xref: /linux/fs/btrfs/reflink.c (revision ec8a42e7343234802b9054874fe01810880289ce)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/blkdev.h>
4 #include <linux/iversion.h>
5 #include "compression.h"
6 #include "ctree.h"
7 #include "delalloc-space.h"
8 #include "reflink.h"
9 #include "transaction.h"
10 
11 #define BTRFS_MAX_DEDUPE_LEN	SZ_16M
12 
13 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
14 				     struct inode *inode,
15 				     u64 endoff,
16 				     const u64 destoff,
17 				     const u64 olen,
18 				     int no_time_update)
19 {
20 	struct btrfs_root *root = BTRFS_I(inode)->root;
21 	int ret;
22 
23 	inode_inc_iversion(inode);
24 	if (!no_time_update)
25 		inode->i_mtime = inode->i_ctime = current_time(inode);
26 	/*
27 	 * We round up to the block size at eof when determining which
28 	 * extents to clone above, but shouldn't round up the file size.
29 	 */
30 	if (endoff > destoff + olen)
31 		endoff = destoff + olen;
32 	if (endoff > inode->i_size) {
33 		i_size_write(inode, endoff);
34 		btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
35 	}
36 
37 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
38 	if (ret) {
39 		btrfs_abort_transaction(trans, ret);
40 		btrfs_end_transaction(trans);
41 		goto out;
42 	}
43 	ret = btrfs_end_transaction(trans);
44 out:
45 	return ret;
46 }
47 
48 static int copy_inline_to_page(struct btrfs_inode *inode,
49 			       const u64 file_offset,
50 			       char *inline_data,
51 			       const u64 size,
52 			       const u64 datal,
53 			       const u8 comp_type)
54 {
55 	const u64 block_size = btrfs_inode_sectorsize(inode);
56 	const u64 range_end = file_offset + block_size - 1;
57 	const size_t inline_size = size - btrfs_file_extent_calc_inline_size(0);
58 	char *data_start = inline_data + btrfs_file_extent_calc_inline_size(0);
59 	struct extent_changeset *data_reserved = NULL;
60 	struct page *page = NULL;
61 	struct address_space *mapping = inode->vfs_inode.i_mapping;
62 	int ret;
63 
64 	ASSERT(IS_ALIGNED(file_offset, block_size));
65 
66 	/*
67 	 * We have flushed and locked the ranges of the source and destination
68 	 * inodes, we also have locked the inodes, so we are safe to do a
69 	 * reservation here. Also we must not do the reservation while holding
70 	 * a transaction open, otherwise we would deadlock.
71 	 */
72 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, file_offset,
73 					   block_size);
74 	if (ret)
75 		goto out;
76 
77 	page = find_or_create_page(mapping, file_offset >> PAGE_SHIFT,
78 				   btrfs_alloc_write_mask(mapping));
79 	if (!page) {
80 		ret = -ENOMEM;
81 		goto out_unlock;
82 	}
83 
84 	set_page_extent_mapped(page);
85 	clear_extent_bit(&inode->io_tree, file_offset, range_end,
86 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
87 			 0, 0, NULL);
88 	ret = btrfs_set_extent_delalloc(inode, file_offset, range_end, 0, NULL);
89 	if (ret)
90 		goto out_unlock;
91 
92 	/*
93 	 * After dirtying the page our caller will need to start a transaction,
94 	 * and if we are low on metadata free space, that can cause flushing of
95 	 * delalloc for all inodes in order to get metadata space released.
96 	 * However we are holding the range locked for the whole duration of
97 	 * the clone/dedupe operation, so we may deadlock if that happens and no
98 	 * other task releases enough space. So mark this inode as not being
99 	 * possible to flush to avoid such deadlock. We will clear that flag
100 	 * when we finish cloning all extents, since a transaction is started
101 	 * after finding each extent to clone.
