xref: /linux/fs/btrfs/raid56.c (revision e6f2a617ac53bc0753b885ffb94379ff48b2e2df)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2012 Fusion-io  All rights reserved.
4  * Copyright (C) 2012 Intel Corp. All rights reserved.
5  */
6 
7 #include <linux/sched.h>
8 #include <linux/bio.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/raid/pq.h>
12 #include <linux/hash.h>
13 #include <linux/list_sort.h>
14 #include <linux/raid/xor.h>
15 #include <linux/mm.h>
16 #include "ctree.h"
17 #include "disk-io.h"
18 #include "volumes.h"
19 #include "raid56.h"
20 #include "async-thread.h"
21 
22 /* set when additional merges to this rbio are not allowed */
23 #define RBIO_RMW_LOCKED_BIT	1
24 
25 /*
26  * set when this rbio is sitting in the hash, but it is just a cache
27  * of past RMW
28  */
29 #define RBIO_CACHE_BIT		2
30 
31 /*
32  * set when it is safe to trust the stripe_pages for caching
33  */
34 #define RBIO_CACHE_READY_BIT	3
35 
36 #define RBIO_CACHE_SIZE 1024
37 
38 #define BTRFS_STRIPE_HASH_TABLE_BITS				11
39 
40 /* Used by the raid56 code to lock stripes for read/modify/write */
41 struct btrfs_stripe_hash {
42 	struct list_head hash_list;
43 	spinlock_t lock;
44 };
45 
46 /* Used by the raid56 code to lock stripes for read/modify/write */
47 struct btrfs_stripe_hash_table {
48 	struct list_head stripe_cache;
49 	spinlock_t cache_lock;
50 	int cache_size;
51 	struct btrfs_stripe_hash table[];
52 };
53 
54 enum btrfs_rbio_ops {
55 	BTRFS_RBIO_WRITE,
56 	BTRFS_RBIO_READ_REBUILD,
57 	BTRFS_RBIO_PARITY_SCRUB,
58 	BTRFS_RBIO_REBUILD_MISSING,
59 };
60 
61 struct btrfs_raid_bio {
62 	struct btrfs_fs_info *fs_info;
63 	struct btrfs_bio *bbio;
64 
65 	/* while we're doing rmw on a stripe
66 	 * we put it into a hash table so we can
67 	 * lock the stripe and merge more rbios
68 	 * into it.
69 	 */
70 	struct list_head hash_list;
71 
72 	/*
73 	 * LRU list for the stripe cache
74 	 */
75 	struct list_head stripe_cache;
76 
77 	/*
78 	 * for scheduling work in the helper threads
79 	 */
80 	struct btrfs_work work;
81 
82 	/*
83 	 * bio list and bio_list_lock are used
84 	 * to add more bios into the stripe
85 	 * in hopes of avoiding the full rmw
86 	 */
87 	struct bio_list bio_list;
88 	spinlock_t bio_list_lock;
89 
90 	/* also protected by the bio_list_lock, the
91 	 * plug list is used by the plugging code
92 	 * to collect partial bios while plugged.  The
93 	 * stripe locking code also uses it to hand off
94 	 * the stripe lock to the next pending IO
95 	 */
96 	struct list_head plug_list;
97 
98 	/*
99 	 * flags that tell us if it is safe to
100 	 * merge with this bio
101 	 */
102 	unsigned long flags;
103 
104 	/* size of each individual stripe on disk */
105 	int stripe_len;
106 
107 	/* number of data stripes (no p/q) */
108 	int nr_data;
109 
110 	int real_stripes;
111 
112 	int stripe_npages;
113 	/*
114 	 * set if we're doing a parity rebuild
115 	 * for a read from higher up, which is handled
116 	 * differently from a parity rebuild as part of
117 	 * rmw
118 	 */
119 	enum btrfs_rbio_ops operation;
120 
121 	/* first bad stripe */
122 	int faila;
123 
124 	/* second bad stripe (for raid6 use) */
125 	int failb;
126 
127 	int scrubp;
128 	/*
129 	 * number of pages needed to represent the full
130 	 * stripe
131 	 */
132 	int nr_pages;
133 
134 	/*
135 	 * size of all the bios in the bio_list.  This
136 	 * helps us decide if the rbio maps to a full
137 	 * stripe or not
138 	 */
139 	int bio_list_bytes;
140 
141 	int generic_bio_cnt;
142 
143 	refcount_t refs;
144 
145 	atomic_t stripes_pending;
146 
147 	atomic_t error;
148 	/*
149 	 * these are two arrays of pointers.  We allocate the
150 	 * rbio big enough to hold them both and setup their
151 	 * locations when the rbio is allocated
152 	 */
153 
154 	/* pointers to pages that we allocated for
155 	 * reading/writing stripes directly from the disk (including P/Q)
156 	 */
157 	struct page **stripe_pages;
158 
159 	/*
160 	 * pointers to the pages in the bio_list.  Stored
161 	 * here for faster lookup
162 	 */
163 	struct page **bio_pages;
164 
165 	/*
166 	 * bitmap to record which horizontal stripe has data
167 	 */
168 	unsigned long *dbitmap;
169 
170 	/* allocated with real_stripes-many pointers for finish_*() calls */
171 	void **finish_pointers;
172 
173 	/* allocated with stripe_npages-many bits for finish_*() calls */
174 	unsigned long *finish_pbitmap;
175 };
176 
177 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio);
178 static noinline void finish_rmw(struct btrfs_raid_bio *rbio);
179 static void rmw_work(struct btrfs_work *work);
180 static void read_rebuild_work(struct btrfs_work *work);
181 static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
182 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
183 static void __free_raid_bio(struct btrfs_raid_bio *rbio);
184 static void index_rbio_pages(struct btrfs_raid_bio *rbio);
185 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
186 
187 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
188 					 int need_check);
189 static void scrub_parity_work(struct btrfs_work *work);
190 
191 static void start_async_work(struct btrfs_raid_bio *rbio, btrfs_func_t work_func)
192 {
193 	btrfs_init_work(&rbio->work, work_func, NULL, NULL);
194 	btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
195 }
196 
197 /*
198  * the stripe hash table is used for locking, and to collect
199  * bios in hopes of making a full stripe
200  */
201 int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
202 {
203 	struct btrfs_stripe_hash_table *table;
204 	struct btrfs_stripe_hash_table *x;
205 	struct btrfs_stripe_hash *cur;
206 	struct btrfs_stripe_hash *h;
207 	int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
208 	int i;
209 	int table_size;
210 
211 	if (info->stripe_hash_table)
212 		return 0;
213 
214 	/*
215 	 * The table is large, starting with order 4 and can go as high as
216 	 * order 7 in case lock debugging is turned on.
217 	 *
218 	 * Try harder to allocate and fallback to vmalloc to lower the chance
219 	 * of a failing mount.
220 	 */
221 	table_size = sizeof(*table) + sizeof(*h) * num_entries;
222 	table = kvzalloc(table_size, GFP_KERNEL);
223 	if (!table)
224 		return -ENOMEM;
225 
226 	spin_lock_init(&table->cache_lock);
227 	INIT_LIST_HEAD(&table->stripe_cache);
228 
229 	h = table->table;
230 
231 	for (i = 0; i < num_entries; i++) {
232 		cur = h + i;
233 		INIT_LIST_HEAD(&cur->hash_list);
234 		spin_lock_init(&cur->lock);
235 	}
236 
237 	x = cmpxchg(&info->stripe_hash_table, NULL, table);
238 	if (x)
239 		kvfree(x);
240 	return 0;
241 }
242 
243 /*
244  * caching an rbio means to copy anything from the
245  * bio_pages array into the stripe_pages array.  We
246  * use the page uptodate bit in the stripe cache array
247  * to indicate if it has valid data
248  *
249  * once the caching is done, we set the cache ready
250  * bit.
251  */
252 static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
253 {
254 	int i;
255 	char *s;
256 	char *d;
257 	int ret;
258 
259 	ret = alloc_rbio_pages(rbio);
260 	if (ret)
261 		return;
262 
263 	for (i = 0; i < rbio->nr_pages; i++) {
264 		if (!rbio->bio_pages[i])
265 			continue;
266 
267 		s = kmap(rbio->bio_pages[i]);
268 		d = kmap(rbio->stripe_pages[i]);
269 
270 		copy_page(d, s);
271 
272 		kunmap(rbio->bio_pages[i]);
273 		kunmap(rbio->stripe_pages[i]);
274 		SetPageUptodate(rbio->stripe_pages[i]);
275 	}
276 	set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
277 }
278 
279 /*
280  * we hash on the first logical address of the stripe
281  */
282 static int rbio_bucket(struct btrfs_raid_bio *rbio)
283 {
284 	u64 num = rbio->bbio->raid_map[0];
285 
286 	/*
287 	 * we shift down quite a bit.  We're using byte
288 	 * addressing, and most of the lower bits are zeros.
289 	 * This tends to upset hash_64, and it consistently
290 	 * returns just one or two different values.
291 	 *
292 	 * shifting off the lower bits fixes things.
293 	 */
294 	return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
295 }
296 
297 /*
298  * stealing an rbio means taking all the uptodate pages from the stripe
299  * array in the source rbio and putting them into the destination rbio
300  */
301 static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
302 {
303 	int i;
304 	struct page *s;
305 	struct page *d;
306 
307 	if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
308 		return;
309 
310 	for (i = 0; i < dest->nr_pages; i++) {
311 		s = src->stripe_pages[i];
312 		if (!s || !PageUptodate(s)) {
313 			continue;
314 		}
315 
316 		d = dest->stripe_pages[i];
317 		if (d)
318 			__free_page(d);
319 
320 		dest->stripe_pages[i] = s;
321 		src->stripe_pages[i] = NULL;
322 	}
323 }
324 
325 /*
326  * merging means we take the bio_list from the victim and
327  * splice it into the destination.  The victim should
328  * be discarded afterwards.
329  *
330  * must be called with dest->rbio_list_lock held
331  */
332 static void merge_rbio(struct btrfs_raid_bio *dest,
333 		       struct btrfs_raid_bio *victim)
334 {
335 	bio_list_merge(&dest->bio_list, &victim->bio_list);
336 	dest->bio_list_bytes += victim->bio_list_bytes;
337 	dest->generic_bio_cnt += victim->generic_bio_cnt;
338 	bio_list_init(&victim->bio_list);
339 }
340 
341 /*
342  * used to prune items that are in the cache.  The caller
343  * must hold the hash table lock.
344  */
345 static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
346 {
347 	int bucket = rbio_bucket(rbio);
348 	struct btrfs_stripe_hash_table *table;
349 	struct btrfs_stripe_hash *h;
350 	int freeit = 0;
351 
352 	/*
353 	 * check the bit again under the hash table lock.
354 	 */
355 	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
356 		return;
357 
358 	table = rbio->fs_info->stripe_hash_table;
359 	h = table->table + bucket;
360 
361 	/* hold the lock for the bucket because we may be
362 	 * removing it from the hash table
363 	 */
364 	spin_lock(&h->lock);
365 
366 	/*
367 	 * hold the lock for the bio list because we need
368 	 * to make sure the bio list is empty
369 	 */
370 	spin_lock(&rbio->bio_list_lock);
371 
372 	if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
373 		list_del_init(&rbio->stripe_cache);
374 		table->cache_size -= 1;
375 		freeit = 1;
376 
377 		/* if the bio list isn't empty, this rbio is
378 		 * still involved in an IO.  We take it out
379 		 * of the cache list, and drop the ref that
380 		 * was held for the list.
