xref: /linux/fs/btrfs/reflink.c (revision b77e0ce62d63a761ffb7f7245a215a49f5921c2f)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/blkdev.h>
4 #include <linux/iversion.h>
5 #include "compression.h"
6 #include "ctree.h"
7 #include "delalloc-space.h"
8 #include "reflink.h"
9 #include "transaction.h"
10 
11 #define BTRFS_MAX_DEDUPE_LEN	SZ_16M
12 
13 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
14 				     struct inode *inode,
15 				     u64 endoff,
16 				     const u64 destoff,
17 				     const u64 olen,
18 				     int no_time_update)
19 {
20 	struct btrfs_root *root = BTRFS_I(inode)->root;
21 	int ret;
22 
23 	inode_inc_iversion(inode);
24 	if (!no_time_update)
25 		inode->i_mtime = inode->i_ctime = current_time(inode);
26 	/*
27 	 * We round up to the block size at eof when determining which
28 	 * extents to clone above, but shouldn't round up the file size.
29 	 */
30 	if (endoff > destoff + olen)
31 		endoff = destoff + olen;
32 	if (endoff > inode->i_size) {
33 		i_size_write(inode, endoff);
34 		btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
35 	}
36 
37 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
38 	if (ret) {
39 		btrfs_abort_transaction(trans, ret);
40 		btrfs_end_transaction(trans);
41 		goto out;
42 	}
43 	ret = btrfs_end_transaction(trans);
44 out:
45 	return ret;
46 }
47 
48 static int copy_inline_to_page(struct btrfs_inode *inode,
49 			       const u64 file_offset,
50 			       char *inline_data,
51 			       const u64 size,
52 			       const u64 datal,
53 			       const u8 comp_type)
54 {
55 	const u64 block_size = btrfs_inode_sectorsize(inode);
56 	const u64 range_end = file_offset + block_size - 1;
57 	const size_t inline_size = size - btrfs_file_extent_calc_inline_size(0);
58 	char *data_start = inline_data + btrfs_file_extent_calc_inline_size(0);
59 	struct extent_changeset *data_reserved = NULL;
60 	struct page *page = NULL;
61 	struct address_space *mapping = inode->vfs_inode.i_mapping;
62 	int ret;
63 
64 	ASSERT(IS_ALIGNED(file_offset, block_size));
65 
66 	/*
67 	 * We have flushed and locked the ranges of the source and destination
68 	 * inodes, we also have locked the inodes, so we are safe to do a
69 	 * reservation here. Also we must not do the reservation while holding
70 	 * a transaction open, otherwise we would deadlock.
71 	 */
72 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, file_offset,
73 					   block_size);
74 	if (ret)
75 		goto out;
76 
77 	page = find_or_create_page(mapping, file_offset >> PAGE_SHIFT,
78 				   btrfs_alloc_write_mask(mapping));
79 	if (!page) {
80 		ret = -ENOMEM;
81 		goto out_unlock;
82 	}
83 
84 	ret = set_page_extent_mapped(page);
85 	if (ret < 0)
86 		goto out_unlock;
87 
88 	clear_extent_bit(&inode->io_tree, file_offset, range_end,
89 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
90 			 0, 0, NULL);
91 	ret = btrfs_set_extent_delalloc(inode, file_offset, range_end, 0, NULL);
92 	if (ret)
93 		goto out_unlock;
94 
95 	/*
96 	 * After dirtying the page our caller will need to start a transaction,
97 	 * and if we are low on metadata free space, that can cause flushing of
98 	 * delalloc for all inodes in order to get metadata space released.
99 	 * However we are holding the range locked for the whole duration of
100 	 * the clone/dedupe operation, so we may deadlock if that happens and no
101 	 * other task releases enough space. So mark this inode as not being
102 	 * possible to flush to avoid such deadlock. We will clear that flag
103 	 * when we finish cloning all extents, since a transaction is started
104 	 * after finding each extent to clone.