102 	 */
103 	set_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &inode->runtime_flags);
104 
105 	if (comp_type == BTRFS_COMPRESS_NONE) {
106 		char *map;
107 
108 		map = kmap(page);
109 		memcpy(map, data_start, datal);
110 		flush_dcache_page(page);
111 		kunmap(page);
112 	} else {
113 		ret = btrfs_decompress(comp_type, data_start, page, 0,
114 				       inline_size, datal);
115 		if (ret)
116 			goto out_unlock;
117 		flush_dcache_page(page);
118 	}
119 
120 	/*
121 	 * If our inline data is smaller then the block/page size, then the
122 	 * remaining of the block/page is equivalent to zeroes. We had something
123 	 * like the following done:
124 	 *
125 	 * $ xfs_io -f -c "pwrite -S 0xab 0 500" file
126 	 * $ sync  # (or fsync)
127 	 * $ xfs_io -c "falloc 0 4K" file
128 	 * $ xfs_io -c "pwrite -S 0xcd 4K 4K"
129 	 *
130 	 * So what's in the range [500, 4095] corresponds to zeroes.
131 	 */
132 	if (datal < block_size) {
133 		char *map;
134 
135 		map = kmap(page);
136 		memset(map + datal, 0, block_size - datal);
137 		flush_dcache_page(page);
138 		kunmap(page);
139 	}
140 
141 	SetPageUptodate(page);
142 	ClearPageChecked(page);
143 	set_page_dirty(page);
144 out_unlock:
145 	if (page) {
146 		unlock_page(page);
147 		put_page(page);
148 	}
149 	if (ret)
150 		btrfs_delalloc_release_space(inode, data_reserved, file_offset,
151 					     block_size, true);
152 	btrfs_delalloc_release_extents(inode, block_size);
153 out:
154 	extent_changeset_free(data_reserved);
155 
156 	return ret;
157 }
158 
159 /*
160  * Deal with cloning of inline extents. We try to copy the inline extent from
161  * the source inode to destination inode when possible. When not possible we
162  * copy the inline extent's data into the respective page of the inode.
163  */
164 static int clone_copy_inline_extent(struct inode *dst,
165 				    struct btrfs_path *path,
166 				    struct btrfs_key *new_key,
167 				    const u64 drop_start,
168 				    const u64 datal,
169 				    const u64 size,
170 				    const u8 comp_type,
171 				    char *inline_data,
172 				    struct btrfs_trans_handle **trans_out)
173 {
174 	struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb);
175 	struct btrfs_root *root = BTRFS_I(dst)->root;
176 	const u64 aligned_end = ALIGN(new_key->offset + datal,
177 				      fs_info->sectorsize);
178 	struct btrfs_trans_handle *trans = NULL;
179 	struct btrfs_drop_extents_args drop_args = { 0 };
180 	int ret;
181 	struct btrfs_key key;
182 
183 	if (new_key->offset > 0) {
184 		ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset,
185 					  inline_data, size, datal, comp_type);
186 		goto out;
187 	}
188 
189 	key.objectid = btrfs_ino(BTRFS_I(dst));
190 	key.type = BTRFS_EXTENT_DATA_KEY;
191 	key.offset = 0;
192 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
193 	if (ret < 0) {
194 		return ret;
195 	} else if (ret > 0) {
196 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
197 			ret = btrfs_next_leaf(root, path);
198 			if (ret < 0)
199 				return ret;
200 			else if (ret > 0)
201 				goto copy_inline_extent;
202 		}
203 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
204 		if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
205 		    key.type == BTRFS_EXTENT_DATA_KEY) {
206 			/*
207 			 * There's an implicit hole at file offset 0, copy the
208 			 * inline extent's data to the page.
209 			 */
210 			ASSERT(key.offset > 0);
211 			ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset,
212 						  inline_data, size, datal,
213 						  comp_type);
214 			goto out;
215 		}
216 	} else if (i_size_read(dst) <= datal) {
217 		struct btrfs_file_extent_item *ei;
218 
219 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
220 				    struct btrfs_file_extent_item);
221 		/*
222 		 * If it's an inline extent replace it with the source inline
223 		 * extent, otherwise copy the source inline extent data into
224 		 * the respective page at the destination inode.