381 		 *
382 		 * If the bio_list was empty, we also remove
383 		 * the rbio from the hash_table, and drop
384 		 * the corresponding ref
385 		 */
386 		if (bio_list_empty(&rbio->bio_list)) {
387 			if (!list_empty(&rbio->hash_list)) {
388 				list_del_init(&rbio->hash_list);
389 				refcount_dec(&rbio->refs);
390 				BUG_ON(!list_empty(&rbio->plug_list));
391 			}
392 		}
393 	}
394 
395 	spin_unlock(&rbio->bio_list_lock);
396 	spin_unlock(&h->lock);
397 
398 	if (freeit)
399 		__free_raid_bio(rbio);
400 }
401 
402 /*
403  * prune a given rbio from the cache
404  */
405 static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
406 {
407 	struct btrfs_stripe_hash_table *table;
408 	unsigned long flags;
409 
410 	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
411 		return;
412 
413 	table = rbio->fs_info->stripe_hash_table;
414 
415 	spin_lock_irqsave(&table->cache_lock, flags);
416 	__remove_rbio_from_cache(rbio);
417 	spin_unlock_irqrestore(&table->cache_lock, flags);
418 }
419 
420 /*
421  * remove everything in the cache
422  */
423 static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
424 {
425 	struct btrfs_stripe_hash_table *table;
426 	unsigned long flags;
427 	struct btrfs_raid_bio *rbio;
428 
429 	table = info->stripe_hash_table;
430 
431 	spin_lock_irqsave(&table->cache_lock, flags);
432 	while (!list_empty(&table->stripe_cache)) {
433 		rbio = list_entry(table->stripe_cache.next,
434 				  struct btrfs_raid_bio,
435 				  stripe_cache);
436 		__remove_rbio_from_cache(rbio);
437 	}
438 	spin_unlock_irqrestore(&table->cache_lock, flags);
439 }
440 
441 /*
442  * remove all cached entries and free the hash table
443  * used by unmount
444  */
445 void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
446 {
447 	if (!info->stripe_hash_table)
448 		return;
449 	btrfs_clear_rbio_cache(info);
450 	kvfree(info->stripe_hash_table);
451 	info->stripe_hash_table = NULL;
452 }
453 
454 /*
455  * insert an rbio into the stripe cache.  It
456  * must have already been prepared by calling
457  * cache_rbio_pages
458  *
459  * If this rbio was already cached, it gets
460  * moved to the front of the lru.
461  *
462  * If the size of the rbio cache is too big, we
463  * prune an item.
464  */
465 static void cache_rbio(struct btrfs_raid_bio *rbio)
466 {
467 	struct btrfs_stripe_hash_table *table;
468 	unsigned long flags;
469 
470 	if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
471 		return;
472 
473 	table = rbio->fs_info->stripe_hash_table;
474 
475 	spin_lock_irqsave(&table->cache_lock, flags);
476 	spin_lock(&rbio->bio_list_lock);
477 
478 	/* bump our ref if we were not in the list before */
479 	if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
480 		refcount_inc(&rbio->refs);
481 
482 	if (!list_empty(&rbio->stripe_cache)){
483 		list_move(&rbio->stripe_cache, &table->stripe_cache);
484 	} else {
485 		list_add(&rbio->stripe_cache, &table->stripe_cache);
486 		table->cache_size += 1;
487 	}
488 
489 	spin_unlock(&rbio->bio_list_lock);
490 
491 	if (table->cache_size > RBIO_CACHE_SIZE) {
492 		struct btrfs_raid_bio *found;
493 
494 		found = list_entry(table->stripe_cache.prev,
495 				  struct btrfs_raid_bio,
496 				  stripe_cache);
497 
498 		if (found != rbio)
499 			__remove_rbio_from_cache(found);
500 	}
501 
502 	spin_unlock_irqrestore(&table->cache_lock, flags);
503 }
504 
505 /*
506  * helper function to run the xor_blocks api.  It is only
507  * able to do MAX_XOR_BLOCKS at a time, so we need to
508  * loop through.
509  */
510 static void run_xor(void **pages, int src_cnt, ssize_t len)
511 {
512 	int src_off = 0;
513 	int xor_src_cnt = 0;
514 	void *dest = pages[src_cnt];
515 
516 	while(src_cnt > 0) {
517 		xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
518 		xor_blocks(xor_src_cnt, len, dest, pages + src_off);
519 
520 		src_cnt -= xor_src_cnt;
521 		src_off += xor_src_cnt;
522 	}
523 }
524 
525 /*
526  * Returns true if the bio list inside this rbio covers an entire stripe (no
527  * rmw required).
528  */
529 static int rbio_is_full(struct btrfs_raid_bio *rbio)
530 {
531 	unsigned long flags;
532 	unsigned long size = rbio->bio_list_bytes;
533 	int ret = 1;
534 
535 	spin_lock_irqsave(&rbio->bio_list_lock, flags);
536 	if (size != rbio->nr_data * rbio->stripe_len)
537 		ret = 0;
538 	BUG_ON(size > rbio->nr_data * rbio->stripe_len);
539 	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
540 
541 	return ret;
542 }
543 
544 /*
545  * returns 1 if it is safe to merge two rbios together.
546  * The merging is safe if the two rbios correspond to
547  * the same stripe and if they are both going in the same
548  * direction (read vs write), and if neither one is
549  * locked for final IO
550  *
551  * The caller is responsible for locking such that
552  * rmw_locked is safe to test
553  */
554 static int rbio_can_merge(struct btrfs_raid_bio *last,
555 			  struct btrfs_raid_bio *cur)
556 {
557 	if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
558 	    test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
559 		return 0;
560 
561 	/*
562 	 * we can't merge with cached rbios, since the
563 	 * idea is that when we merge the destination
564 	 * rbio is going to run our IO for us.  We can
565 	 * steal from cached rbios though, other functions
566 	 * handle that.
567 	 */
568 	if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
569 	    test_bit(RBIO_CACHE_BIT, &cur->flags))
570 		return 0;
571 
572 	if (last->bbio->raid_map[0] !=
573 	    cur->bbio->raid_map[0])
574 		return 0;
575 
576 	/* we can't merge with different operations */
577 	if (last->operation != cur->operation)
578 		return 0;
579 	/*
580 	 * We've need read the full stripe from the drive.
581 	 * check and repair the parity and write the new results.
582 	 *
583 	 * We're not allowed to add any new bios to the
584 	 * bio list here, anyone else that wants to
585 	 * change this stripe needs to do their own rmw.
586 	 */
587 	if (last->operation == BTRFS_RBIO_PARITY_SCRUB)
588 		return 0;
589 
590 	if (last->operation == BTRFS_RBIO_REBUILD_MISSING)
591 		return 0;
592 
593 	if (last->operation == BTRFS_RBIO_READ_REBUILD) {
594 		int fa = last->faila;
595 		int fb = last->failb;
596 		int cur_fa = cur->faila;
597 		int cur_fb = cur->failb;
598 
599 		if (last->faila >= last->failb) {
600 			fa = last->failb;
601 			fb = last->faila;
602 		}
603 
604 		if (cur->faila >= cur->failb) {
605 			cur_fa = cur->failb;
606 			cur_fb = cur->faila;
607 		}
608 
609 		if (fa != cur_fa || fb != cur_fb)
610 			return 0;
611 	}
612 	return 1;
613 }
614 
615 static int rbio_stripe_page_index(struct btrfs_raid_bio *rbio, int stripe,
616 				  int index)
617 {
618 	return stripe * rbio->stripe_npages + index;
619 }
620 
621 /*
622  * these are just the pages from the rbio array, not from anything
623  * the FS sent down to us
624  */
625 static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe,
626 				     int index)
627 {
628 	return rbio->stripe_pages[rbio_stripe_page_index(rbio, stripe, index)];
629 }
630 
631 /*
632  * helper to index into the pstripe
633  */
634 static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index)
635 {
636 	return rbio_stripe_page(rbio, rbio->nr_data, index);
637 }
638 
639 /*
640  * helper to index into the qstripe, returns null
641  * if there is no qstripe
642  */
643 static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index)
644 {
645 	if (rbio->nr_data + 1 == rbio->real_stripes)
646 		return NULL;
647 	return rbio_stripe_page(rbio, rbio->nr_data + 1, index);
648 }
649 
650 /*
651  * The first stripe in the table for a logical address
652  * has the lock.  rbios are added in one of three ways:
653  *
654  * 1) Nobody has the stripe locked yet.  The rbio is given
655  * the lock and 0 is returned.  The caller must start the IO
656  * themselves.
657  *
658  * 2) Someone has the stripe locked, but we're able to merge
659  * with the lock owner.  The rbio is freed and the IO will
660  * start automatically along with the existing rbio.  1 is returned.
661  *
662  * 3) Someone has the stripe locked, but we're not able to merge.
663  * The rbio is added to the lock owner's plug list, or merged into
664  * an rbio already on the plug list.  When the lock owner unlocks,
665  * the next rbio on the list is run and the IO is started automatically.
666  * 1 is returned
667  *
668  * If we return 0, the caller still owns the rbio and must continue with
669  * IO submission.  If we return 1, the caller must assume the rbio has
670  * already been freed.
671  */
672 static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
673 {
674 	struct btrfs_stripe_hash *h;
675 	struct btrfs_raid_bio *cur;
676 	struct btrfs_raid_bio *pending;
677 	unsigned long flags;
678 	struct btrfs_raid_bio *freeit = NULL;
679 	struct btrfs_raid_bio *cache_drop = NULL;
680 	int ret = 0;
681 
682 	h = rbio->fs_info->stripe_hash_table->table + rbio_bucket(rbio);
683 
684 	spin_lock_irqsave(&h->lock, flags);
685 	list_for_each_entry(cur, &h->hash_list, hash_list) {
686 		if (cur->bbio->raid_map[0] != rbio->bbio->raid_map[0])
687 			continue;
688 
689 		spin_lock(&cur->bio_list_lock);
690 
691 		/* Can we steal this cached rbio's pages? */
692 		if (bio_list_empty(&cur->bio_list) &&
693 		    list_empty(&cur->plug_list) &&
694 		    test_bit(RBIO_CACHE_BIT, &cur->flags) &&
695 		    !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
696 			list_del_init(&cur->hash_list);
697 			refcount_dec(&cur->refs);
698 
699 			steal_rbio(cur, rbio);
700 			cache_drop = cur;
701 			spin_unlock(&cur->bio_list_lock);
702 
703 			goto lockit;
704 		}
705 
706 		/* Can we merge into the lock owner? */
707 		if (rbio_can_merge(cur, rbio)) {
708 			merge_rbio(cur, rbio);
709 			spin_unlock(&cur->bio_list_lock);
710 			freeit = rbio;
711 			ret = 1;
712 			goto out;
713 		}
714 
715 
716 		/*
717 		 * We couldn't merge with the running rbio, see if we can merge
718 		 * with the pending ones.  We don't have to check for rmw_locked
719 		 * because there is no way they are inside finish_rmw right now
720 		 */
721 		list_for_each_entry(pending, &cur->plug_list, plug_list) {
722 			if (rbio_can_merge(pending, rbio)) {
723 				merge_rbio(pending, rbio);
724 				spin_unlock(&cur->bio_list_lock);
725 				freeit = rbio;
726 				ret = 1;
727 				goto out;
728 			}
729 		}
730 
731 		/*
732 		 * No merging, put us on the tail of the plug list, our rbio
733 		 * will be started with the currently running rbio unlocks
734 		 */
735 		list_add_tail(&rbio->plug_list, &cur->plug_list);
736 		spin_unlock(&cur->bio_list_lock);
737 		ret = 1;
738 		goto out;
739 	}
740 lockit:
741 	refcount_inc(&rbio->refs);
742 	list_add(&rbio->hash_list, &h->hash_list);
743 out:
744 	spin_unlock_irqrestore(&h->lock, flags);
745 	if (cache_drop)
746 		remove_rbio_from_cache(cache_drop);
747 	if (freeit)
748 		__free_raid_bio(freeit);
749 	return ret;
750 }
751 
752 /*
753  * called as rmw or parity rebuild is completed.  If the plug list has more
754  * rbios waiting for this stripe, the next one on the list will be started
755  */
756 static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
757 {
758 	int bucket;
759 	struct btrfs_stripe_hash *h;
760 	unsigned long flags;
761 	int keep_cache = 0;
762 
763 	bucket = rbio_bucket(rbio);
764 	h = rbio->fs_info->stripe_hash_table->table + bucket;
765 
766 	if (list_empty(&rbio->plug_list))
767 		cache_rbio(rbio);
768 
769 	spin_lock_irqsave(&h->lock, flags);
770 	spin_lock(&rbio->bio_list_lock);
771 
772 	if (!list_empty(&rbio->hash_list)) {
773 		/*
774 		 * if we're still cached and there is no other IO
775 		 * to perform, just leave this rbio here for others
776 		 * to steal from later
777 		 */
778 		if (list_empty(&rbio->plug_list) &&
779 		    test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
780 			keep_cache = 1;
781 			clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
782 			BUG_ON(!bio_list_empty(&rbio->bio_list));
783 			goto done;
784 		}
785 
786 		list_del_init(&rbio->hash_list);
787 		refcount_dec(&rbio->refs);
788 
789 		/*
790 		 * we use the plug list to hold all the rbios
791 		 * waiting for the chance to lock this stripe.
