xref: /linux/fs/btrfs/raid56.c (revision e58e871becec2d3b04ed91c0c16fe8deac9c9dfa)
1 /*
2  * Copyright (C) 2012 Fusion-io  All rights reserved.
3  * Copyright (C) 2012 Intel Corp. All rights reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public
7  * License v2 as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12  * General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public
15  * License along with this program; if not, write to the
16  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17  * Boston, MA 021110-1307, USA.
18  */
19 #include <linux/sched.h>
20 #include <linux/wait.h>
21 #include <linux/bio.h>
22 #include <linux/slab.h>
23 #include <linux/buffer_head.h>
24 #include <linux/blkdev.h>
25 #include <linux/random.h>
26 #include <linux/iocontext.h>
27 #include <linux/capability.h>
28 #include <linux/ratelimit.h>
29 #include <linux/kthread.h>
30 #include <linux/raid/pq.h>
31 #include <linux/hash.h>
32 #include <linux/list_sort.h>
33 #include <linux/raid/xor.h>
34 #include <linux/vmalloc.h>
35 #include <asm/div64.h>
36 #include "ctree.h"
37 #include "extent_map.h"
38 #include "disk-io.h"
39 #include "transaction.h"
40 #include "print-tree.h"
41 #include "volumes.h"
42 #include "raid56.h"
43 #include "async-thread.h"
44 #include "check-integrity.h"
45 #include "rcu-string.h"
46 
47 /* set when additional merges to this rbio are not allowed */
48 #define RBIO_RMW_LOCKED_BIT	1
49 
50 /*
51  * set when this rbio is sitting in the hash, but it is just a cache
52  * of past RMW
53  */
54 #define RBIO_CACHE_BIT		2
55 
56 /*
57  * set when it is safe to trust the stripe_pages for caching
58  */
59 #define RBIO_CACHE_READY_BIT	3
60 
61 #define RBIO_CACHE_SIZE 1024
62 
63 enum btrfs_rbio_ops {
64 	BTRFS_RBIO_WRITE,
65 	BTRFS_RBIO_READ_REBUILD,
66 	BTRFS_RBIO_PARITY_SCRUB,
67 	BTRFS_RBIO_REBUILD_MISSING,
68 };
69 
70 struct btrfs_raid_bio {
71 	struct btrfs_fs_info *fs_info;
72 	struct btrfs_bio *bbio;
73 
74 	/* while we're doing rmw on a stripe
75 	 * we put it into a hash table so we can
76 	 * lock the stripe and merge more rbios
77 	 * into it.
78 	 */
79 	struct list_head hash_list;
80 
81 	/*
82 	 * LRU list for the stripe cache
83 	 */
84 	struct list_head stripe_cache;
85 
86 	/*
87 	 * for scheduling work in the helper threads
88 	 */
89 	struct btrfs_work work;
90 
91 	/*
92 	 * bio list and bio_list_lock are used
93 	 * to add more bios into the stripe
94 	 * in hopes of avoiding the full rmw
95 	 */
96 	struct bio_list bio_list;
97 	spinlock_t bio_list_lock;
98 
99 	/* also protected by the bio_list_lock, the
100 	 * plug list is used by the plugging code
101 	 * to collect partial bios while plugged.  The
102 	 * stripe locking code also uses it to hand off
103 	 * the stripe lock to the next pending IO
104 	 */
105 	struct list_head plug_list;
106 
107 	/*
108 	 * flags that tell us if it is safe to
109 	 * merge with this bio
110 	 */
111 	unsigned long flags;
112 
113 	/* size of each individual stripe on disk */
114 	int stripe_len;
115 
116 	/* number of data stripes (no p/q) */
117 	int nr_data;
118 
119 	int real_stripes;
120 
121 	int stripe_npages;
122 	/*
123 	 * set if we're doing a parity rebuild
124 	 * for a read from higher up, which is handled
125 	 * differently from a parity rebuild as part of
126 	 * rmw
127 	 */
128 	enum btrfs_rbio_ops operation;
129 
130 	/* first bad stripe */
131 	int faila;
132 
133 	/* second bad stripe (for raid6 use) */
134 	int failb;
135 
136 	int scrubp;
137 	/*
138 	 * number of pages needed to represent the full
139 	 * stripe
140 	 */
141 	int nr_pages;
142 
143 	/*
144 	 * size of all the bios in the bio_list.  This
145 	 * helps us decide if the rbio maps to a full
146 	 * stripe or not
147 	 */
148 	int bio_list_bytes;
149 
150 	int generic_bio_cnt;
151 
152 	refcount_t refs;
153 
154 	atomic_t stripes_pending;
155 
156 	atomic_t error;
157 	/*
158 	 * these are two arrays of pointers.  We allocate the
159 	 * rbio big enough to hold them both and setup their
160 	 * locations when the rbio is allocated
161 	 */
162 
163 	/* pointers to pages that we allocated for
164 	 * reading/writing stripes directly from the disk (including P/Q)
165 	 */
166 	struct page **stripe_pages;
167 
168 	/*
169 	 * pointers to the pages in the bio_list.  Stored
170 	 * here for faster lookup
171 	 */
172 	struct page **bio_pages;
173 
174 	/*
175 	 * bitmap to record which horizontal stripe has data
176 	 */
177 	unsigned long *dbitmap;
178 };
179 
180 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio);
181 static noinline void finish_rmw(struct btrfs_raid_bio *rbio);
182 static void rmw_work(struct btrfs_work *work);
183 static void read_rebuild_work(struct btrfs_work *work);
184 static void async_rmw_stripe(struct btrfs_raid_bio *rbio);
185 static void async_read_rebuild(struct btrfs_raid_bio *rbio);
186 static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
187 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
188 static void __free_raid_bio(struct btrfs_raid_bio *rbio);
189 static void index_rbio_pages(struct btrfs_raid_bio *rbio);
190 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
191 
192 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
193 					 int need_check);
194 static void async_scrub_parity(struct btrfs_raid_bio *rbio);
195 
196 /*
197  * the stripe hash table is used for locking, and to collect
198  * bios in hopes of making a full stripe
199  */
200 int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
201 {
202 	struct btrfs_stripe_hash_table *table;
203 	struct btrfs_stripe_hash_table *x;
204 	struct btrfs_stripe_hash *cur;
205 	struct btrfs_stripe_hash *h;
206 	int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
207 	int i;
208 	int table_size;
209 
210 	if (info->stripe_hash_table)
211 		return 0;
212 
213 	/*
214 	 * The table is large, starting with order 4 and can go as high as
215 	 * order 7 in case lock debugging is turned on.
216 	 *
217 	 * Try harder to allocate and fallback to vmalloc to lower the chance
218 	 * of a failing mount.
219 	 */
220 	table_size = sizeof(*table) + sizeof(*h) * num_entries;
221 	table = kzalloc(table_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
222 	if (!table) {
223 		table = vzalloc(table_size);
224 		if (!table)
225 			return -ENOMEM;
226 	}
227 
228 	spin_lock_init(&table->cache_lock);
229 	INIT_LIST_HEAD(&table->stripe_cache);
230 
231 	h = table->table;
232 
233 	for (i = 0; i < num_entries; i++) {
234 		cur = h + i;
235 		INIT_LIST_HEAD(&cur->hash_list);
236 		spin_lock_init(&cur->lock);
237 		init_waitqueue_head(&cur->wait);
238 	}
239 
240 	x = cmpxchg(&info->stripe_hash_table, NULL, table);
241 	if (x)
242 		kvfree(x);
243 	return 0;
244 }
245 
246 /*
247  * caching an rbio means to copy anything from the
248  * bio_pages array into the stripe_pages array.  We
249  * use the page uptodate bit in the stripe cache array
250  * to indicate if it has valid data
251  *
252  * once the caching is done, we set the cache ready
253  * bit.
254  */
255 static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
256 {
257 	int i;
258 	char *s;
259 	char *d;
260 	int ret;
261 
262 	ret = alloc_rbio_pages(rbio);
263 	if (ret)
264 		return;
265 
266 	for (i = 0; i < rbio->nr_pages; i++) {
267 		if (!rbio->bio_pages[i])
268 			continue;
269 
270 		s = kmap(rbio->bio_pages[i]);
271 		d = kmap(rbio->stripe_pages[i]);
272 
273 		memcpy(d, s, PAGE_SIZE);
274 
275 		kunmap(rbio->bio_pages[i]);
276 		kunmap(rbio->stripe_pages[i]);
277 		SetPageUptodate(rbio->stripe_pages[i]);
278 	}
279 	set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
280 }
281 
282 /*
283  * we hash on the first logical address of the stripe
284  */
285 static int rbio_bucket(struct btrfs_raid_bio *rbio)
286 {
287 	u64 num = rbio->bbio->raid_map[0];
288 
289 	/*
290 	 * we shift down quite a bit.  We're using byte
291 	 * addressing, and most of the lower bits are zeros.
292 	 * This tends to upset hash_64, and it consistently
293 	 * returns just one or two different values.
294 	 *
295 	 * shifting off the lower bits fixes things.
296 	 */
297 	return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
298 }
299 
300 /*
301  * stealing an rbio means taking all the uptodate pages from the stripe
302  * array in the source rbio and putting them into the destination rbio
303  */
304 static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
305 {
306 	int i;
307 	struct page *s;
308 	struct page *d;
309 
310 	if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
311 		return;
312 
313 	for (i = 0; i < dest->nr_pages; i++) {
314 		s = src->stripe_pages[i];
315 		if (!s || !PageUptodate(s)) {
316 			continue;
317 		}
318 
319 		d = dest->stripe_pages[i];
320 		if (d)
321 			__free_page(d);
322 
323 		dest->stripe_pages[i] = s;
324 		src->stripe_pages[i] = NULL;
325 	}
326 }
327 
328 /*
329  * merging means we take the bio_list from the victim and
330  * splice it into the destination.  The victim should
331  * be discarded afterwards.
332  *
333  * must be called with dest->rbio_list_lock held
334  */
335 static void merge_rbio(struct btrfs_raid_bio *dest,
336 		       struct btrfs_raid_bio *victim)
337 {
338 	bio_list_merge(&dest->bio_list, &victim->bio_list);
339 	dest->bio_list_bytes += victim->bio_list_bytes;
340 	dest->generic_bio_cnt += victim->generic_bio_cnt;
341 	bio_list_init(&victim->bio_list);
342 }
343 
344 /*
345  * used to prune items that are in the cache.  The caller
346  * must hold the hash table lock.
347  */
348 static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
349 {
350 	int bucket = rbio_bucket(rbio);
351 	struct btrfs_stripe_hash_table *table;
352 	struct btrfs_stripe_hash *h;
353 	int freeit = 0;
354 
355 	/*
356 	 * check the bit again under the hash table lock.
357 	 */
358 	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
359 		return;
360 
361 	table = rbio->fs_info->stripe_hash_table;
362 	h = table->table + bucket;
363 
364 	/* hold the lock for the bucket because we may be
365 	 * removing it from the hash table
366 	 */
367 	spin_lock(&h->lock);
368 
369 	/*
370 	 * hold the lock for the bio list because we need
371 	 * to make sure the bio list is empty
372 	 */
373 	spin_lock(&rbio->bio_list_lock);
374 
375 	if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
376 		list_del_init(&rbio->stripe_cache);
377 		table->cache_size -= 1;
378 		freeit = 1;
379 
380 		/* if the bio list isn't empty, this rbio is
381 		 * still involved in an IO.  We take it out
382 		 * of the cache list, and drop the ref that
383 		 * was held for the list.
