xref: /linux/fs/btrfs/reflink.c (revision fdd51b3e73e906aac056f2c337710185607d43d1)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/blkdev.h>
4 #include <linux/iversion.h>
5 #include "ctree.h"
6 #include "fs.h"
7 #include "messages.h"
8 #include "compression.h"
9 #include "delalloc-space.h"
10 #include "disk-io.h"
11 #include "reflink.h"
12 #include "transaction.h"
13 #include "subpage.h"
14 #include "accessors.h"
15 #include "file-item.h"
16 #include "file.h"
17 #include "super.h"
18 
19 #define BTRFS_MAX_DEDUPE_LEN	SZ_16M
20 
21 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
22 				     struct inode *inode,
23 				     u64 endoff,
24 				     const u64 destoff,
25 				     const u64 olen,
26 				     int no_time_update)
27 {
28 	int ret;
29 
30 	inode_inc_iversion(inode);
31 	if (!no_time_update) {
32 		inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
33 	}
34 	/*
35 	 * We round up to the block size at eof when determining which
36 	 * extents to clone above, but shouldn't round up the file size.
37 	 */
38 	if (endoff > destoff + olen)
39 		endoff = destoff + olen;
40 	if (endoff > inode->i_size) {
41 		i_size_write(inode, endoff);
42 		btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
43 	}
44 
45 	ret = btrfs_update_inode(trans, BTRFS_I(inode));
46 	if (ret) {
47 		btrfs_abort_transaction(trans, ret);
48 		btrfs_end_transaction(trans);
49 		goto out;
50 	}
51 	ret = btrfs_end_transaction(trans);
52 out:
53 	return ret;
54 }
55 
56 static int copy_inline_to_page(struct btrfs_inode *inode,
57 			       const u64 file_offset,
58 			       char *inline_data,
59 			       const u64 size,
60 			       const u64 datal,
61 			       const u8 comp_type)
62 {
63 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
64 	const u32 block_size = fs_info->sectorsize;
65 	const u64 range_end = file_offset + block_size - 1;
66 	const size_t inline_size = size - btrfs_file_extent_calc_inline_size(0);
67 	char *data_start = inline_data + btrfs_file_extent_calc_inline_size(0);
68 	struct extent_changeset *data_reserved = NULL;
69 	struct page *page = NULL;
70 	struct address_space *mapping = inode->vfs_inode.i_mapping;
71 	int ret;
72 
73 	ASSERT(IS_ALIGNED(file_offset, block_size));
74 
75 	/*
76 	 * We have flushed and locked the ranges of the source and destination
77 	 * inodes, we also have locked the inodes, so we are safe to do a
78 	 * reservation here. Also we must not do the reservation while holding
79 	 * a transaction open, otherwise we would deadlock.
80 	 */
81 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, file_offset,
82 					   block_size);
83 	if (ret)
84 		goto out;
85 
86 	page = find_or_create_page(mapping, file_offset >> PAGE_SHIFT,
87 				   btrfs_alloc_write_mask(mapping));
88 	if (!page) {
89 		ret = -ENOMEM;
90 		goto out_unlock;
91 	}
92 
93 	ret = set_page_extent_mapped(page);
94 	if (ret < 0)
95 		goto out_unlock;
96 
97 	clear_extent_bit(&inode->io_tree, file_offset, range_end,
98 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
99 			 NULL);
100 	ret = btrfs_set_extent_delalloc(inode, file_offset, range_end, 0, NULL);
101 	if (ret)
102 		goto out_unlock;
103 
104 	/*
105 	 * After dirtying the page our caller will need to start a transaction,
106 	 * and if we are low on metadata free space, that can cause flushing of
107 	 * delalloc for all inodes in order to get metadata space released.
108 	 * However we are holding the range locked for the whole duration of
109 	 * the clone/dedupe operation, so we may deadlock if that happens and no
110 	 * other task releases enough space. So mark this inode as not being
111 	 * possible to flush to avoid such deadlock. We will clear that flag
112 	 * when we finish cloning all extents, since a transaction is started
113 	 * after finding each extent to clone.