792 		 * hand the lock over to one of them.
793 		 */
794 		if (!list_empty(&rbio->plug_list)) {
795 			struct btrfs_raid_bio *next;
796 			struct list_head *head = rbio->plug_list.next;
797 
798 			next = list_entry(head, struct btrfs_raid_bio,
799 					  plug_list);
800 
801 			list_del_init(&rbio->plug_list);
802 
803 			list_add(&next->hash_list, &h->hash_list);
804 			refcount_inc(&next->refs);
805 			spin_unlock(&rbio->bio_list_lock);
806 			spin_unlock_irqrestore(&h->lock, flags);
807 
808 			if (next->operation == BTRFS_RBIO_READ_REBUILD)
809 				start_async_work(next, read_rebuild_work);
810 			else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) {
811 				steal_rbio(rbio, next);
812 				start_async_work(next, read_rebuild_work);
813 			} else if (next->operation == BTRFS_RBIO_WRITE) {
814 				steal_rbio(rbio, next);
815 				start_async_work(next, rmw_work);
816 			} else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
817 				steal_rbio(rbio, next);
818 				start_async_work(next, scrub_parity_work);
819 			}
820 
821 			goto done_nolock;
822 		}
823 	}
824 done:
825 	spin_unlock(&rbio->bio_list_lock);
826 	spin_unlock_irqrestore(&h->lock, flags);
827 
828 done_nolock:
829 	if (!keep_cache)
830 		remove_rbio_from_cache(rbio);
831 }
832 
833 static void __free_raid_bio(struct btrfs_raid_bio *rbio)
834 {
835 	int i;
836 
837 	if (!refcount_dec_and_test(&rbio->refs))
838 		return;
839 
840 	WARN_ON(!list_empty(&rbio->stripe_cache));
841 	WARN_ON(!list_empty(&rbio->hash_list));
842 	WARN_ON(!bio_list_empty(&rbio->bio_list));
843 
844 	for (i = 0; i < rbio->nr_pages; i++) {
845 		if (rbio->stripe_pages[i]) {
846 			__free_page(rbio->stripe_pages[i]);
847 			rbio->stripe_pages[i] = NULL;
848 		}
849 	}
850 
851 	btrfs_put_bbio(rbio->bbio);
852 	kfree(rbio);
853 }
854 
855 static void rbio_endio_bio_list(struct bio *cur, blk_status_t err)
856 {
857 	struct bio *next;
858 
859 	while (cur) {
860 		next = cur->bi_next;
861 		cur->bi_next = NULL;
862 		cur->bi_status = err;
863 		bio_endio(cur);
864 		cur = next;
865 	}
866 }
867 
868 /*
869  * this frees the rbio and runs through all the bios in the
870  * bio_list and calls end_io on them
871  */
872 static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err)
873 {
874 	struct bio *cur = bio_list_get(&rbio->bio_list);
875 	struct bio *extra;
876 
877 	if (rbio->generic_bio_cnt)
878 		btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt);
879 
880 	/*
881 	 * At this moment, rbio->bio_list is empty, however since rbio does not
882 	 * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the
883 	 * hash list, rbio may be merged with others so that rbio->bio_list
884 	 * becomes non-empty.
885 	 * Once unlock_stripe() is done, rbio->bio_list will not be updated any
886 	 * more and we can call bio_endio() on all queued bios.
887 	 */
888 	unlock_stripe(rbio);
889 	extra = bio_list_get(&rbio->bio_list);
890 	__free_raid_bio(rbio);
891 
892 	rbio_endio_bio_list(cur, err);
893 	if (extra)
894 		rbio_endio_bio_list(extra, err);
895 }
896 
897 /*
898  * end io function used by finish_rmw.  When we finally
899  * get here, we've written a full stripe
900  */
901 static void raid_write_end_io(struct bio *bio)
902 {
903 	struct btrfs_raid_bio *rbio = bio->bi_private;
904 	blk_status_t err = bio->bi_status;
905 	int max_errors;
906 
907 	if (err)
908 		fail_bio_stripe(rbio, bio);
909 
910 	bio_put(bio);
911 
912 	if (!atomic_dec_and_test(&rbio->stripes_pending))
913 		return;
914 
915 	err = BLK_STS_OK;
916 
917 	/* OK, we have read all the stripes we need to. */
918 	max_errors = (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) ?
919 		     0 : rbio->bbio->max_errors;
920 	if (atomic_read(&rbio->error) > max_errors)
921 		err = BLK_STS_IOERR;
922 
923 	rbio_orig_end_io(rbio, err);
924 }
925 
926 /*
927  * the read/modify/write code wants to use the original bio for
928  * any pages it included, and then use the rbio for everything
929  * else.  This function decides if a given index (stripe number)
930  * and page number in that stripe fall inside the original bio
931  * or the rbio.
932  *
933  * if you set bio_list_only, you'll get a NULL back for any ranges
934  * that are outside the bio_list
935  *
936  * This doesn't take any refs on anything, you get a bare page pointer
937  * and the caller must bump refs as required.
938  *
939  * You must call index_rbio_pages once before you can trust
940  * the answers from this function.
941  */
942 static struct page *page_in_rbio(struct btrfs_raid_bio *rbio,
943 				 int index, int pagenr, int bio_list_only)
944 {
945 	int chunk_page;
946 	struct page *p = NULL;
947 
948 	chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr;
949 
950 	spin_lock_irq(&rbio->bio_list_lock);
951 	p = rbio->bio_pages[chunk_page];
952 	spin_unlock_irq(&rbio->bio_list_lock);
953 
954 	if (p || bio_list_only)
955 		return p;
956 
957 	return rbio->stripe_pages[chunk_page];
958 }
959 
960 /*
961  * number of pages we need for the entire stripe across all the
962  * drives
963  */
964 static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes)
965 {
966 	return DIV_ROUND_UP(stripe_len, PAGE_SIZE) * nr_stripes;
967 }
968 
969 /*
970  * allocation and initial setup for the btrfs_raid_bio.  Not
971  * this does not allocate any pages for rbio->pages.
972  */
973 static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info,
974 					 struct btrfs_bio *bbio,
975 					 u64 stripe_len)
976 {
977 	struct btrfs_raid_bio *rbio;
978 	int nr_data = 0;
979 	int real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
980 	int num_pages = rbio_nr_pages(stripe_len, real_stripes);
981 	int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE);
982 	void *p;
983 
984 	rbio = kzalloc(sizeof(*rbio) +
985 		       sizeof(*rbio->stripe_pages) * num_pages +
986 		       sizeof(*rbio->bio_pages) * num_pages +
987 		       sizeof(*rbio->finish_pointers) * real_stripes +
988 		       sizeof(*rbio->dbitmap) * BITS_TO_LONGS(stripe_npages) +
989 		       sizeof(*rbio->finish_pbitmap) *
990 				BITS_TO_LONGS(stripe_npages),
991 		       GFP_NOFS);
992 	if (!rbio)
993 		return ERR_PTR(-ENOMEM);
994 
995 	bio_list_init(&rbio->bio_list);
996 	INIT_LIST_HEAD(&rbio->plug_list);
997 	spin_lock_init(&rbio->bio_list_lock);
998 	INIT_LIST_HEAD(&rbio->stripe_cache);
999 	INIT_LIST_HEAD(&rbio->hash_list);
1000 	rbio->bbio = bbio;
1001 	rbio->fs_info = fs_info;
1002 	rbio->stripe_len = stripe_len;
1003 	rbio->nr_pages = num_pages;
1004 	rbio->real_stripes = real_stripes;
1005 	rbio->stripe_npages = stripe_npages;
1006 	rbio->faila = -1;
1007 	rbio->failb = -1;
1008 	refcount_set(&rbio->refs, 1);
1009 	atomic_set(&rbio->error, 0);
1010 	atomic_set(&rbio->stripes_pending, 0);
1011 
1012 	/*
1013 	 * the stripe_pages, bio_pages, etc arrays point to the extra
1014 	 * memory we allocated past the end of the rbio
1015 	 */
1016 	p = rbio + 1;
1017 #define CONSUME_ALLOC(ptr, count)	do {				\
1018 		ptr = p;						\
1019 		p = (unsigned char *)p + sizeof(*(ptr)) * (count);	\
1020 	} while (0)
1021 	CONSUME_ALLOC(rbio->stripe_pages, num_pages);
1022 	CONSUME_ALLOC(rbio->bio_pages, num_pages);
1023 	CONSUME_ALLOC(rbio->finish_pointers, real_stripes);
1024 	CONSUME_ALLOC(rbio->dbitmap, BITS_TO_LONGS(stripe_npages));
1025 	CONSUME_ALLOC(rbio->finish_pbitmap, BITS_TO_LONGS(stripe_npages));
1026 #undef  CONSUME_ALLOC
1027 
1028 	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1029 		nr_data = real_stripes - 1;
1030 	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1031 		nr_data = real_stripes - 2;
1032 	else
1033 		BUG();
1034 
1035 	rbio->nr_data = nr_data;
1036 	return rbio;
1037 }
1038 
1039 /* allocate pages for all the stripes in the bio, including parity */
1040 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
1041 {
1042 	int i;
1043 	struct page *page;
1044 
1045 	for (i = 0; i < rbio->nr_pages; i++) {
1046 		if (rbio->stripe_pages[i])
1047 			continue;
1048 		page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1049 		if (!page)
1050 			return -ENOMEM;
1051 		rbio->stripe_pages[i] = page;
1052 	}
1053 	return 0;
1054 }
1055 
1056 /* only allocate pages for p/q stripes */
1057 static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
1058 {
1059 	int i;
1060 	struct page *page;
1061 
1062 	i = rbio_stripe_page_index(rbio, rbio->nr_data, 0);
1063 
1064 	for (; i < rbio->nr_pages; i++) {
1065 		if (rbio->stripe_pages[i])
1066 			continue;
1067 		page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1068 		if (!page)
1069 			return -ENOMEM;
1070 		rbio->stripe_pages[i] = page;
1071 	}
1072 	return 0;
1073 }
1074 
1075 /*
1076  * add a single page from a specific stripe into our list of bios for IO
1077  * this will try to merge into existing bios if possible, and returns
1078  * zero if all went well.
