xref: /linux/fs/btrfs/raid56.c (revision e0bf6c5ca2d3281f231c5f0c9bf145e9513644de)
1 /*
2  * Copyright (C) 2012 Fusion-io  All rights reserved.
3  * Copyright (C) 2012 Intel Corp. All rights reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public
7  * License v2 as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12  * General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public
15  * License along with this program; if not, write to the
16  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17  * Boston, MA 021110-1307, USA.
18  */
19 #include <linux/sched.h>
20 #include <linux/wait.h>
21 #include <linux/bio.h>
22 #include <linux/slab.h>
23 #include <linux/buffer_head.h>
24 #include <linux/blkdev.h>
25 #include <linux/random.h>
26 #include <linux/iocontext.h>
27 #include <linux/capability.h>
28 #include <linux/ratelimit.h>
29 #include <linux/kthread.h>
30 #include <linux/raid/pq.h>
31 #include <linux/hash.h>
32 #include <linux/list_sort.h>
33 #include <linux/raid/xor.h>
34 #include <linux/vmalloc.h>
35 #include <asm/div64.h>
36 #include "ctree.h"
37 #include "extent_map.h"
38 #include "disk-io.h"
39 #include "transaction.h"
40 #include "print-tree.h"
41 #include "volumes.h"
42 #include "raid56.h"
43 #include "async-thread.h"
44 #include "check-integrity.h"
45 #include "rcu-string.h"
46 
47 /* set when additional merges to this rbio are not allowed */
48 #define RBIO_RMW_LOCKED_BIT	1
49 
50 /*
51  * set when this rbio is sitting in the hash, but it is just a cache
52  * of past RMW
53  */
54 #define RBIO_CACHE_BIT		2
55 
56 /*
57  * set when it is safe to trust the stripe_pages for caching
58  */
59 #define RBIO_CACHE_READY_BIT	3
60 
61 #define RBIO_CACHE_SIZE 1024
62 
63 enum btrfs_rbio_ops {
64 	BTRFS_RBIO_WRITE	= 0,
65 	BTRFS_RBIO_READ_REBUILD	= 1,
66 	BTRFS_RBIO_PARITY_SCRUB	= 2,
67 };
68 
69 struct btrfs_raid_bio {
70 	struct btrfs_fs_info *fs_info;
71 	struct btrfs_bio *bbio;
72 
73 	/* while we're doing rmw on a stripe
74 	 * we put it into a hash table so we can
75 	 * lock the stripe and merge more rbios
76 	 * into it.
77 	 */
78 	struct list_head hash_list;
79 
80 	/*
81 	 * LRU list for the stripe cache
82 	 */
83 	struct list_head stripe_cache;
84 
85 	/*
86 	 * for scheduling work in the helper threads
87 	 */
88 	struct btrfs_work work;
89 
90 	/*
91 	 * bio list and bio_list_lock are used
92 	 * to add more bios into the stripe
93 	 * in hopes of avoiding the full rmw
94 	 */
95 	struct bio_list bio_list;
96 	spinlock_t bio_list_lock;
97 
98 	/* also protected by the bio_list_lock, the
99 	 * plug list is used by the plugging code
100 	 * to collect partial bios while plugged.  The
101 	 * stripe locking code also uses it to hand off
102 	 * the stripe lock to the next pending IO
103 	 */
104 	struct list_head plug_list;
105 
106 	/*
107 	 * flags that tell us if it is safe to
108 	 * merge with this bio
109 	 */
110 	unsigned long flags;
111 
112 	/* size of each individual stripe on disk */
113 	int stripe_len;
114 
115 	/* number of data stripes (no p/q) */
116 	int nr_data;
117 
118 	int real_stripes;
119 
120 	int stripe_npages;
121 	/*
122 	 * set if we're doing a parity rebuild
123 	 * for a read from higher up, which is handled
124 	 * differently from a parity rebuild as part of
125 	 * rmw
126 	 */
127 	enum btrfs_rbio_ops operation;
128 
129 	/* first bad stripe */
130 	int faila;
131 
132 	/* second bad stripe (for raid6 use) */
133 	int failb;
134 
135 	int scrubp;
136 	/*
137 	 * number of pages needed to represent the full
138 	 * stripe
139 	 */
140 	int nr_pages;
141 
142 	/*
143 	 * size of all the bios in the bio_list.  This
144 	 * helps us decide if the rbio maps to a full
145 	 * stripe or not
146 	 */
147 	int bio_list_bytes;
148 
149 	int generic_bio_cnt;
150 
151 	atomic_t refs;
152 
153 	atomic_t stripes_pending;
154 
155 	atomic_t error;
156 	/*
157 	 * these are two arrays of pointers.  We allocate the
158 	 * rbio big enough to hold them both and setup their
159 	 * locations when the rbio is allocated
160 	 */
161 
162 	/* pointers to pages that we allocated for
163 	 * reading/writing stripes directly from the disk (including P/Q)
164 	 */
165 	struct page **stripe_pages;
166 
167 	/*
168 	 * pointers to the pages in the bio_list.  Stored
169 	 * here for faster lookup
170 	 */
171 	struct page **bio_pages;
172 
173 	/*
174 	 * bitmap to record which horizontal stripe has data
175 	 */
176 	unsigned long *dbitmap;
177 };
178 
179 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio);
180 static noinline void finish_rmw(struct btrfs_raid_bio *rbio);
181 static void rmw_work(struct btrfs_work *work);
182 static void read_rebuild_work(struct btrfs_work *work);
183 static void async_rmw_stripe(struct btrfs_raid_bio *rbio);
184 static void async_read_rebuild(struct btrfs_raid_bio *rbio);
185 static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
186 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
187 static void __free_raid_bio(struct btrfs_raid_bio *rbio);
188 static void index_rbio_pages(struct btrfs_raid_bio *rbio);
189 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
190 
191 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
192 					 int need_check);
193 static void async_scrub_parity(struct btrfs_raid_bio *rbio);
194 
195 /*
196  * the stripe hash table is used for locking, and to collect
197  * bios in hopes of making a full stripe
198  */
199 int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
200 {
201 	struct btrfs_stripe_hash_table *table;
202 	struct btrfs_stripe_hash_table *x;
203 	struct btrfs_stripe_hash *cur;
204 	struct btrfs_stripe_hash *h;
205 	int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
206 	int i;
207 	int table_size;
208 
209 	if (info->stripe_hash_table)
210 		return 0;
211 
212 	/*
213 	 * The table is large, starting with order 4 and can go as high as
214 	 * order 7 in case lock debugging is turned on.
215 	 *
216 	 * Try harder to allocate and fallback to vmalloc to lower the chance
217 	 * of a failing mount.
218 	 */
219 	table_size = sizeof(*table) + sizeof(*h) * num_entries;
220 	table = kzalloc(table_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
221 	if (!table) {
222 		table = vzalloc(table_size);
223 		if (!table)
224 			return -ENOMEM;
225 	}
226 
227 	spin_lock_init(&table->cache_lock);
228 	INIT_LIST_HEAD(&table->stripe_cache);
229 
230 	h = table->table;
231 
232 	for (i = 0; i < num_entries; i++) {
233 		cur = h + i;
234 		INIT_LIST_HEAD(&cur->hash_list);
235 		spin_lock_init(&cur->lock);
236 		init_waitqueue_head(&cur->wait);
237 	}
238 
239 	x = cmpxchg(&info->stripe_hash_table, NULL, table);
240 	if (x) {
241 		if (is_vmalloc_addr(x))
242 			vfree(x);
243 		else
244 			kfree(x);
245 	}
246 	return 0;
247 }
248 
249 /*
250  * caching an rbio means to copy anything from the
251  * bio_pages array into the stripe_pages array.  We
252  * use the page uptodate bit in the stripe cache array
253  * to indicate if it has valid data
254  *
255  * once the caching is done, we set the cache ready
256  * bit.
257  */
258 static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
259 {
260 	int i;
261 	char *s;
262 	char *d;
263 	int ret;
264 
265 	ret = alloc_rbio_pages(rbio);
266 	if (ret)
267 		return;
268 
269 	for (i = 0; i < rbio->nr_pages; i++) {
270 		if (!rbio->bio_pages[i])
271 			continue;
272 
273 		s = kmap(rbio->bio_pages[i]);
274 		d = kmap(rbio->stripe_pages[i]);
275 
276 		memcpy(d, s, PAGE_CACHE_SIZE);
277 
278 		kunmap(rbio->bio_pages[i]);
279 		kunmap(rbio->stripe_pages[i]);
280 		SetPageUptodate(rbio->stripe_pages[i]);
281 	}
282 	set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
283 }
284 
285 /*
286  * we hash on the first logical address of the stripe
287  */
288 static int rbio_bucket(struct btrfs_raid_bio *rbio)
289 {
290 	u64 num = rbio->bbio->raid_map[0];
291 
292 	/*
293 	 * we shift down quite a bit.  We're using byte
294 	 * addressing, and most of the lower bits are zeros.
295 	 * This tends to upset hash_64, and it consistently
296 	 * returns just one or two different values.
297 	 *
298 	 * shifting off the lower bits fixes things.
299 	 */
300 	return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
301 }
302 
303 /*
304  * stealing an rbio means taking all the uptodate pages from the stripe
305  * array in the source rbio and putting them into the destination rbio
306  */
307 static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
308 {
309 	int i;
310 	struct page *s;
311 	struct page *d;
312 
313 	if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
314 		return;
315 
316 	for (i = 0; i < dest->nr_pages; i++) {
317 		s = src->stripe_pages[i];
318 		if (!s || !PageUptodate(s)) {
319 			continue;
320 		}
321 
322 		d = dest->stripe_pages[i];
323 		if (d)
324 			__free_page(d);
325 
326 		dest->stripe_pages[i] = s;
327 		src->stripe_pages[i] = NULL;
328 	}
329 }
330 
331 /*
332  * merging means we take the bio_list from the victim and
333  * splice it into the destination.  The victim should
334  * be discarded afterwards.
335  *
336  * must be called with dest->rbio_list_lock held
337  */
338 static void merge_rbio(struct btrfs_raid_bio *dest,
339 		       struct btrfs_raid_bio *victim)
340 {
341 	bio_list_merge(&dest->bio_list, &victim->bio_list);
342 	dest->bio_list_bytes += victim->bio_list_bytes;
343 	dest->generic_bio_cnt += victim->generic_bio_cnt;
344 	bio_list_init(&victim->bio_list);
345 }
346 
347 /*
348  * used to prune items that are in the cache.  The caller
349  * must hold the hash table lock.
350  */
351 static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
352 {
353 	int bucket = rbio_bucket(rbio);
354 	struct btrfs_stripe_hash_table *table;
355 	struct btrfs_stripe_hash *h;
356 	int freeit = 0;
357 
358 	/*
359 	 * check the bit again under the hash table lock.
360 	 */
361 	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
362 		return;
363 
364 	table = rbio->fs_info->stripe_hash_table;
365 	h = table->table + bucket;
366 
367 	/* hold the lock for the bucket because we may be
368 	 * removing it from the hash table
369 	 */
370 	spin_lock(&h->lock);
371 
372 	/*
373 	 * hold the lock for the bio list because we need
374 	 * to make sure the bio list is empty
375 	 */
376 	spin_lock(&rbio->bio_list_lock);
377 
378 	if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
379 		list_del_init(&rbio->stripe_cache);
380 		table->cache_size -= 1;
381 		freeit = 1;
382 
383 		/* if the bio list isn't empty, this rbio is
384 		 * still involved in an IO.  We take it out
385 		 * of the cache list, and drop the ref that
386 		 * was held for the list.