114 	 */
115 	set_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &inode->runtime_flags);
116 
117 	if (comp_type == BTRFS_COMPRESS_NONE) {
118 		memcpy_to_page(page, offset_in_page(file_offset), data_start,
119 			       datal);
120 	} else {
121 		ret = btrfs_decompress(comp_type, data_start, page,
122 				       offset_in_page(file_offset),
123 				       inline_size, datal);
124 		if (ret)
125 			goto out_unlock;
126 		flush_dcache_page(page);
127 	}
128 
129 	/*
130 	 * If our inline data is smaller then the block/page size, then the
131 	 * remaining of the block/page is equivalent to zeroes. We had something
132 	 * like the following done:
133 	 *
134 	 * $ xfs_io -f -c "pwrite -S 0xab 0 500" file
135 	 * $ sync  # (or fsync)
136 	 * $ xfs_io -c "falloc 0 4K" file
137 	 * $ xfs_io -c "pwrite -S 0xcd 4K 4K"
138 	 *
139 	 * So what's in the range [500, 4095] corresponds to zeroes.
140 	 */
141 	if (datal < block_size)
142 		memzero_page(page, datal, block_size - datal);
143 
144 	btrfs_folio_set_uptodate(fs_info, page_folio(page), file_offset, block_size);
145 	btrfs_folio_clear_checked(fs_info, page_folio(page), file_offset, block_size);
146 	btrfs_folio_set_dirty(fs_info, page_folio(page), file_offset, block_size);
147 out_unlock:
148 	if (page) {
149 		unlock_page(page);
150 		put_page(page);
151 	}
152 	if (ret)
153 		btrfs_delalloc_release_space(inode, data_reserved, file_offset,
154 					     block_size, true);
155 	btrfs_delalloc_release_extents(inode, block_size);
156 out:
157 	extent_changeset_free(data_reserved);
158 
159 	return ret;
160 }
161 
162 /*
163  * Deal with cloning of inline extents. We try to copy the inline extent from
164  * the source inode to destination inode when possible. When not possible we
165  * copy the inline extent's data into the respective page of the inode.
166  */
167 static int clone_copy_inline_extent(struct inode *dst,
168 				    struct btrfs_path *path,
169 				    struct btrfs_key *new_key,
170 				    const u64 drop_start,
171 				    const u64 datal,
172 				    const u64 size,
173 				    const u8 comp_type,
174 				    char *inline_data,
175 				    struct btrfs_trans_handle **trans_out)
176 {
177 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dst);
178 	struct btrfs_root *root = BTRFS_I(dst)->root;
179 	const u64 aligned_end = ALIGN(new_key->offset + datal,
180 				      fs_info->sectorsize);
181 	struct btrfs_trans_handle *trans = NULL;
182 	struct btrfs_drop_extents_args drop_args = { 0 };
183 	int ret;
184 	struct btrfs_key key;
185 
186 	if (new_key->offset > 0) {
187 		ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset,
188 					  inline_data, size, datal, comp_type);
189 		goto out;
190 	}
191 
192 	key.objectid = btrfs_ino(BTRFS_I(dst));
193 	key.type = BTRFS_EXTENT_DATA_KEY;
194 	key.offset = 0;
195 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
196 	if (ret < 0) {
197 		return ret;
198 	} else if (ret > 0) {
199 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
200 			ret = btrfs_next_leaf(root, path);
201 			if (ret < 0)
202 				return ret;
203 			else if (ret > 0)
204 				goto copy_inline_extent;
205 		}
206 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
207 		if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
208 		    key.type == BTRFS_EXTENT_DATA_KEY) {
209 			/*
210 			 * There's an implicit hole at file offset 0, copy the
211 			 * inline extent's data to the page.
212 			 */
213 			ASSERT(key.offset > 0);
214 			goto copy_to_page;
215 		}
216 	} else if (i_size_read(dst) <= datal) {
217 		struct btrfs_file_extent_item *ei;
218 
219 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
220 				    struct btrfs_file_extent_item);
221 		/*
222 		 * If it's an inline extent replace it with the source inline
223 		 * extent, otherwise copy the source inline extent data into
224 		 * the respective page at the destination inode.
225 		 */
226 		if (btrfs_file_extent_type(path->nodes[0], ei) ==
227 		    BTRFS_FILE_EXTENT_INLINE)
228 			goto copy_inline_extent;
229 
230 		goto copy_to_page;
231 	}
232 
233 copy_inline_extent:
234 	/*
235 	 * We have no extent items, or we have an extent at offset 0 which may
236 	 * or may not be inlined. All these cases are dealt the same way.
237 	 */
238 	if (i_size_read(dst) > datal) {
239 		/*
240 		 * At the destination offset 0 we have either a hole, a regular
241 		 * extent or an inline extent larger then the one we want to
242 		 * clone. Deal with all these cases by copying the inline extent
243 		 * data into the respective page at the destination inode.
244 		 */
245 		goto copy_to_page;
246 	}
247 
248 	/*
249 	 * Release path before starting a new transaction so we don't hold locks
250 	 * that would confuse lockdep.