1079  */
1080 static int rbio_add_io_page(struct btrfs_raid_bio *rbio,
1081 			    struct bio_list *bio_list,
1082 			    struct page *page,
1083 			    int stripe_nr,
1084 			    unsigned long page_index,
1085 			    unsigned long bio_max_len)
1086 {
1087 	struct bio *last = bio_list->tail;
1088 	u64 last_end = 0;
1089 	int ret;
1090 	struct bio *bio;
1091 	struct btrfs_bio_stripe *stripe;
1092 	u64 disk_start;
1093 
1094 	stripe = &rbio->bbio->stripes[stripe_nr];
1095 	disk_start = stripe->physical + (page_index << PAGE_SHIFT);
1096 
1097 	/* if the device is missing, just fail this stripe */
1098 	if (!stripe->dev->bdev)
1099 		return fail_rbio_index(rbio, stripe_nr);
1100 
1101 	/* see if we can add this page onto our existing bio */
1102 	if (last) {
1103 		last_end = (u64)last->bi_iter.bi_sector << 9;
1104 		last_end += last->bi_iter.bi_size;
1105 
1106 		/*
1107 		 * we can't merge these if they are from different
1108 		 * devices or if they are not contiguous
1109 		 */
1110 		if (last_end == disk_start && stripe->dev->bdev &&
1111 		    !last->bi_status &&
1112 		    last->bi_disk == stripe->dev->bdev->bd_disk &&
1113 		    last->bi_partno == stripe->dev->bdev->bd_partno) {
1114 			ret = bio_add_page(last, page, PAGE_SIZE, 0);
1115 			if (ret == PAGE_SIZE)
1116 				return 0;
1117 		}
1118 	}
1119 
1120 	/* put a new bio on the list */
1121 	bio = btrfs_io_bio_alloc(bio_max_len >> PAGE_SHIFT ?: 1);
1122 	bio->bi_iter.bi_size = 0;
1123 	bio_set_dev(bio, stripe->dev->bdev);
1124 	bio->bi_iter.bi_sector = disk_start >> 9;
1125 
1126 	bio_add_page(bio, page, PAGE_SIZE, 0);
1127 	bio_list_add(bio_list, bio);
1128 	return 0;
1129 }
1130 
1131 /*
1132  * while we're doing the read/modify/write cycle, we could
1133  * have errors in reading pages off the disk.  This checks
1134  * for errors and if we're not able to read the page it'll
1135  * trigger parity reconstruction.  The rmw will be finished
1136  * after we've reconstructed the failed stripes
1137  */
1138 static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio)
1139 {
1140 	if (rbio->faila >= 0 || rbio->failb >= 0) {
1141 		BUG_ON(rbio->faila == rbio->real_stripes - 1);
1142 		__raid56_parity_recover(rbio);
1143 	} else {
1144 		finish_rmw(rbio);
1145 	}
1146 }
1147 
1148 /*
1149  * helper function to walk our bio list and populate the bio_pages array with
1150  * the result.  This seems expensive, but it is faster than constantly
1151  * searching through the bio list as we setup the IO in finish_rmw or stripe
1152  * reconstruction.
1153  *
1154  * This must be called before you trust the answers from page_in_rbio
1155  */
1156 static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1157 {
1158 	struct bio *bio;
1159 	u64 start;
1160 	unsigned long stripe_offset;
1161 	unsigned long page_index;
1162 
1163 	spin_lock_irq(&rbio->bio_list_lock);
1164 	bio_list_for_each(bio, &rbio->bio_list) {
1165 		struct bio_vec bvec;
1166 		struct bvec_iter iter;
1167 		int i = 0;
1168 
1169 		start = (u64)bio->bi_iter.bi_sector << 9;
1170 		stripe_offset = start - rbio->bbio->raid_map[0];
1171 		page_index = stripe_offset >> PAGE_SHIFT;
1172 
1173 		if (bio_flagged(bio, BIO_CLONED))
1174 			bio->bi_iter = btrfs_io_bio(bio)->iter;
1175 
1176 		bio_for_each_segment(bvec, bio, iter) {
1177 			rbio->bio_pages[page_index + i] = bvec.bv_page;
1178 			i++;
1179 		}
1180 	}
1181 	spin_unlock_irq(&rbio->bio_list_lock);
1182 }
1183 
1184 /*
1185  * this is called from one of two situations.  We either
1186  * have a full stripe from the higher layers, or we've read all
1187  * the missing bits off disk.
1188  *
1189  * This will calculate the parity and then send down any
1190  * changed blocks.
1191  */
1192 static noinline void finish_rmw(struct btrfs_raid_bio *rbio)
1193 {
1194 	struct btrfs_bio *bbio = rbio->bbio;
1195 	void **pointers = rbio->finish_pointers;
1196 	int nr_data = rbio->nr_data;
1197 	int stripe;
1198 	int pagenr;
1199 	int p_stripe = -1;
1200 	int q_stripe = -1;
1201 	struct bio_list bio_list;
1202 	struct bio *bio;
1203 	int ret;
1204 
1205 	bio_list_init(&bio_list);
1206 
1207 	if (rbio->real_stripes - rbio->nr_data == 1) {
1208 		p_stripe = rbio->real_stripes - 1;
1209 	} else if (rbio->real_stripes - rbio->nr_data == 2) {
1210 		p_stripe = rbio->real_stripes - 2;
1211 		q_stripe = rbio->real_stripes - 1;
1212 	} else {
1213 		BUG();
1214 	}
1215 
1216 	/* at this point we either have a full stripe,
1217 	 * or we've read the full stripe from the drive.
1218 	 * recalculate the parity and write the new results.
1219 	 *
1220 	 * We're not allowed to add any new bios to the
1221 	 * bio list here, anyone else that wants to
1222 	 * change this stripe needs to do their own rmw.
1223 	 */
1224 	spin_lock_irq(&rbio->bio_list_lock);
1225 	set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1226 	spin_unlock_irq(&rbio->bio_list_lock);
1227 
1228 	atomic_set(&rbio->error, 0);
1229 
1230 	/*
1231 	 * now that we've set rmw_locked, run through the
1232 	 * bio list one last time and map the page pointers
1233 	 *
1234 	 * We don't cache full rbios because we're assuming
1235 	 * the higher layers are unlikely to use this area of
1236 	 * the disk again soon.  If they do use it again,
1237 	 * hopefully they will send another full bio.
1238 	 */
1239 	index_rbio_pages(rbio);
1240 	if (!rbio_is_full(rbio))
1241 		cache_rbio_pages(rbio);
1242 	else
1243 		clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1244 
1245 	for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1246 		struct page *p;
1247 		/* first collect one page from each data stripe */
1248 		for (stripe = 0; stripe < nr_data; stripe++) {
1249 			p = page_in_rbio(rbio, stripe, pagenr, 0);
1250 			pointers[stripe] = kmap(p);
1251 		}
1252 
1253 		/* then add the parity stripe */
1254 		p = rbio_pstripe_page(rbio, pagenr);
1255 		SetPageUptodate(p);
1256 		pointers[stripe++] = kmap(p);
1257 
1258 		if (q_stripe != -1) {
1259 
1260 			/*
1261 			 * raid6, add the qstripe and call the
1262 			 * library function to fill in our p/q
1263 			 */
1264 			p = rbio_qstripe_page(rbio, pagenr);
1265 			SetPageUptodate(p);
1266 			pointers[stripe++] = kmap(p);
1267 
1268 			raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
1269 						pointers);
1270 		} else {
1271 			/* raid5 */
1272 			copy_page(pointers[nr_data], pointers[0]);
1273 			run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
1274 		}
1275 
1276 
1277 		for (stripe = 0; stripe < rbio->real_stripes; stripe++)
1278 			kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
1279 	}
1280 
1281 	/*
1282 	 * time to start writing.  Make bios for everything from the
1283 	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
1284 	 * everything else.
1285 	 */
1286 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1287 		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1288 			struct page *page;
1289 			if (stripe < rbio->nr_data) {
1290 				page = page_in_rbio(rbio, stripe, pagenr, 1);
1291 				if (!page)
1292 					continue;
1293 			} else {
1294 			       page = rbio_stripe_page(rbio, stripe, pagenr);
1295 			}
1296 
1297 			ret = rbio_add_io_page(rbio, &bio_list,
1298 				       page, stripe, pagenr, rbio->stripe_len);
1299 			if (ret)
1300 				goto cleanup;
1301 		}
1302 	}
1303 
1304 	if (likely(!bbio->num_tgtdevs))
1305 		goto write_data;
1306 
1307 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1308 		if (!bbio->tgtdev_map[stripe])
1309 			continue;
1310 
1311 		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1312 			struct page *page;
1313 			if (stripe < rbio->nr_data) {
1314 				page = page_in_rbio(rbio, stripe, pagenr, 1);
1315 				if (!page)
1316 					continue;
1317 			} else {
1318 			       page = rbio_stripe_page(rbio, stripe, pagenr);
1319 			}
1320 
1321 			ret = rbio_add_io_page(rbio, &bio_list, page,
1322 					       rbio->bbio->tgtdev_map[stripe],
1323 					       pagenr, rbio->stripe_len);
1324 			if (ret)
1325 				goto cleanup;
1326 		}
1327 	}
1328 
1329 write_data:
1330 	atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list));
1331 	BUG_ON(atomic_read(&rbio->stripes_pending) == 0);
1332 
1333 	while (1) {
1334 		bio = bio_list_pop(&bio_list);
1335 		if (!bio)
1336 			break;
1337 
1338 		bio->bi_private = rbio;
1339 		bio->bi_end_io = raid_write_end_io;
1340 		bio->bi_opf = REQ_OP_WRITE;
1341 
1342 		submit_bio(bio);
1343 	}
1344 	return;
1345 
1346 cleanup:
1347 	rbio_orig_end_io(rbio, BLK_STS_IOERR);
1348 
1349 	while ((bio = bio_list_pop(&bio_list)))
1350 		bio_put(bio);
1351 }
1352 
1353 /*
1354  * helper to find the stripe number for a given bio.  Used to figure out which
1355  * stripe has failed.  This expects the bio to correspond to a physical disk,
1356  * so it looks up based on physical sector numbers.
1357  */
1358 static int find_bio_stripe(struct btrfs_raid_bio *rbio,
1359 			   struct bio *bio)
1360 {
1361 	u64 physical = bio->bi_iter.bi_sector;
1362 	u64 stripe_start;
1363 	int i;
1364 	struct btrfs_bio_stripe *stripe;
1365 
1366 	physical <<= 9;
1367 
1368 	for (i = 0; i < rbio->bbio->num_stripes; i++) {
1369 		stripe = &rbio->bbio->stripes[i];
1370 		stripe_start = stripe->physical;
1371 		if (physical >= stripe_start &&
1372 		    physical < stripe_start + rbio->stripe_len &&
1373 		    stripe->dev->bdev &&
1374 		    bio->bi_disk == stripe->dev->bdev->bd_disk &&
1375 		    bio->bi_partno == stripe->dev->bdev->bd_partno) {
1376 			return i;
1377 		}
1378 	}
1379 	return -1;
1380 }
1381 
1382 /*
1383  * helper to find the stripe number for a given
1384  * bio (before mapping).  Used to figure out which stripe has
1385  * failed.  This looks up based on logical block numbers.
