xref: /linux/fs/btrfs/raid56.c (revision e5c86679d5e864947a52fb31e45a425dea3e7fa9)
1 /*
2  * Copyright (C) 2012 Fusion-io  All rights reserved.
3  * Copyright (C) 2012 Intel Corp. All rights reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public
7  * License v2 as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12  * General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public
15  * License along with this program; if not, write to the
16  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17  * Boston, MA 021110-1307, USA.
18  */
19 #include <linux/sched.h>
20 #include <linux/wait.h>
21 #include <linux/bio.h>
22 #include <linux/slab.h>
23 #include <linux/buffer_head.h>
24 #include <linux/blkdev.h>
25 #include <linux/random.h>
26 #include <linux/iocontext.h>
27 #include <linux/capability.h>
28 #include <linux/ratelimit.h>
29 #include <linux/kthread.h>
30 #include <linux/raid/pq.h>
31 #include <linux/hash.h>
32 #include <linux/list_sort.h>
33 #include <linux/raid/xor.h>
34 #include <linux/vmalloc.h>
35 #include <asm/div64.h>
36 #include "ctree.h"
37 #include "extent_map.h"
38 #include "disk-io.h"
39 #include "transaction.h"
40 #include "print-tree.h"
41 #include "volumes.h"
42 #include "raid56.h"
43 #include "async-thread.h"
44 #include "check-integrity.h"
45 #include "rcu-string.h"
46 
47 /* set when additional merges to this rbio are not allowed */
48 #define RBIO_RMW_LOCKED_BIT	1
49 
50 /*
51  * set when this rbio is sitting in the hash, but it is just a cache
52  * of past RMW
53  */
54 #define RBIO_CACHE_BIT		2
55 
56 /*
57  * set when it is safe to trust the stripe_pages for caching
58  */
59 #define RBIO_CACHE_READY_BIT	3
60 
61 #define RBIO_CACHE_SIZE 1024
62 
63 enum btrfs_rbio_ops {
64 	BTRFS_RBIO_WRITE,
65 	BTRFS_RBIO_READ_REBUILD,
66 	BTRFS_RBIO_PARITY_SCRUB,
67 	BTRFS_RBIO_REBUILD_MISSING,
68 };
69 
70 struct btrfs_raid_bio {
71 	struct btrfs_fs_info *fs_info;
72 	struct btrfs_bio *bbio;
73 
74 	/* while we're doing rmw on a stripe
75 	 * we put it into a hash table so we can
76 	 * lock the stripe and merge more rbios
77 	 * into it.
78 	 */
79 	struct list_head hash_list;
80 
81 	/*
82 	 * LRU list for the stripe cache
83 	 */
84 	struct list_head stripe_cache;
85 
86 	/*
87 	 * for scheduling work in the helper threads
88 	 */
89 	struct btrfs_work work;
90 
91 	/*
92 	 * bio list and bio_list_lock are used
93 	 * to add more bios into the stripe
94 	 * in hopes of avoiding the full rmw
95 	 */
96 	struct bio_list bio_list;
97 	spinlock_t bio_list_lock;
98 
99 	/* also protected by the bio_list_lock, the
100 	 * plug list is used by the plugging code
101 	 * to collect partial bios while plugged.  The
102 	 * stripe locking code also uses it to hand off
103 	 * the stripe lock to the next pending IO
104 	 */
105 	struct list_head plug_list;
106 
107 	/*
108 	 * flags that tell us if it is safe to
109 	 * merge with this bio
110 	 */
111 	unsigned long flags;
112 
113 	/* size of each individual stripe on disk */
114 	int stripe_len;
115 
116 	/* number of data stripes (no p/q) */
117 	int nr_data;
118 
119 	int real_stripes;
120 
121 	int stripe_npages;
122 	/*
123 	 * set if we're doing a parity rebuild
124 	 * for a read from higher up, which is handled
125 	 * differently from a parity rebuild as part of
126 	 * rmw
127 	 */
128 	enum btrfs_rbio_ops operation;
129 
130 	/* first bad stripe */
131 	int faila;
132 
133 	/* second bad stripe (for raid6 use) */
134 	int failb;
135 
136 	int scrubp;
137 	/*
138 	 * number of pages needed to represent the full
139 	 * stripe
140 	 */
141 	int nr_pages;
142 
143 	/*
144 	 * size of all the bios in the bio_list.  This
145 	 * helps us decide if the rbio maps to a full
146 	 * stripe or not
147 	 */
148 	int bio_list_bytes;
149 
150 	int generic_bio_cnt;
151 
152 	atomic_t refs;
153 
154 	atomic_t stripes_pending;
155 
156 	atomic_t error;
157 	/*
158 	 * these are two arrays of pointers.  We allocate the
159 	 * rbio big enough to hold them both and setup their
160 	 * locations when the rbio is allocated
161 	 */
162 
163 	/* pointers to pages that we allocated for
164 	 * reading/writing stripes directly from the disk (including P/Q)
165 	 */
166 	struct page **stripe_pages;
167 
168 	/*
169 	 * pointers to the pages in the bio_list.  Stored
170 	 * here for faster lookup
171 	 */
172 	struct page **bio_pages;
173 
174 	/*
175 	 * bitmap to record which horizontal stripe has data
176 	 */
177 	unsigned long *dbitmap;
178 };
179 
180 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio);
181 static noinline void finish_rmw(struct btrfs_raid_bio *rbio);
182 static void rmw_work(struct btrfs_work *work);
183 static void read_rebuild_work(struct btrfs_work *work);
184 static void async_rmw_stripe(struct btrfs_raid_bio *rbio);
185 static void async_read_rebuild(struct btrfs_raid_bio *rbio);
186 static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
187 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
188 static void __free_raid_bio(struct btrfs_raid_bio *rbio);
189 static void index_rbio_pages(struct btrfs_raid_bio *rbio);
190 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
191 
192 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
193 					 int need_check);
194 static void async_scrub_parity(struct btrfs_raid_bio *rbio);
195 
196 /*
197  * the stripe hash table is used for locking, and to collect
198  * bios in hopes of making a full stripe
199  */
200 int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
201 {
202 	struct btrfs_stripe_hash_table *table;
203 	struct btrfs_stripe_hash_table *x;
204 	struct btrfs_stripe_hash *cur;
205 	struct btrfs_stripe_hash *h;
206 	int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
207 	int i;
208 	int table_size;
209 
210 	if (info->stripe_hash_table)
211 		return 0;
212 
213 	/*
214 	 * The table is large, starting with order 4 and can go as high as
215 	 * order 7 in case lock debugging is turned on.
216 	 *
217 	 * Try harder to allocate and fallback to vmalloc to lower the chance
218 	 * of a failing mount.
219 	 */
220 	table_size = sizeof(*table) + sizeof(*h) * num_entries;
221 	table = kzalloc(table_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
222 	if (!table) {
223 		table = vzalloc(table_size);
224 		if (!table)
225 			return -ENOMEM;
226 	}
227 
228 	spin_lock_init(&table->cache_lock);
229 	INIT_LIST_HEAD(&table->stripe_cache);
230 
231 	h = table->table;
232 
233 	for (i = 0; i < num_entries; i++) {
234 		cur = h + i;
235 		INIT_LIST_HEAD(&cur->hash_list);
236 		spin_lock_init(&cur->lock);
237 		init_waitqueue_head(&cur->wait);
238 	}
239 
240 	x = cmpxchg(&info->stripe_hash_table, NULL, table);
241 	if (x)
242 		kvfree(x);
243 	return 0;
244 }
245 
246 /*
247  * caching an rbio means to copy anything from the
248  * bio_pages array into the stripe_pages array.  We
249  * use the page uptodate bit in the stripe cache array
250  * to indicate if it has valid data
251  *
252  * once the caching is done, we set the cache ready
253  * bit.
254  */
255 static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
256 {
257 	int i;
258 	char *s;
259 	char *d;
260 	int ret;
261 
262 	ret = alloc_rbio_pages(rbio);
263 	if (ret)
264 		return;
265 
266 	for (i = 0; i < rbio->nr_pages; i++) {
267 		if (!rbio->bio_pages[i])
268 			continue;
269 
270 		s = kmap(rbio->bio_pages[i]);
271 		d = kmap(rbio->stripe_pages[i]);
272 
273 		memcpy(d, s, PAGE_SIZE);
274 
275 		kunmap(rbio->bio_pages[i]);
276 		kunmap(rbio->stripe_pages[i]);
277 		SetPageUptodate(rbio->stripe_pages[i]);
278 	}
279 	set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
280 }
281 
282 /*
283  * we hash on the first logical address of the stripe
284  */
285 static int rbio_bucket(struct btrfs_raid_bio *rbio)
286 {
287 	u64 num = rbio->bbio->raid_map[0];
288 
289 	/*
290 	 * we shift down quite a bit.  We're using byte
291 	 * addressing, and most of the lower bits are zeros.
292 	 * This tends to upset hash_64, and it consistently
293 	 * returns just one or two different values.
294 	 *
295 	 * shifting off the lower bits fixes things.
296 	 */
297 	return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
298 }
299 
300 /*
301  * stealing an rbio means taking all the uptodate pages from the stripe
302  * array in the source rbio and putting them into the destination rbio
303  */
304 static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
305 {
306 	int i;
307 	struct page *s;
308 	struct page *d;
309 
310 	if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
311 		return;
312 
313 	for (i = 0; i < dest->nr_pages; i++) {
314 		s = src->stripe_pages[i];
315 		if (!s || !PageUptodate(s)) {
316 			continue;
317 		}
318 
319 		d = dest->stripe_pages[i];
320 		if (d)
321 			__free_page(d);
322 
323 		dest->stripe_pages[i] = s;
324 		src->stripe_pages[i] = NULL;
325 	}
326 }
327 
328 /*
329  * merging means we take the bio_list from the victim and
330  * splice it into the destination.  The victim should
331  * be discarded afterwards.
332  *
333  * must be called with dest->rbio_list_lock held
334  */
335 static void merge_rbio(struct btrfs_raid_bio *dest,
336 		       struct btrfs_raid_bio *victim)
337 {
338 	bio_list_merge(&dest->bio_list, &victim->bio_list);
339 	dest->bio_list_bytes += victim->bio_list_bytes;
340 	dest->generic_bio_cnt += victim->generic_bio_cnt;
341 	bio_list_init(&victim->bio_list);
342 }
343 
344 /*
345  * used to prune items that are in the cache.  The caller
346  * must hold the hash table lock.
347  */
348 static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
349 {
350 	int bucket = rbio_bucket(rbio);
351 	struct btrfs_stripe_hash_table *table;
352 	struct btrfs_stripe_hash *h;
353 	int freeit = 0;
354 
355 	/*
356 	 * check the bit again under the hash table lock.
