1 /* 2 * Copyright (C) 2012 Fusion-io All rights reserved. 3 * Copyright (C) 2012 Intel Corp. All rights reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public 7 * License v2 as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 12 * General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public 15 * License along with this program; if not, write to the 16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 17 * Boston, MA 021110-1307, USA. 18 */ 19 #include <linux/sched.h> 20 #include <linux/wait.h> 21 #include <linux/bio.h> 22 #include <linux/slab.h> 23 #include <linux/buffer_head.h> 24 #include <linux/blkdev.h> 25 #include <linux/random.h> 26 #include <linux/iocontext.h> 27 #include <linux/capability.h> 28 #include <linux/ratelimit.h> 29 #include <linux/kthread.h> 30 #include <linux/raid/pq.h> 31 #include <linux/hash.h> 32 #include <linux/list_sort.h> 33 #include <linux/raid/xor.h> 34 #include <linux/vmalloc.h> 35 #include <asm/div64.h> 36 #include "ctree.h" 37 #include "extent_map.h" 38 #include "disk-io.h" 39 #include "transaction.h" 40 #include "print-tree.h" 41 #include "volumes.h" 42 #include "raid56.h" 43 #include "async-thread.h" 44 #include "check-integrity.h" 45 #include "rcu-string.h" 46 47 /* set when additional merges to this rbio are not allowed */ 48 #define RBIO_RMW_LOCKED_BIT 1 49 50 /* 51 * set when this rbio is sitting in the hash, but it is just a cache 52 * of past RMW 53 */ 54 #define RBIO_CACHE_BIT 2 55 56 /* 57 * set when it is safe to trust the stripe_pages for caching 58 */ 59 #define RBIO_CACHE_READY_BIT 3 60 61 #define RBIO_CACHE_SIZE 1024 62 63 enum btrfs_rbio_ops { 64 BTRFS_RBIO_WRITE = 0, 65 BTRFS_RBIO_READ_REBUILD = 1, 66 BTRFS_RBIO_PARITY_SCRUB = 2, 67 }; 68 69 struct btrfs_raid_bio { 70 struct btrfs_fs_info *fs_info; 71 struct btrfs_bio *bbio; 72 73 /* while we're doing rmw on a stripe 74 * we put it into a hash table so we can 75 * lock the stripe and merge more rbios 76 * into it. 77 */ 78 struct list_head hash_list; 79 80 /* 81 * LRU list for the stripe cache 82 */ 83 struct list_head stripe_cache; 84 85 /* 86 * for scheduling work in the helper threads 87 */ 88 struct btrfs_work work; 89 90 /* 91 * bio list and bio_list_lock are used 92 * to add more bios into the stripe 93 * in hopes of avoiding the full rmw 94 */ 95 struct bio_list bio_list; 96 spinlock_t bio_list_lock; 97 98 /* also protected by the bio_list_lock, the 99 * plug list is used by the plugging code 100 * to collect partial bios while plugged. The 101 * stripe locking code also uses it to hand off 102 * the stripe lock to the next pending IO 103 */ 104 struct list_head plug_list; 105 106 /* 107 * flags that tell us if it is safe to 108 * merge with this bio 109 */ 110 unsigned long flags; 111 112 /* size of each individual stripe on disk */ 113 int stripe_len; 114 115 /* number of data stripes (no p/q) */ 116 int nr_data; 117 118 int real_stripes; 119 120 int stripe_npages; 121 /* 122 * set if we're doing a parity rebuild 123 * for a read from higher up, which is handled 124 * differently from a parity rebuild as part of 125 * rmw 126 */ 127 enum btrfs_rbio_ops operation; 128 129 /* first bad stripe */ 130 int faila; 131 132 /* second bad stripe (for raid6 use) */ 133 int failb; 134 135 int scrubp; 136 /* 137 * number of pages needed to represent the full 138 * stripe 139 */ 140 int nr_pages; 141 142 /* 143 * size of all the bios in the bio_list. This 144 * helps us decide if the rbio maps to a full 145 * stripe or not 146 */ 147 int bio_list_bytes; 148 149 int generic_bio_cnt; 150 151 atomic_t refs; 152 153 atomic_t stripes_pending; 154 155 atomic_t error; 156 /* 157 * these are two arrays of pointers. We allocate the 158 * rbio big enough to hold them both and setup their 159 * locations when the rbio is allocated 160 */ 161 162 /* pointers to pages that we allocated for 163 * reading/writing stripes directly from the disk (including P/Q) 164 */ 165 struct page **stripe_pages; 166 167 /* 168 * pointers to the pages in the bio_list. Stored 169 * here for faster lookup 170 */ 171 struct page **bio_pages; 172 173 /* 174 * bitmap to record which horizontal stripe has data 175 */ 176 unsigned long *dbitmap; 177 }; 178 179 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio); 180 static noinline void finish_rmw(struct btrfs_raid_bio *rbio); 181 static void rmw_work(struct btrfs_work *work); 182 static void read_rebuild_work(struct btrfs_work *work); 183 static void async_rmw_stripe(struct btrfs_raid_bio *rbio); 184 static void async_read_rebuild(struct btrfs_raid_bio *rbio); 185 static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio); 186 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed); 187 static void __free_raid_bio(struct btrfs_raid_bio *rbio); 188 static void index_rbio_pages(struct btrfs_raid_bio *rbio); 189 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio); 190 191 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio, 192 int need_check); 193 static void async_scrub_parity(struct btrfs_raid_bio *rbio); 194 195 /* 196 * the stripe hash table is used for locking, and to collect 197 * bios in hopes of making a full stripe 198 */ 199 int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info) 200 { 201 struct btrfs_stripe_hash_table *table; 202 struct btrfs_stripe_hash_table *x; 203 struct btrfs_stripe_hash *cur; 204 struct btrfs_stripe_hash *h; 205 int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS; 206 int i; 207 int table_size; 208 209 if (info->stripe_hash_table) 210 return 0; 211 212 /* 213 * The table is large, starting with order 4 and can go as high as 214 * order 7 in case lock debugging is turned on. 215 * 216 * Try harder to allocate and fallback to vmalloc to lower the chance 217 * of a failing mount. 218 */ 219 table_size = sizeof(*table) + sizeof(*h) * num_entries; 220 table = kzalloc(table_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 221 if (!table) { 222 table = vzalloc(table_size); 223 if (!table) 224 return -ENOMEM; 225 } 226 227 spin_lock_init(&table->cache_lock); 228 INIT_LIST_HEAD(&table->stripe_cache); 229 230 h = table->table; 231 232 for (i = 0; i < num_entries; i++) { 233 cur = h + i; 234 INIT_LIST_HEAD(&cur->hash_list); 235 spin_lock_init(&cur->lock); 236 init_waitqueue_head(&cur->wait); 237 } 238 239 x = cmpxchg(&info->stripe_hash_table, NULL, table); 240 if (x) { 241 if (is_vmalloc_addr(x)) 242 vfree(x); 243 else 244 kfree(x); 245 } 246 return 0; 247 } 248 249 /* 250 * caching an rbio means to copy anything from the 251 * bio_pages array into the stripe_pages array. We 252 * use the page uptodate bit in the stripe cache array 253 * to indicate if it has valid data 254 * 255 * once the caching is done, we set the cache ready 256 * bit. 257 */ 258 static void cache_rbio_pages(struct btrfs_raid_bio *rbio) 259 { 260 int i; 261 char *s; 262 char *d; 263 int ret; 264 265 ret = alloc_rbio_pages(rbio); 266 if (ret) 267 return; 268 269 for (i = 0; i < rbio->nr_pages; i++) { 270 if (!rbio->bio_pages[i]) 271 continue; 272 273 s = kmap(rbio->bio_pages[i]); 274 d = kmap(rbio->stripe_pages[i]); 275 276 memcpy(d, s, PAGE_CACHE_SIZE); 277 278 kunmap(rbio->bio_pages[i]); 279 kunmap(rbio->stripe_pages[i]); 280 SetPageUptodate(rbio->stripe_pages[i]); 281 } 282 set_bit(RBIO_CACHE_READY_BIT, &rbio->flags); 283 } 284 285 /* 286 * we hash on the first logical address of the stripe 287 */ 288 static int rbio_bucket(struct btrfs_raid_bio *rbio) 289 { 290 u64 num = rbio->bbio->raid_map[0]; 291 292 /* 293 * we shift down quite a bit. We're using byte 294 * addressing, and most of the lower bits are zeros. 295 * This tends to upset hash_64, and it consistently 296 * returns just one or two different values. 297 * 298 * shifting off the lower bits fixes things. 299 */ 300 return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS); 301 } 302 303 /* 304 * stealing an rbio means taking all the uptodate pages from the stripe 305 * array in the source rbio and putting them into the destination rbio 306 */ 307 static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest) 308 { 309 int i; 310 struct page *s; 311 struct page *d; 312 313 if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags)) 314 return; 315 316 for (i = 0; i < dest->nr_pages; i++) { 317 s = src->stripe_pages[i]; 318 if (!s || !PageUptodate(s)) { 319 continue; 320 } 321 322 d = dest->stripe_pages[i]; 323 if (d) 324 __free_page(d); 325 326 dest->stripe_pages[i] = s; 327 src->stripe_pages[i] = NULL; 328 } 329 } 330 331 /* 332 * merging means we take the bio_list from the victim and 333 * splice it into the destination. The victim should 334 * be discarded afterwards. 