1 /* 2 * Copyright (C) 2012 Fusion-io All rights reserved. 3 * Copyright (C) 2012 Intel Corp. All rights reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public 7 * License v2 as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 12 * General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public 15 * License along with this program; if not, write to the 16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 17 * Boston, MA 021110-1307, USA. 18 */ 19 #include <linux/sched.h> 20 #include <linux/wait.h> 21 #include <linux/bio.h> 22 #include <linux/slab.h> 23 #include <linux/buffer_head.h> 24 #include <linux/blkdev.h> 25 #include <linux/random.h> 26 #include <linux/iocontext.h> 27 #include <linux/capability.h> 28 #include <linux/ratelimit.h> 29 #include <linux/kthread.h> 30 #include <linux/raid/pq.h> 31 #include <linux/hash.h> 32 #include <linux/list_sort.h> 33 #include <linux/raid/xor.h> 34 #include <linux/vmalloc.h> 35 #include <asm/div64.h> 36 #include "ctree.h" 37 #include "extent_map.h" 38 #include "disk-io.h" 39 #include "transaction.h" 40 #include "print-tree.h" 41 #include "volumes.h" 42 #include "raid56.h" 43 #include "async-thread.h" 44 #include "check-integrity.h" 45 #include "rcu-string.h" 46 47 /* set when additional merges to this rbio are not allowed */ 48 #define RBIO_RMW_LOCKED_BIT 1 49 50 /* 51 * set when this rbio is sitting in the hash, but it is just a cache 52 * of past RMW 53 */ 54 #define RBIO_CACHE_BIT 2 55 56 /* 57 * set when it is safe to trust the stripe_pages for caching 58 */ 59 #define RBIO_CACHE_READY_BIT 3 60 61 #define RBIO_CACHE_SIZE 1024 62 63 enum btrfs_rbio_ops { 64 BTRFS_RBIO_WRITE, 65 BTRFS_RBIO_READ_REBUILD, 66 BTRFS_RBIO_PARITY_SCRUB, 67 BTRFS_RBIO_REBUILD_MISSING, 68 }; 69 70 struct btrfs_raid_bio { 71 struct btrfs_fs_info *fs_info; 72 struct btrfs_bio *bbio; 73 74 /* while we're doing rmw on a stripe 75 * we put it into a hash table so we can 76 * lock the stripe and merge more rbios 77 * into it. 78 */ 79 struct list_head hash_list; 80 81 /* 82 * LRU list for the stripe cache 83 */ 84 struct list_head stripe_cache; 85 86 /* 87 * for scheduling work in the helper threads 88 */ 89 struct btrfs_work work; 90 91 /* 92 * bio list and bio_list_lock are used 93 * to add more bios into the stripe 94 * in hopes of avoiding the full rmw 95 */ 96 struct bio_list bio_list; 97 spinlock_t bio_list_lock; 98 99 /* also protected by the bio_list_lock, the 100 * plug list is used by the plugging code 101 * to collect partial bios while plugged. The 102 * stripe locking code also uses it to hand off 103 * the stripe lock to the next pending IO 104 */ 105 struct list_head plug_list; 106 107 /* 108 * flags that tell us if it is safe to 109 * merge with this bio 110 */ 111 unsigned long flags; 112 113 /* size of each individual stripe on disk */ 114 int stripe_len; 115 116 /* number of data stripes (no p/q) */ 117 int nr_data; 118 119 int real_stripes; 120 121 int stripe_npages; 122 /* 123 * set if we're doing a parity rebuild 124 * for a read from higher up, which is handled 125 * differently from a parity rebuild as part of 126 * rmw 127 */ 128 enum btrfs_rbio_ops operation; 129 130 /* first bad stripe */ 131 int faila; 132 133 /* second bad stripe (for raid6 use) */ 134 int failb; 135 136 int scrubp; 137 /* 138 * number of pages needed to represent the full 139 * stripe 140 */ 141 int nr_pages; 142 143 /* 144 * size of all the bios in the bio_list. This 145 * helps us decide if the rbio maps to a full 146 * stripe or not 147 */ 148 int bio_list_bytes; 149 150 int generic_bio_cnt; 151 152 atomic_t refs; 153 154 atomic_t stripes_pending; 155 156 atomic_t error; 157 /* 158 * these are two arrays of pointers. We allocate the 159 * rbio big enough to hold them both and setup their 160 * locations when the rbio is allocated 161 */ 162 163 /* pointers to pages that we allocated for 164 * reading/writing stripes directly from the disk (including P/Q) 165 */ 166 struct page **stripe_pages; 167 168 /* 169 * pointers to the pages in the bio_list. Stored 170 * here for faster lookup 171 */ 172 struct page **bio_pages; 173 174 /* 175 * bitmap to record which horizontal stripe has data 176 */ 177 unsigned long *dbitmap; 178 }; 179 180 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio); 181 static noinline void finish_rmw(struct btrfs_raid_bio *rbio); 182 static void rmw_work(struct btrfs_work *work); 183 static void read_rebuild_work(struct btrfs_work *work); 184 static void async_rmw_stripe(struct btrfs_raid_bio *rbio); 185 static void async_read_rebuild(struct btrfs_raid_bio *rbio); 186 static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio); 187 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed); 188 static void __free_raid_bio(struct btrfs_raid_bio *rbio); 189 static void index_rbio_pages(struct btrfs_raid_bio *rbio); 190 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio); 191 192 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio, 193 int need_check); 194 static void async_scrub_parity(struct btrfs_raid_bio *rbio); 195 196 /* 197 * the stripe hash table is used for locking, and to collect 198 * bios in hopes of making a full stripe 199 */ 200 int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info) 201 { 202 struct btrfs_stripe_hash_table *table; 203 struct btrfs_stripe_hash_table *x; 204 struct btrfs_stripe_hash *cur; 205 struct btrfs_stripe_hash *h; 206 int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS; 207 int i; 208 int table_size; 209 210 if (info->stripe_hash_table) 211 return 0; 212 213 /* 214 * The table is large, starting with order 4 and can go as high as 215 * order 7 in case lock debugging is turned on. 216 * 217 * Try harder to allocate and fallback to vmalloc to lower the chance 218 * of a failing mount. 