105 	 */
106 	set_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &inode->runtime_flags);
107 
108 	if (comp_type == BTRFS_COMPRESS_NONE) {
109 		memcpy_to_page(page, 0, data_start, datal);
110 		flush_dcache_page(page);
111 	} else {
112 		ret = btrfs_decompress(comp_type, data_start, page, 0,
113 				       inline_size, datal);
114 		if (ret)
115 			goto out_unlock;
116 		flush_dcache_page(page);
117 	}
118 
119 	/*
120 	 * If our inline data is smaller then the block/page size, then the
121 	 * remaining of the block/page is equivalent to zeroes. We had something
122 	 * like the following done:
123 	 *
124 	 * $ xfs_io -f -c "pwrite -S 0xab 0 500" file
125 	 * $ sync  # (or fsync)
126 	 * $ xfs_io -c "falloc 0 4K" file
127 	 * $ xfs_io -c "pwrite -S 0xcd 4K 4K"
128 	 *
129 	 * So what's in the range [500, 4095] corresponds to zeroes.
130 	 */
131 	if (datal < block_size) {
132 		char *map;
133 
134 		map = kmap(page);
135 		memset(map + datal, 0, block_size - datal);
136 		flush_dcache_page(page);
137 		kunmap(page);
138 	}
139 
140 	SetPageUptodate(page);
141 	ClearPageChecked(page);
142 	set_page_dirty(page);
143 out_unlock:
144 	if (page) {
145 		unlock_page(page);
146 		put_page(page);
147 	}
148 	if (ret)
149 		btrfs_delalloc_release_space(inode, data_reserved, file_offset,
150 					     block_size, true);
151 	btrfs_delalloc_release_extents(inode, block_size);
152 out:
153 	extent_changeset_free(data_reserved);
154 
155 	return ret;
156 }
157 
158 /*
159  * Deal with cloning of inline extents. We try to copy the inline extent from
160  * the source inode to destination inode when possible. When not possible we
161  * copy the inline extent's data into the respective page of the inode.
162  */
163 static int clone_copy_inline_extent(struct inode *dst,
164 				    struct btrfs_path *path,
165 				    struct btrfs_key *new_key,
166 				    const u64 drop_start,
167 				    const u64 datal,
168 				    const u64 size,
169 				    const u8 comp_type,
170 				    char *inline_data,
171 				    struct btrfs_trans_handle **trans_out)
172 {
173 	struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb);
174 	struct btrfs_root *root = BTRFS_I(dst)->root;
175 	const u64 aligned_end = ALIGN(new_key->offset + datal,
176 				      fs_info->sectorsize);
177 	struct btrfs_trans_handle *trans = NULL;
178 	struct btrfs_drop_extents_args drop_args = { 0 };
179 	int ret;
180 	struct btrfs_key key;
181 
182 	if (new_key->offset > 0) {
183 		ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset,
184 					  inline_data, size, datal, comp_type);
185 		goto out;
186 	}
187 
188 	key.objectid = btrfs_ino(BTRFS_I(dst));
189 	key.type = BTRFS_EXTENT_DATA_KEY;
190 	key.offset = 0;
191 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
192 	if (ret < 0) {
193 		return ret;
194 	} else if (ret > 0) {
195 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
196 			ret = btrfs_next_leaf(root, path);
197 			if (ret < 0)
198 				return ret;
199 			else if (ret > 0)
200 				goto copy_inline_extent;
201 		}
202 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
203 		if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
204 		    key.type == BTRFS_EXTENT_DATA_KEY) {
205 			/*
206 			 * There's an implicit hole at file offset 0, copy the
207 			 * inline extent's data to the page.
208 			 */
209 			ASSERT(key.offset > 0);
210 			ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset,
211 						  inline_data, size, datal,
212 						  comp_type);
213 			goto out;
214 		}
215 	} else if (i_size_read(dst) <= datal) {
216 		struct btrfs_file_extent_item *ei;
217 
218 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
219 				    struct btrfs_file_extent_item);
220 		/*
221 		 * If it's an inline extent replace it with the source inline
222 		 * extent, otherwise copy the source inline extent data into
223 		 * the respective page at the destination inode.
