1 /* 2 * Copyright (C) 2012 Fusion-io All rights reserved. 3 * Copyright (C) 2012 Intel Corp. All rights reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public 7 * License v2 as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 12 * General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public 15 * License along with this program; if not, write to the 16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 17 * Boston, MA 021110-1307, USA. 18 */ 19 #include <linux/sched.h> 20 #include <linux/wait.h> 21 #include <linux/bio.h> 22 #include <linux/slab.h> 23 #include <linux/buffer_head.h> 24 #include <linux/blkdev.h> 25 #include <linux/random.h> 26 #include <linux/iocontext.h> 27 #include <linux/capability.h> 28 #include <linux/ratelimit.h> 29 #include <linux/kthread.h> 30 #include <linux/raid/pq.h> 31 #include <linux/hash.h> 32 #include <linux/list_sort.h> 33 #include <linux/raid/xor.h> 34 #include <linux/mm.h> 35 #include <asm/div64.h> 36 #include "ctree.h" 37 #include "extent_map.h" 38 #include "disk-io.h" 39 #include "transaction.h" 40 #include "print-tree.h" 41 #include "volumes.h" 42 #include "raid56.h" 43 #include "async-thread.h" 44 #include "check-integrity.h" 45 #include "rcu-string.h" 46 47 /* set when additional merges to this rbio are not allowed */ 48 #define RBIO_RMW_LOCKED_BIT 1 49 50 /* 51 * set when this rbio is sitting in the hash, but it is just a cache 52 * of past RMW 53 */ 54 #define RBIO_CACHE_BIT 2 55 56 /* 57 * set when it is safe to trust the stripe_pages for caching 58 */ 59 #define RBIO_CACHE_READY_BIT 3 60 61 #define RBIO_CACHE_SIZE 1024 62 63 enum btrfs_rbio_ops { 64 BTRFS_RBIO_WRITE, 65 BTRFS_RBIO_READ_REBUILD, 66 BTRFS_RBIO_PARITY_SCRUB, 67 BTRFS_RBIO_REBUILD_MISSING, 68 }; 69 70 struct btrfs_raid_bio { 71 struct btrfs_fs_info *fs_info; 72 struct btrfs_bio *bbio; 73 74 /* while we're doing rmw on a stripe 75 * we put it into a hash table so we can 76 * lock the stripe and merge more rbios 77 * into it. 78 */ 79 struct list_head hash_list; 80 81 /* 82 * LRU list for the stripe cache 83 */ 84 struct list_head stripe_cache; 85 86 /* 87 * for scheduling work in the helper threads 88 */ 89 struct btrfs_work work; 90 91 /* 92 * bio list and bio_list_lock are used 93 * to add more bios into the stripe 94 * in hopes of avoiding the full rmw 95 */ 96 struct bio_list bio_list; 97 spinlock_t bio_list_lock; 98 99 /* also protected by the bio_list_lock, the 100 * plug list is used by the plugging code 101 * to collect partial bios while plugged. The 102 * stripe locking code also uses it to hand off 103 * the stripe lock to the next pending IO 104 */ 105 struct list_head plug_list; 106 107 /* 108 * flags that tell us if it is safe to 109 * merge with this bio 110 */ 111 unsigned long flags; 112 113 /* size of each individual stripe on disk */ 114 int stripe_len; 115 116 /* number of data stripes (no p/q) */ 117 int nr_data; 118 119 int real_stripes; 120 121 int stripe_npages; 122 /* 123 * set if we're doing a parity rebuild 124 * for a read from higher up, which is handled 125 * differently from a parity rebuild as part of 126 * rmw 127 */ 128 enum btrfs_rbio_ops operation; 129 130 /* first bad stripe */ 131 int faila; 132 133 /* second bad stripe (for raid6 use) */ 134 int failb; 135 136 int scrubp; 137 /* 138 * number of pages needed to represent the full 139 * stripe 140 */ 141 int nr_pages; 142 143 /* 144 * size of all the bios in the bio_list. This 145 * helps us decide if the rbio maps to a full 146 * stripe or not 147 */ 148 int bio_list_bytes; 149 150 int generic_bio_cnt; 151 152 refcount_t refs; 153 154 atomic_t stripes_pending; 155 156 atomic_t error; 157 /* 158 * these are two arrays of pointers. We allocate the 159 * rbio big enough to hold them both and setup their 160 * locations when the rbio is allocated 161 */ 162 163 /* pointers to pages that we allocated for 164 * reading/writing stripes directly from the disk (including P/Q) 165 */ 166 struct page **stripe_pages; 167 168 /* 169 * pointers to the pages in the bio_list. Stored 170 * here for faster lookup 171 */ 172 struct page **bio_pages; 173 174 /* 175 * bitmap to record which horizontal stripe has data 176 */ 177 unsigned long *dbitmap; 178 }; 179 180 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio); 181 static noinline void finish_rmw(struct btrfs_raid_bio *rbio); 182 static void rmw_work(struct btrfs_work *work); 183 static void read_rebuild_work(struct btrfs_work *work); 184 static void async_rmw_stripe(struct btrfs_raid_bio *rbio); 185 static void async_read_rebuild(struct btrfs_raid_bio *rbio); 186 static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio); 187 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed); 188 static void __free_raid_bio(struct btrfs_raid_bio *rbio); 189 static void index_rbio_pages(struct btrfs_raid_bio *rbio); 190 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio); 191 192 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio, 193 int need_check); 194 static void async_scrub_parity(struct btrfs_raid_bio *rbio); 195 196 /* 197 * the stripe hash table is used for locking, and to collect 198 * bios in hopes of making a full stripe 199 */ 200 int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info) 201 { 202 struct btrfs_stripe_hash_table *table; 203 struct btrfs_stripe_hash_table *x; 204 struct btrfs_stripe_hash *cur; 205 struct btrfs_stripe_hash *h; 206 int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS; 207 int i; 208 int table_size; 209 210 if (info->stripe_hash_table) 211 return 0; 212 213 /* 214 * The table is large, starting with order 4 and can go as high as 215 * order 7 in case lock debugging is turned on. 216 * 217 * Try harder to allocate and fallback to vmalloc to lower the chance 218 * of a failing mount. 219 */ 220 table_size = sizeof(*table) + sizeof(*h) * num_entries; 221 table = kvzalloc(table_size, GFP_KERNEL); 222 if (!table) 223 return -ENOMEM; 224 225 spin_lock_init(&table->cache_lock); 226 INIT_LIST_HEAD(&table->stripe_cache); 227 228 h = table->table; 229 230 for (i = 0; i < num_entries; i++) { 231 cur = h + i; 232 INIT_LIST_HEAD(&cur->hash_list); 233 spin_lock_init(&cur->lock); 234 init_waitqueue_head(&cur->wait); 235 } 236 237 x = cmpxchg(&info->stripe_hash_table, NULL, table); 238 if (x) 239 kvfree(x); 240 return 0; 241 } 242 243 /* 244 * caching an rbio means to copy anything from the 245 * bio_pages array into the stripe_pages array. We 246 * use the page uptodate bit in the stripe cache array 247 * to indicate if it has valid data 248 * 249 * once the caching is done, we set the cache ready 250 * bit. 251 */ 252 static void cache_rbio_pages(struct btrfs_raid_bio *rbio) 253 { 254 int i; 255 char *s; 256 char *d; 257 int ret; 258 259 ret = alloc_rbio_pages(rbio); 260 if (ret) 261 return; 262 263 for (i = 0; i < rbio->nr_pages; i++) { 264 if (!rbio->bio_pages[i]) 265 continue; 266 267 s = kmap(rbio->bio_pages[i]); 268 d = kmap(rbio->stripe_pages[i]); 269 270 memcpy(d, s, PAGE_SIZE); 271 272 kunmap(rbio->bio_pages[i]); 273 kunmap(rbio->stripe_pages[i]); 274 SetPageUptodate(rbio->stripe_pages[i]); 275 } 276 set_bit(RBIO_CACHE_READY_BIT, &rbio->flags); 277 } 278 279 /* 280 * we hash on the first logical address of the stripe 281 */ 282 static int rbio_bucket(struct btrfs_raid_bio *rbio) 283 { 284 u64 num = rbio->bbio->raid_map[0]; 285 286 /* 287 * we shift down quite a bit. We're using byte 288 * addressing, and most of the lower bits are zeros. 289 * This tends to upset hash_64, and it consistently 290 * returns just one or two different values. 291 * 292 * shifting off the lower bits fixes things. 293 */ 294 return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS); 295 } 296 297 /* 298 * stealing an rbio means taking all the uptodate pages from the stripe 299 * array in the source rbio and putting them into the destination rbio 300 */ 301 static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest) 302 { 303 int i; 304 struct page *s; 305 struct page *d; 306 307 if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags)) 308 return; 309 310 for (i = 0; i < dest->nr_pages; i++) { 311 s = src->stripe_pages[i]; 312 if (!s || !PageUptodate(s)) { 313 continue; 314 } 315 316 d = dest->stripe_pages[i]; 317 if (d) 318 __free_page(d); 319 320 dest->stripe_pages[i] = s; 321 src->stripe_pages[i] = NULL; 322 } 323 } 324 325 /* 326 * merging means we take the bio_list from the victim and 327 * splice it into the destination. The victim should 328 * be discarded afterwards. 