1386  */
1387 static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio,
1388 				   struct bio *bio)
1389 {
1390 	u64 logical = bio->bi_iter.bi_sector;
1391 	u64 stripe_start;
1392 	int i;
1393 
1394 	logical <<= 9;
1395 
1396 	for (i = 0; i < rbio->nr_data; i++) {
1397 		stripe_start = rbio->bbio->raid_map[i];
1398 		if (logical >= stripe_start &&
1399 		    logical < stripe_start + rbio->stripe_len) {
1400 			return i;
1401 		}
1402 	}
1403 	return -1;
1404 }
1405 
1406 /*
1407  * returns -EIO if we had too many failures
1408  */
1409 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed)
1410 {
1411 	unsigned long flags;
1412 	int ret = 0;
1413 
1414 	spin_lock_irqsave(&rbio->bio_list_lock, flags);
1415 
1416 	/* we already know this stripe is bad, move on */
1417 	if (rbio->faila == failed || rbio->failb == failed)
1418 		goto out;
1419 
1420 	if (rbio->faila == -1) {
1421 		/* first failure on this rbio */
1422 		rbio->faila = failed;
1423 		atomic_inc(&rbio->error);
1424 	} else if (rbio->failb == -1) {
1425 		/* second failure on this rbio */
1426 		rbio->failb = failed;
1427 		atomic_inc(&rbio->error);
1428 	} else {
1429 		ret = -EIO;
1430 	}
1431 out:
1432 	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
1433 
1434 	return ret;
1435 }
1436 
1437 /*
1438  * helper to fail a stripe based on a physical disk
1439  * bio.
1440  */
1441 static int fail_bio_stripe(struct btrfs_raid_bio *rbio,
1442 			   struct bio *bio)
1443 {
1444 	int failed = find_bio_stripe(rbio, bio);
1445 
1446 	if (failed < 0)
1447 		return -EIO;
1448 
1449 	return fail_rbio_index(rbio, failed);
1450 }
1451 
1452 /*
1453  * this sets each page in the bio uptodate.  It should only be used on private
1454  * rbio pages, nothing that comes in from the higher layers
1455  */
1456 static void set_bio_pages_uptodate(struct bio *bio)
1457 {
1458 	struct bio_vec *bvec;
1459 	struct bvec_iter_all iter_all;
1460 
1461 	ASSERT(!bio_flagged(bio, BIO_CLONED));
1462 
1463 	bio_for_each_segment_all(bvec, bio, iter_all)
1464 		SetPageUptodate(bvec->bv_page);
1465 }
1466 
1467 /*
1468  * end io for the read phase of the rmw cycle.  All the bios here are physical
1469  * stripe bios we've read from the disk so we can recalculate the parity of the
1470  * stripe.
1471  *
1472  * This will usually kick off finish_rmw once all the bios are read in, but it
1473  * may trigger parity reconstruction if we had any errors along the way
1474  */
1475 static void raid_rmw_end_io(struct bio *bio)
1476 {
1477 	struct btrfs_raid_bio *rbio = bio->bi_private;
1478 
1479 	if (bio->bi_status)
1480 		fail_bio_stripe(rbio, bio);
1481 	else
1482 		set_bio_pages_uptodate(bio);
1483 
1484 	bio_put(bio);
1485 
1486 	if (!atomic_dec_and_test(&rbio->stripes_pending))
1487 		return;
1488 
1489 	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
1490 		goto cleanup;
1491 
1492 	/*
1493 	 * this will normally call finish_rmw to start our write
1494 	 * but if there are any failed stripes we'll reconstruct
1495 	 * from parity first
1496 	 */
1497 	validate_rbio_for_rmw(rbio);
1498 	return;
1499 
1500 cleanup:
1501 
1502 	rbio_orig_end_io(rbio, BLK_STS_IOERR);
1503 }
1504 
1505 /*
1506  * the stripe must be locked by the caller.  It will
1507  * unlock after all the writes are done
1508  */
1509 static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio)
1510 {
1511 	int bios_to_read = 0;
1512 	struct bio_list bio_list;
1513 	int ret;
1514 	int pagenr;
1515 	int stripe;
1516 	struct bio *bio;
1517 
1518 	bio_list_init(&bio_list);
1519 
1520 	ret = alloc_rbio_pages(rbio);
1521 	if (ret)
1522 		goto cleanup;
1523 
1524 	index_rbio_pages(rbio);
1525 
1526 	atomic_set(&rbio->error, 0);
1527 	/*
1528 	 * build a list of bios to read all the missing parts of this
1529 	 * stripe
1530 	 */
1531 	for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1532 		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1533 			struct page *page;
1534 			/*
1535 			 * we want to find all the pages missing from
1536 			 * the rbio and read them from the disk.  If
1537 			 * page_in_rbio finds a page in the bio list
1538 			 * we don't need to read it off the stripe.
1539 			 */
1540 			page = page_in_rbio(rbio, stripe, pagenr, 1);
1541 			if (page)
1542 				continue;
1543 
1544 			page = rbio_stripe_page(rbio, stripe, pagenr);
1545 			/*
1546 			 * the bio cache may have handed us an uptodate
1547 			 * page.  If so, be happy and use it
1548 			 */
1549 			if (PageUptodate(page))
1550 				continue;
1551 
1552 			ret = rbio_add_io_page(rbio, &bio_list, page,
1553 				       stripe, pagenr, rbio->stripe_len);
1554 			if (ret)
1555 				goto cleanup;
1556 		}
1557 	}
1558 
1559 	bios_to_read = bio_list_size(&bio_list);
1560 	if (!bios_to_read) {
1561 		/*
1562 		 * this can happen if others have merged with
1563 		 * us, it means there is nothing left to read.
1564 		 * But if there are missing devices it may not be
1565 		 * safe to do the full stripe write yet.
1566 		 */
1567 		goto finish;
1568 	}
1569 
1570 	/*
1571 	 * the bbio may be freed once we submit the last bio.  Make sure
1572 	 * not to touch it after that
1573 	 */
1574 	atomic_set(&rbio->stripes_pending, bios_to_read);
1575 	while (1) {
1576 		bio = bio_list_pop(&bio_list);
1577 		if (!bio)
1578 			break;
1579 
1580 		bio->bi_private = rbio;
1581 		bio->bi_end_io = raid_rmw_end_io;
1582 		bio->bi_opf = REQ_OP_READ;
1583 
1584 		btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
1585 
1586 		submit_bio(bio);
1587 	}
1588 	/* the actual write will happen once the reads are done */
1589 	return 0;
1590 
1591 cleanup:
1592 	rbio_orig_end_io(rbio, BLK_STS_IOERR);
1593 
1594 	while ((bio = bio_list_pop(&bio_list)))
1595 		bio_put(bio);
1596 
1597 	return -EIO;
1598 
1599 finish:
1600 	validate_rbio_for_rmw(rbio);
1601 	return 0;
1602 }
1603 
1604 /*
1605  * if the upper layers pass in a full stripe, we thank them by only allocating
1606  * enough pages to hold the parity, and sending it all down quickly.
1607  */
1608 static int full_stripe_write(struct btrfs_raid_bio *rbio)
1609 {
1610 	int ret;
1611 
1612 	ret = alloc_rbio_parity_pages(rbio);
1613 	if (ret) {
1614 		__free_raid_bio(rbio);
1615 		return ret;
1616 	}
1617 
1618 	ret = lock_stripe_add(rbio);
1619 	if (ret == 0)
1620 		finish_rmw(rbio);
1621 	return 0;
1622 }
1623 
1624 /*
1625  * partial stripe writes get handed over to async helpers.
1626  * We're really hoping to merge a few more writes into this
1627  * rbio before calculating new parity
1628  */
1629 static int partial_stripe_write(struct btrfs_raid_bio *rbio)
1630 {
1631 	int ret;
1632 
1633 	ret = lock_stripe_add(rbio);
1634 	if (ret == 0)
1635 		start_async_work(rbio, rmw_work);
1636 	return 0;
1637 }
1638 
1639 /*
1640  * sometimes while we were reading from the drive to
1641  * recalculate parity, enough new bios come into create
1642  * a full stripe.  So we do a check here to see if we can
1643  * go directly to finish_rmw
1644  */
1645 static int __raid56_parity_write(struct btrfs_raid_bio *rbio)
1646 {
1647 	/* head off into rmw land if we don't have a full stripe */
1648 	if (!rbio_is_full(rbio))
1649 		return partial_stripe_write(rbio);
1650 	return full_stripe_write(rbio);
1651 }
1652 
1653 /*
1654  * We use plugging call backs to collect full stripes.
1655  * Any time we get a partial stripe write while plugged
1656  * we collect it into a list.  When the unplug comes down,
1657  * we sort the list by logical block number and merge
1658  * everything we can into the same rbios
1659  */
1660 struct btrfs_plug_cb {
1661 	struct blk_plug_cb cb;
1662 	struct btrfs_fs_info *info;
1663 	struct list_head rbio_list;
1664 	struct btrfs_work work;
1665 };
1666 
1667 /*
1668  * rbios on the plug list are sorted for easier merging.
1669  */
1670 static int plug_cmp(void *priv, struct list_head *a, struct list_head *b)
1671 {
1672 	struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1673 						 plug_list);
1674 	struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1675 						 plug_list);
1676 	u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1677 	u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1678 
1679 	if (a_sector < b_sector)
1680 		return -1;
1681 	if (a_sector > b_sector)
1682 		return 1;
1683 	return 0;
1684 }
1685 
1686 static void run_plug(struct btrfs_plug_cb *plug)
1687 {
1688 	struct btrfs_raid_bio *cur;
1689 	struct btrfs_raid_bio *last = NULL;
1690 
1691 	/*
1692 	 * sort our plug list then try to merge
1693 	 * everything we can in hopes of creating full
1694 	 * stripes.
1695 	 */
1696 	list_sort(NULL, &plug->rbio_list, plug_cmp);
1697 	while (!list_empty(&plug->rbio_list)) {
1698 		cur = list_entry(plug->rbio_list.next,
1699 				 struct btrfs_raid_bio, plug_list);
1700 		list_del_init(&cur->plug_list);
1701 
1702 		if (rbio_is_full(cur)) {
1703 			int ret;
1704 
1705 			/* we have a full stripe, send it down */
1706 			ret = full_stripe_write(cur);
1707 			BUG_ON(ret);
1708 			continue;
1709 		}
1710 		if (last) {
1711 			if (rbio_can_merge(last, cur)) {
1712 				merge_rbio(last, cur);
1713 				__free_raid_bio(cur);
1714 				continue;
1715 
1716 			}
1717 			__raid56_parity_write(last);
1718 		}
1719 		last = cur;
1720 	}
1721 	if (last) {
1722 		__raid56_parity_write(last);
1723 	}
1724 	kfree(plug);
1725 }
1726 
1727 /*
1728  * if the unplug comes from schedule, we have to push the
1729  * work off to a helper thread
1730  */
1731 static void unplug_work(struct btrfs_work *work)
1732 {
1733 	struct btrfs_plug_cb *plug;
1734 	plug = container_of(work, struct btrfs_plug_cb, work);
1735 	run_plug(plug);
1736 }
1737 
1738 static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1739 {
1740 	struct btrfs_plug_cb *plug;
1741 	plug = container_of(cb, struct btrfs_plug_cb, cb);
1742 
1743 	if (from_schedule) {
1744 		btrfs_init_work(&plug->work, unplug_work, NULL, NULL);
1745 		btrfs_queue_work(plug->info->rmw_workers,
1746 				 &plug->work);
1747 		return;
1748 	}
1749 	run_plug(plug);
1750 }
1751 
1752 /*
1753  * our main entry point for writes from the rest of the FS.