224 		 */
225 		if (btrfs_file_extent_type(path->nodes[0], ei) ==
226 		    BTRFS_FILE_EXTENT_INLINE)
227 			goto copy_inline_extent;
228 
229 		ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset,
230 					  inline_data, size, datal, comp_type);
231 		goto out;
232 	}
233 
234 copy_inline_extent:
235 	ret = 0;
236 	/*
237 	 * We have no extent items, or we have an extent at offset 0 which may
238 	 * or may not be inlined. All these cases are dealt the same way.
239 	 */
240 	if (i_size_read(dst) > datal) {
241 		/*
242 		 * At the destination offset 0 we have either a hole, a regular
243 		 * extent or an inline extent larger then the one we want to
244 		 * clone. Deal with all these cases by copying the inline extent
245 		 * data into the respective page at the destination inode.
246 		 */
247 		ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset,
248 					  inline_data, size, datal, comp_type);
249 		goto out;
250 	}
251 
252 	btrfs_release_path(path);
253 	/*
254 	 * If we end up here it means were copy the inline extent into a leaf
255 	 * of the destination inode. We know we will drop or adjust at most one
256 	 * extent item in the destination root.
257 	 *
258 	 * 1 unit - adjusting old extent (we may have to split it)
259 	 * 1 unit - add new extent
260 	 * 1 unit - inode update
261 	 */
262 	trans = btrfs_start_transaction(root, 3);
263 	if (IS_ERR(trans)) {
264 		ret = PTR_ERR(trans);
265 		trans = NULL;
266 		goto out;
267 	}
268 	drop_args.path = path;
269 	drop_args.start = drop_start;
270 	drop_args.end = aligned_end;
271 	drop_args.drop_cache = true;
272 	ret = btrfs_drop_extents(trans, root, BTRFS_I(dst), &drop_args);
273 	if (ret)
274 		goto out;
275 	ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
276 	if (ret)
277 		goto out;
278 
279 	write_extent_buffer(path->nodes[0], inline_data,
280 			    btrfs_item_ptr_offset(path->nodes[0],
281 						  path->slots[0]),
282 			    size);
283 	btrfs_update_inode_bytes(BTRFS_I(dst), datal, drop_args.bytes_found);
284 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(dst)->runtime_flags);
285 	ret = btrfs_inode_set_file_extent_range(BTRFS_I(dst), 0, aligned_end);
286 out:
287 	if (!ret && !trans) {
288 		/*
289 		 * No transaction here means we copied the inline extent into a
290 		 * page of the destination inode.
291 		 *
292 		 * 1 unit to update inode item
293 		 */
294 		trans = btrfs_start_transaction(root, 1);
295 		if (IS_ERR(trans)) {
296 			ret = PTR_ERR(trans);
297 			trans = NULL;
298 		}
299 	}
300 	if (ret && trans) {
301 		btrfs_abort_transaction(trans, ret);
302 		btrfs_end_transaction(trans);
303 	}
304 	if (!ret)
305 		*trans_out = trans;
306 
307 	return ret;
308 }
309 
310 /**
311  * btrfs_clone() - clone a range from inode file to another
312  *
313  * @src: Inode to clone from
314  * @inode: Inode to clone to
315  * @off: Offset within source to start clone from
316  * @olen: Original length, passed by user, of range to clone
317  * @olen_aligned: Block-aligned value of olen
318  * @destoff: Offset within @inode to start clone
319  * @no_time_update: Whether to update mtime/ctime on the target inode
320  */
321 static int btrfs_clone(struct inode *src, struct inode *inode,
322 		       const u64 off, const u64 olen, const u64 olen_aligned,
323 		       const u64 destoff, int no_time_update)
324 {
325 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
326 	struct btrfs_path *path = NULL;
327 	struct extent_buffer *leaf;
328 	struct btrfs_trans_handle *trans;
329 	char *buf = NULL;
330 	struct btrfs_key key;
331 	u32 nritems;
332 	int slot;
333 	int ret;
334 	const u64 len = olen_aligned;
335 	u64 last_dest_end = destoff;
336 
337 	ret = -ENOMEM;
338 	buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
339 	if (!buf)
340 		return ret;
341 
342 	path = btrfs_alloc_path();
343 	if (!path) {
344 		kvfree(buf);
345 		return ret;
346 	}
347 
348 	path->reada = READA_FORWARD;
349 	/* Clone data */
350 	key.objectid = btrfs_ino(BTRFS_I(src));
351 	key.type = BTRFS_EXTENT_DATA_KEY;
352 	key.offset = off;
353 
354 	while (1) {
355 		u64 next_key_min_offset = key.offset + 1;
356 		struct btrfs_file_extent_item *extent;
357 		u64 extent_gen;
358 		int type;
359 		u32 size;
360 		struct btrfs_key new_key;
361 		u64 disko = 0, diskl = 0;
362 		u64 datao = 0, datal = 0;
363 		u8 comp;
364 		u64 drop_start;
365 
366 		/* Note the key will change type as we walk through the tree */
367 		ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
368 				0, 0);
369 		if (ret < 0)
370 			goto out;
371 		/*
372 		 * First search, if no extent item that starts at offset off was
373 		 * found but the previous item is an extent item, it's possible
374 		 * it might overlap our target range, therefore process it.
