xref: /linux/fs/btrfs/reflink.c (revision 57985788158a5a6b77612e531b9d89bcad06e47c)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/blkdev.h>
4 #include <linux/iversion.h>
5 #include "compression.h"
6 #include "ctree.h"
7 #include "delalloc-space.h"
8 #include "reflink.h"
9 #include "transaction.h"
10 
11 #define BTRFS_MAX_DEDUPE_LEN	SZ_16M
12 
13 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
14 				     struct inode *inode,
15 				     u64 endoff,
16 				     const u64 destoff,
17 				     const u64 olen,
18 				     int no_time_update)
19 {
20 	struct btrfs_root *root = BTRFS_I(inode)->root;
21 	int ret;
22 
23 	inode_inc_iversion(inode);
24 	if (!no_time_update)
25 		inode->i_mtime = inode->i_ctime = current_time(inode);
26 	/*
27 	 * We round up to the block size at eof when determining which
28 	 * extents to clone above, but shouldn't round up the file size.
29 	 */
30 	if (endoff > destoff + olen)
31 		endoff = destoff + olen;
32 	if (endoff > inode->i_size) {
33 		i_size_write(inode, endoff);
34 		btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
35 	}
36 
37 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
38 	if (ret) {
39 		btrfs_abort_transaction(trans, ret);
40 		btrfs_end_transaction(trans);
41 		goto out;
42 	}
43 	ret = btrfs_end_transaction(trans);
44 out:
45 	return ret;
46 }
47 
48 static int copy_inline_to_page(struct btrfs_inode *inode,
49 			       const u64 file_offset,
50 			       char *inline_data,
51 			       const u64 size,
52 			       const u64 datal,
53 			       const u8 comp_type)
54 {
55 	const u64 block_size = btrfs_inode_sectorsize(inode);
56 	const u64 range_end = file_offset + block_size - 1;
57 	const size_t inline_size = size - btrfs_file_extent_calc_inline_size(0);
58 	char *data_start = inline_data + btrfs_file_extent_calc_inline_size(0);
59 	struct extent_changeset *data_reserved = NULL;
60 	struct page *page = NULL;
61 	struct address_space *mapping = inode->vfs_inode.i_mapping;
62 	int ret;
63 
64 	ASSERT(IS_ALIGNED(file_offset, block_size));
65 
66 	/*
67 	 * We have flushed and locked the ranges of the source and destination
68 	 * inodes, we also have locked the inodes, so we are safe to do a
69 	 * reservation here. Also we must not do the reservation while holding
70 	 * a transaction open, otherwise we would deadlock.
71 	 */
72 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, file_offset,
73 					   block_size);
74 	if (ret)
75 		goto out;
76 
77 	page = find_or_create_page(mapping, file_offset >> PAGE_SHIFT,
78 				   btrfs_alloc_write_mask(mapping));
79 	if (!page) {
80 		ret = -ENOMEM;
81 		goto out_unlock;
82 	}
83 
84 	set_page_extent_mapped(page);
85 	clear_extent_bit(&inode->io_tree, file_offset, range_end,
86 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
87 			 0, 0, NULL);
88 	ret = btrfs_set_extent_delalloc(inode, file_offset, range_end, 0, NULL);
89 	if (ret)
90 		goto out_unlock;
91 
92 	if (comp_type == BTRFS_COMPRESS_NONE) {
93 		char *map;
94 
95 		map = kmap(page);
96 		memcpy(map, data_start, datal);
97 		flush_dcache_page(page);
98 		kunmap(page);
99 	} else {
100 		ret = btrfs_decompress(comp_type, data_start, page, 0,
101 				       inline_size, datal);
102 		if (ret)
103 			goto out_unlock;
104 		flush_dcache_page(page);
105 	}
106 
107 	/*
108 	 * If our inline data is smaller then the block/page size, then the
109 	 * remaining of the block/page is equivalent to zeroes. We had something
110 	 * like the following done:
111 	 *
112 	 * $ xfs_io -f -c "pwrite -S 0xab 0 500" file
113 	 * $ sync  # (or fsync)
114 	 * $ xfs_io -c "falloc 0 4K" file
115 	 * $ xfs_io -c "pwrite -S 0xcd 4K 4K"
116 	 *
117 	 * So what's in the range [500, 4095] corresponds to zeroes.