251 	 */
252 	btrfs_release_path(path);
253 	/*
254 	 * If we end up here it means were copy the inline extent into a leaf
255 	 * of the destination inode. We know we will drop or adjust at most one
256 	 * extent item in the destination root.
257 	 *
258 	 * 1 unit - adjusting old extent (we may have to split it)
259 	 * 1 unit - add new extent
260 	 * 1 unit - inode update
261 	 */
262 	trans = btrfs_start_transaction(root, 3);
263 	if (IS_ERR(trans)) {
264 		ret = PTR_ERR(trans);
265 		trans = NULL;
266 		goto out;
267 	}
268 	drop_args.path = path;
269 	drop_args.start = drop_start;
270 	drop_args.end = aligned_end;
271 	drop_args.drop_cache = true;
272 	ret = btrfs_drop_extents(trans, root, BTRFS_I(dst), &drop_args);
273 	if (ret)
274 		goto out;
275 	ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
276 	if (ret)
277 		goto out;
278 
279 	write_extent_buffer(path->nodes[0], inline_data,
280 			    btrfs_item_ptr_offset(path->nodes[0],
281 						  path->slots[0]),
282 			    size);
283 	btrfs_update_inode_bytes(BTRFS_I(dst), datal, drop_args.bytes_found);
284 	btrfs_set_inode_full_sync(BTRFS_I(dst));
285 	ret = btrfs_inode_set_file_extent_range(BTRFS_I(dst), 0, aligned_end);
286 out:
287 	if (!ret && !trans) {
288 		/*
289 		 * No transaction here means we copied the inline extent into a
290 		 * page of the destination inode.
291 		 *
292 		 * 1 unit to update inode item
293 		 */
294 		trans = btrfs_start_transaction(root, 1);
295 		if (IS_ERR(trans)) {
296 			ret = PTR_ERR(trans);
297 			trans = NULL;
298 		}
299 	}
300 	if (ret && trans) {
301 		btrfs_abort_transaction(trans, ret);
302 		btrfs_end_transaction(trans);
303 	}
304 	if (!ret)
305 		*trans_out = trans;
306 
307 	return ret;
308 
309 copy_to_page:
310 	/*
311 	 * Release our path because we don't need it anymore and also because
312 	 * copy_inline_to_page() needs to reserve data and metadata, which may
313 	 * need to flush delalloc when we are low on available space and
314 	 * therefore cause a deadlock if writeback of an inline extent needs to
315 	 * write to the same leaf or an ordered extent completion needs to write
316 	 * to the same leaf.
317 	 */
318 	btrfs_release_path(path);
319 
320 	ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset,
321 				  inline_data, size, datal, comp_type);
322 	goto out;
323 }
324 
325 /*
326  * Clone a range from inode file to another.
327  *
328  * @src:             Inode to clone from
329  * @inode:           Inode to clone to
330  * @off:             Offset within source to start clone from
331  * @olen:            Original length, passed by user, of range to clone
332  * @olen_aligned:    Block-aligned value of olen
333  * @destoff:         Offset within @inode to start clone
334  * @no_time_update:  Whether to update mtime/ctime on the target inode
335  */
336 static int btrfs_clone(struct inode *src, struct inode *inode,
337 		       const u64 off, const u64 olen, const u64 olen_aligned,
338 		       const u64 destoff, int no_time_update)
339 {
340 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
341 	struct btrfs_path *path = NULL;
342 	struct extent_buffer *leaf;
343 	struct btrfs_trans_handle *trans;
344 	char *buf = NULL;
345 	struct btrfs_key key;
346 	u32 nritems;
347 	int slot;
348 	int ret;
349 	const u64 len = olen_aligned;
350 	u64 last_dest_end = destoff;
351 	u64 prev_extent_end = off;
352 
353 	ret = -ENOMEM;
354 	buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
355 	if (!buf)
356 		return ret;
357 
358 	path = btrfs_alloc_path();
359 	if (!path) {
360 		kvfree(buf);
361 		return ret;
362 	}
363 
364 	path->reada = READA_FORWARD;
365 	/* Clone data */
366 	key.objectid = btrfs_ino(BTRFS_I(src));
367 	key.type = BTRFS_EXTENT_DATA_KEY;
368 	key.offset = off;
369 
370 	while (1) {
371 		struct btrfs_file_extent_item *extent;
372 		u64 extent_gen;
373 		int type;
374 		u32 size;
375 		struct btrfs_key new_key;
376 		u64 disko = 0, diskl = 0;
377 		u64 datao = 0, datal = 0;
378 		u8 comp;
379 		u64 drop_start;
380 
381 		/* Note the key will change type as we walk through the tree */
382 		ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
383 				0, 0);
384 		if (ret < 0)
385 			goto out;
386 		/*
387 		 * First search, if no extent item that starts at offset off was
388 		 * found but the previous item is an extent item, it's possible
389 		 * it might overlap our target range, therefore process it.