357 	 */
358 	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
359 		return;
360 
361 	table = rbio->fs_info->stripe_hash_table;
362 	h = table->table + bucket;
363 
364 	/* hold the lock for the bucket because we may be
365 	 * removing it from the hash table
366 	 */
367 	spin_lock(&h->lock);
368 
369 	/*
370 	 * hold the lock for the bio list because we need
371 	 * to make sure the bio list is empty
372 	 */
373 	spin_lock(&rbio->bio_list_lock);
374 
375 	if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
376 		list_del_init(&rbio->stripe_cache);
377 		table->cache_size -= 1;
378 		freeit = 1;
379 
380 		/* if the bio list isn't empty, this rbio is
381 		 * still involved in an IO.  We take it out
382 		 * of the cache list, and drop the ref that
383 		 * was held for the list.
384 		 *
385 		 * If the bio_list was empty, we also remove
386 		 * the rbio from the hash_table, and drop
387 		 * the corresponding ref
388 		 */
389 		if (bio_list_empty(&rbio->bio_list)) {
390 			if (!list_empty(&rbio->hash_list)) {
391 				list_del_init(&rbio->hash_list);
392 				atomic_dec(&rbio->refs);
393 				BUG_ON(!list_empty(&rbio->plug_list));
394 			}
395 		}
396 	}
397 
398 	spin_unlock(&rbio->bio_list_lock);
399 	spin_unlock(&h->lock);
400 
401 	if (freeit)
402 		__free_raid_bio(rbio);
403 }
404 
405 /*
406  * prune a given rbio from the cache
407  */
408 static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
409 {
410 	struct btrfs_stripe_hash_table *table;
411 	unsigned long flags;
412 
413 	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
414 		return;
415 
416 	table = rbio->fs_info->stripe_hash_table;
417 
418 	spin_lock_irqsave(&table->cache_lock, flags);
419 	__remove_rbio_from_cache(rbio);
420 	spin_unlock_irqrestore(&table->cache_lock, flags);
421 }
422 
423 /*
424  * remove everything in the cache
425  */
426 static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
427 {
428 	struct btrfs_stripe_hash_table *table;
429 	unsigned long flags;
430 	struct btrfs_raid_bio *rbio;
431 
432 	table = info->stripe_hash_table;
433 
434 	spin_lock_irqsave(&table->cache_lock, flags);
435 	while (!list_empty(&table->stripe_cache)) {
436 		rbio = list_entry(table->stripe_cache.next,
437 				  struct btrfs_raid_bio,
438 				  stripe_cache);
439 		__remove_rbio_from_cache(rbio);
440 	}
441 	spin_unlock_irqrestore(&table->cache_lock, flags);
442 }
443 
444 /*
445  * remove all cached entries and free the hash table
446  * used by unmount
447  */
448 void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
449 {
450 	if (!info->stripe_hash_table)
451 		return;
452 	btrfs_clear_rbio_cache(info);
453 	kvfree(info->stripe_hash_table);
454 	info->stripe_hash_table = NULL;
455 }
456 
457 /*
458  * insert an rbio into the stripe cache.  It
459  * must have already been prepared by calling
460  * cache_rbio_pages
461  *
462  * If this rbio was already cached, it gets
463  * moved to the front of the lru.
464  *
465  * If the size of the rbio cache is too big, we
466  * prune an item.
467  */
468 static void cache_rbio(struct btrfs_raid_bio *rbio)
469 {
470 	struct btrfs_stripe_hash_table *table;
471 	unsigned long flags;
472 
473 	if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
474 		return;
475 
476 	table = rbio->fs_info->stripe_hash_table;
477 
478 	spin_lock_irqsave(&table->cache_lock, flags);
479 	spin_lock(&rbio->bio_list_lock);
480 
481 	/* bump our ref if we were not in the list before */
482 	if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
483 		atomic_inc(&rbio->refs);
484 
485 	if (!list_empty(&rbio->stripe_cache)){
486 		list_move(&rbio->stripe_cache, &table->stripe_cache);
487 	} else {
488 		list_add(&rbio->stripe_cache, &table->stripe_cache);
489 		table->cache_size += 1;
490 	}
491 
492 	spin_unlock(&rbio->bio_list_lock);
493 
494 	if (table->cache_size > RBIO_CACHE_SIZE) {
495 		struct btrfs_raid_bio *found;
496 
497 		found = list_entry(table->stripe_cache.prev,
498 				  struct btrfs_raid_bio,
499 				  stripe_cache);
500 
501 		if (found != rbio)
502 			__remove_rbio_from_cache(found);
503 	}
504 
505 	spin_unlock_irqrestore(&table->cache_lock, flags);
506 }
507 
508 /*
509  * helper function to run the xor_blocks api.  It is only
510  * able to do MAX_XOR_BLOCKS at a time, so we need to
511  * loop through.
512  */
513 static void run_xor(void **pages, int src_cnt, ssize_t len)
514 {
515 	int src_off = 0;
516 	int xor_src_cnt = 0;
517 	void *dest = pages[src_cnt];
518 
519 	while(src_cnt > 0) {
520 		xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
521 		xor_blocks(xor_src_cnt, len, dest, pages + src_off);
522 
523 		src_cnt -= xor_src_cnt;
524 		src_off += xor_src_cnt;
525 	}
526 }
527 
528 /*
529  * returns true if the bio list inside this rbio
530  * covers an entire stripe (no rmw required).
531  * Must be called with the bio list lock held, or
532  * at a time when you know it is impossible to add
533  * new bios into the list
534  */
535 static int __rbio_is_full(struct btrfs_raid_bio *rbio)
536 {
537 	unsigned long size = rbio->bio_list_bytes;
538 	int ret = 1;
539 
540 	if (size != rbio->nr_data * rbio->stripe_len)
541 		ret = 0;
542 
543 	BUG_ON(size > rbio->nr_data * rbio->stripe_len);
544 	return ret;
545 }
546 
547 static int rbio_is_full(struct btrfs_raid_bio *rbio)
548 {
549 	unsigned long flags;
550 	int ret;
551 
552 	spin_lock_irqsave(&rbio->bio_list_lock, flags);
553 	ret = __rbio_is_full(rbio);
554 	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
555 	return ret;
556 }
557 
558 /*
559  * returns 1 if it is safe to merge two rbios together.
560  * The merging is safe if the two rbios correspond to
561  * the same stripe and if they are both going in the same
562  * direction (read vs write), and if neither one is
563  * locked for final IO
564  *
565  * The caller is responsible for locking such that
566  * rmw_locked is safe to test
567  */
568 static int rbio_can_merge(struct btrfs_raid_bio *last,
569 			  struct btrfs_raid_bio *cur)
570 {
571 	if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
572 	    test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
573 		return 0;
574 
575 	/*
576 	 * we can't merge with cached rbios, since the
577 	 * idea is that when we merge the destination
578 	 * rbio is going to run our IO for us.  We can
579 	 * steal from cached rbios though, other functions
580 	 * handle that.
581 	 */
582 	if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
583 	    test_bit(RBIO_CACHE_BIT, &cur->flags))
584 		return 0;
585 
586 	if (last->bbio->raid_map[0] !=
587 	    cur->bbio->raid_map[0])
588 		return 0;
589 
590 	/* we can't merge with different operations */
591 	if (last->operation != cur->operation)
592 		return 0;
593 	/*
594 	 * We've need read the full stripe from the drive.
595 	 * check and repair the parity and write the new results.
596 	 *
597 	 * We're not allowed to add any new bios to the
598 	 * bio list here, anyone else that wants to
599 	 * change this stripe needs to do their own rmw.
600 	 */
601 	if (last->operation == BTRFS_RBIO_PARITY_SCRUB ||
602 	    cur->operation == BTRFS_RBIO_PARITY_SCRUB)
603 		return 0;
604 
605 	if (last->operation == BTRFS_RBIO_REBUILD_MISSING ||
606 	    cur->operation == BTRFS_RBIO_REBUILD_MISSING)
607 		return 0;
608 
609 	return 1;
610 }
611 
612 static int rbio_stripe_page_index(struct btrfs_raid_bio *rbio, int stripe,
613 				  int index)
614 {
615 	return stripe * rbio->stripe_npages + index;
616 }
617 
618 /*
619  * these are just the pages from the rbio array, not from anything
620  * the FS sent down to us
621  */
622 static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe,
623 				     int index)
624 {
625 	return rbio->stripe_pages[rbio_stripe_page_index(rbio, stripe, index)];
626 }
627 
628 /*
629  * helper to index into the pstripe
630  */
631 static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index)
632 {
633 	return rbio_stripe_page(rbio, rbio->nr_data, index);
634 }
635 
636 /*
637  * helper to index into the qstripe, returns null
638  * if there is no qstripe
639  */
640 static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index)
641 {
642 	if (rbio->nr_data + 1 == rbio->real_stripes)
643 		return NULL;
644 	return rbio_stripe_page(rbio, rbio->nr_data + 1, index);
645 }
646 
647 /*
648  * The first stripe in the table for a logical address
649  * has the lock.  rbios are added in one of three ways:
650  *
651  * 1) Nobody has the stripe locked yet.  The rbio is given
652  * the lock and 0 is returned.  The caller must start the IO
653  * themselves.
654  *
655  * 2) Someone has the stripe locked, but we're able to merge
656  * with the lock owner.  The rbio is freed and the IO will
657  * start automatically along with the existing rbio.  1 is returned.
658  *
659  * 3) Someone has the stripe locked, but we're not able to merge.
660  * The rbio is added to the lock owner's plug list, or merged into
661  * an rbio already on the plug list.  When the lock owner unlocks,
662  * the next rbio on the list is run and the IO is started automatically.
663  * 1 is returned
664  *
665  * If we return 0, the caller still owns the rbio and must continue with
666  * IO submission.  If we return 1, the caller must assume the rbio has
667  * already been freed.