118 	 */
119 	if (datal < block_size) {
120 		char *map;
121 
122 		map = kmap(page);
123 		memset(map + datal, 0, block_size - datal);
124 		flush_dcache_page(page);
125 		kunmap(page);
126 	}
127 
128 	SetPageUptodate(page);
129 	ClearPageChecked(page);
130 	set_page_dirty(page);
131 out_unlock:
132 	if (page) {
133 		unlock_page(page);
134 		put_page(page);
135 	}
136 	if (ret)
137 		btrfs_delalloc_release_space(inode, data_reserved, file_offset,
138 					     block_size, true);
139 	btrfs_delalloc_release_extents(inode, block_size);
140 out:
141 	extent_changeset_free(data_reserved);
142 
143 	return ret;
144 }
145 
146 /*
147  * Deal with cloning of inline extents. We try to copy the inline extent from
148  * the source inode to destination inode when possible. When not possible we
149  * copy the inline extent's data into the respective page of the inode.
150  */
151 static int clone_copy_inline_extent(struct inode *dst,
152 				    struct btrfs_path *path,
153 				    struct btrfs_key *new_key,
154 				    const u64 drop_start,
155 				    const u64 datal,
156 				    const u64 size,
157 				    const u8 comp_type,
158 				    char *inline_data,
159 				    struct btrfs_trans_handle **trans_out)
160 {
161 	struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb);
162 	struct btrfs_root *root = BTRFS_I(dst)->root;
163 	const u64 aligned_end = ALIGN(new_key->offset + datal,
164 				      fs_info->sectorsize);
165 	struct btrfs_trans_handle *trans = NULL;
166 	struct btrfs_drop_extents_args drop_args = { 0 };
167 	int ret;
168 	struct btrfs_key key;
169 
170 	if (new_key->offset > 0) {
171 		ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset,
172 					  inline_data, size, datal, comp_type);
173 		goto out;
174 	}
175 
176 	key.objectid = btrfs_ino(BTRFS_I(dst));
177 	key.type = BTRFS_EXTENT_DATA_KEY;
178 	key.offset = 0;
179 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
180 	if (ret < 0) {
181 		return ret;
182 	} else if (ret > 0) {
183 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
184 			ret = btrfs_next_leaf(root, path);
185 			if (ret < 0)
186 				return ret;
187 			else if (ret > 0)
188 				goto copy_inline_extent;
189 		}
190 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
191 		if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
192 		    key.type == BTRFS_EXTENT_DATA_KEY) {
193 			/*
194 			 * There's an implicit hole at file offset 0, copy the
195 			 * inline extent's data to the page.
196 			 */
197 			ASSERT(key.offset > 0);
198 			ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset,
199 						  inline_data, size, datal,
200 						  comp_type);
201 			goto out;
202 		}
203 	} else if (i_size_read(dst) <= datal) {
204 		struct btrfs_file_extent_item *ei;
205 
206 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
207 				    struct btrfs_file_extent_item);
208 		/*
209 		 * If it's an inline extent replace it with the source inline
210 		 * extent, otherwise copy the source inline extent data into
211 		 * the respective page at the destination inode.
212 		 */
213 		if (btrfs_file_extent_type(path->nodes[0], ei) ==
214 		    BTRFS_FILE_EXTENT_INLINE)
215 			goto copy_inline_extent;
216 
217 		ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset,
218 					  inline_data, size, datal, comp_type);
219 		goto out;
220 	}
221 
222 copy_inline_extent:
223 	ret = 0;
224 	/*
225 	 * We have no extent items, or we have an extent at offset 0 which may
226 	 * or may not be inlined. All these cases are dealt the same way.