390 		 */
391 		if (key.offset == off && ret > 0 && path->slots[0] > 0) {
392 			btrfs_item_key_to_cpu(path->nodes[0], &key,
393 					      path->slots[0] - 1);
394 			if (key.type == BTRFS_EXTENT_DATA_KEY)
395 				path->slots[0]--;
396 		}
397 
398 		nritems = btrfs_header_nritems(path->nodes[0]);
399 process_slot:
400 		if (path->slots[0] >= nritems) {
401 			ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
402 			if (ret < 0)
403 				goto out;
404 			if (ret > 0)
405 				break;
406 			nritems = btrfs_header_nritems(path->nodes[0]);
407 		}
408 		leaf = path->nodes[0];
409 		slot = path->slots[0];
410 
411 		btrfs_item_key_to_cpu(leaf, &key, slot);
412 		if (key.type > BTRFS_EXTENT_DATA_KEY ||
413 		    key.objectid != btrfs_ino(BTRFS_I(src)))
414 			break;
415 
416 		ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
417 
418 		extent = btrfs_item_ptr(leaf, slot,
419 					struct btrfs_file_extent_item);
420 		extent_gen = btrfs_file_extent_generation(leaf, extent);
421 		comp = btrfs_file_extent_compression(leaf, extent);
422 		type = btrfs_file_extent_type(leaf, extent);
423 		if (type == BTRFS_FILE_EXTENT_REG ||
424 		    type == BTRFS_FILE_EXTENT_PREALLOC) {
425 			disko = btrfs_file_extent_disk_bytenr(leaf, extent);
426 			diskl = btrfs_file_extent_disk_num_bytes(leaf, extent);
427 			datao = btrfs_file_extent_offset(leaf, extent);
428 			datal = btrfs_file_extent_num_bytes(leaf, extent);
429 		} else if (type == BTRFS_FILE_EXTENT_INLINE) {
430 			/* Take upper bound, may be compressed */
431 			datal = btrfs_file_extent_ram_bytes(leaf, extent);
432 		}
433 
434 		/*
435 		 * The first search might have left us at an extent item that
436 		 * ends before our target range's start, can happen if we have
437 		 * holes and NO_HOLES feature enabled.
438 		 *
439 		 * Subsequent searches may leave us on a file range we have
440 		 * processed before - this happens due to a race with ordered
441 		 * extent completion for a file range that is outside our source
442 		 * range, but that range was part of a file extent item that
443 		 * also covered a leading part of our source range.
444 		 */
445 		if (key.offset + datal <= prev_extent_end) {
446 			path->slots[0]++;
447 			goto process_slot;
448 		} else if (key.offset >= off + len) {
449 			break;
450 		}
451 
452 		prev_extent_end = key.offset + datal;
453 		size = btrfs_item_size(leaf, slot);
454 		read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, slot),
455 				   size);
456 
457 		btrfs_release_path(path);
458 
459 		memcpy(&new_key, &key, sizeof(new_key));
460 		new_key.objectid = btrfs_ino(BTRFS_I(inode));
461 		if (off <= key.offset)
462 			new_key.offset = key.offset + destoff - off;
463 		else
464 			new_key.offset = destoff;
465 
466 		/*
467 		 * Deal with a hole that doesn't have an extent item that
468 		 * represents it (NO_HOLES feature enabled).
469 		 * This hole is either in the middle of the cloning range or at
470 		 * the beginning (fully overlaps it or partially overlaps it).