335 * 336 * must be called with dest->rbio_list_lock held 337 */ 338 static void merge_rbio(struct btrfs_raid_bio *dest, 339 struct btrfs_raid_bio *victim) 340 { 341 bio_list_merge(&dest->bio_list, &victim->bio_list); 342 dest->bio_list_bytes += victim->bio_list_bytes; 343 dest->generic_bio_cnt += victim->generic_bio_cnt; 344 bio_list_init(&victim->bio_list); 345 } 346 347 /* 348 * used to prune items that are in the cache. The caller 349 * must hold the hash table lock. 350 */ 351 static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio) 352 { 353 int bucket = rbio_bucket(rbio); 354 struct btrfs_stripe_hash_table *table; 355 struct btrfs_stripe_hash *h; 356 int freeit = 0; 357 358 /* 359 * check the bit again under the hash table lock. 360 */ 361 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags)) 362 return; 363 364 table = rbio->fs_info->stripe_hash_table; 365 h = table->table + bucket; 366 367 /* hold the lock for the bucket because we may be 368 * removing it from the hash table 369 */ 370 spin_lock(&h->lock); 371 372 /* 373 * hold the lock for the bio list because we need 374 * to make sure the bio list is empty 375 */ 376 spin_lock(&rbio->bio_list_lock); 377 378 if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) { 379 list_del_init(&rbio->stripe_cache); 380 table->cache_size -= 1; 381 freeit = 1; 382 383 /* if the bio list isn't empty, this rbio is 384 * still involved in an IO. We take it out 385 * of the cache list, and drop the ref that 386 * was held for the list. 387 * 388 * If the bio_list was empty, we also remove 389 * the rbio from the hash_table, and drop 390 * the corresponding ref 391 */ 392 if (bio_list_empty(&rbio->bio_list)) { 393 if (!list_empty(&rbio->hash_list)) { 394 list_del_init(&rbio->hash_list); 395 atomic_dec(&rbio->refs); 396 BUG_ON(!list_empty(&rbio->plug_list)); 397 } 398 } 399 } 400 401 spin_unlock(&rbio->bio_list_lock); 402 spin_unlock(&h->lock); 403 404 if (freeit) 405 __free_raid_bio(rbio); 406 } 407 408 /* 409 * prune a given rbio from the cache 410 */ 411 static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio) 412 { 413 struct btrfs_stripe_hash_table *table; 414 unsigned long flags; 415 416 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags)) 417 return; 418 419 table = rbio->fs_info->stripe_hash_table; 420 421 spin_lock_irqsave(&table->cache_lock, flags); 422 __remove_rbio_from_cache(rbio); 423 spin_unlock_irqrestore(&table->cache_lock, flags); 424 } 425 426 /* 427 * remove everything in the cache 428 */ 429 static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info) 430 { 431 struct btrfs_stripe_hash_table *table; 432 unsigned long flags; 433 struct btrfs_raid_bio *rbio; 434 435 table = info->stripe_hash_table; 436 437 spin_lock_irqsave(&table->cache_lock, flags); 438 while (!list_empty(&table->stripe_cache)) { 439 rbio = list_entry(table->stripe_cache.next, 440 struct btrfs_raid_bio, 441 stripe_cache); 442 __remove_rbio_from_cache(rbio); 443 } 444 spin_unlock_irqrestore(&table->cache_lock, flags); 445 } 446 447 /* 448 * remove all cached entries and free the hash table 449 * used by unmount 450 */ 451 void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info) 452 { 453 if (!info->stripe_hash_table) 454 return; 455 btrfs_clear_rbio_cache(info); 456 if (is_vmalloc_addr(info->stripe_hash_table)) 457 vfree(info->stripe_hash_table); 458 else 459 kfree(info->stripe_hash_table); 460 info->stripe_hash_table = NULL; 461 } 462 463 /* 464 * insert an rbio into the stripe cache. It 465 * must have already been prepared by calling 466 * cache_rbio_pages 467 * 468 * If this rbio was already cached, it gets 469 * moved to the front of the lru. 470 * 471 * If the size of the rbio cache is too big, we 472 * prune an item. 473 */ 474 static void cache_rbio(struct btrfs_raid_bio *rbio) 475 { 476 struct btrfs_stripe_hash_table *table; 477 unsigned long flags; 478 479 if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags)) 480 return; 481 482 table = rbio->fs_info->stripe_hash_table; 483 484 spin_lock_irqsave(&table->cache_lock, flags); 485 spin_lock(&rbio->bio_list_lock); 486 487 /* bump our ref if we were not in the list before */ 488 if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags)) 489 atomic_inc(&rbio->refs); 490 491 if (!list_empty(&rbio->stripe_cache)){ 492 list_move(&rbio->stripe_cache, &table->stripe_cache); 493 } else { 494 list_add(&rbio->stripe_cache, &table->stripe_cache); 495 table->cache_size += 1; 496 } 497 498 spin_unlock(&rbio->bio_list_lock); 499 500 if (table->cache_size > RBIO_CACHE_SIZE) { 501 struct btrfs_raid_bio *found; 502 503 found = list_entry(table->stripe_cache.prev, 504 struct btrfs_raid_bio, 505 stripe_cache); 506 507 if (found != rbio) 508 __remove_rbio_from_cache(found); 509 } 510 511 spin_unlock_irqrestore(&table->cache_lock, flags); 512 return; 513 } 514 515 /* 516 * helper function to run the xor_blocks api. It is only 517 * able to do MAX_XOR_BLOCKS at a time, so we need to 518 * loop through. 519 */ 520 static void run_xor(void **pages, int src_cnt, ssize_t len) 521 { 522 int src_off = 0; 523 int xor_src_cnt = 0; 524 void *dest = pages[src_cnt]; 525 526 while(src_cnt > 0) { 527 xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS); 528 xor_blocks(xor_src_cnt, len, dest, pages + src_off); 529 530 src_cnt -= xor_src_cnt; 531 src_off += xor_src_cnt; 532 } 533 } 534 535 /* 536 * returns true if the bio list inside this rbio 537 * covers an entire stripe (no rmw required). 538 * Must be called with the bio list lock held, or 539 * at a time when you know it is impossible to add 540 * new bios into the list 541 */ 542 static int __rbio_is_full(struct btrfs_raid_bio *rbio) 543 { 544 unsigned long size = rbio->bio_list_bytes; 545 int ret = 1; 546 547 if (size != rbio->nr_data * rbio->stripe_len) 548 ret = 0; 549 550 BUG_ON(size > rbio->nr_data * rbio->stripe_len); 551 return ret; 552 } 553 554 static int rbio_is_full(struct btrfs_raid_bio *rbio) 555 { 556 unsigned long flags; 557 int ret; 558 559 spin_lock_irqsave(&rbio->bio_list_lock, flags); 560 ret = __rbio_is_full(rbio); 561 spin_unlock_irqrestore(&rbio->bio_list_lock, flags); 562 return ret; 563 } 564 565 /* 566 * returns 1 if it is safe to merge two rbios together. 567 * The merging is safe if the two rbios correspond to 568 * the same stripe and if they are both going in the same 569 * direction (read vs write), and if neither one is 570 * locked for final IO 571 * 572 * The caller is responsible for locking such that 573 * rmw_locked is safe to test 574 */ 575 static int rbio_can_merge(struct btrfs_raid_bio *last, 576 struct btrfs_raid_bio *cur) 577 { 578 if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) || 579 test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) 580 return 0; 581 582 /* 583 * we can't merge with cached rbios, since the 584 * idea is that when we merge the destination 585 * rbio is going to run our IO for us. We can 586 * steal from cached rbio's though, other functions 587 * handle that. 588 */ 589 if (test_bit(RBIO_CACHE_BIT, &last->flags) || 590 test_bit(RBIO_CACHE_BIT, &cur->flags)) 591 return 0; 592 593 if (last->bbio->raid_map[0] != 594 cur->bbio->raid_map[0]) 595 return 0; 596 597 /* we can't merge with different operations */ 598 if (last->operation != cur->operation) 599 return 0; 600 /* 601 * We've need read the full stripe from the drive. 602 * check and repair the parity and write the new results. 603 * 604 * We're not allowed to add any new bios to the 605 * bio list here, anyone else that wants to 606 * change this stripe needs to do their own rmw. 607 */ 608 if (last->operation == BTRFS_RBIO_PARITY_SCRUB || 609 cur->operation == BTRFS_RBIO_PARITY_SCRUB) 610 return 0; 611 612 return 1; 613 } 614 615 /* 616 * helper to index into the pstripe 617 */ 618 static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index) 619 { 620 index += (rbio->nr_data * rbio->stripe_len) >> PAGE_CACHE_SHIFT; 621 return rbio->stripe_pages[index]; 622 } 623 624 /* 625 * helper to index into the qstripe, returns null 626 * if there is no qstripe 627 */ 628 static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index) 629 { 630 if (rbio->nr_data + 1 == rbio->real_stripes) 631 return NULL; 632 633 index += ((rbio->nr_data + 1) * rbio->stripe_len) >> 634 PAGE_CACHE_SHIFT; 635 return rbio->stripe_pages[index]; 636 } 637 638 /* 639 * The first stripe in the table for a logical address 640 * has the lock. rbios are added in one of three ways: 641 * 642 * 1) Nobody has the stripe locked yet. The rbio is given 643 * the lock and 0 is returned. The caller must start the IO 644 * themselves. 645 * 646 * 2) Someone has the stripe locked, but we're able to merge 647 * with the lock owner. The rbio is freed and the IO will 648 * start automatically along with the existing rbio. 1 is returned. 649 * 650 * 3) Someone has the stripe locked, but we're not able to merge. 651 * The rbio is added to the lock owner's plug list, or merged into 652 * an rbio already on the plug list. When the lock owner unlocks, 653 * the next rbio on the list is run and the IO is started automatically. 654 * 1 is returned 655 * 656 * If we return 0, the caller still owns the rbio and must continue with 657 * IO submission. If we return 1, the caller must assume the rbio has 658 * already been freed. 659 */ 660 static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio) 661 { 662 int bucket = rbio_bucket(rbio); 663 struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket; 664 struct btrfs_raid_bio *cur; 665 struct btrfs_raid_bio *pending; 666 unsigned long flags; 667 DEFINE_WAIT(wait); 668 struct btrfs_raid_bio *freeit = NULL; 669 struct btrfs_raid_bio *cache_drop = NULL; 670 int ret = 0; 671 int walk = 0; 672 673 spin_lock_irqsave(&h->lock, flags); 674 list_for_each_entry(cur, &h->hash_list, hash_list) { 675 walk++; 676 if (cur->bbio->raid_map[0] == rbio->bbio->raid_map[0]) { 677 spin_lock(&cur->bio_list_lock); 678 679 /* can we steal this cached rbio's pages? */ 680 if (bio_list_empty(&cur->bio_list) && 681 list_empty(&cur->plug_list) && 682 test_bit(RBIO_CACHE_BIT, &cur->flags) && 683 !