227 	 */
228 	if (i_size_read(dst) > datal) {
229 		/*
230 		 * At the destination offset 0 we have either a hole, a regular
231 		 * extent or an inline extent larger then the one we want to
232 		 * clone. Deal with all these cases by copying the inline extent
233 		 * data into the respective page at the destination inode.
234 		 */
235 		ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset,
236 					  inline_data, size, datal, comp_type);
237 		goto out;
238 	}
239 
240 	btrfs_release_path(path);
241 	/*
242 	 * If we end up here it means were copy the inline extent into a leaf
243 	 * of the destination inode. We know we will drop or adjust at most one
244 	 * extent item in the destination root.
245 	 *
246 	 * 1 unit - adjusting old extent (we may have to split it)
247 	 * 1 unit - add new extent
248 	 * 1 unit - inode update
249 	 */
250 	trans = btrfs_start_transaction(root, 3);
251 	if (IS_ERR(trans)) {
252 		ret = PTR_ERR(trans);
253 		trans = NULL;
254 		goto out;
255 	}
256 	drop_args.path = path;
257 	drop_args.start = drop_start;
258 	drop_args.end = aligned_end;
259 	drop_args.drop_cache = true;
260 	ret = btrfs_drop_extents(trans, root, BTRFS_I(dst), &drop_args);
261 	if (ret)
262 		goto out;
263 	ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
264 	if (ret)
265 		goto out;
266 
267 	write_extent_buffer(path->nodes[0], inline_data,
268 			    btrfs_item_ptr_offset(path->nodes[0],
269 						  path->slots[0]),
270 			    size);
271 	btrfs_update_inode_bytes(BTRFS_I(dst), datal, drop_args.bytes_found);
272 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(dst)->runtime_flags);
273 	ret = btrfs_inode_set_file_extent_range(BTRFS_I(dst), 0, aligned_end);
274 out:
275 	if (!ret && !trans) {
276 		/*
277 		 * No transaction here means we copied the inline extent into a
278 		 * page of the destination inode.
279 		 *
280 		 * 1 unit to update inode item
281 		 */
282 		trans = btrfs_start_transaction(root, 1);
283 		if (IS_ERR(trans)) {
284 			ret = PTR_ERR(trans);
285 			trans = NULL;
286 		}
287 	}
288 	if (ret && trans) {
289 		btrfs_abort_transaction(trans, ret);
290 		btrfs_end_transaction(trans);
291 	}
292 	if (!ret)
293 		*trans_out = trans;
294 
295 	return ret;
296 }
297 
298 /**
299  * btrfs_clone() - clone a range from inode file to another
300  *
301  * @src: Inode to clone from
302  * @inode: Inode to clone to
303  * @off: Offset within source to start clone from
304  * @olen: Original length, passed by user, of range to clone
305  * @olen_aligned: Block-aligned value of olen
306  * @destoff: Offset within @inode to start clone
307  * @no_time_update: Whether to update mtime/ctime on the target inode
308  */
309 static int btrfs_clone(struct inode *src, struct inode *inode,
310 		       const u64 off, const u64 olen, const u64 olen_aligned,
311 		       const u64 destoff, int no_time_update)
312 {
313 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
314 	struct btrfs_path *path = NULL;
315 	struct extent_buffer *leaf;
316 	struct btrfs_trans_handle *trans;
317 	char *buf = NULL;
318 	struct btrfs_key key;
319 	u32 nritems;
320 	int slot;
321 	int ret;
322 	const u64 len = olen_aligned;
323 	u64 last_dest_end = destoff;
324 
325 	ret = -ENOMEM;
326 	buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
327 	if (!buf)
328 		return ret;
329 
330 	path = btrfs_alloc_path();
331 	if (!path) {
332 		kvfree(buf);
333 		return ret;
334 	}
335 
336 	path->reada = READA_FORWARD;
337 	/* Clone data */
338 	key.objectid = btrfs_ino(BTRFS_I(src));
339 	key.type = BTRFS_EXTENT_DATA_KEY;
340 	key.offset = off;
341 
342 	while (1) {
343 		u64 next_key_min_offset = key.offset + 1;
344 		struct btrfs_file_extent_item *extent;
345 		u64 extent_gen;
346 		int type;
347 		u32 size;
348 		struct btrfs_key new_key;
349 		u64 disko = 0, diskl = 0;
350 		u64 datao = 0, datal = 0;
351 		u8 comp;
352 		u64 drop_start;
353 
354 		/* Note the key will change type as we walk through the tree */
355 		ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
356 				0, 0);
357 		if (ret < 0)
358 			goto out;
359 		/*
360 		 * First search, if no extent item that starts at offset off was
361 		 * found but the previous item is an extent item, it's possible
362 		 * it might overlap our target range, therefore process it.