219 */ 220 table_size = sizeof(*table) + sizeof(*h) * num_entries; 221 table = kzalloc(table_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 222 if (!table) { 223 table = vzalloc(table_size); 224 if (!table) 225 return -ENOMEM; 226 } 227 228 spin_lock_init(&table->cache_lock); 229 INIT_LIST_HEAD(&table->stripe_cache); 230 231 h = table->table; 232 233 for (i = 0; i < num_entries; i++) { 234 cur = h + i; 235 INIT_LIST_HEAD(&cur->hash_list); 236 spin_lock_init(&cur->lock); 237 init_waitqueue_head(&cur->wait); 238 } 239 240 x = cmpxchg(&info->stripe_hash_table, NULL, table); 241 if (x) 242 kvfree(x); 243 return 0; 244 } 245 246 /* 247 * caching an rbio means to copy anything from the 248 * bio_pages array into the stripe_pages array. We 249 * use the page uptodate bit in the stripe cache array 250 * to indicate if it has valid data 251 * 252 * once the caching is done, we set the cache ready 253 * bit. 254 */ 255 static void cache_rbio_pages(struct btrfs_raid_bio *rbio) 256 { 257 int i; 258 char *s; 259 char *d; 260 int ret; 261 262 ret = alloc_rbio_pages(rbio); 263 if (ret) 264 return; 265 266 for (i = 0; i < rbio->nr_pages; i++) { 267 if (!rbio->bio_pages[i]) 268 continue; 269 270 s = kmap(rbio->bio_pages[i]); 271 d = kmap(rbio->stripe_pages[i]); 272 273 memcpy(d, s, PAGE_CACHE_SIZE); 274 275 kunmap(rbio->bio_pages[i]); 276 kunmap(rbio->stripe_pages[i]); 277 SetPageUptodate(rbio->stripe_pages[i]); 278 } 279 set_bit(RBIO_CACHE_READY_BIT, &rbio->flags); 280 } 281 282 /* 283 * we hash on the first logical address of the stripe 284 */ 285 static int rbio_bucket(struct btrfs_raid_bio *rbio) 286 { 287 u64 num = rbio->bbio->raid_map[0]; 288 289 /* 290 * we shift down quite a bit. We're using byte 291 * addressing, and most of the lower bits are zeros. 292 * This tends to upset hash_64, and it consistently 293 * returns just one or two different values. 294 * 295 * shifting off the lower bits fixes things. 296 */ 297 return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS); 298 } 299 300 /* 301 * stealing an rbio means taking all the uptodate pages from the stripe 302 * array in the source rbio and putting them into the destination rbio 303 */ 304 static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest) 305 { 306 int i; 307 struct page *s; 308 struct page *d; 309 310 if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags)) 311 return; 312 313 for (i = 0; i < dest->nr_pages; i++) { 314 s = src->stripe_pages[i]; 315 if (!s || !PageUptodate(s)) { 316 continue; 317 } 318 319 d = dest->stripe_pages[i]; 320 if (d) 321 __free_page(d); 322 323 dest->stripe_pages[i] = s; 324 src->stripe_pages[i] = NULL; 325 } 326 } 327 328 /* 329 * merging means we take the bio_list from the victim and 330 * splice it into the destination. The victim should 331 * be discarded afterwards. 332 * 333 * must be called with dest->rbio_list_lock held 334 */ 335 static void merge_rbio(struct btrfs_raid_bio *dest, 336 struct btrfs_raid_bio *victim) 337 { 338 bio_list_merge(&dest->bio_list, &victim->bio_list); 339 dest->bio_list_bytes += victim->bio_list_bytes; 340 dest->generic_bio_cnt += victim->generic_bio_cnt; 341 bio_list_init(&victim->bio_list); 342 } 343 344 /* 345 * used to prune items that are in the cache. The caller 346 * must hold the hash table lock. 347 */ 348 static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio) 349 { 350 int bucket = rbio_bucket(rbio); 351 struct btrfs_stripe_hash_table *table; 352 struct btrfs_stripe_hash *h; 353 int freeit = 0; 354 355 /* 356 * check the bit again under the hash table lock. 357 */ 358 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags)) 359 return; 360 361 table = rbio->fs_info->stripe_hash_table; 362 h = table->table + bucket; 363 364 /* hold the lock for the bucket because we may be 365 * removing it from the hash table 366 */ 367 spin_lock(&h->lock); 368 369 /* 370 * hold the lock for the bio list because we need 371 * to make sure the bio list is empty 372 */ 373 spin_lock(&rbio->bio_list_lock); 374 375 if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) { 376 list_del_init(&rbio->stripe_cache); 377 table->cache_size -= 1; 378 freeit = 1; 379 380 /* if the bio list isn't empty, this rbio is 381 * still involved in an IO. We take it out 382 * of the cache list, and drop the ref that 383 * was held for the list. 384 * 385 * If the bio_list was empty, we also remove 386 * the rbio from the hash_table, and drop 387 * the corresponding ref 388 */ 389 if (bio_list_empty(&rbio->bio_list)) { 390 if (!list_empty(&rbio->hash_list)) { 391 list_del_init(&rbio->hash_list); 392 atomic_dec(&rbio->refs); 393 BUG_ON(!list_empty(&rbio->plug_list)); 394 } 395 } 396 } 397 398 spin_unlock(&rbio->bio_list_lock); 399 spin_unlock(&h->lock); 400 401 if (freeit) 402 __free_raid_bio(rbio); 403 } 404 405 /* 406 * prune a given rbio from the cache 407 */ 408 static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio) 409 { 410 struct btrfs_stripe_hash_table *table; 411 unsigned long flags; 412 413 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags)) 414 return; 415 416 table = rbio->fs_info->stripe_hash_table; 417 418 spin_lock_irqsave(&table->cache_lock, flags); 419 __remove_rbio_from_cache(rbio); 420 spin_unlock_irqrestore(&table->cache_lock, flags); 421 } 422 423 /* 424 * remove everything in the cache 425 */ 426 static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info) 427 { 428 struct btrfs_stripe_hash_table *table; 429 unsigned long flags; 430 struct btrfs_raid_bio *rbio; 431 432 table = info->stripe_hash_table; 433 434 spin_lock_irqsave(&table->cache_lock, flags); 435 while (!list_empty(&table->stripe_cache)) { 436 rbio = list_entry(table->stripe_cache.next, 437 struct btrfs_raid_bio, 438 stripe_cache); 439 __remove_rbio_from_cache(rbio); 440 } 441 spin_unlock_irqrestore(&table->cache_lock, flags); 442 } 443 444 /* 445 * remove all cached entries and free the hash table 446 * used by unmount 447 */ 448 void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info) 449 { 450 if (!info->stripe_hash_table) 451 return; 452 btrfs_clear_rbio_cache(info); 453 kvfree(info->stripe_hash_table); 454 info->stripe_hash_table = NULL; 455 } 456 457 /* 458 * insert an rbio into the stripe cache. It 459 * must have already been prepared by calling 460 * cache_rbio_pages 461 * 462 * If this rbio was already cached, it gets 463 * moved to the front of the lru. 464 * 465 * If the size of the rbio cache is too big, we 466 * prune an item. 467 */ 468 static void cache_rbio(struct btrfs_raid_bio *rbio) 469 { 470 struct btrfs_stripe_hash_table *table; 471 unsigned long flags; 472 473 if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags)) 474 return; 475 476 table = rbio->fs_info->stripe_hash_table; 477 478 spin_lock_irqsave(&table->cache_lock, flags); 479 spin_lock(&rbio->bio_list_lock); 480 481 /* bump our ref if we were not in the list before */ 482 if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags)) 483 atomic_inc(&rbio->refs); 484 485 if (!list_empty(&rbio->stripe_cache)){ 486 list_move(&rbio->stripe_cache, &table->stripe_cache); 487 } else { 488 list_add(&rbio->stripe_cache, &table->stripe_cache); 489 table->cache_size += 1; 490 } 491 492 spin_unlock(&rbio->bio_list_lock); 493 494 if (table->cache_size > RBIO_CACHE_SIZE) { 495 struct btrfs_raid_bio *found; 496 497 found = list_entry(table->stripe_cache.prev, 498 struct btrfs_raid_bio, 499 stripe_cache); 500 501 if (found != rbio) 502 __remove_rbio_from_cache(found); 503 } 504 505 spin_unlock_irqrestore(&table->cache_lock, flags); 506 return; 507 } 508 509 /* 510 * helper function to run the xor_blocks api. It is only 511 * able to do MAX_XOR_BLOCKS at a time, so we need to 512 * loop through. 