375 		 */
376 		if (key.offset == off && ret > 0 && path->slots[0] > 0) {
377 			btrfs_item_key_to_cpu(path->nodes[0], &key,
378 					      path->slots[0] - 1);
379 			if (key.type == BTRFS_EXTENT_DATA_KEY)
380 				path->slots[0]--;
381 		}
382 
383 		nritems = btrfs_header_nritems(path->nodes[0]);
384 process_slot:
385 		if (path->slots[0] >= nritems) {
386 			ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
387 			if (ret < 0)
388 				goto out;
389 			if (ret > 0)
390 				break;
391 			nritems = btrfs_header_nritems(path->nodes[0]);
392 		}
393 		leaf = path->nodes[0];
394 		slot = path->slots[0];
395 
396 		btrfs_item_key_to_cpu(leaf, &key, slot);
397 		if (key.type > BTRFS_EXTENT_DATA_KEY ||
398 		    key.objectid != btrfs_ino(BTRFS_I(src)))
399 			break;
400 
401 		ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
402 
403 		extent = btrfs_item_ptr(leaf, slot,
404 					struct btrfs_file_extent_item);
405 		extent_gen = btrfs_file_extent_generation(leaf, extent);
406 		comp = btrfs_file_extent_compression(leaf, extent);
407 		type = btrfs_file_extent_type(leaf, extent);
408 		if (type == BTRFS_FILE_EXTENT_REG ||
409 		    type == BTRFS_FILE_EXTENT_PREALLOC) {
410 			disko = btrfs_file_extent_disk_bytenr(leaf, extent);
411 			diskl = btrfs_file_extent_disk_num_bytes(leaf, extent);
412 			datao = btrfs_file_extent_offset(leaf, extent);
413 			datal = btrfs_file_extent_num_bytes(leaf, extent);
414 		} else if (type == BTRFS_FILE_EXTENT_INLINE) {
415 			/* Take upper bound, may be compressed */
416 			datal = btrfs_file_extent_ram_bytes(leaf, extent);
417 		}
418 
419 		/*
420 		 * The first search might have left us at an extent item that
421 		 * ends before our target range's start, can happen if we have
422 		 * holes and NO_HOLES feature enabled.
423 		 */
424 		if (key.offset + datal <= off) {
425 			path->slots[0]++;
426 			goto process_slot;
427 		} else if (key.offset >= off + len) {
428 			break;
429 		}
430 		next_key_min_offset = key.offset + datal;
431 		size = btrfs_item_size_nr(leaf, slot);
432 		read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, slot),
433 				   size);
434 
435 		btrfs_release_path(path);
436 
437 		memcpy(&new_key, &key, sizeof(new_key));
438 		new_key.objectid = btrfs_ino(BTRFS_I(inode));
439 		if (off <= key.offset)
440 			new_key.offset = key.offset + destoff - off;
441 		else
442 			new_key.offset = destoff;
443 
444 		/*
445 		 * Deal with a hole that doesn't have an extent item that
446 		 * represents it (NO_HOLES feature enabled).