363 		 */
364 		if (key.offset == off && ret > 0 && path->slots[0] > 0) {
365 			btrfs_item_key_to_cpu(path->nodes[0], &key,
366 					      path->slots[0] - 1);
367 			if (key.type == BTRFS_EXTENT_DATA_KEY)
368 				path->slots[0]--;
369 		}
370 
371 		nritems = btrfs_header_nritems(path->nodes[0]);
372 process_slot:
373 		if (path->slots[0] >= nritems) {
374 			ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
375 			if (ret < 0)
376 				goto out;
377 			if (ret > 0)
378 				break;
379 			nritems = btrfs_header_nritems(path->nodes[0]);
380 		}
381 		leaf = path->nodes[0];
382 		slot = path->slots[0];
383 
384 		btrfs_item_key_to_cpu(leaf, &key, slot);
385 		if (key.type > BTRFS_EXTENT_DATA_KEY ||
386 		    key.objectid != btrfs_ino(BTRFS_I(src)))
387 			break;
388 
389 		ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
390 
391 		extent = btrfs_item_ptr(leaf, slot,
392 					struct btrfs_file_extent_item);
393 		extent_gen = btrfs_file_extent_generation(leaf, extent);
394 		comp = btrfs_file_extent_compression(leaf, extent);
395 		type = btrfs_file_extent_type(leaf, extent);
396 		if (type == BTRFS_FILE_EXTENT_REG ||
397 		    type == BTRFS_FILE_EXTENT_PREALLOC) {
398 			disko = btrfs_file_extent_disk_bytenr(leaf, extent);
399 			diskl = btrfs_file_extent_disk_num_bytes(leaf, extent);
400 			datao = btrfs_file_extent_offset(leaf, extent);
401 			datal = btrfs_file_extent_num_bytes(leaf, extent);
402 		} else if (type == BTRFS_FILE_EXTENT_INLINE) {
403 			/* Take upper bound, may be compressed */
404 			datal = btrfs_file_extent_ram_bytes(leaf, extent);
405 		}
406 
407 		/*
408 		 * The first search might have left us at an extent item that
409 		 * ends before our target range's start, can happen if we have
410 		 * holes and NO_HOLES feature enabled.
411 		 */
412 		if (key.offset + datal <= off) {
413 			path->slots[0]++;
414 			goto process_slot;
415 		} else if (key.offset >= off + len) {
416 			break;
417 		}
418 		next_key_min_offset = key.offset + datal;
419 		size = btrfs_item_size_nr(leaf, slot);
420 		read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, slot),
421 				   size);
422 
423 		btrfs_release_path(path);
424 
425 		memcpy(&new_key, &key, sizeof(new_key));
426 		new_key.objectid = btrfs_ino(BTRFS_I(inode));
427 		if (off <= key.offset)
428 			new_key.offset = key.offset + destoff - off;
429 		else
430 			new_key.offset = destoff;
431 
432 		/*
433 		 * Deal with a hole that doesn't have an extent item that
434 		 * represents it (NO_HOLES feature enabled).