225 		 */
226 		if (btrfs_file_extent_type(path->nodes[0], ei) ==
227 		    BTRFS_FILE_EXTENT_INLINE)
228 			goto copy_inline_extent;
229 
230 		ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset,
231 					  inline_data, size, datal, comp_type);
232 		goto out;
233 	}
234 
235 copy_inline_extent:
236 	ret = 0;
237 	/*
238 	 * We have no extent items, or we have an extent at offset 0 which may
239 	 * or may not be inlined. All these cases are dealt the same way.
240 	 */
241 	if (i_size_read(dst) > datal) {
242 		/*
243 		 * At the destination offset 0 we have either a hole, a regular
244 		 * extent or an inline extent larger then the one we want to
245 		 * clone. Deal with all these cases by copying the inline extent
246 		 * data into the respective page at the destination inode.
247 		 */
248 		ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset,
249 					  inline_data, size, datal, comp_type);
250 		goto out;
251 	}
252 
253 	btrfs_release_path(path);
254 	/*
255 	 * If we end up here it means were copy the inline extent into a leaf
256 	 * of the destination inode. We know we will drop or adjust at most one
257 	 * extent item in the destination root.
258 	 *
259 	 * 1 unit - adjusting old extent (we may have to split it)
260 	 * 1 unit - add new extent
261 	 * 1 unit - inode update
262 	 */
263 	trans = btrfs_start_transaction(root, 3);
264 	if (IS_ERR(trans)) {
265 		ret = PTR_ERR(trans);
266 		trans = NULL;
267 		goto out;
268 	}
269 	drop_args.path = path;
270 	drop_args.start = drop_start;
271 	drop_args.end = aligned_end;
272 	drop_args.drop_cache = true;
273 	ret = btrfs_drop_extents(trans, root, BTRFS_I(dst), &drop_args);
274 	if (ret)
275 		goto out;
276 	ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
277 	if (ret)
278 		goto out;
279 
280 	write_extent_buffer(path->nodes[0], inline_data,
281 			    btrfs_item_ptr_offset(path->nodes[0],
282 						  path->slots[0]),
283 			    size);
284 	btrfs_update_inode_bytes(BTRFS_I(dst), datal, drop_args.bytes_found);
285 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(dst)->runtime_flags);
286 	ret = btrfs_inode_set_file_extent_range(BTRFS_I(dst), 0, aligned_end);
287 out:
288 	if (!ret && !trans) {
289 		/*
290 		 * No transaction here means we copied the inline extent into a
291 		 * page of the destination inode.
292 		 *
293 		 * 1 unit to update inode item
294 		 */
295 		trans = btrfs_start_transaction(root, 1);
296 		if (IS_ERR(trans)) {
297 			ret = PTR_ERR(trans);
298 			trans = NULL;
299 		}
300 	}
301 	if (ret && trans) {
302 		btrfs_abort_transaction(trans, ret);
303 		btrfs_end_transaction(trans);
304 	}
305 	if (!ret)
306 		*trans_out = trans;
307 
308 	return ret;
309 }
310 
311 /**
312  * btrfs_clone() - clone a range from inode file to another
313  *
314  * @src: Inode to clone from
315  * @inode: Inode to clone to
316  * @off: Offset within source to start clone from
317  * @olen: Original length, passed by user, of range to clone
318  * @olen_aligned: Block-aligned value of olen
319  * @destoff: Offset within @inode to start clone
320  * @no_time_update: Whether to update mtime/ctime on the target inode
321  */
322 static int btrfs_clone(struct inode *src, struct inode *inode,
323 		       const u64 off, const u64 olen, const u64 olen_aligned,