384 		 *
385 		 * If the bio_list was empty, we also remove
386 		 * the rbio from the hash_table, and drop
387 		 * the corresponding ref
388 		 */
389 		if (bio_list_empty(&rbio->bio_list)) {
390 			if (!list_empty(&rbio->hash_list)) {
391 				list_del_init(&rbio->hash_list);
392 				refcount_dec(&rbio->refs);
393 				BUG_ON(!list_empty(&rbio->plug_list));
394 			}
395 		}
396 	}
397 
398 	spin_unlock(&rbio->bio_list_lock);
399 	spin_unlock(&h->lock);
400 
401 	if (freeit)
402 		__free_raid_bio(rbio);
403 }
404 
405 /*
406  * prune a given rbio from the cache
407  */
408 static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
409 {
410 	struct btrfs_stripe_hash_table *table;
411 	unsigned long flags;
412 
413 	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
414 		return;
415 
416 	table = rbio->fs_info->stripe_hash_table;
417 
418 	spin_lock_irqsave(&table->cache_lock, flags);
419 	__remove_rbio_from_cache(rbio);
420 	spin_unlock_irqrestore(&table->cache_lock, flags);
421 }
422 
423 /*
424  * remove everything in the cache
425  */
426 static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
427 {
428 	struct btrfs_stripe_hash_table *table;
429 	unsigned long flags;
430 	struct btrfs_raid_bio *rbio;
431 
432 	table = info->stripe_hash_table;
433 
434 	spin_lock_irqsave(&table->cache_lock, flags);
435 	while (!list_empty(&table->stripe_cache)) {
436 		rbio = list_entry(table->stripe_cache.next,
437 				  struct btrfs_raid_bio,
438 				  stripe_cache);
439 		__remove_rbio_from_cache(rbio);
440 	}
441 	spin_unlock_irqrestore(&table->cache_lock, flags);
442 }
443 
444 /*
445  * remove all cached entries and free the hash table
446  * used by unmount
447  */
448 void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
449 {
450 	if (!info->stripe_hash_table)
451 		return;
452 	btrfs_clear_rbio_cache(info);
453 	kvfree(info->stripe_hash_table);
454 	info->stripe_hash_table = NULL;
455 }
456 
457 /*
458  * insert an rbio into the stripe cache.  It
459  * must have already been prepared by calling
460  * cache_rbio_pages
461  *
462  * If this rbio was already cached, it gets
463  * moved to the front of the lru.
464  *
465  * If the size of the rbio cache is too big, we
466  * prune an item.
467  */
468 static void cache_rbio(struct btrfs_raid_bio *rbio)
469 {
470 	struct btrfs_stripe_hash_table *table;
471 	unsigned long flags;
472 
473 	if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
474 		return;
475 
476 	table = rbio->fs_info->stripe_hash_table;
477 
478 	spin_lock_irqsave(&table->cache_lock, flags);
479 	spin_lock(&rbio->bio_list_lock);
480 
481 	/* bump our ref if we were not in the list before */
482 	if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
483 		refcount_inc(&rbio->refs);
484 
485 	if (!list_empty(&rbio->stripe_cache)){
486 		list_move(&rbio->stripe_cache, &table->stripe_cache);
487 	} else {
488 		list_add(&rbio->stripe_cache, &table->stripe_cache);
489 		table->cache_size += 1;
490 	}
491 
492 	spin_unlock(&rbio->bio_list_lock);
493 
494 	if (table->cache_size > RBIO_CACHE_SIZE) {
495 		struct btrfs_raid_bio *found;
496 
497 		found = list_entry(table->stripe_cache.prev,
498 				  struct btrfs_raid_bio,
499 				  stripe_cache);
500 
501 		if (found != rbio)
502 			__remove_rbio_from_cache(found);
503 	}
504 
505 	spin_unlock_irqrestore(&table->cache_lock, flags);
506 }
507 
508 /*
509  * helper function to run the xor_blocks api.  It is only
510  * able to do MAX_XOR_BLOCKS at a time, so we need to
511  * loop through.
512  */
513 static void run_xor(void **pages, int src_cnt, ssize_t len)
514 {
515 	int src_off = 0;
516 	int xor_src_cnt = 0;
517 	void *dest = pages[src_cnt];
518 
519 	while(src_cnt > 0) {
520 		xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
521 		xor_blocks(xor_src_cnt, len, dest, pages + src_off);
522 
523 		src_cnt -= xor_src_cnt;
524 		src_off += xor_src_cnt;
525 	}
526 }
527 
528 /*
529  * returns true if the bio list inside this rbio
530  * covers an entire stripe (no rmw required).
531  * Must be called with the bio list lock held, or
532  * at a time when you know it is impossible to add
533  * new bios into the list
534  */
535 static int __rbio_is_full(struct btrfs_raid_bio *rbio)
536 {
537 	unsigned long size = rbio->bio_list_bytes;
538 	int ret = 1;
539 
540 	if (size != rbio->nr_data * rbio->stripe_len)
541 		ret = 0;
542 
543 	BUG_ON(size > rbio->nr_data * rbio->stripe_len);
544 	return ret;
545 }
546 
547 static int rbio_is_full(struct btrfs_raid_bio *rbio)
548 {
549 	unsigned long flags;
550 	int ret;
551 
552 	spin_lock_irqsave(&rbio->bio_list_lock, flags);
553 	ret = __rbio_is_full(rbio);
554 	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
555 	return ret;
556 }
557 
558 /*
559  * returns 1 if it is safe to merge two rbios together.
560  * The merging is safe if the two rbios correspond to
561  * the same stripe and if they are both going in the same
562  * direction (read vs write), and if neither one is
563  * locked for final IO
564  *
565  * The caller is responsible for locking such that
566  * rmw_locked is safe to test
567  */
568 static int rbio_can_merge(struct btrfs_raid_bio *last,
569 			  struct btrfs_raid_bio *cur)
570 {
571 	if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
572 	    test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
573 		return 0;
574 
575 	/*
576 	 * we can't merge with cached rbios, since the
577 	 * idea is that when we merge the destination
578 	 * rbio is going to run our IO for us.  We can
579 	 * steal from cached rbios though, other functions
580 	 * handle that.
581 	 */
582 	if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
583 	    test_bit(RBIO_CACHE_BIT, &cur->flags))
584 		return 0;
585 
586 	if (last->bbio->raid_map[0] !=
587 	    cur->bbio->raid_map[0])
588 		return 0;
589 
590 	/* we can't merge with different operations */
591 	if (last->operation != cur->operation)
592 		return 0;
593 	/*
594 	 * We've need read the full stripe from the drive.
595 	 * check and repair the parity and write the new results.
596 	 *
597 	 * We're not allowed to add any new bios to the
598 	 * bio list here, anyone else that wants to
599 	 * change this stripe needs to do their own rmw.
600 	 */
601 	if (last->operation == BTRFS_RBIO_PARITY_SCRUB ||
602 	    cur->operation == BTRFS_RBIO_PARITY_SCRUB)
603 		return 0;
604 
605 	if (last->operation == BTRFS_RBIO_REBUILD_MISSING ||
606 	    cur->operation == BTRFS_RBIO_REBUILD_MISSING)
607 		return 0;
608 
609 	return 1;
610 }
611 
612 static int rbio_stripe_page_index(struct btrfs_raid_bio *rbio, int stripe,
613 				  int index)
614 {
615 	return stripe * rbio->stripe_npages + index;
616 }
617 
618 /*
619  * these are just the pages from the rbio array, not from anything
620  * the FS sent down to us
621  */
622 static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe,
623 				     int index)
624 {
625 	return rbio->stripe_pages[rbio_stripe_page_index(rbio, stripe, index)];
626 }
627 
628 /*
629  * helper to index into the pstripe
630  */
631 static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index)
632 {
633 	return rbio_stripe_page(rbio, rbio->nr_data, index);
634 }
635 
636 /*
637  * helper to index into the qstripe, returns null
638  * if there is no qstripe
639  */
640 static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index)
641 {
642 	if (rbio->nr_data + 1 == rbio->real_stripes)
643 		return NULL;
644 	return rbio_stripe_page(rbio, rbio->nr_data + 1, index);
645 }
646 
647 /*
648  * The first stripe in the table for a logical address
649  * has the lock.  rbios are added in one of three ways:
650  *
651  * 1) Nobody has the stripe locked yet.  The rbio is given
652  * the lock and 0 is returned.  The caller must start the IO
653  * themselves.
654  *
655  * 2) Someone has the stripe locked, but we're able to merge
656  * with the lock owner.  The rbio is freed and the IO will
657  * start automatically along with the existing rbio.  1 is returned.
658  *
659  * 3) Someone has the stripe locked, but we're not able to merge.
660  * The rbio is added to the lock owner's plug list, or merged into
661  * an rbio already on the plug list.  When the lock owner unlocks,
662  * the next rbio on the list is run and the IO is started automatically.
663  * 1 is returned
664  *
665  * If we return 0, the caller still owns the rbio and must continue with
666  * IO submission.  If we return 1, the caller must assume the rbio has
667  * already been freed.