1754  */
1755 int raid56_parity_write(struct btrfs_fs_info *fs_info, struct bio *bio,
1756 			struct btrfs_bio *bbio, u64 stripe_len)
1757 {
1758 	struct btrfs_raid_bio *rbio;
1759 	struct btrfs_plug_cb *plug = NULL;
1760 	struct blk_plug_cb *cb;
1761 	int ret;
1762 
1763 	rbio = alloc_rbio(fs_info, bbio, stripe_len);
1764 	if (IS_ERR(rbio)) {
1765 		btrfs_put_bbio(bbio);
1766 		return PTR_ERR(rbio);
1767 	}
1768 	bio_list_add(&rbio->bio_list, bio);
1769 	rbio->bio_list_bytes = bio->bi_iter.bi_size;
1770 	rbio->operation = BTRFS_RBIO_WRITE;
1771 
1772 	btrfs_bio_counter_inc_noblocked(fs_info);
1773 	rbio->generic_bio_cnt = 1;
1774 
1775 	/*
1776 	 * don't plug on full rbios, just get them out the door
1777 	 * as quickly as we can
1778 	 */
1779 	if (rbio_is_full(rbio)) {
1780 		ret = full_stripe_write(rbio);
1781 		if (ret)
1782 			btrfs_bio_counter_dec(fs_info);
1783 		return ret;
1784 	}
1785 
1786 	cb = blk_check_plugged(btrfs_raid_unplug, fs_info, sizeof(*plug));
1787 	if (cb) {
1788 		plug = container_of(cb, struct btrfs_plug_cb, cb);
1789 		if (!plug->info) {
1790 			plug->info = fs_info;
1791 			INIT_LIST_HEAD(&plug->rbio_list);
1792 		}
1793 		list_add_tail(&rbio->plug_list, &plug->rbio_list);
1794 		ret = 0;
1795 	} else {
1796 		ret = __raid56_parity_write(rbio);
1797 		if (ret)
1798 			btrfs_bio_counter_dec(fs_info);
1799 	}
1800 	return ret;
1801 }
1802 
1803 /*
1804  * all parity reconstruction happens here.  We've read in everything
1805  * we can find from the drives and this does the heavy lifting of
1806  * sorting the good from the bad.
1807  */
1808 static void __raid_recover_end_io(struct btrfs_raid_bio *rbio)
1809 {
1810 	int pagenr, stripe;
1811 	void **pointers;
1812 	int faila = -1, failb = -1;
1813 	struct page *page;
1814 	blk_status_t err;
1815 	int i;
1816 
1817 	pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1818 	if (!pointers) {
1819 		err = BLK_STS_RESOURCE;
1820 		goto cleanup_io;
1821 	}
1822 
1823 	faila = rbio->faila;
1824 	failb = rbio->failb;
1825 
1826 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1827 	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1828 		spin_lock_irq(&rbio->bio_list_lock);
1829 		set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1830 		spin_unlock_irq(&rbio->bio_list_lock);
1831 	}
1832 
1833 	index_rbio_pages(rbio);
1834 
1835 	for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1836 		/*
1837 		 * Now we just use bitmap to mark the horizontal stripes in
1838 		 * which we have data when doing parity scrub.
1839 		 */
1840 		if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1841 		    !test_bit(pagenr, rbio->dbitmap))
1842 			continue;
1843 
1844 		/* setup our array of pointers with pages
1845 		 * from each stripe
1846 		 */
1847 		for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1848 			/*
1849 			 * if we're rebuilding a read, we have to use
1850 			 * pages from the bio list
1851 			 */
1852 			if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1853 			     rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1854 			    (stripe == faila || stripe == failb)) {
1855 				page = page_in_rbio(rbio, stripe, pagenr, 0);
1856 			} else {
1857 				page = rbio_stripe_page(rbio, stripe, pagenr);
1858 			}
1859 			pointers[stripe] = kmap(page);
1860 		}
1861 
1862 		/* all raid6 handling here */
1863 		if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) {
1864 			/*
1865 			 * single failure, rebuild from parity raid5
1866 			 * style
1867 			 */
1868 			if (failb < 0) {
1869 				if (faila == rbio->nr_data) {
1870 					/*
1871 					 * Just the P stripe has failed, without
1872 					 * a bad data or Q stripe.
1873 					 * TODO, we should redo the xor here.
1874 					 */
1875 					err = BLK_STS_IOERR;
1876 					goto cleanup;
1877 				}
1878 				/*
1879 				 * a single failure in raid6 is rebuilt
1880 				 * in the pstripe code below
1881 				 */
1882 				goto pstripe;
1883 			}
1884 
1885 			/* make sure our ps and qs are in order */
1886 			if (faila > failb) {
1887 				int tmp = failb;
1888 				failb = faila;
1889 				faila = tmp;
1890 			}
1891 
1892 			/* if the q stripe is failed, do a pstripe reconstruction
1893 			 * from the xors.
1894 			 * If both the q stripe and the P stripe are failed, we're
1895 			 * here due to a crc mismatch and we can't give them the
1896 			 * data they want
1897 			 */
1898 			if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) {
1899 				if (rbio->bbio->raid_map[faila] ==
1900 				    RAID5_P_STRIPE) {
1901 					err = BLK_STS_IOERR;
1902 					goto cleanup;
1903 				}
1904 				/*
1905 				 * otherwise we have one bad data stripe and
1906 				 * a good P stripe.  raid5!
1907 				 */
1908 				goto pstripe;
1909 			}
1910 
1911 			if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) {
1912 				raid6_datap_recov(rbio->real_stripes,
1913 						  PAGE_SIZE, faila, pointers);
1914 			} else {
1915 				raid6_2data_recov(rbio->real_stripes,
1916 						  PAGE_SIZE, faila, failb,
1917 						  pointers);
1918 			}
1919 		} else {
1920 			void *p;
1921 
1922 			/* rebuild from P stripe here (raid5 or raid6) */
1923 			BUG_ON(failb != -1);
1924 pstripe:
1925 			/* Copy parity block into failed block to start with */
1926 			copy_page(pointers[faila], pointers[rbio->nr_data]);
1927 
1928 			/* rearrange the pointer array */
1929 			p = pointers[faila];
1930 			for (stripe = faila; stripe < rbio->nr_data - 1; stripe++)
1931 				pointers[stripe] = pointers[stripe + 1];
1932 			pointers[rbio->nr_data - 1] = p;
1933 
1934 			/* xor in the rest */
1935 			run_xor(pointers, rbio->nr_data - 1, PAGE_SIZE);
1936 		}
1937 		/* if we're doing this rebuild as part of an rmw, go through
1938 		 * and set all of our private rbio pages in the
1939 		 * failed stripes as uptodate.  This way finish_rmw will
1940 		 * know they can be trusted.  If this was a read reconstruction,
1941 		 * other endio functions will fiddle the uptodate bits
1942 		 */
1943 		if (rbio->operation == BTRFS_RBIO_WRITE) {
1944 			for (i = 0;  i < rbio->stripe_npages; i++) {
1945 				if (faila != -1) {
1946 					page = rbio_stripe_page(rbio, faila, i);
1947 					SetPageUptodate(page);
1948 				}
1949 				if (failb != -1) {
1950 					page = rbio_stripe_page(rbio, failb, i);
1951 					SetPageUptodate(page);
1952 				}
1953 			}
1954 		}
1955 		for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1956 			/*
1957 			 * if we're rebuilding a read, we have to use
1958 			 * pages from the bio list
1959 			 */
1960 			if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1961 			     rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1962 			    (stripe == faila || stripe == failb)) {
1963 				page = page_in_rbio(rbio, stripe, pagenr, 0);
1964 			} else {
1965 				page = rbio_stripe_page(rbio, stripe, pagenr);
1966 			}
1967 			kunmap(page);
1968 		}
1969 	}
1970 
1971 	err = BLK_STS_OK;
1972 cleanup:
1973 	kfree(pointers);
1974 
1975 cleanup_io:
1976 	/*
1977 	 * Similar to READ_REBUILD, REBUILD_MISSING at this point also has a
1978 	 * valid rbio which is consistent with ondisk content, thus such a
1979 	 * valid rbio can be cached to avoid further disk reads.
1980 	 */
1981 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1982 	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1983 		/*
1984 		 * - In case of two failures, where rbio->failb != -1:
1985 		 *
1986 		 *   Do not cache this rbio since the above read reconstruction
1987 		 *   (raid6_datap_recov() or raid6_2data_recov()) may have
1988 		 *   changed some content of stripes which are not identical to
1989 		 *   on-disk content any more, otherwise, a later write/recover
1990 		 *   may steal stripe_pages from this rbio and end up with
1991 		 *   corruptions or rebuild failures.
1992 		 *
1993 		 * - In case of single failure, where rbio->failb == -1:
1994 		 *
1995 		 *   Cache this rbio iff the above read reconstruction is
1996 		 *   executed without problems.
1997 		 */
1998 		if (err == BLK_STS_OK && rbio->failb < 0)
1999 			cache_rbio_pages(rbio);
2000 		else
2001 			clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2002 
2003 		rbio_orig_end_io(rbio, err);
2004 	} else if (err == BLK_STS_OK) {
2005 		rbio->faila = -1;
2006 		rbio->failb = -1;
2007 
2008 		if (rbio->operation == BTRFS_RBIO_WRITE)
2009 			finish_rmw(rbio);
2010 		else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB)
2011 			finish_parity_scrub(rbio, 0);
2012 		else
2013 			BUG();
2014 	} else {
2015 		rbio_orig_end_io(rbio, err);
2016 	}
2017 }
2018 
2019 /*
2020  * This is called only for stripes we've read from disk to
2021  * reconstruct the parity.
2022  */
2023 static void raid_recover_end_io(struct bio *bio)
2024 {
2025 	struct btrfs_raid_bio *rbio = bio->bi_private;
2026 
2027 	/*
2028 	 * we only read stripe pages off the disk, set them
2029 	 * up to date if there were no errors
2030 	 */
2031 	if (bio->bi_status)
2032 		fail_bio_stripe(rbio, bio);
2033 	else
2034 		set_bio_pages_uptodate(bio);
2035 	bio_put(bio);
2036 
2037 	if (!atomic_dec_and_test(&rbio->stripes_pending))
2038 		return;
2039 
2040 	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2041 		rbio_orig_end_io(rbio, BLK_STS_IOERR);
2042 	else
2043 		__raid_recover_end_io(rbio);
2044 }
2045 
2046 /*
2047  * reads everything we need off the disk to reconstruct
2048  * the parity. endio handlers trigger final reconstruction
2049  * when the IO is done.
2050  *
2051  * This is used both for reads from the higher layers and for
2052  * parity construction required to finish a rmw cycle.
2053  */
2054 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio)
2055 {
2056 	int bios_to_read = 0;
2057 	struct bio_list bio_list;
2058 	int ret;
2059 	int pagenr;
2060 	int stripe;
2061 	struct bio *bio;
2062 
2063 	bio_list_init(&bio_list);
2064 
2065 	ret = alloc_rbio_pages(rbio);
2066 	if (ret)
2067 		goto cleanup;
2068 
2069 	atomic_set(&rbio->error, 0);
2070 
2071 	/*
2072 	 * read everything that hasn't failed.  Thanks to the
2073 	 * stripe cache, it is possible that some or all of these
2074 	 * pages are going to be uptodate.