447 		 * This hole is either in the middle of the cloning range or at
448 		 * the beginning (fully overlaps it or partially overlaps it).
449 		 */
450 		if (new_key.offset != last_dest_end)
451 			drop_start = last_dest_end;
452 		else
453 			drop_start = new_key.offset;
454 
455 		if (type == BTRFS_FILE_EXTENT_REG ||
456 		    type == BTRFS_FILE_EXTENT_PREALLOC) {
457 			struct btrfs_replace_extent_info clone_info;
458 
459 			/*
460 			 *    a  | --- range to clone ---|  b
461 			 * | ------------- extent ------------- |
462 			 */
463 
464 			/* Subtract range b */
465 			if (key.offset + datal > off + len)
466 				datal = off + len - key.offset;
467 
468 			/* Subtract range a */
469 			if (off > key.offset) {
470 				datao += off - key.offset;
471 				datal -= off - key.offset;
472 			}
473 
474 			clone_info.disk_offset = disko;
475 			clone_info.disk_len = diskl;
476 			clone_info.data_offset = datao;
477 			clone_info.data_len = datal;
478 			clone_info.file_offset = new_key.offset;
479 			clone_info.extent_buf = buf;
480 			clone_info.is_new_extent = false;
481 			ret = btrfs_replace_file_extents(inode, path, drop_start,
482 					new_key.offset + datal - 1, &clone_info,
483 					&trans);
484 			if (ret)
485 				goto out;
486 		} else if (type == BTRFS_FILE_EXTENT_INLINE) {
487 			/*
488 			 * Inline extents always have to start at file offset 0
489 			 * and can never be bigger then the sector size. We can
490 			 * never clone only parts of an inline extent, since all
491 			 * reflink operations must start at a sector size aligned
492 			 * offset, and the length must be aligned too or end at
493 			 * the i_size (which implies the whole inlined data).
494 			 */
495 			ASSERT(key.offset == 0);
496 			ASSERT(datal <= fs_info->sectorsize);
497 			if (key.offset != 0 || datal > fs_info->sectorsize)
498 				return -EUCLEAN;
499 
500 			ret = clone_copy_inline_extent(inode, path, &new_key,
501 						       drop_start, datal, size,
502 						       comp, buf, &trans);
503 			if (ret)
504 				goto out;
505 		}
506 
507 		btrfs_release_path(path);
508 
509 		/*
510 		 * If this is a new extent update the last_reflink_trans of both
511 		 * inodes. This is used by fsync to make sure it does not log
512 		 * multiple checksum items with overlapping ranges. For older
513 		 * extents we don't need to do it since inode logging skips the
514 		 * checksums for older extents. Also ignore holes and inline
515 		 * extents because they don't have checksums in the csum tree.
516 		 */
517 		if (extent_gen == trans->transid && disko > 0) {
518 			BTRFS_I(src)->last_reflink_trans = trans->transid;
519 			BTRFS_I(inode)->last_reflink_trans = trans->transid;
520 		}
521 
522 		last_dest_end = ALIGN(new_key.offset + datal,
523 				      fs_info->sectorsize);
524 		ret = clone_finish_inode_update(trans, inode, last_dest_end,
525 						destoff, olen, no_time_update);
526 		if (ret)
527 			goto out;
528 		if (new_key.offset + datal >= destoff + len)
529 			break;
530 
531 		btrfs_release_path(path);
532 		key.offset = next_key_min_offset;
533 
534 		if (fatal_signal_pending(current)) {
535 			ret = -EINTR;
536 			goto out;
537 		}
538 
539 		cond_resched();
540 	}
541 	ret = 0;
542 
543 	if (last_dest_end < destoff + len) {
544 		/*
545 		 * We have an implicit hole that fully or partially overlaps our
546 		 * cloning range at its end. This means that we either have the
547 		 * NO_HOLES feature enabled or the implicit hole happened due to
548 		 * mixing buffered and direct IO writes against this file.