668  */
669 static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
670 {
671 	int bucket = rbio_bucket(rbio);
672 	struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket;
673 	struct btrfs_raid_bio *cur;
674 	struct btrfs_raid_bio *pending;
675 	unsigned long flags;
676 	DEFINE_WAIT(wait);
677 	struct btrfs_raid_bio *freeit = NULL;
678 	struct btrfs_raid_bio *cache_drop = NULL;
679 	int ret = 0;
680 
681 	spin_lock_irqsave(&h->lock, flags);
682 	list_for_each_entry(cur, &h->hash_list, hash_list) {
683 		if (cur->bbio->raid_map[0] == rbio->bbio->raid_map[0]) {
684 			spin_lock(&cur->bio_list_lock);
685 
686 			/* can we steal this cached rbio's pages? */
687 			if (bio_list_empty(&cur->bio_list) &&
688 			    list_empty(&cur->plug_list) &&
689 			    test_bit(RBIO_CACHE_BIT, &cur->flags) &&
690 			    !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
691 				list_del_init(&cur->hash_list);
692 				refcount_dec(&cur->refs);
693 
694 				steal_rbio(cur, rbio);
695 				cache_drop = cur;
696 				spin_unlock(&cur->bio_list_lock);
697 
698 				goto lockit;
699 			}
700 
701 			/* can we merge into the lock owner? */
702 			if (rbio_can_merge(cur, rbio)) {
703 				merge_rbio(cur, rbio);
704 				spin_unlock(&cur->bio_list_lock);
705 				freeit = rbio;
706 				ret = 1;
707 				goto out;
708 			}
709 
710 
711 			/*
712 			 * we couldn't merge with the running
713 			 * rbio, see if we can merge with the
714 			 * pending ones.  We don't have to
715 			 * check for rmw_locked because there
716 			 * is no way they are inside finish_rmw
717 			 * right now
718 			 */
719 			list_for_each_entry(pending, &cur->plug_list,
720 					    plug_list) {
721 				if (rbio_can_merge(pending, rbio)) {
722 					merge_rbio(pending, rbio);
723 					spin_unlock(&cur->bio_list_lock);
724 					freeit = rbio;
725 					ret = 1;
726 					goto out;
727 				}
728 			}
729 
730 			/* no merging, put us on the tail of the plug list,
731 			 * our rbio will be started with the currently
732 			 * running rbio unlocks
733 			 */
734 			list_add_tail(&rbio->plug_list, &cur->plug_list);
735 			spin_unlock(&cur->bio_list_lock);
736 			ret = 1;
737 			goto out;
738 		}
739 	}
740 lockit:
741 	refcount_inc(&rbio->refs);
742 	list_add(&rbio->hash_list, &h->hash_list);
743 out:
744 	spin_unlock_irqrestore(&h->lock, flags);
745 	if (cache_drop)
746 		remove_rbio_from_cache(cache_drop);
747 	if (freeit)
748 		__free_raid_bio(freeit);
749 	return ret;
750 }
751 
752 /*
753  * called as rmw or parity rebuild is completed.  If the plug list has more
754  * rbios waiting for this stripe, the next one on the list will be started
755  */
756 static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
757 {
758 	int bucket;
759 	struct btrfs_stripe_hash *h;
760 	unsigned long flags;
761 	int keep_cache = 0;
762 
763 	bucket = rbio_bucket(rbio);
764 	h = rbio->fs_info->stripe_hash_table->table + bucket;
765 
766 	if (list_empty(&rbio->plug_list))
767 		cache_rbio(rbio);
768 
769 	spin_lock_irqsave(&h->lock, flags);
770 	spin_lock(&rbio->bio_list_lock);
771 
772 	if (!list_empty(&rbio->hash_list)) {
773 		/*
774 		 * if we're still cached and there is no other IO
775 		 * to perform, just leave this rbio here for others
776 		 * to steal from later
777 		 */
778 		if (list_empty(&rbio->plug_list) &&
779 		    test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
780 			keep_cache = 1;
781 			clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
782 			BUG_ON(!bio_list_empty(&rbio->bio_list));
783 			goto done;
784 		}
785 
786 		list_del_init(&rbio->hash_list);
787 		refcount_dec(&rbio->refs);
788 
789 		/*
790 		 * we use the plug list to hold all the rbios
791 		 * waiting for the chance to lock this stripe.
792 		 * hand the lock over to one of them.
793 		 */
794 		if (!list_empty(&rbio->plug_list)) {
795 			struct btrfs_raid_bio *next;
796 			struct list_head *head = rbio->plug_list.next;
797 
798 			next = list_entry(head, struct btrfs_raid_bio,
799 					  plug_list);
800 
801 			list_del_init(&rbio->plug_list);
802 
803 			list_add(&next->hash_list, &h->hash_list);
804 			refcount_inc(&next->refs);
805 			spin_unlock(&rbio->bio_list_lock);
806 			spin_unlock_irqrestore(&h->lock, flags);
807 
808 			if (next->operation == BTRFS_RBIO_READ_REBUILD)
809 				async_read_rebuild(next);
810 			else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) {
811 				steal_rbio(rbio, next);
812 				async_read_rebuild(next);
813 			} else if (next->operation == BTRFS_RBIO_WRITE) {
814 				steal_rbio(rbio, next);
815 				async_rmw_stripe(next);
816 			} else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
817 				steal_rbio(rbio, next);
818 				async_scrub_parity(next);
819 			}
820 
821 			goto done_nolock;
822 			/*
823 			 * The barrier for this waitqueue_active is not needed,
824 			 * we're protected by h->lock and can't miss a wakeup.
825 			 */
826 		} else if (waitqueue_active(&h->wait)) {
827 			spin_unlock(&rbio->bio_list_lock);
828 			spin_unlock_irqrestore(&h->lock, flags);
829 			wake_up(&h->wait);
830 			goto done_nolock;
831 		}
832 	}
833 done:
834 	spin_unlock(&rbio->bio_list_lock);
835 	spin_unlock_irqrestore(&h->lock, flags);
836 
837 done_nolock:
838 	if (!keep_cache)
839 		remove_rbio_from_cache(rbio);
840 }
841 
842 static void __free_raid_bio(struct btrfs_raid_bio *rbio)
843 {
844 	int i;
845 
846 	if (!refcount_dec_and_test(&rbio->refs))
847 		return;
848 
849 	WARN_ON(!list_empty(&rbio->stripe_cache));
850 	WARN_ON(!list_empty(&rbio->hash_list));
851 	WARN_ON(!bio_list_empty(&rbio->bio_list));
852 
853 	for (i = 0; i < rbio->nr_pages; i++) {
854 		if (rbio->stripe_pages[i]) {
855 			__free_page(rbio->stripe_pages[i]);
856 			rbio->stripe_pages[i] = NULL;
857 		}
858 	}
859 
860 	btrfs_put_bbio(rbio->bbio);
861 	kfree(rbio);
862 }
863 
864 static void free_raid_bio(struct btrfs_raid_bio *rbio)
865 {
866 	unlock_stripe(rbio);
867 	__free_raid_bio(rbio);
868 }
869 
870 /*
871  * this frees the rbio and runs through all the bios in the
872  * bio_list and calls end_io on them
873  */
874 static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, int err)
875 {
876 	struct bio *cur = bio_list_get(&rbio->bio_list);
877 	struct bio *next;
878 
879 	if (rbio->generic_bio_cnt)
880 		btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt);
881 
882 	free_raid_bio(rbio);
883 
884 	while (cur) {
885 		next = cur->bi_next;
886 		cur->bi_next = NULL;
887 		cur->bi_error = err;
888 		bio_endio(cur);
889 		cur = next;
890 	}
891 }
892 
893 /*
894  * end io function used by finish_rmw.  When we finally
895  * get here, we've written a full stripe
896  */
897 static void raid_write_end_io(struct bio *bio)
898 {
899 	struct btrfs_raid_bio *rbio = bio->bi_private;
900 	int err = bio->bi_error;
901 	int max_errors;
902 
903 	if (err)
904 		fail_bio_stripe(rbio, bio);
905 
906 	bio_put(bio);
907 
908 	if (!atomic_dec_and_test(&rbio->stripes_pending))
909 		return;
910 
911 	err = 0;
912 
913 	/* OK, we have read all the stripes we need to. */
914 	max_errors = (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) ?
915 		     0 : rbio->bbio->max_errors;
916 	if (atomic_read(&rbio->error) > max_errors)
917 		err = -EIO;
918 
919 	rbio_orig_end_io(rbio, err);
920 }
921 
922 /*
923  * the read/modify/write code wants to use the original bio for
924  * any pages it included, and then use the rbio for everything
925  * else.  This function decides if a given index (stripe number)
926  * and page number in that stripe fall inside the original bio
927  * or the rbio.
928  *
929  * if you set bio_list_only, you'll get a NULL back for any ranges
930  * that are outside the bio_list
931  *
932  * This doesn't take any refs on anything, you get a bare page pointer
933  * and the caller must bump refs as required.
934  *
935  * You must call index_rbio_pages once before you can trust
936  * the answers from this function.
937  */
938 static struct page *page_in_rbio(struct btrfs_raid_bio *rbio,
939 				 int index, int pagenr, int bio_list_only)
940 {
941 	int chunk_page;
942 	struct page *p = NULL;
943 
944 	chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr;
945 
946 	spin_lock_irq(&rbio->bio_list_lock);
947 	p = rbio->bio_pages[chunk_page];
948 	spin_unlock_irq(&rbio->bio_list_lock);
949 
950 	if (p || bio_list_only)
951 		return p;
952 
953 	return rbio->stripe_pages[chunk_page];
954 }
955 
956 /*
957  * number of pages we need for the entire stripe across all the
958  * drives
959  */
960 static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes)
961 {
962 	return DIV_ROUND_UP(stripe_len, PAGE_SIZE) * nr_stripes;
963 }
964 
965 /*
966  * allocation and initial setup for the btrfs_raid_bio.  Not
967  * this does not allocate any pages for rbio->pages.
968  */
969 static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info,
970 					 struct btrfs_bio *bbio,
971 					 u64 stripe_len)
972 {
973 	struct btrfs_raid_bio *rbio;
974 	int nr_data = 0;
975 	int real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
976 	int num_pages = rbio_nr_pages(stripe_len, real_stripes);
977 	int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE);
978 	void *p;
979 
980 	rbio = kzalloc(sizeof(*rbio) + num_pages * sizeof(struct page *) * 2 +
981 		       DIV_ROUND_UP(stripe_npages, BITS_PER_LONG) *
982 		       sizeof(long), GFP_NOFS);
983 	if (!rbio)
984 		return ERR_PTR(-ENOMEM);
985 
986 	bio_list_init(&rbio->bio_list);
987 	INIT_LIST_HEAD(&rbio->plug_list);
988 	spin_lock_init(&rbio->bio_list_lock);
989 	INIT_LIST_HEAD(&rbio->stripe_cache);
990 	INIT_LIST_HEAD(&rbio->hash_list);
991 	rbio->bbio = bbio;
992 	rbio->fs_info = fs_info;
993 	rbio->stripe_len = stripe_len;
994 	rbio->nr_pages = num_pages;
995 	rbio->real_stripes = real_stripes;
996 	rbio->stripe_npages = stripe_npages;
997 	rbio->faila = -1;
998 	rbio->failb = -1;
999 	refcount_set(&rbio->refs, 1);
1000 	atomic_set(&rbio->error, 0);
1001 	atomic_set(&rbio->stripes_pending, 0);
1002 
1003 	/*
1004 	 * the stripe_pages and bio_pages array point to the extra
1005 	 * memory we allocated past the end of the rbio
1006 	 */
1007 	p = rbio + 1;
1008 	rbio->stripe_pages = p;
1009 	rbio->bio_pages = p + sizeof(struct page *) * num_pages;
1010 	rbio->dbitmap = p + sizeof(struct page *) * num_pages * 2;
1011 
1012 	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1013 		nr_data = real_stripes - 1;
1014 	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1015 		nr_data = real_stripes - 2;
1016 	else
1017 		BUG();
1018 
1019 	rbio->nr_data = nr_data;
1020 	return rbio;
1021 }
1022 
1023 /* allocate pages for all the stripes in the bio, including parity */
1024 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
1025 {
1026 	int i;
1027 	struct page *page;
1028 
1029 	for (i = 0; i < rbio->nr_pages; i++) {
1030 		if (rbio->stripe_pages[i])
1031 			continue;
1032 		page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1033 		if (!page)
1034 			return -ENOMEM;
1035 		rbio->stripe_pages[i] = page;
1036 	}
1037 	return 0;
1038 }
1039 
1040 /* only allocate pages for p/q stripes */
1041 static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
1042 {
1043 	int i;
1044 	struct page *page;
1045 
1046 	i = rbio_stripe_page_index(rbio, rbio->nr_data, 0);
1047 
1048 	for (; i < rbio->nr_pages; i++) {
1049 		if (rbio->stripe_pages[i])
1050 			continue;
1051 		page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1052 		if (!page)
1053 			return -ENOMEM;
1054 		rbio->stripe_pages[i] = page;
1055 	}
1056 	return 0;
1057 }
1058 
1059 /*
1060  * add a single page from a specific stripe into our list of bios for IO
1061  * this will try to merge into existing bios if possible, and returns
1062  * zero if all went well.