387 		 *
388 		 * If the bio_list was empty, we also remove
389 		 * the rbio from the hash_table, and drop
390 		 * the corresponding ref
391 		 */
392 		if (bio_list_empty(&rbio->bio_list)) {
393 			if (!list_empty(&rbio->hash_list)) {
394 				list_del_init(&rbio->hash_list);
395 				atomic_dec(&rbio->refs);
396 				BUG_ON(!list_empty(&rbio->plug_list));
397 			}
398 		}
399 	}
400 
401 	spin_unlock(&rbio->bio_list_lock);
402 	spin_unlock(&h->lock);
403 
404 	if (freeit)
405 		__free_raid_bio(rbio);
406 }
407 
408 /*
409  * prune a given rbio from the cache
410  */
411 static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
412 {
413 	struct btrfs_stripe_hash_table *table;
414 	unsigned long flags;
415 
416 	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
417 		return;
418 
419 	table = rbio->fs_info->stripe_hash_table;
420 
421 	spin_lock_irqsave(&table->cache_lock, flags);
422 	__remove_rbio_from_cache(rbio);
423 	spin_unlock_irqrestore(&table->cache_lock, flags);
424 }
425 
426 /*
427  * remove everything in the cache
428  */
429 static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
430 {
431 	struct btrfs_stripe_hash_table *table;
432 	unsigned long flags;
433 	struct btrfs_raid_bio *rbio;
434 
435 	table = info->stripe_hash_table;
436 
437 	spin_lock_irqsave(&table->cache_lock, flags);
438 	while (!list_empty(&table->stripe_cache)) {
439 		rbio = list_entry(table->stripe_cache.next,
440 				  struct btrfs_raid_bio,
441 				  stripe_cache);
442 		__remove_rbio_from_cache(rbio);
443 	}
444 	spin_unlock_irqrestore(&table->cache_lock, flags);
445 }
446 
447 /*
448  * remove all cached entries and free the hash table
449  * used by unmount
450  */
451 void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
452 {
453 	if (!info->stripe_hash_table)
454 		return;
455 	btrfs_clear_rbio_cache(info);
456 	if (is_vmalloc_addr(info->stripe_hash_table))
457 		vfree(info->stripe_hash_table);
458 	else
459 		kfree(info->stripe_hash_table);
460 	info->stripe_hash_table = NULL;
461 }
462 
463 /*
464  * insert an rbio into the stripe cache.  It
465  * must have already been prepared by calling
466  * cache_rbio_pages
467  *
468  * If this rbio was already cached, it gets
469  * moved to the front of the lru.
470  *
471  * If the size of the rbio cache is too big, we
472  * prune an item.
473  */
474 static void cache_rbio(struct btrfs_raid_bio *rbio)
475 {
476 	struct btrfs_stripe_hash_table *table;
477 	unsigned long flags;
478 
479 	if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
480 		return;
481 
482 	table = rbio->fs_info->stripe_hash_table;
483 
484 	spin_lock_irqsave(&table->cache_lock, flags);
485 	spin_lock(&rbio->bio_list_lock);
486 
487 	/* bump our ref if we were not in the list before */
488 	if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
489 		atomic_inc(&rbio->refs);
490 
491 	if (!list_empty(&rbio->stripe_cache)){
492 		list_move(&rbio->stripe_cache, &table->stripe_cache);
493 	} else {
494 		list_add(&rbio->stripe_cache, &table->stripe_cache);
495 		table->cache_size += 1;
496 	}
497 
498 	spin_unlock(&rbio->bio_list_lock);
499 
500 	if (table->cache_size > RBIO_CACHE_SIZE) {
501 		struct btrfs_raid_bio *found;
502 
503 		found = list_entry(table->stripe_cache.prev,
504 				  struct btrfs_raid_bio,
505 				  stripe_cache);
506 
507 		if (found != rbio)
508 			__remove_rbio_from_cache(found);
509 	}
510 
511 	spin_unlock_irqrestore(&table->cache_lock, flags);
512 	return;
513 }
514 
515 /*
516  * helper function to run the xor_blocks api.  It is only
517  * able to do MAX_XOR_BLOCKS at a time, so we need to
518  * loop through.
519  */
520 static void run_xor(void **pages, int src_cnt, ssize_t len)
521 {
522 	int src_off = 0;
523 	int xor_src_cnt = 0;
524 	void *dest = pages[src_cnt];
525 
526 	while(src_cnt > 0) {
527 		xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
528 		xor_blocks(xor_src_cnt, len, dest, pages + src_off);
529 
530 		src_cnt -= xor_src_cnt;
531 		src_off += xor_src_cnt;
532 	}
533 }
534 
535 /*
536  * returns true if the bio list inside this rbio
537  * covers an entire stripe (no rmw required).
538  * Must be called with the bio list lock held, or
539  * at a time when you know it is impossible to add
540  * new bios into the list
541  */
542 static int __rbio_is_full(struct btrfs_raid_bio *rbio)
543 {
544 	unsigned long size = rbio->bio_list_bytes;
545 	int ret = 1;
546 
547 	if (size != rbio->nr_data * rbio->stripe_len)
548 		ret = 0;
549 
550 	BUG_ON(size > rbio->nr_data * rbio->stripe_len);
551 	return ret;
552 }
553 
554 static int rbio_is_full(struct btrfs_raid_bio *rbio)
555 {
556 	unsigned long flags;
557 	int ret;
558 
559 	spin_lock_irqsave(&rbio->bio_list_lock, flags);
560 	ret = __rbio_is_full(rbio);
561 	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
562 	return ret;
563 }
564 
565 /*
566  * returns 1 if it is safe to merge two rbios together.
567  * The merging is safe if the two rbios correspond to
568  * the same stripe and if they are both going in the same
569  * direction (read vs write), and if neither one is
570  * locked for final IO
571  *
572  * The caller is responsible for locking such that
573  * rmw_locked is safe to test
574  */
575 static int rbio_can_merge(struct btrfs_raid_bio *last,
576 			  struct btrfs_raid_bio *cur)
577 {
578 	if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
579 	    test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
580 		return 0;
581 
582 	/*
583 	 * we can't merge with cached rbios, since the
584 	 * idea is that when we merge the destination
585 	 * rbio is going to run our IO for us.  We can
586 	 * steal from cached rbio's though, other functions
587 	 * handle that.
588 	 */
589 	if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
590 	    test_bit(RBIO_CACHE_BIT, &cur->flags))
591 		return 0;
592 
593 	if (last->bbio->raid_map[0] !=
594 	    cur->bbio->raid_map[0])
595 		return 0;
596 
597 	/* we can't merge with different operations */
598 	if (last->operation != cur->operation)
599 		return 0;
600 	/*
601 	 * We've need read the full stripe from the drive.
602 	 * check and repair the parity and write the new results.
603 	 *
604 	 * We're not allowed to add any new bios to the
605 	 * bio list here, anyone else that wants to
606 	 * change this stripe needs to do their own rmw.
607 	 */
608 	if (last->operation == BTRFS_RBIO_PARITY_SCRUB ||
609 	    cur->operation == BTRFS_RBIO_PARITY_SCRUB)
610 		return 0;
611 
612 	return 1;
613 }
614 
615 /*
616  * helper to index into the pstripe
617  */
618 static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index)
619 {
620 	index += (rbio->nr_data * rbio->stripe_len) >> PAGE_CACHE_SHIFT;
621 	return rbio->stripe_pages[index];
622 }
623 
624 /*
625  * helper to index into the qstripe, returns null
626  * if there is no qstripe
627  */
628 static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index)
629 {
630 	if (rbio->nr_data + 1 == rbio->real_stripes)
631 		return NULL;
632 
633 	index += ((rbio->nr_data + 1) * rbio->stripe_len) >>
634 		PAGE_CACHE_SHIFT;
635 	return rbio->stripe_pages[index];
636 }
637 
638 /*
639  * The first stripe in the table for a logical address
640  * has the lock.  rbios are added in one of three ways:
641  *
642  * 1) Nobody has the stripe locked yet.  The rbio is given
643  * the lock and 0 is returned.  The caller must start the IO
644  * themselves.
645  *
646  * 2) Someone has the stripe locked, but we're able to merge
647  * with the lock owner.  The rbio is freed and the IO will
648  * start automatically along with the existing rbio.  1 is returned.
649  *
650  * 3) Someone has the stripe locked, but we're not able to merge.
651  * The rbio is added to the lock owner's plug list, or merged into
652  * an rbio already on the plug list.  When the lock owner unlocks,
653  * the next rbio on the list is run and the IO is started automatically.
654  * 1 is returned
655  *
656  * If we return 0, the caller still owns the rbio and must continue with
657  * IO submission.  If we return 1, the caller must assume the rbio has
658  * already been freed.