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) { 684 list_del_init(&cur->hash_list); 685 atomic_dec(&cur->refs); 686 687 steal_rbio(cur, rbio); 688 cache_drop = cur; 689 spin_unlock(&cur->bio_list_lock); 690 691 goto lockit; 692 } 693 694 /* can we merge into the lock owner? */ 695 if (rbio_can_merge(cur, rbio)) { 696 merge_rbio(cur, rbio); 697 spin_unlock(&cur->bio_list_lock); 698 freeit = rbio; 699 ret = 1; 700 goto out; 701 } 702 703 704 /* 705 * we couldn't merge with the running 706 * rbio, see if we can merge with the 707 * pending ones. We don't have to 708 * check for rmw_locked because there 709 * is no way they are inside finish_rmw 710 * right now 711 */ 712 list_for_each_entry(pending, &cur->plug_list, 713 plug_list) { 714 if (rbio_can_merge(pending, rbio)) { 715 merge_rbio(pending, rbio); 716 spin_unlock(&cur->bio_list_lock); 717 freeit = rbio; 718 ret = 1; 719 goto out; 720 } 721 } 722 723 /* no merging, put us on the tail of the plug list, 724 * our rbio will be started with the currently 725 * running rbio unlocks 726 */ 727 list_add_tail(&rbio->plug_list, &cur->plug_list); 728 spin_unlock(&cur->bio_list_lock); 729 ret = 1; 730 goto out; 731 } 732 } 733 lockit: 734 atomic_inc(&rbio->refs); 735 list_add(&rbio->hash_list, &h->hash_list); 736 out: 737 spin_unlock_irqrestore(&h->lock, flags); 738 if (cache_drop) 739 remove_rbio_from_cache(cache_drop); 740 if (freeit) 741 __free_raid_bio(freeit); 742 return ret; 743 } 744 745 /* 746 * called as rmw or parity rebuild is completed. If the plug list has more 747 * rbios waiting for this stripe, the next one on the list will be started 748 */ 749 static noinline void unlock_stripe(struct btrfs_raid_bio *rbio) 750 { 751 int bucket; 752 struct btrfs_stripe_hash *h; 753 unsigned long flags; 754 int keep_cache = 0; 755 756 bucket = rbio_bucket(rbio); 757 h = rbio->fs_info->stripe_hash_table->table + bucket; 758 759 if (list_empty(&rbio->plug_list)) 760 cache_rbio(rbio); 761 762 spin_lock_irqsave(&h->lock, flags); 763 spin_lock(&rbio->bio_list_lock); 764 765 if (!list_empty(&rbio->hash_list)) { 766 /* 767 * if we're still cached and there is no other IO 768 * to perform, just leave this rbio here for others 769 * to steal from later 770 */ 771 if (list_empty(&rbio->plug_list) && 772 test_bit(RBIO_CACHE_BIT, &rbio->flags)) { 773 keep_cache = 1; 774 clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); 775 BUG_ON(!bio_list_empty(&rbio->bio_list)); 776 goto done; 777 } 778 779 list_del_init(&rbio->hash_list); 780 atomic_dec(&rbio->refs); 781 782 /* 783 * we use the plug list to hold all the rbios 784 * waiting for the chance to lock this stripe. 785 * hand the lock over to one of them. 786 */ 787 if (!list_empty(&rbio->plug_list)) { 788 struct btrfs_raid_bio *next; 789 struct list_head *head = rbio->plug_list.next; 790 791 next = list_entry(head, struct btrfs_raid_bio, 792 plug_list); 793 794 list_del_init(&rbio->plug_list); 795 796 list_add(&next->hash_list, &h->hash_list); 797 atomic_inc(&next->refs); 798 spin_unlock(&rbio->bio_list_lock); 799 spin_unlock_irqrestore(&h->lock, flags); 800 801 if (next->operation == BTRFS_RBIO_READ_REBUILD) 802 async_read_rebuild(next); 803 else if (next->operation == BTRFS_RBIO_WRITE) { 804 steal_rbio(rbio, next); 805 async_rmw_stripe(next); 806 } else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) { 807 steal_rbio(rbio, next); 808 async_scrub_parity(next); 809 } 810 811 goto done_nolock; 812 } else if (waitqueue_active(&h->wait)) { 813 spin_unlock(&rbio->bio_list_lock); 814 spin_unlock_irqrestore(&h->lock, flags); 815 wake_up(&h->wait); 816 goto done_nolock; 817 } 818 } 819 done: 820 spin_unlock(&rbio->bio_list_lock); 821 spin_unlock_irqrestore(&h->lock, flags); 822 823 done_nolock: 824 if (!keep_cache) 825 remove_rbio_from_cache(rbio); 826 } 827 828 static void __free_raid_bio(struct btrfs_raid_bio *rbio) 829 { 830 int i; 831 832 WARN_ON(atomic_read(&rbio->refs) < 0); 833 if (!atomic_dec_and_test(&rbio->refs)) 834 return; 835 836 WARN_ON(!list_empty(&rbio->stripe_cache)); 837 WARN_ON(!list_empty(&rbio->hash_list)); 838 WARN_ON(!bio_list_empty(&rbio->bio_list)); 839 840 for (i = 0; i < rbio->nr_pages; i++) { 841 if (rbio->stripe_pages[i]) { 842 __free_page(rbio->stripe_pages[i]); 843 rbio->stripe_pages[i] = NULL; 844 } 845 } 846 847 btrfs_put_bbio(rbio->bbio); 848 kfree(rbio); 849 } 850 851 static void free_raid_bio(struct btrfs_raid_bio *rbio) 852 { 853 unlock_stripe(rbio); 854 __free_raid_bio(rbio); 855 } 856 857 /* 858 * this frees the rbio and runs through all the bios in the 859 * bio_list and calls end_io on them 860 */ 861 static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, int err, int uptodate) 862 { 863 struct bio *cur = bio_list_get(&rbio->bio_list); 864 struct bio *next; 865 866 if (rbio->generic_bio_cnt) 867 btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt); 868 869 free_raid_bio(rbio); 870 871 while (cur) { 872 next = cur->bi_next; 873 cur->bi_next = NULL; 874 if (uptodate) 875 set_bit(BIO_UPTODATE, &cur->bi_flags); 876 bio_endio(cur, err); 877 cur = next; 878 } 879 } 880 881 /* 882 * end io function used by finish_rmw. When we finally 883 * get here, we've written a full stripe 884 */ 885 static void raid_write_end_io(struct bio *bio, int err) 886 { 887 struct btrfs_raid_bio *rbio = bio->bi_private; 888 889 if (err) 890 fail_bio_stripe(rbio, bio); 891 892 bio_put(bio); 893 894 if (!atomic_dec_and_test(&rbio->stripes_pending)) 895 return; 896 897 err = 0; 898 899 /* OK, we have read all the stripes we need to. */ 900 if (atomic_read(&rbio->error) > rbio->bbio->max_errors) 901 err = -EIO; 902 903 rbio_orig_end_io(rbio, err, 0); 904 return; 905 } 906 907 /* 908 * the read/modify/write code wants to use the original bio for 909 * any pages it included, and then use the rbio for everything 910 * else. This function decides if a given index (stripe number) 911 * and page number in that stripe fall inside the original bio 912 * or the rbio. 913 * 914 * if you set bio_list_only, you'll get a NULL back for any ranges 915 * that are outside the bio_list 916 * 917 * This doesn't take any refs on anything, you get a bare page pointer 918 * and the caller must bump refs as required. 919 * 920 * You must call index_rbio_pages once before you can trust 921 * the answers from this function. 922 */ 923 static struct page *page_in_rbio(struct btrfs_raid_bio *rbio, 924 int index, int pagenr, int bio_list_only) 925 { 926 int chunk_page; 927 struct page *p = NULL; 928 929 chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr; 930 931 spin_lock_irq(&rbio->bio_list_lock); 932 p = rbio->bio_pages[chunk_page]; 933 spin_unlock_irq(&rbio->bio_list_lock); 934 935 if (p || bio_list_only) 936 return p; 937 938 return rbio->stripe_pages[chunk_page]; 939 } 940 941 /* 942 * number of pages we need for the entire stripe across all the 943 * drives 944 */ 945 static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes) 946 { 947 unsigned long nr = stripe_len * nr_stripes; 948 return DIV_ROUND_UP(nr, PAGE_CACHE_SIZE); 949 } 950 951 /* 952 * allocation and initial setup for the btrfs_raid_bio. Not 953 * this does not allocate any pages for rbio->pages. 954 */ 955 static struct btrfs_raid_bio *alloc_rbio(struct btrfs_root *root, 956 struct btrfs_bio *bbio, u64 stripe_len) 957 { 958 struct btrfs_raid_bio *rbio; 959 int nr_data = 0; 960 int real_stripes = bbio->num_stripes - bbio->num_tgtdevs; 961 int num_pages = rbio_nr_pages(stripe_len, real_stripes); 962 int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE); 963 void *p; 964 965 rbio = kzalloc(sizeof(*rbio) + num_pages * sizeof(struct page *) * 2 + 966 DIV_ROUND_UP(stripe_npages, BITS_PER_LONG / 8), 967 GFP_NOFS); 968 if (!rbio) 969 return ERR_PTR(-ENOMEM); 970 971 bio_list_init(&rbio->bio_list); 972 INIT_LIST_HEAD(&rbio->plug_list); 973 spin_lock_init(&rbio->bio_list_lock); 974 INIT_LIST_HEAD(&rbio->stripe_cache); 975 INIT_LIST_HEAD(&rbio->hash_list); 976 rbio->bbio = bbio; 977 rbio->fs_info = root->fs_info; 978 rbio->stripe_len = stripe_len; 979 rbio->nr_pages = num_pages; 980 rbio->real_stripes = real_stripes; 981 rbio->stripe_npages = stripe_npages; 982 rbio->faila = -1; 983 rbio->failb = -1; 984 atomic_set(&rbio->refs, 1); 985 atomic_set(&rbio->error, 0); 986 atomic_set(&rbio->stripes_pending, 0); 987 988 /* 989 * the stripe_pages and bio_pages array point to the extra 990 * memory we allocated past the end of the rbio 991 */ 992 p = rbio + 1; 993 rbio->stripe_pages = p; 994 rbio->bio_pages = p + sizeof(struct page *) * num_pages; 995 rbio->dbitmap = p + sizeof(struct page *) * num_pages * 2; 996 997 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5) 998 nr_data = real_stripes - 1; 999 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) 1000 nr_data = real_stripes - 2; 1001 else 1002 BUG(); 1003 1004 rbio->nr_data = nr_data; 1005 return rbio; 1006 } 1007 1008 /* allocate