1063  */
1064 static int rbio_add_io_page(struct btrfs_raid_bio *rbio,
1065 			    struct bio_list *bio_list,
1066 			    struct page *page,
1067 			    int stripe_nr,
1068 			    unsigned long page_index,
1069 			    unsigned long bio_max_len)
1070 {
1071 	struct bio *last = bio_list->tail;
1072 	u64 last_end = 0;
1073 	int ret;
1074 	struct bio *bio;
1075 	struct btrfs_bio_stripe *stripe;
1076 	u64 disk_start;
1077 
1078 	stripe = &rbio->bbio->stripes[stripe_nr];
1079 	disk_start = stripe->physical + (page_index << PAGE_SHIFT);
1080 
1081 	/* if the device is missing, just fail this stripe */
1082 	if (!stripe->dev->bdev)
1083 		return fail_rbio_index(rbio, stripe_nr);
1084 
1085 	/* see if we can add this page onto our existing bio */
1086 	if (last) {
1087 		last_end = (u64)last->bi_iter.bi_sector << 9;
1088 		last_end += last->bi_iter.bi_size;
1089 
1090 		/*
1091 		 * we can't merge these if they are from different
1092 		 * devices or if they are not contiguous
1093 		 */
1094 		if (last_end == disk_start && stripe->dev->bdev &&
1095 		    !last->bi_error &&
1096 		    last->bi_bdev == stripe->dev->bdev) {
1097 			ret = bio_add_page(last, page, PAGE_SIZE, 0);
1098 			if (ret == PAGE_SIZE)
1099 				return 0;
1100 		}
1101 	}
1102 
1103 	/* put a new bio on the list */
1104 	bio = btrfs_io_bio_alloc(GFP_NOFS, bio_max_len >> PAGE_SHIFT?:1);
1105 	if (!bio)
1106 		return -ENOMEM;
1107 
1108 	bio->bi_iter.bi_size = 0;
1109 	bio->bi_bdev = stripe->dev->bdev;
1110 	bio->bi_iter.bi_sector = disk_start >> 9;
1111 
1112 	bio_add_page(bio, page, PAGE_SIZE, 0);
1113 	bio_list_add(bio_list, bio);
1114 	return 0;
1115 }
1116 
1117 /*
1118  * while we're doing the read/modify/write cycle, we could
1119  * have errors in reading pages off the disk.  This checks
1120  * for errors and if we're not able to read the page it'll
1121  * trigger parity reconstruction.  The rmw will be finished
1122  * after we've reconstructed the failed stripes
1123  */
1124 static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio)
1125 {
1126 	if (rbio->faila >= 0 || rbio->failb >= 0) {
1127 		BUG_ON(rbio->faila == rbio->real_stripes - 1);
1128 		__raid56_parity_recover(rbio);
1129 	} else {
1130 		finish_rmw(rbio);
1131 	}
1132 }
1133 
1134 /*
1135  * helper function to walk our bio list and populate the bio_pages array with
1136  * the result.  This seems expensive, but it is faster than constantly
1137  * searching through the bio list as we setup the IO in finish_rmw or stripe
1138  * reconstruction.
1139  *
1140  * This must be called before you trust the answers from page_in_rbio
1141  */
1142 static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1143 {
1144 	struct bio *bio;
1145 	struct bio_vec *bvec;
1146 	u64 start;
1147 	unsigned long stripe_offset;
1148 	unsigned long page_index;
1149 	int i;
1150 
1151 	spin_lock_irq(&rbio->bio_list_lock);
1152 	bio_list_for_each(bio, &rbio->bio_list) {
1153 		start = (u64)bio->bi_iter.bi_sector << 9;
1154 		stripe_offset = start - rbio->bbio->raid_map[0];
1155 		page_index = stripe_offset >> PAGE_SHIFT;
1156 
1157 		bio_for_each_segment_all(bvec, bio, i)
1158 			rbio->bio_pages[page_index + i] = bvec->bv_page;
1159 	}
1160 	spin_unlock_irq(&rbio->bio_list_lock);
1161 }
1162 
1163 /*
1164  * this is called from one of two situations.  We either
1165  * have a full stripe from the higher layers, or we've read all
1166  * the missing bits off disk.
1167  *
1168  * This will calculate the parity and then send down any
1169  * changed blocks.
1170  */
1171 static noinline void finish_rmw(struct btrfs_raid_bio *rbio)
1172 {
1173 	struct btrfs_bio *bbio = rbio->bbio;
1174 	void *pointers[rbio->real_stripes];
1175 	int nr_data = rbio->nr_data;
1176 	int stripe;
1177 	int pagenr;
1178 	int p_stripe = -1;
1179 	int q_stripe = -1;
1180 	struct bio_list bio_list;
1181 	struct bio *bio;
1182 	int ret;
1183 
1184 	bio_list_init(&bio_list);
1185 
1186 	if (rbio->real_stripes - rbio->nr_data == 1) {
1187 		p_stripe = rbio->real_stripes - 1;
1188 	} else if (rbio->real_stripes - rbio->nr_data == 2) {
1189 		p_stripe = rbio->real_stripes - 2;
1190 		q_stripe = rbio->real_stripes - 1;
1191 	} else {
1192 		BUG();
1193 	}
1194 
1195 	/* at this point we either have a full stripe,
1196 	 * or we've read the full stripe from the drive.
1197 	 * recalculate the parity and write the new results.
1198 	 *
1199 	 * We're not allowed to add any new bios to the
1200 	 * bio list here, anyone else that wants to
1201 	 * change this stripe needs to do their own rmw.
1202 	 */
1203 	spin_lock_irq(&rbio->bio_list_lock);
1204 	set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1205 	spin_unlock_irq(&rbio->bio_list_lock);
1206 
1207 	atomic_set(&rbio->error, 0);
1208 
1209 	/*
1210 	 * now that we've set rmw_locked, run through the
1211 	 * bio list one last time and map the page pointers
1212 	 *
1213 	 * We don't cache full rbios because we're assuming
1214 	 * the higher layers are unlikely to use this area of
1215 	 * the disk again soon.  If they do use it again,
1216 	 * hopefully they will send another full bio.
1217 	 */
1218 	index_rbio_pages(rbio);
1219 	if (!rbio_is_full(rbio))
1220 		cache_rbio_pages(rbio);
1221 	else
1222 		clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1223 
1224 	for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1225 		struct page *p;
1226 		/* first collect one page from each data stripe */
1227 		for (stripe = 0; stripe < nr_data; stripe++) {
1228 			p = page_in_rbio(rbio, stripe, pagenr, 0);
1229 			pointers[stripe] = kmap(p);
1230 		}
1231 
1232 		/* then add the parity stripe */
1233 		p = rbio_pstripe_page(rbio, pagenr);
1234 		SetPageUptodate(p);
1235 		pointers[stripe++] = kmap(p);
1236 
1237 		if (q_stripe != -1) {
1238 
1239 			/*
1240 			 * raid6, add the qstripe and call the
1241 			 * library function to fill in our p/q
1242 			 */
1243 			p = rbio_qstripe_page(rbio, pagenr);
1244 			SetPageUptodate(p);
1245 			pointers[stripe++] = kmap(p);
1246 
1247 			raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
1248 						pointers);
1249 		} else {
1250 			/* raid5 */
1251 			memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
1252 			run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
1253 		}
1254 
1255 
1256 		for (stripe = 0; stripe < rbio->real_stripes; stripe++)
1257 			kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
1258 	}
1259 
1260 	/*
1261 	 * time to start writing.  Make bios for everything from the
1262 	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
1263 	 * everything else.
1264 	 */
1265 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1266 		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1267 			struct page *page;
1268 			if (stripe < rbio->nr_data) {
1269 				page = page_in_rbio(rbio, stripe, pagenr, 1);
1270 				if (!page)
1271 					continue;
1272 			} else {
1273 			       page = rbio_stripe_page(rbio, stripe, pagenr);
1274 			}
1275 
1276 			ret = rbio_add_io_page(rbio, &bio_list,
1277 				       page, stripe, pagenr, rbio->stripe_len);
1278 			if (ret)
1279 				goto cleanup;
1280 		}
1281 	}
1282 
1283 	if (likely(!bbio->num_tgtdevs))
1284 		goto write_data;
1285 
1286 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1287 		if (!bbio->tgtdev_map[stripe])
1288 			continue;
1289 
1290 		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1291 			struct page *page;
1292 			if (stripe < rbio->nr_data) {
1293 				page = page_in_rbio(rbio, stripe, pagenr, 1);
1294 				if (!page)
1295 					continue;
1296 			} else {
1297 			       page = rbio_stripe_page(rbio, stripe, pagenr);
1298 			}
1299 
1300 			ret = rbio_add_io_page(rbio, &bio_list, page,
1301 					       rbio->bbio->tgtdev_map[stripe],
1302 					       pagenr, rbio->stripe_len);
1303 			if (ret)
1304 				goto cleanup;
1305 		}
1306 	}
1307 
1308 write_data:
1309 	atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list));
1310 	BUG_ON(atomic_read(&rbio->stripes_pending) == 0);
1311 
1312 	while (1) {
1313 		bio = bio_list_pop(&bio_list);
1314 		if (!bio)
1315 			break;
1316 
1317 		bio->bi_private = rbio;
1318 		bio->bi_end_io = raid_write_end_io;
1319 		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1320 
1321 		submit_bio(bio);
1322 	}
1323 	return;
1324 
1325 cleanup:
1326 	rbio_orig_end_io(rbio, -EIO);
1327 }
1328 
1329 /*
1330  * helper to find the stripe number for a given bio.  Used to figure out which
1331  * stripe has failed.  This expects the bio to correspond to a physical disk,
1332  * so it looks up based on physical sector numbers.
1333  */
1334 static int find_bio_stripe(struct btrfs_raid_bio *rbio,
1335 			   struct bio *bio)
1336 {
1337 	u64 physical = bio->bi_iter.bi_sector;
1338 	u64 stripe_start;
1339 	int i;
1340 	struct btrfs_bio_stripe *stripe;
1341 
1342 	physical <<= 9;
1343 
1344 	for (i = 0; i < rbio->bbio->num_stripes; i++) {
1345 		stripe = &rbio->bbio->stripes[i];
1346 		stripe_start = stripe->physical;
1347 		if (physical >= stripe_start &&
1348 		    physical < stripe_start + rbio->stripe_len &&
1349 		    bio->bi_bdev == stripe->dev->bdev) {
1350 			return i;
1351 		}
1352 	}
1353 	return -1;
1354 }
1355 
1356 /*
1357  * helper to find the stripe number for a given
1358  * bio (before mapping).  Used to figure out which stripe has
1359  * failed.  This looks up based on logical block numbers.