2075 	 */
2076 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2077 		if (rbio->faila == stripe || rbio->failb == stripe) {
2078 			atomic_inc(&rbio->error);
2079 			continue;
2080 		}
2081 
2082 		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
2083 			struct page *p;
2084 
2085 			/*
2086 			 * the rmw code may have already read this
2087 			 * page in
2088 			 */
2089 			p = rbio_stripe_page(rbio, stripe, pagenr);
2090 			if (PageUptodate(p))
2091 				continue;
2092 
2093 			ret = rbio_add_io_page(rbio, &bio_list,
2094 				       rbio_stripe_page(rbio, stripe, pagenr),
2095 				       stripe, pagenr, rbio->stripe_len);
2096 			if (ret < 0)
2097 				goto cleanup;
2098 		}
2099 	}
2100 
2101 	bios_to_read = bio_list_size(&bio_list);
2102 	if (!bios_to_read) {
2103 		/*
2104 		 * we might have no bios to read just because the pages
2105 		 * were up to date, or we might have no bios to read because
2106 		 * the devices were gone.
2107 		 */
2108 		if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) {
2109 			__raid_recover_end_io(rbio);
2110 			goto out;
2111 		} else {
2112 			goto cleanup;
2113 		}
2114 	}
2115 
2116 	/*
2117 	 * the bbio may be freed once we submit the last bio.  Make sure
2118 	 * not to touch it after that
2119 	 */
2120 	atomic_set(&rbio->stripes_pending, bios_to_read);
2121 	while (1) {
2122 		bio = bio_list_pop(&bio_list);
2123 		if (!bio)
2124 			break;
2125 
2126 		bio->bi_private = rbio;
2127 		bio->bi_end_io = raid_recover_end_io;
2128 		bio->bi_opf = REQ_OP_READ;
2129 
2130 		btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
2131 
2132 		submit_bio(bio);
2133 	}
2134 out:
2135 	return 0;
2136 
2137 cleanup:
2138 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
2139 	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING)
2140 		rbio_orig_end_io(rbio, BLK_STS_IOERR);
2141 
2142 	while ((bio = bio_list_pop(&bio_list)))
2143 		bio_put(bio);
2144 
2145 	return -EIO;
2146 }
2147 
2148 /*
2149  * the main entry point for reads from the higher layers.  This
2150  * is really only called when the normal read path had a failure,
2151  * so we assume the bio they send down corresponds to a failed part
2152  * of the drive.
2153  */
2154 int raid56_parity_recover(struct btrfs_fs_info *fs_info, struct bio *bio,
2155 			  struct btrfs_bio *bbio, u64 stripe_len,
2156 			  int mirror_num, int generic_io)
2157 {
2158 	struct btrfs_raid_bio *rbio;
2159 	int ret;
2160 
2161 	if (generic_io) {
2162 		ASSERT(bbio->mirror_num == mirror_num);
2163 		btrfs_io_bio(bio)->mirror_num = mirror_num;
2164 	}
2165 
2166 	rbio = alloc_rbio(fs_info, bbio, stripe_len);
2167 	if (IS_ERR(rbio)) {
2168 		if (generic_io)
2169 			btrfs_put_bbio(bbio);
2170 		return PTR_ERR(rbio);
2171 	}
2172 
2173 	rbio->operation = BTRFS_RBIO_READ_REBUILD;
2174 	bio_list_add(&rbio->bio_list, bio);
2175 	rbio->bio_list_bytes = bio->bi_iter.bi_size;
2176 
2177 	rbio->faila = find_logical_bio_stripe(rbio, bio);
2178 	if (rbio->faila == -1) {
2179 		btrfs_warn(fs_info,
2180 	"%s could not find the bad stripe in raid56 so that we cannot recover any more (bio has logical %llu len %llu, bbio has map_type %llu)",
2181 			   __func__, (u64)bio->bi_iter.bi_sector << 9,
2182 			   (u64)bio->bi_iter.bi_size, bbio->map_type);
2183 		if (generic_io)
2184 			btrfs_put_bbio(bbio);
2185 		kfree(rbio);
2186 		return -EIO;
2187 	}
2188 
2189 	if (generic_io) {
2190 		btrfs_bio_counter_inc_noblocked(fs_info);
2191 		rbio->generic_bio_cnt = 1;
2192 	} else {
2193 		btrfs_get_bbio(bbio);
2194 	}
2195 
2196 	/*
2197 	 * Loop retry:
2198 	 * for 'mirror == 2', reconstruct from all other stripes.
2199 	 * for 'mirror_num > 2', select a stripe to fail on every retry.
2200 	 */
2201 	if (mirror_num > 2) {
2202 		/*
2203 		 * 'mirror == 3' is to fail the p stripe and
2204 		 * reconstruct from the q stripe.  'mirror > 3' is to
2205 		 * fail a data stripe and reconstruct from p+q stripe.
2206 		 */
2207 		rbio->failb = rbio->real_stripes - (mirror_num - 1);
2208 		ASSERT(rbio->failb > 0);
2209 		if (rbio->failb <= rbio->faila)
2210 			rbio->failb--;
2211 	}
2212 
2213 	ret = lock_stripe_add(rbio);
2214 
2215 	/*
2216 	 * __raid56_parity_recover will end the bio with
2217 	 * any errors it hits.  We don't want to return
2218 	 * its error value up the stack because our caller
2219 	 * will end up calling bio_endio with any nonzero
2220 	 * return
2221 	 */
2222 	if (ret == 0)
2223 		__raid56_parity_recover(rbio);
2224 	/*
2225 	 * our rbio has been added to the list of
2226 	 * rbios that will be handled after the
2227 	 * currently lock owner is done
2228 	 */
2229 	return 0;
2230 
2231 }
2232 
2233 static void rmw_work(struct btrfs_work *work)
2234 {
2235 	struct btrfs_raid_bio *rbio;
2236 
2237 	rbio = container_of(work, struct btrfs_raid_bio, work);
2238 	raid56_rmw_stripe(rbio);
2239 }
2240 
2241 static void read_rebuild_work(struct btrfs_work *work)
2242 {
2243 	struct btrfs_raid_bio *rbio;
2244 
2245 	rbio = container_of(work, struct btrfs_raid_bio, work);
2246 	__raid56_parity_recover(rbio);
2247 }
2248 
2249 /*
2250  * The following code is used to scrub/replace the parity stripe
2251  *
2252  * Caller must have already increased bio_counter for getting @bbio.
2253  *
2254  * Note: We need make sure all the pages that add into the scrub/replace
2255  * raid bio are correct and not be changed during the scrub/replace. That
2256  * is those pages just hold metadata or file data with checksum.
2257  */
2258 
2259 struct btrfs_raid_bio *
2260 raid56_parity_alloc_scrub_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
2261 			       struct btrfs_bio *bbio, u64 stripe_len,
2262 			       struct btrfs_device *scrub_dev,
2263 			       unsigned long *dbitmap, int stripe_nsectors)
2264 {
2265 	struct btrfs_raid_bio *rbio;
2266 	int i;
2267 
2268 	rbio = alloc_rbio(fs_info, bbio, stripe_len);
2269 	if (IS_ERR(rbio))
2270 		return NULL;
2271 	bio_list_add(&rbio->bio_list, bio);
2272 	/*
2273 	 * This is a special bio which is used to hold the completion handler
2274 	 * and make the scrub rbio is similar to the other types
2275 	 */
2276 	ASSERT(!bio->bi_iter.bi_size);
2277 	rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2278 
2279 	/*
2280 	 * After mapping bbio with BTRFS_MAP_WRITE, parities have been sorted
2281 	 * to the end position, so this search can start from the first parity
2282 	 * stripe.
2283 	 */
2284 	for (i = rbio->nr_data; i < rbio->real_stripes; i++) {
2285 		if (bbio->stripes[i].dev == scrub_dev) {
2286 			rbio->scrubp = i;
2287 			break;
2288 		}
2289 	}
2290 	ASSERT(i < rbio->real_stripes);
2291 
2292 	/* Now we just support the sectorsize equals to page size */
2293 	ASSERT(fs_info->sectorsize == PAGE_SIZE);
2294 	ASSERT(rbio->stripe_npages == stripe_nsectors);
2295 	bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors);
2296 
2297 	/*
2298 	 * We have already increased bio_counter when getting bbio, record it
2299 	 * so we can free it at rbio_orig_end_io().
2300 	 */
2301 	rbio->generic_bio_cnt = 1;
2302 
2303 	return rbio;
2304 }
2305 
2306 /* Used for both parity scrub and missing. */
2307 void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page,
2308 			    u64 logical)
2309 {
2310 	int stripe_offset;
2311 	int index;
2312 
2313 	ASSERT(logical >= rbio->bbio->raid_map[0]);
2314 	ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] +
2315 				rbio->stripe_len * rbio->nr_data);
2316 	stripe_offset = (int)(logical - rbio->bbio->raid_map[0]);
2317 	index = stripe_offset >> PAGE_SHIFT;
2318 	rbio->bio_pages[index] = page;
2319 }
2320 
2321 /*
2322  * We just scrub the parity that we have correct data on the same horizontal,
2323  * so we needn't allocate all pages for all the stripes.
2324  */
2325 static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2326 {
2327 	int i;
2328 	int bit;
2329 	int index;
2330 	struct page *page;
2331 
2332 	for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) {
2333 		for (i = 0; i < rbio->real_stripes; i++) {
2334 			index = i * rbio->stripe_npages + bit;
2335 			if (rbio->stripe_pages[index])
2336 				continue;
2337 
2338 			page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2339 			if (!page)
2340 				return -ENOMEM;
2341 			rbio->stripe_pages[index] = page;
2342 		}
2343 	}
2344 	return 0;
2345 }
2346 
2347 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
2348 					 int need_check)
2349 {
2350 	struct btrfs_bio *bbio = rbio->bbio;
2351 	void **pointers = rbio->finish_pointers;
2352 	unsigned long *pbitmap = rbio->finish_pbitmap;
2353 	int nr_data = rbio->nr_data;
2354 	int stripe;
2355 	int pagenr;
2356 	int p_stripe = -1;
2357 	int q_stripe = -1;
2358 	struct page *p_page = NULL;
2359 	struct page *q_page = NULL;
2360 	struct bio_list bio_list;
2361 	struct bio *bio;
2362 	int is_replace = 0;
2363 	int ret;
2364 
2365 	bio_list_init(&bio_list);
2366 
2367 	if (rbio->real_stripes - rbio->nr_data == 1) {
2368 		p_stripe = rbio->real_stripes - 1;
2369 	} else if (rbio->real_stripes - rbio->nr_data == 2) {
2370 		p_stripe = rbio->real_stripes - 2;
2371 		q_stripe = rbio->real_stripes - 1;
2372 	} else {
2373 		BUG();
2374 	}
2375 
2376 	if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) {
2377 		is_replace = 1;
2378 		bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages);
2379 	}
2380 
2381 	/*
2382 	 * Because the higher layers(scrubber) are unlikely to
2383 	 * use this area of the disk again soon, so don't cache
2384 	 * it.