435 		 * This hole is either in the middle of the cloning range or at
436 		 * the beginning (fully overlaps it or partially overlaps it).
437 		 */
438 		if (new_key.offset != last_dest_end)
439 			drop_start = last_dest_end;
440 		else
441 			drop_start = new_key.offset;
442 
443 		if (type == BTRFS_FILE_EXTENT_REG ||
444 		    type == BTRFS_FILE_EXTENT_PREALLOC) {
445 			struct btrfs_replace_extent_info clone_info;
446 
447 			/*
448 			 *    a  | --- range to clone ---|  b
449 			 * | ------------- extent ------------- |
450 			 */
451 
452 			/* Subtract range b */
453 			if (key.offset + datal > off + len)
454 				datal = off + len - key.offset;
455 
456 			/* Subtract range a */
457 			if (off > key.offset) {
458 				datao += off - key.offset;
459 				datal -= off - key.offset;
460 			}
461 
462 			clone_info.disk_offset = disko;
463 			clone_info.disk_len = diskl;
464 			clone_info.data_offset = datao;
465 			clone_info.data_len = datal;
466 			clone_info.file_offset = new_key.offset;
467 			clone_info.extent_buf = buf;
468 			clone_info.is_new_extent = false;
469 			ret = btrfs_replace_file_extents(inode, path, drop_start,
470 					new_key.offset + datal - 1, &clone_info,
471 					&trans);
472 			if (ret)
473 				goto out;
474 		} else if (type == BTRFS_FILE_EXTENT_INLINE) {
475 			/*
476 			 * Inline extents always have to start at file offset 0
477 			 * and can never be bigger then the sector size. We can
478 			 * never clone only parts of an inline extent, since all
479 			 * reflink operations must start at a sector size aligned
480 			 * offset, and the length must be aligned too or end at
481 			 * the i_size (which implies the whole inlined data).
482 			 */
483 			ASSERT(key.offset == 0);
484 			ASSERT(datal <= fs_info->sectorsize);
485 			if (key.offset != 0 || datal > fs_info->sectorsize)
486 				return -EUCLEAN;
487 
488 			ret = clone_copy_inline_extent(inode, path, &new_key,
489 						       drop_start, datal, size,
490 						       comp, buf, &trans);
491 			if (ret)
492 				goto out;
493 		}
494 
495 		btrfs_release_path(path);
496 
497 		/*
498 		 * If this is a new extent update the last_reflink_trans of both
499 		 * inodes. This is used by fsync to make sure it does not log
500 		 * multiple checksum items with overlapping ranges. For older
501 		 * extents we don't need to do it since inode logging skips the
502 		 * checksums for older extents. Also ignore holes and inline
503 		 * extents because they don't have checksums in the csum tree.
504 		 */
505 		if (extent_gen == trans->transid && disko > 0) {
506 			BTRFS_I(src)->last_reflink_trans = trans->transid;
507 			BTRFS_I(inode)->last_reflink_trans = trans->transid;
508 		}
509 
510 		last_dest_end = ALIGN(new_key.offset + datal,
511 				      fs_info->sectorsize);
512 		ret = clone_finish_inode_update(trans, inode, last_dest_end,
513 						destoff, olen, no_time_update);
514 		if (ret)
515 			goto out;
516 		if (new_key.offset + datal >= destoff + len)
517 			break;
518 
519 		btrfs_release_path(path);
520 		key.offset = next_key_min_offset;
521 
522 		if (fatal_signal_pending(current)) {
523 			ret = -EINTR;
524 			goto out;
525 		}
526 
527 		cond_resched();
528 	}
529 	ret = 0;
530 
531 	if (last_dest_end < destoff + len) {
532 		/*
533 		 * We have an implicit hole that fully or partially overlaps our
534 		 * cloning range at its end. This means that we either have the
535 		 * NO_HOLES feature enabled or the implicit hole happened due to
536 		 * mixing buffered and direct IO writes against this file.