471 		 */
472 		if (new_key.offset != last_dest_end)
473 			drop_start = last_dest_end;
474 		else
475 			drop_start = new_key.offset;
476 
477 		if (type == BTRFS_FILE_EXTENT_REG ||
478 		    type == BTRFS_FILE_EXTENT_PREALLOC) {
479 			struct btrfs_replace_extent_info clone_info;
480 
481 			/*
482 			 *    a  | --- range to clone ---|  b
483 			 * | ------------- extent ------------- |
484 			 */
485 
486 			/* Subtract range b */
487 			if (key.offset + datal > off + len)
488 				datal = off + len - key.offset;
489 
490 			/* Subtract range a */
491 			if (off > key.offset) {
492 				datao += off - key.offset;
493 				datal -= off - key.offset;
494 			}
495 
496 			clone_info.disk_offset = disko;
497 			clone_info.disk_len = diskl;
498 			clone_info.data_offset = datao;
499 			clone_info.data_len = datal;
500 			clone_info.file_offset = new_key.offset;
501 			clone_info.extent_buf = buf;
502 			clone_info.is_new_extent = false;
503 			clone_info.update_times = !no_time_update;
504 			ret = btrfs_replace_file_extents(BTRFS_I(inode), path,
505 					drop_start, new_key.offset + datal - 1,
506 					&clone_info, &trans);
507 			if (ret)
508 				goto out;
509 		} else {
510 			ASSERT(type == BTRFS_FILE_EXTENT_INLINE);
511 			/*
512 			 * Inline extents always have to start at file offset 0
513 			 * and can never be bigger then the sector size. We can
514 			 * never clone only parts of an inline extent, since all
515 			 * reflink operations must start at a sector size aligned
516 			 * offset, and the length must be aligned too or end at
517 			 * the i_size (which implies the whole inlined data).
518 			 */
519 			ASSERT(key.offset == 0);
520 			ASSERT(datal <= fs_info->sectorsize);
521 			if (WARN_ON(type != BTRFS_FILE_EXTENT_INLINE) ||
522 			    WARN_ON(key.offset != 0) ||
523 			    WARN_ON(datal > fs_info->sectorsize)) {
524 				ret = -EUCLEAN;
525 				goto out;
526 			}
527 
528 			ret = clone_copy_inline_extent(inode, path, &new_key,
529 						       drop_start, datal, size,
530 						       comp, buf, &trans);
531 			if (ret)
532 				goto out;
533 		}
534 
535 		btrfs_release_path(path);
536 
537 		/*
538 		 * Whenever we share an extent we update the last_reflink_trans
539 		 * of each inode to the current transaction. This is needed to
540 		 * make sure fsync does not log multiple checksum items with
541 		 * overlapping ranges (because some extent items might refer
542 		 * only to sections of the original extent). For the destination
543 		 * inode we do this regardless of the generation of the extents
544 		 * or even if they are inline extents or explicit holes, to make
545 		 * sure a full fsync does not skip them. For the source inode,
546 		 * we only need to update last_reflink_trans in case it's a new
547 		 * extent that is not a hole or an inline extent, to deal with
548 		 * the checksums problem on fsync.
549 		 */
550 		if (extent_gen == trans->transid && disko > 0)
551 			BTRFS_I(src)->last_reflink_trans = trans->transid;
552 
553 		BTRFS_I(inode)->last_reflink_trans = trans->transid;
554 
555 		last_dest_end = ALIGN(new_key.offset + datal,
556 				      fs_info->sectorsize);
557 		ret = clone_finish_inode_update(trans, inode, last_dest_end,
558 						destoff, olen, no_time_update);
559 		if (ret)
560 			goto out;
561 		if (new_key.offset + datal >= destoff + len)
562 			break;
563 
564 		btrfs_release_path(path);
565 		key.offset = prev_extent_end;
566 
567 		if (fatal_signal_pending(current)) {
568 			ret = -EINTR;
569 			goto out;
570 		}
571 
572 		cond_resched();
573 	}
574 	ret = 0;
575 
576 	if (last_dest_end < destoff + len) {
577 		/*
578 		 * We have an implicit hole that fully or partially overlaps our
579 		 * cloning range at its end. This means that we either have the
580 		 * NO_HOLES feature enabled or the implicit hole happened due to
581 		 * mixing buffered and direct IO writes against this file.
582 		 */
583 		btrfs_release_path(path);
584 
585 		/*
586 		 * When using NO_HOLES and we are cloning a range that covers
587 		 * only a hole (no extents) into a range beyond the current
588 		 * i_size, punching a hole in the target range will not create
589 		 * an extent map defining a hole, because the range starts at or
590 		 * beyond current i_size. If the file previously had an i_size
591 		 * greater than the new i_size set by this clone operation, we
592 		 * need to make sure the next fsync is a full fsync, so that it
593 		 * detects and logs a hole covering a range from the current
594 		 * i_size to the new i_size. If the clone range covers extents,
595 		 * besides a hole, then we know the full sync flag was already
596 		 * set by previous calls to btrfs_replace_file_extents() that
597 		 * replaced file extent items.