1360  */
1361 static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio,
1362 				   struct bio *bio)
1363 {
1364 	u64 logical = bio->bi_iter.bi_sector;
1365 	u64 stripe_start;
1366 	int i;
1367 
1368 	logical <<= 9;
1369 
1370 	for (i = 0; i < rbio->nr_data; i++) {
1371 		stripe_start = rbio->bbio->raid_map[i];
1372 		if (logical >= stripe_start &&
1373 		    logical < stripe_start + rbio->stripe_len) {
1374 			return i;
1375 		}
1376 	}
1377 	return -1;
1378 }
1379 
1380 /*
1381  * returns -EIO if we had too many failures
1382  */
1383 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed)
1384 {
1385 	unsigned long flags;
1386 	int ret = 0;
1387 
1388 	spin_lock_irqsave(&rbio->bio_list_lock, flags);
1389 
1390 	/* we already know this stripe is bad, move on */
1391 	if (rbio->faila == failed || rbio->failb == failed)
1392 		goto out;
1393 
1394 	if (rbio->faila == -1) {
1395 		/* first failure on this rbio */
1396 		rbio->faila = failed;
1397 		atomic_inc(&rbio->error);
1398 	} else if (rbio->failb == -1) {
1399 		/* second failure on this rbio */
1400 		rbio->failb = failed;
1401 		atomic_inc(&rbio->error);
1402 	} else {
1403 		ret = -EIO;
1404 	}
1405 out:
1406 	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
1407 
1408 	return ret;
1409 }
1410 
1411 /*
1412  * helper to fail a stripe based on a physical disk
1413  * bio.
1414  */
1415 static int fail_bio_stripe(struct btrfs_raid_bio *rbio,
1416 			   struct bio *bio)
1417 {
1418 	int failed = find_bio_stripe(rbio, bio);
1419 
1420 	if (failed < 0)
1421 		return -EIO;
1422 
1423 	return fail_rbio_index(rbio, failed);
1424 }
1425 
1426 /*
1427  * this sets each page in the bio uptodate.  It should only be used on private
1428  * rbio pages, nothing that comes in from the higher layers
1429  */
1430 static void set_bio_pages_uptodate(struct bio *bio)
1431 {
1432 	struct bio_vec *bvec;
1433 	int i;
1434 
1435 	bio_for_each_segment_all(bvec, bio, i)
1436 		SetPageUptodate(bvec->bv_page);
1437 }
1438 
1439 /*
1440  * end io for the read phase of the rmw cycle.  All the bios here are physical
1441  * stripe bios we've read from the disk so we can recalculate the parity of the
1442  * stripe.
1443  *
1444  * This will usually kick off finish_rmw once all the bios are read in, but it
1445  * may trigger parity reconstruction if we had any errors along the way
1446  */
1447 static void raid_rmw_end_io(struct bio *bio)
1448 {
1449 	struct btrfs_raid_bio *rbio = bio->bi_private;
1450 
1451 	if (bio->bi_error)
1452 		fail_bio_stripe(rbio, bio);
1453 	else
1454 		set_bio_pages_uptodate(bio);
1455 
1456 	bio_put(bio);
1457 
1458 	if (!atomic_dec_and_test(&rbio->stripes_pending))
1459 		return;
1460 
1461 	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
1462 		goto cleanup;
1463 
1464 	/*
1465 	 * this will normally call finish_rmw to start our write
1466 	 * but if there are any failed stripes we'll reconstruct
1467 	 * from parity first
1468 	 */
1469 	validate_rbio_for_rmw(rbio);
1470 	return;
1471 
1472 cleanup:
1473 
1474 	rbio_orig_end_io(rbio, -EIO);
1475 }
1476 
1477 static void async_rmw_stripe(struct btrfs_raid_bio *rbio)
1478 {
1479 	btrfs_init_work(&rbio->work, btrfs_rmw_helper, rmw_work, NULL, NULL);
1480 	btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
1481 }
1482 
1483 static void async_read_rebuild(struct btrfs_raid_bio *rbio)
1484 {
1485 	btrfs_init_work(&rbio->work, btrfs_rmw_helper,
1486 			read_rebuild_work, NULL, NULL);
1487 
1488 	btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
1489 }
1490 
1491 /*
1492  * the stripe must be locked by the caller.  It will
1493  * unlock after all the writes are done
1494  */
1495 static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio)
1496 {
1497 	int bios_to_read = 0;
1498 	struct bio_list bio_list;
1499 	int ret;
1500 	int pagenr;
1501 	int stripe;
1502 	struct bio *bio;
1503 
1504 	bio_list_init(&bio_list);
1505 
1506 	ret = alloc_rbio_pages(rbio);
1507 	if (ret)
1508 		goto cleanup;
1509 
1510 	index_rbio_pages(rbio);
1511 
1512 	atomic_set(&rbio->error, 0);
1513 	/*
1514 	 * build a list of bios to read all the missing parts of this
1515 	 * stripe
1516 	 */
1517 	for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1518 		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1519 			struct page *page;
1520 			/*
1521 			 * we want to find all the pages missing from
1522 			 * the rbio and read them from the disk.  If
1523 			 * page_in_rbio finds a page in the bio list
1524 			 * we don't need to read it off the stripe.
1525 			 */
1526 			page = page_in_rbio(rbio, stripe, pagenr, 1);
1527 			if (page)
1528 				continue;
1529 
1530 			page = rbio_stripe_page(rbio, stripe, pagenr);
1531 			/*
1532 			 * the bio cache may have handed us an uptodate
1533 			 * page.  If so, be happy and use it
1534 			 */
1535 			if (PageUptodate(page))
1536 				continue;
1537 
1538 			ret = rbio_add_io_page(rbio, &bio_list, page,
1539 				       stripe, pagenr, rbio->stripe_len);
1540 			if (ret)
1541 				goto cleanup;
1542 		}
1543 	}
1544 
1545 	bios_to_read = bio_list_size(&bio_list);
1546 	if (!bios_to_read) {
1547 		/*
1548 		 * this can happen if others have merged with
1549 		 * us, it means there is nothing left to read.
1550 		 * But if there are missing devices it may not be
1551 		 * safe to do the full stripe write yet.
1552 		 */
1553 		goto finish;
1554 	}
1555 
1556 	/*
1557 	 * the bbio may be freed once we submit the last bio.  Make sure
1558 	 * not to touch it after that
1559 	 */
1560 	atomic_set(&rbio->stripes_pending, bios_to_read);
1561 	while (1) {
1562 		bio = bio_list_pop(&bio_list);
1563 		if (!bio)
1564 			break;
1565 
1566 		bio->bi_private = rbio;
1567 		bio->bi_end_io = raid_rmw_end_io;
1568 		bio_set_op_attrs(bio, REQ_OP_READ, 0);
1569 
1570 		btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
1571 
1572 		submit_bio(bio);
1573 	}
1574 	/* the actual write will happen once the reads are done */
1575 	return 0;
1576 
1577 cleanup:
1578 	rbio_orig_end_io(rbio, -EIO);
1579 	return -EIO;
1580 
1581 finish:
1582 	validate_rbio_for_rmw(rbio);
1583 	return 0;
1584 }
1585 
1586 /*
1587  * if the upper layers pass in a full stripe, we thank them by only allocating
1588  * enough pages to hold the parity, and sending it all down quickly.
1589  */
1590 static int full_stripe_write(struct btrfs_raid_bio *rbio)
1591 {
1592 	int ret;
1593 
1594 	ret = alloc_rbio_parity_pages(rbio);
1595 	if (ret) {
1596 		__free_raid_bio(rbio);
1597 		return ret;
1598 	}
1599 
1600 	ret = lock_stripe_add(rbio);
1601 	if (ret == 0)
1602 		finish_rmw(rbio);
1603 	return 0;
1604 }
1605 
1606 /*
1607  * partial stripe writes get handed over to async helpers.
1608  * We're really hoping to merge a few more writes into this
1609  * rbio before calculating new parity
1610  */
1611 static int partial_stripe_write(struct btrfs_raid_bio *rbio)
1612 {
1613 	int ret;
1614 
1615 	ret = lock_stripe_add(rbio);
1616 	if (ret == 0)
1617 		async_rmw_stripe(rbio);
1618 	return 0;
1619 }
1620 
1621 /*
1622  * sometimes while we were reading from the drive to
1623  * recalculate parity, enough new bios come into create
1624  * a full stripe.  So we do a check here to see if we can
1625  * go directly to finish_rmw
1626  */
1627 static int __raid56_parity_write(struct btrfs_raid_bio *rbio)
1628 {
1629 	/* head off into rmw land if we don't have a full stripe */
1630 	if (!rbio_is_full(rbio))
1631 		return partial_stripe_write(rbio);
1632 	return full_stripe_write(rbio);
1633 }
1634 
1635 /*
1636  * We use plugging call backs to collect full stripes.
1637  * Any time we get a partial stripe write while plugged
1638  * we collect it into a list.  When the unplug comes down,
1639  * we sort the list by logical block number and merge
1640  * everything we can into the same rbios
1641  */
1642 struct btrfs_plug_cb {
1643 	struct blk_plug_cb cb;
1644 	struct btrfs_fs_info *info;
1645 	struct list_head rbio_list;
1646 	struct btrfs_work work;
1647 };
1648 
1649 /*
1650  * rbios on the plug list are sorted for easier merging.
1651  */
1652 static int plug_cmp(void *priv, struct list_head *a, struct list_head *b)
1653 {
1654 	struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1655 						 plug_list);
1656 	struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1657 						 plug_list);
1658 	u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1659 	u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1660 
1661 	if (a_sector < b_sector)
1662 		return -1;
1663 	if (a_sector > b_sector)
1664 		return 1;
1665 	return 0;
1666 }
1667 
1668 static void run_plug(struct btrfs_plug_cb *plug)
1669 {
1670 	struct btrfs_raid_bio *cur;
1671 	struct btrfs_raid_bio *last = NULL;
1672 
1673 	/*
1674 	 * sort our plug list then try to merge
1675 	 * everything we can in hopes of creating full
1676 	 * stripes.
1677 	 */
1678 	list_sort(NULL, &plug->rbio_list, plug_cmp);
1679 	while (!list_empty(&plug->rbio_list)) {
1680 		cur = list_entry(plug->rbio_list.next,
1681 				 struct btrfs_raid_bio, plug_list);
1682 		list_del_init(&cur->plug_list);
1683 
1684 		if (rbio_is_full(cur)) {
1685 			/* we have a full stripe, send it down */
1686 			full_stripe_write(cur);
1687 			continue;
1688 		}
1689 		if (last) {
1690 			if (rbio_can_merge(last, cur)) {
1691 				merge_rbio(last, cur);
1692 				__free_raid_bio(cur);
1693 				continue;
1694 
1695 			}
1696 			__raid56_parity_write(last);
1697 		}
1698 		last = cur;
1699 	}
1700 	if (last) {
1701 		__raid56_parity_write(last);
1702 	}
1703 	kfree(plug);
1704 }
1705 
1706 /*
1707  * if the unplug comes from schedule, we have to push the
1708  * work off to a helper thread
1709  */
1710 static void unplug_work(struct btrfs_work *work)
1711 {
1712 	struct btrfs_plug_cb *plug;
1713 	plug = container_of(work, struct btrfs_plug_cb, work);
1714 	run_plug(plug);
1715 }
1716 
1717 static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1718 {
1719 	struct btrfs_plug_cb *plug;
1720 	plug = container_of(cb, struct btrfs_plug_cb, cb);
1721 
1722 	if (from_schedule) {
1723 		btrfs_init_work(&plug->work, btrfs_rmw_helper,
1724 				unplug_work, NULL, NULL);
1725 		btrfs_queue_work(plug->info->rmw_workers,
1726 				 &plug->work);
1727 		return;
1728 	}
1729 	run_plug(plug);
1730 }
1731 
1732 /*
1733  * our main entry point for writes from the rest of the FS.