pages for all the stripes in the bio, including parity */ 1009 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio) 1010 { 1011 int i; 1012 struct page *page; 1013 1014 for (i = 0; i < rbio->nr_pages; i++) { 1015 if (rbio->stripe_pages[i]) 1016 continue; 1017 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 1018 if (!page) 1019 return -ENOMEM; 1020 rbio->stripe_pages[i] = page; 1021 ClearPageUptodate(page); 1022 } 1023 return 0; 1024 } 1025 1026 /* allocate pages for just the p/q stripes */ 1027 static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio) 1028 { 1029 int i; 1030 struct page *page; 1031 1032 i = (rbio->nr_data * rbio->stripe_len) >> PAGE_CACHE_SHIFT; 1033 1034 for (; i < rbio->nr_pages; i++) { 1035 if (rbio->stripe_pages[i]) 1036 continue; 1037 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 1038 if (!page) 1039 return -ENOMEM; 1040 rbio->stripe_pages[i] = page; 1041 } 1042 return 0; 1043 } 1044 1045 /* 1046 * add a single page from a specific stripe into our list of bios for IO 1047 * this will try to merge into existing bios if possible, and returns 1048 * zero if all went well. 1049 */ 1050 static int rbio_add_io_page(struct btrfs_raid_bio *rbio, 1051 struct bio_list *bio_list, 1052 struct page *page, 1053 int stripe_nr, 1054 unsigned long page_index, 1055 unsigned long bio_max_len) 1056 { 1057 struct bio *last = bio_list->tail; 1058 u64 last_end = 0; 1059 int ret; 1060 struct bio *bio; 1061 struct btrfs_bio_stripe *stripe; 1062 u64 disk_start; 1063 1064 stripe = &rbio->bbio->stripes[stripe_nr]; 1065 disk_start = stripe->physical + (page_index << PAGE_CACHE_SHIFT); 1066 1067 /* if the device is missing, just fail this stripe */ 1068 if (!stripe->dev->bdev) 1069 return fail_rbio_index(rbio, stripe_nr); 1070 1071 /* see if we can add this page onto our existing bio */ 1072 if (last) { 1073 last_end = (u64)last->bi_iter.bi_sector << 9; 1074 last_end += last->bi_iter.bi_size; 1075 1076 /* 1077 * we can't merge these if they are from different 1078 * devices or if they are not contiguous 1079 */ 1080 if (last_end == disk_start && stripe->dev->bdev && 1081 test_bit(BIO_UPTODATE, &last->bi_flags) && 1082 last->bi_bdev == stripe->dev->bdev) { 1083 ret = bio_add_page(last, page, PAGE_CACHE_SIZE, 0); 1084 if (ret == PAGE_CACHE_SIZE) 1085 return 0; 1086 } 1087 } 1088 1089 /* put a new bio on the list */ 1090 bio = btrfs_io_bio_alloc(GFP_NOFS, bio_max_len >> PAGE_SHIFT?:1); 1091 if (!bio) 1092 return -ENOMEM; 1093 1094 bio->bi_iter.bi_size = 0; 1095 bio->bi_bdev = stripe->dev->bdev; 1096 bio->bi_iter.bi_sector = disk_start >> 9; 1097 set_bit(BIO_UPTODATE, &bio->bi_flags); 1098 1099 bio_add_page(bio, page, PAGE_CACHE_SIZE, 0); 1100 bio_list_add(bio_list, bio); 1101 return 0; 1102 } 1103 1104 /* 1105 * while we're doing the read/modify/write cycle, we could 1106 * have errors in reading pages off the disk. This checks 1107 * for errors and if we're not able to read the page it'll 1108 * trigger parity reconstruction. The rmw will be finished 1109 * after we've reconstructed the failed stripes 1110 */ 1111 static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio) 1112 { 1113 if (rbio->faila >= 0 || rbio->failb >= 0) { 1114 BUG_ON(rbio->faila == rbio->real_stripes - 1); 1115 __raid56_parity_recover(rbio); 1116 } else { 1117 finish_rmw(rbio); 1118 } 1119 } 1120 1121 /* 1122 * these are just the pages from the rbio array, not from anything 1123 * the FS sent down to us 1124 */ 1125 static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe, int page) 1126 { 1127 int index; 1128 index = stripe * (rbio->stripe_len >> PAGE_CACHE_SHIFT); 1129 index += page; 1130 return rbio->stripe_pages[index]; 1131 } 1132 1133 /* 1134 * helper function to walk our bio list and populate the bio_pages array with 1135 * the result. This seems expensive, but it is faster than constantly 1136 * searching through the bio list as we setup the IO in finish_rmw or stripe 1137 * reconstruction. 1138 * 1139 * This must be called before you trust the answers from page_in_rbio 1140 */ 1141 static void index_rbio_pages(struct btrfs_raid_bio *rbio) 1142 { 1143 struct bio *bio; 1144 u64 start; 1145 unsigned long stripe_offset; 1146 unsigned long page_index; 1147 struct page *p; 1148 int i; 1149 1150 spin_lock_irq(&rbio->bio_list_lock); 1151 bio_list_for_each(bio, &rbio->bio_list) { 1152 start = (u64)bio->bi_iter.bi_sector << 9; 1153 stripe_offset = start - rbio->bbio->raid_map[0]; 1154 page_index = stripe_offset >> PAGE_CACHE_SHIFT; 1155 1156 for (i = 0; i < bio->bi_vcnt; i++) { 1157 p = bio->bi_io_vec[i].bv_page; 1158 rbio->bio_pages[page_index + i] = p; 1159 } 1160 } 1161 spin_unlock_irq(&rbio->bio_list_lock); 1162 } 1163 1164 /* 1165 * this is called from one of two situations. We either 1166 * have a full stripe from the higher layers, or we've read all 1167 * the missing bits off disk. 1168 * 1169 * This will calculate the parity and then send down any 1170 * changed blocks. 1171 */ 1172 static noinline void finish_rmw(struct btrfs_raid_bio *rbio) 1173 { 1174 struct btrfs_bio *bbio = rbio->bbio; 1175 void *pointers[rbio->real_stripes]; 1176 int stripe_len = rbio->stripe_len; 1177 int nr_data = rbio->nr_data; 1178 int stripe; 1179 int pagenr; 1180 int p_stripe = -1; 1181 int q_stripe = -1; 1182 struct bio_list bio_list; 1183 struct bio *bio; 1184 int pages_per_stripe = stripe_len >> PAGE_CACHE_SHIFT; 1185 int ret; 1186 1187 bio_list_init(&bio_list); 1188 1189 if (rbio->real_stripes - rbio->nr_data == 1) { 1190 p_stripe = rbio->real_stripes - 1; 1191 } else if (rbio->real_stripes - rbio->nr_data == 2) { 1192 p_stripe = rbio->real_stripes - 2; 1193 q_stripe = rbio->real_stripes - 1; 1194 } else { 1195 BUG(); 1196 } 1197 1198 /* at this point we either have a full stripe, 1199 * or we've read the full stripe from the drive. 1200 * recalculate the parity and write the new results. 1201 * 1202 * We're not allowed to add any new bios to the 1203 * bio list here, anyone else that wants to 1204 * change this stripe needs to do their own rmw. 1205 */ 1206 spin_lock_irq(&rbio->bio_list_lock); 1207 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); 1208 spin_unlock_irq(&rbio->bio_list_lock); 1209 1210 atomic_set(&rbio->error, 0); 1211 1212 /* 1213 * now that we've set rmw_locked, run through the 1214 * bio list one last time and map the page pointers 1215 * 1216 * We don't cache full rbios because we're assuming 1217 * the higher layers are unlikely to use this area of 1218 * the disk again soon. If they do use it again, 1219 * hopefully they will send another full bio. 1220 */ 1221 index_rbio_pages(rbio); 1222 if (!rbio_is_full(rbio)) 1223 cache_rbio_pages(rbio); 1224 else 1225 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); 1226 1227 for (pagenr = 0; pagenr < pages_per_stripe; pagenr++) { 1228 struct page *p; 1229 /* first collect one page from each data stripe */ 1230 for (stripe = 0; stripe < nr_data; stripe++) { 1231 p = page_in_rbio(rbio, stripe, pagenr, 0); 1232 pointers[stripe] = kmap(p); 1233 } 1234 1235 /* then add the parity stripe */ 1236 p = rbio_pstripe_page(rbio, pagenr); 1237 SetPageUptodate(p); 1238 pointers[stripe++] = kmap(p); 1239 1240 if (q_stripe != -1) { 1241 1242 /* 1243 * raid6, add the qstripe and call the 1244 * library function to fill in our p/q 1245 */ 1246 p = rbio_qstripe_page(rbio, pagenr); 1247 SetPageUptodate(p); 1248 pointers[stripe++] = kmap(p); 1249 1250 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE, 1251 pointers); 1252 } else { 1253 /* raid5 */ 1254 memcpy(pointers[nr_data], pointers[0], PAGE_SIZE); 1255 run_xor(pointers + 1, nr_data - 1, PAGE_CACHE_SIZE); 1256 } 1257 1258 1259 for (stripe = 0; stripe < rbio->real_stripes; stripe++) 1260 kunmap(page_in_rbio(rbio, stripe, pagenr, 0)); 1261 } 1262 1263 /* 1264 * time to start writing. Make bios for everything from the 1265 * higher layers (the bio_list in our rbio) and our p/q. Ignore 1266 * everything else. 1267 */ 1268 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 1269 for (pagenr = 0; pagenr < pages_per_stripe; pagenr++) { 1270 struct page *page; 1271 if (stripe < rbio->nr_data) { 1272 page = page_in_rbio(rbio, stripe, pagenr, 1); 1273 if (!page) 1274 continue; 1275 } else { 1276 page = rbio_stripe_page(rbio, stripe, pagenr); 1277 } 1278 1279 ret = rbio_add_io_page(rbio, &bio_list, 1280 page, stripe, pagenr, rbio->stripe_len); 1281 if (ret) 1282 goto cleanup; 1283 } 1284 } 1285 1286 if (likely(!bbio->num_tgtdevs)) 1287 goto write_data; 1288 1289 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 1290 if (!bbio->tgtdev_map[stripe]) 1291 continue; 1292 1293 for (pagenr = 0; pagenr < pages_per_stripe; pagenr++) { 1294 struct page *page; 1295 if (stripe < rbio->nr_data) { 1296 page = page_in_rbio(rbio, stripe, pagenr, 1); 1297 if (!page) 1298 continue; 1299 } else { 1300 page = rbio_stripe_page(rbio, stripe, pagenr); 1301 } 1302 1303 ret = rbio_add_io_page(rbio, &bio_list, page, 1304 rbio->bbio->tgtdev_map[stripe], 1305 pagenr, rbio->stripe_len); 1306 if (ret) 1307 goto cleanup; 1308 } 1309 } 1310 1311 write_data: 1312 atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list)); 1313 BUG_ON(atomic_read(&rbio->stripes_pending) == 0); 1314 1315 while (1) { 1316 bio = bio_list_pop(&bio_list); 1317 if (!bio) 1318 break; 1319 1320 bio->bi_private = rbio; 1321 bio->bi_end_io = raid_write_end_io; 1322 BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags)); 1323 submit_bio(WRITE, bio); 1324 } 1325 return; 1326 1327 cleanup: 1328 rbio_orig_end_io(rbio, -EIO, 0); 1329 } 1330 1331 /* 1332 * helper to find the stripe number for a given bio. Used to figure out which 1333 * stripe has failed. This expects the bio to correspond to a physical disk, 1334 * so it looks up based on physical sector numbers. 