549 		 */
550 		btrfs_release_path(path);
551 
552 		/*
553 		 * When using NO_HOLES and we are cloning a range that covers
554 		 * only a hole (no extents) into a range beyond the current
555 		 * i_size, punching a hole in the target range will not create
556 		 * an extent map defining a hole, because the range starts at or
557 		 * beyond current i_size. If the file previously had an i_size
558 		 * greater than the new i_size set by this clone operation, we
559 		 * need to make sure the next fsync is a full fsync, so that it
560 		 * detects and logs a hole covering a range from the current
561 		 * i_size to the new i_size. If the clone range covers extents,
562 		 * besides a hole, then we know the full sync flag was already
563 		 * set by previous calls to btrfs_replace_file_extents() that
564 		 * replaced file extent items.
565 		 */
566 		if (last_dest_end >= i_size_read(inode))
567 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
568 				&BTRFS_I(inode)->runtime_flags);
569 
570 		ret = btrfs_replace_file_extents(inode, path, last_dest_end,
571 				destoff + len - 1, NULL, &trans);
572 		if (ret)
573 			goto out;
574 
575 		ret = clone_finish_inode_update(trans, inode, destoff + len,
576 						destoff, olen, no_time_update);
577 	}
578 
579 out:
580 	btrfs_free_path(path);
581 	kvfree(buf);
582 	clear_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &BTRFS_I(inode)->runtime_flags);
583 
584 	return ret;
585 }
586 
587 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
588 				       struct inode *inode2, u64 loff2, u64 len)
589 {
590 	unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
591 	unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
592 }
593 
594 static void btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
595 				     struct inode *inode2, u64 loff2, u64 len)
596 {
597 	if (inode1 < inode2) {
598 		swap(inode1, inode2);
599 		swap(loff1, loff2);
600 	} else if (inode1 == inode2 && loff2 < loff1) {
601 		swap(loff1, loff2);
602 	}
603 	lock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
604 	lock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
605 }
606 
607 static int btrfs_extent_same_range(struct inode *src, u64 loff, u64 len,
608 				   struct inode *dst, u64 dst_loff)
609 {
610 	const u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
611 	int ret;
612 
613 	/*
614 	 * Lock destination range to serialize with concurrent readpages() and
615 	 * source range to serialize with relocation.
616 	 */
617 	btrfs_double_extent_lock(src, loff, dst, dst_loff, len);
618 	ret = btrfs_clone(src, dst, loff, len, ALIGN(len, bs), dst_loff, 1);
619 	btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
620 
621 	return ret;
622 }
623 
624 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
625 			     struct inode *dst, u64 dst_loff)
626 {
627 	int ret;
628 	u64 i, tail_len, chunk_count;
629 	struct btrfs_root *root_dst = BTRFS_I(dst)->root;
630 
631 	spin_lock(&root_dst->root_item_lock);
632 	if (root_dst->send_in_progress) {
633 		btrfs_warn_rl(root_dst->fs_info,
634 "cannot deduplicate to root %llu while send operations are using it (%d in progress)",
635 			      root_dst->root_key.objectid,
636 			      root_dst->send_in_progress);
637 		spin_unlock(&root_dst->root_item_lock);
638 		return -EAGAIN;
639 	}
640 	root_dst->dedupe_in_progress++;
641 	spin_unlock(&root_dst->root_item_lock);
642 
643 	tail_len = olen % BTRFS_MAX_DEDUPE_LEN;
644 	chunk_count = div_u64(olen, BTRFS_MAX_DEDUPE_LEN);
645 
646 	for (i = 0; i < chunk_count; i++) {
647 		ret = btrfs_extent_same_range(src, loff, BTRFS_MAX_DEDUPE_LEN,
648 					      dst, dst_loff);
649 		if (ret)
650 			goto out;
651 
652 		loff += BTRFS_MAX_DEDUPE_LEN;
653 		dst_loff += BTRFS_MAX_DEDUPE_LEN;
654 	}
655 
656 	if (tail_len > 0)
657 		ret = btrfs_extent_same_range(src, loff, tail_len, dst, dst_loff);
658 out:
659 	spin_lock(&root_dst->root_item_lock);
660 	root_dst->dedupe_in_progress--;
661 	spin_unlock(&root_dst->root_item_lock);
662 
663 	return ret;
664 }
665 
666 static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
667 					u64 off, u64 olen, u64 destoff)
668 {
669 	struct inode *inode = file_inode(file);
670 	struct inode *src = file_inode(file_src);
671 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
672 	int ret;
673 	int wb_ret;
674 	u64 len = olen;
675 	u64 bs = fs_info->sb->s_blocksize;
676 
677 	/*
678 	 * VFS's generic_remap_file_range_prep() protects us from cloning the
679 	 * eof block into the middle of a file, which would result in corruption
680 	 * if the file size is not blocksize aligned. So we don't need to check
681 	 * for that case here.