1734  */
1735 int raid56_parity_write(struct btrfs_fs_info *fs_info, struct bio *bio,
1736 			struct btrfs_bio *bbio, u64 stripe_len)
1737 {
1738 	struct btrfs_raid_bio *rbio;
1739 	struct btrfs_plug_cb *plug = NULL;
1740 	struct blk_plug_cb *cb;
1741 	int ret;
1742 
1743 	rbio = alloc_rbio(fs_info, bbio, stripe_len);
1744 	if (IS_ERR(rbio)) {
1745 		btrfs_put_bbio(bbio);
1746 		return PTR_ERR(rbio);
1747 	}
1748 	bio_list_add(&rbio->bio_list, bio);
1749 	rbio->bio_list_bytes = bio->bi_iter.bi_size;
1750 	rbio->operation = BTRFS_RBIO_WRITE;
1751 
1752 	btrfs_bio_counter_inc_noblocked(fs_info);
1753 	rbio->generic_bio_cnt = 1;
1754 
1755 	/*
1756 	 * don't plug on full rbios, just get them out the door
1757 	 * as quickly as we can
1758 	 */
1759 	if (rbio_is_full(rbio)) {
1760 		ret = full_stripe_write(rbio);
1761 		if (ret)
1762 			btrfs_bio_counter_dec(fs_info);
1763 		return ret;
1764 	}
1765 
1766 	cb = blk_check_plugged(btrfs_raid_unplug, fs_info, sizeof(*plug));
1767 	if (cb) {
1768 		plug = container_of(cb, struct btrfs_plug_cb, cb);
1769 		if (!plug->info) {
1770 			plug->info = fs_info;
1771 			INIT_LIST_HEAD(&plug->rbio_list);
1772 		}
1773 		list_add_tail(&rbio->plug_list, &plug->rbio_list);
1774 		ret = 0;
1775 	} else {
1776 		ret = __raid56_parity_write(rbio);
1777 		if (ret)
1778 			btrfs_bio_counter_dec(fs_info);
1779 	}
1780 	return ret;
1781 }
1782 
1783 /*
1784  * all parity reconstruction happens here.  We've read in everything
1785  * we can find from the drives and this does the heavy lifting of
1786  * sorting the good from the bad.
1787  */
1788 static void __raid_recover_end_io(struct btrfs_raid_bio *rbio)
1789 {
1790 	int pagenr, stripe;
1791 	void **pointers;
1792 	int faila = -1, failb = -1;
1793 	struct page *page;
1794 	int err;
1795 	int i;
1796 
1797 	pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1798 	if (!pointers) {
1799 		err = -ENOMEM;
1800 		goto cleanup_io;
1801 	}
1802 
1803 	faila = rbio->faila;
1804 	failb = rbio->failb;
1805 
1806 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1807 	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1808 		spin_lock_irq(&rbio->bio_list_lock);
1809 		set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1810 		spin_unlock_irq(&rbio->bio_list_lock);
1811 	}
1812 
1813 	index_rbio_pages(rbio);
1814 
1815 	for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1816 		/*
1817 		 * Now we just use bitmap to mark the horizontal stripes in
1818 		 * which we have data when doing parity scrub.
1819 		 */
1820 		if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1821 		    !test_bit(pagenr, rbio->dbitmap))
1822 			continue;
1823 
1824 		/* setup our array of pointers with pages
1825 		 * from each stripe
1826 		 */
1827 		for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1828 			/*
1829 			 * if we're rebuilding a read, we have to use
1830 			 * pages from the bio list
1831 			 */
1832 			if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1833 			     rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1834 			    (stripe == faila || stripe == failb)) {
1835 				page = page_in_rbio(rbio, stripe, pagenr, 0);
1836 			} else {
1837 				page = rbio_stripe_page(rbio, stripe, pagenr);
1838 			}
1839 			pointers[stripe] = kmap(page);
1840 		}
1841 
1842 		/* all raid6 handling here */
1843 		if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) {
1844 			/*
1845 			 * single failure, rebuild from parity raid5
1846 			 * style
1847 			 */
1848 			if (failb < 0) {
1849 				if (faila == rbio->nr_data) {
1850 					/*
1851 					 * Just the P stripe has failed, without
1852 					 * a bad data or Q stripe.
1853 					 * TODO, we should redo the xor here.
1854 					 */
1855 					err = -EIO;
1856 					goto cleanup;
1857 				}
1858 				/*
1859 				 * a single failure in raid6 is rebuilt
1860 				 * in the pstripe code below
1861 				 */
1862 				goto pstripe;
1863 			}
1864 
1865 			/* make sure our ps and qs are in order */
1866 			if (faila > failb) {
1867 				int tmp = failb;
1868 				failb = faila;
1869 				faila = tmp;
1870 			}
1871 
1872 			/* if the q stripe is failed, do a pstripe reconstruction
1873 			 * from the xors.
1874 			 * If both the q stripe and the P stripe are failed, we're
1875 			 * here due to a crc mismatch and we can't give them the
1876 			 * data they want
1877 			 */
1878 			if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) {
1879 				if (rbio->bbio->raid_map[faila] ==
1880 				    RAID5_P_STRIPE) {
1881 					err = -EIO;
1882 					goto cleanup;
1883 				}
1884 				/*
1885 				 * otherwise we have one bad data stripe and
1886 				 * a good P stripe.  raid5!
1887 				 */
1888 				goto pstripe;
1889 			}
1890 
1891 			if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) {
1892 				raid6_datap_recov(rbio->real_stripes,
1893 						  PAGE_SIZE, faila, pointers);
1894 			} else {
1895 				raid6_2data_recov(rbio->real_stripes,
1896 						  PAGE_SIZE, faila, failb,
1897 						  pointers);
1898 			}
1899 		} else {
1900 			void *p;
1901 
1902 			/* rebuild from P stripe here (raid5 or raid6) */
1903 			BUG_ON(failb != -1);
1904 pstripe:
1905 			/* Copy parity block into failed block to start with */
1906 			memcpy(pointers[faila],
1907 			       pointers[rbio->nr_data],
1908 			       PAGE_SIZE);
1909 
1910 			/* rearrange the pointer array */
1911 			p = pointers[faila];
1912 			for (stripe = faila; stripe < rbio->nr_data - 1; stripe++)
1913 				pointers[stripe] = pointers[stripe + 1];
1914 			pointers[rbio->nr_data - 1] = p;
1915 
1916 			/* xor in the rest */
1917 			run_xor(pointers, rbio->nr_data - 1, PAGE_SIZE);
1918 		}
1919 		/* if we're doing this rebuild as part of an rmw, go through
1920 		 * and set all of our private rbio pages in the
1921 		 * failed stripes as uptodate.  This way finish_rmw will
1922 		 * know they can be trusted.  If this was a read reconstruction,
1923 		 * other endio functions will fiddle the uptodate bits
1924 		 */
1925 		if (rbio->operation == BTRFS_RBIO_WRITE) {
1926 			for (i = 0;  i < rbio->stripe_npages; i++) {
1927 				if (faila != -1) {
1928 					page = rbio_stripe_page(rbio, faila, i);
1929 					SetPageUptodate(page);
1930 				}
1931 				if (failb != -1) {
1932 					page = rbio_stripe_page(rbio, failb, i);
1933 					SetPageUptodate(page);
1934 				}
1935 			}
1936 		}
1937 		for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1938 			/*
1939 			 * if we're rebuilding a read, we have to use
1940 			 * pages from the bio list
1941 			 */
1942 			if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1943 			     rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1944 			    (stripe == faila || stripe == failb)) {
1945 				page = page_in_rbio(rbio, stripe, pagenr, 0);
1946 			} else {
1947 				page = rbio_stripe_page(rbio, stripe, pagenr);
1948 			}
1949 			kunmap(page);
1950 		}
1951 	}
1952 
1953 	err = 0;
1954 cleanup:
1955 	kfree(pointers);
1956 
1957 cleanup_io:
1958 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
1959 		if (err == 0)
1960 			cache_rbio_pages(rbio);
1961 		else
1962 			clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1963 
1964 		rbio_orig_end_io(rbio, err);
1965 	} else if (rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1966 		rbio_orig_end_io(rbio, err);
1967 	} else if (err == 0) {
1968 		rbio->faila = -1;
1969 		rbio->failb = -1;
1970 
1971 		if (rbio->operation == BTRFS_RBIO_WRITE)
1972 			finish_rmw(rbio);
1973 		else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB)
1974 			finish_parity_scrub(rbio, 0);
1975 		else
1976 			BUG();
1977 	} else {
1978 		rbio_orig_end_io(rbio, err);
1979 	}
1980 }
1981 
1982 /*
1983  * This is called only for stripes we've read from disk to
1984  * reconstruct the parity.
1985  */
1986 static void raid_recover_end_io(struct bio *bio)
1987 {
1988 	struct btrfs_raid_bio *rbio = bio->bi_private;
1989 
1990 	/*
1991 	 * we only read stripe pages off the disk, set them
1992 	 * up to date if there were no errors
1993 	 */
1994 	if (bio->bi_error)
1995 		fail_bio_stripe(rbio, bio);
1996 	else
1997 		set_bio_pages_uptodate(bio);
1998 	bio_put(bio);
1999 
2000 	if (!atomic_dec_and_test(&rbio->stripes_pending))
2001 		return;
2002 
2003 	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2004 		rbio_orig_end_io(rbio, -EIO);
2005 	else
2006 		__raid_recover_end_io(rbio);
2007 }
2008 
2009 /*
2010  * reads everything we need off the disk to reconstruct
2011  * the parity. endio handlers trigger final reconstruction
2012  * when the IO is done.
2013  *
2014  * This is used both for reads from the higher layers and for
2015  * parity construction required to finish a rmw cycle.
2016  */
2017 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio)
2018 {
2019 	int bios_to_read = 0;
2020 	struct bio_list bio_list;
2021 	int ret;
2022 	int pagenr;
2023 	int stripe;
2024 	struct bio *bio;
2025 
2026 	bio_list_init(&bio_list);
2027 
2028 	ret = alloc_rbio_pages(rbio);
2029 	if (ret)
2030 		goto cleanup;
2031 
2032 	atomic_set(&rbio->error, 0);
2033 
2034 	/*
2035 	 * read everything that hasn't failed.  Thanks to the
2036 	 * stripe cache, it is possible that some or all of these
2037 	 * pages are going to be uptodate.
