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4502 			      u64 *bytes_to_reserve)
4503 {
4504 	struct btrfs_root *root = pending->root;
4505 	struct reloc_control *rc = root->fs_info->reloc_ctl;
4506 
4507 	if (!rc || !have_reloc_root(root))
4508 		return;
4509 
4510 	if (!rc->merge_reloc_tree)
4511 		return;
4512 
4513 	root = root->reloc_root;
4514 	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4515 	/*
4516 	 * relocation is in the stage of merging trees. the space
4517 	 * used by merging a reloc tree is twice the size of
4518 	 * relocated tree nodes in the worst case. half for cowing
4519 	 * the reloc tree, half for cowing the fs tree. the space
4520 	 * used by cowing the reloc tree will be freed after the
4521 	 * tree is dropped. if we create snapshot, cowing the fs
4522 	 * tree may use more space than it frees. so we need
4523 	 * reserve extra space.
4524 	 */
4525 	*bytes_to_reserve += rc->nodes_relocated;
4526 }
4527 
4528 /*
4529  * called after snapshot is created. migrate block reservation
4530  * and create reloc root for the newly created snapshot
4531  *
4532  * This is similar to btrfs_init_reloc_root(), we come out of here with two
4533  * references held on the reloc_root, one for root->reloc_root and one for
4534  * rc->reloc_roots.
4535  */
4536 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4537 			       struct btrfs_pending_snapshot *pending)
4538 {
4539 	struct btrfs_root *root = pending->root;
4540 	struct btrfs_root *reloc_root;
4541 	struct btrfs_root *new_root;
4542 	struct reloc_control *rc = root->fs_info->reloc_ctl;
4543 	int ret;
4544 
4545 	if (!rc || !have_reloc_root(root))
4546 		return 0;
4547 
4548 	rc = root->fs_info->reloc_ctl;
4549 	rc->merging_rsv_size += rc->nodes_relocated;
4550 
4551 	if (rc->merge_reloc_tree) {
4552 		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4553 					      rc->block_rsv,
4554 					      rc->nodes_relocated, true);
4555 		if (ret)
4556 			return ret;
4557 	}
4558 
4559 	new_root = pending->snap;
4560 	reloc_root = create_reloc_root(trans, root->reloc_root, btrfs_root_id(new_root));
4561 	if (IS_ERR(reloc_root))
4562 		return PTR_ERR(reloc_root);
4563 
4564 	ret = __add_reloc_root(reloc_root);
4565 	ASSERT(ret != -EEXIST);
4566 	if (ret) {
4567 		/* Pairs with create_reloc_root */
4568 		btrfs_put_root(reloc_root);
4569 		return ret;
4570 	}
4571 	new_root->reloc_root = btrfs_grab_root(reloc_root);
4572 
4573 	if (rc->create_reloc_tree)
4574 		ret = clone_backref_node(trans, rc, root, reloc_root);
4575 	return ret;
4576 }
4577 
4578 /*
4579  * Get the current bytenr for the block group which is being relocated.
4580  *
4581  * Return U64_MAX if no running relocation.
4582  */
4583 u64 btrfs_get_reloc_bg_bytenr(const struct btrfs_fs_info *fs_info)
4584 {
4585 	u64 logical = U64_MAX;
4586 
4587 	lockdep_assert_held(&fs_info->reloc_mutex);
4588 
4589 	if (fs_info->reloc_ctl && fs_info->reloc_ctl->block_group)
4590 		logical = fs_info->reloc_ctl->block_group->start;
4591 	return logical;
4592 }
4593