513 */ 514 static void run_xor(void **pages, int src_cnt, ssize_t len) 515 { 516 int src_off = 0; 517 int xor_src_cnt = 0; 518 void *dest = pages[src_cnt]; 519 520 while(src_cnt > 0) { 521 xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS); 522 xor_blocks(xor_src_cnt, len, dest, pages + src_off); 523 524 src_cnt -= xor_src_cnt; 525 src_off += xor_src_cnt; 526 } 527 } 528 529 /* 530 * returns true if the bio list inside this rbio 531 * covers an entire stripe (no rmw required). 532 * Must be called with the bio list lock held, or 533 * at a time when you know it is impossible to add 534 * new bios into the list 535 */ 536 static int __rbio_is_full(struct btrfs_raid_bio *rbio) 537 { 538 unsigned long size = rbio->bio_list_bytes; 539 int ret = 1; 540 541 if (size != rbio->nr_data * rbio->stripe_len) 542 ret = 0; 543 544 BUG_ON(size > rbio->nr_data * rbio->stripe_len); 545 return ret; 546 } 547 548 static int rbio_is_full(struct btrfs_raid_bio *rbio) 549 { 550 unsigned long flags; 551 int ret; 552 553 spin_lock_irqsave(&rbio->bio_list_lock, flags); 554 ret = __rbio_is_full(rbio); 555 spin_unlock_irqrestore(&rbio->bio_list_lock, flags); 556 return ret; 557 } 558 559 /* 560 * returns 1 if it is safe to merge two rbios together. 561 * The merging is safe if the two rbios correspond to 562 * the same stripe and if they are both going in the same 563 * direction (read vs write), and if neither one is 564 * locked for final IO 565 * 566 * The caller is responsible for locking such that 567 * rmw_locked is safe to test 568 */ 569 static int rbio_can_merge(struct btrfs_raid_bio *last, 570 struct btrfs_raid_bio *cur) 571 { 572 if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) || 573 test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) 574 return 0; 575 576 /* 577 * we can't merge with cached rbios, since the 578 * idea is that when we merge the destination 579 * rbio is going to run our IO for us. We can 580 * steal from cached rbio's though, other functions 581 * handle that. 582 */ 583 if (test_bit(RBIO_CACHE_BIT, &last->flags) || 584 test_bit(RBIO_CACHE_BIT, &cur->flags)) 585 return 0; 586 587 if (last->bbio->raid_map[0] != 588 cur->bbio->raid_map[0]) 589 return 0; 590 591 /* we can't merge with different operations */ 592 if (last->operation != cur->operation) 593 return 0; 594 /* 595 * We've need read the full stripe from the drive. 596 * check and repair the parity and write the new results. 597 * 598 * We're not allowed to add any new bios to the 599 * bio list here, anyone else that wants to 600 * change this stripe needs to do their own rmw. 601 */ 602 if (last->operation == BTRFS_RBIO_PARITY_SCRUB || 603 cur->operation == BTRFS_RBIO_PARITY_SCRUB) 604 return 0; 605 606 if (last->operation == BTRFS_RBIO_REBUILD_MISSING || 607 cur->operation == BTRFS_RBIO_REBUILD_MISSING) 608 return 0; 609 610 return 1; 611 } 612 613 /* 614 * helper to index into the pstripe 615 */ 616 static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index) 617 { 618 index += (rbio->nr_data * rbio->stripe_len) >> PAGE_CACHE_SHIFT; 619 return rbio->stripe_pages[index]; 620 } 621 622 /* 623 * helper to index into the qstripe, returns null 624 * if there is no qstripe 625 */ 626 static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index) 627 { 628 if (rbio->nr_data + 1 == rbio->real_stripes) 629 return NULL; 630 631 index += ((rbio->nr_data + 1) * rbio->stripe_len) >> 632 PAGE_CACHE_SHIFT; 633 return rbio->stripe_pages[index]; 634 } 635 636 /* 637 * The first stripe in the table for a logical address 638 * has the lock. rbios are added in one of three ways: 639 * 640 * 1) Nobody has the stripe locked yet. The rbio is given 641 * the lock and 0 is returned. The caller must start the IO 642 * themselves. 643 * 644 * 2) Someone has the stripe locked, but we're able to merge 645 * with the lock owner. The rbio is freed and the IO will 646 * start automatically along with the existing rbio. 1 is returned. 647 * 648 * 3) Someone has the stripe locked, but we're not able to merge. 649 * The rbio is added to the lock owner's plug list, or merged into 650 * an rbio already on the plug list. When the lock owner unlocks, 651 * the next rbio on the list is run and the IO is started automatically. 652 * 1 is returned 653 * 654 * If we return 0, the caller still owns the rbio and must continue with 655 * IO submission. If we return 1, the caller must assume the rbio has 656 * already been freed. 657 */ 658 static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio) 659 { 660 int bucket = rbio_bucket(rbio); 661 struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket; 662 struct btrfs_raid_bio *cur; 663 struct btrfs_raid_bio *pending; 664 unsigned long flags; 665 DEFINE_WAIT(wait); 666 struct btrfs_raid_bio *freeit = NULL; 667 struct btrfs_raid_bio *cache_drop = NULL; 668 int ret = 0; 669 int walk = 0; 670 671 spin_lock_irqsave(&h->lock, flags); 672 list_for_each_entry(cur, &h->hash_list, hash_list) { 673 walk++; 674 if (cur->bbio->raid_map[0] == rbio->bbio->raid_map[0]) { 675 spin_lock(&cur->bio_list_lock); 676 677 /* can we steal this cached rbio's pages? */ 678 if (bio_list_empty(&cur->bio_list) && 679 list_empty(&cur->plug_list) && 680 test_bit(RBIO_CACHE_BIT, &cur->flags) && 681 !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) { 682 list_del_init(&cur->hash_list); 683 atomic_dec(&cur->refs); 684 685 steal_rbio(cur, rbio); 686 cache_drop = cur; 687 spin_unlock(&cur->bio_list_lock); 688 689 goto lockit; 690 } 691 692 /* can we merge into the lock owner? */ 693 if (rbio_can_merge(cur, rbio)) { 694 merge_rbio(cur, rbio); 695 spin_unlock(&cur->bio_list_lock); 696 freeit = rbio; 697 ret = 1; 698 goto out; 699 } 700 701 702 /* 703 * we couldn't merge with the running 704 * rbio, see if we can merge with the 705 * pending ones. We don't have to 706 * check for rmw_locked because there 707 * is no way they are inside finish_rmw 708 * right now 709 */ 710 list_for_each_entry(pending, &cur->plug_list, 711 plug_list) { 712 if (rbio_can_merge(pending, rbio)) { 713 merge_rbio(pending, rbio); 714 spin_unlock(&cur->bio_list_lock); 715 freeit = rbio; 716 ret = 1; 717 goto out; 718 } 719 } 720 721 /* no merging, put us on the tail of the plug list, 722 * our rbio will be started with the currently 723 * running rbio unlocks 724 */ 725 list_add_tail(&rbio->plug_list, &cur->plug_list); 726 spin_unlock(&cur->bio_list_lock); 727 ret = 1; 728 goto out; 729 } 730 } 731 lockit: 732 atomic_inc(&rbio->refs); 