2038 	 */
2039 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2040 		if (rbio->faila == stripe || rbio->failb == stripe) {
2041 			atomic_inc(&rbio->error);
2042 			continue;
2043 		}
2044 
2045 		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
2046 			struct page *p;
2047 
2048 			/*
2049 			 * the rmw code may have already read this
2050 			 * page in
2051 			 */
2052 			p = rbio_stripe_page(rbio, stripe, pagenr);
2053 			if (PageUptodate(p))
2054 				continue;
2055 
2056 			ret = rbio_add_io_page(rbio, &bio_list,
2057 				       rbio_stripe_page(rbio, stripe, pagenr),
2058 				       stripe, pagenr, rbio->stripe_len);
2059 			if (ret < 0)
2060 				goto cleanup;
2061 		}
2062 	}
2063 
2064 	bios_to_read = bio_list_size(&bio_list);
2065 	if (!bios_to_read) {
2066 		/*
2067 		 * we might have no bios to read just because the pages
2068 		 * were up to date, or we might have no bios to read because
2069 		 * the devices were gone.
2070 		 */
2071 		if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) {
2072 			__raid_recover_end_io(rbio);
2073 			goto out;
2074 		} else {
2075 			goto cleanup;
2076 		}
2077 	}
2078 
2079 	/*
2080 	 * the bbio may be freed once we submit the last bio.  Make sure
2081 	 * not to touch it after that
2082 	 */
2083 	atomic_set(&rbio->stripes_pending, bios_to_read);
2084 	while (1) {
2085 		bio = bio_list_pop(&bio_list);
2086 		if (!bio)
2087 			break;
2088 
2089 		bio->bi_private = rbio;
2090 		bio->bi_end_io = raid_recover_end_io;
2091 		bio_set_op_attrs(bio, REQ_OP_READ, 0);
2092 
2093 		btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
2094 
2095 		submit_bio(bio);
2096 	}
2097 out:
2098 	return 0;
2099 
2100 cleanup:
2101 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
2102 	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING)
2103 		rbio_orig_end_io(rbio, -EIO);
2104 	return -EIO;
2105 }
2106 
2107 /*
2108  * the main entry point for reads from the higher layers.  This
2109  * is really only called when the normal read path had a failure,
2110  * so we assume the bio they send down corresponds to a failed part
2111  * of the drive.
2112  */
2113 int raid56_parity_recover(struct btrfs_fs_info *fs_info, struct bio *bio,
2114 			  struct btrfs_bio *bbio, u64 stripe_len,
2115 			  int mirror_num, int generic_io)
2116 {
2117 	struct btrfs_raid_bio *rbio;
2118 	int ret;
2119 
2120 	if (generic_io) {
2121 		ASSERT(bbio->mirror_num == mirror_num);
2122 		btrfs_io_bio(bio)->mirror_num = mirror_num;
2123 	}
2124 
2125 	rbio = alloc_rbio(fs_info, bbio, stripe_len);
2126 	if (IS_ERR(rbio)) {
2127 		if (generic_io)
2128 			btrfs_put_bbio(bbio);
2129 		return PTR_ERR(rbio);
2130 	}
2131 
2132 	rbio->operation = BTRFS_RBIO_READ_REBUILD;
2133 	bio_list_add(&rbio->bio_list, bio);
2134 	rbio->bio_list_bytes = bio->bi_iter.bi_size;
2135 
2136 	rbio->faila = find_logical_bio_stripe(rbio, bio);
2137 	if (rbio->faila == -1) {
2138 		btrfs_warn(fs_info,
2139 	"%s could not find the bad stripe in raid56 so that we cannot recover any more (bio has logical %llu len %llu, bbio has map_type %llu)",
2140 			   __func__, (u64)bio->bi_iter.bi_sector << 9,
2141 			   (u64)bio->bi_iter.bi_size, bbio->map_type);
2142 		if (generic_io)
2143 			btrfs_put_bbio(bbio);
2144 		kfree(rbio);
2145 		return -EIO;
2146 	}
2147 
2148 	if (generic_io) {
2149 		btrfs_bio_counter_inc_noblocked(fs_info);
2150 		rbio->generic_bio_cnt = 1;
2151 	} else {
2152 		btrfs_get_bbio(bbio);
2153 	}
2154 
2155 	/*
2156 	 * reconstruct from the q stripe if they are
2157 	 * asking for mirror 3
2158 	 */
2159 	if (mirror_num == 3)
2160 		rbio->failb = rbio->real_stripes - 2;
2161 
2162 	ret = lock_stripe_add(rbio);
2163 
2164 	/*
2165 	 * __raid56_parity_recover will end the bio with
2166 	 * any errors it hits.  We don't want to return
2167 	 * its error value up the stack because our caller
2168 	 * will end up calling bio_endio with any nonzero
2169 	 * return
2170 	 */
2171 	if (ret == 0)
2172 		__raid56_parity_recover(rbio);
2173 	/*
2174 	 * our rbio has been added to the list of
2175 	 * rbios that will be handled after the
2176 	 * currently lock owner is done
2177 	 */
2178 	return 0;
2179 
2180 }
2181 
2182 static void rmw_work(struct btrfs_work *work)
2183 {
2184 	struct btrfs_raid_bio *rbio;
2185 
2186 	rbio = container_of(work, struct btrfs_raid_bio, work);
2187 	raid56_rmw_stripe(rbio);
2188 }
2189 
2190 static void read_rebuild_work(struct btrfs_work *work)
2191 {
2192 	struct btrfs_raid_bio *rbio;
2193 
2194 	rbio = container_of(work, struct btrfs_raid_bio, work);
2195 	__raid56_parity_recover(rbio);
2196 }
2197 
2198 /*
2199  * The following code is used to scrub/replace the parity stripe
2200  *
2201  * Caller must have already increased bio_counter for getting @bbio.
2202  *
2203  * Note: We need make sure all the pages that add into the scrub/replace
2204  * raid bio are correct and not be changed during the scrub/replace. That
2205  * is those pages just hold metadata or file data with checksum.
2206  */
2207 
2208 struct btrfs_raid_bio *
2209 raid56_parity_alloc_scrub_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
2210 			       struct btrfs_bio *bbio, u64 stripe_len,
2211 			       struct btrfs_device *scrub_dev,
2212 			       unsigned long *dbitmap, int stripe_nsectors)
2213 {
2214 	struct btrfs_raid_bio *rbio;
2215 	int i;
2216 
2217 	rbio = alloc_rbio(fs_info, bbio, stripe_len);
2218 	if (IS_ERR(rbio))
2219 		return NULL;
2220 	bio_list_add(&rbio->bio_list, bio);
2221 	/*
2222 	 * This is a special bio which is used to hold the completion handler
2223 	 * and make the scrub rbio is similar to the other types
2224 	 */
2225 	ASSERT(!bio->bi_iter.bi_size);
2226 	rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2227 
2228 	for (i = 0; i < rbio->real_stripes; i++) {
2229 		if (bbio->stripes[i].dev == scrub_dev) {
2230 			rbio->scrubp = i;
2231 			break;
2232 		}
2233 	}
2234 
2235 	/* Now we just support the sectorsize equals to page size */
2236 	ASSERT(fs_info->sectorsize == PAGE_SIZE);
2237 	ASSERT(rbio->stripe_npages == stripe_nsectors);
2238 	bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors);
2239 
2240 	/*
2241 	 * We have already increased bio_counter when getting bbio, record it
2242 	 * so we can free it at rbio_orig_end_io().
2243 	 */
2244 	rbio->generic_bio_cnt = 1;
2245 
2246 	return rbio;
2247 }
2248 
2249 /* Used for both parity scrub and missing. */
2250 void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page,
2251 			    u64 logical)
2252 {
2253 	int stripe_offset;
2254 	int index;
2255 
2256 	ASSERT(logical >= rbio->bbio->raid_map[0]);
2257 	ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] +
2258 				rbio->stripe_len * rbio->nr_data);
2259 	stripe_offset = (int)(logical - rbio->bbio->raid_map[0]);
2260 	index = stripe_offset >> PAGE_SHIFT;
2261 	rbio->bio_pages[index] = page;
2262 }
2263 
2264 /*
2265  * We just scrub the parity that we have correct data on the same horizontal,
2266  * so we needn't allocate all pages for all the stripes.
2267  */
2268 static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2269 {
2270 	int i;
2271 	int bit;
2272 	int index;
2273 	struct page *page;
2274 
2275 	for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) {
2276 		for (i = 0; i < rbio->real_stripes; i++) {
2277 			index = i * rbio->stripe_npages + bit;
2278 			if (rbio->stripe_pages[index])
2279 				continue;
2280 
2281 			page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2282 			if (!page)
2283 				return -ENOMEM;
2284 			rbio->stripe_pages[index] = page;
2285 		}
2286 	}
2287 	return 0;
2288 }
2289 
2290 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
2291 					 int need_check)
2292 {
2293 	struct btrfs_bio *bbio = rbio->bbio;
2294 	void *pointers[rbio->real_stripes];
2295 	DECLARE_BITMAP(pbitmap, rbio->stripe_npages);
2296 	int nr_data = rbio->nr_data;
2297 	int stripe;
2298 	int pagenr;
2299 	int p_stripe = -1;
2300 	int q_stripe = -1;
2301 	struct page *p_page = NULL;
2302 	struct page *q_page = NULL;
2303 	struct bio_list bio_list;
2304 	struct bio *bio;
2305 	int is_replace = 0;
2306 	int ret;
2307 
2308 	bio_list_init(&bio_list);
2309 
2310 	if (rbio->real_stripes - rbio->nr_data == 1) {
2311 		p_stripe = rbio->real_stripes - 1;
2312 	} else if (rbio->real_stripes - rbio->nr_data == 2) {
2313 		p_stripe = rbio->real_stripes - 2;
2314 		q_stripe = rbio->real_stripes - 1;
2315 	} else {
2316 		BUG();
2317 	}
2318 
2319 	if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) {
2320 		is_replace = 1;
2321 		bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages);
2322 	}
2323 
2324 	/*
2325 	 * Because the higher layers(scrubber) are unlikely to
2326 	 * use this area of the disk again soon, so don't cache
2327 	 * it.
2328 	 */
2329 	clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2330 
2331 	if (!need_check)
2332 		goto writeback;
2333 
2334 	p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2335 	if (!p_page)
2336 		goto cleanup;
2337 	SetPageUptodate(p_page);
2338 
2339 	if (q_stripe != -1) {
2340 		q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2341 		if (!q_page) {
2342 			__free_page(p_page);
2343 			goto cleanup;
2344 		}
2345 		SetPageUptodate(q_page);
2346 	}
2347 
2348 	atomic_set(&rbio->error, 0);
2349 
2350 	for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2351 		struct page *p;
2352 		void *parity;
2353 		/* first collect one page from each data stripe */
2354 		for (stripe = 0; stripe < nr_data; stripe++) {
2355 			p = page_in_rbio(rbio, stripe, pagenr, 0);
2356 			pointers[stripe] = kmap(p);
2357 		}
2358 
2359 		/* then add the parity stripe */
2360 		pointers[stripe++] = kmap(p_page);
2361 
2362 		if (q_stripe != -1) {
2363 
2364 			/*
2365 			 * raid6, add the qstripe and call the
2366 			 * library function to fill in our p/q
2367 			 */
2368 			pointers[stripe++] = kmap(q_page);
2369 
2370 			raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
2371 						pointers);
2372 		} else {
2373 			/* raid5 */
2374 			memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
2375 			run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
2376 		}
2377 
2378 		/* Check scrubbing parity and repair it */
2379 		p = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2380 		parity = kmap(p);
2381 		if (memcmp(parity, pointers[rbio->scrubp], PAGE_SIZE))
2382 			memcpy(parity, pointers[rbio->scrubp], PAGE_SIZE);
2383 		else
2384 			/* Parity is right, needn't writeback */
2385 			bitmap_clear(rbio->dbitmap, pagenr, 1);
2386 		kunmap(p);
2387 
2388 		for (stripe = 0; stripe < rbio->real_stripes; stripe++)
2389 			kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
2390 	}
2391 
2392 	__free_page(p_page);
2393 	if (q_page)
2394 		__free_page(q_page);
2395 
2396 writeback:
2397 	/*
2398 	 * time to start writing.  Make bios for everything from the
2399 	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
2400 	 * everything else.