659  */
660 static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
661 {
662 	int bucket = rbio_bucket(rbio);
663 	struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket;
664 	struct btrfs_raid_bio *cur;
665 	struct btrfs_raid_bio *pending;
666 	unsigned long flags;
667 	DEFINE_WAIT(wait);
668 	struct btrfs_raid_bio *freeit = NULL;
669 	struct btrfs_raid_bio *cache_drop = NULL;
670 	int ret = 0;
671 	int walk = 0;
672 
673 	spin_lock_irqsave(&h->lock, flags);
674 	list_for_each_entry(cur, &h->hash_list, hash_list) {
675 		walk++;
676 		if (cur->bbio->raid_map[0] == rbio->bbio->raid_map[0]) {
677 			spin_lock(&cur->bio_list_lock);
678 
679 			/* can we steal this cached rbio's pages? */
680 			if (bio_list_empty(&cur->bio_list) &&
681 			    list_empty(&cur->plug_list) &&
682 			    test_bit(RBIO_CACHE_BIT, &cur->flags) &&
683 			    !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
684 				list_del_init(&cur->hash_list);
685 				atomic_dec(&cur->refs);
686 
687 				steal_rbio(cur, rbio);
688 				cache_drop = cur;
689 				spin_unlock(&cur->bio_list_lock);
690 
691 				goto lockit;
692 			}
693 
694 			/* can we merge into the lock owner? */
695 			if (rbio_can_merge(cur, rbio)) {
696 				merge_rbio(cur, rbio);
697 				spin_unlock(&cur->bio_list_lock);
698 				freeit = rbio;
699 				ret = 1;
700 				goto out;
701 			}
702 
703 
704 			/*
705 			 * we couldn't merge with the running
706 			 * rbio, see if we can merge with the
707 			 * pending ones.  We don't have to
708 			 * check for rmw_locked because there
709 			 * is no way they are inside finish_rmw
710 			 * right now
711 			 */
712 			list_for_each_entry(pending, &cur->plug_list,
713 					    plug_list) {
714 				if (rbio_can_merge(pending, rbio)) {
715 					merge_rbio(pending, rbio);
716 					spin_unlock(&cur->bio_list_lock);
717 					freeit = rbio;
718 					ret = 1;
719 					goto out;
720 				}
721 			}
722 
723 			/* no merging, put us on the tail of the plug list,
724 			 * our rbio will be started with the currently
725 			 * running rbio unlocks
726 			 */
727 			list_add_tail(&rbio->plug_list, &cur->plug_list);
728 			spin_unlock(&cur->bio_list_lock);
729 			ret = 1;
730 			goto out;
731 		}
732 	}
733 lockit:
734 	atomic_inc(&rbio->refs);
735 	list_add(&rbio->hash_list, &h->hash_list);
736 out:
737 	spin_unlock_irqrestore(&h->lock, flags);
738 	if (cache_drop)
739 		remove_rbio_from_cache(cache_drop);
740 	if (freeit)
741 		__free_raid_bio(freeit);
742 	return ret;
743 }
744 
745 /*
746  * called as rmw or parity rebuild is completed.  If the plug list has more
747  * rbios waiting for this stripe, the next one on the list will be started
748  */
749 static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
750 {
751 	int bucket;
752 	struct btrfs_stripe_hash *h;
753 	unsigned long flags;
754 	int keep_cache = 0;
755 
756 	bucket = rbio_bucket(rbio);
757 	h = rbio->fs_info->stripe_hash_table->table + bucket;
758 
759 	if (list_empty(&rbio->plug_list))
760 		cache_rbio(rbio);
761 
762 	spin_lock_irqsave(&h->lock, flags);
763 	spin_lock(&rbio->bio_list_lock);
764 
765 	if (!list_empty(&rbio->hash_list)) {
766 		/*
767 		 * if we're still cached and there is no other IO
768 		 * to perform, just leave this rbio here for others
769 		 * to steal from later
770 		 */
771 		if (list_empty(&rbio->plug_list) &&
772 		    test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
773 			keep_cache = 1;
774 			clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
775 			BUG_ON(!bio_list_empty(&rbio->bio_list));
776 			goto done;
777 		}
778 
779 		list_del_init(&rbio->hash_list);
780 		atomic_dec(&rbio->refs);
781 
782 		/*
783 		 * we use the plug list to hold all the rbios
784 		 * waiting for the chance to lock this stripe.
785 		 * hand the lock over to one of them.
786 		 */
787 		if (!list_empty(&rbio->plug_list)) {
788 			struct btrfs_raid_bio *next;
789 			struct list_head *head = rbio->plug_list.next;
790 
791 			next = list_entry(head, struct btrfs_raid_bio,
792 					  plug_list);
793 
794 			list_del_init(&rbio->plug_list);
795 
796 			list_add(&next->hash_list, &h->hash_list);
797 			atomic_inc(&next->refs);
798 			spin_unlock(&rbio->bio_list_lock);
799 			spin_unlock_irqrestore(&h->lock, flags);
800 
801 			if (next->operation == BTRFS_RBIO_READ_REBUILD)
802 				async_read_rebuild(next);
803 			else if (next->operation == BTRFS_RBIO_WRITE) {
804 				steal_rbio(rbio, next);
805 				async_rmw_stripe(next);
806 			} else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
807 				steal_rbio(rbio, next);
808 				async_scrub_parity(next);
809 			}
810 
811 			goto done_nolock;
812 		} else  if (waitqueue_active(&h->wait)) {
813 			spin_unlock(&rbio->bio_list_lock);
814 			spin_unlock_irqrestore(&h->lock, flags);
815 			wake_up(&h->wait);
816 			goto done_nolock;
817 		}
818 	}
819 done:
820 	spin_unlock(&rbio->bio_list_lock);
821 	spin_unlock_irqrestore(&h->lock, flags);
822 
823 done_nolock:
824 	if (!keep_cache)
825 		remove_rbio_from_cache(rbio);
826 }
827 
828 static void __free_raid_bio(struct btrfs_raid_bio *rbio)
829 {
830 	int i;
831 
832 	WARN_ON(atomic_read(&rbio->refs) < 0);
833 	if (!atomic_dec_and_test(&rbio->refs))
834 		return;
835 
836 	WARN_ON(!list_empty(&rbio->stripe_cache));
837 	WARN_ON(!list_empty(&rbio->hash_list));
838 	WARN_ON(!bio_list_empty(&rbio->bio_list));
839 
840 	for (i = 0; i < rbio->nr_pages; i++) {
841 		if (rbio->stripe_pages[i]) {
842 			__free_page(rbio->stripe_pages[i]);
843 			rbio->stripe_pages[i] = NULL;
844 		}
845 	}
846 
847 	btrfs_put_bbio(rbio->bbio);
848 	kfree(rbio);
849 }
850 
851 static void free_raid_bio(struct btrfs_raid_bio *rbio)
852 {
853 	unlock_stripe(rbio);
854 	__free_raid_bio(rbio);
855 }
856 
857 /*
858  * this frees the rbio and runs through all the bios in the
859  * bio_list and calls end_io on them
860  */
861 static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, int err, int uptodate)
862 {
863 	struct bio *cur = bio_list_get(&rbio->bio_list);
864 	struct bio *next;
865 
866 	if (rbio->generic_bio_cnt)
867 		btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt);
868 
869 	free_raid_bio(rbio);
870 
871 	while (cur) {
872 		next = cur->bi_next;
873 		cur->bi_next = NULL;
874 		if (uptodate)
875 			set_bit(BIO_UPTODATE, &cur->bi_flags);
876 		bio_endio(cur, err);
877 		cur = next;
878 	}
879 }
880 
881 /*
882  * end io function used by finish_rmw.  When we finally
883  * get here, we've written a full stripe
884  */
885 static void raid_write_end_io(struct bio *bio, int err)
886 {
887 	struct btrfs_raid_bio *rbio = bio->bi_private;
888 
889 	if (err)
890 		fail_bio_stripe(rbio, bio);
891 
892 	bio_put(bio);
893 
894 	if (!atomic_dec_and_test(&rbio->stripes_pending))
895 		return;
896 
897 	err = 0;
898 
899 	/* OK, we have read all the stripes we need to. */
900 	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
901 		err = -EIO;
902 
903 	rbio_orig_end_io(rbio, err, 0);
904 	return;
905 }
906 
907 /*
908  * the read/modify/write code wants to use the original bio for
909  * any pages it included, and then use the rbio for everything
910  * else.  This function decides if a given index (stripe number)
911  * and page number in that stripe fall inside the original bio
912  * or the rbio.
913  *
914  * if you set bio_list_only, you'll get a NULL back for any ranges
915  * that are outside the bio_list
916  *
917  * This doesn't take any refs on anything, you get a bare page pointer
918  * and the caller must bump refs as required.
919  *
920  * You must call index_rbio_pages once before you can trust
921  * the answers from this function.
922  */
923 static struct page *page_in_rbio(struct btrfs_raid_bio *rbio,
924 				 int index, int pagenr, int bio_list_only)
925 {
926 	int chunk_page;
927 	struct page *p = NULL;
928 
929 	chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr;
930 
931 	spin_lock_irq(&rbio->bio_list_lock);
932 	p = rbio->bio_pages[chunk_page];
933 	spin_unlock_irq(&rbio->bio_list_lock);
934 
935 	if (p || bio_list_only)
936 		return p;
937 
938 	return rbio->stripe_pages[chunk_page];
939 }
940 
941 /*
942  * number of pages we need for the entire stripe across all the
943  * drives
944  */
945 static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes)
946 {
947 	unsigned long nr = stripe_len * nr_stripes;
948 	return DIV_ROUND_UP(nr, PAGE_CACHE_SIZE);
949 }
950 
951 /*
952  * allocation and initial setup for the btrfs_raid_bio.  Not
953  * this does not allocate any pages for rbio->pages.
954  */
955 static struct btrfs_raid_bio *alloc_rbio(struct btrfs_root *root,
956 			  struct btrfs_bio *bbio, u64 stripe_len)
957 {
958 	struct btrfs_raid_bio *rbio;
959 	int nr_data = 0;
960 	int real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
961 	int num_pages = rbio_nr_pages(stripe_len, real_stripes);
962 	int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE);
963 	void *p;
964 
965 	rbio = kzalloc(sizeof(*rbio) + num_pages * sizeof(struct page *) * 2 +
966 		       DIV_ROUND_UP(stripe_npages, BITS_PER_LONG / 8),
967 			GFP_NOFS);
968 	if (!rbio)
969 		return ERR_PTR(-ENOMEM);
970 
971 	bio_list_init(&rbio->bio_list);
972 	INIT_LIST_HEAD(&rbio->plug_list);
973 	spin_lock_init(&rbio->bio_list_lock);
974 	INIT_LIST_HEAD(&rbio->stripe_cache);
975 	INIT_LIST_HEAD(&rbio->hash_list);
976 	rbio->bbio = bbio;
977 	rbio->fs_info = root->fs_info;
978 	rbio->stripe_len = stripe_len;
979 	rbio->nr_pages = num_pages;
980 	rbio->real_stripes = real_stripes;
981 	rbio->stripe_npages = stripe_npages;
982 	rbio->faila = -1;
983 	rbio->failb = -1;
984 	atomic_set(&rbio->refs, 1);
985 	atomic_set(&rbio->error, 0);
986 	atomic_set(&rbio->stripes_pending, 0);
987 
988 	/*
989 	 * the stripe_pages and bio_pages array point to the extra
990 	 * memory we allocated past the end of the rbio
991 	 */
992 	p = rbio + 1;
993 	rbio->stripe_pages = p;
994 	rbio->bio_pages = p + sizeof(struct page *) * num_pages;
995 	rbio->dbitmap = p + sizeof(struct page *) * num_pages * 2;
996 
997 	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
998 		nr_data = real_stripes - 1;
999 	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1000 		nr_data = real_stripes - 2;
1001 	else
1002 		BUG();
1003 
1004 	rbio->nr_data = nr_data;
1005 	return rbio;
1006 }
1007 
1008 /* allocate pages for all the stripes in the bio, including parity */
1009 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
1010 {
1011 	int i;
1012 	struct page *page;
1013 
1014 	for (i = 0; i < rbio->nr_pages; i++) {
1015 		if (rbio->stripe_pages[i])
1016 			continue;
1017 		page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1018 		if (!page)
1019 			return -ENOMEM;
1020 		rbio->stripe_pages[i] = page;
1021 		ClearPageUptodate(page);
1022 	}
1023 	return 0;
1024 }
1025 
1026 /* allocate pages for just the p/q stripes */
1027 static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
1028 {
1029 	int i;
1030 	struct page *page;
1031 
1032 	i = (rbio->nr_data * rbio->stripe_len) >> PAGE_CACHE_SHIFT;
1033 
1034 	for (; i < rbio->nr_pages; i++) {
1035 		if (rbio->stripe_pages[i])
1036 			continue;
1037 		page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1038 		if (!page)
1039 			return -ENOMEM;
1040 		rbio->stripe_pages[i] = page;
1041 	}
1042 	return 0;
1043 }
1044 
1045 /*
1046  * add a single page from a specific stripe into our list of bios for IO
1047  * this will try to merge into existing bios if possible, and returns
1048  * zero if all went well.