537 		 */
538 		btrfs_release_path(path);
539 
540 		ret = btrfs_replace_file_extents(inode, path, last_dest_end,
541 				destoff + len - 1, NULL, &trans);
542 		if (ret)
543 			goto out;
544 
545 		ret = clone_finish_inode_update(trans, inode, destoff + len,
546 						destoff, olen, no_time_update);
547 	}
548 
549 out:
550 	btrfs_free_path(path);
551 	kvfree(buf);
552 	return ret;
553 }
554 
555 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
556 				       struct inode *inode2, u64 loff2, u64 len)
557 {
558 	unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
559 	unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
560 }
561 
562 static void btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
563 				     struct inode *inode2, u64 loff2, u64 len)
564 {
565 	if (inode1 < inode2) {
566 		swap(inode1, inode2);
567 		swap(loff1, loff2);
568 	} else if (inode1 == inode2 && loff2 < loff1) {
569 		swap(loff1, loff2);
570 	}
571 	lock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
572 	lock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
573 }
574 
575 static int btrfs_extent_same_range(struct inode *src, u64 loff, u64 len,
576 				   struct inode *dst, u64 dst_loff)
577 {
578 	const u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
579 	int ret;
580 
581 	/*
582 	 * Lock destination range to serialize with concurrent readpages() and
583 	 * source range to serialize with relocation.
584 	 */
585 	btrfs_double_extent_lock(src, loff, dst, dst_loff, len);
586 	ret = btrfs_clone(src, dst, loff, len, ALIGN(len, bs), dst_loff, 1);
587 	btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
588 
589 	return ret;
590 }
591 
592 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
593 			     struct inode *dst, u64 dst_loff)
594 {
595 	int ret;
596 	u64 i, tail_len, chunk_count;
597 	struct btrfs_root *root_dst = BTRFS_I(dst)->root;
598 
599 	spin_lock(&root_dst->root_item_lock);
600 	if (root_dst->send_in_progress) {
601 		btrfs_warn_rl(root_dst->fs_info,
602 "cannot deduplicate to root %llu while send operations are using it (%d in progress)",
603 			      root_dst->root_key.objectid,
604 			      root_dst->send_in_progress);
605 		spin_unlock(&root_dst->root_item_lock);
606 		return -EAGAIN;
607 	}
608 	root_dst->dedupe_in_progress++;
609 	spin_unlock(&root_dst->root_item_lock);
610 
611 	tail_len = olen % BTRFS_MAX_DEDUPE_LEN;
612 	chunk_count = div_u64(olen, BTRFS_MAX_DEDUPE_LEN);
613 
614 	for (i = 0; i < chunk_count; i++) {
615 		ret = btrfs_extent_same_range(src, loff, BTRFS_MAX_DEDUPE_LEN,
616 					      dst, dst_loff);
617 		if (ret)
618 			goto out;
619 
620 		loff += BTRFS_MAX_DEDUPE_LEN;
621 		dst_loff += BTRFS_MAX_DEDUPE_LEN;
622 	}
623 
624 	if (tail_len > 0)
625 		ret = btrfs_extent_same_range(src, loff, tail_len, dst, dst_loff);
626 out:
627 	spin_lock(&root_dst->root_item_lock);
628 	root_dst->dedupe_in_progress--;
629 	spin_unlock(&root_dst->root_item_lock);
630 
631 	return ret;
632 }
633 
634 static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
635 					u64 off, u64 olen, u64 destoff)
636 {
637 	struct inode *inode = file_inode(file);
638 	struct inode *src = file_inode(file_src);
639 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
640 	int ret;
641 	int wb_ret;
642 	u64 len = olen;
643 	u64 bs = fs_info->sb->s_blocksize;
644 
645 	/*
646 	 * VFS's generic_remap_file_range_prep() protects us from cloning the
647 	 * eof block into the middle of a file, which would result in corruption
648 	 * if the file size is not blocksize aligned. So we don't need to check
649 	 * for that case here.