668  */
669 static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
670 {
671 	int bucket = rbio_bucket(rbio);
672 	struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket;
673 	struct btrfs_raid_bio *cur;
674 	struct btrfs_raid_bio *pending;
675 	unsigned long flags;
676 	DEFINE_WAIT(wait);
677 	struct btrfs_raid_bio *freeit = NULL;
678 	struct btrfs_raid_bio *cache_drop = NULL;
679 	int ret = 0;
680 
681 	spin_lock_irqsave(&h->lock, flags);
682 	list_for_each_entry(cur, &h->hash_list, hash_list) {
683 		if (cur->bbio->raid_map[0] == rbio->bbio->raid_map[0]) {
684 			spin_lock(&cur->bio_list_lock);
685 
686 			/* can we steal this cached rbio's pages? */
687 			if (bio_list_empty(&cur->bio_list) &&
688 			    list_empty(&cur->plug_list) &&
689 			    test_bit(RBIO_CACHE_BIT, &cur->flags) &&
690 			    !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
691 				list_del_init(&cur->hash_list);
692 				atomic_dec(&cur->refs);
693 
694 				steal_rbio(cur, rbio);
695 				cache_drop = cur;
696 				spin_unlock(&cur->bio_list_lock);
697 
698 				goto lockit;
699 			}
700 
701 			/* can we merge into the lock owner? */
702 			if (rbio_can_merge(cur, rbio)) {
703 				merge_rbio(cur, rbio);
704 				spin_unlock(&cur->bio_list_lock);
705 				freeit = rbio;
706 				ret = 1;
707 				goto out;
708 			}
709 
710 
711 			/*
712 			 * we couldn't merge with the running
713 			 * rbio, see if we can merge with the
714 			 * pending ones.  We don't have to
715 			 * check for rmw_locked because there
716 			 * is no way they are inside finish_rmw
717 			 * right now
718 			 */
719 			list_for_each_entry(pending, &cur->plug_list,
720 					    plug_list) {
721 				if (rbio_can_merge(pending, rbio)) {
722 					merge_rbio(pending, rbio);
723 					spin_unlock(&cur->bio_list_lock);
724 					freeit = rbio;
725 					ret = 1;
726 					goto out;
727 				}
728 			}
729 
730 			/* no merging, put us on the tail of the plug list,
731 			 * our rbio will be started with the currently
732 			 * running rbio unlocks
733 			 */
734 			list_add_tail(&rbio->plug_list, &cur->plug_list);
735 			spin_unlock(&cur->bio_list_lock);
736 			ret = 1;
737 			goto out;
738 		}
739 	}
740 lockit:
741 	atomic_inc(&rbio->refs);
742 	list_add(&rbio->hash_list, &h->hash_list);
743 out:
744 	spin_unlock_irqrestore(&h->lock, flags);
745 	if (cache_drop)
746 		remove_rbio_from_cache(cache_drop);
747 	if (freeit)
748 		__free_raid_bio(freeit);
749 	return ret;
750 }
751 
752 /*
753  * called as rmw or parity rebuild is completed.  If the plug list has more
754  * rbios waiting for this stripe, the next one on the list will be started
755  */
756 static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
757 {
758 	int bucket;
759 	struct btrfs_stripe_hash *h;
760 	unsigned long flags;
761 	int keep_cache = 0;
762 
763 	bucket = rbio_bucket(rbio);
764 	h = rbio->fs_info->stripe_hash_table->table + bucket;
765 
766 	if (list_empty(&rbio->plug_list))
767 		cache_rbio(rbio);
768 
769 	spin_lock_irqsave(&h->lock, flags);
770 	spin_lock(&rbio->bio_list_lock);
771 
772 	if (!list_empty(&rbio->hash_list)) {
773 		/*
774 		 * if we're still cached and there is no other IO
775 		 * to perform, just leave this rbio here for others
776 		 * to steal from later
777 		 */
778 		if (list_empty(&rbio->plug_list) &&
779 		    test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
780 			keep_cache = 1;
781 			clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
782 			BUG_ON(!bio_list_empty(&rbio->bio_list));
783 			goto done;
784 		}
785 
786 		list_del_init(&rbio->hash_list);
787 		atomic_dec(&rbio->refs);
788 
789 		/*
790 		 * we use the plug list to hold all the rbios
791 		 * waiting for the chance to lock this stripe.
792 		 * hand the lock over to one of them.
793 		 */
794 		if (!list_empty(&rbio->plug_list)) {
795 			struct btrfs_raid_bio *next;
796 			struct list_head *head = rbio->plug_list.next;
797 
798 			next = list_entry(head, struct btrfs_raid_bio,
799 					  plug_list);
800 
801 			list_del_init(&rbio->plug_list);
802 
803 			list_add(&next->hash_list, &h->hash_list);
804 			atomic_inc(&next->refs);
805 			spin_unlock(&rbio->bio_list_lock);
806 			spin_unlock_irqrestore(&h->lock, flags);
807 
808 			if (next->operation == BTRFS_RBIO_READ_REBUILD)
809 				async_read_rebuild(next);
810 			else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) {
811 				steal_rbio(rbio, next);
812 				async_read_rebuild(next);
813 			} else if (next->operation == BTRFS_RBIO_WRITE) {
814 				steal_rbio(rbio, next);
815 				async_rmw_stripe(next);
816 			} else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
817 				steal_rbio(rbio, next);
818 				async_scrub_parity(next);
819 			}
820 
821 			goto done_nolock;
822 			/*
823 			 * The barrier for this waitqueue_active is not needed,
824 			 * we're protected by h->lock and can't miss a wakeup.
825 			 */
826 		} else if (waitqueue_active(&h->wait)) {
827 			spin_unlock(&rbio->bio_list_lock);
828 			spin_unlock_irqrestore(&h->lock, flags);
829 			wake_up(&h->wait);
830 			goto done_nolock;
831 		}
832 	}
833 done:
834 	spin_unlock(&rbio->bio_list_lock);
835 	spin_unlock_irqrestore(&h->lock, flags);
836 
837 done_nolock:
838 	if (!keep_cache)
839 		remove_rbio_from_cache(rbio);
840 }
841 
842 static void __free_raid_bio(struct btrfs_raid_bio *rbio)
843 {
844 	int i;
845 
846 	WARN_ON(atomic_read(&rbio->refs) < 0);
847 	if (!atomic_dec_and_test(&rbio->refs))
848 		return;
849 
850 	WARN_ON(!list_empty(&rbio->stripe_cache));
851 	WARN_ON(!list_empty(&rbio->hash_list));
852 	WARN_ON(!bio_list_empty(&rbio->bio_list));
853 
854 	for (i = 0; i < rbio->nr_pages; i++) {
855 		if (rbio->stripe_pages[i]) {
856 			__free_page(rbio->stripe_pages[i]);
857 			rbio->stripe_pages[i] = NULL;
858 		}
859 	}
860 
861 	btrfs_put_bbio(rbio->bbio);
862 	kfree(rbio);
863 }
864 
865 static void free_raid_bio(struct btrfs_raid_bio *rbio)
866 {
867 	unlock_stripe(rbio);
868 	__free_raid_bio(rbio);
869 }
870 
871 /*
872  * this frees the rbio and runs through all the bios in the
873  * bio_list and calls end_io on them
874  */
875 static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, int err)
876 {
877 	struct bio *cur = bio_list_get(&rbio->bio_list);
878 	struct bio *next;
879 
880 	if (rbio->generic_bio_cnt)
881 		btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt);
882 
883 	free_raid_bio(rbio);
884 
885 	while (cur) {
886 		next = cur->bi_next;
887 		cur->bi_next = NULL;
888 		cur->bi_error = err;
889 		bio_endio(cur);
890 		cur = next;
891 	}
892 }
893 
894 /*
895  * end io function used by finish_rmw.  When we finally
896  * get here, we've written a full stripe
897  */
898 static void raid_write_end_io(struct bio *bio)
899 {
900 	struct btrfs_raid_bio *rbio = bio->bi_private;
901 	int err = bio->bi_error;
902 	int max_errors;
903 
904 	if (err)
905 		fail_bio_stripe(rbio, bio);
906 
907 	bio_put(bio);
908 
909 	if (!atomic_dec_and_test(&rbio->stripes_pending))
910 		return;
911 
912 	err = 0;
913 
914 	/* OK, we have read all the stripes we need to. */
915 	max_errors = (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) ?
916 		     0 : rbio->bbio->max_errors;
917 	if (atomic_read(&rbio->error) > max_errors)
918 		err = -EIO;
919 
920 	rbio_orig_end_io(rbio, err);
921 }
922 
923 /*
924  * the read/modify/write code wants to use the original bio for
925  * any pages it included, and then use the rbio for everything
926  * else.  This function decides if a given index (stripe number)
927  * and page number in that stripe fall inside the original bio
928  * or the rbio.
929  *
930  * if you set bio_list_only, you'll get a NULL back for any ranges
931  * that are outside the bio_list
932  *
933  * This doesn't take any refs on anything, you get a bare page pointer
934  * and the caller must bump refs as required.
935  *
936  * You must call index_rbio_pages once before you can trust
937  * the answers from this function.
938  */
939 static struct page *page_in_rbio(struct btrfs_raid_bio *rbio,
940 				 int index, int pagenr, int bio_list_only)
941 {
942 	int chunk_page;
943 	struct page *p = NULL;
944 
945 	chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr;
946 
947 	spin_lock_irq(&rbio->bio_list_lock);
948 	p = rbio->bio_pages[chunk_page];
949 	spin_unlock_irq(&rbio->bio_list_lock);
950 
951 	if (p || bio_list_only)
952 		return p;
953 
954 	return rbio->stripe_pages[chunk_page];
955 }
956 
957 /*
958  * number of pages we need for the entire stripe across all the
959  * drives
960  */
961 static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes)
962 {
963 	return DIV_ROUND_UP(stripe_len, PAGE_SIZE) * nr_stripes;
964 }
965 
966 /*
967  * allocation and initial setup for the btrfs_raid_bio.  Not
968  * this does not allocate any pages for rbio->pages.
969  */
970 static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info,
971 					 struct btrfs_bio *bbio,
972 					 u64 stripe_len)
973 {
974 	struct btrfs_raid_bio *rbio;
975 	int nr_data = 0;
976 	int real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
977 	int num_pages = rbio_nr_pages(stripe_len, real_stripes);
978 	int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE);
979 	void *p;
980 
981 	rbio = kzalloc(sizeof(*rbio) + num_pages * sizeof(struct page *) * 2 +
982 		       DIV_ROUND_UP(stripe_npages, BITS_PER_LONG) *
983 		       sizeof(long), GFP_NOFS);
984 	if (!rbio)
985 		return ERR_PTR(-ENOMEM);
986 
987 	bio_list_init(&rbio->bio_list);
988 	INIT_LIST_HEAD(&rbio->plug_list);
989 	spin_lock_init(&rbio->bio_list_lock);
990 	INIT_LIST_HEAD(&rbio->stripe_cache);
991 	INIT_LIST_HEAD(&rbio->hash_list);
992 	rbio->bbio = bbio;
993 	rbio->fs_info = fs_info;
994 	rbio->stripe_len = stripe_len;
995 	rbio->nr_pages = num_pages;
996 	rbio->real_stripes = real_stripes;
997 	rbio->stripe_npages = stripe_npages;
998 	rbio->faila = -1;
999 	rbio->failb = -1;
1000 	atomic_set(&rbio->refs, 1);
1001 	atomic_set(&rbio->error, 0);
1002 	atomic_set(&rbio->stripes_pending, 0);
1003 
1004 	/*
1005 	 * the stripe_pages and bio_pages array point to the extra
1006 	 * memory we allocated past the end of the rbio
1007 	 */
1008 	p = rbio + 1;
1009 	rbio->stripe_pages = p;
1010 	rbio->bio_pages = p + sizeof(struct page *) * num_pages;
1011 	rbio->dbitmap = p + sizeof(struct page *) * num_pages * 2;
1012 
1013 	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1014 		nr_data = real_stripes - 1;
1015 	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1016 		nr_data = real_stripes - 2;
1017 	else
1018 		BUG();
1019 
1020 	rbio->nr_data = nr_data;
1021 	return rbio;
1022 }
1023 
1024 /* allocate pages for all the stripes in the bio, including parity */
1025 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
1026 {
1027 	int i;
1028 	struct page *page;
1029 
1030 	for (i = 0; i < rbio->nr_pages; i++) {
1031 		if (rbio->stripe_pages[i])
1032 			continue;
1033 		page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1034 		if (!page)
1035 			return -ENOMEM;
1036 		rbio->stripe_pages[i] = page;
1037 	}
1038 	return 0;
1039 }
1040 
1041 /* only allocate pages for p/q stripes */
1042 static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
1043 {
1044 	int i;
1045 	struct page *page;
1046 
1047 	i = rbio_stripe_page_index(rbio, rbio->nr_data, 0);
1048 
1049 	for (; i < rbio->nr_pages; i++) {
1050 		if (rbio->stripe_pages[i])
1051 			continue;
1052 		page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1053 		if (!page)
1054 			return -ENOMEM;
1055 		rbio->stripe_pages[i] = page;
1056 	}
1057 	return 0;
1058 }
1059 
1060 /*
1061  * add a single page from a specific stripe into our list of bios for IO
1062  * this will try to merge into existing bios if possible, and returns
1063  * zero if all went well.