598 		 */
599 		if (last_dest_end >= i_size_read(inode))
600 			btrfs_set_inode_full_sync(BTRFS_I(inode));
601 
602 		ret = btrfs_replace_file_extents(BTRFS_I(inode), path,
603 				last_dest_end, destoff + len - 1, NULL, &trans);
604 		if (ret)
605 			goto out;
606 
607 		ret = clone_finish_inode_update(trans, inode, destoff + len,
608 						destoff, olen, no_time_update);
609 	}
610 
611 out:
612 	btrfs_free_path(path);
613 	kvfree(buf);
614 	clear_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &BTRFS_I(inode)->runtime_flags);
615 
616 	return ret;
617 }
618 
619 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
620 				       struct inode *inode2, u64 loff2, u64 len)
621 {
622 	unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1, NULL);
623 	unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1, NULL);
624 }
625 
626 static void btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
627 				     struct inode *inode2, u64 loff2, u64 len)
628 {
629 	u64 range1_end = loff1 + len - 1;
630 	u64 range2_end = loff2 + len - 1;
631 
632 	if (inode1 < inode2) {
633 		swap(inode1, inode2);
634 		swap(loff1, loff2);
635 		swap(range1_end, range2_end);
636 	} else if (inode1 == inode2 && loff2 < loff1) {
637 		swap(loff1, loff2);
638 		swap(range1_end, range2_end);
639 	}
640 
641 	lock_extent(&BTRFS_I(inode1)->io_tree, loff1, range1_end, NULL);
642 	lock_extent(&BTRFS_I(inode2)->io_tree, loff2, range2_end, NULL);
643 
644 	btrfs_assert_inode_range_clean(BTRFS_I(inode1), loff1, range1_end);
645 	btrfs_assert_inode_range_clean(BTRFS_I(inode2), loff2, range2_end);
646 }
647 
648 static void btrfs_double_mmap_lock(struct inode *inode1, struct inode *inode2)
649 {
650 	if (inode1 < inode2)
651 		swap(inode1, inode2);
652 	down_write(&BTRFS_I(inode1)->i_mmap_lock);
653 	down_write_nested(&BTRFS_I(inode2)->i_mmap_lock, SINGLE_DEPTH_NESTING);
654 }
655 
656 static void btrfs_double_mmap_unlock(struct inode *inode1, struct inode *inode2)
657 {
658 	up_write(&BTRFS_I(inode1)->i_mmap_lock);
659 	up_write(&BTRFS_I(inode2)->i_mmap_lock);
660 }
661 
662 static int btrfs_extent_same_range(struct inode *src, u64 loff, u64 len,
663 				   struct inode *dst, u64 dst_loff)
664 {
665 	struct btrfs_fs_info *fs_info = BTRFS_I(src)->root->fs_info;
666 	const u64 bs = fs_info->sectorsize;
667 	int ret;
668 
669 	/*
670 	 * Lock destination range to serialize with concurrent readahead() and
671 	 * source range to serialize with relocation.
672 	 */
673 	btrfs_double_extent_lock(src, loff, dst, dst_loff, len);
674 	ret = btrfs_clone(src, dst, loff, len, ALIGN(len, bs), dst_loff, 1);
675 	btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
676 
677 	btrfs_btree_balance_dirty(fs_info);
678 
679 	return ret;
680 }
681 
682 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
683 			     struct inode *dst, u64 dst_loff)
684 {
685 	int ret = 0;
686 	u64 i, tail_len, chunk_count;
687 	struct btrfs_root *root_dst = BTRFS_I(dst)->root;
688 
689 	spin_lock(&root_dst->root_item_lock);
690 	if (root_dst->send_in_progress) {
691 		btrfs_warn_rl(root_dst->fs_info,
692 "cannot deduplicate to root %llu while send operations are using it (%d in progress)",
693 			      root_dst->root_key.objectid,
694 			      root_dst->send_in_progress);
695 		spin_unlock(&root_dst->root_item_lock);
696 		return -EAGAIN;
697 	}
698 	root_dst->dedupe_in_progress++;
699 	spin_unlock(&root_dst->root_item_lock);
700 
701 	tail_len = olen % BTRFS_MAX_DEDUPE_LEN;
702 	chunk_count = div_u64(olen, BTRFS_MAX_DEDUPE_LEN);
703 
704 	for (i = 0; i < chunk_count; i++) {
705 		ret = btrfs_extent_same_range(src, loff, BTRFS_MAX_DEDUPE_LEN,
706 					      dst, dst_loff);
707 		if (ret)
708 			goto out;
709 
710 		loff += BTRFS_MAX_DEDUPE_LEN;
711 		dst_loff += BTRFS_MAX_DEDUPE_LEN;
712 	}
713 
714 	if (tail_len > 0)
715 		ret = btrfs_extent_same_range(src, loff, tail_len, dst, dst_loff);
716 out:
717 	spin_lock(&root_dst->root_item_lock);
718 	root_dst->dedupe_in_progress--;
719 	spin_unlock(&root_dst->root_item_lock);
720 
721 	return ret;
722 }
723 
724 static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
725 					u64 off, u64 olen, u64 destoff)
726 {
727 	struct inode *inode = file_inode(file);
728 	struct inode *src = file_inode(file_src);
729 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
730 	int ret;
731 	int wb_ret;
732 	u64 len = olen;
733 	u64 bs = fs_info->sectorsize;
734 
735 	/*
736 	 * VFS's generic_remap_file_range_prep() protects us from cloning the
737 	 * eof block into the middle of a file, which would result in corruption
738 	 * if the file size is not blocksize aligned. So we don't need to check
739 	 * for that case here.