329 * 330 * must be called with dest->rbio_list_lock held 331 */ 332 static void merge_rbio(struct btrfs_raid_bio *dest, 333 struct btrfs_raid_bio *victim) 334 { 335 bio_list_merge(&dest->bio_list, &victim->bio_list); 336 dest->bio_list_bytes += victim->bio_list_bytes; 337 dest->generic_bio_cnt += victim->generic_bio_cnt; 338 bio_list_init(&victim->bio_list); 339 } 340 341 /* 342 * used to prune items that are in the cache. The caller 343 * must hold the hash table lock. 344 */ 345 static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio) 346 { 347 int bucket = rbio_bucket(rbio); 348 struct btrfs_stripe_hash_table *table; 349 struct btrfs_stripe_hash *h; 350 int freeit = 0; 351 352 /* 353 * check the bit again under the hash table lock. 354 */ 355 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags)) 356 return; 357 358 table = rbio->fs_info->stripe_hash_table; 359 h = table->table + bucket; 360 361 /* hold the lock for the bucket because we may be 362 * removing it from the hash table 363 */ 364 spin_lock(&h->lock); 365 366 /* 367 * hold the lock for the bio list because we need 368 * to make sure the bio list is empty 369 */ 370 spin_lock(&rbio->bio_list_lock); 371 372 if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) { 373 list_del_init(&rbio->stripe_cache); 374 table->cache_size -= 1; 375 freeit = 1; 376 377 /* if the bio list isn't empty, this rbio is 378 * still involved in an IO. We take it out 379 * of the cache list, and drop the ref that 380 * was held for the list. 381 * 382 * If the bio_list was empty, we also remove 383 * the rbio from the hash_table, and drop 384 * the corresponding ref 385 */ 386 if (bio_list_empty(&rbio->bio_list)) { 387 if (!list_empty(&rbio->hash_list)) { 388 list_del_init(&rbio->hash_list); 389 refcount_dec(&rbio->refs); 390 BUG_ON(!list_empty(&rbio->plug_list)); 391 } 392 } 393 } 394 395 spin_unlock(&rbio->bio_list_lock); 396 spin_unlock(&h->lock); 397 398 if (freeit) 399 __free_raid_bio(rbio); 400 } 401 402 /* 403 * prune a given rbio from the cache 404 */ 405 static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio) 406 { 407 struct btrfs_stripe_hash_table *table; 408 unsigned long flags; 409 410 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags)) 411 return; 412 413 table = rbio->fs_info->stripe_hash_table; 414 415 spin_lock_irqsave(&table->cache_lock, flags); 416 __remove_rbio_from_cache(rbio); 417 spin_unlock_irqrestore(&table->cache_lock, flags); 418 } 419 420 /* 421 * remove everything in the cache 422 */ 423 static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info) 424 { 425 struct btrfs_stripe_hash_table *table; 426 unsigned long flags; 427 struct btrfs_raid_bio *rbio; 428 429 table = info->stripe_hash_table; 430 431 spin_lock_irqsave(&table->cache_lock, flags); 432 while (!list_empty(&table->stripe_cache)) { 433 rbio = list_entry(table->stripe_cache.next, 434 struct btrfs_raid_bio, 435 stripe_cache); 436 __remove_rbio_from_cache(rbio); 437 } 438 spin_unlock_irqrestore(&table->cache_lock, flags); 439 } 440 441 /* 442 * remove all cached entries and free the hash table 443 * used by unmount 444 */ 445 void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info) 446 { 447 if (!info->stripe_hash_table) 448 return; 449 btrfs_clear_rbio_cache(info); 450 kvfree(info->stripe_hash_table); 451 info->stripe_hash_table = NULL; 452 } 453 454 /* 455 * insert an rbio into the stripe cache. It 456 * must have already been prepared by calling 457 * cache_rbio_pages 458 * 459 * If this rbio was already cached, it gets 460 * moved to the front of the lru. 461 * 462 * If the size of the rbio cache is too big, we 463 * prune an item. 464 */ 465 static void cache_rbio(struct btrfs_raid_bio *rbio) 466 { 467 struct btrfs_stripe_hash_table *table; 468 unsigned long flags; 469 470 if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags)) 471 return; 472 473 table = rbio->fs_info->stripe_hash_table; 474 475 spin_lock_irqsave(&table->cache_lock, flags); 476 spin_lock(&rbio->bio_list_lock); 477 478 /* bump our ref if we were not in the list before */ 479 if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags)) 480 refcount_inc(&rbio->refs); 481 482 if (!list_empty(&rbio->stripe_cache)){ 483 list_move(&rbio->stripe_cache, &table->stripe_cache); 484 } else { 485 list_add(&rbio->stripe_cache, &table->stripe_cache); 486 table->cache_size += 1; 487 } 488 489 spin_unlock(&rbio->bio_list_lock); 490 491 if (table->cache_size > RBIO_CACHE_SIZE) { 492 struct btrfs_raid_bio *found; 493 494 found = list_entry(table->stripe_cache.prev, 495 struct btrfs_raid_bio, 496 stripe_cache); 497 498 if (found != rbio) 499 __remove_rbio_from_cache(found); 500 } 501 502 spin_unlock_irqrestore(&table->cache_lock, flags); 503 } 504 505 /* 506 * helper function to run the xor_blocks api. It is only 507 * able to do MAX_XOR_BLOCKS at a time, so we need to 508 * loop through. 509 */ 510 static void run_xor(void **pages, int src_cnt, ssize_t len) 511 { 512 int src_off = 0; 513 int xor_src_cnt = 0; 514 void *dest = pages[src_cnt]; 515 516 while(src_cnt > 0) { 517 xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS); 518 xor_blocks(xor_src_cnt, len, dest, pages + src_off); 519 520 src_cnt -= xor_src_cnt; 521 src_off += xor_src_cnt; 522 } 523 } 524 525 /* 526 * returns true if the bio list inside this rbio 527 * covers an entire stripe (no rmw required). 528 * Must be called with the bio list lock held, or 529 * at a time when you know it is impossible to add 530 * new bios into the list 531 */ 532 static int __rbio_is_full(struct btrfs_raid_bio *rbio) 533 { 534 unsigned long size = rbio->bio_list_bytes; 535 int ret = 1; 536 537 if (size != rbio->nr_data * rbio->stripe_len) 538 ret = 0; 539 540 BUG_ON(size > rbio->nr_data * rbio->stripe_len); 541 return ret; 542 } 543 544 static int rbio_is_full(struct btrfs_raid_bio *rbio) 545 { 546 unsigned long flags; 547 int ret; 548 549 spin_lock_irqsave(&rbio->bio_list_lock, flags); 550 ret = __rbio_is_full(rbio); 551 spin_unlock_irqrestore(&rbio->bio_list_lock, flags); 552 return ret; 553 } 554 555 /* 556 * returns 1 if it is safe to merge two rbios together. 557 * The merging is safe if the two rbios correspond to 558 * the same stripe and if they are both going in the same 559 * direction (read vs write), and if neither one is 560 * locked for final IO 561 * 562 * The caller is responsible for locking such that 563 * rmw_locked is safe to test 564 */ 565 static int rbio_can_merge(struct btrfs_raid_bio *last, 566 struct btrfs_raid_bio *cur) 567 { 568 if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) || 569 test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) 570 return 0; 571 572 /* 573 * we can't merge with cached rbios, since the 574 * idea is that when we merge the destination 575 * rbio is going to run our IO for us. We can 576 * steal from cached rbios though, other functions 577 * handle that. 578 */ 579 if (test_bit(RBIO_CACHE_BIT, &last->flags) || 580 test_bit(RBIO_CACHE_BIT, &cur->flags)) 581 return 0; 582 583 if (last->bbio->raid_map[0] != 584 cur->bbio->raid_map[0]) 585 return 0; 586 587 /* we can't merge with different operations */ 588 if (last->operation != cur->operation) 589 return 0; 590 /* 591 * We've need read the full stripe from the drive. 592 * check and repair the parity and write the new results. 593 * 594 * We're not allowed to add any new bios to the 595 * bio list here, anyone else that wants to 596 * change this stripe needs to do their own rmw. 597 */ 598 if (last->operation == BTRFS_RBIO_PARITY_SCRUB || 599 cur->operation == BTRFS_RBIO_PARITY_SCRUB) 600 return 0; 601 602 if (last->operation == BTRFS_RBIO_REBUILD_MISSING || 603 cur->operation == BTRFS_RBIO_REBUILD_MISSING) 604 return 0; 605 606 return 1; 607 } 608 609 static int rbio_stripe_page_index(struct btrfs_raid_bio *rbio, int stripe, 610 int index) 611 { 612 return stripe * rbio->stripe_npages + index; 613 } 614 615 /* 616 * these are just the pages from the rbio array, not from anything 617 * the FS sent down to us 618 */ 619 static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe, 620 int index) 621 { 622 return rbio->stripe_pages[rbio_stripe_page_index(rbio, stripe, index)]; 623 } 624 625 /* 626 * helper to index into the pstripe 627 */ 628 static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index) 629 { 630 return rbio_stripe_page(rbio, rbio->nr_data, index); 631 } 632 633 /* 634 * helper to index into the qstripe, returns null 635 * if there is no qstripe 636 */ 637 static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index) 638 { 639 if (rbio->nr_data + 1 == rbio->real_stripes) 640 return NULL; 641 return rbio_stripe_page(rbio, rbio->nr_data + 1, index); 642 } 643 644 /* 645 * The first stripe in the table for a logical address 646 * has the lock. rbios are added in one of three ways: 647 * 648 * 1) Nobody has the stripe locked yet. The rbio is given 649 * the lock and 0 is returned. The caller must start the IO 650 * themselves. 651 * 652 * 2) Someone has the stripe locked, but we're able to merge 653 * with the lock owner. The rbio is freed and the IO will 654 * start automatically along with the existing rbio. 1 is returned. 655 * 656 * 3) Someone has the stripe locked, but we're not able to merge. 657 * The rbio is added to the lock owner's plug list, or merged into 658 * an rbio already on the plug list. When the lock owner unlocks, 659 * the next rbio on the list is run and the IO is started automatically. 660 * 1 is returned 661 * 662 * If we return 0, the caller still owns the rbio and must continue with 663 * IO submission. If we return 1, the caller must assume the rbio has 664 * already been freed. 665 */ 666 static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio) 667 { 668 int bucket = rbio_bucket(rbio); 669 struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket; 670 struct btrfs_raid_bio *cur; 671 struct btrfs_raid_bio *pending; 672 unsigned long flags; 673 DEFINE_WAIT(wait); 674 struct btrfs_raid_bio *freeit = NULL; 675 struct btrfs_raid_bio *cache_drop = NULL; 676 int ret = 0; 677 678 spin_lock_irqsave(&h->lock, flags); 679 list_for_each_entry(cur, &h->hash_list, hash_list) { 680 if (cur->bbio->raid_map[0] == rbio->bbio->raid_map[0]) { 681 spin_lock(&cur->bio_list_lock); 682 683 /* can we steal this cached rbio's pages? */ 684 if (bio_list_empty(&cur->bio_list) && 685 list_empty(&cur->plug_list) && 686 test_bit(RBIO_CACHE_BIT, &cur->flags) && 687 !