324 		       const u64 destoff, int no_time_update)
325 {
326 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
327 	struct btrfs_path *path = NULL;
328 	struct extent_buffer *leaf;
329 	struct btrfs_trans_handle *trans;
330 	char *buf = NULL;
331 	struct btrfs_key key;
332 	u32 nritems;
333 	int slot;
334 	int ret;
335 	const u64 len = olen_aligned;
336 	u64 last_dest_end = destoff;
337 
338 	ret = -ENOMEM;
339 	buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
340 	if (!buf)
341 		return ret;
342 
343 	path = btrfs_alloc_path();
344 	if (!path) {
345 		kvfree(buf);
346 		return ret;
347 	}
348 
349 	path->reada = READA_FORWARD;
350 	/* Clone data */
351 	key.objectid = btrfs_ino(BTRFS_I(src));
352 	key.type = BTRFS_EXTENT_DATA_KEY;
353 	key.offset = off;
354 
355 	while (1) {
356 		u64 next_key_min_offset = key.offset + 1;
357 		struct btrfs_file_extent_item *extent;
358 		u64 extent_gen;
359 		int type;
360 		u32 size;
361 		struct btrfs_key new_key;
362 		u64 disko = 0, diskl = 0;
363 		u64 datao = 0, datal = 0;
364 		u8 comp;
365 		u64 drop_start;
366 
367 		/* Note the key will change type as we walk through the tree */
368 		ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
369 				0, 0);
370 		if (ret < 0)
371 			goto out;
372 		/*
373 		 * First search, if no extent item that starts at offset off was
374 		 * found but the previous item is an extent item, it's possible
375 		 * it might overlap our target range, therefore process it.
376 		 */
377 		if (key.offset == off && ret > 0 && path->slots[0] > 0) {
378 			btrfs_item_key_to_cpu(path->nodes[0], &key,
379 					      path->slots[0] - 1);
380 			if (key.type == BTRFS_EXTENT_DATA_KEY)
381 				path->slots[0]--;
382 		}
383 
384 		nritems = btrfs_header_nritems(path->nodes[0]);
385 process_slot:
386 		if (path->slots[0] >= nritems) {
387 			ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
388 			if (ret < 0)
389 				goto out;
390 			if (ret > 0)
391 				break;
392 			nritems = btrfs_header_nritems(path->nodes[0]);
393 		}
394 		leaf = path->nodes[0];
395 		slot = path->slots[0];
396 
397 		btrfs_item_key_to_cpu(leaf, &key, slot);
398 		if (key.type > BTRFS_EXTENT_DATA_KEY ||
399 		    key.objectid != btrfs_ino(BTRFS_I(src)))
400 			break;
401 
402 		ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
403 
404 		extent = btrfs_item_ptr(leaf, slot,
405 					struct btrfs_file_extent_item);
406 		extent_gen = btrfs_file_extent_generation(leaf, extent);
407 		comp = btrfs_file_extent_compression(leaf, extent);
408 		type = btrfs_file_extent_type(leaf, extent);
409 		if (type == BTRFS_FILE_EXTENT_REG ||
410 		    type == BTRFS_FILE_EXTENT_PREALLOC) {
411 			disko = btrfs_file_extent_disk_bytenr(leaf, extent);
412 			diskl = btrfs_file_extent_disk_num_bytes(leaf, extent);
413 			datao = btrfs_file_extent_offset(leaf, extent);
414 			datal = btrfs_file_extent_num_bytes(leaf, extent);
415 		} else if (type == BTRFS_FILE_EXTENT_INLINE) {
416 			/* Take upper bound, may be compressed */
417 			datal = btrfs_file_extent_ram_bytes(leaf, extent);
418 		}
419 
420 		/*
421 		 * The first search might have left us at an extent item that
422 		 * ends before our target range's start, can happen if we have
423 		 * holes and NO_HOLES feature enabled.