740 	 */
741 	if (off + len == src->i_size)
742 		len = ALIGN(src->i_size, bs) - off;
743 
744 	if (destoff > inode->i_size) {
745 		const u64 wb_start = ALIGN_DOWN(inode->i_size, bs);
746 
747 		ret = btrfs_cont_expand(BTRFS_I(inode), inode->i_size, destoff);
748 		if (ret)
749 			return ret;
750 		/*
751 		 * We may have truncated the last block if the inode's size is
752 		 * not sector size aligned, so we need to wait for writeback to
753 		 * complete before proceeding further, otherwise we can race
754 		 * with cloning and attempt to increment a reference to an
755 		 * extent that no longer exists (writeback completed right after
756 		 * we found the previous extent covering eof and before we
757 		 * attempted to increment its reference count).
758 		 */
759 		ret = btrfs_wait_ordered_range(inode, wb_start,
760 					       destoff - wb_start);
761 		if (ret)
762 			return ret;
763 	}
764 
765 	/*
766 	 * Lock destination range to serialize with concurrent readahead() and
767 	 * source range to serialize with relocation.
768 	 */
769 	btrfs_double_extent_lock(src, off, inode, destoff, len);
770 	ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
771 	btrfs_double_extent_unlock(src, off, inode, destoff, len);
772 
773 	/*
774 	 * We may have copied an inline extent into a page of the destination
775 	 * range, so wait for writeback to complete before truncating pages
776 	 * from the page cache. This is a rare case.
777 	 */
778 	wb_ret = btrfs_wait_ordered_range(inode, destoff, len);
779 	ret = ret ? ret : wb_ret;
780 	/*
781 	 * Truncate page cache pages so that future reads will see the cloned
782 	 * data immediately and not the previous data.
783 	 */
784 	truncate_inode_pages_range(&inode->i_data,
785 				round_down(destoff, PAGE_SIZE),
786 				round_up(destoff + len, PAGE_SIZE) - 1);
787 
788 	btrfs_btree_balance_dirty(fs_info);
789 
790 	return ret;
791 }
792 
793 static int btrfs_remap_file_range_prep(struct file *file_in, loff_t pos_in,
794 				       struct file *file_out, loff_t pos_out,
795 				       loff_t *len, unsigned int remap_flags)
796 {
797 	struct inode *inode_in = file_inode(file_in);
798 	struct inode *inode_out = file_inode(file_out);
799 	u64 bs = BTRFS_I(inode_out)->root->fs_info->sectorsize;
800 	u64 wb_len;
801 	int ret;
802 
803 	if (!(remap_flags & REMAP_FILE_DEDUP)) {
804 		struct btrfs_root *root_out = BTRFS_I(inode_out)->root;
805 
806 		if (btrfs_root_readonly(root_out))
807 			return -EROFS;
808 
809 		ASSERT(inode_in->i_sb == inode_out->i_sb);
810 	}
811 
812 	/* Don't make the dst file partly checksummed */
813 	if ((BTRFS_I(inode_in)->flags & BTRFS_INODE_NODATASUM) !=
814 	    (BTRFS_I(inode_out)->flags & BTRFS_INODE_NODATASUM)) {
815 		return -EINVAL;
816 	}
817 
818 	/*
819 	 * Now that the inodes are locked, we need to start writeback ourselves
820 	 * and can not rely on the writeback from the VFS's generic helper
821 	 * generic_remap_file_range_prep() because:
822 	 *
823 	 * 1) For compression we must call filemap_fdatawrite_range() range
824 	 *    twice (btrfs_fdatawrite_range() does it for us), and the generic
825 	 *    helper only calls it once;
826 	 *
827 	 * 2) filemap_fdatawrite_range(), called by the generic helper only
828 	 *    waits for the writeback to complete, i.e. for IO to be done, and
829 	 *    not for the ordered extents to complete. We need to wait for them
830 	 *    to complete so that new file extent items are in the fs tree.