1049  */
1050 static int rbio_add_io_page(struct btrfs_raid_bio *rbio,
1051 			    struct bio_list *bio_list,
1052 			    struct page *page,
1053 			    int stripe_nr,
1054 			    unsigned long page_index,
1055 			    unsigned long bio_max_len)
1056 {
1057 	struct bio *last = bio_list->tail;
1058 	u64 last_end = 0;
1059 	int ret;
1060 	struct bio *bio;
1061 	struct btrfs_bio_stripe *stripe;
1062 	u64 disk_start;
1063 
1064 	stripe = &rbio->bbio->stripes[stripe_nr];
1065 	disk_start = stripe->physical + (page_index << PAGE_CACHE_SHIFT);
1066 
1067 	/* if the device is missing, just fail this stripe */
1068 	if (!stripe->dev->bdev)
1069 		return fail_rbio_index(rbio, stripe_nr);
1070 
1071 	/* see if we can add this page onto our existing bio */
1072 	if (last) {
1073 		last_end = (u64)last->bi_iter.bi_sector << 9;
1074 		last_end += last->bi_iter.bi_size;
1075 
1076 		/*
1077 		 * we can't merge these if they are from different
1078 		 * devices or if they are not contiguous
1079 		 */
1080 		if (last_end == disk_start && stripe->dev->bdev &&
1081 		    test_bit(BIO_UPTODATE, &last->bi_flags) &&
1082 		    last->bi_bdev == stripe->dev->bdev) {
1083 			ret = bio_add_page(last, page, PAGE_CACHE_SIZE, 0);
1084 			if (ret == PAGE_CACHE_SIZE)
1085 				return 0;
1086 		}
1087 	}
1088 
1089 	/* put a new bio on the list */
1090 	bio = btrfs_io_bio_alloc(GFP_NOFS, bio_max_len >> PAGE_SHIFT?:1);
1091 	if (!bio)
1092 		return -ENOMEM;
1093 
1094 	bio->bi_iter.bi_size = 0;
1095 	bio->bi_bdev = stripe->dev->bdev;
1096 	bio->bi_iter.bi_sector = disk_start >> 9;
1097 	set_bit(BIO_UPTODATE, &bio->bi_flags);
1098 
1099 	bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
1100 	bio_list_add(bio_list, bio);
1101 	return 0;
1102 }
1103 
1104 /*
1105  * while we're doing the read/modify/write cycle, we could
1106  * have errors in reading pages off the disk.  This checks
1107  * for errors and if we're not able to read the page it'll
1108  * trigger parity reconstruction.  The rmw will be finished
1109  * after we've reconstructed the failed stripes
1110  */
1111 static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio)
1112 {
1113 	if (rbio->faila >= 0 || rbio->failb >= 0) {
1114 		BUG_ON(rbio->faila == rbio->real_stripes - 1);
1115 		__raid56_parity_recover(rbio);
1116 	} else {
1117 		finish_rmw(rbio);
1118 	}
1119 }
1120 
1121 /*
1122  * these are just the pages from the rbio array, not from anything
1123  * the FS sent down to us
1124  */
1125 static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe, int page)
1126 {
1127 	int index;
1128 	index = stripe * (rbio->stripe_len >> PAGE_CACHE_SHIFT);
1129 	index += page;
1130 	return rbio->stripe_pages[index];
1131 }
1132 
1133 /*
1134  * helper function to walk our bio list and populate the bio_pages array with
1135  * the result.  This seems expensive, but it is faster than constantly
1136  * searching through the bio list as we setup the IO in finish_rmw or stripe
1137  * reconstruction.
1138  *
1139  * This must be called before you trust the answers from page_in_rbio
1140  */
1141 static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1142 {
1143 	struct bio *bio;
1144 	u64 start;
1145 	unsigned long stripe_offset;
1146 	unsigned long page_index;
1147 	struct page *p;
1148 	int i;
1149 
1150 	spin_lock_irq(&rbio->bio_list_lock);
1151 	bio_list_for_each(bio, &rbio->bio_list) {
1152 		start = (u64)bio->bi_iter.bi_sector << 9;
1153 		stripe_offset = start - rbio->bbio->raid_map[0];
1154 		page_index = stripe_offset >> PAGE_CACHE_SHIFT;
1155 
1156 		for (i = 0; i < bio->bi_vcnt; i++) {
1157 			p = bio->bi_io_vec[i].bv_page;
1158 			rbio->bio_pages[page_index + i] = p;
1159 		}
1160 	}
1161 	spin_unlock_irq(&rbio->bio_list_lock);
1162 }
1163 
1164 /*
1165  * this is called from one of two situations.  We either
1166  * have a full stripe from the higher layers, or we've read all
1167  * the missing bits off disk.
1168  *
1169  * This will calculate the parity and then send down any
1170  * changed blocks.
1171  */
1172 static noinline void finish_rmw(struct btrfs_raid_bio *rbio)
1173 {
1174 	struct btrfs_bio *bbio = rbio->bbio;
1175 	void *pointers[rbio->real_stripes];
1176 	int stripe_len = rbio->stripe_len;
1177 	int nr_data = rbio->nr_data;
1178 	int stripe;
1179 	int pagenr;
1180 	int p_stripe = -1;
1181 	int q_stripe = -1;
1182 	struct bio_list bio_list;
1183 	struct bio *bio;
1184 	int pages_per_stripe = stripe_len >> PAGE_CACHE_SHIFT;
1185 	int ret;
1186 
1187 	bio_list_init(&bio_list);
1188 
1189 	if (rbio->real_stripes - rbio->nr_data == 1) {
1190 		p_stripe = rbio->real_stripes - 1;
1191 	} else if (rbio->real_stripes - rbio->nr_data == 2) {
1192 		p_stripe = rbio->real_stripes - 2;
1193 		q_stripe = rbio->real_stripes - 1;
1194 	} else {
1195 		BUG();
1196 	}
1197 
1198 	/* at this point we either have a full stripe,
1199 	 * or we've read the full stripe from the drive.
1200 	 * recalculate the parity and write the new results.
1201 	 *
1202 	 * We're not allowed to add any new bios to the
1203 	 * bio list here, anyone else that wants to
1204 	 * change this stripe needs to do their own rmw.
1205 	 */
1206 	spin_lock_irq(&rbio->bio_list_lock);
1207 	set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1208 	spin_unlock_irq(&rbio->bio_list_lock);
1209 
1210 	atomic_set(&rbio->error, 0);
1211 
1212 	/*
1213 	 * now that we've set rmw_locked, run through the
1214 	 * bio list one last time and map the page pointers
1215 	 *
1216 	 * We don't cache full rbios because we're assuming
1217 	 * the higher layers are unlikely to use this area of
1218 	 * the disk again soon.  If they do use it again,
1219 	 * hopefully they will send another full bio.
1220 	 */
1221 	index_rbio_pages(rbio);
1222 	if (!rbio_is_full(rbio))
1223 		cache_rbio_pages(rbio);
1224 	else
1225 		clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1226 
1227 	for (pagenr = 0; pagenr < pages_per_stripe; pagenr++) {
1228 		struct page *p;
1229 		/* first collect one page from each data stripe */
1230 		for (stripe = 0; stripe < nr_data; stripe++) {
1231 			p = page_in_rbio(rbio, stripe, pagenr, 0);
1232 			pointers[stripe] = kmap(p);
1233 		}
1234 
1235 		/* then add the parity stripe */
1236 		p = rbio_pstripe_page(rbio, pagenr);
1237 		SetPageUptodate(p);
1238 		pointers[stripe++] = kmap(p);
1239 
1240 		if (q_stripe != -1) {
1241 
1242 			/*
1243 			 * raid6, add the qstripe and call the
1244 			 * library function to fill in our p/q
1245 			 */
1246 			p = rbio_qstripe_page(rbio, pagenr);
1247 			SetPageUptodate(p);
1248 			pointers[stripe++] = kmap(p);
1249 
1250 			raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
1251 						pointers);
1252 		} else {
1253 			/* raid5 */
1254 			memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
1255 			run_xor(pointers + 1, nr_data - 1, PAGE_CACHE_SIZE);
1256 		}
1257 
1258 
1259 		for (stripe = 0; stripe < rbio->real_stripes; stripe++)
1260 			kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
1261 	}
1262 
1263 	/*
1264 	 * time to start writing.  Make bios for everything from the
1265 	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
1266 	 * everything else.
1267 	 */
1268 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1269 		for (pagenr = 0; pagenr < pages_per_stripe; pagenr++) {
1270 			struct page *page;
1271 			if (stripe < rbio->nr_data) {
1272 				page = page_in_rbio(rbio, stripe, pagenr, 1);
1273 				if (!page)
1274 					continue;
1275 			} else {
1276 			       page = rbio_stripe_page(rbio, stripe, pagenr);
1277 			}
1278 
1279 			ret = rbio_add_io_page(rbio, &bio_list,
1280 				       page, stripe, pagenr, rbio->stripe_len);
1281 			if (ret)
1282 				goto cleanup;
1283 		}
1284 	}
1285 
1286 	if (likely(!bbio->num_tgtdevs))
1287 		goto write_data;
1288 
1289 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1290 		if (!bbio->tgtdev_map[stripe])
1291 			continue;
1292 
1293 		for (pagenr = 0; pagenr < pages_per_stripe; pagenr++) {
1294 			struct page *page;
1295 			if (stripe < rbio->nr_data) {
1296 				page = page_in_rbio(rbio, stripe, pagenr, 1);
1297 				if (!page)
1298 					continue;
1299 			} else {
1300 			       page = rbio_stripe_page(rbio, stripe, pagenr);
1301 			}
1302 
1303 			ret = rbio_add_io_page(rbio, &bio_list, page,
1304 					       rbio->bbio->tgtdev_map[stripe],
1305 					       pagenr, rbio->stripe_len);
1306 			if (ret)
1307 				goto cleanup;
1308 		}
1309 	}
1310 
1311 write_data:
1312 	atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list));
1313 	BUG_ON(atomic_read(&rbio->stripes_pending) == 0);
1314 
1315 	while (1) {
1316 		bio = bio_list_pop(&bio_list);
1317 		if (!bio)
1318 			break;
1319 
1320 		bio->bi_private = rbio;
1321 		bio->bi_end_io = raid_write_end_io;
1322 		BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags));
1323 		submit_bio(WRITE, bio);
1324 	}
1325 	return;
1326 
1327 cleanup:
1328 	rbio_orig_end_io(rbio, -EIO, 0);
1329 }
1330 
1331 /*
1332  * helper to find the stripe number for a given bio.  Used to figure out which
1333  * stripe has failed.  This expects the bio to correspond to a physical disk,
1334  * so it looks up based on physical sector numbers.
1335  */
1336 static int find_bio_stripe(struct btrfs_raid_bio *rbio,
1337 			   struct bio *bio)
1338 {
1339 	u64 physical = bio->bi_iter.bi_sector;
1340 	u64 stripe_start;
1341 	int i;
1342 	struct btrfs_bio_stripe *stripe;
1343 
1344 	physical <<= 9;
1345 
1346 	for (i = 0; i < rbio->bbio->num_stripes; i++) {
1347 		stripe = &rbio->bbio->stripes[i];
1348 		stripe_start = stripe->physical;
1349 		if (physical >= stripe_start &&
1350 		    physical < stripe_start + rbio->stripe_len &&
1351 		    bio->bi_bdev == stripe->dev->bdev) {
1352 			return i;
1353 		}
1354 	}
1355 	return -1;
1356 }
1357 
1358 /*
1359  * helper to find the stripe number for a given
1360  * bio (before mapping).  Used to figure out which stripe has
1361  * failed.  This looks up based on logical block numbers.