733 list_add(&rbio->hash_list, &h->hash_list); 734 out: 735 spin_unlock_irqrestore(&h->lock, flags); 736 if (cache_drop) 737 remove_rbio_from_cache(cache_drop); 738 if (freeit) 739 __free_raid_bio(freeit); 740 return ret; 741 } 742 743 /* 744 * called as rmw or parity rebuild is completed. If the plug list has more 745 * rbios waiting for this stripe, the next one on the list will be started 746 */ 747 static noinline void unlock_stripe(struct btrfs_raid_bio *rbio) 748 { 749 int bucket; 750 struct btrfs_stripe_hash *h; 751 unsigned long flags; 752 int keep_cache = 0; 753 754 bucket = rbio_bucket(rbio); 755 h = rbio->fs_info->stripe_hash_table->table + bucket; 756 757 if (list_empty(&rbio->plug_list)) 758 cache_rbio(rbio); 759 760 spin_lock_irqsave(&h->lock, flags); 761 spin_lock(&rbio->bio_list_lock); 762 763 if (!list_empty(&rbio->hash_list)) { 764 /* 765 * if we're still cached and there is no other IO 766 * to perform, just leave this rbio here for others 767 * to steal from later 768 */ 769 if (list_empty(&rbio->plug_list) && 770 test_bit(RBIO_CACHE_BIT, &rbio->flags)) { 771 keep_cache = 1; 772 clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); 773 BUG_ON(!bio_list_empty(&rbio->bio_list)); 774 goto done; 775 } 776 777 list_del_init(&rbio->hash_list); 778 atomic_dec(&rbio->refs); 779 780 /* 781 * we use the plug list to hold all the rbios 782 * waiting for the chance to lock this stripe. 783 * hand the lock over to one of them. 784 */ 785 if (!list_empty(&rbio->plug_list)) { 786 struct btrfs_raid_bio *next; 787 struct list_head *head = rbio->plug_list.next; 788 789 next = list_entry(head, struct btrfs_raid_bio, 790 plug_list); 791 792 list_del_init(&rbio->plug_list); 793 794 list_add(&next->hash_list, &h->hash_list); 795 atomic_inc(&next->refs); 796 spin_unlock(&rbio->bio_list_lock); 797 spin_unlock_irqrestore(&h->lock, flags); 798 799 if (next->operation == BTRFS_RBIO_READ_REBUILD) 800 async_read_rebuild(next); 801 else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) { 802 steal_rbio(rbio, next); 803 async_read_rebuild(next); 804 } else if (next->operation == BTRFS_RBIO_WRITE) { 805 steal_rbio(rbio, next); 806 async_rmw_stripe(next); 807 } else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) { 808 steal_rbio(rbio, next); 809 async_scrub_parity(next); 810 } 811 812 goto done_nolock; 813 } else if (waitqueue_active(&h->wait)) { 814 spin_unlock(&rbio->bio_list_lock); 815 spin_unlock_irqrestore(&h->lock, flags); 816 wake_up(&h->wait); 817 goto done_nolock; 818 } 819 } 820 done: 821 spin_unlock(&rbio->bio_list_lock); 822 spin_unlock_irqrestore(&h->lock, flags); 823 824 done_nolock: 825 if (!keep_cache) 826 remove_rbio_from_cache(rbio); 827 } 828 829 static void __free_raid_bio(struct btrfs_raid_bio *rbio) 830 { 831 int i; 832 833 WARN_ON(atomic_read(&rbio->refs) < 0); 834 if (!atomic_dec_and_test(&rbio->refs)) 835 return; 836 837 WARN_ON(!list_empty(&rbio->stripe_cache)); 838 WARN_ON(!list_empty(&rbio->hash_list)); 839 WARN_ON(!bio_list_empty(&rbio->bio_list)); 840 841 for (i = 0; i < rbio->nr_pages; i++) { 842 if (rbio->stripe_pages[i]) { 843 __free_page(rbio->stripe_pages[i]); 844 rbio->stripe_pages[i] = NULL; 845 } 846 } 847 848 btrfs_put_bbio(rbio->bbio); 849 kfree(rbio); 850 } 851 852 static void free_raid_bio(struct btrfs_raid_bio *rbio) 853 { 854 unlock_stripe(rbio); 855 __free_raid_bio(rbio); 856 } 857 858 /* 859 * this frees the rbio and runs through all the bios in the 860 * bio_list and calls end_io on them 861 */ 862 static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, int err) 863 { 864 struct bio *cur = bio_list_get(&rbio->bio_list); 865 struct bio *next; 866 867 if (rbio->generic_bio_cnt) 868 btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt); 869 870 free_raid_bio(rbio); 871 872 while (cur) { 873 next = cur->bi_next; 874 cur->bi_next = NULL; 875 cur->bi_error = err; 876 bio_endio(cur); 877 cur = next; 878 } 879 } 880 881 /* 882 * end io function used by finish_rmw. When we finally 883 * get here, we've written a full stripe 884 */ 885 static void raid_write_end_io(struct bio *bio) 886 { 887 struct btrfs_raid_bio *rbio = bio->bi_private; 888 int err = bio->bi_error; 889 890 if (err) 891 fail_bio_stripe(rbio, bio); 892 893 bio_put(bio); 894 895 if (!atomic_dec_and_test(&rbio->stripes_pending)) 896 return; 897 898 err = 0; 899 900 /* OK, we have read all the stripes we need to. */ 901 if (atomic_read(&rbio->error) > rbio->bbio->max_errors) 902 err = -EIO; 903 904 rbio_orig_end_io(rbio, err); 905 return; 906 } 907 908 /* 909 * the read/modify/write code wants to use the original bio for 910 * any pages it included, and then use the rbio for everything 911 * else. This function decides if a given index (stripe number) 912 * and page number in that stripe fall inside the original bio 913 * or the rbio. 914 * 915 * if you set bio_list_only, you'll get a NULL back for any ranges 916 * that are outside the bio_list 917 * 918 * This doesn't take any refs on anything, you get a bare page pointer 919 * and the caller must bump refs as required. 920 * 921 * You must call index_rbio_pages once before you can trust 922 * the answers from this function. 923 */ 924 static struct page *page_in_rbio(struct btrfs_raid_bio *rbio, 925 int index, int pagenr, int bio_list_only) 926 { 927 int chunk_page; 928 struct page *p = NULL; 929 930 chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr; 931 932 spin_lock_irq(&rbio->bio_list_lock); 933 p = rbio->bio_pages[chunk_page]; 934 spin_unlock_irq(&rbio->bio_list_lock); 935 936 if (p || bio_list_only) 937 return p; 938 939 return rbio->stripe_pages[chunk_page]; 940 } 941 942 /* 943 * number of pages we need for the entire stripe across all the 944 * drives 945 */ 946 static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes) 947 { 948 unsigned long nr = stripe_len * nr_stripes; 949 return DIV_ROUND_UP(nr, PAGE_CACHE_SIZE); 950 } 951 952 /* 953 * allocation and initial setup for the btrfs_raid_bio. Not 954 * this does not allocate any pages for rbio->pages. 