424 		 */
425 		if (key.offset + datal <= off) {
426 			path->slots[0]++;
427 			goto process_slot;
428 		} else if (key.offset >= off + len) {
429 			break;
430 		}
431 		next_key_min_offset = key.offset + datal;
432 		size = btrfs_item_size_nr(leaf, slot);
433 		read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, slot),
434 				   size);
435 
436 		btrfs_release_path(path);
437 
438 		memcpy(&new_key, &key, sizeof(new_key));
439 		new_key.objectid = btrfs_ino(BTRFS_I(inode));
440 		if (off <= key.offset)
441 			new_key.offset = key.offset + destoff - off;
442 		else
443 			new_key.offset = destoff;
444 
445 		/*
446 		 * Deal with a hole that doesn't have an extent item that
447 		 * represents it (NO_HOLES feature enabled).
448 		 * This hole is either in the middle of the cloning range or at
449 		 * the beginning (fully overlaps it or partially overlaps it).
450 		 */
451 		if (new_key.offset != last_dest_end)
452 			drop_start = last_dest_end;
453 		else
454 			drop_start = new_key.offset;
455 
456 		if (type == BTRFS_FILE_EXTENT_REG ||
457 		    type == BTRFS_FILE_EXTENT_PREALLOC) {
458 			struct btrfs_replace_extent_info clone_info;
459 
460 			/*
461 			 *    a  | --- range to clone ---|  b
462 			 * | ------------- extent ------------- |
463 			 */
464 
465 			/* Subtract range b */
466 			if (key.offset + datal > off + len)
467 				datal = off + len - key.offset;
468 
469 			/* Subtract range a */
470 			if (off > key.offset) {
471 				datao += off - key.offset;
472 				datal -= off - key.offset;
473 			}
474 
475 			clone_info.disk_offset = disko;
476 			clone_info.disk_len = diskl;
477 			clone_info.data_offset = datao;
478 			clone_info.data_len = datal;
479 			clone_info.file_offset = new_key.offset;
480 			clone_info.extent_buf = buf;
481 			clone_info.is_new_extent = false;
482 			ret = btrfs_replace_file_extents(inode, path, drop_start,
483 					new_key.offset + datal - 1, &clone_info,
484 					&trans);
485 			if (ret)
486 				goto out;
487 		} else if (type == BTRFS_FILE_EXTENT_INLINE) {
488 			/*
489 			 * Inline extents always have to start at file offset 0
490 			 * and can never be bigger then the sector size. We can
491 			 * never clone only parts of an inline extent, since all
492 			 * reflink operations must start at a sector size aligned
493 			 * offset, and the length must be aligned too or end at
494 			 * the i_size (which implies the whole inlined data).
495 			 */
496 			ASSERT(key.offset == 0);
497 			ASSERT(datal <= fs_info->sectorsize);
498 			if (key.offset != 0 || datal > fs_info->sectorsize)
499 				return -EUCLEAN;
500 
501 			ret = clone_copy_inline_extent(inode, path, &new_key,
502 						       drop_start, datal, size,
503 						       comp, buf, &trans);
504 			if (ret)
505 				goto out;
506 		}
507 
508 		btrfs_release_path(path);
509 
510 		/*
511 		 * If this is a new extent update the last_reflink_trans of both
512 		 * inodes. This is used by fsync to make sure it does not log
513 		 * multiple checksum items with overlapping ranges. For older
514 		 * extents we don't need to do it since inode logging skips the
515 		 * checksums for older extents. Also ignore holes and inline
516 		 * extents because they don't have checksums in the csum tree.
517 		 */
518 		if (extent_gen == trans->transid && disko > 0) {
519 			BTRFS_I(src)->last_reflink_trans = trans->transid;
520 			BTRFS_I(inode)->last_reflink_trans = trans->transid;
521 		}
522 
523 		last_dest_end = ALIGN(new_key.offset + datal,
524 				      fs_info->sectorsize);
525 		ret = clone_finish_inode_update(trans, inode, last_dest_end,
526 						destoff, olen, no_time_update);
527 		if (ret)
528 			goto out;
529 		if (new_key.offset + datal >= destoff + len)
530 			break;
531 
532 		btrfs_release_path(path);
533 		key.offset = next_key_min_offset;
534 
535 		if (fatal_signal_pending(current)) {
536 			ret = -EINTR;
537 			goto out;
538 		}
539 
540 		cond_resched();
541 	}
542 	ret = 0;
543 
544 	if (last_dest_end < destoff + len) {
545 		/*
546 		 * We have an implicit hole that fully or partially overlaps our
547 		 * cloning range at its end. This means that we either have the
548 		 * NO_HOLES feature enabled or the implicit hole happened due to
549 		 * mixing buffered and direct IO writes against this file.