1335 */ 1336 static int find_bio_stripe(struct btrfs_raid_bio *rbio, 1337 struct bio *bio) 1338 { 1339 u64 physical = bio->bi_iter.bi_sector; 1340 u64 stripe_start; 1341 int i; 1342 struct btrfs_bio_stripe *stripe; 1343 1344 physical <<= 9; 1345 1346 for (i = 0; i < rbio->bbio->num_stripes; i++) { 1347 stripe = &rbio->bbio->stripes[i]; 1348 stripe_start = stripe->physical; 1349 if (physical >= stripe_start && 1350 physical < stripe_start + rbio->stripe_len && 1351 bio->bi_bdev == stripe->dev->bdev) { 1352 return i; 1353 } 1354 } 1355 return -1; 1356 } 1357 1358 /* 1359 * helper to find the stripe number for a given 1360 * bio (before mapping). Used to figure out which stripe has 1361 * failed. This looks up based on logical block numbers. 1362 */ 1363 static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio, 1364 struct bio *bio) 1365 { 1366 u64 logical = bio->bi_iter.bi_sector; 1367 u64 stripe_start; 1368 int i; 1369 1370 logical <<= 9; 1371 1372 for (i = 0; i < rbio->nr_data; i++) { 1373 stripe_start = rbio->bbio->raid_map[i]; 1374 if (logical >= stripe_start && 1375 logical < stripe_start + rbio->stripe_len) { 1376 return i; 1377 } 1378 } 1379 return -1; 1380 } 1381 1382 /* 1383 * returns -EIO if we had too many failures 1384 */ 1385 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed) 1386 { 1387 unsigned long flags; 1388 int ret = 0; 1389 1390 spin_lock_irqsave(&rbio->bio_list_lock, flags); 1391 1392 /* we already know this stripe is bad, move on */ 1393 if (rbio->faila == failed || rbio->failb == failed) 1394 goto out; 1395 1396 if (rbio->faila == -1) { 1397 /* first failure on this rbio */ 1398 rbio->faila = failed; 1399 atomic_inc(&rbio->error); 1400 } else if (rbio->failb == -1) { 1401 /* second failure on this rbio */ 1402 rbio->failb = failed; 1403 atomic_inc(&rbio->error); 1404 } else { 1405 ret = -EIO; 1406 } 1407 out: 1408 spin_unlock_irqrestore(&rbio->bio_list_lock, flags); 1409 1410 return ret; 1411 } 1412 1413 /* 1414 * helper to fail a stripe based on a physical disk 1415 * bio. 1416 */ 1417 static int fail_bio_stripe(struct btrfs_raid_bio *rbio, 1418 struct bio *bio) 1419 { 1420 int failed = find_bio_stripe(rbio, bio); 1421 1422 if (failed < 0) 1423 return -EIO; 1424 1425 return fail_rbio_index(rbio, failed); 1426 } 1427 1428 /* 1429 * this sets each page in the bio uptodate. It should only be used on private 1430 * rbio pages, nothing that comes in from the higher layers 1431 */ 1432 static void set_bio_pages_uptodate(struct bio *bio) 1433 { 1434 int i; 1435 struct page *p; 1436 1437 for (i = 0; i < bio->bi_vcnt; i++) { 1438 p = bio->bi_io_vec[i].bv_page; 1439 SetPageUptodate(p); 1440 } 1441 } 1442 1443 /* 1444 * end io for the read phase of the rmw cycle. All the bios here are physical 1445 * stripe bios we've read from the disk so we can recalculate the parity of the 1446 * stripe. 1447 * 1448 * This will usually kick off finish_rmw once all the bios are read in, but it 1449 * may trigger parity reconstruction if we had any errors along the way 1450 */ 1451 static void raid_rmw_end_io(struct bio *bio, int err) 1452 { 1453 struct btrfs_raid_bio *rbio = bio->bi_private; 1454 1455 if (err) 1456 fail_bio_stripe(rbio, bio); 1457 else 1458 set_bio_pages_uptodate(bio); 1459 1460 bio_put(bio); 1461 1462 if (!atomic_dec_and_test(&rbio->stripes_pending)) 1463 return; 1464 1465 err = 0; 1466 if (atomic_read(&rbio->error) > rbio->bbio->max_errors) 1467 goto cleanup; 1468 1469 /* 1470 * this will normally call finish_rmw to start our write 1471 * but if there are any failed stripes we'll reconstruct 1472 * from parity first 1473 */ 1474 validate_rbio_for_rmw(rbio); 1475 return; 1476 1477 cleanup: 1478 1479 rbio_orig_end_io(rbio, -EIO, 0); 1480 } 1481 1482 static void async_rmw_stripe(struct btrfs_raid_bio *rbio) 1483 { 1484 btrfs_init_work(&rbio->work, btrfs_rmw_helper, 1485 rmw_work, NULL, NULL); 1486 1487 btrfs_queue_work(rbio->fs_info->rmw_workers, 1488 &rbio->work); 1489 } 1490 1491 static void async_read_rebuild(struct btrfs_raid_bio *rbio) 1492 { 1493 btrfs_init_work(&rbio->work, btrfs_rmw_helper, 1494 read_rebuild_work, NULL, NULL); 1495 1496 btrfs_queue_work(rbio->fs_info->rmw_workers, 1497 &rbio->work); 1498 } 1499 1500 /* 1501 * the stripe must be locked by the caller. It will 1502 * unlock after all the writes are done 1503 */ 1504 static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio) 1505 { 1506 int bios_to_read = 0; 1507 struct bio_list bio_list; 1508 int ret; 1509 int nr_pages = DIV_ROUND_UP(rbio->stripe_len, PAGE_CACHE_SIZE); 1510 int pagenr; 1511 int stripe; 1512 struct bio *bio; 1513 1514 bio_list_init(&bio_list); 1515 1516 ret = alloc_rbio_pages(rbio); 1517 if (ret) 1518 goto cleanup; 1519 1520 index_rbio_pages(rbio); 1521 1522 atomic_set(&rbio->error, 0); 1523 /* 1524 * build a list of bios to read all the missing parts of this 1525 * stripe 1526 */ 1527 for (stripe = 0; stripe < rbio->nr_data; stripe++) { 1528 for (pagenr = 0; pagenr < nr_pages; pagenr++) { 1529 struct page *page; 1530 /* 1531 * we want to find all the pages missing from 1532 * the rbio and read them from the disk. If 1533 * page_in_rbio finds a page in the bio list 1534 * we don't need to read it off the stripe. 1535 */ 1536 page = page_in_rbio(rbio, stripe, pagenr, 1); 1537 if (page) 1538 continue; 1539 1540 page = rbio_stripe_page(rbio, stripe, pagenr); 1541 /* 1542 * the bio cache may have handed us an uptodate 1543 * page. If so, be happy and use it 1544 */ 1545 if (PageUptodate(page)) 1546 continue; 1547 1548 ret = rbio_add_io_page(rbio, &bio_list, page, 1549 stripe, pagenr, rbio->stripe_len); 1550 if (ret) 1551 goto cleanup; 1552 } 1553 } 1554 1555 bios_to_read = bio_list_size(&bio_list); 1556 if (!bios_to_read) { 1557 /* 1558 * this can happen if others have merged with 1559 * us, it means there is nothing left to read. 1560 * But if there are missing devices it may not be 1561 * safe to do the full stripe write yet. 1562 */ 1563 goto finish; 1564 } 1565 1566 /* 1567 * the bbio may be freed once we submit the last bio. Make sure 1568 * not to touch it after that 1569 */ 1570 atomic_set(&rbio->stripes_pending, bios_to_read); 1571 while (1) { 1572 bio = bio_list_pop(&bio_list); 1573 if (!bio) 1574 break; 1575 1576 bio->bi_private = rbio; 1577 bio->bi_end_io = raid_rmw_end_io; 1578 1579 btrfs_bio_wq_end_io(rbio->fs_info, bio, 1580 BTRFS_WQ_ENDIO_RAID56); 1581 1582 BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags)); 1583 submit_bio(READ, bio); 1584 } 1585 /* the actual write will happen once the reads are done */ 1586 return 0; 1587 1588 cleanup: 1589 rbio_orig_end_io(rbio, -EIO, 0); 1590 return -EIO; 1591 1592 finish: 1593 validate_rbio_for_rmw(rbio); 1594 return 0; 1595 } 1596 1597 /* 1598 * if the upper layers pass in a full stripe, we thank them by only allocating 1599 * enough pages to hold the parity, and sending it all down quickly. 1600 */ 1601 static int full_stripe_write(struct btrfs_raid_bio *rbio) 1602 { 1603 int ret; 1604 1605 ret = alloc_rbio_parity_pages(rbio); 1606 if (ret) { 1607 __free_raid_bio(rbio); 1608 return ret; 1609 } 1610 1611 ret = lock_stripe_add(rbio); 1612 if (ret == 0) 1613 finish_rmw(rbio); 1614 return 0; 1615 } 1616 1617 /* 1618 * partial stripe writes get handed over to async helpers. 1619 * We're really hoping to merge a few more writes into this 1620 * rbio before calculating new parity 1621 */ 1622 static int partial_stripe_write(struct btrfs_raid_bio *rbio) 1623 { 1624 int ret; 1625 1626 ret = lock_stripe_add(rbio); 1627 if (ret == 0) 1628 async_rmw_stripe(rbio); 1629 return 0; 1630 } 1631 1632 /* 1633 * sometimes while we were reading from the drive to 1634 * recalculate parity, enough new bios come into create 1635 * a full stripe. So we do a check here to see if we can 1636 * go directly to finish_rmw 1637 */ 1638 static int __raid56_parity_write(struct btrfs_raid_bio *rbio) 1639 { 1640 /* head off into rmw land if we don't have a full stripe */ 1641 if (!rbio_is_full(rbio)) 1642 return partial_stripe_write(rbio); 1643 return full_stripe_write(rbio); 1644 } 1645 1646 /* 1647 * We use plugging call backs to collect full stripes. 1648 * Any time we get a partial stripe write while plugged 1649 * we collect it into a list. When the unplug comes down, 1650 * we sort the list by logical block number and merge 1651 * everything we can into the same rbios 1652 */ 1653 struct btrfs_plug_cb { 1654 struct blk_plug_cb cb; 1655 struct btrfs_fs_info *info; 1656 struct list_head rbio_list; 1657 struct btrfs_work work; 1658 }; 1659 1660 /* 1661 * rbios on the plug list are sorted for easier merging. 