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) { 688 list_del_init(&cur->hash_list); 689 refcount_dec(&cur->refs); 690 691 steal_rbio(cur, rbio); 692 cache_drop = cur; 693 spin_unlock(&cur->bio_list_lock); 694 695 goto lockit; 696 } 697 698 /* can we merge into the lock owner? */ 699 if (rbio_can_merge(cur, rbio)) { 700 merge_rbio(cur, rbio); 701 spin_unlock(&cur->bio_list_lock); 702 freeit = rbio; 703 ret = 1; 704 goto out; 705 } 706 707 708 /* 709 * we couldn't merge with the running 710 * rbio, see if we can merge with the 711 * pending ones. We don't have to 712 * check for rmw_locked because there 713 * is no way they are inside finish_rmw 714 * right now 715 */ 716 list_for_each_entry(pending, &cur->plug_list, 717 plug_list) { 718 if (rbio_can_merge(pending, rbio)) { 719 merge_rbio(pending, rbio); 720 spin_unlock(&cur->bio_list_lock); 721 freeit = rbio; 722 ret = 1; 723 goto out; 724 } 725 } 726 727 /* no merging, put us on the tail of the plug list, 728 * our rbio will be started with the currently 729 * running rbio unlocks 730 */ 731 list_add_tail(&rbio->plug_list, &cur->plug_list); 732 spin_unlock(&cur->bio_list_lock); 733 ret = 1; 734 goto out; 735 } 736 } 737 lockit: 738 refcount_inc(&rbio->refs); 739 list_add(&rbio->hash_list, &h->hash_list); 740 out: 741 spin_unlock_irqrestore(&h->lock, flags); 742 if (cache_drop) 743 remove_rbio_from_cache(cache_drop); 744 if (freeit) 745 __free_raid_bio(freeit); 746 return ret; 747 } 748 749 /* 750 * called as rmw or parity rebuild is completed. If the plug list has more 751 * rbios waiting for this stripe, the next one on the list will be started 752 */ 753 static noinline void unlock_stripe(struct btrfs_raid_bio *rbio) 754 { 755 int bucket; 756 struct btrfs_stripe_hash *h; 757 unsigned long flags; 758 int keep_cache = 0; 759 760 bucket = rbio_bucket(rbio); 761 h = rbio->fs_info->stripe_hash_table->table + bucket; 762 763 if (list_empty(&rbio->plug_list)) 764 cache_rbio(rbio); 765 766 spin_lock_irqsave(&h->lock, flags); 767 spin_lock(&rbio->bio_list_lock); 768 769 if (!list_empty(&rbio->hash_list)) { 770 /* 771 * if we're still cached and there is no other IO 772 * to perform, just leave this rbio here for others 773 * to steal from later 774 */ 775 if (list_empty(&rbio->plug_list) && 776 test_bit(RBIO_CACHE_BIT, &rbio->flags)) { 777 keep_cache = 1; 778 clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); 779 BUG_ON(!bio_list_empty(&rbio->bio_list)); 780 goto done; 781 } 782 783 list_del_init(&rbio->hash_list); 784 refcount_dec(&rbio->refs); 785 786 /* 787 * we use the plug list to hold all the rbios 788 * waiting for the chance to lock this stripe. 789 * hand the lock over to one of them. 790 */ 791 if (!list_empty(&rbio->plug_list)) { 792 struct btrfs_raid_bio *next; 793 struct list_head *head = rbio->plug_list.next; 794 795 next = list_entry(head, struct btrfs_raid_bio, 796 plug_list); 797 798 list_del_init(&rbio->plug_list); 799 800 list_add(&next->hash_list, &h->hash_list); 801 refcount_inc(&next->refs); 802 spin_unlock(&rbio->bio_list_lock); 803 spin_unlock_irqrestore(&h->lock, flags); 804 805 if (next->operation == BTRFS_RBIO_READ_REBUILD) 806 async_read_rebuild(next); 807 else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) { 808 steal_rbio(rbio, next); 809 async_read_rebuild(next); 810 } else if (next->operation == BTRFS_RBIO_WRITE) { 811 steal_rbio(rbio, next); 812 async_rmw_stripe(next); 813 } else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) { 814 steal_rbio(rbio, next); 815 async_scrub_parity(next); 816 } 817 818 goto done_nolock; 819 /* 820 * The barrier for this waitqueue_active is not needed, 821 * we're protected by h->lock and can't miss a wakeup. 822 */ 823 } else if (waitqueue_active(&h->wait)) { 824 spin_unlock(&rbio->bio_list_lock); 825 spin_unlock_irqrestore(&h->lock, flags); 826 wake_up(&h->wait); 827 goto done_nolock; 828 } 829 } 830 done: 831 spin_unlock(&rbio->bio_list_lock); 832 spin_unlock_irqrestore(&h->lock, flags); 833 834 done_nolock: 835 if (!keep_cache) 836 remove_rbio_from_cache(rbio); 837 } 838 839 static void __free_raid_bio(struct btrfs_raid_bio *rbio) 840 { 841 int i; 842 843 if (!refcount_dec_and_test(&rbio->refs)) 844 return; 845 846 WARN_ON(!list_empty(&rbio->stripe_cache)); 847 WARN_ON(!list_empty(&rbio->hash_list)); 848 WARN_ON(!bio_list_empty(&rbio->bio_list)); 849 850 for (i = 0; i < rbio->nr_pages; i++) { 851 if (rbio->stripe_pages[i]) { 852 __free_page(rbio->stripe_pages[i]); 853 rbio->stripe_pages[i] = NULL; 854 } 855 } 856 857 btrfs_put_bbio(rbio->bbio); 858 kfree(rbio); 859 } 860 861 static void free_raid_bio(struct btrfs_raid_bio *rbio) 862 { 863 unlock_stripe(rbio); 864 __free_raid_bio(rbio); 865 } 866 867 /* 868 * this frees the rbio and runs through all the bios in the 869 * bio_list and calls end_io on them 870 */ 871 static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err) 872 { 873 struct bio *cur = bio_list_get(&rbio->bio_list); 874 struct bio *next; 875 876 if (rbio->generic_bio_cnt) 877 btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt); 878 879 free_raid_bio(rbio); 880 881 while (cur) { 882 next = cur->bi_next; 883 cur->bi_next = NULL; 884 cur->bi_status = err; 885 bio_endio(cur); 886 cur = next; 887 } 888 } 889 890 /* 891 * end io function used by finish_rmw. When we finally 892 * get here, we've written a full stripe 893 */ 894 static void raid_write_end_io(struct bio *bio) 895 { 896 struct btrfs_raid_bio *rbio = bio->bi_private; 897 blk_status_t err = bio->bi_status; 898 int max_errors; 899 900 if (err) 901 fail_bio_stripe(rbio, bio); 902 903 bio_put(bio); 904 905 if (!atomic_dec_and_test(&rbio->stripes_pending)) 906 return; 907 908 err = 0; 909 910 /* OK, we have read all the stripes we need to. */ 911 max_errors = (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) ? 912 0 : rbio->bbio->max_errors; 913 if (atomic_read(&rbio->error) > max_errors) 914 err = BLK_STS_IOERR; 915 916 rbio_orig_end_io(rbio, err); 917 } 918 919 /* 920 * the read/modify/write code wants to use the original bio for 921 * any pages it included, and then use the rbio for everything 922 * else. This function decides if a given index (stripe number) 923 * and page number in that stripe fall inside the original bio 924 * or the rbio. 925 * 926 * if you set bio_list_only, you'll get a NULL back for any ranges 927 * that are outside the bio_list 928 * 929 * This doesn't take any refs on anything, you get a bare page pointer 930 * and the caller must bump refs as required. 931 * 932 * You must call index_rbio_pages once before you can trust 933 * the answers from this function. 934 */ 935 static struct page *page_in_rbio(struct btrfs_raid_bio *rbio, 936 int index, int pagenr, int bio_list_only) 937 { 938 int chunk_page; 939 struct page *p = NULL; 940 941 chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr; 942 943 spin_lock_irq(&rbio->bio_list_lock); 944 p = rbio->bio_pages[chunk_page]; 945 spin_unlock_irq(&rbio->bio_list_lock); 946 947 if (p || bio_list_only) 948 return p; 949 950 return rbio->stripe_pages[chunk_page]; 951 } 952 953 /* 954 * number of pages we need for the entire stripe across all the 955 * drives 956 */ 957 static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes) 958 { 959 return DIV_ROUND_UP(stripe_len, PAGE_SIZE) * nr_stripes; 960 } 961 962 /* 963 * allocation and initial setup for the btrfs_raid_bio. Not 964 * this does not allocate any pages for rbio->pages. 965 */ 966 static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info, 967 struct btrfs_bio *bbio, 968 u64 stripe_len) 969 { 970 struct btrfs_raid_bio *rbio; 971 int nr_data = 0; 972 int real_stripes = bbio->num_stripes - bbio->num_tgtdevs; 973 int num_pages = rbio_nr_pages(stripe_len, real_stripes); 974 int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE); 975 void *p; 976 977 rbio = kzalloc(sizeof(*rbio) + num_pages * sizeof(struct page *) * 2 + 978 DIV_ROUND_UP(stripe_npages, BITS_PER_LONG) * 979 sizeof(long), GFP_NOFS); 980 if (!rbio) 981 return ERR_PTR(-ENOMEM); 982 983 bio_list_init(&rbio->bio_list); 984 INIT_LIST_HEAD(&rbio->plug_list); 985 spin_lock_init(&rbio->bio_list_lock); 986 INIT_LIST_HEAD(&rbio->stripe_cache); 987 INIT_LIST_HEAD(&rbio->hash_list); 988 rbio->bbio = bbio; 989 rbio->fs_info = fs_info; 990 rbio->stripe_len = stripe_len; 991 rbio->nr_pages = num_pages; 992 rbio->real_stripes = real_stripes; 993 rbio->stripe_npages = stripe_npages; 994 rbio->faila = -1; 995 rbio->failb = -1; 996 refcount_set(&rbio->refs, 1); 997 atomic_set(&rbio->error, 0); 998 atomic_set(&rbio->stripes_pending, 0); 999 1000 /* 1001 * the stripe_pages and bio_pages array point to the extra 1002 * memory we allocated past the end of the rbio 1003 */ 1004 p = rbio + 1; 1005 rbio->stripe_pages = p; 1006 rbio->bio_pages = p + sizeof(struct page *) * num_pages; 1007 rbio->dbitmap = p + sizeof(struct page *) * num_pages * 2; 1008 1009 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5) 1010 nr_data = real_stripes - 1; 1011 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) 1012 nr_data = real_stripes - 2; 1013 else 1014 BUG(); 1015 1016 rbio->nr_data = nr_data; 1017 return rbio; 1018 } 1019 1020 /* allocate pages for all the stripes in the bio, including parity */ 