xref: /linux/fs/btrfs/raid56.h (revision 6a87e0f0ce1ae8d70566935215430e718ea776ff)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Copyright (C) 2012 Fusion-io  All rights reserved.
4  * Copyright (C) 2012 Intel Corp. All rights reserved.
5  */
6 
7 #ifndef BTRFS_RAID56_H
8 #define BTRFS_RAID56_H
9 
10 #include <linux/workqueue.h>
11 #include "volumes.h"
12 
13 enum btrfs_rbio_ops {
14 	BTRFS_RBIO_WRITE,
15 	BTRFS_RBIO_READ_REBUILD,
16 	BTRFS_RBIO_PARITY_SCRUB,
17 	BTRFS_RBIO_REBUILD_MISSING,
18 };
19 
20 struct btrfs_raid_bio {
21 	struct btrfs_io_context *bioc;
22 
23 	/*
24 	 * While we're doing RMW on a stripe we put it into a hash table so we
25 	 * can lock the stripe and merge more rbios into it.
26 	 */
27 	struct list_head hash_list;
28 
29 	/* LRU list for the stripe cache */
30 	struct list_head stripe_cache;
31 
32 	/* For scheduling work in the helper threads */
33 	struct work_struct work;
34 
35 	/*
36 	 * bio_list and bio_list_lock are used to add more bios into the stripe
37 	 * in hopes of avoiding the full RMW
38 	 */
39 	struct bio_list bio_list;
40 	spinlock_t bio_list_lock;
41 
42 	/*
43 	 * Also protected by the bio_list_lock, the plug list is used by the
44 	 * plugging code to collect partial bios while plugged.  The stripe
45 	 * locking code also uses it to hand off the stripe lock to the next
46 	 * pending IO.
47 	 */
48 	struct list_head plug_list;
49 
50 	/* Flags that tell us if it is safe to merge with this bio. */
51 	unsigned long flags;
52 
53 	/*
54 	 * Set if we're doing a parity rebuild for a read from higher up, which
55 	 * is handled differently from a parity rebuild as part of RMW.
56 	 */
57 	enum btrfs_rbio_ops operation;
58 
59 	/* How many pages there are for the full stripe including P/Q */
60 	u16 nr_pages;
61 
62 	/* How many sectors there are for the full stripe including P/Q */
63 	u16 nr_sectors;
64 
65 	/* Number of data stripes (no p/q) */
66 	u8 nr_data;
67 
68 	/* Number of all stripes (including P/Q) */
69 	u8 real_stripes;
70 
71 	/* How many pages there are for each stripe */
72 	u8 stripe_npages;
73 
74 	/* How many sectors there are for each stripe */
75 	u8 stripe_nsectors;
76 
77 	/* Stripe number that we're scrubbing  */
78 	u8 scrubp;
79 
80 	/*
81 	 * Size of all the bios in the bio_list.  This helps us decide if the
82 	 * rbio maps to a full stripe or not.
83 	 */
84 	int bio_list_bytes;
85 
86 	refcount_t refs;
87 
88 	atomic_t stripes_pending;
89 
90 	wait_queue_head_t io_wait;
91 
92 	/* Bitmap to record which horizontal stripe has data */
93 	unsigned long dbitmap;
94 
95 	/* Allocated with stripe_nsectors-many bits for finish_*() calls */
96 	unsigned long finish_pbitmap;
97 
98 	/*
99 	 * These are two arrays of pointers.  We allocate the rbio big enough
100 	 * to hold them both and setup their locations when the rbio is
101 	 * allocated.
102 	 */
103 
104 	/*
105 	 * Pointers to pages that we allocated for reading/writing stripes
106 	 * directly from the disk (including P/Q).
107 	 */
108 	struct page **stripe_pages;
109 
110 	/* Pointers to the sectors in the bio_list, for faster lookup */
111 	struct sector_ptr *bio_sectors;
112 
113 	/*
114 	 * For subpage support, we need to map each sector to above
115 	 * stripe_pages.
116 	 */
117 	struct sector_ptr *stripe_sectors;
118 
119 	/* Allocated with real_stripes-many pointers for finish_*() calls */
120 	void **finish_pointers;
121 
122 	/*
123 	 * The bitmap recording where IO errors happened.
124 	 * Each bit is corresponding to one sector in either bio_sectors[] or
125 	 * stripe_sectors[] array.
126 	 *
127 	 * The reason we don't use another bit in sector_ptr is, we have two
128 	 * arrays of sectors, and a lot of IO can use sectors in both arrays.
129 	 * Thus making it much harder to iterate.
130 	 */
131 	unsigned long *error_bitmap;
132 
133 	/*
134 	 * Checksum buffer if the rbio is for data.  The buffer should cover
135 	 * all data sectors (excluding P/Q sectors).
136 	 */
137 	u8 *csum_buf;
138 
139 	/*
140 	 * Each bit represents if the corresponding sector has data csum found.
141 	 * Should only cover data sectors (excluding P/Q sectors).
142 	 */
143 	unsigned long *csum_bitmap;
144 };
145 
146 /*
147  * For trace event usage only. Records useful debug info for each bio submitted
148  * by RAID56 to each physical device.
149  *
150  * No matter signed or not, (-1) is always the one indicating we can not grab
151  * the proper stripe number.
152  */
153 struct raid56_bio_trace_info {
154 	u64 devid;
155 
156 	/* The offset inside the stripe. (<= STRIPE_LEN) */
157 	u32 offset;
158 
159 	/*
160 	 * Stripe number.
161 	 * 0 is the first data stripe, and nr_data for P stripe,
162 	 * nr_data + 1 for Q stripe.
163 	 * >= real_stripes for
164 	 */
165 	u8 stripe_nr;
166 };
167 
168 static inline int nr_data_stripes(const struct map_lookup *map)
169 {
170 	return map->num_stripes - btrfs_nr_parity_stripes(map->type);
171 }
172 
173 static inline int nr_bioc_data_stripes(const struct btrfs_io_context *bioc)
174 {
175 	return bioc->num_stripes - btrfs_nr_parity_stripes(bioc->map_type);
176 }
177 
178 #define RAID5_P_STRIPE ((u64)-2)
179 #define RAID6_Q_STRIPE ((u64)-1)
180 
181 #define is_parity_stripe(x) (((x) == RAID5_P_STRIPE) ||		\
182 			     ((x) == RAID6_Q_STRIPE))
183 
184 struct btrfs_device;
185 
186 void raid56_parity_recover(struct bio *bio, struct btrfs_io_context *bioc,
187 			   int mirror_num);
188 void raid56_parity_write(struct bio *bio, struct btrfs_io_context *bioc);
189 
190 struct btrfs_raid_bio *raid56_parity_alloc_scrub_rbio(struct bio *bio,
191 				struct btrfs_io_context *bioc,
192 				struct btrfs_device *scrub_dev,
193 				unsigned long *dbitmap, int stripe_nsectors);
194 void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio);
195 
196 void raid56_parity_cache_data_pages(struct btrfs_raid_bio *rbio,
197 				    struct page **data_pages, u64 data_logical);
198 
199 int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info);
200 void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info);
201 
202 #endif
203