550 		 */
551 		btrfs_release_path(path);
552 
553 		ret = btrfs_replace_file_extents(inode, path, last_dest_end,
554 				destoff + len - 1, NULL, &trans);
555 		if (ret)
556 			goto out;
557 
558 		ret = clone_finish_inode_update(trans, inode, destoff + len,
559 						destoff, olen, no_time_update);
560 	}
561 
562 out:
563 	btrfs_free_path(path);
564 	kvfree(buf);
565 	clear_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &BTRFS_I(inode)->runtime_flags);
566 
567 	return ret;
568 }
569 
570 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
571 				       struct inode *inode2, u64 loff2, u64 len)
572 {
573 	unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
574 	unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
575 }
576 
577 static void btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
578 				     struct inode *inode2, u64 loff2, u64 len)
579 {
580 	if (inode1 < inode2) {
581 		swap(inode1, inode2);
582 		swap(loff1, loff2);
583 	} else if (inode1 == inode2 && loff2 < loff1) {
584 		swap(loff1, loff2);
585 	}
586 	lock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
587 	lock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
588 }
589 
590 static int btrfs_extent_same_range(struct inode *src, u64 loff, u64 len,
591 				   struct inode *dst, u64 dst_loff)
592 {
593 	const u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
594 	int ret;
595 
596 	/*
597 	 * Lock destination range to serialize with concurrent readpages() and
598 	 * source range to serialize with relocation.
599 	 */
600 	btrfs_double_extent_lock(src, loff, dst, dst_loff, len);
601 	ret = btrfs_clone(src, dst, loff, len, ALIGN(len, bs), dst_loff, 1);
602 	btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
603 
604 	return ret;
605 }
606 
607 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
608 			     struct inode *dst, u64 dst_loff)
609 {
610 	int ret;
611 	u64 i, tail_len, chunk_count;
612 	struct btrfs_root *root_dst = BTRFS_I(dst)->root;
613 
614 	spin_lock(&root_dst->root_item_lock);
615 	if (root_dst->send_in_progress) {
616 		btrfs_warn_rl(root_dst->fs_info,
617 "cannot deduplicate to root %llu while send operations are using it (%d in progress)",
618 			      root_dst->root_key.objectid,
619 			      root_dst->send_in_progress);
620 		spin_unlock(&root_dst->root_item_lock);
621 		return -EAGAIN;
622 	}
623 	root_dst->dedupe_in_progress++;
624 	spin_unlock(&root_dst->root_item_lock);
625 
626 	tail_len = olen % BTRFS_MAX_DEDUPE_LEN;
627 	chunk_count = div_u64(olen, BTRFS_MAX_DEDUPE_LEN);
628 
629 	for (i = 0; i < chunk_count; i++) {
630 		ret = btrfs_extent_same_range(src, loff, BTRFS_MAX_DEDUPE_LEN,
631 					      dst, dst_loff);
632 		if (ret)
633 			goto out;
634 
635 		loff += BTRFS_MAX_DEDUPE_LEN;
636 		dst_loff += BTRFS_MAX_DEDUPE_LEN;
637 	}
638 
639 	if (tail_len > 0)
640 		ret = btrfs_extent_same_range(src, loff, tail_len, dst, dst_loff);
641 out:
642 	spin_lock(&root_dst->root_item_lock);
643 	root_dst->dedupe_in_progress--;
644 	spin_unlock(&root_dst->root_item_lock);
645 
646 	return ret;
647 }
648 
649 static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
650 					u64 off, u64 olen, u64 destoff)
651 {
652 	struct inode *inode = file_inode(file);
653 	struct inode *src = file_inode(file_src);
654 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
655 	int ret;
656 	int wb_ret;
657 	u64 len = olen;
658 	u64 bs = fs_info->sb->s_blocksize;
659 
660 	/*
661 	 * VFS's generic_remap_file_range_prep() protects us from cloning the
662 	 * eof block into the middle of a file, which would result in corruption
663 	 * if the file size is not blocksize aligned. So we don't need to check
664 	 * for that case here.