1064  */
1065 static int rbio_add_io_page(struct btrfs_raid_bio *rbio,
1066 			    struct bio_list *bio_list,
1067 			    struct page *page,
1068 			    int stripe_nr,
1069 			    unsigned long page_index,
1070 			    unsigned long bio_max_len)
1071 {
1072 	struct bio *last = bio_list->tail;
1073 	u64 last_end = 0;
1074 	int ret;
1075 	struct bio *bio;
1076 	struct btrfs_bio_stripe *stripe;
1077 	u64 disk_start;
1078 
1079 	stripe = &rbio->bbio->stripes[stripe_nr];
1080 	disk_start = stripe->physical + (page_index << PAGE_SHIFT);
1081 
1082 	/* if the device is missing, just fail this stripe */
1083 	if (!stripe->dev->bdev)
1084 		return fail_rbio_index(rbio, stripe_nr);
1085 
1086 	/* see if we can add this page onto our existing bio */
1087 	if (last) {
1088 		last_end = (u64)last->bi_iter.bi_sector << 9;
1089 		last_end += last->bi_iter.bi_size;
1090 
1091 		/*
1092 		 * we can't merge these if they are from different
1093 		 * devices or if they are not contiguous
1094 		 */
1095 		if (last_end == disk_start && stripe->dev->bdev &&
1096 		    !last->bi_error &&
1097 		    last->bi_bdev == stripe->dev->bdev) {
1098 			ret = bio_add_page(last, page, PAGE_SIZE, 0);
1099 			if (ret == PAGE_SIZE)
1100 				return 0;
1101 		}
1102 	}
1103 
1104 	/* put a new bio on the list */
1105 	bio = btrfs_io_bio_alloc(GFP_NOFS, bio_max_len >> PAGE_SHIFT?:1);
1106 	if (!bio)
1107 		return -ENOMEM;
1108 
1109 	bio->bi_iter.bi_size = 0;
1110 	bio->bi_bdev = stripe->dev->bdev;
1111 	bio->bi_iter.bi_sector = disk_start >> 9;
1112 
1113 	bio_add_page(bio, page, PAGE_SIZE, 0);
1114 	bio_list_add(bio_list, bio);
1115 	return 0;
1116 }
1117 
1118 /*
1119  * while we're doing the read/modify/write cycle, we could
1120  * have errors in reading pages off the disk.  This checks
1121  * for errors and if we're not able to read the page it'll
1122  * trigger parity reconstruction.  The rmw will be finished
1123  * after we've reconstructed the failed stripes
1124  */
1125 static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio)
1126 {
1127 	if (rbio->faila >= 0 || rbio->failb >= 0) {
1128 		BUG_ON(rbio->faila == rbio->real_stripes - 1);
1129 		__raid56_parity_recover(rbio);
1130 	} else {
1131 		finish_rmw(rbio);
1132 	}
1133 }
1134 
1135 /*
1136  * helper function to walk our bio list and populate the bio_pages array with
1137  * the result.  This seems expensive, but it is faster than constantly
1138  * searching through the bio list as we setup the IO in finish_rmw or stripe
1139  * reconstruction.
1140  *
1141  * This must be called before you trust the answers from page_in_rbio
1142  */
1143 static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1144 {
1145 	struct bio *bio;
1146 	struct bio_vec *bvec;
1147 	u64 start;
1148 	unsigned long stripe_offset;
1149 	unsigned long page_index;
1150 	int i;
1151 
1152 	spin_lock_irq(&rbio->bio_list_lock);
1153 	bio_list_for_each(bio, &rbio->bio_list) {
1154 		start = (u64)bio->bi_iter.bi_sector << 9;
1155 		stripe_offset = start - rbio->bbio->raid_map[0];
1156 		page_index = stripe_offset >> PAGE_SHIFT;
1157 
1158 		bio_for_each_segment_all(bvec, bio, i)
1159 			rbio->bio_pages[page_index + i] = bvec->bv_page;
1160 	}
1161 	spin_unlock_irq(&rbio->bio_list_lock);
1162 }
1163 
1164 /*
1165  * this is called from one of two situations.  We either
1166  * have a full stripe from the higher layers, or we've read all
1167  * the missing bits off disk.
1168  *
1169  * This will calculate the parity and then send down any
1170  * changed blocks.
1171  */
1172 static noinline void finish_rmw(struct btrfs_raid_bio *rbio)
1173 {
1174 	struct btrfs_bio *bbio = rbio->bbio;
1175 	void *pointers[rbio->real_stripes];
1176 	int nr_data = rbio->nr_data;
1177 	int stripe;
1178 	int pagenr;
1179 	int p_stripe = -1;
1180 	int q_stripe = -1;
1181 	struct bio_list bio_list;
1182 	struct bio *bio;
1183 	int ret;
1184 
1185 	bio_list_init(&bio_list);
1186 
1187 	if (rbio->real_stripes - rbio->nr_data == 1) {
1188 		p_stripe = rbio->real_stripes - 1;
1189 	} else if (rbio->real_stripes - rbio->nr_data == 2) {
1190 		p_stripe = rbio->real_stripes - 2;
1191 		q_stripe = rbio->real_stripes - 1;
1192 	} else {
1193 		BUG();
1194 	}
1195 
1196 	/* at this point we either have a full stripe,
1197 	 * or we've read the full stripe from the drive.
1198 	 * recalculate the parity and write the new results.
1199 	 *
1200 	 * We're not allowed to add any new bios to the
1201 	 * bio list here, anyone else that wants to
1202 	 * change this stripe needs to do their own rmw.
1203 	 */
1204 	spin_lock_irq(&rbio->bio_list_lock);
1205 	set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1206 	spin_unlock_irq(&rbio->bio_list_lock);
1207 
1208 	atomic_set(&rbio->error, 0);
1209 
1210 	/*
1211 	 * now that we've set rmw_locked, run through the
1212 	 * bio list one last time and map the page pointers
1213 	 *
1214 	 * We don't cache full rbios because we're assuming
1215 	 * the higher layers are unlikely to use this area of
1216 	 * the disk again soon.  If they do use it again,
1217 	 * hopefully they will send another full bio.
1218 	 */
1219 	index_rbio_pages(rbio);
1220 	if (!rbio_is_full(rbio))
1221 		cache_rbio_pages(rbio);
1222 	else
1223 		clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1224 
1225 	for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1226 		struct page *p;
1227 		/* first collect one page from each data stripe */
1228 		for (stripe = 0; stripe < nr_data; stripe++) {
1229 			p = page_in_rbio(rbio, stripe, pagenr, 0);
1230 			pointers[stripe] = kmap(p);
1231 		}
1232 
1233 		/* then add the parity stripe */
1234 		p = rbio_pstripe_page(rbio, pagenr);
1235 		SetPageUptodate(p);
1236 		pointers[stripe++] = kmap(p);
1237 
1238 		if (q_stripe != -1) {
1239 
1240 			/*
1241 			 * raid6, add the qstripe and call the
1242 			 * library function to fill in our p/q
1243 			 */
1244 			p = rbio_qstripe_page(rbio, pagenr);
1245 			SetPageUptodate(p);
1246 			pointers[stripe++] = kmap(p);
1247 
1248 			raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
1249 						pointers);
1250 		} else {
1251 			/* raid5 */
1252 			memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
1253 			run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
1254 		}
1255 
1256 
1257 		for (stripe = 0; stripe < rbio->real_stripes; stripe++)
1258 			kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
1259 	}
1260 
1261 	/*
1262 	 * time to start writing.  Make bios for everything from the
1263 	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
1264 	 * everything else.
1265 	 */
1266 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1267 		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1268 			struct page *page;
1269 			if (stripe < rbio->nr_data) {
1270 				page = page_in_rbio(rbio, stripe, pagenr, 1);
1271 				if (!page)
1272 					continue;
1273 			} else {
1274 			       page = rbio_stripe_page(rbio, stripe, pagenr);
1275 			}
1276 
1277 			ret = rbio_add_io_page(rbio, &bio_list,
1278 				       page, stripe, pagenr, rbio->stripe_len);
1279 			if (ret)
1280 				goto cleanup;
1281 		}
1282 	}
1283 
1284 	if (likely(!bbio->num_tgtdevs))
1285 		goto write_data;
1286 
1287 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1288 		if (!bbio->tgtdev_map[stripe])
1289 			continue;
1290 
1291 		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1292 			struct page *page;
1293 			if (stripe < rbio->nr_data) {
1294 				page = page_in_rbio(rbio, stripe, pagenr, 1);
1295 				if (!page)
1296 					continue;
1297 			} else {
1298 			       page = rbio_stripe_page(rbio, stripe, pagenr);
1299 			}
1300 
1301 			ret = rbio_add_io_page(rbio, &bio_list, page,
1302 					       rbio->bbio->tgtdev_map[stripe],
1303 					       pagenr, rbio->stripe_len);
1304 			if (ret)
1305 				goto cleanup;
1306 		}
1307 	}
1308 
1309 write_data:
1310 	atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list));
1311 	BUG_ON(atomic_read(&rbio->stripes_pending) == 0);
1312 
1313 	while (1) {
1314 		bio = bio_list_pop(&bio_list);
1315 		if (!bio)
1316 			break;
1317 
1318 		bio->bi_private = rbio;
1319 		bio->bi_end_io = raid_write_end_io;
1320 		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1321 
1322 		submit_bio(bio);
1323 	}
1324 	return;
1325 
1326 cleanup:
1327 	rbio_orig_end_io(rbio, -EIO);
1328 }
1329 
1330 /*
1331  * helper to find the stripe number for a given bio.  Used to figure out which
1332  * stripe has failed.  This expects the bio to correspond to a physical disk,
1333  * so it looks up based on physical sector numbers.
1334  */
1335 static int find_bio_stripe(struct btrfs_raid_bio *rbio,
1336 			   struct bio *bio)
1337 {
1338 	u64 physical = bio->bi_iter.bi_sector;
1339 	u64 stripe_start;
1340 	int i;
1341 	struct btrfs_bio_stripe *stripe;
1342 
1343 	physical <<= 9;
1344 
1345 	for (i = 0; i < rbio->bbio->num_stripes; i++) {
1346 		stripe = &rbio->bbio->stripes[i];
1347 		stripe_start = stripe->physical;
1348 		if (physical >= stripe_start &&
1349 		    physical < stripe_start + rbio->stripe_len &&
1350 		    bio->bi_bdev == stripe->dev->bdev) {
1351 			return i;
1352 		}
1353 	}
1354 	return -1;
1355 }
1356 
1357 /*
1358  * helper to find the stripe number for a given
1359  * bio (before mapping).  Used to figure out which stripe has
1360  * failed.  This looks up based on logical block numbers.