955 */ 956 static struct btrfs_raid_bio *alloc_rbio(struct btrfs_root *root, 957 struct btrfs_bio *bbio, u64 stripe_len) 958 { 959 struct btrfs_raid_bio *rbio; 960 int nr_data = 0; 961 int real_stripes = bbio->num_stripes - bbio->num_tgtdevs; 962 int num_pages = rbio_nr_pages(stripe_len, real_stripes); 963 int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE); 964 void *p; 965 966 rbio = kzalloc(sizeof(*rbio) + num_pages * sizeof(struct page *) * 2 + 967 DIV_ROUND_UP(stripe_npages, BITS_PER_LONG / 8), 968 GFP_NOFS); 969 if (!rbio) 970 return ERR_PTR(-ENOMEM); 971 972 bio_list_init(&rbio->bio_list); 973 INIT_LIST_HEAD(&rbio->plug_list); 974 spin_lock_init(&rbio->bio_list_lock); 975 INIT_LIST_HEAD(&rbio->stripe_cache); 976 INIT_LIST_HEAD(&rbio->hash_list); 977 rbio->bbio = bbio; 978 rbio->fs_info = root->fs_info; 979 rbio->stripe_len = stripe_len; 980 rbio->nr_pages = num_pages; 981 rbio->real_stripes = real_stripes; 982 rbio->stripe_npages = stripe_npages; 983 rbio->faila = -1; 984 rbio->failb = -1; 985 atomic_set(&rbio->refs, 1); 986 atomic_set(&rbio->error, 0); 987 atomic_set(&rbio->stripes_pending, 0); 988 989 /* 990 * the stripe_pages and bio_pages array point to the extra 991 * memory we allocated past the end of the rbio 992 */ 993 p = rbio + 1; 994 rbio->stripe_pages = p; 995 rbio->bio_pages = p + sizeof(struct page *) * num_pages; 996 rbio->dbitmap = p + sizeof(struct page *) * num_pages * 2; 997 998 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5) 999 nr_data = real_stripes - 1; 1000 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) 1001 nr_data = real_stripes - 2; 1002 else 1003 BUG(); 1004 1005 rbio->nr_data = nr_data; 1006 return rbio; 1007 } 1008 1009 /* allocate pages for all the stripes in the bio, including parity */ 1010 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio) 1011 { 1012 int i; 1013 struct page *page; 1014 1015 for (i = 0; i < rbio->nr_pages; i++) { 1016 if (rbio->stripe_pages[i]) 1017 continue; 1018 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 1019 if (!page) 1020 return -ENOMEM; 1021 rbio->stripe_pages[i] = page; 1022 ClearPageUptodate(page); 1023 } 1024 return 0; 1025 } 1026 1027 /* allocate pages for just the p/q stripes */ 1028 static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio) 1029 { 1030 int i; 1031 struct page *page; 1032 1033 i = (rbio->nr_data * rbio->stripe_len) >> PAGE_CACHE_SHIFT; 1034 1035 for (; i < rbio->nr_pages; i++) { 1036 if (rbio->stripe_pages[i]) 1037 continue; 1038 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 1039 if (!page) 1040 return -ENOMEM; 1041 rbio->stripe_pages[i] = page; 1042 } 1043 return 0; 1044 } 1045 1046 /* 1047 * add a single page from a specific stripe into our list of bios for IO 1048 * this will try to merge into existing bios if possible, and returns 1049 * zero if all went well. 1050 */ 1051 static int rbio_add_io_page(struct btrfs_raid_bio *rbio, 1052 struct bio_list *bio_list, 1053 struct page *page, 1054 int stripe_nr, 1055 unsigned long page_index, 1056 unsigned long bio_max_len) 1057 { 1058 struct bio *last = bio_list->tail; 1059 u64 last_end = 0; 1060 int ret; 1061 struct bio *bio; 1062 struct btrfs_bio_stripe *stripe; 1063 u64 disk_start; 1064 1065 stripe = &rbio->bbio->stripes[stripe_nr]; 1066 disk_start = stripe->physical + (page_index << PAGE_CACHE_SHIFT); 1067 1068 /* if the device is missing, just fail this stripe */ 1069 if (!stripe->dev->bdev) 1070 return fail_rbio_index(rbio, stripe_nr); 1071 1072 /* see if we can add this page onto our existing bio */ 1073 if (last) { 1074 last_end = (u64)last->bi_iter.bi_sector << 9; 1075 last_end += last->bi_iter.bi_size; 1076 1077 /* 1078 * we can't merge these if they are from different 1079 * devices or if they are not contiguous 1080 */ 1081 if (last_end == disk_start && stripe->dev->bdev && 1082 !last->bi_error && 1083 last->bi_bdev == stripe->dev->bdev) { 1084 ret = bio_add_page(last, page, PAGE_CACHE_SIZE, 0); 1085 if (ret == PAGE_CACHE_SIZE) 1086 return 0; 1087 } 1088 } 1089 1090 /* put a new bio on the list */ 1091 bio = btrfs_io_bio_alloc(GFP_NOFS, bio_max_len >> PAGE_SHIFT?:1); 1092 if (!bio) 1093 return -ENOMEM; 1094 1095 bio->bi_iter.bi_size = 0; 1096 bio->bi_bdev = stripe->dev->bdev; 1097 bio->bi_iter.bi_sector = disk_start >> 9; 1098 1099 bio_add_page(bio, page, PAGE_CACHE_SIZE, 0); 1100 bio_list_add(bio_list, bio); 1101 return 0; 1102 } 1103 1104 /* 1105 * while we're doing the read/modify/write cycle, we could 1106 * have errors in reading pages off the disk. This checks 1107 * for errors and if we're not able to read the page it'll 1108 * trigger parity reconstruction. The rmw will be finished 1109 * after we've reconstructed the failed stripes 1110 */ 1111 static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio) 1112 { 1113 if (rbio->faila >= 0 || rbio->failb >= 0) { 1114 BUG_ON(rbio->faila == rbio->real_stripes - 1); 1115 __raid56_parity_recover(rbio); 1116 } else { 1117 finish_rmw(rbio); 1118 } 1119 } 1120 1121 /* 1122 * these are just the pages from the rbio array, not from anything 1123 * the FS sent down to us 1124 */ 1125 static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe, int page) 1126 { 1127 int index; 1128 index = stripe * (rbio->stripe_len >> PAGE_CACHE_SHIFT); 1129 index += page; 1130 return rbio->stripe_pages[index]; 1131 } 1132 1133 /* 1134 * helper function to walk our bio list and populate the bio_pages array with 1135 * the result. This seems expensive, but it is faster than constantly 1136 * searching through the bio list as we setup the IO in finish_rmw or stripe 1137 * reconstruction. 1138 * 1139 * This must be called before you trust the answers from page_in_rbio 1140 */ 1141 static void index_rbio_pages(struct btrfs_raid_bio *rbio) 1142 { 1143 struct bio *bio; 1144 u64 start; 1145 unsigned long stripe_offset; 1146 unsigned long page_index; 1147 struct page *p; 1148 int i; 1149 1150 spin_lock_irq(&rbio->bio_list_lock); 1151 bio_list_for_each(bio, &rbio->bio_list) { 1152 start = (u64)bio->bi_iter.bi_sector << 9; 1153 stripe_offset = start - rbio->bbio->raid_map[0]; 1154 page_index = stripe_offset >> PAGE_CACHE_SHIFT; 1155 1156 for (i = 0; i < bio->bi_vcnt; i++) { 1157 p = bio->bi_io_vec[i].bv_page; 1158 rbio->bio_pages[page_index + i] = p; 1159 } 1160 } 1161 spin_unlock_irq(&rbio->bio_list_lock); 1162 } 1163 1164 /* 1165 * this is called from one of two situations. We either 1166 * have a full stripe from the higher layers, or we've read all 1167 * the missing bits off disk. 1168 * 1169 * This will calculate the parity and then send down any 1170 * changed blocks. 1171 */ 1172 static noinline void finish_rmw(struct btrfs_raid_bio *rbio) 1173 { 1174 struct btrfs_bio *bbio = rbio->bbio; 1175 void *pointers[rbio->real_stripes]; 1176 int stripe_len = rbio->stripe_len; 1177 int nr_data = rbio->nr_data; 1178 int stripe; 1179 int pagenr; 1180 int p_stripe = -1; 1181 int q_stripe = -1; 1182 struct bio_list bio_list; 1183 struct bio *bio; 1184 int pages_per_stripe = stripe_len >> PAGE_CACHE_SHIFT; 1185 int ret; 1186 1187 bio_list_init(&bio_list); 1188 1189 if (rbio->real_stripes - rbio->nr_data == 1) { 1190 p_stripe = rbio->real_stripes - 1; 1191 } else if (rbio->real_stripes - rbio->nr_data == 2) { 1192 p_stripe = rbio->real_stripes - 2; 1193 q_stripe = rbio->real_stripes - 1; 1194 } else { 1195 BUG(); 1196 } 1197 1198 /* at this point we either have a full stripe, 1199 * or we've read the full stripe from the drive. 