2385 	 */
2386 	clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2387 
2388 	if (!need_check)
2389 		goto writeback;
2390 
2391 	p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2392 	if (!p_page)
2393 		goto cleanup;
2394 	SetPageUptodate(p_page);
2395 
2396 	if (q_stripe != -1) {
2397 		q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2398 		if (!q_page) {
2399 			__free_page(p_page);
2400 			goto cleanup;
2401 		}
2402 		SetPageUptodate(q_page);
2403 	}
2404 
2405 	atomic_set(&rbio->error, 0);
2406 
2407 	for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2408 		struct page *p;
2409 		void *parity;
2410 		/* first collect one page from each data stripe */
2411 		for (stripe = 0; stripe < nr_data; stripe++) {
2412 			p = page_in_rbio(rbio, stripe, pagenr, 0);
2413 			pointers[stripe] = kmap(p);
2414 		}
2415 
2416 		/* then add the parity stripe */
2417 		pointers[stripe++] = kmap(p_page);
2418 
2419 		if (q_stripe != -1) {
2420 
2421 			/*
2422 			 * raid6, add the qstripe and call the
2423 			 * library function to fill in our p/q
2424 			 */
2425 			pointers[stripe++] = kmap(q_page);
2426 
2427 			raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
2428 						pointers);
2429 		} else {
2430 			/* raid5 */
2431 			copy_page(pointers[nr_data], pointers[0]);
2432 			run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
2433 		}
2434 
2435 		/* Check scrubbing parity and repair it */
2436 		p = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2437 		parity = kmap(p);
2438 		if (memcmp(parity, pointers[rbio->scrubp], PAGE_SIZE))
2439 			copy_page(parity, pointers[rbio->scrubp]);
2440 		else
2441 			/* Parity is right, needn't writeback */
2442 			bitmap_clear(rbio->dbitmap, pagenr, 1);
2443 		kunmap(p);
2444 
2445 		for (stripe = 0; stripe < nr_data; stripe++)
2446 			kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
2447 		kunmap(p_page);
2448 	}
2449 
2450 	__free_page(p_page);
2451 	if (q_page)
2452 		__free_page(q_page);
2453 
2454 writeback:
2455 	/*
2456 	 * time to start writing.  Make bios for everything from the
2457 	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
2458 	 * everything else.
2459 	 */
2460 	for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2461 		struct page *page;
2462 
2463 		page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2464 		ret = rbio_add_io_page(rbio, &bio_list,
2465 			       page, rbio->scrubp, pagenr, rbio->stripe_len);
2466 		if (ret)
2467 			goto cleanup;
2468 	}
2469 
2470 	if (!is_replace)
2471 		goto submit_write;
2472 
2473 	for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) {
2474 		struct page *page;
2475 
2476 		page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2477 		ret = rbio_add_io_page(rbio, &bio_list, page,
2478 				       bbio->tgtdev_map[rbio->scrubp],
2479 				       pagenr, rbio->stripe_len);
2480 		if (ret)
2481 			goto cleanup;
2482 	}
2483 
2484 submit_write:
2485 	nr_data = bio_list_size(&bio_list);
2486 	if (!nr_data) {
2487 		/* Every parity is right */
2488 		rbio_orig_end_io(rbio, BLK_STS_OK);
2489 		return;
2490 	}
2491 
2492 	atomic_set(&rbio->stripes_pending, nr_data);
2493 
2494 	while (1) {
2495 		bio = bio_list_pop(&bio_list);
2496 		if (!bio)
2497 			break;
2498 
2499 		bio->bi_private = rbio;
2500 		bio->bi_end_io = raid_write_end_io;
2501 		bio->bi_opf = REQ_OP_WRITE;
2502 
2503 		submit_bio(bio);
2504 	}
2505 	return;
2506 
2507 cleanup:
2508 	rbio_orig_end_io(rbio, BLK_STS_IOERR);
2509 
2510 	while ((bio = bio_list_pop(&bio_list)))
2511 		bio_put(bio);
2512 }
2513 
2514 static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2515 {
2516 	if (stripe >= 0 && stripe < rbio->nr_data)
2517 		return 1;
2518 	return 0;
2519 }
2520 
2521 /*
2522  * While we're doing the parity check and repair, we could have errors
2523  * in reading pages off the disk.  This checks for errors and if we're
2524  * not able to read the page it'll trigger parity reconstruction.  The
2525  * parity scrub will be finished after we've reconstructed the failed
2526  * stripes
2527  */
2528 static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio)
2529 {
2530 	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2531 		goto cleanup;
2532 
2533 	if (rbio->faila >= 0 || rbio->failb >= 0) {
2534 		int dfail = 0, failp = -1;
2535 
2536 		if (is_data_stripe(rbio, rbio->faila))
2537 			dfail++;
2538 		else if (is_parity_stripe(rbio->faila))
2539 			failp = rbio->faila;
2540 
2541 		if (is_data_stripe(rbio, rbio->failb))
2542 			dfail++;
2543 		else if (is_parity_stripe(rbio->failb))
2544 			failp = rbio->failb;
2545 
2546 		/*
2547 		 * Because we can not use a scrubbing parity to repair
2548 		 * the data, so the capability of the repair is declined.
2549 		 * (In the case of RAID5, we can not repair anything)
2550 		 */
2551 		if (dfail > rbio->bbio->max_errors - 1)
2552 			goto cleanup;
2553 
2554 		/*
2555 		 * If all data is good, only parity is correctly, just
2556 		 * repair the parity.
2557 		 */
2558 		if (dfail == 0) {
2559 			finish_parity_scrub(rbio, 0);
2560 			return;
2561 		}
2562 
2563 		/*
2564 		 * Here means we got one corrupted data stripe and one
2565 		 * corrupted parity on RAID6, if the corrupted parity
2566 		 * is scrubbing parity, luckily, use the other one to repair
2567 		 * the data, or we can not repair the data stripe.
2568 		 */
2569 		if (failp != rbio->scrubp)
2570 			goto cleanup;
2571 
2572 		__raid_recover_end_io(rbio);
2573 	} else {
2574 		finish_parity_scrub(rbio, 1);
2575 	}
2576 	return;
2577 
2578 cleanup:
2579 	rbio_orig_end_io(rbio, BLK_STS_IOERR);
2580 }
2581 
2582 /*
2583  * end io for the read phase of the rmw cycle.  All the bios here are physical
2584  * stripe bios we've read from the disk so we can recalculate the parity of the
2585  * stripe.
2586  *
2587  * This will usually kick off finish_rmw once all the bios are read in, but it
2588  * may trigger parity reconstruction if we had any errors along the way
2589  */
2590 static void raid56_parity_scrub_end_io(struct bio *bio)
2591 {
2592 	struct btrfs_raid_bio *rbio = bio->bi_private;
2593 
2594 	if (bio->bi_status)
2595 		fail_bio_stripe(rbio, bio);
2596 	else
2597 		set_bio_pages_uptodate(bio);
2598 
2599 	bio_put(bio);
2600 
2601 	if (!atomic_dec_and_test(&rbio->stripes_pending))
2602 		return;
2603 
2604 	/*
2605 	 * this will normally call finish_rmw to start our write
2606 	 * but if there are any failed stripes we'll reconstruct
2607 	 * from parity first
2608 	 */
2609 	validate_rbio_for_parity_scrub(rbio);
2610 }
2611 
2612 static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio)
2613 {
2614 	int bios_to_read = 0;
2615 	struct bio_list bio_list;
2616 	int ret;
2617 	int pagenr;
2618 	int stripe;
2619 	struct bio *bio;
2620 
2621 	bio_list_init(&bio_list);
2622 
2623 	ret = alloc_rbio_essential_pages(rbio);
2624 	if (ret)
2625 		goto cleanup;
2626 
2627 	atomic_set(&rbio->error, 0);
2628 	/*
2629 	 * build a list of bios to read all the missing parts of this
2630 	 * stripe
2631 	 */
2632 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2633 		for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2634 			struct page *page;
2635 			/*
2636 			 * we want to find all the pages missing from
2637 			 * the rbio and read them from the disk.  If
2638 			 * page_in_rbio finds a page in the bio list
2639 			 * we don't need to read it off the stripe.
2640 			 */
2641 			page = page_in_rbio(rbio, stripe, pagenr, 1);
2642 			if (page)
2643 				continue;
2644 
2645 			page = rbio_stripe_page(rbio, stripe, pagenr);
2646 			/*
2647 			 * the bio cache may have handed us an uptodate
2648 			 * page.  If so, be happy and use it
2649 			 */
2650 			if (PageUptodate(page))
2651 				continue;
2652 
2653 			ret = rbio_add_io_page(rbio, &bio_list, page,
2654 				       stripe, pagenr, rbio->stripe_len);
2655 			if (ret)
2656 				goto cleanup;
2657 		}
2658 	}
2659 
2660 	bios_to_read = bio_list_size(&bio_list);
2661 	if (!bios_to_read) {
2662 		/*
2663 		 * this can happen if others have merged with
2664 		 * us, it means there is nothing left to read.
2665 		 * But if there are missing devices it may not be
2666 		 * safe to do the full stripe write yet.
2667 		 */
2668 		goto finish;
2669 	}
2670 
2671 	/*
2672 	 * the bbio may be freed once we submit the last bio.  Make sure
2673 	 * not to touch it after that
2674 	 */
2675 	atomic_set(&rbio->stripes_pending, bios_to_read);
2676 	while (1) {
2677 		bio = bio_list_pop(&bio_list);
2678 		if (!bio)
2679 			break;
2680 
2681 		bio->bi_private = rbio;
2682 		bio->bi_end_io = raid56_parity_scrub_end_io;
2683 		bio->bi_opf = REQ_OP_READ;
2684 
2685 		btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
2686 
2687 		submit_bio(bio);
2688 	}
2689 	/* the actual write will happen once the reads are done */
2690 	return;
2691 
2692 cleanup:
2693 	rbio_orig_end_io(rbio, BLK_STS_IOERR);
2694 
2695 	while ((bio = bio_list_pop(&bio_list)))
2696 		bio_put(bio);
2697 
2698 	return;
2699 
2700 finish:
2701 	validate_rbio_for_parity_scrub(rbio);
2702 }
2703 
2704 static void scrub_parity_work(struct btrfs_work *work)
2705 {
2706 	struct btrfs_raid_bio *rbio;
2707 
2708 	rbio = container_of(work, struct btrfs_raid_bio, work);
2709 	raid56_parity_scrub_stripe(rbio);
2710 }
2711 
2712 void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2713 {
2714 	if (!lock_stripe_add(rbio))
2715 		start_async_work(rbio, scrub_parity_work);
2716 }
2717 
2718 /* The following code is used for dev replace of a missing RAID 5/6 device. */
2719 
2720 struct btrfs_raid_bio *
2721 raid56_alloc_missing_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
2722 			  struct btrfs_bio *bbio, u64 length)
2723 {
2724 	struct btrfs_raid_bio *rbio;
2725 
2726 	rbio = alloc_rbio(fs_info, bbio, length);
2727 	if (IS_ERR(rbio))
2728 		return NULL;
2729 
2730 	rbio->operation = BTRFS_RBIO_REBUILD_MISSING;
2731 	bio_list_add(&rbio->bio_list, bio);
2732 	/*
2733 	 * This is a special bio which is used to hold the completion handler
2734 	 * and make the scrub rbio is similar to the other types
2735 	 */
2736 	ASSERT(!bio->bi_iter.bi_size);
2737 
2738 	rbio->faila = find_logical_bio_stripe(rbio, bio);
2739 	if (rbio->faila == -1) {
2740 		BUG();
2741 		kfree(rbio);
2742 		return NULL;
2743 	}
2744 
2745 	/*
2746 	 * When we get bbio, we have already increased bio_counter, record it
2747 	 * so we can free it at rbio_orig_end_io()
2748 	 */
2749 	rbio->generic_bio_cnt = 1;
2750 
2751 	return rbio;
2752 }
2753 
2754 void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio)
2755 {
2756 	if (!lock_stripe_add(rbio))
2757 		start_async_work(rbio, read_rebuild_work);
2758 }
2759