1361  */
1362 static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio,
1363 				   struct bio *bio)
1364 {
1365 	u64 logical = bio->bi_iter.bi_sector;
1366 	u64 stripe_start;
1367 	int i;
1368 
1369 	logical <<= 9;
1370 
1371 	for (i = 0; i < rbio->nr_data; i++) {
1372 		stripe_start = rbio->bbio->raid_map[i];
1373 		if (logical >= stripe_start &&
1374 		    logical < stripe_start + rbio->stripe_len) {
1375 			return i;
1376 		}
1377 	}
1378 	return -1;
1379 }
1380 
1381 /*
1382  * returns -EIO if we had too many failures
1383  */
1384 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed)
1385 {
1386 	unsigned long flags;
1387 	int ret = 0;
1388 
1389 	spin_lock_irqsave(&rbio->bio_list_lock, flags);
1390 
1391 	/* we already know this stripe is bad, move on */
1392 	if (rbio->faila == failed || rbio->failb == failed)
1393 		goto out;
1394 
1395 	if (rbio->faila == -1) {
1396 		/* first failure on this rbio */
1397 		rbio->faila = failed;
1398 		atomic_inc(&rbio->error);
1399 	} else if (rbio->failb == -1) {
1400 		/* second failure on this rbio */
1401 		rbio->failb = failed;
1402 		atomic_inc(&rbio->error);
1403 	} else {
1404 		ret = -EIO;
1405 	}
1406 out:
1407 	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
1408 
1409 	return ret;
1410 }
1411 
1412 /*
1413  * helper to fail a stripe based on a physical disk
1414  * bio.
1415  */
1416 static int fail_bio_stripe(struct btrfs_raid_bio *rbio,
1417 			   struct bio *bio)
1418 {
1419 	int failed = find_bio_stripe(rbio, bio);
1420 
1421 	if (failed < 0)
1422 		return -EIO;
1423 
1424 	return fail_rbio_index(rbio, failed);
1425 }
1426 
1427 /*
1428  * this sets each page in the bio uptodate.  It should only be used on private
1429  * rbio pages, nothing that comes in from the higher layers
1430  */
1431 static void set_bio_pages_uptodate(struct bio *bio)
1432 {
1433 	struct bio_vec *bvec;
1434 	int i;
1435 
1436 	bio_for_each_segment_all(bvec, bio, i)
1437 		SetPageUptodate(bvec->bv_page);
1438 }
1439 
1440 /*
1441  * end io for the read phase of the rmw cycle.  All the bios here are physical
1442  * stripe bios we've read from the disk so we can recalculate the parity of the
1443  * stripe.
1444  *
1445  * This will usually kick off finish_rmw once all the bios are read in, but it
1446  * may trigger parity reconstruction if we had any errors along the way
1447  */
1448 static void raid_rmw_end_io(struct bio *bio)
1449 {
1450 	struct btrfs_raid_bio *rbio = bio->bi_private;
1451 
1452 	if (bio->bi_error)
1453 		fail_bio_stripe(rbio, bio);
1454 	else
1455 		set_bio_pages_uptodate(bio);
1456 
1457 	bio_put(bio);
1458 
1459 	if (!atomic_dec_and_test(&rbio->stripes_pending))
1460 		return;
1461 
1462 	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
1463 		goto cleanup;
1464 
1465 	/*
1466 	 * this will normally call finish_rmw to start our write
1467 	 * but if there are any failed stripes we'll reconstruct
1468 	 * from parity first
1469 	 */
1470 	validate_rbio_for_rmw(rbio);
1471 	return;
1472 
1473 cleanup:
1474 
1475 	rbio_orig_end_io(rbio, -EIO);
1476 }
1477 
1478 static void async_rmw_stripe(struct btrfs_raid_bio *rbio)
1479 {
1480 	btrfs_init_work(&rbio->work, btrfs_rmw_helper, rmw_work, NULL, NULL);
1481 	btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
1482 }
1483 
1484 static void async_read_rebuild(struct btrfs_raid_bio *rbio)
1485 {
1486 	btrfs_init_work(&rbio->work, btrfs_rmw_helper,
1487 			read_rebuild_work, NULL, NULL);
1488 
1489 	btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
1490 }
1491 
1492 /*
1493  * the stripe must be locked by the caller.  It will
1494  * unlock after all the writes are done
1495  */
1496 static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio)
1497 {
1498 	int bios_to_read = 0;
1499 	struct bio_list bio_list;
1500 	int ret;
1501 	int pagenr;
1502 	int stripe;
1503 	struct bio *bio;
1504 
1505 	bio_list_init(&bio_list);
1506 
1507 	ret = alloc_rbio_pages(rbio);
1508 	if (ret)
1509 		goto cleanup;
1510 
1511 	index_rbio_pages(rbio);
1512 
1513 	atomic_set(&rbio->error, 0);
1514 	/*
1515 	 * build a list of bios to read all the missing parts of this
1516 	 * stripe
1517 	 */
1518 	for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1519 		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1520 			struct page *page;
1521 			/*
1522 			 * we want to find all the pages missing from
1523 			 * the rbio and read them from the disk.  If
1524 			 * page_in_rbio finds a page in the bio list
1525 			 * we don't need to read it off the stripe.
1526 			 */
1527 			page = page_in_rbio(rbio, stripe, pagenr, 1);
1528 			if (page)
1529 				continue;
1530 
1531 			page = rbio_stripe_page(rbio, stripe, pagenr);
1532 			/*
1533 			 * the bio cache may have handed us an uptodate
1534 			 * page.  If so, be happy and use it
1535 			 */
1536 			if (PageUptodate(page))
1537 				continue;
1538 
1539 			ret = rbio_add_io_page(rbio, &bio_list, page,
1540 				       stripe, pagenr, rbio->stripe_len);
1541 			if (ret)
1542 				goto cleanup;
1543 		}
1544 	}
1545 
1546 	bios_to_read = bio_list_size(&bio_list);
1547 	if (!bios_to_read) {
1548 		/*
1549 		 * this can happen if others have merged with
1550 		 * us, it means there is nothing left to read.
1551 		 * But if there are missing devices it may not be
1552 		 * safe to do the full stripe write yet.
1553 		 */
1554 		goto finish;
1555 	}
1556 
1557 	/*
1558 	 * the bbio may be freed once we submit the last bio.  Make sure
1559 	 * not to touch it after that
1560 	 */
1561 	atomic_set(&rbio->stripes_pending, bios_to_read);
1562 	while (1) {
1563 		bio = bio_list_pop(&bio_list);
1564 		if (!bio)
1565 			break;
1566 
1567 		bio->bi_private = rbio;
1568 		bio->bi_end_io = raid_rmw_end_io;
1569 		bio_set_op_attrs(bio, REQ_OP_READ, 0);
1570 
1571 		btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
1572 
1573 		submit_bio(bio);
1574 	}
1575 	/* the actual write will happen once the reads are done */
1576 	return 0;
1577 
1578 cleanup:
1579 	rbio_orig_end_io(rbio, -EIO);
1580 	return -EIO;
1581 
1582 finish:
1583 	validate_rbio_for_rmw(rbio);
1584 	return 0;
1585 }
1586 
1587 /*
1588  * if the upper layers pass in a full stripe, we thank them by only allocating
1589  * enough pages to hold the parity, and sending it all down quickly.
1590  */
1591 static int full_stripe_write(struct btrfs_raid_bio *rbio)
1592 {
1593 	int ret;
1594 
1595 	ret = alloc_rbio_parity_pages(rbio);
1596 	if (ret) {
1597 		__free_raid_bio(rbio);
1598 		return ret;
1599 	}
1600 
1601 	ret = lock_stripe_add(rbio);
1602 	if (ret == 0)
1603 		finish_rmw(rbio);
1604 	return 0;
1605 }
1606 
1607 /*
1608  * partial stripe writes get handed over to async helpers.
1609  * We're really hoping to merge a few more writes into this
1610  * rbio before calculating new parity
1611  */
1612 static int partial_stripe_write(struct btrfs_raid_bio *rbio)
1613 {
1614 	int ret;
1615 
1616 	ret = lock_stripe_add(rbio);
1617 	if (ret == 0)
1618 		async_rmw_stripe(rbio);
1619 	return 0;
1620 }
1621 
1622 /*
1623  * sometimes while we were reading from the drive to
1624  * recalculate parity, enough new bios come into create
1625  * a full stripe.  So we do a check here to see if we can
1626  * go directly to finish_rmw
1627  */
1628 static int __raid56_parity_write(struct btrfs_raid_bio *rbio)
1629 {
1630 	/* head off into rmw land if we don't have a full stripe */
1631 	if (!rbio_is_full(rbio))
1632 		return partial_stripe_write(rbio);
1633 	return full_stripe_write(rbio);
1634 }
1635 
1636 /*
1637  * We use plugging call backs to collect full stripes.
1638  * Any time we get a partial stripe write while plugged
1639  * we collect it into a list.  When the unplug comes down,
1640  * we sort the list by logical block number and merge
1641  * everything we can into the same rbios
1642  */
1643 struct btrfs_plug_cb {
1644 	struct blk_plug_cb cb;
1645 	struct btrfs_fs_info *info;
1646 	struct list_head rbio_list;
1647 	struct btrfs_work work;
1648 };
1649 
1650 /*
1651  * rbios on the plug list are sorted for easier merging.
1652  */
1653 static int plug_cmp(void *priv, struct list_head *a, struct list_head *b)
1654 {
1655 	struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1656 						 plug_list);
1657 	struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1658 						 plug_list);
1659 	u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1660 	u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1661 
1662 	if (a_sector < b_sector)
1663 		return -1;
1664 	if (a_sector > b_sector)
1665 		return 1;
1666 	return 0;
1667 }
1668 
1669 static void run_plug(struct btrfs_plug_cb *plug)
1670 {
1671 	struct btrfs_raid_bio *cur;
1672 	struct btrfs_raid_bio *last = NULL;
1673 
1674 	/*
1675 	 * sort our plug list then try to merge
1676 	 * everything we can in hopes of creating full
1677 	 * stripes.