1362  */
1363 static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio,
1364 				   struct bio *bio)
1365 {
1366 	u64 logical = bio->bi_iter.bi_sector;
1367 	u64 stripe_start;
1368 	int i;
1369 
1370 	logical <<= 9;
1371 
1372 	for (i = 0; i < rbio->nr_data; i++) {
1373 		stripe_start = rbio->bbio->raid_map[i];
1374 		if (logical >= stripe_start &&
1375 		    logical < stripe_start + rbio->stripe_len) {
1376 			return i;
1377 		}
1378 	}
1379 	return -1;
1380 }
1381 
1382 /*
1383  * returns -EIO if we had too many failures
1384  */
1385 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed)
1386 {
1387 	unsigned long flags;
1388 	int ret = 0;
1389 
1390 	spin_lock_irqsave(&rbio->bio_list_lock, flags);
1391 
1392 	/* we already know this stripe is bad, move on */
1393 	if (rbio->faila == failed || rbio->failb == failed)
1394 		goto out;
1395 
1396 	if (rbio->faila == -1) {
1397 		/* first failure on this rbio */
1398 		rbio->faila = failed;
1399 		atomic_inc(&rbio->error);
1400 	} else if (rbio->failb == -1) {
1401 		/* second failure on this rbio */
1402 		rbio->failb = failed;
1403 		atomic_inc(&rbio->error);
1404 	} else {
1405 		ret = -EIO;
1406 	}
1407 out:
1408 	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
1409 
1410 	return ret;
1411 }
1412 
1413 /*
1414  * helper to fail a stripe based on a physical disk
1415  * bio.
1416  */
1417 static int fail_bio_stripe(struct btrfs_raid_bio *rbio,
1418 			   struct bio *bio)
1419 {
1420 	int failed = find_bio_stripe(rbio, bio);
1421 
1422 	if (failed < 0)
1423 		return -EIO;
1424 
1425 	return fail_rbio_index(rbio, failed);
1426 }
1427 
1428 /*
1429  * this sets each page in the bio uptodate.  It should only be used on private
1430  * rbio pages, nothing that comes in from the higher layers
1431  */
1432 static void set_bio_pages_uptodate(struct bio *bio)
1433 {
1434 	int i;
1435 	struct page *p;
1436 
1437 	for (i = 0; i < bio->bi_vcnt; i++) {
1438 		p = bio->bi_io_vec[i].bv_page;
1439 		SetPageUptodate(p);
1440 	}
1441 }
1442 
1443 /*
1444  * end io for the read phase of the rmw cycle.  All the bios here are physical
1445  * stripe bios we've read from the disk so we can recalculate the parity of the
1446  * stripe.
1447  *
1448  * This will usually kick off finish_rmw once all the bios are read in, but it
1449  * may trigger parity reconstruction if we had any errors along the way
1450  */
1451 static void raid_rmw_end_io(struct bio *bio, int err)
1452 {
1453 	struct btrfs_raid_bio *rbio = bio->bi_private;
1454 
1455 	if (err)
1456 		fail_bio_stripe(rbio, bio);
1457 	else
1458 		set_bio_pages_uptodate(bio);
1459 
1460 	bio_put(bio);
1461 
1462 	if (!atomic_dec_and_test(&rbio->stripes_pending))
1463 		return;
1464 
1465 	err = 0;
1466 	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
1467 		goto cleanup;
1468 
1469 	/*
1470 	 * this will normally call finish_rmw to start our write
1471 	 * but if there are any failed stripes we'll reconstruct
1472 	 * from parity first
1473 	 */
1474 	validate_rbio_for_rmw(rbio);
1475 	return;
1476 
1477 cleanup:
1478 
1479 	rbio_orig_end_io(rbio, -EIO, 0);
1480 }
1481 
1482 static void async_rmw_stripe(struct btrfs_raid_bio *rbio)
1483 {
1484 	btrfs_init_work(&rbio->work, btrfs_rmw_helper,
1485 			rmw_work, NULL, NULL);
1486 
1487 	btrfs_queue_work(rbio->fs_info->rmw_workers,
1488 			 &rbio->work);
1489 }
1490 
1491 static void async_read_rebuild(struct btrfs_raid_bio *rbio)
1492 {
1493 	btrfs_init_work(&rbio->work, btrfs_rmw_helper,
1494 			read_rebuild_work, NULL, NULL);
1495 
1496 	btrfs_queue_work(rbio->fs_info->rmw_workers,
1497 			 &rbio->work);
1498 }
1499 
1500 /*
1501  * the stripe must be locked by the caller.  It will
1502  * unlock after all the writes are done
1503  */
1504 static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio)
1505 {
1506 	int bios_to_read = 0;
1507 	struct bio_list bio_list;
1508 	int ret;
1509 	int nr_pages = DIV_ROUND_UP(rbio->stripe_len, PAGE_CACHE_SIZE);
1510 	int pagenr;
1511 	int stripe;
1512 	struct bio *bio;
1513 
1514 	bio_list_init(&bio_list);
1515 
1516 	ret = alloc_rbio_pages(rbio);
1517 	if (ret)
1518 		goto cleanup;
1519 
1520 	index_rbio_pages(rbio);
1521 
1522 	atomic_set(&rbio->error, 0);
1523 	/*
1524 	 * build a list of bios to read all the missing parts of this
1525 	 * stripe
1526 	 */
1527 	for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1528 		for (pagenr = 0; pagenr < nr_pages; pagenr++) {
1529 			struct page *page;
1530 			/*
1531 			 * we want to find all the pages missing from
1532 			 * the rbio and read them from the disk.  If
1533 			 * page_in_rbio finds a page in the bio list
1534 			 * we don't need to read it off the stripe.
1535 			 */
1536 			page = page_in_rbio(rbio, stripe, pagenr, 1);
1537 			if (page)
1538 				continue;
1539 
1540 			page = rbio_stripe_page(rbio, stripe, pagenr);
1541 			/*
1542 			 * the bio cache may have handed us an uptodate
1543 			 * page.  If so, be happy and use it
1544 			 */
1545 			if (PageUptodate(page))
1546 				continue;
1547 
1548 			ret = rbio_add_io_page(rbio, &bio_list, page,
1549 				       stripe, pagenr, rbio->stripe_len);
1550 			if (ret)
1551 				goto cleanup;
1552 		}
1553 	}
1554 
1555 	bios_to_read = bio_list_size(&bio_list);
1556 	if (!bios_to_read) {
1557 		/*
1558 		 * this can happen if others have merged with
1559 		 * us, it means there is nothing left to read.
1560 		 * But if there are missing devices it may not be
1561 		 * safe to do the full stripe write yet.
1562 		 */
1563 		goto finish;
1564 	}
1565 
1566 	/*
1567 	 * the bbio may be freed once we submit the last bio.  Make sure
1568 	 * not to touch it after that
1569 	 */
1570 	atomic_set(&rbio->stripes_pending, bios_to_read);
1571 	while (1) {
1572 		bio = bio_list_pop(&bio_list);
1573 		if (!bio)
1574 			break;
1575 
1576 		bio->bi_private = rbio;
1577 		bio->bi_end_io = raid_rmw_end_io;
1578 
1579 		btrfs_bio_wq_end_io(rbio->fs_info, bio,
1580 				    BTRFS_WQ_ENDIO_RAID56);
1581 
1582 		BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags));
1583 		submit_bio(READ, bio);
1584 	}
1585 	/* the actual write will happen once the reads are done */
1586 	return 0;
1587 
1588 cleanup:
1589 	rbio_orig_end_io(rbio, -EIO, 0);
1590 	return -EIO;
1591 
1592 finish:
1593 	validate_rbio_for_rmw(rbio);
1594 	return 0;
1595 }
1596 
1597 /*
1598  * if the upper layers pass in a full stripe, we thank them by only allocating
1599  * enough pages to hold the parity, and sending it all down quickly.
1600  */
1601 static int full_stripe_write(struct btrfs_raid_bio *rbio)
1602 {
1603 	int ret;
1604 
1605 	ret = alloc_rbio_parity_pages(rbio);
1606 	if (ret) {
1607 		__free_raid_bio(rbio);
1608 		return ret;
1609 	}
1610 
1611 	ret = lock_stripe_add(rbio);
1612 	if (ret == 0)
1613 		finish_rmw(rbio);
1614 	return 0;
1615 }
1616 
1617 /*
1618  * partial stripe writes get handed over to async helpers.
1619  * We're really hoping to merge a few more writes into this
1620  * rbio before calculating new parity
1621  */
1622 static int partial_stripe_write(struct btrfs_raid_bio *rbio)
1623 {
1624 	int ret;
1625 
1626 	ret = lock_stripe_add(rbio);
1627 	if (ret == 0)
1628 		async_rmw_stripe(rbio);
1629 	return 0;
1630 }
1631 
1632 /*
1633  * sometimes while we were reading from the drive to
1634  * recalculate parity, enough new bios come into create
1635  * a full stripe.  So we do a check here to see if we can
1636  * go directly to finish_rmw
1637  */
1638 static int __raid56_parity_write(struct btrfs_raid_bio *rbio)
1639 {
1640 	/* head off into rmw land if we don't have a full stripe */
1641 	if (!rbio_is_full(rbio))
1642 		return partial_stripe_write(rbio);
1643 	return full_stripe_write(rbio);
1644 }
1645 
1646 /*
1647  * We use plugging call backs to collect full stripes.
1648  * Any time we get a partial stripe write while plugged
1649  * we collect it into a list.  When the unplug comes down,
1650  * we sort the list by logical block number and merge
1651  * everything we can into the same rbios
1652  */
1653 struct btrfs_plug_cb {
1654 	struct blk_plug_cb cb;
1655 	struct btrfs_fs_info *info;
1656 	struct list_head rbio_list;
1657 	struct btrfs_work work;
1658 };
1659 
1660 /*
1661  * rbios on the plug list are sorted for easier merging.
1662  */
1663 static int plug_cmp(void *priv, struct list_head *a, struct list_head *b)
1664 {
1665 	struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1666 						 plug_list);
1667 	struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1668 						 plug_list);
1669 	u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1670 	u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1671 
1672 	if (a_sector < b_sector)
1673 		return -1;
1674 	if (a_sector > b_sector)
1675 		return 1;
1676 	return 0;
1677 }
1678 
1679 static void run_plug(struct btrfs_plug_cb *plug)
1680 {
1681 	struct btrfs_raid_bio *cur;
1682 	struct btrfs_raid_bio *last = NULL;
1683 
1684 	/*
1685 	 * sort our plug list then try to merge
1686 	 * everything we can in hopes of creating full
1687 	 * stripes.