665 	 */
666 	if (off + len == src->i_size)
667 		len = ALIGN(src->i_size, bs) - off;
668 
669 	if (destoff > inode->i_size) {
670 		const u64 wb_start = ALIGN_DOWN(inode->i_size, bs);
671 
672 		ret = btrfs_cont_expand(BTRFS_I(inode), inode->i_size, destoff);
673 		if (ret)
674 			return ret;
675 		/*
676 		 * We may have truncated the last block if the inode's size is
677 		 * not sector size aligned, so we need to wait for writeback to
678 		 * complete before proceeding further, otherwise we can race
679 		 * with cloning and attempt to increment a reference to an
680 		 * extent that no longer exists (writeback completed right after
681 		 * we found the previous extent covering eof and before we
682 		 * attempted to increment its reference count).
683 		 */
684 		ret = btrfs_wait_ordered_range(inode, wb_start,
685 					       destoff - wb_start);
686 		if (ret)
687 			return ret;
688 	}
689 
690 	/*
691 	 * Lock destination range to serialize with concurrent readpages() and
692 	 * source range to serialize with relocation.
693 	 */
694 	btrfs_double_extent_lock(src, off, inode, destoff, len);
695 	ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
696 	btrfs_double_extent_unlock(src, off, inode, destoff, len);
697 
698 	/*
699 	 * We may have copied an inline extent into a page of the destination
700 	 * range, so wait for writeback to complete before truncating pages
701 	 * from the page cache. This is a rare case.
702 	 */
703 	wb_ret = btrfs_wait_ordered_range(inode, destoff, len);
704 	ret = ret ? ret : wb_ret;
705 	/*
706 	 * Truncate page cache pages so that future reads will see the cloned
707 	 * data immediately and not the previous data.
708 	 */
709 	truncate_inode_pages_range(&inode->i_data,
710 				round_down(destoff, PAGE_SIZE),
711 				round_up(destoff + len, PAGE_SIZE) - 1);
712 
713 	return ret;
714 }
715 
716 static int btrfs_remap_file_range_prep(struct file *file_in, loff_t pos_in,
717 				       struct file *file_out, loff_t pos_out,
718 				       loff_t *len, unsigned int remap_flags)
719 {
720 	struct inode *inode_in = file_inode(file_in);
721 	struct inode *inode_out = file_inode(file_out);
722 	u64 bs = BTRFS_I(inode_out)->root->fs_info->sb->s_blocksize;
723 	bool same_inode = inode_out == inode_in;
724 	u64 wb_len;
725 	int ret;
726 
727 	if (!(remap_flags & REMAP_FILE_DEDUP)) {
728 		struct btrfs_root *root_out = BTRFS_I(inode_out)->root;
729 
730 		if (btrfs_root_readonly(root_out))
731 			return -EROFS;
732 
733 		if (file_in->f_path.mnt != file_out->f_path.mnt ||
734 		    inode_in->i_sb != inode_out->i_sb)
735 			return -EXDEV;
736 	}
737 
738 	/* Don't make the dst file partly checksummed */
739 	if ((BTRFS_I(inode_in)->flags & BTRFS_INODE_NODATASUM) !=
740 	    (BTRFS_I(inode_out)->flags & BTRFS_INODE_NODATASUM)) {
741 		return -EINVAL;
742 	}
743 
744 	/*
745 	 * Now that the inodes are locked, we need to start writeback ourselves
746 	 * and can not rely on the writeback from the VFS's generic helper
747 	 * generic_remap_file_range_prep() because:
748 	 *
749 	 * 1) For compression we must call filemap_fdatawrite_range() range
750 	 *    twice (btrfs_fdatawrite_range() does it for us), and the generic
751 	 *    helper only calls it once;
752 	 *
753 	 * 2) filemap_fdatawrite_range(), called by the generic helper only
754 	 *    waits for the writeback to complete, i.e. for IO to be done, and
755 	 *    not for the ordered extents to complete. We need to wait for them
756 	 *    to complete so that new file extent items are in the fs tree.