1678 	 */
1679 	list_sort(NULL, &plug->rbio_list, plug_cmp);
1680 	while (!list_empty(&plug->rbio_list)) {
1681 		cur = list_entry(plug->rbio_list.next,
1682 				 struct btrfs_raid_bio, plug_list);
1683 		list_del_init(&cur->plug_list);
1684 
1685 		if (rbio_is_full(cur)) {
1686 			/* we have a full stripe, send it down */
1687 			full_stripe_write(cur);
1688 			continue;
1689 		}
1690 		if (last) {
1691 			if (rbio_can_merge(last, cur)) {
1692 				merge_rbio(last, cur);
1693 				__free_raid_bio(cur);
1694 				continue;
1695 
1696 			}
1697 			__raid56_parity_write(last);
1698 		}
1699 		last = cur;
1700 	}
1701 	if (last) {
1702 		__raid56_parity_write(last);
1703 	}
1704 	kfree(plug);
1705 }
1706 
1707 /*
1708  * if the unplug comes from schedule, we have to push the
1709  * work off to a helper thread
1710  */
1711 static void unplug_work(struct btrfs_work *work)
1712 {
1713 	struct btrfs_plug_cb *plug;
1714 	plug = container_of(work, struct btrfs_plug_cb, work);
1715 	run_plug(plug);
1716 }
1717 
1718 static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1719 {
1720 	struct btrfs_plug_cb *plug;
1721 	plug = container_of(cb, struct btrfs_plug_cb, cb);
1722 
1723 	if (from_schedule) {
1724 		btrfs_init_work(&plug->work, btrfs_rmw_helper,
1725 				unplug_work, NULL, NULL);
1726 		btrfs_queue_work(plug->info->rmw_workers,
1727 				 &plug->work);
1728 		return;
1729 	}
1730 	run_plug(plug);
1731 }
1732 
1733 /*
1734  * our main entry point for writes from the rest of the FS.
1735  */
1736 int raid56_parity_write(struct btrfs_fs_info *fs_info, struct bio *bio,
1737 			struct btrfs_bio *bbio, u64 stripe_len)
1738 {
1739 	struct btrfs_raid_bio *rbio;
1740 	struct btrfs_plug_cb *plug = NULL;
1741 	struct blk_plug_cb *cb;
1742 	int ret;
1743 
1744 	rbio = alloc_rbio(fs_info, bbio, stripe_len);
1745 	if (IS_ERR(rbio)) {
1746 		btrfs_put_bbio(bbio);
1747 		return PTR_ERR(rbio);
1748 	}
1749 	bio_list_add(&rbio->bio_list, bio);
1750 	rbio->bio_list_bytes = bio->bi_iter.bi_size;
1751 	rbio->operation = BTRFS_RBIO_WRITE;
1752 
1753 	btrfs_bio_counter_inc_noblocked(fs_info);
1754 	rbio->generic_bio_cnt = 1;
1755 
1756 	/*
1757 	 * don't plug on full rbios, just get them out the door
1758 	 * as quickly as we can
1759 	 */
1760 	if (rbio_is_full(rbio)) {
1761 		ret = full_stripe_write(rbio);
1762 		if (ret)
1763 			btrfs_bio_counter_dec(fs_info);
1764 		return ret;
1765 	}
1766 
1767 	cb = blk_check_plugged(btrfs_raid_unplug, fs_info, sizeof(*plug));
1768 	if (cb) {
1769 		plug = container_of(cb, struct btrfs_plug_cb, cb);
1770 		if (!plug->info) {
1771 			plug->info = fs_info;
1772 			INIT_LIST_HEAD(&plug->rbio_list);
1773 		}
1774 		list_add_tail(&rbio->plug_list, &plug->rbio_list);
1775 		ret = 0;
1776 	} else {
1777 		ret = __raid56_parity_write(rbio);
1778 		if (ret)
1779 			btrfs_bio_counter_dec(fs_info);
1780 	}
1781 	return ret;
1782 }
1783 
1784 /*
1785  * all parity reconstruction happens here.  We've read in everything
1786  * we can find from the drives and this does the heavy lifting of
1787  * sorting the good from the bad.
1788  */
1789 static void __raid_recover_end_io(struct btrfs_raid_bio *rbio)
1790 {
1791 	int pagenr, stripe;
1792 	void **pointers;
1793 	int faila = -1, failb = -1;
1794 	struct page *page;
1795 	int err;
1796 	int i;
1797 
1798 	pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1799 	if (!pointers) {
1800 		err = -ENOMEM;
1801 		goto cleanup_io;
1802 	}
1803 
1804 	faila = rbio->faila;
1805 	failb = rbio->failb;
1806 
1807 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1808 	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1809 		spin_lock_irq(&rbio->bio_list_lock);
1810 		set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1811 		spin_unlock_irq(&rbio->bio_list_lock);
1812 	}
1813 
1814 	index_rbio_pages(rbio);
1815 
1816 	for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1817 		/*
1818 		 * Now we just use bitmap to mark the horizontal stripes in
1819 		 * which we have data when doing parity scrub.
1820 		 */
1821 		if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1822 		    !test_bit(pagenr, rbio->dbitmap))
1823 			continue;
1824 
1825 		/* setup our array of pointers with pages
1826 		 * from each stripe
1827 		 */
1828 		for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1829 			/*
1830 			 * if we're rebuilding a read, we have to use
1831 			 * pages from the bio list
1832 			 */
1833 			if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1834 			     rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1835 			    (stripe == faila || stripe == failb)) {
1836 				page = page_in_rbio(rbio, stripe, pagenr, 0);
1837 			} else {
1838 				page = rbio_stripe_page(rbio, stripe, pagenr);
1839 			}
1840 			pointers[stripe] = kmap(page);
1841 		}
1842 
1843 		/* all raid6 handling here */
1844 		if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) {
1845 			/*
1846 			 * single failure, rebuild from parity raid5
1847 			 * style
1848 			 */
1849 			if (failb < 0) {
1850 				if (faila == rbio->nr_data) {
1851 					/*
1852 					 * Just the P stripe has failed, without
1853 					 * a bad data or Q stripe.
1854 					 * TODO, we should redo the xor here.
1855 					 */
1856 					err = -EIO;
1857 					goto cleanup;
1858 				}
1859 				/*
1860 				 * a single failure in raid6 is rebuilt
1861 				 * in the pstripe code below
1862 				 */
1863 				goto pstripe;
1864 			}
1865 
1866 			/* make sure our ps and qs are in order */
1867 			if (faila > failb) {
1868 				int tmp = failb;
1869 				failb = faila;
1870 				faila = tmp;
1871 			}
1872 
1873 			/* if the q stripe is failed, do a pstripe reconstruction
1874 			 * from the xors.
1875 			 * If both the q stripe and the P stripe are failed, we're
1876 			 * here due to a crc mismatch and we can't give them the
1877 			 * data they want
1878 			 */
1879 			if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) {
1880 				if (rbio->bbio->raid_map[faila] ==
1881 				    RAID5_P_STRIPE) {
1882 					err = -EIO;
1883 					goto cleanup;
1884 				}
1885 				/*
1886 				 * otherwise we have one bad data stripe and
1887 				 * a good P stripe.  raid5!
1888 				 */
1889 				goto pstripe;
1890 			}
1891 
1892 			if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) {
1893 				raid6_datap_recov(rbio->real_stripes,
1894 						  PAGE_SIZE, faila, pointers);
1895 			} else {
1896 				raid6_2data_recov(rbio->real_stripes,
1897 						  PAGE_SIZE, faila, failb,
1898 						  pointers);
1899 			}
1900 		} else {
1901 			void *p;
1902 
1903 			/* rebuild from P stripe here (raid5 or raid6) */
1904 			BUG_ON(failb != -1);
1905 pstripe:
1906 			/* Copy parity block into failed block to start with */
1907 			memcpy(pointers[faila],
1908 			       pointers[rbio->nr_data],
1909 			       PAGE_SIZE);
1910 
1911 			/* rearrange the pointer array */
1912 			p = pointers[faila];
1913 			for (stripe = faila; stripe < rbio->nr_data - 1; stripe++)
1914 				pointers[stripe] = pointers[stripe + 1];
1915 			pointers[rbio->nr_data - 1] = p;
1916 
1917 			/* xor in the rest */
1918 			run_xor(pointers, rbio->nr_data - 1, PAGE_SIZE);
1919 		}
1920 		/* if we're doing this rebuild as part of an rmw, go through
1921 		 * and set all of our private rbio pages in the
1922 		 * failed stripes as uptodate.  This way finish_rmw will
1923 		 * know they can be trusted.  If this was a read reconstruction,
1924 		 * other endio functions will fiddle the uptodate bits
1925 		 */
1926 		if (rbio->operation == BTRFS_RBIO_WRITE) {
1927 			for (i = 0;  i < rbio->stripe_npages; i++) {
1928 				if (faila != -1) {
1929 					page = rbio_stripe_page(rbio, faila, i);
1930 					SetPageUptodate(page);
1931 				}
1932 				if (failb != -1) {
1933 					page = rbio_stripe_page(rbio, failb, i);
1934 					SetPageUptodate(page);
1935 				}
1936 			}
1937 		}
1938 		for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1939 			/*
1940 			 * if we're rebuilding a read, we have to use
1941 			 * pages from the bio list
1942 			 */
1943 			if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1944 			     rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1945 			    (stripe == faila || stripe == failb)) {
1946 				page = page_in_rbio(rbio, stripe, pagenr, 0);
1947 			} else {
1948 				page = rbio_stripe_page(rbio, stripe, pagenr);
1949 			}
1950 			kunmap(page);
1951 		}
1952 	}
1953 
1954 	err = 0;
1955 cleanup:
1956 	kfree(pointers);
1957 
1958 cleanup_io:
1959 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
1960 		if (err == 0)
1961 			cache_rbio_pages(rbio);
1962 		else
1963 			clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1964 
1965 		rbio_orig_end_io(rbio, err);
1966 	} else if (rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1967 		rbio_orig_end_io(rbio, err);
1968 	} else if (err == 0) {
1969 		rbio->faila = -1;
1970 		rbio->failb = -1;
1971 
1972 		if (rbio->operation == BTRFS_RBIO_WRITE)
1973 			finish_rmw(rbio);
1974 		else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB)
1975 			finish_parity_scrub(rbio, 0);
1976 		else
1977 			BUG();
1978 	} else {
1979 		rbio_orig_end_io(rbio, err);
1980 	}
1981 }
1982 
1983 /*
1984  * This is called only for stripes we've read from disk to
1985  * reconstruct the parity.
1986  */
1987 static void raid_recover_end_io(struct bio *bio)
1988 {
1989 	struct btrfs_raid_bio *rbio = bio->bi_private;
1990 
1991 	/*
1992 	 * we only read stripe pages off the disk, set them
1993 	 * up to date if there were no errors
1994 	 */
1995 	if (bio->bi_error)
1996 		fail_bio_stripe(rbio, bio);
1997 	else
1998 		set_bio_pages_uptodate(bio);
1999 	bio_put(bio);
2000 
2001 	if (!atomic_dec_and_test(&rbio->stripes_pending))
2002 		return;
2003 
2004 	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2005 		rbio_orig_end_io(rbio, -EIO);
2006 	else
2007 		__raid_recover_end_io(rbio);
2008 }
2009 
2010 /*
2011  * reads everything we need off the disk to reconstruct
2012  * the parity. endio handlers trigger final reconstruction
2013  * when the IO is done.
2014  *
2015  * This is used both for reads from the higher layers and for
2016  * parity construction required to finish a rmw cycle.
2017  */
2018 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio)
2019 {
2020 	int bios_to_read = 0;
2021 	struct bio_list bio_list;
2022 	int ret;
2023 	int pagenr;
2024 	int stripe;
2025 	struct bio *bio;
2026 
2027 	bio_list_init(&bio_list);
2028 
2029 	ret = alloc_rbio_pages(rbio);
2030 	if (ret)
2031 		goto cleanup;
2032 
2033 	atomic_set(&rbio->error, 0);
2034 
2035 	/*
2036 	 * read everything that hasn't failed.  Thanks to the
2037 	 * stripe cache, it is possible that some or all of these
2038 	 * pages are going to be uptodate.