1662 */ 1663 static int plug_cmp(void *priv, struct list_head *a, struct list_head *b) 1664 { 1665 struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio, 1666 plug_list); 1667 struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio, 1668 plug_list); 1669 u64 a_sector = ra->bio_list.head->bi_iter.bi_sector; 1670 u64 b_sector = rb->bio_list.head->bi_iter.bi_sector; 1671 1672 if (a_sector < b_sector) 1673 return -1; 1674 if (a_sector > b_sector) 1675 return 1; 1676 return 0; 1677 } 1678 1679 static void run_plug(struct btrfs_plug_cb *plug) 1680 { 1681 struct btrfs_raid_bio *cur; 1682 struct btrfs_raid_bio *last = NULL; 1683 1684 /* 1685 * sort our plug list then try to merge 1686 * everything we can in hopes of creating full 1687 * stripes. 1688 */ 1689 list_sort(NULL, &plug->rbio_list, plug_cmp); 1690 while (!list_empty(&plug->rbio_list)) { 1691 cur = list_entry(plug->rbio_list.next, 1692 struct btrfs_raid_bio, plug_list); 1693 list_del_init(&cur->plug_list); 1694 1695 if (rbio_is_full(cur)) { 1696 /* we have a full stripe, send it down */ 1697 full_stripe_write(cur); 1698 continue; 1699 } 1700 if (last) { 1701 if (rbio_can_merge(last, cur)) { 1702 merge_rbio(last, cur); 1703 __free_raid_bio(cur); 1704 continue; 1705 1706 } 1707 __raid56_parity_write(last); 1708 } 1709 last = cur; 1710 } 1711 if (last) { 1712 __raid56_parity_write(last); 1713 } 1714 kfree(plug); 1715 } 1716 1717 /* 1718 * if the unplug comes from schedule, we have to push the 1719 * work off to a helper thread 1720 */ 1721 static void unplug_work(struct btrfs_work *work) 1722 { 1723 struct btrfs_plug_cb *plug; 1724 plug = container_of(work, struct btrfs_plug_cb, work); 1725 run_plug(plug); 1726 } 1727 1728 static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule) 1729 { 1730 struct btrfs_plug_cb *plug; 1731 plug = container_of(cb, struct btrfs_plug_cb, cb); 1732 1733 if (from_schedule) { 1734 btrfs_init_work(&plug->work, btrfs_rmw_helper, 1735 unplug_work, NULL, NULL); 1736 btrfs_queue_work(plug->info->rmw_workers, 1737 &plug->work); 1738 return; 1739 } 1740 run_plug(plug); 1741 } 1742 1743 /* 1744 * our main entry point for writes from the rest of the FS. 1745 */ 1746 int raid56_parity_write(struct btrfs_root *root, struct bio *bio, 1747 struct btrfs_bio *bbio, u64 stripe_len) 1748 { 1749 struct btrfs_raid_bio *rbio; 1750 struct btrfs_plug_cb *plug = NULL; 1751 struct blk_plug_cb *cb; 1752 int ret; 1753 1754 rbio = alloc_rbio(root, bbio, stripe_len); 1755 if (IS_ERR(rbio)) { 1756 btrfs_put_bbio(bbio); 1757 return PTR_ERR(rbio); 1758 } 1759 bio_list_add(&rbio->bio_list, bio); 1760 rbio->bio_list_bytes = bio->bi_iter.bi_size; 1761 rbio->operation = BTRFS_RBIO_WRITE; 1762 1763 btrfs_bio_counter_inc_noblocked(root->fs_info); 1764 rbio->generic_bio_cnt = 1; 1765 1766 /* 1767 * don't plug on full rbios, just get them out the door 1768 * as quickly as we can 1769 */ 1770 if (rbio_is_full(rbio)) { 1771 ret = full_stripe_write(rbio); 1772 if (ret) 1773 btrfs_bio_counter_dec(root->fs_info); 1774 return ret; 1775 } 1776 1777 cb = blk_check_plugged(btrfs_raid_unplug, root->fs_info, 1778 sizeof(*plug)); 1779 if (cb) { 1780 plug = container_of(cb, struct btrfs_plug_cb, cb); 1781 if (!plug->info) { 1782 plug->info = root->fs_info; 1783 INIT_LIST_HEAD(&plug->rbio_list); 1784 } 1785 list_add_tail(&rbio->plug_list, &plug->rbio_list); 1786 ret = 0; 1787 } else { 1788 ret = __raid56_parity_write(rbio); 1789 if (ret) 1790 btrfs_bio_counter_dec(root->fs_info); 1791 } 1792 return ret; 1793 } 1794 1795 /* 1796 * all parity reconstruction happens here. We've read in everything 1797 * we can find from the drives and this does the heavy lifting of 1798 * sorting the good from the bad. 1799 */ 1800 static void __raid_recover_end_io(struct btrfs_raid_bio *rbio) 1801 { 1802 int pagenr, stripe; 1803 void **pointers; 1804 int faila = -1, failb = -1; 1805 int nr_pages = DIV_ROUND_UP(rbio->stripe_len, PAGE_CACHE_SIZE); 1806 struct page *page; 1807 int err; 1808 int i; 1809 1810 pointers = kzalloc(rbio->real_stripes * sizeof(void *), 1811 GFP_NOFS); 1812 if (!pointers) { 1813 err = -ENOMEM; 1814 goto cleanup_io; 1815 } 1816 1817 faila = rbio->faila; 1818 failb = rbio->failb; 1819 1820 if (rbio->operation == BTRFS_RBIO_READ_REBUILD) { 1821 spin_lock_irq(&rbio->bio_list_lock); 1822 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); 1823 spin_unlock_irq(&rbio->bio_list_lock); 1824 } 1825 1826 index_rbio_pages(rbio); 1827 1828 for (pagenr = 0; pagenr < nr_pages; pagenr++) { 1829 /* 1830 * Now we just use bitmap to mark the horizontal stripes in 1831 * which we have data when doing parity scrub. 1832 */ 1833 if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB && 1834 !test_bit(pagenr, rbio->dbitmap)) 1835 continue; 1836 1837 /* setup our array of pointers with pages 1838 * from each stripe 1839 */ 1840 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 1841 /* 1842 * if we're rebuilding a read, we have to use 1843 * pages from the bio list 1844 */ 1845 if (rbio->operation == BTRFS_RBIO_READ_REBUILD && 1846 (stripe == faila || stripe == failb)) { 1847 page = page_in_rbio(rbio, stripe, pagenr, 0); 1848 } else { 1849 page = rbio_stripe_page(rbio, stripe, pagenr); 1850 } 1851 pointers[stripe] = kmap(page); 1852 } 1853 1854 /* all raid6 handling here */ 1855 if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) { 1856 /* 1857 * single failure, rebuild from parity raid5 1858 * style 1859 */ 1860 if (failb < 0) { 1861 if (faila == rbio->nr_data) { 1862 /* 1863 * Just the P stripe has failed, without 1864 * a bad data or Q stripe. 1865 * TODO, we should redo the xor here. 1866 */ 1867 err = -EIO; 1868 goto cleanup; 1869 } 1870 /* 1871 * a single failure in raid6 is rebuilt 1872 * in the pstripe code below 1873 */ 1874 goto pstripe; 1875 } 1876 1877 /* make sure our ps and qs are in order */ 1878 if (faila > failb) { 1879 int tmp = failb; 1880 failb = faila; 1881 faila = tmp; 1882 } 1883 1884 /* if the q stripe is failed, do a pstripe reconstruction 1885 * from the xors. 1886 * If both the q stripe and the P stripe are failed, we're 1887 * here due to a crc mismatch and we can't give them the 1888 * data they want 1889 */ 1890 if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) { 1891 if (rbio->bbio->raid_map[faila] == 1892 RAID5_P_STRIPE) { 1893 err = -EIO; 1894 goto cleanup; 1895 } 1896 /* 1897 * otherwise we have one bad data stripe and 1898 * a good P stripe. raid5! 1899 */ 1900 goto pstripe; 1901 } 1902 1903 if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) { 1904 raid6_datap_recov(rbio->real_stripes, 1905 PAGE_SIZE, faila, pointers); 1906 } else { 1907 raid6_2data_recov(rbio->real_stripes, 1908 PAGE_SIZE, faila, failb, 1909 pointers); 1910 } 1911 } else { 1912 void *p; 1913 1914 /* rebuild from P stripe here (raid5 or raid6) */ 1915 BUG_ON(failb != -1); 1916 pstripe: 1917 /* Copy parity block into failed block to start with */ 1918 memcpy(pointers[faila], 1919 pointers[rbio->nr_data], 1920 PAGE_CACHE_SIZE); 1921 1922 /* rearrange the pointer array */ 1923 p = pointers[faila]; 1924 for (stripe = faila; stripe < rbio->nr_data - 1; stripe++) 1925 pointers[stripe] = pointers[stripe + 1]; 1926 pointers[rbio->nr_data - 1] = p; 1927 1928 /* xor in the rest */ 1929 run_xor(pointers, rbio->nr_data - 1, PAGE_CACHE_SIZE); 1930 } 1931 /* if we're doing this rebuild as part of an rmw, go through 1932 * and set all of our private rbio pages in the 1933 * failed stripes as uptodate. This way finish_rmw will 1934 * know they can be trusted. If this was a read reconstruction, 1935 * other endio functions will fiddle the uptodate bits 1936 */ 1937 if (rbio->operation == BTRFS_RBIO_WRITE) { 1938 for (i = 0; i < nr_pages; i++) { 1939 if (faila != -1) { 1940 page = rbio_stripe_page(rbio, faila, i); 1941 SetPageUptodate(page); 1942 } 1943 if (failb != -1) { 1944 page = rbio_stripe_page(rbio, failb, i); 1945 SetPageUptodate(page); 1946 } 1947 } 1948 } 1949 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 1950 /* 1951 * if we're rebuilding a read, we have to use 1952 * pages from the bio list 1953 */ 1954 if (rbio->operation == BTRFS_RBIO_READ_REBUILD && 1955 (stripe == faila || stripe == failb)) { 1956 page = page_in_rbio(rbio, stripe, pagenr, 0); 1957 } else { 1958 page = rbio_stripe_page(rbio, stripe, pagenr); 1959 } 1960 kunmap(page); 1961 } 1962 } 1963 1964 err = 0; 1965 cleanup: 1966 kfree(pointers); 1967 1968 cleanup_io: 1969 if (rbio->operation == BTRFS_RBIO_READ_REBUILD) { 1970 if (err == 0) 1971 cache_rbio_pages(rbio); 1972 else 1973 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); 1974 1975 rbio_orig_end_io(rbio, err, err == 0); 1976 } else if (err == 0) { 1977 rbio->faila = -1; 1978 rbio->failb = -1; 1979 1980 if (rbio->operation == BTRFS_RBIO_WRITE) 1981 finish_rmw(rbio); 1982 else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) 1983 finish_parity_scrub(rbio, 0); 1984 else 1985 BUG(); 1986 } else { 1987 rbio_orig_end_io(rbio, err, 0); 1988 } 1989 } 1990 1991 /* 1992 * This is called only for stripes we've read from disk to 1993 * reconstruct the parity. 