2401 	 */
2402 	for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2403 		struct page *page;
2404 
2405 		page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2406 		ret = rbio_add_io_page(rbio, &bio_list,
2407 			       page, rbio->scrubp, pagenr, rbio->stripe_len);
2408 		if (ret)
2409 			goto cleanup;
2410 	}
2411 
2412 	if (!is_replace)
2413 		goto submit_write;
2414 
2415 	for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) {
2416 		struct page *page;
2417 
2418 		page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2419 		ret = rbio_add_io_page(rbio, &bio_list, page,
2420 				       bbio->tgtdev_map[rbio->scrubp],
2421 				       pagenr, rbio->stripe_len);
2422 		if (ret)
2423 			goto cleanup;
2424 	}
2425 
2426 submit_write:
2427 	nr_data = bio_list_size(&bio_list);
2428 	if (!nr_data) {
2429 		/* Every parity is right */
2430 		rbio_orig_end_io(rbio, 0);
2431 		return;
2432 	}
2433 
2434 	atomic_set(&rbio->stripes_pending, nr_data);
2435 
2436 	while (1) {
2437 		bio = bio_list_pop(&bio_list);
2438 		if (!bio)
2439 			break;
2440 
2441 		bio->bi_private = rbio;
2442 		bio->bi_end_io = raid_write_end_io;
2443 		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2444 
2445 		submit_bio(bio);
2446 	}
2447 	return;
2448 
2449 cleanup:
2450 	rbio_orig_end_io(rbio, -EIO);
2451 }
2452 
2453 static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2454 {
2455 	if (stripe >= 0 && stripe < rbio->nr_data)
2456 		return 1;
2457 	return 0;
2458 }
2459 
2460 /*
2461  * While we're doing the parity check and repair, we could have errors
2462  * in reading pages off the disk.  This checks for errors and if we're
2463  * not able to read the page it'll trigger parity reconstruction.  The
2464  * parity scrub will be finished after we've reconstructed the failed
2465  * stripes
2466  */
2467 static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio)
2468 {
2469 	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2470 		goto cleanup;
2471 
2472 	if (rbio->faila >= 0 || rbio->failb >= 0) {
2473 		int dfail = 0, failp = -1;
2474 
2475 		if (is_data_stripe(rbio, rbio->faila))
2476 			dfail++;
2477 		else if (is_parity_stripe(rbio->faila))
2478 			failp = rbio->faila;
2479 
2480 		if (is_data_stripe(rbio, rbio->failb))
2481 			dfail++;
2482 		else if (is_parity_stripe(rbio->failb))
2483 			failp = rbio->failb;
2484 
2485 		/*
2486 		 * Because we can not use a scrubbing parity to repair
2487 		 * the data, so the capability of the repair is declined.
2488 		 * (In the case of RAID5, we can not repair anything)
2489 		 */
2490 		if (dfail > rbio->bbio->max_errors - 1)
2491 			goto cleanup;
2492 
2493 		/*
2494 		 * If all data is good, only parity is correctly, just
2495 		 * repair the parity.
2496 		 */
2497 		if (dfail == 0) {
2498 			finish_parity_scrub(rbio, 0);
2499 			return;
2500 		}
2501 
2502 		/*
2503 		 * Here means we got one corrupted data stripe and one
2504 		 * corrupted parity on RAID6, if the corrupted parity
2505 		 * is scrubbing parity, luckily, use the other one to repair
2506 		 * the data, or we can not repair the data stripe.
2507 		 */
2508 		if (failp != rbio->scrubp)
2509 			goto cleanup;
2510 
2511 		__raid_recover_end_io(rbio);
2512 	} else {
2513 		finish_parity_scrub(rbio, 1);
2514 	}
2515 	return;
2516 
2517 cleanup:
2518 	rbio_orig_end_io(rbio, -EIO);
2519 }
2520 
2521 /*
2522  * end io for the read phase of the rmw cycle.  All the bios here are physical
2523  * stripe bios we've read from the disk so we can recalculate the parity of the
2524  * stripe.
2525  *
2526  * This will usually kick off finish_rmw once all the bios are read in, but it
2527  * may trigger parity reconstruction if we had any errors along the way
2528  */
2529 static void raid56_parity_scrub_end_io(struct bio *bio)
2530 {
2531 	struct btrfs_raid_bio *rbio = bio->bi_private;
2532 
2533 	if (bio->bi_error)
2534 		fail_bio_stripe(rbio, bio);
2535 	else
2536 		set_bio_pages_uptodate(bio);
2537 
2538 	bio_put(bio);
2539 
2540 	if (!atomic_dec_and_test(&rbio->stripes_pending))
2541 		return;
2542 
2543 	/*
2544 	 * this will normally call finish_rmw to start our write
2545 	 * but if there are any failed stripes we'll reconstruct
2546 	 * from parity first
2547 	 */
2548 	validate_rbio_for_parity_scrub(rbio);
2549 }
2550 
2551 static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio)
2552 {
2553 	int bios_to_read = 0;
2554 	struct bio_list bio_list;
2555 	int ret;
2556 	int pagenr;
2557 	int stripe;
2558 	struct bio *bio;
2559 
2560 	ret = alloc_rbio_essential_pages(rbio);
2561 	if (ret)
2562 		goto cleanup;
2563 
2564 	bio_list_init(&bio_list);
2565 
2566 	atomic_set(&rbio->error, 0);
2567 	/*
2568 	 * build a list of bios to read all the missing parts of this
2569 	 * stripe
2570 	 */
2571 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2572 		for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2573 			struct page *page;
2574 			/*
2575 			 * we want to find all the pages missing from
2576 			 * the rbio and read them from the disk.  If
2577 			 * page_in_rbio finds a page in the bio list
2578 			 * we don't need to read it off the stripe.
2579 			 */
2580 			page = page_in_rbio(rbio, stripe, pagenr, 1);
2581 			if (page)
2582 				continue;
2583 
2584 			page = rbio_stripe_page(rbio, stripe, pagenr);
2585 			/*
2586 			 * the bio cache may have handed us an uptodate
2587 			 * page.  If so, be happy and use it
2588 			 */
2589 			if (PageUptodate(page))
2590 				continue;
2591 
2592 			ret = rbio_add_io_page(rbio, &bio_list, page,
2593 				       stripe, pagenr, rbio->stripe_len);
2594 			if (ret)
2595 				goto cleanup;
2596 		}
2597 	}
2598 
2599 	bios_to_read = bio_list_size(&bio_list);
2600 	if (!bios_to_read) {
2601 		/*
2602 		 * this can happen if others have merged with
2603 		 * us, it means there is nothing left to read.
2604 		 * But if there are missing devices it may not be
2605 		 * safe to do the full stripe write yet.
2606 		 */
2607 		goto finish;
2608 	}
2609 
2610 	/*
2611 	 * the bbio may be freed once we submit the last bio.  Make sure
2612 	 * not to touch it after that
2613 	 */
2614 	atomic_set(&rbio->stripes_pending, bios_to_read);
2615 	while (1) {
2616 		bio = bio_list_pop(&bio_list);
2617 		if (!bio)
2618 			break;
2619 
2620 		bio->bi_private = rbio;
2621 		bio->bi_end_io = raid56_parity_scrub_end_io;
2622 		bio_set_op_attrs(bio, REQ_OP_READ, 0);
2623 
2624 		btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
2625 
2626 		submit_bio(bio);
2627 	}
2628 	/* the actual write will happen once the reads are done */
2629 	return;
2630 
2631 cleanup:
2632 	rbio_orig_end_io(rbio, -EIO);
2633 	return;
2634 
2635 finish:
2636 	validate_rbio_for_parity_scrub(rbio);
2637 }
2638 
2639 static void scrub_parity_work(struct btrfs_work *work)
2640 {
2641 	struct btrfs_raid_bio *rbio;
2642 
2643 	rbio = container_of(work, struct btrfs_raid_bio, work);
2644 	raid56_parity_scrub_stripe(rbio);
2645 }
2646 
2647 static void async_scrub_parity(struct btrfs_raid_bio *rbio)
2648 {
2649 	btrfs_init_work(&rbio->work, btrfs_rmw_helper,
2650 			scrub_parity_work, NULL, NULL);
2651 
2652 	btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
2653 }
2654 
2655 void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2656 {
2657 	if (!lock_stripe_add(rbio))
2658 		async_scrub_parity(rbio);
2659 }
2660 
2661 /* The following code is used for dev replace of a missing RAID 5/6 device. */
2662 
2663 struct btrfs_raid_bio *
2664 raid56_alloc_missing_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
2665 			  struct btrfs_bio *bbio, u64 length)
2666 {
2667 	struct btrfs_raid_bio *rbio;
2668 
2669 	rbio = alloc_rbio(fs_info, bbio, length);
2670 	if (IS_ERR(rbio))
2671 		return NULL;
2672 
2673 	rbio->operation = BTRFS_RBIO_REBUILD_MISSING;
2674 	bio_list_add(&rbio->bio_list, bio);
2675 	/*
2676 	 * This is a special bio which is used to hold the completion handler
2677 	 * and make the scrub rbio is similar to the other types
2678 	 */
2679 	ASSERT(!bio->bi_iter.bi_size);
2680 
2681 	rbio->faila = find_logical_bio_stripe(rbio, bio);
2682 	if (rbio->faila == -1) {
2683 		BUG();
2684 		kfree(rbio);
2685 		return NULL;
2686 	}
2687 
2688 	/*
2689 	 * When we get bbio, we have already increased bio_counter, record it
2690 	 * so we can free it at rbio_orig_end_io()
2691 	 */
2692 	rbio->generic_bio_cnt = 1;
2693 
2694 	return rbio;
2695 }
2696 
2697 static void missing_raid56_work(struct btrfs_work *work)
2698 {
2699 	struct btrfs_raid_bio *rbio;
2700 
2701 	rbio = container_of(work, struct btrfs_raid_bio, work);
2702 	__raid56_parity_recover(rbio);
2703 }
2704 
2705 static void async_missing_raid56(struct btrfs_raid_bio *rbio)
2706 {
2707 	btrfs_init_work(&rbio->work, btrfs_rmw_helper,
2708 			missing_raid56_work, NULL, NULL);
2709 
2710 	btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
2711 }
2712 
2713 void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio)
2714 {
2715 	if (!lock_stripe_add(rbio))
2716 		async_missing_raid56(rbio);
2717 }
2718