682 	 */
683 	if (off + len == src->i_size)
684 		len = ALIGN(src->i_size, bs) - off;
685 
686 	if (destoff > inode->i_size) {
687 		const u64 wb_start = ALIGN_DOWN(inode->i_size, bs);
688 
689 		ret = btrfs_cont_expand(BTRFS_I(inode), inode->i_size, destoff);
690 		if (ret)
691 			return ret;
692 		/*
693 		 * We may have truncated the last block if the inode's size is
694 		 * not sector size aligned, so we need to wait for writeback to
695 		 * complete before proceeding further, otherwise we can race
696 		 * with cloning and attempt to increment a reference to an
697 		 * extent that no longer exists (writeback completed right after
698 		 * we found the previous extent covering eof and before we
699 		 * attempted to increment its reference count).
700 		 */
701 		ret = btrfs_wait_ordered_range(inode, wb_start,
702 					       destoff - wb_start);
703 		if (ret)
704 			return ret;
705 	}
706 
707 	/*
708 	 * Lock destination range to serialize with concurrent readpages() and
709 	 * source range to serialize with relocation.
710 	 */
711 	btrfs_double_extent_lock(src, off, inode, destoff, len);
712 	ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
713 	btrfs_double_extent_unlock(src, off, inode, destoff, len);
714 
715 	/*
716 	 * We may have copied an inline extent into a page of the destination
717 	 * range, so wait for writeback to complete before truncating pages
718 	 * from the page cache. This is a rare case.
719 	 */
720 	wb_ret = btrfs_wait_ordered_range(inode, destoff, len);
721 	ret = ret ? ret : wb_ret;
722 	/*
723 	 * Truncate page cache pages so that future reads will see the cloned
724 	 * data immediately and not the previous data.
725 	 */
726 	truncate_inode_pages_range(&inode->i_data,
727 				round_down(destoff, PAGE_SIZE),
728 				round_up(destoff + len, PAGE_SIZE) - 1);
729 
730 	return ret;
731 }
732 
733 static int btrfs_remap_file_range_prep(struct file *file_in, loff_t pos_in,
734 				       struct file *file_out, loff_t pos_out,
735 				       loff_t *len, unsigned int remap_flags)
736 {
737 	struct inode *inode_in = file_inode(file_in);
738 	struct inode *inode_out = file_inode(file_out);
739 	u64 bs = BTRFS_I(inode_out)->root->fs_info->sb->s_blocksize;
740 	bool same_inode = inode_out == inode_in;
741 	u64 wb_len;
742 	int ret;
743 
744 	if (!(remap_flags & REMAP_FILE_DEDUP)) {
745 		struct btrfs_root *root_out = BTRFS_I(inode_out)->root;
746 
747 		if (btrfs_root_readonly(root_out))
748 			return -EROFS;
749 
750 		if (file_in->f_path.mnt != file_out->f_path.mnt ||
751 		    inode_in->i_sb != inode_out->i_sb)
752 			return -EXDEV;
753 	}
754 
755 	/* Don't make the dst file partly checksummed */
756 	if ((BTRFS_I(inode_in)->flags & BTRFS_INODE_NODATASUM) !=
757 	    (BTRFS_I(inode_out)->flags & BTRFS_INODE_NODATASUM)) {
758 		return -EINVAL;
759 	}
760 
761 	/*
762 	 * Now that the inodes are locked, we need to start writeback ourselves
763 	 * and can not rely on the writeback from the VFS's generic helper
764 	 * generic_remap_file_range_prep() because:
765 	 *
766 	 * 1) For compression we must call filemap_fdatawrite_range() range
767 	 *    twice (btrfs_fdatawrite_range() does it for us), and the generic
768 	 *    helper only calls it once;
769 	 *
770 	 * 2) filemap_fdatawrite_range(), called by the generic helper only
771 	 *    waits for the writeback to complete, i.e. for IO to be done, and
772 	 *    not for the ordered extents to complete. We need to wait for them
773 	 *    to complete so that new file extent items are in the fs tree.