1994 */ 1995 static void raid_recover_end_io(struct bio *bio, int err) 1996 { 1997 struct btrfs_raid_bio *rbio = bio->bi_private; 1998 1999 /* 2000 * we only read stripe pages off the disk, set them 2001 * up to date if there were no errors 2002 */ 2003 if (err) 2004 fail_bio_stripe(rbio, bio); 2005 else 2006 set_bio_pages_uptodate(bio); 2007 bio_put(bio); 2008 2009 if (!atomic_dec_and_test(&rbio->stripes_pending)) 2010 return; 2011 2012 if (atomic_read(&rbio->error) > rbio->bbio->max_errors) 2013 rbio_orig_end_io(rbio, -EIO, 0); 2014 else 2015 __raid_recover_end_io(rbio); 2016 } 2017 2018 /* 2019 * reads everything we need off the disk to reconstruct 2020 * the parity. endio handlers trigger final reconstruction 2021 * when the IO is done. 2022 * 2023 * This is used both for reads from the higher layers and for 2024 * parity construction required to finish a rmw cycle. 2025 */ 2026 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio) 2027 { 2028 int bios_to_read = 0; 2029 struct bio_list bio_list; 2030 int ret; 2031 int nr_pages = DIV_ROUND_UP(rbio->stripe_len, PAGE_CACHE_SIZE); 2032 int pagenr; 2033 int stripe; 2034 struct bio *bio; 2035 2036 bio_list_init(&bio_list); 2037 2038 ret = alloc_rbio_pages(rbio); 2039 if (ret) 2040 goto cleanup; 2041 2042 atomic_set(&rbio->error, 0); 2043 2044 /* 2045 * read everything that hasn't failed. Thanks to the 2046 * stripe cache, it is possible that some or all of these 2047 * pages are going to be uptodate. 2048 */ 2049 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 2050 if (rbio->faila == stripe || rbio->failb == stripe) { 2051 atomic_inc(&rbio->error); 2052 continue; 2053 } 2054 2055 for (pagenr = 0; pagenr < nr_pages; pagenr++) { 2056 struct page *p; 2057 2058 /* 2059 * the rmw code may have already read this 2060 * page in 2061 */ 2062 p = rbio_stripe_page(rbio, stripe, pagenr); 2063 if (PageUptodate(p)) 2064 continue; 2065 2066 ret = rbio_add_io_page(rbio, &bio_list, 2067 rbio_stripe_page(rbio, stripe, pagenr), 2068 stripe, pagenr, rbio->stripe_len); 2069 if (ret < 0) 2070 goto cleanup; 2071 } 2072 } 2073 2074 bios_to_read = bio_list_size(&bio_list); 2075 if (!bios_to_read) { 2076 /* 2077 * we might have no bios to read just because the pages 2078 * were up to date, or we might have no bios to read because 2079 * the devices were gone. 2080 */ 2081 if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) { 2082 __raid_recover_end_io(rbio); 2083 goto out; 2084 } else { 2085 goto cleanup; 2086 } 2087 } 2088 2089 /* 2090 * the bbio may be freed once we submit the last bio. Make sure 2091 * not to touch it after that 2092 */ 2093 atomic_set(&rbio->stripes_pending, bios_to_read); 2094 while (1) { 2095 bio = bio_list_pop(&bio_list); 2096 if (!bio) 2097 break; 2098 2099 bio->bi_private = rbio; 2100 bio->bi_end_io = raid_recover_end_io; 2101 2102 btrfs_bio_wq_end_io(rbio->fs_info, bio, 2103 BTRFS_WQ_ENDIO_RAID56); 2104 2105 BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags)); 2106 submit_bio(READ, bio); 2107 } 2108 out: 2109 return 0; 2110 2111 cleanup: 2112 if (rbio->operation == BTRFS_RBIO_READ_REBUILD) 2113 rbio_orig_end_io(rbio, -EIO, 0); 2114 return -EIO; 2115 } 2116 2117 /* 2118 * the main entry point for reads from the higher layers. This 2119 * is really only called when the normal read path had a failure, 2120 * so we assume the bio they send down corresponds to a failed part 2121 * of the drive. 2122 */ 2123 int raid56_parity_recover(struct btrfs_root *root, struct bio *bio, 2124 struct btrfs_bio *bbio, u64 stripe_len, 2125 int mirror_num, int generic_io) 2126 { 2127 struct btrfs_raid_bio *rbio; 2128 int ret; 2129 2130 rbio = alloc_rbio(root, bbio, stripe_len); 2131 if (IS_ERR(rbio)) { 2132 if (generic_io) 2133 btrfs_put_bbio(bbio); 2134 return PTR_ERR(rbio); 2135 } 2136 2137 rbio->operation = BTRFS_RBIO_READ_REBUILD; 2138 bio_list_add(&rbio->bio_list, bio); 2139 rbio->bio_list_bytes = bio->bi_iter.bi_size; 2140 2141 rbio->faila = find_logical_bio_stripe(rbio, bio); 2142 if (rbio->faila == -1) { 2143 BUG(); 2144 if (generic_io) 2145 btrfs_put_bbio(bbio); 2146 kfree(rbio); 2147 return -EIO; 2148 } 2149 2150 if (generic_io) { 2151 btrfs_bio_counter_inc_noblocked(root->fs_info); 2152 rbio->generic_bio_cnt = 1; 2153 } else { 2154 btrfs_get_bbio(bbio); 2155 } 2156 2157 /* 2158 * reconstruct from the q stripe if they are 2159 * asking for mirror 3 2160 */ 2161 if (mirror_num == 3) 2162 rbio->failb = rbio->real_stripes - 2; 2163 2164 ret = lock_stripe_add(rbio); 2165 2166 /* 2167 * __raid56_parity_recover will end the bio with 2168 * any errors it hits. We don't want to return 2169 * its error value up the stack because our caller 2170 * will end up calling bio_endio with any nonzero 2171 * return 2172 */ 2173 if (ret == 0) 2174 __raid56_parity_recover(rbio); 2175 /* 2176 * our rbio has been added to the list of 2177 * rbios that will be handled after the 2178 * currently lock owner is done 2179 */ 2180 return 0; 2181 2182 } 2183 2184 static void rmw_work(struct btrfs_work *work) 2185 { 2186 struct btrfs_raid_bio *rbio; 2187 2188 rbio = container_of(work, struct btrfs_raid_bio, work); 2189 raid56_rmw_stripe(rbio); 2190 } 2191 2192 static void read_rebuild_work(struct btrfs_work *work) 2193 { 2194 struct btrfs_raid_bio *rbio; 2195 2196 rbio = container_of(work, struct btrfs_raid_bio, work); 2197 __raid56_parity_recover(rbio); 2198 } 2199 2200 /* 2201 * The following code is used to scrub/replace the parity stripe 2202 * 2203 * Note: We need make sure all the pages that add into the scrub/replace 2204 * raid bio are correct and not be changed during the scrub/replace. That 2205 * is those pages just hold metadata or file data with checksum. 2206 */ 2207 2208 struct btrfs_raid_bio * 2209 raid56_parity_alloc_scrub_rbio(struct btrfs_root *root, struct bio *bio, 2210 struct btrfs_bio *bbio, u64 stripe_len, 2211 struct btrfs_device *scrub_dev, 2212 unsigned long *dbitmap, int stripe_nsectors) 2213 { 2214 struct btrfs_raid_bio *rbio; 2215 int i; 2216 2217 rbio = alloc_rbio(root, bbio, stripe_len); 2218 if (IS_ERR(rbio)) 2219 return NULL; 2220 bio_list_add(&rbio->bio_list, bio); 2221 /* 2222 * This is a special bio which is used to hold the completion handler 2223 * and make the scrub rbio is similar to the other types 2224 */ 2225 ASSERT(!bio->bi_iter.bi_size); 2226 rbio->operation = BTRFS_RBIO_PARITY_SCRUB; 2227 2228 for (i = 0; i < rbio->real_stripes; i++) { 2229 if (bbio->stripes[i].dev == scrub_dev) { 2230 rbio->scrubp = i; 2231 break; 2232 } 2233 } 2234 2235 /* Now we just support the sectorsize equals to page size */ 2236 ASSERT(root->sectorsize == PAGE_SIZE); 2237 ASSERT(rbio->stripe_npages == stripe_nsectors); 2238 bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors); 2239 2240 return rbio; 2241 } 2242 2243 void raid56_parity_add_scrub_pages(struct btrfs_raid_bio *rbio, 2244 struct page *page, u64 logical) 2245 { 2246 int stripe_offset; 2247 int index; 2248 2249 ASSERT(logical >= rbio->bbio->raid_map[0]); 2250 ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] + 2251 rbio->stripe_len * rbio->nr_data); 2252 stripe_offset = (int)(logical - rbio->bbio->raid_map[0]); 2253 index = stripe_offset >> PAGE_CACHE_SHIFT; 2254 rbio->bio_pages[index] = page; 2255 } 2256 2257 /* 2258 * We just scrub the parity that we have correct data on the same horizontal, 2259 * so we needn't allocate all pages for all the stripes. 2260 */ 2261 static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio) 2262 { 2263 int i; 2264 int bit; 2265 int index; 2266 struct page *page; 2267 2268 for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) { 2269 for (i = 0; i < rbio->real_stripes; i++) { 2270 index = i * rbio->stripe_npages + bit; 2271 if (rbio->stripe_pages[index]) 2272 continue; 2273 2274 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 2275 if (!page) 2276 return -ENOMEM; 2277 rbio->stripe_pages[index] = page; 2278 ClearPageUptodate(page); 2279 } 2280 } 2281 return 0; 2282 } 2283 2284 /* 2285 * end io function used by finish_rmw. When we finally 2286 * get here, we've written a full stripe 2287 */ 2288 static void raid_write_parity_end_io(struct bio *bio, int err) 2289 { 2290 struct btrfs_raid_bio *rbio = bio->bi_private; 2291 2292 if (err) 2293 fail_bio_stripe(rbio, bio); 2294 2295 bio_put(bio); 2296 2297 if (!atomic_dec_and_test(&rbio->stripes_pending)) 2298 return; 2299 2300 err = 0; 2301 2302 if (atomic_read(&rbio->error)) 2303 err = -EIO; 2304 2305 rbio_orig_end_io(rbio, err, 0); 2306 } 2307 2308 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio, 2309 int need_check) 2310 { 2311 struct btrfs_bio *bbio = rbio->bbio; 2312 void *pointers[rbio->real_stripes]; 2313 DECLARE_BITMAP(pbitmap, rbio->stripe_npages); 2314 int nr_data = rbio->nr_data; 2315 int stripe; 2316 int pagenr; 2317 int p_stripe = -1; 2318 int q_stripe = -1; 2319 struct page *p_page = NULL; 2320 struct page *q_page = NULL; 2321 struct bio_list bio_list; 2322 struct bio *bio; 2323 int is_replace = 0; 2324 int ret; 2325 2326 bio_list_init(&bio_list); 2327 2328 if (rbio->real_stripes - rbio->nr_data == 1) { 2329 p_stripe = rbio->real_stripes - 1; 2330 } else if (rbio->real_stripes - rbio->nr_data == 2) { 2331 p_stripe = rbio->real_stripes - 2; 2332 q_stripe = rbio->real_stripes - 1; 2333 } else { 2334 BUG(); 2335 } 2336 2337 if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) { 2338 is_replace = 1; 2339 bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages); 