1021 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio) 1022 { 1023 int i; 1024 struct page *page; 1025 1026 for (i = 0; i < rbio->nr_pages; i++) { 1027 if (rbio->stripe_pages[i]) 1028 continue; 1029 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 1030 if (!page) 1031 return -ENOMEM; 1032 rbio->stripe_pages[i] = page; 1033 } 1034 return 0; 1035 } 1036 1037 /* only allocate pages for p/q stripes */ 1038 static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio) 1039 { 1040 int i; 1041 struct page *page; 1042 1043 i = rbio_stripe_page_index(rbio, rbio->nr_data, 0); 1044 1045 for (; i < rbio->nr_pages; i++) { 1046 if (rbio->stripe_pages[i]) 1047 continue; 1048 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 1049 if (!page) 1050 return -ENOMEM; 1051 rbio->stripe_pages[i] = page; 1052 } 1053 return 0; 1054 } 1055 1056 /* 1057 * add a single page from a specific stripe into our list of bios for IO 1058 * this will try to merge into existing bios if possible, and returns 1059 * zero if all went well. 1060 */ 1061 static int rbio_add_io_page(struct btrfs_raid_bio *rbio, 1062 struct bio_list *bio_list, 1063 struct page *page, 1064 int stripe_nr, 1065 unsigned long page_index, 1066 unsigned long bio_max_len) 1067 { 1068 struct bio *last = bio_list->tail; 1069 u64 last_end = 0; 1070 int ret; 1071 struct bio *bio; 1072 struct btrfs_bio_stripe *stripe; 1073 u64 disk_start; 1074 1075 stripe = &rbio->bbio->stripes[stripe_nr]; 1076 disk_start = stripe->physical + (page_index << PAGE_SHIFT); 1077 1078 /* if the device is missing, just fail this stripe */ 1079 if (!stripe->dev->bdev) 1080 return fail_rbio_index(rbio, stripe_nr); 1081 1082 /* see if we can add this page onto our existing bio */ 1083 if (last) { 1084 last_end = (u64)last->bi_iter.bi_sector << 9; 1085 last_end += last->bi_iter.bi_size; 1086 1087 /* 1088 * we can't merge these if they are from different 1089 * devices or if they are not contiguous 1090 */ 1091 if (last_end == disk_start && stripe->dev->bdev && 1092 !last->bi_status && 1093 last->bi_bdev == stripe->dev->bdev) { 1094 ret = bio_add_page(last, page, PAGE_SIZE, 0); 1095 if (ret == PAGE_SIZE) 1096 return 0; 1097 } 1098 } 1099 1100 /* put a new bio on the list */ 1101 bio = btrfs_io_bio_alloc(bio_max_len >> PAGE_SHIFT ?: 1); 1102 bio->bi_iter.bi_size = 0; 1103 bio->bi_bdev = stripe->dev->bdev; 1104 bio->bi_iter.bi_sector = disk_start >> 9; 1105 1106 bio_add_page(bio, page, PAGE_SIZE, 0); 1107 bio_list_add(bio_list, bio); 1108 return 0; 1109 } 1110 1111 /* 1112 * while we're doing the read/modify/write cycle, we could 1113 * have errors in reading pages off the disk. This checks 1114 * for errors and if we're not able to read the page it'll 1115 * trigger parity reconstruction. The rmw will be finished 1116 * after we've reconstructed the failed stripes 1117 */ 1118 static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio) 1119 { 1120 if (rbio->faila >= 0 || rbio->failb >= 0) { 1121 BUG_ON(rbio->faila == rbio->real_stripes - 1); 1122 __raid56_parity_recover(rbio); 1123 } else { 1124 finish_rmw(rbio); 1125 } 1126 } 1127 1128 /* 1129 * helper function to walk our bio list and populate the bio_pages array with 1130 * the result. This seems expensive, but it is faster than constantly 1131 * searching through the bio list as we setup the IO in finish_rmw or stripe 1132 * reconstruction. 1133 * 1134 * This must be called before you trust the answers from page_in_rbio 1135 */ 1136 static void index_rbio_pages(struct btrfs_raid_bio *rbio) 1137 { 1138 struct bio *bio; 1139 struct bio_vec *bvec; 1140 u64 start; 1141 unsigned long stripe_offset; 1142 unsigned long page_index; 1143 int i; 1144 1145 spin_lock_irq(&rbio->bio_list_lock); 1146 bio_list_for_each(bio, &rbio->bio_list) { 1147 start = (u64)bio->bi_iter.bi_sector << 9; 1148 stripe_offset = start - rbio->bbio->raid_map[0]; 1149 page_index = stripe_offset >> PAGE_SHIFT; 1150 1151 bio_for_each_segment_all(bvec, bio, i) 1152 rbio->bio_pages[page_index + i] = bvec->bv_page; 1153 } 1154 spin_unlock_irq(&rbio->bio_list_lock); 1155 } 1156 1157 /* 1158 * this is called from one of two situations. We either 1159 * have a full stripe from the higher layers, or we've read all 1160 * the missing bits off disk. 1161 * 1162 * This will calculate the parity and then send down any 1163 * changed blocks. 1164 */ 1165 static noinline void finish_rmw(struct btrfs_raid_bio *rbio) 1166 { 1167 struct btrfs_bio *bbio = rbio->bbio; 1168 void *pointers[rbio->real_stripes]; 1169 int nr_data = rbio->nr_data; 1170 int stripe; 1171 int pagenr; 1172 int p_stripe = -1; 1173 int q_stripe = -1; 1174 struct bio_list bio_list; 1175 struct bio *bio; 1176 int ret; 1177 1178 bio_list_init(&bio_list); 1179 1180 if (rbio->real_stripes - rbio->nr_data == 1) { 1181 p_stripe = rbio->real_stripes - 1; 1182 } else if (rbio->real_stripes - rbio->nr_data == 2) { 1183 p_stripe = rbio->real_stripes - 2; 1184 q_stripe = rbio->real_stripes - 1; 1185 } else { 1186 BUG(); 1187 } 1188 1189 /* at this point we either have a full stripe, 1190 * or we've read the full stripe from the drive. 1191 * recalculate the parity and write the new results. 1192 * 1193 * We're not allowed to add any new bios to the 1194 * bio list here, anyone else that wants to 1195 * change this stripe needs to do their own rmw. 1196 */ 1197 spin_lock_irq(&rbio->bio_list_lock); 1198 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); 1199 spin_unlock_irq(&rbio->bio_list_lock); 1200 1201 atomic_set(&rbio->error, 0); 1202 1203 /* 1204 * now that we've set rmw_locked, run through the 1205 * bio list one last time and map the page pointers 1206 * 1207 * We don't cache full rbios because we're assuming 1208 * the higher layers are unlikely to use this area of 1209 * the disk again soon. If they do use it again, 1210 * hopefully they will send another full bio. 1211 */ 1212 index_rbio_pages(rbio); 1213 if (!rbio_is_full(rbio)) 1214 cache_rbio_pages(rbio); 1215 else 1216 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); 1217 1218 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { 1219 struct page *p; 1220 /* first collect one page from each data stripe */ 1221 for (stripe = 0; stripe < nr_data; stripe++) { 1222 p = page_in_rbio(rbio, stripe, pagenr, 0); 1223 pointers[stripe] = kmap(p); 1224 } 1225 1226 /* then add the parity stripe */ 1227 p = rbio_pstripe_page(rbio, pagenr); 1228 SetPageUptodate(p); 1229 pointers[stripe++] = kmap(p); 1230 1231 if (q_stripe != -1) { 1232 1233 /* 1234 * raid6, add the qstripe and call the 1235 * library function to fill in our p/q 1236 */ 1237 p = rbio_qstripe_page(rbio, pagenr); 1238 SetPageUptodate(p); 1239 pointers[stripe++] = kmap(p); 1240 1241 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE, 1242 pointers); 1243 } else { 1244 /* raid5 */ 1245 memcpy(pointers[nr_data], pointers[0], PAGE_SIZE); 1246 run_xor(pointers + 1, nr_data - 1, PAGE_SIZE); 1247 } 1248 1249 1250 for (stripe = 0; stripe < rbio->real_stripes; stripe++) 1251 kunmap(page_in_rbio(rbio, stripe, pagenr, 0)); 1252 } 1253 1254 /* 1255 * time to start writing. Make bios for everything from the 1256 * higher layers (the bio_list in our rbio) and our p/q. Ignore 1257 * everything else. 1258 */ 1259 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 1260 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { 1261 struct page *page; 1262 if (stripe < rbio->nr_data) { 1263 page = page_in_rbio(rbio, stripe, pagenr, 1); 1264 if (!page) 1265 continue; 1266 } else { 1267 page = rbio_stripe_page(rbio, stripe, pagenr); 1268 } 1269 1270 ret = rbio_add_io_page(rbio, &bio_list, 1271 page, stripe, pagenr, rbio->stripe_len); 1272 if (ret) 1273 goto cleanup; 1274 } 1275 } 1276 1277 if (likely(!bbio->num_tgtdevs)) 1278 goto write_data; 1279 1280 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 1281 if (!bbio->tgtdev_map[stripe]) 1282 continue; 1283 1284 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { 1285 struct page *page; 1286 if (stripe < rbio->nr_data) { 1287 page = page_in_rbio(rbio, stripe, pagenr, 1); 1288 if (!page) 1289 continue; 1290 } else { 1291 page = rbio_stripe_page(rbio, stripe, pagenr); 1292 } 1293 1294 ret = rbio_add_io_page(rbio, &bio_list, page, 1295 rbio->bbio->tgtdev_map[stripe], 1296 pagenr, rbio->stripe_len); 1297 if (ret) 1298 goto cleanup; 1299 } 1300 } 1301 1302 write_data: 1303 atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list)); 1304 BUG_ON(atomic_read(&rbio->stripes_pending) == 0); 1305 1306 while (1) { 1307 bio = bio_list_pop(&bio_list); 1308 if (!bio) 1309 break; 1310 1311 bio->bi_private = rbio; 1312 bio->bi_end_io = raid_write_end_io; 1313 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 1314 1315 submit_bio(bio); 1316 } 1317 return; 1318 1319 cleanup: 1320 rbio_orig_end_io(rbio, -EIO); 1321 } 1322 1323 /* 1324 * helper to find the stripe number for a given bio. Used to figure out which 1325 * stripe has failed. This expects the bio to correspond to a physical disk, 1326 * so it looks up based on physical sector numbers. 