1200 * recalculate the parity and write the new results. 1201 * 1202 * We're not allowed to add any new bios to the 1203 * bio list here, anyone else that wants to 1204 * change this stripe needs to do their own rmw. 1205 */ 1206 spin_lock_irq(&rbio->bio_list_lock); 1207 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); 1208 spin_unlock_irq(&rbio->bio_list_lock); 1209 1210 atomic_set(&rbio->error, 0); 1211 1212 /* 1213 * now that we've set rmw_locked, run through the 1214 * bio list one last time and map the page pointers 1215 * 1216 * We don't cache full rbios because we're assuming 1217 * the higher layers are unlikely to use this area of 1218 * the disk again soon. If they do use it again, 1219 * hopefully they will send another full bio. 1220 */ 1221 index_rbio_pages(rbio); 1222 if (!rbio_is_full(rbio)) 1223 cache_rbio_pages(rbio); 1224 else 1225 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); 1226 1227 for (pagenr = 0; pagenr < pages_per_stripe; pagenr++) { 1228 struct page *p; 1229 /* first collect one page from each data stripe */ 1230 for (stripe = 0; stripe < nr_data; stripe++) { 1231 p = page_in_rbio(rbio, stripe, pagenr, 0); 1232 pointers[stripe] = kmap(p); 1233 } 1234 1235 /* then add the parity stripe */ 1236 p = rbio_pstripe_page(rbio, pagenr); 1237 SetPageUptodate(p); 1238 pointers[stripe++] = kmap(p); 1239 1240 if (q_stripe != -1) { 1241 1242 /* 1243 * raid6, add the qstripe and call the 1244 * library function to fill in our p/q 1245 */ 1246 p = rbio_qstripe_page(rbio, pagenr); 1247 SetPageUptodate(p); 1248 pointers[stripe++] = kmap(p); 1249 1250 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE, 1251 pointers); 1252 } else { 1253 /* raid5 */ 1254 memcpy(pointers[nr_data], pointers[0], PAGE_SIZE); 1255 run_xor(pointers + 1, nr_data - 1, PAGE_CACHE_SIZE); 1256 } 1257 1258 1259 for (stripe = 0; stripe < rbio->real_stripes; stripe++) 1260 kunmap(page_in_rbio(rbio, stripe, pagenr, 0)); 1261 } 1262 1263 /* 1264 * time to start writing. Make bios for everything from the 1265 * higher layers (the bio_list in our rbio) and our p/q. Ignore 1266 * everything else. 1267 */ 1268 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 1269 for (pagenr = 0; pagenr < pages_per_stripe; pagenr++) { 1270 struct page *page; 1271 if (stripe < rbio->nr_data) { 1272 page = page_in_rbio(rbio, stripe, pagenr, 1); 1273 if (!page) 1274 continue; 1275 } else { 1276 page = rbio_stripe_page(rbio, stripe, pagenr); 1277 } 1278 1279 ret = rbio_add_io_page(rbio, &bio_list, 1280 page, stripe, pagenr, rbio->stripe_len); 1281 if (ret) 1282 goto cleanup; 1283 } 1284 } 1285 1286 if (likely(!bbio->num_tgtdevs)) 1287 goto write_data; 1288 1289 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 1290 if (!bbio->tgtdev_map[stripe]) 1291 continue; 1292 1293 for (pagenr = 0; pagenr < pages_per_stripe; pagenr++) { 1294 struct page *page; 1295 if (stripe < rbio->nr_data) { 1296 page = page_in_rbio(rbio, stripe, pagenr, 1); 1297 if (!page) 1298 continue; 1299 } else { 1300 page = rbio_stripe_page(rbio, stripe, pagenr); 1301 } 1302 1303 ret = rbio_add_io_page(rbio, &bio_list, page, 1304 rbio->bbio->tgtdev_map[stripe], 1305 pagenr, rbio->stripe_len); 1306 if (ret) 1307 goto cleanup; 1308 } 1309 } 1310 1311 write_data: 1312 atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list)); 1313 BUG_ON(atomic_read(&rbio->stripes_pending) == 0); 1314 1315 while (1) { 1316 bio = bio_list_pop(&bio_list); 1317 if (!bio) 1318 break; 1319 1320 bio->bi_private = rbio; 1321 bio->bi_end_io = raid_write_end_io; 1322 submit_bio(WRITE, bio); 1323 } 1324 return; 1325 1326 cleanup: 1327 rbio_orig_end_io(rbio, -EIO); 1328 } 1329 1330 /* 1331 * helper to find the stripe number for a given bio. Used to figure out which 1332 * stripe has failed. This expects the bio to correspond to a physical disk, 1333 * so it looks up based on physical sector numbers. 1334 */ 1335 static int find_bio_stripe(struct btrfs_raid_bio *rbio, 1336 struct bio *bio) 1337 { 1338 u64 physical = bio->bi_iter.bi_sector; 1339 u64 stripe_start; 1340 int i; 1341 struct btrfs_bio_stripe *stripe; 1342 1343 physical <<= 9; 1344 1345 for (i = 0; i < rbio->bbio->num_stripes; i++) { 1346 stripe = &rbio->bbio->stripes[i]; 1347 stripe_start = stripe->physical; 1348 if (physical >= stripe_start && 1349 physical < stripe_start + rbio->stripe_len && 1350 bio->bi_bdev == stripe->dev->bdev) { 1351 return i; 1352 } 1353 } 1354 return -1; 1355 } 1356 1357 /* 1358 * helper to find the stripe number for a given 1359 * bio (before mapping). Used to figure out which stripe has 1360 * failed. This looks up based on logical block numbers. 1361 */ 1362 static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio, 1363 struct bio *bio) 1364 { 1365 u64 logical = bio->bi_iter.bi_sector; 1366 u64 stripe_start; 1367 int i; 1368 1369 logical <<= 9; 1370 1371 for (i = 0; i < rbio->nr_data; i++) { 1372 stripe_start = rbio->bbio->raid_map[i]; 1373 if (logical >= stripe_start && 1374 logical < stripe_start + rbio->stripe_len) { 1375 return i; 1376 } 1377 } 1378 return -1; 1379 } 1380 1381 /* 1382 * returns -EIO if we had too many failures 1383 */ 1384 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed) 1385 { 1386 unsigned long flags; 1387 int ret = 0; 1388 1389 spin_lock_irqsave(&rbio->bio_list_lock, flags); 1390 1391 /* we already know this stripe is bad, move on */ 1392 if (rbio->faila == failed || rbio->failb == failed) 1393 goto out; 1394 1395 if (rbio->faila == -1) { 1396 /* first failure on this rbio */ 1397 rbio->faila = failed; 1398 atomic_inc(&rbio->error); 1399 } else if (rbio->failb == -1) { 1400 /* second failure on this rbio */ 1401 rbio->failb = failed; 1402 atomic_inc(&rbio->error); 1403 } else { 1404 ret = -EIO; 1405 } 1406 out: 1407 spin_unlock_irqrestore(&rbio->bio_list_lock, flags); 1408 1409 return ret; 1410 } 1411 1412 /* 1413 * helper to fail a stripe based on a physical disk 1414 * bio. 1415 */ 1416 static int fail_bio_stripe(struct btrfs_raid_bio *rbio, 1417 struct bio *bio) 1418 { 1419 int failed = find_bio_stripe(rbio, bio); 1420 1421 if (failed < 0) 1422 return -EIO; 1423 1424 return fail_rbio_index(rbio, failed); 1425 } 1426 1427 /* 1428 * this sets each page in the bio uptodate. It should only be used on private 1429 * rbio pages, nothing that comes in from the higher layers 1430 */ 1431 static void set_bio_pages_uptodate(struct bio *bio) 1432 { 1433 int i; 1434 struct page *p; 1435 1436 for (i = 0; i < bio->bi_vcnt; i++) { 1437 p = bio->bi_io_vec[i].bv_page; 1438 SetPageUptodate(p); 1439 } 1440 } 1441 1442 /* 1443 * end io for the read phase of the rmw cycle. All the bios here are physical 1444 * stripe bios we've read from the disk so we can recalculate the parity of the 1445 * stripe. 