831 	 */
832 	if (*len == 0 && !(remap_flags & REMAP_FILE_DEDUP))
833 		wb_len = ALIGN(inode_in->i_size, bs) - ALIGN_DOWN(pos_in, bs);
834 	else
835 		wb_len = ALIGN(*len, bs);
836 
837 	/*
838 	 * Workaround to make sure NOCOW buffered write reach disk as NOCOW.
839 	 *
840 	 * Btrfs' back references do not have a block level granularity, they
841 	 * work at the whole extent level.
842 	 * NOCOW buffered write without data space reserved may not be able
843 	 * to fall back to CoW due to lack of data space, thus could cause
844 	 * data loss.
845 	 *
846 	 * Here we take a shortcut by flushing the whole inode, so that all
847 	 * nocow write should reach disk as nocow before we increase the
848 	 * reference of the extent. We could do better by only flushing NOCOW
849 	 * data, but that needs extra accounting.
850 	 *
851 	 * Also we don't need to check ASYNC_EXTENT, as async extent will be
852 	 * CoWed anyway, not affecting nocow part.
853 	 */
854 	ret = filemap_flush(inode_in->i_mapping);
855 	if (ret < 0)
856 		return ret;
857 
858 	ret = btrfs_wait_ordered_range(inode_in, ALIGN_DOWN(pos_in, bs),
859 				       wb_len);
860 	if (ret < 0)
861 		return ret;
862 	ret = btrfs_wait_ordered_range(inode_out, ALIGN_DOWN(pos_out, bs),
863 				       wb_len);
864 	if (ret < 0)
865 		return ret;
866 
867 	return generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
868 					    len, remap_flags);
869 }
870 
871 static bool file_sync_write(const struct file *file)
872 {
873 	if (file->f_flags & (__O_SYNC | O_DSYNC))
874 		return true;
875 	if (IS_SYNC(file_inode(file)))
876 		return true;
877 
878 	return false;
879 }
880 
881 loff_t btrfs_remap_file_range(struct file *src_file, loff_t off,
882 		struct file *dst_file, loff_t destoff, loff_t len,
883 		unsigned int remap_flags)
884 {
885 	struct inode *src_inode = file_inode(src_file);
886 	struct inode *dst_inode = file_inode(dst_file);
887 	bool same_inode = dst_inode == src_inode;
888 	int ret;
889 
890 	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
891 		return -EINVAL;
892 
893 	if (same_inode) {
894 		btrfs_inode_lock(BTRFS_I(src_inode), BTRFS_ILOCK_MMAP);
895 	} else {
896 		lock_two_nondirectories(src_inode, dst_inode);
897 		btrfs_double_mmap_lock(src_inode, dst_inode);
898 	}
899 
900 	ret = btrfs_remap_file_range_prep(src_file, off, dst_file, destoff,
901 					  &len, remap_flags);
902 	if (ret < 0 || len == 0)
903 		goto out_unlock;
904 
905 	if (remap_flags & REMAP_FILE_DEDUP)
906 		ret = btrfs_extent_same(src_inode, off, len, dst_inode, destoff);
907 	else
908 		ret = btrfs_clone_files(dst_file, src_file, off, len, destoff);
909 
910 out_unlock:
911 	if (same_inode) {
912 		btrfs_inode_unlock(BTRFS_I(src_inode), BTRFS_ILOCK_MMAP);
913 	} else {
914 		btrfs_double_mmap_unlock(src_inode, dst_inode);
915 		unlock_two_nondirectories(src_inode, dst_inode);
916 	}
917 
918 	/*
919 	 * If either the source or the destination file was opened with O_SYNC,
920 	 * O_DSYNC or has the S_SYNC attribute, fsync both the destination and
921 	 * source files/ranges, so that after a successful return (0) followed
922 	 * by a power failure results in the reflinked data to be readable from
923 	 * both files/ranges.
924 	 */
925 	if (ret == 0 && len > 0 &&
926 	    (file_sync_write(src_file) || file_sync_write(dst_file))) {
927 		ret = btrfs_sync_file(src_file, off, off + len - 1, 0);
928 		if (ret == 0)
929 			ret = btrfs_sync_file(dst_file, destoff,
930 					      destoff + len - 1, 0);
931 	}
932 
933 	return ret < 0 ? ret : len;
934 }
935