2340 } 2341 2342 /* 2343 * Because the higher layers(scrubber) are unlikely to 2344 * use this area of the disk again soon, so don't cache 2345 * it. 2346 */ 2347 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); 2348 2349 if (!need_check) 2350 goto writeback; 2351 2352 p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 2353 if (!p_page) 2354 goto cleanup; 2355 SetPageUptodate(p_page); 2356 2357 if (q_stripe != -1) { 2358 q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 2359 if (!q_page) { 2360 __free_page(p_page); 2361 goto cleanup; 2362 } 2363 SetPageUptodate(q_page); 2364 } 2365 2366 atomic_set(&rbio->error, 0); 2367 2368 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) { 2369 struct page *p; 2370 void *parity; 2371 /* first collect one page from each data stripe */ 2372 for (stripe = 0; stripe < nr_data; stripe++) { 2373 p = page_in_rbio(rbio, stripe, pagenr, 0); 2374 pointers[stripe] = kmap(p); 2375 } 2376 2377 /* then add the parity stripe */ 2378 pointers[stripe++] = kmap(p_page); 2379 2380 if (q_stripe != -1) { 2381 2382 /* 2383 * raid6, add the qstripe and call the 2384 * library function to fill in our p/q 2385 */ 2386 pointers[stripe++] = kmap(q_page); 2387 2388 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE, 2389 pointers); 2390 } else { 2391 /* raid5 */ 2392 memcpy(pointers[nr_data], pointers[0], PAGE_SIZE); 2393 run_xor(pointers + 1, nr_data - 1, PAGE_CACHE_SIZE); 2394 } 2395 2396 /* Check scrubbing pairty and repair it */ 2397 p = rbio_stripe_page(rbio, rbio->scrubp, pagenr); 2398 parity = kmap(p); 2399 if (memcmp(parity, pointers[rbio->scrubp], PAGE_CACHE_SIZE)) 2400 memcpy(parity, pointers[rbio->scrubp], PAGE_CACHE_SIZE); 2401 else 2402 /* Parity is right, needn't writeback */ 2403 bitmap_clear(rbio->dbitmap, pagenr, 1); 2404 kunmap(p); 2405 2406 for (stripe = 0; stripe < rbio->real_stripes; stripe++) 2407 kunmap(page_in_rbio(rbio, stripe, pagenr, 0)); 2408 } 2409 2410 __free_page(p_page); 2411 if (q_page) 2412 __free_page(q_page); 2413 2414 writeback: 2415 /* 2416 * time to start writing. Make bios for everything from the 2417 * higher layers (the bio_list in our rbio) and our p/q. Ignore 2418 * everything else. 2419 */ 2420 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) { 2421 struct page *page; 2422 2423 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr); 2424 ret = rbio_add_io_page(rbio, &bio_list, 2425 page, rbio->scrubp, pagenr, rbio->stripe_len); 2426 if (ret) 2427 goto cleanup; 2428 } 2429 2430 if (!is_replace) 2431 goto submit_write; 2432 2433 for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) { 2434 struct page *page; 2435 2436 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr); 2437 ret = rbio_add_io_page(rbio, &bio_list, page, 2438 bbio->tgtdev_map[rbio->scrubp], 2439 pagenr, rbio->stripe_len); 2440 if (ret) 2441 goto cleanup; 2442 } 2443 2444 submit_write: 2445 nr_data = bio_list_size(&bio_list); 2446 if (!nr_data) { 2447 /* Every parity is right */ 2448 rbio_orig_end_io(rbio, 0, 0); 2449 return; 2450 } 2451 2452 atomic_set(&rbio->stripes_pending, nr_data); 2453 2454 while (1) { 2455 bio = bio_list_pop(&bio_list); 2456 if (!bio) 2457 break; 2458 2459 bio->bi_private = rbio; 2460 bio->bi_end_io = raid_write_parity_end_io; 2461 BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags)); 2462 submit_bio(WRITE, bio); 2463 } 2464 return; 2465 2466 cleanup: 2467 rbio_orig_end_io(rbio, -EIO, 0); 2468 } 2469 2470 static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe) 2471 { 2472 if (stripe >= 0 && stripe < rbio->nr_data) 2473 return 1; 2474 return 0; 2475 } 2476 2477 /* 2478 * While we're doing the parity check and repair, we could have errors 2479 * in reading pages off the disk. This checks for errors and if we're 2480 * not able to read the page it'll trigger parity reconstruction. The 2481 * parity scrub will be finished after we've reconstructed the failed 2482 * stripes 2483 */ 2484 static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio) 2485 { 2486 if (atomic_read(&rbio->error) > rbio->bbio->max_errors) 2487 goto cleanup; 2488 2489 if (rbio->faila >= 0 || rbio->failb >= 0) { 2490 int dfail = 0, failp = -1; 2491 2492 if (is_data_stripe(rbio, rbio->faila)) 2493 dfail++; 2494 else if (is_parity_stripe(rbio->faila)) 2495 failp = rbio->faila; 2496 2497 if (is_data_stripe(rbio, rbio->failb)) 2498 dfail++; 2499 else if (is_parity_stripe(rbio->failb)) 2500 failp = rbio->failb; 2501 2502 /* 2503 * Because we can not use a scrubbing parity to repair 2504 * the data, so the capability of the repair is declined. 2505 * (In the case of RAID5, we can not repair anything) 2506 */ 2507 if (dfail > rbio->bbio->max_errors - 1) 2508 goto cleanup; 2509 2510 /* 2511 * If all data is good, only parity is correctly, just 2512 * repair the parity. 2513 */ 2514 if (dfail == 0) { 2515 finish_parity_scrub(rbio, 0); 2516 return; 2517 } 2518 2519 /* 2520 * Here means we got one corrupted data stripe and one 2521 * corrupted parity on RAID6, if the corrupted parity 2522 * is scrubbing parity, luckly, use the other one to repair 2523 * the data, or we can not repair the data stripe. 2524 */ 2525 if (failp != rbio->scrubp) 2526 goto cleanup; 2527 2528 __raid_recover_end_io(rbio); 2529 } else { 2530 finish_parity_scrub(rbio, 1); 2531 } 2532 return; 2533 2534 cleanup: 2535 rbio_orig_end_io(rbio, -EIO, 0); 2536 } 2537 2538 /* 2539 * end io for the read phase of the rmw cycle. All the bios here are physical 2540 * stripe bios we've read from the disk so we can recalculate the parity of the 2541 * stripe. 2542 * 2543 * This will usually kick off finish_rmw once all the bios are read in, but it 2544 * may trigger parity reconstruction if we had any errors along the way 2545 */ 2546 static void raid56_parity_scrub_end_io(struct bio *bio, int err) 2547 { 2548 struct btrfs_raid_bio *rbio = bio->bi_private; 2549 2550 if (err) 2551 fail_bio_stripe(rbio, bio); 2552 else 2553 set_bio_pages_uptodate(bio); 2554 2555 bio_put(bio); 2556 2557 if (!atomic_dec_and_test(&rbio->stripes_pending)) 2558 return; 2559 2560 /* 2561 * this will normally call finish_rmw to start our write 2562 * but if there are any failed stripes we'll reconstruct 2563 * from parity first 2564 */ 2565 validate_rbio_for_parity_scrub(rbio); 2566 } 2567 2568 static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio) 2569 { 2570 int bios_to_read = 0; 2571 struct bio_list bio_list; 2572 int ret; 2573 int pagenr; 2574 int stripe; 2575 struct bio *bio; 2576 2577 ret = alloc_rbio_essential_pages(rbio); 2578 if (ret) 2579 goto cleanup; 2580 2581 bio_list_init(&bio_list); 2582 2583 atomic_set(&rbio->error, 0); 2584 /* 2585 * build a list of bios to read all the missing parts of this 2586 * stripe 2587 */ 2588 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 2589 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) { 2590 struct page *page; 2591 /* 2592 * we want to find all the pages missing from 2593 * the rbio and read them from the disk. If 2594 * page_in_rbio finds a page in the bio list 2595 * we don't need to read it off the stripe. 2596 */ 2597 page = page_in_rbio(rbio, stripe, pagenr, 1); 2598 if (page) 2599 continue; 2600 2601 page = rbio_stripe_page(rbio, stripe, pagenr); 2602 /* 2603 * the bio cache may have handed us an uptodate 2604 * page. If so, be happy and use it 2605 */ 2606 if (PageUptodate(page)) 2607 continue; 2608 2609 ret = rbio_add_io_page(rbio, &bio_list, page, 2610 stripe, pagenr, rbio->stripe_len); 2611 if (ret) 2612 goto cleanup; 2613 } 2614 } 2615 2616 bios_to_read = bio_list_size(&bio_list); 2617 if (!bios_to_read) { 2618 /* 2619 * this can happen if others have merged with 2620 * us, it means there is nothing left to read. 2621 * But if there are missing devices it may not be 2622 * safe to do the full stripe write yet. 2623 */ 2624 goto finish; 2625 } 2626 2627 /* 2628 * the bbio may be freed once we submit the last bio. Make sure 2629 * not to touch it after that 2630 */ 2631 atomic_set(&rbio->stripes_pending, bios_to_read); 2632 while (1) { 2633 bio = bio_list_pop(&bio_list); 2634 if (!bio) 2635 break; 2636 2637 bio->bi_private = rbio; 2638 bio->bi_end_io = raid56_parity_scrub_end_io; 2639 2640 btrfs_bio_wq_end_io(rbio->fs_info, bio, 2641 BTRFS_WQ_ENDIO_RAID56); 2642 2643 BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags)); 2644 submit_bio(READ, bio); 2645 } 2646 /* the actual write will happen once the reads are done */ 2647 return; 2648 2649 cleanup: 2650 rbio_orig_end_io(rbio, -EIO, 0); 2651 return; 2652 2653 finish: 2654 validate_rbio_for_parity_scrub(rbio); 2655 } 2656 2657 static void scrub_parity_work(struct btrfs_work *work) 2658 { 2659 struct btrfs_raid_bio *rbio; 2660 2661 rbio = container_of(work, struct btrfs_raid_bio, work); 2662 raid56_parity_scrub_stripe(rbio); 2663 } 2664 2665 static void async_scrub_parity(struct btrfs_raid_bio *rbio) 2666 { 2667 btrfs_init_work(&rbio->work, btrfs_rmw_helper, 2668 scrub_parity_work, NULL, NULL); 2669 2670 btrfs_queue_work(rbio->fs_info->rmw_workers, 2671 &rbio->work); 2672 } 2673 2674 void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio) 2675 { 2676 if (!lock_stripe_add(rbio)) 2677 async_scrub_parity(rbio); 2678 } 2679