1327 */ 1328 static int find_bio_stripe(struct btrfs_raid_bio *rbio, 1329 struct bio *bio) 1330 { 1331 u64 physical = bio->bi_iter.bi_sector; 1332 u64 stripe_start; 1333 int i; 1334 struct btrfs_bio_stripe *stripe; 1335 1336 physical <<= 9; 1337 1338 for (i = 0; i < rbio->bbio->num_stripes; i++) { 1339 stripe = &rbio->bbio->stripes[i]; 1340 stripe_start = stripe->physical; 1341 if (physical >= stripe_start && 1342 physical < stripe_start + rbio->stripe_len && 1343 bio->bi_bdev == stripe->dev->bdev) { 1344 return i; 1345 } 1346 } 1347 return -1; 1348 } 1349 1350 /* 1351 * helper to find the stripe number for a given 1352 * bio (before mapping). Used to figure out which stripe has 1353 * failed. This looks up based on logical block numbers. 1354 */ 1355 static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio, 1356 struct bio *bio) 1357 { 1358 u64 logical = bio->bi_iter.bi_sector; 1359 u64 stripe_start; 1360 int i; 1361 1362 logical <<= 9; 1363 1364 for (i = 0; i < rbio->nr_data; i++) { 1365 stripe_start = rbio->bbio->raid_map[i]; 1366 if (logical >= stripe_start && 1367 logical < stripe_start + rbio->stripe_len) { 1368 return i; 1369 } 1370 } 1371 return -1; 1372 } 1373 1374 /* 1375 * returns -EIO if we had too many failures 1376 */ 1377 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed) 1378 { 1379 unsigned long flags; 1380 int ret = 0; 1381 1382 spin_lock_irqsave(&rbio->bio_list_lock, flags); 1383 1384 /* we already know this stripe is bad, move on */ 1385 if (rbio->faila == failed || rbio->failb == failed) 1386 goto out; 1387 1388 if (rbio->faila == -1) { 1389 /* first failure on this rbio */ 1390 rbio->faila = failed; 1391 atomic_inc(&rbio->error); 1392 } else if (rbio->failb == -1) { 1393 /* second failure on this rbio */ 1394 rbio->failb = failed; 1395 atomic_inc(&rbio->error); 1396 } else { 1397 ret = -EIO; 1398 } 1399 out: 1400 spin_unlock_irqrestore(&rbio->bio_list_lock, flags); 1401 1402 return ret; 1403 } 1404 1405 /* 1406 * helper to fail a stripe based on a physical disk 1407 * bio. 1408 */ 1409 static int fail_bio_stripe(struct btrfs_raid_bio *rbio, 1410 struct bio *bio) 1411 { 1412 int failed = find_bio_stripe(rbio, bio); 1413 1414 if (failed < 0) 1415 return -EIO; 1416 1417 return fail_rbio_index(rbio, failed); 1418 } 1419 1420 /* 1421 * this sets each page in the bio uptodate. It should only be used on private 1422 * rbio pages, nothing that comes in from the higher layers 1423 */ 1424 static void set_bio_pages_uptodate(struct bio *bio) 1425 { 1426 struct bio_vec *bvec; 1427 int i; 1428 1429 bio_for_each_segment_all(bvec, bio, i) 1430 SetPageUptodate(bvec->bv_page); 1431 } 1432 1433 /* 1434 * end io for the read phase of the rmw cycle. All the bios here are physical 1435 * stripe bios we've read from the disk so we can recalculate the parity of the 1436 * stripe. 1437 * 1438 * This will usually kick off finish_rmw once all the bios are read in, but it 1439 * may trigger parity reconstruction if we had any errors along the way 1440 */ 1441 static void raid_rmw_end_io(struct bio *bio) 1442 { 1443 struct btrfs_raid_bio *rbio = bio->bi_private; 1444 1445 if (bio->bi_status) 1446 fail_bio_stripe(rbio, bio); 1447 else 1448 set_bio_pages_uptodate(bio); 1449 1450 bio_put(bio); 1451 1452 if (!atomic_dec_and_test(&rbio->stripes_pending)) 1453 return; 1454 1455 if (atomic_read(&rbio->error) > rbio->bbio->max_errors) 1456 goto cleanup; 1457 1458 /* 1459 * this will normally call finish_rmw to start our write 1460 * but if there are any failed stripes we'll reconstruct 1461 * from parity first 1462 */ 1463 validate_rbio_for_rmw(rbio); 1464 return; 1465 1466 cleanup: 1467 1468 rbio_orig_end_io(rbio, -EIO); 1469 } 1470 1471 static void async_rmw_stripe(struct btrfs_raid_bio *rbio) 1472 { 1473 btrfs_init_work(&rbio->work, btrfs_rmw_helper, rmw_work, NULL, NULL); 1474 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work); 1475 } 1476 1477 static void async_read_rebuild(struct btrfs_raid_bio *rbio) 1478 { 1479 btrfs_init_work(&rbio->work, btrfs_rmw_helper, 1480 read_rebuild_work, NULL, NULL); 1481 1482 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work); 1483 } 1484 1485 /* 1486 * the stripe must be locked by the caller. It will 1487 * unlock after all the writes are done 1488 */ 1489 static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio) 1490 { 1491 int bios_to_read = 0; 1492 struct bio_list bio_list; 1493 int ret; 1494 int pagenr; 1495 int stripe; 1496 struct bio *bio; 1497 1498 bio_list_init(&bio_list); 1499 1500 ret = alloc_rbio_pages(rbio); 1501 if (ret) 1502 goto cleanup; 1503 1504 index_rbio_pages(rbio); 1505 1506 atomic_set(&rbio->error, 0); 1507 /* 1508 * build a list of bios to read all the missing parts of this 1509 * stripe 1510 */ 1511 for (stripe = 0; stripe < rbio->nr_data; stripe++) { 1512 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { 1513 struct page *page; 1514 /* 1515 * we want to find all the pages missing from 1516 * the rbio and read them from the disk. If 1517 * page_in_rbio finds a page in the bio list 1518 * we don't need to read it off the stripe. 1519 */ 1520 page = page_in_rbio(rbio, stripe, pagenr, 1); 1521 if (page) 1522 continue; 1523 1524 page = rbio_stripe_page(rbio, stripe, pagenr); 1525 /* 1526 * the bio cache may have handed us an uptodate 1527 * page. If so, be happy and use it 1528 */ 1529 if (PageUptodate(page)) 1530 continue; 1531 1532 ret = rbio_add_io_page(rbio, &bio_list, page, 1533 stripe, pagenr, rbio->stripe_len); 1534 if (ret) 1535 goto cleanup; 1536 } 1537 } 1538 1539 bios_to_read = bio_list_size(&bio_list); 1540 if (!bios_to_read) { 1541 /* 1542 * this can happen if others have merged with 1543 * us, it means there is nothing left to read. 1544 * But if there are missing devices it may not be 1545 * safe to do the full stripe write yet. 1546 */ 1547 goto finish; 1548 } 1549 1550 /* 1551 * the bbio may be freed once we submit the last bio. Make sure 1552 * not to touch it after that 1553 */ 1554 atomic_set(&rbio->stripes_pending, bios_to_read); 1555 while (1) { 1556 bio = bio_list_pop(&bio_list); 1557 if (!bio) 1558 break; 1559 1560 bio->bi_private = rbio; 1561 bio->bi_end_io = raid_rmw_end_io; 1562 bio_set_op_attrs(bio, REQ_OP_READ, 0); 1563 1564 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56); 1565 1566 submit_bio(bio); 1567 } 1568 /* the actual write will happen once the reads are done */ 1569 return 0; 1570 1571 cleanup: 1572 rbio_orig_end_io(rbio, -EIO); 1573 return -EIO; 1574 1575 finish: 1576 validate_rbio_for_rmw(rbio); 1577 return 0; 1578 } 1579 1580 /* 1581 * if the upper layers pass in a full stripe, we thank them by only allocating 1582 * enough pages to hold the parity, and sending it all down quickly. 1583 */ 1584 static int full_stripe_write(struct btrfs_raid_bio *rbio) 1585 { 1586 int ret; 1587 1588 ret = alloc_rbio_parity_pages(rbio); 1589 if (ret) { 1590 __free_raid_bio(rbio); 1591 return ret; 1592 } 1593 1594 ret = lock_stripe_add(rbio); 1595 if (ret == 0) 1596 finish_rmw(rbio); 1597 return 0; 1598 } 1599 1600 /* 1601 * partial stripe writes get handed over to async helpers. 1602 * We're really hoping to merge a few more writes into this 1603 * rbio before calculating new parity 1604 */ 1605 static int partial_stripe_write(struct btrfs_raid_bio *rbio) 1606 { 1607 int ret; 1608 1609 ret = lock_stripe_add(rbio); 1610 if (ret == 0) 1611 async_rmw_stripe(rbio); 1612 return 0; 1613 } 1614 1615 /* 1616 * sometimes while we were reading from the drive to 1617 * recalculate parity, enough new bios come into create 1618 * a full stripe. So we do a check here to see if we can 1619 * go directly to finish_rmw 1620 */ 1621 static int __raid56_parity_write(struct btrfs_raid_bio *rbio) 1622 { 1623 /* head off into rmw land if we don't have a full stripe */ 1624 if (!rbio_is_full(rbio)) 1625 return partial_stripe_write(rbio); 1626 return full_stripe_write(rbio); 1627 } 1628 1629 /* 1630 * We use plugging call backs to collect full stripes. 1631 * Any time we get a partial stripe write while plugged 1632 * we collect it into a list. When the unplug comes down, 1633 * we sort the list by logical block number and merge 1634 * everything we can into the same rbios 1635 */ 1636 struct btrfs_plug_cb { 1637 struct blk_plug_cb cb; 1638 struct btrfs_fs_info *info; 1639 struct list_head rbio_list; 1640 struct btrfs_work work; 1641 }; 1642 1643 /* 1644 * rbios on the plug list are sorted for easier merging. 1645 */ 1646 static int plug_cmp(void *priv, struct list_head *a, struct list_head *b) 1647 { 1648 struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio, 1649 plug_list); 1650 struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio, 1651 plug_list); 1652 u64 a_sector = ra->bio_list.head->bi_iter.bi_sector; 1653 u64 b_sector = rb->bio_list.head->bi_iter.bi_sector; 1654 1655 if (a_sector < b_sector) 1656 return -1; 1657 if (a_sector > b_sector) 1658 return 1; 1659 return 0; 1660 } 1661 1662 static void run_plug(struct btrfs_plug_cb *plug) 1663 { 1664 struct btrfs_raid_bio *cur; 1665 struct btrfs_raid_bio *last = NULL; 1666 1667 /* 1668 * sort our plug list then try to merge 1669 * everything we can in hopes of creating full 1670 * stripes. 