1688 	 */
1689 	list_sort(NULL, &plug->rbio_list, plug_cmp);
1690 	while (!list_empty(&plug->rbio_list)) {
1691 		cur = list_entry(plug->rbio_list.next,
1692 				 struct btrfs_raid_bio, plug_list);
1693 		list_del_init(&cur->plug_list);
1694 
1695 		if (rbio_is_full(cur)) {
1696 			/* we have a full stripe, send it down */
1697 			full_stripe_write(cur);
1698 			continue;
1699 		}
1700 		if (last) {
1701 			if (rbio_can_merge(last, cur)) {
1702 				merge_rbio(last, cur);
1703 				__free_raid_bio(cur);
1704 				continue;
1705 
1706 			}
1707 			__raid56_parity_write(last);
1708 		}
1709 		last = cur;
1710 	}
1711 	if (last) {
1712 		__raid56_parity_write(last);
1713 	}
1714 	kfree(plug);
1715 }
1716 
1717 /*
1718  * if the unplug comes from schedule, we have to push the
1719  * work off to a helper thread
1720  */
1721 static void unplug_work(struct btrfs_work *work)
1722 {
1723 	struct btrfs_plug_cb *plug;
1724 	plug = container_of(work, struct btrfs_plug_cb, work);
1725 	run_plug(plug);
1726 }
1727 
1728 static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1729 {
1730 	struct btrfs_plug_cb *plug;
1731 	plug = container_of(cb, struct btrfs_plug_cb, cb);
1732 
1733 	if (from_schedule) {
1734 		btrfs_init_work(&plug->work, btrfs_rmw_helper,
1735 				unplug_work, NULL, NULL);
1736 		btrfs_queue_work(plug->info->rmw_workers,
1737 				 &plug->work);
1738 		return;
1739 	}
1740 	run_plug(plug);
1741 }
1742 
1743 /*
1744  * our main entry point for writes from the rest of the FS.
1745  */
1746 int raid56_parity_write(struct btrfs_root *root, struct bio *bio,
1747 			struct btrfs_bio *bbio, u64 stripe_len)
1748 {
1749 	struct btrfs_raid_bio *rbio;
1750 	struct btrfs_plug_cb *plug = NULL;
1751 	struct blk_plug_cb *cb;
1752 	int ret;
1753 
1754 	rbio = alloc_rbio(root, bbio, stripe_len);
1755 	if (IS_ERR(rbio)) {
1756 		btrfs_put_bbio(bbio);
1757 		return PTR_ERR(rbio);
1758 	}
1759 	bio_list_add(&rbio->bio_list, bio);
1760 	rbio->bio_list_bytes = bio->bi_iter.bi_size;
1761 	rbio->operation = BTRFS_RBIO_WRITE;
1762 
1763 	btrfs_bio_counter_inc_noblocked(root->fs_info);
1764 	rbio->generic_bio_cnt = 1;
1765 
1766 	/*
1767 	 * don't plug on full rbios, just get them out the door
1768 	 * as quickly as we can
1769 	 */
1770 	if (rbio_is_full(rbio)) {
1771 		ret = full_stripe_write(rbio);
1772 		if (ret)
1773 			btrfs_bio_counter_dec(root->fs_info);
1774 		return ret;
1775 	}
1776 
1777 	cb = blk_check_plugged(btrfs_raid_unplug, root->fs_info,
1778 			       sizeof(*plug));
1779 	if (cb) {
1780 		plug = container_of(cb, struct btrfs_plug_cb, cb);
1781 		if (!plug->info) {
1782 			plug->info = root->fs_info;
1783 			INIT_LIST_HEAD(&plug->rbio_list);
1784 		}
1785 		list_add_tail(&rbio->plug_list, &plug->rbio_list);
1786 		ret = 0;
1787 	} else {
1788 		ret = __raid56_parity_write(rbio);
1789 		if (ret)
1790 			btrfs_bio_counter_dec(root->fs_info);
1791 	}
1792 	return ret;
1793 }
1794 
1795 /*
1796  * all parity reconstruction happens here.  We've read in everything
1797  * we can find from the drives and this does the heavy lifting of
1798  * sorting the good from the bad.
1799  */
1800 static void __raid_recover_end_io(struct btrfs_raid_bio *rbio)
1801 {
1802 	int pagenr, stripe;
1803 	void **pointers;
1804 	int faila = -1, failb = -1;
1805 	int nr_pages = DIV_ROUND_UP(rbio->stripe_len, PAGE_CACHE_SIZE);
1806 	struct page *page;
1807 	int err;
1808 	int i;
1809 
1810 	pointers = kzalloc(rbio->real_stripes * sizeof(void *),
1811 			   GFP_NOFS);
1812 	if (!pointers) {
1813 		err = -ENOMEM;
1814 		goto cleanup_io;
1815 	}
1816 
1817 	faila = rbio->faila;
1818 	failb = rbio->failb;
1819 
1820 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
1821 		spin_lock_irq(&rbio->bio_list_lock);
1822 		set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1823 		spin_unlock_irq(&rbio->bio_list_lock);
1824 	}
1825 
1826 	index_rbio_pages(rbio);
1827 
1828 	for (pagenr = 0; pagenr < nr_pages; pagenr++) {
1829 		/*
1830 		 * Now we just use bitmap to mark the horizontal stripes in
1831 		 * which we have data when doing parity scrub.
1832 		 */
1833 		if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1834 		    !test_bit(pagenr, rbio->dbitmap))
1835 			continue;
1836 
1837 		/* setup our array of pointers with pages
1838 		 * from each stripe
1839 		 */
1840 		for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1841 			/*
1842 			 * if we're rebuilding a read, we have to use
1843 			 * pages from the bio list
1844 			 */
1845 			if (rbio->operation == BTRFS_RBIO_READ_REBUILD &&
1846 			    (stripe == faila || stripe == failb)) {
1847 				page = page_in_rbio(rbio, stripe, pagenr, 0);
1848 			} else {
1849 				page = rbio_stripe_page(rbio, stripe, pagenr);
1850 			}
1851 			pointers[stripe] = kmap(page);
1852 		}
1853 
1854 		/* all raid6 handling here */
1855 		if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) {
1856 			/*
1857 			 * single failure, rebuild from parity raid5
1858 			 * style
1859 			 */
1860 			if (failb < 0) {
1861 				if (faila == rbio->nr_data) {
1862 					/*
1863 					 * Just the P stripe has failed, without
1864 					 * a bad data or Q stripe.
1865 					 * TODO, we should redo the xor here.
1866 					 */
1867 					err = -EIO;
1868 					goto cleanup;
1869 				}
1870 				/*
1871 				 * a single failure in raid6 is rebuilt
1872 				 * in the pstripe code below
1873 				 */
1874 				goto pstripe;
1875 			}
1876 
1877 			/* make sure our ps and qs are in order */
1878 			if (faila > failb) {
1879 				int tmp = failb;
1880 				failb = faila;
1881 				faila = tmp;
1882 			}
1883 
1884 			/* if the q stripe is failed, do a pstripe reconstruction
1885 			 * from the xors.
1886 			 * If both the q stripe and the P stripe are failed, we're
1887 			 * here due to a crc mismatch and we can't give them the
1888 			 * data they want
1889 			 */
1890 			if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) {
1891 				if (rbio->bbio->raid_map[faila] ==
1892 				    RAID5_P_STRIPE) {
1893 					err = -EIO;
1894 					goto cleanup;
1895 				}
1896 				/*
1897 				 * otherwise we have one bad data stripe and
1898 				 * a good P stripe.  raid5!
1899 				 */
1900 				goto pstripe;
1901 			}
1902 
1903 			if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) {
1904 				raid6_datap_recov(rbio->real_stripes,
1905 						  PAGE_SIZE, faila, pointers);
1906 			} else {
1907 				raid6_2data_recov(rbio->real_stripes,
1908 						  PAGE_SIZE, faila, failb,
1909 						  pointers);
1910 			}
1911 		} else {
1912 			void *p;
1913 
1914 			/* rebuild from P stripe here (raid5 or raid6) */
1915 			BUG_ON(failb != -1);
1916 pstripe:
1917 			/* Copy parity block into failed block to start with */
1918 			memcpy(pointers[faila],
1919 			       pointers[rbio->nr_data],
1920 			       PAGE_CACHE_SIZE);
1921 
1922 			/* rearrange the pointer array */
1923 			p = pointers[faila];
1924 			for (stripe = faila; stripe < rbio->nr_data - 1; stripe++)
1925 				pointers[stripe] = pointers[stripe + 1];
1926 			pointers[rbio->nr_data - 1] = p;
1927 
1928 			/* xor in the rest */
1929 			run_xor(pointers, rbio->nr_data - 1, PAGE_CACHE_SIZE);
1930 		}
1931 		/* if we're doing this rebuild as part of an rmw, go through
1932 		 * and set all of our private rbio pages in the
1933 		 * failed stripes as uptodate.  This way finish_rmw will
1934 		 * know they can be trusted.  If this was a read reconstruction,
1935 		 * other endio functions will fiddle the uptodate bits
1936 		 */
1937 		if (rbio->operation == BTRFS_RBIO_WRITE) {
1938 			for (i = 0;  i < nr_pages; i++) {
1939 				if (faila != -1) {
1940 					page = rbio_stripe_page(rbio, faila, i);
1941 					SetPageUptodate(page);
1942 				}
1943 				if (failb != -1) {
1944 					page = rbio_stripe_page(rbio, failb, i);
1945 					SetPageUptodate(page);
1946 				}
1947 			}
1948 		}
1949 		for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1950 			/*
1951 			 * if we're rebuilding a read, we have to use
1952 			 * pages from the bio list
1953 			 */
1954 			if (rbio->operation == BTRFS_RBIO_READ_REBUILD &&
1955 			    (stripe == faila || stripe == failb)) {
1956 				page = page_in_rbio(rbio, stripe, pagenr, 0);
1957 			} else {
1958 				page = rbio_stripe_page(rbio, stripe, pagenr);
1959 			}
1960 			kunmap(page);
1961 		}
1962 	}
1963 
1964 	err = 0;
1965 cleanup:
1966 	kfree(pointers);
1967 
1968 cleanup_io:
1969 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
1970 		if (err == 0)
1971 			cache_rbio_pages(rbio);
1972 		else
1973 			clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1974 
1975 		rbio_orig_end_io(rbio, err, err == 0);
1976 	} else if (err == 0) {
1977 		rbio->faila = -1;
1978 		rbio->failb = -1;
1979 
1980 		if (rbio->operation == BTRFS_RBIO_WRITE)
1981 			finish_rmw(rbio);
1982 		else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB)
1983 			finish_parity_scrub(rbio, 0);
1984 		else
1985 			BUG();
1986 	} else {
1987 		rbio_orig_end_io(rbio, err, 0);
1988 	}
1989 }
1990 
1991 /*
1992  * This is called only for stripes we've read from disk to
1993  * reconstruct the parity.
1994  */
1995 static void raid_recover_end_io(struct bio *bio, int err)
1996 {
1997 	struct btrfs_raid_bio *rbio = bio->bi_private;
1998 
1999 	/*
2000 	 * we only read stripe pages off the disk, set them
2001 	 * up to date if there were no errors
2002 	 */
2003 	if (err)
2004 		fail_bio_stripe(rbio, bio);
2005 	else
2006 		set_bio_pages_uptodate(bio);
2007 	bio_put(bio);
2008 
2009 	if (!atomic_dec_and_test(&rbio->stripes_pending))
2010 		return;
2011 
2012 	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2013 		rbio_orig_end_io(rbio, -EIO, 0);
2014 	else
2015 		__raid_recover_end_io(rbio);
2016 }
2017 
2018 /*
2019  * reads everything we need off the disk to reconstruct
2020  * the parity. endio handlers trigger final reconstruction
2021  * when the IO is done.