774 	 */
775 	if (*len == 0 && !(remap_flags & REMAP_FILE_DEDUP))
776 		wb_len = ALIGN(inode_in->i_size, bs) - ALIGN_DOWN(pos_in, bs);
777 	else
778 		wb_len = ALIGN(*len, bs);
779 
780 	/*
781 	 * Since we don't lock ranges, wait for ongoing lockless dio writes (as
782 	 * any in progress could create its ordered extents after we wait for
783 	 * existing ordered extents below).
784 	 */
785 	inode_dio_wait(inode_in);
786 	if (!same_inode)
787 		inode_dio_wait(inode_out);
788 
789 	/*
790 	 * Workaround to make sure NOCOW buffered write reach disk as NOCOW.
791 	 *
792 	 * Btrfs' back references do not have a block level granularity, they
793 	 * work at the whole extent level.
794 	 * NOCOW buffered write without data space reserved may not be able
795 	 * to fall back to CoW due to lack of data space, thus could cause
796 	 * data loss.
797 	 *
798 	 * Here we take a shortcut by flushing the whole inode, so that all
799 	 * nocow write should reach disk as nocow before we increase the
800 	 * reference of the extent. We could do better by only flushing NOCOW
801 	 * data, but that needs extra accounting.
802 	 *
803 	 * Also we don't need to check ASYNC_EXTENT, as async extent will be
804 	 * CoWed anyway, not affecting nocow part.
805 	 */
806 	ret = filemap_flush(inode_in->i_mapping);
807 	if (ret < 0)
808 		return ret;
809 
810 	ret = btrfs_wait_ordered_range(inode_in, ALIGN_DOWN(pos_in, bs),
811 				       wb_len);
812 	if (ret < 0)
813 		return ret;
814 	ret = btrfs_wait_ordered_range(inode_out, ALIGN_DOWN(pos_out, bs),
815 				       wb_len);
816 	if (ret < 0)
817 		return ret;
818 
819 	return generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
820 					    len, remap_flags);
821 }
822 
823 loff_t btrfs_remap_file_range(struct file *src_file, loff_t off,
824 		struct file *dst_file, loff_t destoff, loff_t len,
825 		unsigned int remap_flags)
826 {
827 	struct inode *src_inode = file_inode(src_file);
828 	struct inode *dst_inode = file_inode(dst_file);
829 	bool same_inode = dst_inode == src_inode;
830 	int ret;
831 
832 	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
833 		return -EINVAL;
834 
835 	if (same_inode)
836 		inode_lock(src_inode);
837 	else
838 		lock_two_nondirectories(src_inode, dst_inode);
839 
840 	ret = btrfs_remap_file_range_prep(src_file, off, dst_file, destoff,
841 					  &len, remap_flags);
842 	if (ret < 0 || len == 0)
843 		goto out_unlock;
844 
845 	if (remap_flags & REMAP_FILE_DEDUP)
846 		ret = btrfs_extent_same(src_inode, off, len, dst_inode, destoff);
847 	else
848 		ret = btrfs_clone_files(dst_file, src_file, off, len, destoff);
849 
850 out_unlock:
851 	if (same_inode)
852 		inode_unlock(src_inode);
853 	else
854 		unlock_two_nondirectories(src_inode, dst_inode);
855 
856 	return ret < 0 ? ret : len;
857 }
858