1446 * 1447 * This will usually kick off finish_rmw once all the bios are read in, but it 1448 * may trigger parity reconstruction if we had any errors along the way 1449 */ 1450 static void raid_rmw_end_io(struct bio *bio) 1451 { 1452 struct btrfs_raid_bio *rbio = bio->bi_private; 1453 1454 if (bio->bi_error) 1455 fail_bio_stripe(rbio, bio); 1456 else 1457 set_bio_pages_uptodate(bio); 1458 1459 bio_put(bio); 1460 1461 if (!atomic_dec_and_test(&rbio->stripes_pending)) 1462 return; 1463 1464 if (atomic_read(&rbio->error) > rbio->bbio->max_errors) 1465 goto cleanup; 1466 1467 /* 1468 * this will normally call finish_rmw to start our write 1469 * but if there are any failed stripes we'll reconstruct 1470 * from parity first 1471 */ 1472 validate_rbio_for_rmw(rbio); 1473 return; 1474 1475 cleanup: 1476 1477 rbio_orig_end_io(rbio, -EIO); 1478 } 1479 1480 static void async_rmw_stripe(struct btrfs_raid_bio *rbio) 1481 { 1482 btrfs_init_work(&rbio->work, btrfs_rmw_helper, 1483 rmw_work, NULL, NULL); 1484 1485 btrfs_queue_work(rbio->fs_info->rmw_workers, 1486 &rbio->work); 1487 } 1488 1489 static void async_read_rebuild(struct btrfs_raid_bio *rbio) 1490 { 1491 btrfs_init_work(&rbio->work, btrfs_rmw_helper, 1492 read_rebuild_work, NULL, NULL); 1493 1494 btrfs_queue_work(rbio->fs_info->rmw_workers, 1495 &rbio->work); 1496 } 1497 1498 /* 1499 * the stripe must be locked by the caller. It will 1500 * unlock after all the writes are done 1501 */ 1502 static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio) 1503 { 1504 int bios_to_read = 0; 1505 struct bio_list bio_list; 1506 int ret; 1507 int nr_pages = DIV_ROUND_UP(rbio->stripe_len, PAGE_CACHE_SIZE); 1508 int pagenr; 1509 int stripe; 1510 struct bio *bio; 1511 1512 bio_list_init(&bio_list); 1513 1514 ret = alloc_rbio_pages(rbio); 1515 if (ret) 1516 goto cleanup; 1517 1518 index_rbio_pages(rbio); 1519 1520 atomic_set(&rbio->error, 0); 1521 /* 1522 * build a list of bios to read all the missing parts of this 1523 * stripe 1524 */ 1525 for (stripe = 0; stripe < rbio->nr_data; stripe++) { 1526 for (pagenr = 0; pagenr < nr_pages; pagenr++) { 1527 struct page *page; 1528 /* 1529 * we want to find all the pages missing from 1530 * the rbio and read them from the disk. If 1531 * page_in_rbio finds a page in the bio list 1532 * we don't need to read it off the stripe. 1533 */ 1534 page = page_in_rbio(rbio, stripe, pagenr, 1); 1535 if (page) 1536 continue; 1537 1538 page = rbio_stripe_page(rbio, stripe, pagenr); 1539 /* 1540 * the bio cache may have handed us an uptodate 1541 * page. If so, be happy and use it 1542 */ 1543 if (PageUptodate(page)) 1544 continue; 1545 1546 ret = rbio_add_io_page(rbio, &bio_list, page, 1547 stripe, pagenr, rbio->stripe_len); 1548 if (ret) 1549 goto cleanup; 1550 } 1551 } 1552 1553 bios_to_read = bio_list_size(&bio_list); 1554 if (!bios_to_read) { 1555 /* 1556 * this can happen if others have merged with 1557 * us, it means there is nothing left to read. 1558 * But if there are missing devices it may not be 1559 * safe to do the full stripe write yet. 1560 */ 1561 goto finish; 1562 } 1563 1564 /* 1565 * the bbio may be freed once we submit the last bio. Make sure 1566 * not to touch it after that 1567 */ 1568 atomic_set(&rbio->stripes_pending, bios_to_read); 1569 while (1) { 1570 bio = bio_list_pop(&bio_list); 1571 if (!bio) 1572 break; 1573 1574 bio->bi_private = rbio; 1575 bio->bi_end_io = raid_rmw_end_io; 1576 1577 btrfs_bio_wq_end_io(rbio->fs_info, bio, 1578 BTRFS_WQ_ENDIO_RAID56); 1579 1580 submit_bio(READ, bio); 1581 } 1582 /* the actual write will happen once the reads are done */ 1583 return 0; 1584 1585 cleanup: 1586 rbio_orig_end_io(rbio, -EIO); 1587 return -EIO; 1588 1589 finish: 1590 validate_rbio_for_rmw(rbio); 1591 return 0; 1592 } 1593 1594 /* 1595 * if the upper layers pass in a full stripe, we thank them by only allocating 1596 * enough pages to hold the parity, and sending it all down quickly. 1597 */ 1598 static int full_stripe_write(struct btrfs_raid_bio *rbio) 1599 { 1600 int ret; 1601 1602 ret = alloc_rbio_parity_pages(rbio); 1603 if (ret) { 1604 __free_raid_bio(rbio); 1605 return ret; 1606 } 1607 1608 ret = lock_stripe_add(rbio); 1609 if (ret == 0) 1610 finish_rmw(rbio); 1611 return 0; 1612 } 1613 1614 /* 1615 * partial stripe writes get handed over to async helpers. 1616 * We're really hoping to merge a few more writes into this 1617 * rbio before calculating new parity 1618 */ 1619 static int partial_stripe_write(struct btrfs_raid_bio *rbio) 1620 { 1621 int ret; 1622 1623 ret = lock_stripe_add(rbio); 1624 if (ret == 0) 1625 async_rmw_stripe(rbio); 1626 return 0; 1627 } 1628 1629 /* 1630 * sometimes while we were reading from the drive to 1631 * recalculate parity, enough new bios come into create 1632 * a full stripe. So we do a check here to see if we can 1633 * go directly to finish_rmw 1634 */ 1635 static int __raid56_parity_write(struct btrfs_raid_bio *rbio) 1636 { 1637 /* head off into rmw land if we don't have a full stripe */ 1638 if (!rbio_is_full(rbio)) 1639 return partial_stripe_write(rbio); 1640 return full_stripe_write(rbio); 1641 } 1642 1643 /* 1644 * We use plugging call backs to collect full stripes. 1645 * Any time we get a partial stripe write while plugged 1646 * we collect it into a list. When the unplug comes down, 1647 * we sort the list by logical block number and merge 1648 * everything we can into the same rbios 1649 */ 1650 struct btrfs_plug_cb { 1651 struct blk_plug_cb cb; 1652 struct btrfs_fs_info *info; 1653 struct list_head rbio_list; 1654 struct btrfs_work work; 1655 }; 1656 1657 /* 1658 * rbios on the plug list are sorted for easier merging. 1659 */ 1660 static int plug_cmp(void *priv, struct list_head *a, struct list_head *b) 1661 { 1662 struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio, 1663 plug_list); 1664 struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio, 1665 plug_list); 1666 u64 a_sector = ra->bio_list.head->bi_iter.bi_sector; 1667 u64 b_sector = rb->bio_list.head->bi_iter.bi_sector; 1668 1669 if (a_sector < b_sector) 1670 return -1; 1671 if (a_sector > b_sector) 1672 return 1; 1673 return 0; 1674 } 1675 1676 static void run_plug(struct btrfs_plug_cb *plug) 1677 { 1678 struct btrfs_raid_bio *cur; 1679 struct btrfs_raid_bio *last = NULL; 1680 1681 /* 1682 * sort our plug list then try to merge 1683 * everything we can in hopes of creating full 1684 * stripes. 