2022  *
2023  * This is used both for reads from the higher layers and for
2024  * parity construction required to finish a rmw cycle.
2025  */
2026 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio)
2027 {
2028 	int bios_to_read = 0;
2029 	struct bio_list bio_list;
2030 	int ret;
2031 	int nr_pages = DIV_ROUND_UP(rbio->stripe_len, PAGE_CACHE_SIZE);
2032 	int pagenr;
2033 	int stripe;
2034 	struct bio *bio;
2035 
2036 	bio_list_init(&bio_list);
2037 
2038 	ret = alloc_rbio_pages(rbio);
2039 	if (ret)
2040 		goto cleanup;
2041 
2042 	atomic_set(&rbio->error, 0);
2043 
2044 	/*
2045 	 * read everything that hasn't failed.  Thanks to the
2046 	 * stripe cache, it is possible that some or all of these
2047 	 * pages are going to be uptodate.
2048 	 */
2049 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2050 		if (rbio->faila == stripe || rbio->failb == stripe) {
2051 			atomic_inc(&rbio->error);
2052 			continue;
2053 		}
2054 
2055 		for (pagenr = 0; pagenr < nr_pages; pagenr++) {
2056 			struct page *p;
2057 
2058 			/*
2059 			 * the rmw code may have already read this
2060 			 * page in
2061 			 */
2062 			p = rbio_stripe_page(rbio, stripe, pagenr);
2063 			if (PageUptodate(p))
2064 				continue;
2065 
2066 			ret = rbio_add_io_page(rbio, &bio_list,
2067 				       rbio_stripe_page(rbio, stripe, pagenr),
2068 				       stripe, pagenr, rbio->stripe_len);
2069 			if (ret < 0)
2070 				goto cleanup;
2071 		}
2072 	}
2073 
2074 	bios_to_read = bio_list_size(&bio_list);
2075 	if (!bios_to_read) {
2076 		/*
2077 		 * we might have no bios to read just because the pages
2078 		 * were up to date, or we might have no bios to read because
2079 		 * the devices were gone.
2080 		 */
2081 		if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) {
2082 			__raid_recover_end_io(rbio);
2083 			goto out;
2084 		} else {
2085 			goto cleanup;
2086 		}
2087 	}
2088 
2089 	/*
2090 	 * the bbio may be freed once we submit the last bio.  Make sure
2091 	 * not to touch it after that
2092 	 */
2093 	atomic_set(&rbio->stripes_pending, bios_to_read);
2094 	while (1) {
2095 		bio = bio_list_pop(&bio_list);
2096 		if (!bio)
2097 			break;
2098 
2099 		bio->bi_private = rbio;
2100 		bio->bi_end_io = raid_recover_end_io;
2101 
2102 		btrfs_bio_wq_end_io(rbio->fs_info, bio,
2103 				    BTRFS_WQ_ENDIO_RAID56);
2104 
2105 		BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags));
2106 		submit_bio(READ, bio);
2107 	}
2108 out:
2109 	return 0;
2110 
2111 cleanup:
2112 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD)
2113 		rbio_orig_end_io(rbio, -EIO, 0);
2114 	return -EIO;
2115 }
2116 
2117 /*
2118  * the main entry point for reads from the higher layers.  This
2119  * is really only called when the normal read path had a failure,
2120  * so we assume the bio they send down corresponds to a failed part
2121  * of the drive.
2122  */
2123 int raid56_parity_recover(struct btrfs_root *root, struct bio *bio,
2124 			  struct btrfs_bio *bbio, u64 stripe_len,
2125 			  int mirror_num, int generic_io)
2126 {
2127 	struct btrfs_raid_bio *rbio;
2128 	int ret;
2129 
2130 	rbio = alloc_rbio(root, bbio, stripe_len);
2131 	if (IS_ERR(rbio)) {
2132 		if (generic_io)
2133 			btrfs_put_bbio(bbio);
2134 		return PTR_ERR(rbio);
2135 	}
2136 
2137 	rbio->operation = BTRFS_RBIO_READ_REBUILD;
2138 	bio_list_add(&rbio->bio_list, bio);
2139 	rbio->bio_list_bytes = bio->bi_iter.bi_size;
2140 
2141 	rbio->faila = find_logical_bio_stripe(rbio, bio);
2142 	if (rbio->faila == -1) {
2143 		BUG();
2144 		if (generic_io)
2145 			btrfs_put_bbio(bbio);
2146 		kfree(rbio);
2147 		return -EIO;
2148 	}
2149 
2150 	if (generic_io) {
2151 		btrfs_bio_counter_inc_noblocked(root->fs_info);
2152 		rbio->generic_bio_cnt = 1;
2153 	} else {
2154 		btrfs_get_bbio(bbio);
2155 	}
2156 
2157 	/*
2158 	 * reconstruct from the q stripe if they are
2159 	 * asking for mirror 3
2160 	 */
2161 	if (mirror_num == 3)
2162 		rbio->failb = rbio->real_stripes - 2;
2163 
2164 	ret = lock_stripe_add(rbio);
2165 
2166 	/*
2167 	 * __raid56_parity_recover will end the bio with
2168 	 * any errors it hits.  We don't want to return
2169 	 * its error value up the stack because our caller
2170 	 * will end up calling bio_endio with any nonzero
2171 	 * return
2172 	 */
2173 	if (ret == 0)
2174 		__raid56_parity_recover(rbio);
2175 	/*
2176 	 * our rbio has been added to the list of
2177 	 * rbios that will be handled after the
2178 	 * currently lock owner is done
2179 	 */
2180 	return 0;
2181 
2182 }
2183 
2184 static void rmw_work(struct btrfs_work *work)
2185 {
2186 	struct btrfs_raid_bio *rbio;
2187 
2188 	rbio = container_of(work, struct btrfs_raid_bio, work);
2189 	raid56_rmw_stripe(rbio);
2190 }
2191 
2192 static void read_rebuild_work(struct btrfs_work *work)
2193 {
2194 	struct btrfs_raid_bio *rbio;
2195 
2196 	rbio = container_of(work, struct btrfs_raid_bio, work);
2197 	__raid56_parity_recover(rbio);
2198 }
2199 
2200 /*
2201  * The following code is used to scrub/replace the parity stripe
2202  *
2203  * Note: We need make sure all the pages that add into the scrub/replace
2204  * raid bio are correct and not be changed during the scrub/replace. That
2205  * is those pages just hold metadata or file data with checksum.
2206  */
2207 
2208 struct btrfs_raid_bio *
2209 raid56_parity_alloc_scrub_rbio(struct btrfs_root *root, struct bio *bio,
2210 			       struct btrfs_bio *bbio, u64 stripe_len,
2211 			       struct btrfs_device *scrub_dev,
2212 			       unsigned long *dbitmap, int stripe_nsectors)
2213 {
2214 	struct btrfs_raid_bio *rbio;
2215 	int i;
2216 
2217 	rbio = alloc_rbio(root, bbio, stripe_len);
2218 	if (IS_ERR(rbio))
2219 		return NULL;
2220 	bio_list_add(&rbio->bio_list, bio);
2221 	/*
2222 	 * This is a special bio which is used to hold the completion handler
2223 	 * and make the scrub rbio is similar to the other types
2224 	 */
2225 	ASSERT(!bio->bi_iter.bi_size);
2226 	rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2227 
2228 	for (i = 0; i < rbio->real_stripes; i++) {
2229 		if (bbio->stripes[i].dev == scrub_dev) {
2230 			rbio->scrubp = i;
2231 			break;
2232 		}
2233 	}
2234 
2235 	/* Now we just support the sectorsize equals to page size */
2236 	ASSERT(root->sectorsize == PAGE_SIZE);
2237 	ASSERT(rbio->stripe_npages == stripe_nsectors);
2238 	bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors);
2239 
2240 	return rbio;
2241 }
2242 
2243 void raid56_parity_add_scrub_pages(struct btrfs_raid_bio *rbio,
2244 				   struct page *page, u64 logical)
2245 {
2246 	int stripe_offset;
2247 	int index;
2248 
2249 	ASSERT(logical >= rbio->bbio->raid_map[0]);
2250 	ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] +
2251 				rbio->stripe_len * rbio->nr_data);
2252 	stripe_offset = (int)(logical - rbio->bbio->raid_map[0]);
2253 	index = stripe_offset >> PAGE_CACHE_SHIFT;
2254 	rbio->bio_pages[index] = page;
2255 }
2256 
2257 /*
2258  * We just scrub the parity that we have correct data on the same horizontal,
2259  * so we needn't allocate all pages for all the stripes.
2260  */
2261 static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2262 {
2263 	int i;
2264 	int bit;
2265 	int index;
2266 	struct page *page;
2267 
2268 	for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) {
2269 		for (i = 0; i < rbio->real_stripes; i++) {
2270 			index = i * rbio->stripe_npages + bit;
2271 			if (rbio->stripe_pages[index])
2272 				continue;
2273 
2274 			page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2275 			if (!page)
2276 				return -ENOMEM;
2277 			rbio->stripe_pages[index] = page;
2278 			ClearPageUptodate(page);
2279 		}
2280 	}
2281 	return 0;
2282 }
2283 
2284 /*
2285  * end io function used by finish_rmw.  When we finally
2286  * get here, we've written a full stripe
2287  */
2288 static void raid_write_parity_end_io(struct bio *bio, int err)
2289 {
2290 	struct btrfs_raid_bio *rbio = bio->bi_private;
2291 
2292 	if (err)
2293 		fail_bio_stripe(rbio, bio);
2294 
2295 	bio_put(bio);
2296 
2297 	if (!atomic_dec_and_test(&rbio->stripes_pending))
2298 		return;
2299 
2300 	err = 0;
2301 
2302 	if (atomic_read(&rbio->error))
2303 		err = -EIO;
2304 
2305 	rbio_orig_end_io(rbio, err, 0);
2306 }
2307 
2308 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
2309 					 int need_check)
2310 {
2311 	struct btrfs_bio *bbio = rbio->bbio;
2312 	void *pointers[rbio->real_stripes];
2313 	DECLARE_BITMAP(pbitmap, rbio->stripe_npages);
2314 	int nr_data = rbio->nr_data;
2315 	int stripe;
2316 	int pagenr;
2317 	int p_stripe = -1;
2318 	int q_stripe = -1;
2319 	struct page *p_page = NULL;
2320 	struct page *q_page = NULL;
2321 	struct bio_list bio_list;
2322 	struct bio *bio;
2323 	int is_replace = 0;
2324 	int ret;
2325 
2326 	bio_list_init(&bio_list);
2327 
2328 	if (rbio->real_stripes - rbio->nr_data == 1) {
2329 		p_stripe = rbio->real_stripes - 1;
2330 	} else if (rbio->real_stripes - rbio->nr_data == 2) {
2331 		p_stripe = rbio->real_stripes - 2;
2332 		q_stripe = rbio->real_stripes - 1;
2333 	} else {
2334 		BUG();
2335 	}
2336 
2337 	if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) {
2338 		is_replace = 1;
2339 		bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages);
2340 	}
2341 
2342 	/*
2343 	 * Because the higher layers(scrubber) are unlikely to
2344 	 * use this area of the disk again soon, so don't cache
2345 	 * it.