650 	 */
651 	if (off + len == src->i_size)
652 		len = ALIGN(src->i_size, bs) - off;
653 
654 	if (destoff > inode->i_size) {
655 		const u64 wb_start = ALIGN_DOWN(inode->i_size, bs);
656 
657 		ret = btrfs_cont_expand(BTRFS_I(inode), inode->i_size, destoff);
658 		if (ret)
659 			return ret;
660 		/*
661 		 * We may have truncated the last block if the inode's size is
662 		 * not sector size aligned, so we need to wait for writeback to
663 		 * complete before proceeding further, otherwise we can race
664 		 * with cloning and attempt to increment a reference to an
665 		 * extent that no longer exists (writeback completed right after
666 		 * we found the previous extent covering eof and before we
667 		 * attempted to increment its reference count).
668 		 */
669 		ret = btrfs_wait_ordered_range(inode, wb_start,
670 					       destoff - wb_start);
671 		if (ret)
672 			return ret;
673 	}
674 
675 	/*
676 	 * Lock destination range to serialize with concurrent readpages() and
677 	 * source range to serialize with relocation.
678 	 */
679 	btrfs_double_extent_lock(src, off, inode, destoff, len);
680 	ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
681 	btrfs_double_extent_unlock(src, off, inode, destoff, len);
682 
683 	/*
684 	 * We may have copied an inline extent into a page of the destination
685 	 * range, so wait for writeback to complete before truncating pages
686 	 * from the page cache. This is a rare case.
687 	 */
688 	wb_ret = btrfs_wait_ordered_range(inode, destoff, len);
689 	ret = ret ? ret : wb_ret;
690 	/*
691 	 * Truncate page cache pages so that future reads will see the cloned
692 	 * data immediately and not the previous data.
693 	 */
694 	truncate_inode_pages_range(&inode->i_data,
695 				round_down(destoff, PAGE_SIZE),
696 				round_up(destoff + len, PAGE_SIZE) - 1);
697 
698 	return ret;
699 }
700 
701 static int btrfs_remap_file_range_prep(struct file *file_in, loff_t pos_in,
702 				       struct file *file_out, loff_t pos_out,
703 				       loff_t *len, unsigned int remap_flags)
704 {
705 	struct inode *inode_in = file_inode(file_in);
706 	struct inode *inode_out = file_inode(file_out);
707 	u64 bs = BTRFS_I(inode_out)->root->fs_info->sb->s_blocksize;
708 	bool same_inode = inode_out == inode_in;
709 	u64 wb_len;
710 	int ret;
711 
712 	if (!(remap_flags & REMAP_FILE_DEDUP)) {
713 		struct btrfs_root *root_out = BTRFS_I(inode_out)->root;
714 
715 		if (btrfs_root_readonly(root_out))
716 			return -EROFS;
717 
718 		if (file_in->f_path.mnt != file_out->f_path.mnt ||
719 		    inode_in->i_sb != inode_out->i_sb)
720 			return -EXDEV;
721 	}
722 
723 	/* Don't make the dst file partly checksummed */
724 	if ((BTRFS_I(inode_in)->flags & BTRFS_INODE_NODATASUM) !=
725 	    (BTRFS_I(inode_out)->flags & BTRFS_INODE_NODATASUM)) {
726 		return -EINVAL;
727 	}
728 
729 	/*
730 	 * Now that the inodes are locked, we need to start writeback ourselves
731 	 * and can not rely on the writeback from the VFS's generic helper
732 	 * generic_remap_file_range_prep() because:
733 	 *
734 	 * 1) For compression we must call filemap_fdatawrite_range() range
735 	 *    twice (btrfs_fdatawrite_range() does it for us), and the generic
736 	 *    helper only calls it once;
737 	 *
738 	 * 2) filemap_fdatawrite_range(), called by the generic helper only
739 	 *    waits for the writeback to complete, i.e. for IO to be done, and
740 	 *    not for the ordered extents to complete. We need to wait for them
741 	 *    to complete so that new file extent items are in the fs tree.