757 	 */
758 	if (*len == 0 && !(remap_flags & REMAP_FILE_DEDUP))
759 		wb_len = ALIGN(inode_in->i_size, bs) - ALIGN_DOWN(pos_in, bs);
760 	else
761 		wb_len = ALIGN(*len, bs);
762 
763 	/*
764 	 * Since we don't lock ranges, wait for ongoing lockless dio writes (as
765 	 * any in progress could create its ordered extents after we wait for
766 	 * existing ordered extents below).
767 	 */
768 	inode_dio_wait(inode_in);
769 	if (!same_inode)
770 		inode_dio_wait(inode_out);
771 
772 	/*
773 	 * Workaround to make sure NOCOW buffered write reach disk as NOCOW.
774 	 *
775 	 * Btrfs' back references do not have a block level granularity, they
776 	 * work at the whole extent level.
777 	 * NOCOW buffered write without data space reserved may not be able
778 	 * to fall back to CoW due to lack of data space, thus could cause
779 	 * data loss.
780 	 *
781 	 * Here we take a shortcut by flushing the whole inode, so that all
782 	 * nocow write should reach disk as nocow before we increase the
783 	 * reference of the extent. We could do better by only flushing NOCOW
784 	 * data, but that needs extra accounting.
785 	 *
786 	 * Also we don't need to check ASYNC_EXTENT, as async extent will be
787 	 * CoWed anyway, not affecting nocow part.
788 	 */
789 	ret = filemap_flush(inode_in->i_mapping);
790 	if (ret < 0)
791 		return ret;
792 
793 	ret = btrfs_wait_ordered_range(inode_in, ALIGN_DOWN(pos_in, bs),
794 				       wb_len);
795 	if (ret < 0)
796 		return ret;
797 	ret = btrfs_wait_ordered_range(inode_out, ALIGN_DOWN(pos_out, bs),
798 				       wb_len);
799 	if (ret < 0)
800 		return ret;
801 
802 	return generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
803 					    len, remap_flags);
804 }
805 
806 loff_t btrfs_remap_file_range(struct file *src_file, loff_t off,
807 		struct file *dst_file, loff_t destoff, loff_t len,
808 		unsigned int remap_flags)
809 {
810 	struct inode *src_inode = file_inode(src_file);
811 	struct inode *dst_inode = file_inode(dst_file);
812 	bool same_inode = dst_inode == src_inode;
813 	int ret;
814 
815 	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
816 		return -EINVAL;
817 
818 	if (same_inode)
819 		inode_lock(src_inode);
820 	else
821 		lock_two_nondirectories(src_inode, dst_inode);
822 
823 	ret = btrfs_remap_file_range_prep(src_file, off, dst_file, destoff,
824 					  &len, remap_flags);
825 	if (ret < 0 || len == 0)
826 		goto out_unlock;
827 
828 	if (remap_flags & REMAP_FILE_DEDUP)
829 		ret = btrfs_extent_same(src_inode, off, len, dst_inode, destoff);
830 	else
831 		ret = btrfs_clone_files(dst_file, src_file, off, len, destoff);
832 
833 out_unlock:
834 	if (same_inode)
835 		inode_unlock(src_inode);
836 	else
837 		unlock_two_nondirectories(src_inode, dst_inode);
838 
839 	return ret < 0 ? ret : len;
840 }
841