2039 	 */
2040 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2041 		if (rbio->faila == stripe || rbio->failb == stripe) {
2042 			atomic_inc(&rbio->error);
2043 			continue;
2044 		}
2045 
2046 		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
2047 			struct page *p;
2048 
2049 			/*
2050 			 * the rmw code may have already read this
2051 			 * page in
2052 			 */
2053 			p = rbio_stripe_page(rbio, stripe, pagenr);
2054 			if (PageUptodate(p))
2055 				continue;
2056 
2057 			ret = rbio_add_io_page(rbio, &bio_list,
2058 				       rbio_stripe_page(rbio, stripe, pagenr),
2059 				       stripe, pagenr, rbio->stripe_len);
2060 			if (ret < 0)
2061 				goto cleanup;
2062 		}
2063 	}
2064 
2065 	bios_to_read = bio_list_size(&bio_list);
2066 	if (!bios_to_read) {
2067 		/*
2068 		 * we might have no bios to read just because the pages
2069 		 * were up to date, or we might have no bios to read because
2070 		 * the devices were gone.
2071 		 */
2072 		if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) {
2073 			__raid_recover_end_io(rbio);
2074 			goto out;
2075 		} else {
2076 			goto cleanup;
2077 		}
2078 	}
2079 
2080 	/*
2081 	 * the bbio may be freed once we submit the last bio.  Make sure
2082 	 * not to touch it after that
2083 	 */
2084 	atomic_set(&rbio->stripes_pending, bios_to_read);
2085 	while (1) {
2086 		bio = bio_list_pop(&bio_list);
2087 		if (!bio)
2088 			break;
2089 
2090 		bio->bi_private = rbio;
2091 		bio->bi_end_io = raid_recover_end_io;
2092 		bio_set_op_attrs(bio, REQ_OP_READ, 0);
2093 
2094 		btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
2095 
2096 		submit_bio(bio);
2097 	}
2098 out:
2099 	return 0;
2100 
2101 cleanup:
2102 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
2103 	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING)
2104 		rbio_orig_end_io(rbio, -EIO);
2105 	return -EIO;
2106 }
2107 
2108 /*
2109  * the main entry point for reads from the higher layers.  This
2110  * is really only called when the normal read path had a failure,
2111  * so we assume the bio they send down corresponds to a failed part
2112  * of the drive.
2113  */
2114 int raid56_parity_recover(struct btrfs_fs_info *fs_info, struct bio *bio,
2115 			  struct btrfs_bio *bbio, u64 stripe_len,
2116 			  int mirror_num, int generic_io)
2117 {
2118 	struct btrfs_raid_bio *rbio;
2119 	int ret;
2120 
2121 	rbio = alloc_rbio(fs_info, bbio, stripe_len);
2122 	if (IS_ERR(rbio)) {
2123 		if (generic_io)
2124 			btrfs_put_bbio(bbio);
2125 		return PTR_ERR(rbio);
2126 	}
2127 
2128 	rbio->operation = BTRFS_RBIO_READ_REBUILD;
2129 	bio_list_add(&rbio->bio_list, bio);
2130 	rbio->bio_list_bytes = bio->bi_iter.bi_size;
2131 
2132 	rbio->faila = find_logical_bio_stripe(rbio, bio);
2133 	if (rbio->faila == -1) {
2134 		btrfs_warn(fs_info,
2135 	"%s could not find the bad stripe in raid56 so that we cannot recover any more (bio has logical %llu len %llu, bbio has map_type %llu)",
2136 			   __func__, (u64)bio->bi_iter.bi_sector << 9,
2137 			   (u64)bio->bi_iter.bi_size, bbio->map_type);
2138 		if (generic_io)
2139 			btrfs_put_bbio(bbio);
2140 		kfree(rbio);
2141 		return -EIO;
2142 	}
2143 
2144 	if (generic_io) {
2145 		btrfs_bio_counter_inc_noblocked(fs_info);
2146 		rbio->generic_bio_cnt = 1;
2147 	} else {
2148 		btrfs_get_bbio(bbio);
2149 	}
2150 
2151 	/*
2152 	 * reconstruct from the q stripe if they are
2153 	 * asking for mirror 3
2154 	 */
2155 	if (mirror_num == 3)
2156 		rbio->failb = rbio->real_stripes - 2;
2157 
2158 	ret = lock_stripe_add(rbio);
2159 
2160 	/*
2161 	 * __raid56_parity_recover will end the bio with
2162 	 * any errors it hits.  We don't want to return
2163 	 * its error value up the stack because our caller
2164 	 * will end up calling bio_endio with any nonzero
2165 	 * return
2166 	 */
2167 	if (ret == 0)
2168 		__raid56_parity_recover(rbio);
2169 	/*
2170 	 * our rbio has been added to the list of
2171 	 * rbios that will be handled after the
2172 	 * currently lock owner is done
2173 	 */
2174 	return 0;
2175 
2176 }
2177 
2178 static void rmw_work(struct btrfs_work *work)
2179 {
2180 	struct btrfs_raid_bio *rbio;
2181 
2182 	rbio = container_of(work, struct btrfs_raid_bio, work);
2183 	raid56_rmw_stripe(rbio);
2184 }
2185 
2186 static void read_rebuild_work(struct btrfs_work *work)
2187 {
2188 	struct btrfs_raid_bio *rbio;
2189 
2190 	rbio = container_of(work, struct btrfs_raid_bio, work);
2191 	__raid56_parity_recover(rbio);
2192 }
2193 
2194 /*
2195  * The following code is used to scrub/replace the parity stripe
2196  *
2197  * Note: We need make sure all the pages that add into the scrub/replace
2198  * raid bio are correct and not be changed during the scrub/replace. That
2199  * is those pages just hold metadata or file data with checksum.
2200  */
2201 
2202 struct btrfs_raid_bio *
2203 raid56_parity_alloc_scrub_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
2204 			       struct btrfs_bio *bbio, u64 stripe_len,
2205 			       struct btrfs_device *scrub_dev,
2206 			       unsigned long *dbitmap, int stripe_nsectors)
2207 {
2208 	struct btrfs_raid_bio *rbio;
2209 	int i;
2210 
2211 	rbio = alloc_rbio(fs_info, bbio, stripe_len);
2212 	if (IS_ERR(rbio))
2213 		return NULL;
2214 	bio_list_add(&rbio->bio_list, bio);
2215 	/*
2216 	 * This is a special bio which is used to hold the completion handler
2217 	 * and make the scrub rbio is similar to the other types
2218 	 */
2219 	ASSERT(!bio->bi_iter.bi_size);
2220 	rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2221 
2222 	for (i = 0; i < rbio->real_stripes; i++) {
2223 		if (bbio->stripes[i].dev == scrub_dev) {
2224 			rbio->scrubp = i;
2225 			break;
2226 		}
2227 	}
2228 
2229 	/* Now we just support the sectorsize equals to page size */
2230 	ASSERT(fs_info->sectorsize == PAGE_SIZE);
2231 	ASSERT(rbio->stripe_npages == stripe_nsectors);
2232 	bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors);
2233 
2234 	return rbio;
2235 }
2236 
2237 /* Used for both parity scrub and missing. */
2238 void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page,
2239 			    u64 logical)
2240 {
2241 	int stripe_offset;
2242 	int index;
2243 
2244 	ASSERT(logical >= rbio->bbio->raid_map[0]);
2245 	ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] +
2246 				rbio->stripe_len * rbio->nr_data);
2247 	stripe_offset = (int)(logical - rbio->bbio->raid_map[0]);
2248 	index = stripe_offset >> PAGE_SHIFT;
2249 	rbio->bio_pages[index] = page;
2250 }
2251 
2252 /*
2253  * We just scrub the parity that we have correct data on the same horizontal,
2254  * so we needn't allocate all pages for all the stripes.
2255  */
2256 static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2257 {
2258 	int i;
2259 	int bit;
2260 	int index;
2261 	struct page *page;
2262 
2263 	for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) {
2264 		for (i = 0; i < rbio->real_stripes; i++) {
2265 			index = i * rbio->stripe_npages + bit;
2266 			if (rbio->stripe_pages[index])
2267 				continue;
2268 
2269 			page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2270 			if (!page)
2271 				return -ENOMEM;
2272 			rbio->stripe_pages[index] = page;
2273 		}
2274 	}
2275 	return 0;
2276 }
2277 
2278 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
2279 					 int need_check)
2280 {
2281 	struct btrfs_bio *bbio = rbio->bbio;
2282 	void *pointers[rbio->real_stripes];
2283 	DECLARE_BITMAP(pbitmap, rbio->stripe_npages);
2284 	int nr_data = rbio->nr_data;
2285 	int stripe;
2286 	int pagenr;
2287 	int p_stripe = -1;
2288 	int q_stripe = -1;
2289 	struct page *p_page = NULL;
2290 	struct page *q_page = NULL;
2291 	struct bio_list bio_list;
2292 	struct bio *bio;
2293 	int is_replace = 0;
2294 	int ret;
2295 
2296 	bio_list_init(&bio_list);
2297 
2298 	if (rbio->real_stripes - rbio->nr_data == 1) {
2299 		p_stripe = rbio->real_stripes - 1;
2300 	} else if (rbio->real_stripes - rbio->nr_data == 2) {
2301 		p_stripe = rbio->real_stripes - 2;
2302 		q_stripe = rbio->real_stripes - 1;
2303 	} else {
2304 		BUG();
2305 	}
2306 
2307 	if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) {
2308 		is_replace = 1;
2309 		bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages);
2310 	}
2311 
2312 	/*
2313 	 * Because the higher layers(scrubber) are unlikely to
2314 	 * use this area of the disk again soon, so don't cache
2315 	 * it.
2316 	 */
2317 	clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2318 
2319 	if (!need_check)
2320 		goto writeback;
2321 
2322 	p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2323 	if (!p_page)
2324 		goto cleanup;
2325 	SetPageUptodate(p_page);
2326 
2327 	if (q_stripe != -1) {
2328 		q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2329 		if (!q_page) {
2330 			__free_page(p_page);
2331 			goto cleanup;
2332 		}
2333 		SetPageUptodate(q_page);
2334 	}
2335 
2336 	atomic_set(&rbio->error, 0);
2337 
2338 	for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2339 		struct page *p;
2340 		void *parity;
2341 		/* first collect one page from each data stripe */
2342 		for (stripe = 0; stripe < nr_data; stripe++) {
2343 			p = page_in_rbio(rbio, stripe, pagenr, 0);
2344 			pointers[stripe] = kmap(p);
2345 		}
2346 
2347 		/* then add the parity stripe */
2348 		pointers[stripe++] = kmap(p_page);
2349 
2350 		if (q_stripe != -1) {
2351 
2352 			/*
2353 			 * raid6, add the qstripe and call the
2354 			 * library function to fill in our p/q
2355 			 */
2356 			pointers[stripe++] = kmap(q_page);
2357 
2358 			raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
2359 						pointers);
2360 		} else {
2361 			/* raid5 */
2362 			memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
2363 			run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
2364 		}
2365 
2366 		/* Check scrubbing parity and repair it */
2367 		p = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2368 		parity = kmap(p);
2369 		if (memcmp(parity, pointers[rbio->scrubp], PAGE_SIZE))
2370 			memcpy(parity, pointers[rbio->scrubp], PAGE_SIZE);
2371 		else
2372 			/* Parity is right, needn't writeback */
2373 			bitmap_clear(rbio->dbitmap, pagenr, 1);
2374 		kunmap(p);
2375 
2376 		for (stripe = 0; stripe < rbio->real_stripes; stripe++)
2377 			kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
2378 	}
2379 
2380 	__free_page(p_page);
2381 	if (q_page)
2382 		__free_page(q_page);
2383 
2384 writeback:
2385 	/*
2386 	 * time to start writing.  Make bios for everything from the
2387 	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
2388 	 * everything else.