1671 */ 1672 list_sort(NULL, &plug->rbio_list, plug_cmp); 1673 while (!list_empty(&plug->rbio_list)) { 1674 cur = list_entry(plug->rbio_list.next, 1675 struct btrfs_raid_bio, plug_list); 1676 list_del_init(&cur->plug_list); 1677 1678 if (rbio_is_full(cur)) { 1679 /* we have a full stripe, send it down */ 1680 full_stripe_write(cur); 1681 continue; 1682 } 1683 if (last) { 1684 if (rbio_can_merge(last, cur)) { 1685 merge_rbio(last, cur); 1686 __free_raid_bio(cur); 1687 continue; 1688 1689 } 1690 __raid56_parity_write(last); 1691 } 1692 last = cur; 1693 } 1694 if (last) { 1695 __raid56_parity_write(last); 1696 } 1697 kfree(plug); 1698 } 1699 1700 /* 1701 * if the unplug comes from schedule, we have to push the 1702 * work off to a helper thread 1703 */ 1704 static void unplug_work(struct btrfs_work *work) 1705 { 1706 struct btrfs_plug_cb *plug; 1707 plug = container_of(work, struct btrfs_plug_cb, work); 1708 run_plug(plug); 1709 } 1710 1711 static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule) 1712 { 1713 struct btrfs_plug_cb *plug; 1714 plug = container_of(cb, struct btrfs_plug_cb, cb); 1715 1716 if (from_schedule) { 1717 btrfs_init_work(&plug->work, btrfs_rmw_helper, 1718 unplug_work, NULL, NULL); 1719 btrfs_queue_work(plug->info->rmw_workers, 1720 &plug->work); 1721 return; 1722 } 1723 run_plug(plug); 1724 } 1725 1726 /* 1727 * our main entry point for writes from the rest of the FS. 1728 */ 1729 int raid56_parity_write(struct btrfs_fs_info *fs_info, struct bio *bio, 1730 struct btrfs_bio *bbio, u64 stripe_len) 1731 { 1732 struct btrfs_raid_bio *rbio; 1733 struct btrfs_plug_cb *plug = NULL; 1734 struct blk_plug_cb *cb; 1735 int ret; 1736 1737 rbio = alloc_rbio(fs_info, bbio, stripe_len); 1738 if (IS_ERR(rbio)) { 1739 btrfs_put_bbio(bbio); 1740 return PTR_ERR(rbio); 1741 } 1742 bio_list_add(&rbio->bio_list, bio); 1743 rbio->bio_list_bytes = bio->bi_iter.bi_size; 1744 rbio->operation = BTRFS_RBIO_WRITE; 1745 1746 btrfs_bio_counter_inc_noblocked(fs_info); 1747 rbio->generic_bio_cnt = 1; 1748 1749 /* 1750 * don't plug on full rbios, just get them out the door 1751 * as quickly as we can 1752 */ 1753 if (rbio_is_full(rbio)) { 1754 ret = full_stripe_write(rbio); 1755 if (ret) 1756 btrfs_bio_counter_dec(fs_info); 1757 return ret; 1758 } 1759 1760 cb = blk_check_plugged(btrfs_raid_unplug, fs_info, sizeof(*plug)); 1761 if (cb) { 1762 plug = container_of(cb, struct btrfs_plug_cb, cb); 1763 if (!plug->info) { 1764 plug->info = fs_info; 1765 INIT_LIST_HEAD(&plug->rbio_list); 1766 } 1767 list_add_tail(&rbio->plug_list, &plug->rbio_list); 1768 ret = 0; 1769 } else { 1770 ret = __raid56_parity_write(rbio); 1771 if (ret) 1772 btrfs_bio_counter_dec(fs_info); 1773 } 1774 return ret; 1775 } 1776 1777 /* 1778 * all parity reconstruction happens here. We've read in everything 1779 * we can find from the drives and this does the heavy lifting of 1780 * sorting the good from the bad. 1781 */ 1782 static void __raid_recover_end_io(struct btrfs_raid_bio *rbio) 1783 { 1784 int pagenr, stripe; 1785 void **pointers; 1786 int faila = -1, failb = -1; 1787 struct page *page; 1788 int err; 1789 int i; 1790 1791 pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS); 1792 if (!pointers) { 1793 err = -ENOMEM; 1794 goto cleanup_io; 1795 } 1796 1797 faila = rbio->faila; 1798 failb = rbio->failb; 1799 1800 if (rbio->operation == BTRFS_RBIO_READ_REBUILD || 1801 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) { 1802 spin_lock_irq(&rbio->bio_list_lock); 1803 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); 1804 spin_unlock_irq(&rbio->bio_list_lock); 1805 } 1806 1807 index_rbio_pages(rbio); 1808 1809 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { 1810 /* 1811 * Now we just use bitmap to mark the horizontal stripes in 1812 * which we have data when doing parity scrub. 1813 */ 1814 if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB && 1815 !test_bit(pagenr, rbio->dbitmap)) 1816 continue; 1817 1818 /* setup our array of pointers with pages 1819 * from each stripe 1820 */ 1821 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 1822 /* 1823 * if we're rebuilding a read, we have to use 1824 * pages from the bio list 1825 */ 1826 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD || 1827 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) && 1828 (stripe == faila || stripe == failb)) { 1829 page = page_in_rbio(rbio, stripe, pagenr, 0); 1830 } else { 1831 page = rbio_stripe_page(rbio, stripe, pagenr); 1832 } 1833 pointers[stripe] = kmap(page); 1834 } 1835 1836 /* all raid6 handling here */ 1837 if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) { 1838 /* 1839 * single failure, rebuild from parity raid5 1840 * style 1841 */ 1842 if (failb < 0) { 1843 if (faila == rbio->nr_data) { 1844 /* 1845 * Just the P stripe has failed, without 1846 * a bad data or Q stripe. 1847 * TODO, we should redo the xor here. 1848 */ 1849 err = -EIO; 1850 goto cleanup; 1851 } 1852 /* 1853 * a single failure in raid6 is rebuilt 1854 * in the pstripe code below 1855 */ 1856 goto pstripe; 1857 } 1858 1859 /* make sure our ps and qs are in order */ 1860 if (faila > failb) { 1861 int tmp = failb; 1862 failb = faila; 1863 faila = tmp; 1864 } 1865 1866 /* if the q stripe is failed, do a pstripe reconstruction 1867 * from the xors. 1868 * If both the q stripe and the P stripe are failed, we're 1869 * here due to a crc mismatch and we can't give them the 1870 * data they want 1871 */ 1872 if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) { 1873 if (rbio->bbio->raid_map[faila] == 1874 RAID5_P_STRIPE) { 1875 err = -EIO; 1876 goto cleanup; 1877 } 1878 /* 1879 * otherwise we have one bad data stripe and 1880 * a good P stripe. raid5! 1881 */ 1882 goto pstripe; 1883 } 1884 1885 if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) { 1886 raid6_datap_recov(rbio->real_stripes, 1887 PAGE_SIZE, faila, pointers); 1888 } else { 1889 raid6_2data_recov(rbio->real_stripes, 1890 PAGE_SIZE, faila, failb, 1891 pointers); 1892 } 1893 } else { 1894 void *p; 1895 1896 /* rebuild from P stripe here (raid5 or raid6) */ 1897 BUG_ON(failb != -1); 1898 pstripe: 1899 /* Copy parity block into failed block to start with */ 1900 memcpy(pointers[faila], 1901 pointers[rbio->nr_data], 1902 PAGE_SIZE); 1903 1904 /* rearrange the pointer array */ 1905 p = pointers[faila]; 1906 for (stripe = faila; stripe < rbio->nr_data - 1; stripe++) 1907 pointers[stripe] = pointers[stripe + 1]; 1908 pointers[rbio->nr_data - 1] = p; 1909 1910 /* xor in the rest */ 1911 run_xor(pointers, rbio->nr_data - 1, PAGE_SIZE); 1912 } 1913 /* if we're doing this rebuild as part of an rmw, go through 1914 * and set all of our private rbio pages in the 1915 * failed stripes as uptodate. This way finish_rmw will 1916 * know they can be trusted. If this was a read reconstruction, 1917 * other endio functions will fiddle the uptodate bits 1918 */ 1919 if (rbio->operation == BTRFS_RBIO_WRITE) { 1920 for (i = 0; i < rbio->stripe_npages; i++) { 1921 if (faila != -1) { 1922 page = rbio_stripe_page(rbio, faila, i); 1923 SetPageUptodate(page); 1924 } 1925 if (failb != -1) { 1926 page = rbio_stripe_page(rbio, failb, i); 1927 SetPageUptodate(page); 1928 } 1929 } 1930 } 1931 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 1932 /* 1933 * if we're rebuilding a read, we have to use 1934 * pages from the bio list 1935 */ 1936 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD || 1937 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) && 1938 (stripe == faila || stripe == failb)) { 1939 page = page_in_rbio(rbio, stripe, pagenr, 0); 1940 } else { 1941 page = rbio_stripe_page(rbio, stripe, pagenr); 1942 } 1943 kunmap(page); 1944 } 1945 } 1946 1947 err = 0; 1948 cleanup: 1949 kfree(pointers); 1950 1951 cleanup_io: 1952 if (rbio->operation == BTRFS_RBIO_READ_REBUILD) { 1953 if (err == 0) 1954 cache_rbio_pages(rbio); 1955 else 1956 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); 1957 1958 rbio_orig_end_io(rbio, err); 1959 } else if (rbio->operation == BTRFS_RBIO_REBUILD_MISSING) { 1960 rbio_orig_end_io(rbio, err); 1961 } else if (err == 0) { 1962 rbio->faila = -1; 1963 rbio->failb = -1; 1964 1965 if (rbio->operation == BTRFS_RBIO_WRITE) 1966 finish_rmw(rbio); 1967 else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) 1968 finish_parity_scrub(rbio, 0); 1969 else 1970 BUG(); 1971 } else { 1972 rbio_orig_end_io(rbio, err); 1973 } 1974 } 1975 1976 /* 1977 * This is called only for stripes we've read from disk to 1978 * reconstruct the parity. 1979 */ 1980 static void raid_recover_end_io(struct bio *bio) 1981 { 1982 struct btrfs_raid_bio *rbio = bio->bi_private; 1983 1984 /* 1985 * we only read stripe pages off the disk, set them 1986 * up to date if there were no errors 1987 */ 1988 if (bio->bi_status) 1989 fail_bio_stripe(rbio, bio); 1990 else 1991 set_bio_pages_uptodate(bio); 1992 bio_put(bio); 1993 1994 if (!atomic_dec_and_test(&rbio->stripes_pending)) 1995 return; 1996 1997 if (atomic_read(&rbio->error) > rbio->bbio->max_errors) 1998 rbio_orig_end_io(rbio, -EIO); 1999 else 2000 __raid_recover_end_io(rbio); 2001 } 2002 2003 /* 2004 * reads everything we need off the disk to reconstruct 2005 * the parity. endio handlers trigger final reconstruction 2006 * when the IO is done. 2007 * 2008 * This is used both for reads from the higher layers and for 2009 * parity construction required to finish a rmw cycle. 2010 */ 2011 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio) 2012 { 2013 int bios_to_read = 0; 2014 struct bio_list bio_list; 2015 int ret; 2016 int pagenr; 2017 int stripe; 2018 struct bio *bio; 2019 2020 bio_list_init(&bio_list); 2021 2022 ret = alloc_rbio_pages(rbio); 2023 if (ret) 2024 goto cleanup; 2025 2026 atomic_set(&rbio->error, 0); 2027 2028 /* 2029 * read everything that hasn't failed. Thanks to the 2030 * stripe cache, it is possible that some or all of these 2031 * pages are going to be uptodate. 