2346 	 */
2347 	clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2348 
2349 	if (!need_check)
2350 		goto writeback;
2351 
2352 	p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2353 	if (!p_page)
2354 		goto cleanup;
2355 	SetPageUptodate(p_page);
2356 
2357 	if (q_stripe != -1) {
2358 		q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2359 		if (!q_page) {
2360 			__free_page(p_page);
2361 			goto cleanup;
2362 		}
2363 		SetPageUptodate(q_page);
2364 	}
2365 
2366 	atomic_set(&rbio->error, 0);
2367 
2368 	for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2369 		struct page *p;
2370 		void *parity;
2371 		/* first collect one page from each data stripe */
2372 		for (stripe = 0; stripe < nr_data; stripe++) {
2373 			p = page_in_rbio(rbio, stripe, pagenr, 0);
2374 			pointers[stripe] = kmap(p);
2375 		}
2376 
2377 		/* then add the parity stripe */
2378 		pointers[stripe++] = kmap(p_page);
2379 
2380 		if (q_stripe != -1) {
2381 
2382 			/*
2383 			 * raid6, add the qstripe and call the
2384 			 * library function to fill in our p/q
2385 			 */
2386 			pointers[stripe++] = kmap(q_page);
2387 
2388 			raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
2389 						pointers);
2390 		} else {
2391 			/* raid5 */
2392 			memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
2393 			run_xor(pointers + 1, nr_data - 1, PAGE_CACHE_SIZE);
2394 		}
2395 
2396 		/* Check scrubbing pairty and repair it */
2397 		p = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2398 		parity = kmap(p);
2399 		if (memcmp(parity, pointers[rbio->scrubp], PAGE_CACHE_SIZE))
2400 			memcpy(parity, pointers[rbio->scrubp], PAGE_CACHE_SIZE);
2401 		else
2402 			/* Parity is right, needn't writeback */
2403 			bitmap_clear(rbio->dbitmap, pagenr, 1);
2404 		kunmap(p);
2405 
2406 		for (stripe = 0; stripe < rbio->real_stripes; stripe++)
2407 			kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
2408 	}
2409 
2410 	__free_page(p_page);
2411 	if (q_page)
2412 		__free_page(q_page);
2413 
2414 writeback:
2415 	/*
2416 	 * time to start writing.  Make bios for everything from the
2417 	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
2418 	 * everything else.
2419 	 */
2420 	for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2421 		struct page *page;
2422 
2423 		page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2424 		ret = rbio_add_io_page(rbio, &bio_list,
2425 			       page, rbio->scrubp, pagenr, rbio->stripe_len);
2426 		if (ret)
2427 			goto cleanup;
2428 	}
2429 
2430 	if (!is_replace)
2431 		goto submit_write;
2432 
2433 	for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) {
2434 		struct page *page;
2435 
2436 		page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2437 		ret = rbio_add_io_page(rbio, &bio_list, page,
2438 				       bbio->tgtdev_map[rbio->scrubp],
2439 				       pagenr, rbio->stripe_len);
2440 		if (ret)
2441 			goto cleanup;
2442 	}
2443 
2444 submit_write:
2445 	nr_data = bio_list_size(&bio_list);
2446 	if (!nr_data) {
2447 		/* Every parity is right */
2448 		rbio_orig_end_io(rbio, 0, 0);
2449 		return;
2450 	}
2451 
2452 	atomic_set(&rbio->stripes_pending, nr_data);
2453 
2454 	while (1) {
2455 		bio = bio_list_pop(&bio_list);
2456 		if (!bio)
2457 			break;
2458 
2459 		bio->bi_private = rbio;
2460 		bio->bi_end_io = raid_write_parity_end_io;
2461 		BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags));
2462 		submit_bio(WRITE, bio);
2463 	}
2464 	return;
2465 
2466 cleanup:
2467 	rbio_orig_end_io(rbio, -EIO, 0);
2468 }
2469 
2470 static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2471 {
2472 	if (stripe >= 0 && stripe < rbio->nr_data)
2473 		return 1;
2474 	return 0;
2475 }
2476 
2477 /*
2478  * While we're doing the parity check and repair, we could have errors
2479  * in reading pages off the disk.  This checks for errors and if we're
2480  * not able to read the page it'll trigger parity reconstruction.  The
2481  * parity scrub will be finished after we've reconstructed the failed
2482  * stripes
2483  */
2484 static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio)
2485 {
2486 	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2487 		goto cleanup;
2488 
2489 	if (rbio->faila >= 0 || rbio->failb >= 0) {
2490 		int dfail = 0, failp = -1;
2491 
2492 		if (is_data_stripe(rbio, rbio->faila))
2493 			dfail++;
2494 		else if (is_parity_stripe(rbio->faila))
2495 			failp = rbio->faila;
2496 
2497 		if (is_data_stripe(rbio, rbio->failb))
2498 			dfail++;
2499 		else if (is_parity_stripe(rbio->failb))
2500 			failp = rbio->failb;
2501 
2502 		/*
2503 		 * Because we can not use a scrubbing parity to repair
2504 		 * the data, so the capability of the repair is declined.
2505 		 * (In the case of RAID5, we can not repair anything)
2506 		 */
2507 		if (dfail > rbio->bbio->max_errors - 1)
2508 			goto cleanup;
2509 
2510 		/*
2511 		 * If all data is good, only parity is correctly, just
2512 		 * repair the parity.
2513 		 */
2514 		if (dfail == 0) {
2515 			finish_parity_scrub(rbio, 0);
2516 			return;
2517 		}
2518 
2519 		/*
2520 		 * Here means we got one corrupted data stripe and one
2521 		 * corrupted parity on RAID6, if the corrupted parity
2522 		 * is scrubbing parity, luckly, use the other one to repair
2523 		 * the data, or we can not repair the data stripe.
2524 		 */
2525 		if (failp != rbio->scrubp)
2526 			goto cleanup;
2527 
2528 		__raid_recover_end_io(rbio);
2529 	} else {
2530 		finish_parity_scrub(rbio, 1);
2531 	}
2532 	return;
2533 
2534 cleanup:
2535 	rbio_orig_end_io(rbio, -EIO, 0);
2536 }
2537 
2538 /*
2539  * end io for the read phase of the rmw cycle.  All the bios here are physical
2540  * stripe bios we've read from the disk so we can recalculate the parity of the
2541  * stripe.
2542  *
2543  * This will usually kick off finish_rmw once all the bios are read in, but it
2544  * may trigger parity reconstruction if we had any errors along the way
2545  */
2546 static void raid56_parity_scrub_end_io(struct bio *bio, int err)
2547 {
2548 	struct btrfs_raid_bio *rbio = bio->bi_private;
2549 
2550 	if (err)
2551 		fail_bio_stripe(rbio, bio);
2552 	else
2553 		set_bio_pages_uptodate(bio);
2554 
2555 	bio_put(bio);
2556 
2557 	if (!atomic_dec_and_test(&rbio->stripes_pending))
2558 		return;
2559 
2560 	/*
2561 	 * this will normally call finish_rmw to start our write
2562 	 * but if there are any failed stripes we'll reconstruct
2563 	 * from parity first
2564 	 */
2565 	validate_rbio_for_parity_scrub(rbio);
2566 }
2567 
2568 static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio)
2569 {
2570 	int bios_to_read = 0;
2571 	struct bio_list bio_list;
2572 	int ret;
2573 	int pagenr;
2574 	int stripe;
2575 	struct bio *bio;
2576 
2577 	ret = alloc_rbio_essential_pages(rbio);
2578 	if (ret)
2579 		goto cleanup;
2580 
2581 	bio_list_init(&bio_list);
2582 
2583 	atomic_set(&rbio->error, 0);
2584 	/*
2585 	 * build a list of bios to read all the missing parts of this
2586 	 * stripe
2587 	 */
2588 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2589 		for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2590 			struct page *page;
2591 			/*
2592 			 * we want to find all the pages missing from
2593 			 * the rbio and read them from the disk.  If
2594 			 * page_in_rbio finds a page in the bio list
2595 			 * we don't need to read it off the stripe.
2596 			 */
2597 			page = page_in_rbio(rbio, stripe, pagenr, 1);
2598 			if (page)
2599 				continue;
2600 
2601 			page = rbio_stripe_page(rbio, stripe, pagenr);
2602 			/*
2603 			 * the bio cache may have handed us an uptodate
2604 			 * page.  If so, be happy and use it
2605 			 */
2606 			if (PageUptodate(page))
2607 				continue;
2608 
2609 			ret = rbio_add_io_page(rbio, &bio_list, page,
2610 				       stripe, pagenr, rbio->stripe_len);
2611 			if (ret)
2612 				goto cleanup;
2613 		}
2614 	}
2615 
2616 	bios_to_read = bio_list_size(&bio_list);
2617 	if (!bios_to_read) {
2618 		/*
2619 		 * this can happen if others have merged with
2620 		 * us, it means there is nothing left to read.
2621 		 * But if there are missing devices it may not be
2622 		 * safe to do the full stripe write yet.
2623 		 */
2624 		goto finish;
2625 	}
2626 
2627 	/*
2628 	 * the bbio may be freed once we submit the last bio.  Make sure
2629 	 * not to touch it after that
2630 	 */
2631 	atomic_set(&rbio->stripes_pending, bios_to_read);
2632 	while (1) {
2633 		bio = bio_list_pop(&bio_list);
2634 		if (!bio)
2635 			break;
2636 
2637 		bio->bi_private = rbio;
2638 		bio->bi_end_io = raid56_parity_scrub_end_io;
2639 
2640 		btrfs_bio_wq_end_io(rbio->fs_info, bio,
2641 				    BTRFS_WQ_ENDIO_RAID56);
2642 
2643 		BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags));
2644 		submit_bio(READ, bio);
2645 	}
2646 	/* the actual write will happen once the reads are done */
2647 	return;
2648 
2649 cleanup:
2650 	rbio_orig_end_io(rbio, -EIO, 0);
2651 	return;
2652 
2653 finish:
2654 	validate_rbio_for_parity_scrub(rbio);
2655 }
2656 
2657 static void scrub_parity_work(struct btrfs_work *work)
2658 {
2659 	struct btrfs_raid_bio *rbio;
2660 
2661 	rbio = container_of(work, struct btrfs_raid_bio, work);
2662 	raid56_parity_scrub_stripe(rbio);
2663 }
2664 
2665 static void async_scrub_parity(struct btrfs_raid_bio *rbio)
2666 {
2667 	btrfs_init_work(&rbio->work, btrfs_rmw_helper,
2668 			scrub_parity_work, NULL, NULL);
2669 
2670 	btrfs_queue_work(rbio->fs_info->rmw_workers,
2671 			 &rbio->work);
2672 }
2673 
2674 void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2675 {
2676 	if (!lock_stripe_add(rbio))
2677 		async_scrub_parity(rbio);
2678 }
2679