2389 	 */
2390 	for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2391 		struct page *page;
2392 
2393 		page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2394 		ret = rbio_add_io_page(rbio, &bio_list,
2395 			       page, rbio->scrubp, pagenr, rbio->stripe_len);
2396 		if (ret)
2397 			goto cleanup;
2398 	}
2399 
2400 	if (!is_replace)
2401 		goto submit_write;
2402 
2403 	for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) {
2404 		struct page *page;
2405 
2406 		page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2407 		ret = rbio_add_io_page(rbio, &bio_list, page,
2408 				       bbio->tgtdev_map[rbio->scrubp],
2409 				       pagenr, rbio->stripe_len);
2410 		if (ret)
2411 			goto cleanup;
2412 	}
2413 
2414 submit_write:
2415 	nr_data = bio_list_size(&bio_list);
2416 	if (!nr_data) {
2417 		/* Every parity is right */
2418 		rbio_orig_end_io(rbio, 0);
2419 		return;
2420 	}
2421 
2422 	atomic_set(&rbio->stripes_pending, nr_data);
2423 
2424 	while (1) {
2425 		bio = bio_list_pop(&bio_list);
2426 		if (!bio)
2427 			break;
2428 
2429 		bio->bi_private = rbio;
2430 		bio->bi_end_io = raid_write_end_io;
2431 		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2432 
2433 		submit_bio(bio);
2434 	}
2435 	return;
2436 
2437 cleanup:
2438 	rbio_orig_end_io(rbio, -EIO);
2439 }
2440 
2441 static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2442 {
2443 	if (stripe >= 0 && stripe < rbio->nr_data)
2444 		return 1;
2445 	return 0;
2446 }
2447 
2448 /*
2449  * While we're doing the parity check and repair, we could have errors
2450  * in reading pages off the disk.  This checks for errors and if we're
2451  * not able to read the page it'll trigger parity reconstruction.  The
2452  * parity scrub will be finished after we've reconstructed the failed
2453  * stripes
2454  */
2455 static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio)
2456 {
2457 	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2458 		goto cleanup;
2459 
2460 	if (rbio->faila >= 0 || rbio->failb >= 0) {
2461 		int dfail = 0, failp = -1;
2462 
2463 		if (is_data_stripe(rbio, rbio->faila))
2464 			dfail++;
2465 		else if (is_parity_stripe(rbio->faila))
2466 			failp = rbio->faila;
2467 
2468 		if (is_data_stripe(rbio, rbio->failb))
2469 			dfail++;
2470 		else if (is_parity_stripe(rbio->failb))
2471 			failp = rbio->failb;
2472 
2473 		/*
2474 		 * Because we can not use a scrubbing parity to repair
2475 		 * the data, so the capability of the repair is declined.
2476 		 * (In the case of RAID5, we can not repair anything)
2477 		 */
2478 		if (dfail > rbio->bbio->max_errors - 1)
2479 			goto cleanup;
2480 
2481 		/*
2482 		 * If all data is good, only parity is correctly, just
2483 		 * repair the parity.
2484 		 */
2485 		if (dfail == 0) {
2486 			finish_parity_scrub(rbio, 0);
2487 			return;
2488 		}
2489 
2490 		/*
2491 		 * Here means we got one corrupted data stripe and one
2492 		 * corrupted parity on RAID6, if the corrupted parity
2493 		 * is scrubbing parity, luckily, use the other one to repair
2494 		 * the data, or we can not repair the data stripe.
2495 		 */
2496 		if (failp != rbio->scrubp)
2497 			goto cleanup;
2498 
2499 		__raid_recover_end_io(rbio);
2500 	} else {
2501 		finish_parity_scrub(rbio, 1);
2502 	}
2503 	return;
2504 
2505 cleanup:
2506 	rbio_orig_end_io(rbio, -EIO);
2507 }
2508 
2509 /*
2510  * end io for the read phase of the rmw cycle.  All the bios here are physical
2511  * stripe bios we've read from the disk so we can recalculate the parity of the
2512  * stripe.
2513  *
2514  * This will usually kick off finish_rmw once all the bios are read in, but it
2515  * may trigger parity reconstruction if we had any errors along the way
2516  */
2517 static void raid56_parity_scrub_end_io(struct bio *bio)
2518 {
2519 	struct btrfs_raid_bio *rbio = bio->bi_private;
2520 
2521 	if (bio->bi_error)
2522 		fail_bio_stripe(rbio, bio);
2523 	else
2524 		set_bio_pages_uptodate(bio);
2525 
2526 	bio_put(bio);
2527 
2528 	if (!atomic_dec_and_test(&rbio->stripes_pending))
2529 		return;
2530 
2531 	/*
2532 	 * this will normally call finish_rmw to start our write
2533 	 * but if there are any failed stripes we'll reconstruct
2534 	 * from parity first
2535 	 */
2536 	validate_rbio_for_parity_scrub(rbio);
2537 }
2538 
2539 static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio)
2540 {
2541 	int bios_to_read = 0;
2542 	struct bio_list bio_list;
2543 	int ret;
2544 	int pagenr;
2545 	int stripe;
2546 	struct bio *bio;
2547 
2548 	ret = alloc_rbio_essential_pages(rbio);
2549 	if (ret)
2550 		goto cleanup;
2551 
2552 	bio_list_init(&bio_list);
2553 
2554 	atomic_set(&rbio->error, 0);
2555 	/*
2556 	 * build a list of bios to read all the missing parts of this
2557 	 * stripe
2558 	 */
2559 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2560 		for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2561 			struct page *page;
2562 			/*
2563 			 * we want to find all the pages missing from
2564 			 * the rbio and read them from the disk.  If
2565 			 * page_in_rbio finds a page in the bio list
2566 			 * we don't need to read it off the stripe.
2567 			 */
2568 			page = page_in_rbio(rbio, stripe, pagenr, 1);
2569 			if (page)
2570 				continue;
2571 
2572 			page = rbio_stripe_page(rbio, stripe, pagenr);
2573 			/*
2574 			 * the bio cache may have handed us an uptodate
2575 			 * page.  If so, be happy and use it
2576 			 */
2577 			if (PageUptodate(page))
2578 				continue;
2579 
2580 			ret = rbio_add_io_page(rbio, &bio_list, page,
2581 				       stripe, pagenr, rbio->stripe_len);
2582 			if (ret)
2583 				goto cleanup;
2584 		}
2585 	}
2586 
2587 	bios_to_read = bio_list_size(&bio_list);
2588 	if (!bios_to_read) {
2589 		/*
2590 		 * this can happen if others have merged with
2591 		 * us, it means there is nothing left to read.
2592 		 * But if there are missing devices it may not be
2593 		 * safe to do the full stripe write yet.
2594 		 */
2595 		goto finish;
2596 	}
2597 
2598 	/*
2599 	 * the bbio may be freed once we submit the last bio.  Make sure
2600 	 * not to touch it after that
2601 	 */
2602 	atomic_set(&rbio->stripes_pending, bios_to_read);
2603 	while (1) {
2604 		bio = bio_list_pop(&bio_list);
2605 		if (!bio)
2606 			break;
2607 
2608 		bio->bi_private = rbio;
2609 		bio->bi_end_io = raid56_parity_scrub_end_io;
2610 		bio_set_op_attrs(bio, REQ_OP_READ, 0);
2611 
2612 		btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
2613 
2614 		submit_bio(bio);
2615 	}
2616 	/* the actual write will happen once the reads are done */
2617 	return;
2618 
2619 cleanup:
2620 	rbio_orig_end_io(rbio, -EIO);
2621 	return;
2622 
2623 finish:
2624 	validate_rbio_for_parity_scrub(rbio);
2625 }
2626 
2627 static void scrub_parity_work(struct btrfs_work *work)
2628 {
2629 	struct btrfs_raid_bio *rbio;
2630 
2631 	rbio = container_of(work, struct btrfs_raid_bio, work);
2632 	raid56_parity_scrub_stripe(rbio);
2633 }
2634 
2635 static void async_scrub_parity(struct btrfs_raid_bio *rbio)
2636 {
2637 	btrfs_init_work(&rbio->work, btrfs_rmw_helper,
2638 			scrub_parity_work, NULL, NULL);
2639 
2640 	btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
2641 }
2642 
2643 void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2644 {
2645 	if (!lock_stripe_add(rbio))
2646 		async_scrub_parity(rbio);
2647 }
2648 
2649 /* The following code is used for dev replace of a missing RAID 5/6 device. */
2650 
2651 struct btrfs_raid_bio *
2652 raid56_alloc_missing_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
2653 			  struct btrfs_bio *bbio, u64 length)
2654 {
2655 	struct btrfs_raid_bio *rbio;
2656 
2657 	rbio = alloc_rbio(fs_info, bbio, length);
2658 	if (IS_ERR(rbio))
2659 		return NULL;
2660 
2661 	rbio->operation = BTRFS_RBIO_REBUILD_MISSING;
2662 	bio_list_add(&rbio->bio_list, bio);
2663 	/*
2664 	 * This is a special bio which is used to hold the completion handler
2665 	 * and make the scrub rbio is similar to the other types
2666 	 */
2667 	ASSERT(!bio->bi_iter.bi_size);
2668 
2669 	rbio->faila = find_logical_bio_stripe(rbio, bio);
2670 	if (rbio->faila == -1) {
2671 		BUG();
2672 		kfree(rbio);
2673 		return NULL;
2674 	}
2675 
2676 	return rbio;
2677 }
2678 
2679 static void missing_raid56_work(struct btrfs_work *work)
2680 {
2681 	struct btrfs_raid_bio *rbio;
2682 
2683 	rbio = container_of(work, struct btrfs_raid_bio, work);
2684 	__raid56_parity_recover(rbio);
2685 }
2686 
2687 static void async_missing_raid56(struct btrfs_raid_bio *rbio)
2688 {
2689 	btrfs_init_work(&rbio->work, btrfs_rmw_helper,
2690 			missing_raid56_work, NULL, NULL);
2691 
2692 	btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
2693 }
2694 
2695 void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio)
2696 {
2697 	if (!lock_stripe_add(rbio))
2698 		async_missing_raid56(rbio);
2699 }
2700