2032 */ 2033 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 2034 if (rbio->faila == stripe || rbio->failb == stripe) { 2035 atomic_inc(&rbio->error); 2036 continue; 2037 } 2038 2039 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { 2040 struct page *p; 2041 2042 /* 2043 * the rmw code may have already read this 2044 * page in 2045 */ 2046 p = rbio_stripe_page(rbio, stripe, pagenr); 2047 if (PageUptodate(p)) 2048 continue; 2049 2050 ret = rbio_add_io_page(rbio, &bio_list, 2051 rbio_stripe_page(rbio, stripe, pagenr), 2052 stripe, pagenr, rbio->stripe_len); 2053 if (ret < 0) 2054 goto cleanup; 2055 } 2056 } 2057 2058 bios_to_read = bio_list_size(&bio_list); 2059 if (!bios_to_read) { 2060 /* 2061 * we might have no bios to read just because the pages 2062 * were up to date, or we might have no bios to read because 2063 * the devices were gone. 2064 */ 2065 if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) { 2066 __raid_recover_end_io(rbio); 2067 goto out; 2068 } else { 2069 goto cleanup; 2070 } 2071 } 2072 2073 /* 2074 * the bbio may be freed once we submit the last bio. Make sure 2075 * not to touch it after that 2076 */ 2077 atomic_set(&rbio->stripes_pending, bios_to_read); 2078 while (1) { 2079 bio = bio_list_pop(&bio_list); 2080 if (!bio) 2081 break; 2082 2083 bio->bi_private = rbio; 2084 bio->bi_end_io = raid_recover_end_io; 2085 bio_set_op_attrs(bio, REQ_OP_READ, 0); 2086 2087 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56); 2088 2089 submit_bio(bio); 2090 } 2091 out: 2092 return 0; 2093 2094 cleanup: 2095 if (rbio->operation == BTRFS_RBIO_READ_REBUILD || 2096 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) 2097 rbio_orig_end_io(rbio, -EIO); 2098 return -EIO; 2099 } 2100 2101 /* 2102 * the main entry point for reads from the higher layers. This 2103 * is really only called when the normal read path had a failure, 2104 * so we assume the bio they send down corresponds to a failed part 2105 * of the drive. 2106 */ 2107 int raid56_parity_recover(struct btrfs_fs_info *fs_info, struct bio *bio, 2108 struct btrfs_bio *bbio, u64 stripe_len, 2109 int mirror_num, int generic_io) 2110 { 2111 struct btrfs_raid_bio *rbio; 2112 int ret; 2113 2114 if (generic_io) { 2115 ASSERT(bbio->mirror_num == mirror_num); 2116 btrfs_io_bio(bio)->mirror_num = mirror_num; 2117 } 2118 2119 rbio = alloc_rbio(fs_info, bbio, stripe_len); 2120 if (IS_ERR(rbio)) { 2121 if (generic_io) 2122 btrfs_put_bbio(bbio); 2123 return PTR_ERR(rbio); 2124 } 2125 2126 rbio->operation = BTRFS_RBIO_READ_REBUILD; 2127 bio_list_add(&rbio->bio_list, bio); 2128 rbio->bio_list_bytes = bio->bi_iter.bi_size; 2129 2130 rbio->faila = find_logical_bio_stripe(rbio, bio); 2131 if (rbio->faila == -1) { 2132 btrfs_warn(fs_info, 2133 "%s could not find the bad stripe in raid56 so that we cannot recover any more (bio has logical %llu len %llu, bbio has map_type %llu)", 2134 __func__, (u64)bio->bi_iter.bi_sector << 9, 2135 (u64)bio->bi_iter.bi_size, bbio->map_type); 2136 if (generic_io) 2137 btrfs_put_bbio(bbio); 2138 kfree(rbio); 2139 return -EIO; 2140 } 2141 2142 if (generic_io) { 2143 btrfs_bio_counter_inc_noblocked(fs_info); 2144 rbio->generic_bio_cnt = 1; 2145 } else { 2146 btrfs_get_bbio(bbio); 2147 } 2148 2149 /* 2150 * reconstruct from the q stripe if they are 2151 * asking for mirror 3 2152 */ 2153 if (mirror_num == 3) 2154 rbio->failb = rbio->real_stripes - 2; 2155 2156 ret = lock_stripe_add(rbio); 2157 2158 /* 2159 * __raid56_parity_recover will end the bio with 2160 * any errors it hits. We don't want to return 2161 * its error value up the stack because our caller 2162 * will end up calling bio_endio with any nonzero 2163 * return 2164 */ 2165 if (ret == 0) 2166 __raid56_parity_recover(rbio); 2167 /* 2168 * our rbio has been added to the list of 2169 * rbios that will be handled after the 2170 * currently lock owner is done 2171 */ 2172 return 0; 2173 2174 } 2175 2176 static void rmw_work(struct btrfs_work *work) 2177 { 2178 struct btrfs_raid_bio *rbio; 2179 2180 rbio = container_of(work, struct btrfs_raid_bio, work); 2181 raid56_rmw_stripe(rbio); 2182 } 2183 2184 static void read_rebuild_work(struct btrfs_work *work) 2185 { 2186 struct btrfs_raid_bio *rbio; 2187 2188 rbio = container_of(work, struct btrfs_raid_bio, work); 2189 __raid56_parity_recover(rbio); 2190 } 2191 2192 /* 2193 * The following code is used to scrub/replace the parity stripe 2194 * 2195 * Caller must have already increased bio_counter for getting @bbio. 2196 * 2197 * Note: We need make sure all the pages that add into the scrub/replace 2198 * raid bio are correct and not be changed during the scrub/replace. That 2199 * is those pages just hold metadata or file data with checksum. 2200 */ 2201 2202 struct btrfs_raid_bio * 2203 raid56_parity_alloc_scrub_rbio(struct btrfs_fs_info *fs_info, struct bio *bio, 2204 struct btrfs_bio *bbio, u64 stripe_len, 2205 struct btrfs_device *scrub_dev, 2206 unsigned long *dbitmap, int stripe_nsectors) 2207 { 2208 struct btrfs_raid_bio *rbio; 2209 int i; 2210 2211 rbio = alloc_rbio(fs_info, bbio, stripe_len); 2212 if (IS_ERR(rbio)) 2213 return NULL; 2214 bio_list_add(&rbio->bio_list, bio); 2215 /* 2216 * This is a special bio which is used to hold the completion handler 2217 * and make the scrub rbio is similar to the other types 2218 */ 2219 ASSERT(!bio->bi_iter.bi_size); 2220 rbio->operation = BTRFS_RBIO_PARITY_SCRUB; 2221 2222 for (i = 0; i < rbio->real_stripes; i++) { 2223 if (bbio->stripes[i].dev == scrub_dev) { 2224 rbio->scrubp = i; 2225 break; 2226 } 2227 } 2228 2229 /* Now we just support the sectorsize equals to page size */ 2230 ASSERT(fs_info->sectorsize == PAGE_SIZE); 2231 ASSERT(rbio->stripe_npages == stripe_nsectors); 2232 bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors); 2233 2234 /* 2235 * We have already increased bio_counter when getting bbio, record it 2236 * so we can free it at rbio_orig_end_io(). 2237 */ 2238 rbio->generic_bio_cnt = 1; 2239 2240 return rbio; 2241 } 2242 2243 /* Used for both parity scrub and missing. */ 2244 void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page, 2245 u64 logical) 2246 { 2247 int stripe_offset; 2248 int index; 2249 2250 ASSERT(logical >= rbio->bbio->raid_map[0]); 2251 ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] + 2252 rbio->stripe_len * rbio->nr_data); 2253 stripe_offset = (int)(logical - rbio->bbio->raid_map[0]); 2254 index = stripe_offset >> PAGE_SHIFT; 2255 rbio->bio_pages[index] = page; 2256 } 2257 2258 /* 2259 * We just scrub the parity that we have correct data on the same horizontal, 2260 * so we needn't allocate all pages for all the stripes. 2261 */ 2262 static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio) 2263 { 2264 int i; 2265 int bit; 2266 int index; 2267 struct page *page; 2268 2269 for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) { 2270 for (i = 0; i < rbio->real_stripes; i++) { 2271 index = i * rbio->stripe_npages + bit; 2272 if (rbio->stripe_pages[index]) 2273 continue; 2274 2275 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 2276 if (!page) 2277 return -ENOMEM; 2278 rbio->stripe_pages[index] = page; 2279 } 2280 } 2281 return 0; 2282 } 2283 2284 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio, 2285 int need_check) 2286 { 2287 struct btrfs_bio *bbio = rbio->bbio; 2288 void *pointers[rbio->real_stripes]; 2289 DECLARE_BITMAP(pbitmap, rbio->stripe_npages); 2290 int nr_data = rbio->nr_data; 2291 int stripe; 2292 int pagenr; 2293 int p_stripe = -1; 2294 int q_stripe = -1; 2295 struct page *p_page = NULL; 2296 struct page *q_page = NULL; 2297 struct bio_list bio_list; 2298 struct bio *bio; 2299 int is_replace = 0; 2300 int ret; 2301 2302 bio_list_init(&bio_list); 2303 2304 if (rbio->real_stripes - rbio->nr_data == 1) { 2305 p_stripe = rbio->real_stripes - 1; 2306 } else if (rbio->real_stripes - rbio->nr_data == 2) { 2307 p_stripe = rbio->real_stripes - 2; 2308 q_stripe = rbio->real_stripes - 1; 2309 } else { 2310 BUG(); 2311 } 2312 2313 if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) { 2314 is_replace = 1; 2315 bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages); 2316 } 2317 2318 /* 2319 * Because the higher layers(scrubber) are unlikely to 2320 * use this area of the disk again soon, so don't cache 2321 * it. 2322 */ 2323 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); 2324 2325 if (!need_check) 2326 goto writeback; 2327 2328 p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 2329 if (!p_page) 2330 goto cleanup; 2331 SetPageUptodate(p_page); 2332 2333 if (q_stripe != -1) { 2334 q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 2335 if (!q_page) { 2336 __free_page(p_page); 2337 goto cleanup; 2338 } 2339 SetPageUptodate(q_page); 2340 } 2341 2342 atomic_set(&rbio->error, 0); 2343 2344 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) { 2345 struct page *p; 2346 void *parity; 2347 /* first collect one page from each data stripe */ 2348 for (stripe = 0; stripe < nr_data; stripe++) { 2349 p = page_in_rbio(rbio, stripe, pagenr, 0); 2350 pointers[stripe] = kmap(p); 2351 } 2352 2353 /* then add the parity stripe */ 2354 pointers[stripe++] = kmap(p_page); 2355 2356 if (q_stripe != -1) { 2357 2358 /* 2359 * raid6, add the qstripe and call the 2360 * library function to fill in our p/q 2361 */ 2362 pointers[stripe++] = kmap(q_page); 2363 2364 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE, 2365 pointers); 2366 } else { 2367 /* raid5 */ 2368 