742 	 */
743 	if (*len == 0 && !(remap_flags & REMAP_FILE_DEDUP))
744 		wb_len = ALIGN(inode_in->i_size, bs) - ALIGN_DOWN(pos_in, bs);
745 	else
746 		wb_len = ALIGN(*len, bs);
747 
748 	/*
749 	 * Since we don't lock ranges, wait for ongoing lockless dio writes (as
750 	 * any in progress could create its ordered extents after we wait for
751 	 * existing ordered extents below).
752 	 */
753 	inode_dio_wait(inode_in);
754 	if (!same_inode)
755 		inode_dio_wait(inode_out);
756 
757 	/*
758 	 * Workaround to make sure NOCOW buffered write reach disk as NOCOW.
759 	 *
760 	 * Btrfs' back references do not have a block level granularity, they
761 	 * work at the whole extent level.
762 	 * NOCOW buffered write without data space reserved may not be able
763 	 * to fall back to CoW due to lack of data space, thus could cause
764 	 * data loss.
765 	 *
766 	 * Here we take a shortcut by flushing the whole inode, so that all
767 	 * nocow write should reach disk as nocow before we increase the
768 	 * reference of the extent. We could do better by only flushing NOCOW
769 	 * data, but that needs extra accounting.
770 	 *
771 	 * Also we don't need to check ASYNC_EXTENT, as async extent will be
772 	 * CoWed anyway, not affecting nocow part.
773 	 */
774 	ret = filemap_flush(inode_in->i_mapping);
775 	if (ret < 0)
776 		return ret;
777 
778 	ret = btrfs_wait_ordered_range(inode_in, ALIGN_DOWN(pos_in, bs),
779 				       wb_len);
780 	if (ret < 0)
781 		return ret;
782 	ret = btrfs_wait_ordered_range(inode_out, ALIGN_DOWN(pos_out, bs),
783 				       wb_len);
784 	if (ret < 0)
785 		return ret;
786 
787 	return generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
788 					    len, remap_flags);
789 }
790 
791 loff_t btrfs_remap_file_range(struct file *src_file, loff_t off,
792 		struct file *dst_file, loff_t destoff, loff_t len,
793 		unsigned int remap_flags)
794 {
795 	struct inode *src_inode = file_inode(src_file);
796 	struct inode *dst_inode = file_inode(dst_file);
797 	bool same_inode = dst_inode == src_inode;
798 	int ret;
799 
800 	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
801 		return -EINVAL;
802 
803 	if (same_inode)
804 		inode_lock(src_inode);
805 	else
806 		lock_two_nondirectories(src_inode, dst_inode);
807 
808 	ret = btrfs_remap_file_range_prep(src_file, off, dst_file, destoff,
809 					  &len, remap_flags);
810 	if (ret < 0 || len == 0)
811 		goto out_unlock;
812 
813 	if (remap_flags & REMAP_FILE_DEDUP)
814 		ret = btrfs_extent_same(src_inode, off, len, dst_inode, destoff);
815 	else
816 		ret = btrfs_clone_files(dst_file, src_file, off, len, destoff);
817 
818 out_unlock:
819 	if (same_inode)
820 		inode_unlock(src_inode);
821 	else
822 		unlock_two_nondirectories(src_inode, dst_inode);
823 
824 	return ret < 0 ? ret : len;
825 }
826