memcpy(pointers[nr_data], pointers[0], PAGE_SIZE); 2369 run_xor(pointers + 1, nr_data - 1, PAGE_SIZE); 2370 } 2371 2372 /* Check scrubbing parity and repair it */ 2373 p = rbio_stripe_page(rbio, rbio->scrubp, pagenr); 2374 parity = kmap(p); 2375 if (memcmp(parity, pointers[rbio->scrubp], PAGE_SIZE)) 2376 memcpy(parity, pointers[rbio->scrubp], PAGE_SIZE); 2377 else 2378 /* Parity is right, needn't writeback */ 2379 bitmap_clear(rbio->dbitmap, pagenr, 1); 2380 kunmap(p); 2381 2382 for (stripe = 0; stripe < rbio->real_stripes; stripe++) 2383 kunmap(page_in_rbio(rbio, stripe, pagenr, 0)); 2384 } 2385 2386 __free_page(p_page); 2387 if (q_page) 2388 __free_page(q_page); 2389 2390 writeback: 2391 /* 2392 * time to start writing. Make bios for everything from the 2393 * higher layers (the bio_list in our rbio) and our p/q. Ignore 2394 * everything else. 2395 */ 2396 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) { 2397 struct page *page; 2398 2399 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr); 2400 ret = rbio_add_io_page(rbio, &bio_list, 2401 page, rbio->scrubp, pagenr, rbio->stripe_len); 2402 if (ret) 2403 goto cleanup; 2404 } 2405 2406 if (!is_replace) 2407 goto submit_write; 2408 2409 for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) { 2410 struct page *page; 2411 2412 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr); 2413 ret = rbio_add_io_page(rbio, &bio_list, page, 2414 bbio->tgtdev_map[rbio->scrubp], 2415 pagenr, rbio->stripe_len); 2416 if (ret) 2417 goto cleanup; 2418 } 2419 2420 submit_write: 2421 nr_data = bio_list_size(&bio_list); 2422 if (!nr_data) { 2423 /* Every parity is right */ 2424 rbio_orig_end_io(rbio, 0); 2425 return; 2426 } 2427 2428 atomic_set(&rbio->stripes_pending, nr_data); 2429 2430 while (1) { 2431 bio = bio_list_pop(&bio_list); 2432 if (!bio) 2433 break; 2434 2435 bio->bi_private = rbio; 2436 bio->bi_end_io = raid_write_end_io; 2437 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 2438 2439 submit_bio(bio); 2440 } 2441 return; 2442 2443 cleanup: 2444 rbio_orig_end_io(rbio, -EIO); 2445 } 2446 2447 static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe) 2448 { 2449 if (stripe >= 0 && stripe < rbio->nr_data) 2450 return 1; 2451 return 0; 2452 } 2453 2454 /* 2455 * While we're doing the parity check and repair, we could have errors 2456 * in reading pages off the disk. This checks for errors and if we're 2457 * not able to read the page it'll trigger parity reconstruction. The 2458 * parity scrub will be finished after we've reconstructed the failed 2459 * stripes 2460 */ 2461 static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio) 2462 { 2463 if (atomic_read(&rbio->error) > rbio->bbio->max_errors) 2464 goto cleanup; 2465 2466 if (rbio->faila >= 0 || rbio->failb >= 0) { 2467 int dfail = 0, failp = -1; 2468 2469 if (is_data_stripe(rbio, rbio->faila)) 2470 dfail++; 2471 else if (is_parity_stripe(rbio->faila)) 2472 failp = rbio->faila; 2473 2474 if (is_data_stripe(rbio, rbio->failb)) 2475 dfail++; 2476 else if (is_parity_stripe(rbio->failb)) 2477 failp = rbio->failb; 2478 2479 /* 2480 * Because we can not use a scrubbing parity to repair 2481 * the data, so the capability of the repair is declined. 2482 * (In the case of RAID5, we can not repair anything) 2483 */ 2484 if (dfail > rbio->bbio->max_errors - 1) 2485 goto cleanup; 2486 2487 /* 2488 * If all data is good, only parity is correctly, just 2489 * repair the parity. 2490 */ 2491 if (dfail == 0) { 2492 finish_parity_scrub(rbio, 0); 2493 return; 2494 } 2495 2496 /* 2497 * Here means we got one corrupted data stripe and one 2498 * corrupted parity on RAID6, if the corrupted parity 2499 * is scrubbing parity, luckily, use the other one to repair 2500 * the data, or we can not repair the data stripe. 2501 */ 2502 if (failp != rbio->scrubp) 2503 goto cleanup; 2504 2505 __raid_recover_end_io(rbio); 2506 } else { 2507 finish_parity_scrub(rbio, 1); 2508 } 2509 return; 2510 2511 cleanup: 2512 rbio_orig_end_io(rbio, -EIO); 2513 } 2514 2515 /* 2516 * end io for the read phase of the rmw cycle. All the bios here are physical 2517 * stripe bios we've read from the disk so we can recalculate the parity of the 2518 * stripe. 2519 * 2520 * This will usually kick off finish_rmw once all the bios are read in, but it 2521 * may trigger parity reconstruction if we had any errors along the way 2522 */ 2523 static void raid56_parity_scrub_end_io(struct bio *bio) 2524 { 2525 struct btrfs_raid_bio *rbio = bio->bi_private; 2526 2527 if (bio->bi_status) 2528 fail_bio_stripe(rbio, bio); 2529 else 2530 set_bio_pages_uptodate(bio); 2531 2532 bio_put(bio); 2533 2534 if (!atomic_dec_and_test(&rbio->stripes_pending)) 2535 return; 2536 2537 /* 2538 * this will normally call finish_rmw to start our write 2539 * but if there are any failed stripes we'll reconstruct 2540 * from parity first 2541 */ 2542 validate_rbio_for_parity_scrub(rbio); 2543 } 2544 2545 static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio) 2546 { 2547 int bios_to_read = 0; 2548 struct bio_list bio_list; 2549 int ret; 2550 int pagenr; 2551 int stripe; 2552 struct bio *bio; 2553 2554 ret = alloc_rbio_essential_pages(rbio); 2555 if (ret) 2556 goto cleanup; 2557 2558 bio_list_init(&bio_list); 2559 2560 atomic_set(&rbio->error, 0); 2561 /* 2562 * build a list of bios to read all the missing parts of this 2563 * stripe 2564 */ 2565 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 2566 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) { 2567 struct page *page; 2568 /* 2569 * we want to find all the pages missing from 2570 * the rbio and read them from the disk. If 2571 * page_in_rbio finds a page in the bio list 2572 * we don't need to read it off the stripe. 2573 */ 2574 page = page_in_rbio(rbio, stripe, pagenr, 1); 2575 if (page) 2576 continue; 2577 2578 page = rbio_stripe_page(rbio, stripe, pagenr); 2579 /* 2580 * the bio cache may have handed us an uptodate 2581 * page. If so, be happy and use it 2582 */ 2583 if (PageUptodate(page)) 2584 continue; 2585 2586 ret = rbio_add_io_page(rbio, &bio_list, page, 2587 stripe, pagenr, rbio->stripe_len); 2588 if (ret) 2589 goto cleanup; 2590 } 2591 } 2592 2593 bios_to_read = bio_list_size(&bio_list); 2594 if (!bios_to_read) { 2595 /* 2596 * this can happen if others have merged with 2597 * us, it means there is nothing left to read. 2598 * But if there are missing devices it may not be 2599 * safe to do the full stripe write yet. 2600 */ 2601 goto finish; 2602 } 2603 2604 /* 2605 * the bbio may be freed once we submit the last bio. Make sure 2606 * not to touch it after that 2607 */ 2608 atomic_set(&rbio->stripes_pending, bios_to_read); 2609 while (1) { 2610 bio = bio_list_pop(&bio_list); 2611 if (!bio) 2612 break; 2613 2614 bio->bi_private = rbio; 2615 bio->bi_end_io = raid56_parity_scrub_end_io; 2616 bio_set_op_attrs(bio, REQ_OP_READ, 0); 2617 2618 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56); 2619 2620 submit_bio(bio); 2621 } 2622 /* the actual write will happen once the reads are done */ 2623 return; 2624 2625 cleanup: 2626 rbio_orig_end_io(rbio, -EIO); 2627 return; 2628 2629 finish: 2630 validate_rbio_for_parity_scrub(rbio); 2631 } 2632 2633 static void scrub_parity_work(struct btrfs_work *work) 2634 { 2635 struct btrfs_raid_bio *rbio; 2636 2637 rbio = container_of(work, struct btrfs_raid_bio, work); 2638 raid56_parity_scrub_stripe(rbio); 2639 } 2640 2641 static void async_scrub_parity(struct btrfs_raid_bio *rbio) 2642 { 2643 btrfs_init_work(&rbio->work, btrfs_rmw_helper, 2644 scrub_parity_work, NULL, NULL); 2645 2646 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work); 2647 } 2648 2649 void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio) 2650 { 2651 if (!lock_stripe_add(rbio)) 2652 async_scrub_parity(rbio); 2653 } 2654 2655 /* The following code is used for dev replace of a missing RAID 5/6 device. */ 2656 2657 struct btrfs_raid_bio * 2658 raid56_alloc_missing_rbio(struct btrfs_fs_info *fs_info, struct bio *bio, 2659 struct btrfs_bio *bbio, u64 length) 2660 { 2661 struct btrfs_raid_bio *rbio; 2662 2663 rbio = alloc_rbio(fs_info, bbio, length); 2664 if (IS_ERR(rbio)) 2665 return NULL; 2666 2667 rbio->operation = BTRFS_RBIO_REBUILD_MISSING; 2668 bio_list_add(&rbio->bio_list, bio); 2669 /* 2670 * This is a special bio which is used to hold the completion handler 2671 * and make the scrub rbio is similar to the other types 2672 */ 2673 ASSERT(!bio->bi_iter.bi_size); 2674 2675 rbio->faila = find_logical_bio_stripe(rbio, bio); 2676 if (rbio->faila == -1) { 2677 BUG(); 2678 kfree(rbio); 2679 return NULL; 2680 } 2681 2682 /* 2683 * When we get bbio, we have already increased bio_counter, record it 2684 * so we can free it at rbio_orig_end_io() 2685 */ 2686 rbio->generic_bio_cnt = 1; 2687 2688 return rbio; 2689 } 2690 2691 static void missing_raid56_work(struct btrfs_work *work) 2692 { 2693 struct btrfs_raid_bio *rbio; 2694 2695 rbio = container_of(work, struct btrfs_raid_bio, work); 2696 __raid56_parity_recover(rbio); 2697 } 2698 2699 static void async_missing_raid56(struct btrfs_raid_bio *rbio) 2700 { 2701 btrfs_init_work(&rbio->work, btrfs_rmw_helper, 2702 missing_raid56_work, NULL, NULL); 2703 2704 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work); 2705 } 2706 2707 void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio) 2708 { 2709 if (!lock_stripe_add(rbio)) 2710 async_missing_raid56(rbio); 2711 } 2712