1685 */ 1686 list_sort(NULL, &plug->rbio_list, plug_cmp); 1687 while (!list_empty(&plug->rbio_list)) { 1688 cur = list_entry(plug->rbio_list.next, 1689 struct btrfs_raid_bio, plug_list); 1690 list_del_init(&cur->plug_list); 1691 1692 if (rbio_is_full(cur)) { 1693 /* we have a full stripe, send it down */ 1694 full_stripe_write(cur); 1695 continue; 1696 } 1697 if (last) { 1698 if (rbio_can_merge(last, cur)) { 1699 merge_rbio(last, cur); 1700 __free_raid_bio(cur); 1701 continue; 1702 1703 } 1704 __raid56_parity_write(last); 1705 } 1706 last = cur; 1707 } 1708 if (last) { 1709 __raid56_parity_write(last); 1710 } 1711 kfree(plug); 1712 } 1713 1714 /* 1715 * if the unplug comes from schedule, we have to push the 1716 * work off to a helper thread 1717 */ 1718 static void unplug_work(struct btrfs_work *work) 1719 { 1720 struct btrfs_plug_cb *plug; 1721 plug = container_of(work, struct btrfs_plug_cb, work); 1722 run_plug(plug); 1723 } 1724 1725 static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule) 1726 { 1727 struct btrfs_plug_cb *plug; 1728 plug = container_of(cb, struct btrfs_plug_cb, cb); 1729 1730 if (from_schedule) { 1731 btrfs_init_work(&plug->work, btrfs_rmw_helper, 1732 unplug_work, NULL, NULL); 1733 btrfs_queue_work(plug->info->rmw_workers, 1734 &plug->work); 1735 return; 1736 } 1737 run_plug(plug); 1738 } 1739 1740 /* 1741 * our main entry point for writes from the rest of the FS. 1742 */ 1743 int raid56_parity_write(struct btrfs_root *root, struct bio *bio, 1744 struct btrfs_bio *bbio, u64 stripe_len) 1745 { 1746 struct btrfs_raid_bio *rbio; 1747 struct btrfs_plug_cb *plug = NULL; 1748 struct blk_plug_cb *cb; 1749 int ret; 1750 1751 rbio = alloc_rbio(root, bbio, stripe_len); 1752 if (IS_ERR(rbio)) { 1753 btrfs_put_bbio(bbio); 1754 return PTR_ERR(rbio); 1755 } 1756 bio_list_add(&rbio->bio_list, bio); 1757 rbio->bio_list_bytes = bio->bi_iter.bi_size; 1758 rbio->operation = BTRFS_RBIO_WRITE; 1759 1760 btrfs_bio_counter_inc_noblocked(root->fs_info); 1761 rbio->generic_bio_cnt = 1; 1762 1763 /* 1764 * don't plug on full rbios, just get them out the door 1765 * as quickly as we can 1766 */ 1767 if (rbio_is_full(rbio)) { 1768 ret = full_stripe_write(rbio); 1769 if (ret) 1770 btrfs_bio_counter_dec(root->fs_info); 1771 return ret; 1772 } 1773 1774 cb = blk_check_plugged(btrfs_raid_unplug, root->fs_info, 1775 sizeof(*plug)); 1776 if (cb) { 1777 plug = container_of(cb, struct btrfs_plug_cb, cb); 1778 if (!plug->info) { 1779 plug->info = root->fs_info; 1780 INIT_LIST_HEAD(&plug->rbio_list); 1781 } 1782 list_add_tail(&rbio->plug_list, &plug->rbio_list); 1783 ret = 0; 1784 } else { 1785 ret = __raid56_parity_write(rbio); 1786 if (ret) 1787 btrfs_bio_counter_dec(root->fs_info); 1788 } 1789 return ret; 1790 } 1791 1792 /* 1793 * all parity reconstruction happens here. We've read in everything 1794 * we can find from the drives and this does the heavy lifting of 1795 * sorting the good from the bad. 1796 */ 1797 static void __raid_recover_end_io(struct btrfs_raid_bio *rbio) 1798 { 1799 int pagenr, stripe; 1800 void **pointers; 1801 int faila = -1, failb = -1; 1802 int nr_pages = DIV_ROUND_UP(rbio->stripe_len, PAGE_CACHE_SIZE); 1803 struct page *page; 1804 int err; 1805 int i; 1806 1807 pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS); 1808 if (!pointers) { 1809 err = -ENOMEM; 1810 goto cleanup_io; 1811 } 1812 1813 faila = rbio->faila; 1814 failb = rbio->failb; 1815 1816 if (rbio->operation == BTRFS_RBIO_READ_REBUILD || 1817 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) { 1818 spin_lock_irq(&rbio->bio_list_lock); 1819 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); 1820 spin_unlock_irq(&rbio->bio_list_lock); 1821 } 1822 1823 index_rbio_pages(rbio); 1824 1825 for (pagenr = 0; pagenr < nr_pages; pagenr++) { 1826 /* 1827 * Now we just use bitmap to mark the horizontal stripes in 1828 * which we have data when doing parity scrub. 1829 */ 1830 if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB && 1831 !test_bit(pagenr, rbio->dbitmap)) 1832 continue; 1833 1834 /* setup our array of pointers with pages 1835 * from each stripe 1836 */ 1837 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 1838 /* 1839 * if we're rebuilding a read, we have to use 1840 * pages from the bio list 1841 */ 1842 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD || 1843 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) && 1844 (stripe == faila || stripe == failb)) { 1845 page = page_in_rbio(rbio, stripe, pagenr, 0); 1846 } else { 1847 page = rbio_stripe_page(rbio, stripe, pagenr); 1848 } 1849 pointers[stripe] = kmap(page); 1850 } 1851 1852 /* all raid6 handling here */ 1853 if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) { 1854 /* 1855 * single failure, rebuild from parity raid5 1856 * style 1857 */ 1858 if (failb < 0) { 1859 if (faila == rbio->nr_data) { 1860 /* 1861 * Just the P stripe has failed, without 1862 * a bad data or Q stripe. 1863 * TODO, we should redo the xor here. 1864 */ 1865 err = -EIO; 1866 goto cleanup; 1867 } 1868 /* 1869 * a single failure in raid6 is rebuilt 1870 * in the pstripe code below 1871 */ 1872 goto pstripe; 1873 } 1874 1875 /* make sure our ps and qs are in order */ 1876 if (faila > failb) { 1877 int tmp = failb; 1878 failb = faila; 1879 faila = tmp; 1880 } 1881 1882 /* if the q stripe is failed, do a pstripe reconstruction 1883 * from the xors. 1884 * If both the q stripe and the P stripe are failed, we're 1885 * here due to a crc mismatch and we can't give them the 1886 * data they want 1887 */ 1888 if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) { 1889 if (rbio->bbio->raid_map[faila] == 1890 RAID5_P_STRIPE) { 1891 err = -EIO; 1892 goto cleanup; 1893 } 1894 /* 1895 * otherwise we have one bad data stripe and 1896 * a good P stripe. raid5! 1897 */ 1898 goto pstripe; 1899 } 1900 1901 if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) { 1902 raid6_datap_recov(rbio->real_stripes, 1903 PAGE_SIZE, faila, pointers); 1904 } else { 1905 raid6_2data_recov(rbio->real_stripes, 1906 PAGE_SIZE, faila, failb, 1907 pointers); 1908 } 1909 } else { 1910 void *p; 1911 1912 /* rebuild from P stripe here (raid5 or raid6) */ 1913 BUG_ON(failb != -1); 1914 pstripe: 1915 /* Copy parity block into failed block to start with */ 1916 memcpy(pointers[faila], 1917 pointers[rbio->nr_data], 1918 PAGE_CACHE_SIZE); 1919 1920 /* rearrange the pointer array */ 1921 p = pointers[faila]; 1922 for (stripe = faila; stripe < rbio->nr_data - 1; stripe++) 1923 pointers[stripe] = pointers[stripe + 1]; 1924 pointers[rbio->nr_data - 1] = p; 1925 1926 /* xor in the rest */ 1927 run_xor(pointers, rbio->nr_data - 1, PAGE_CACHE_SIZE); 1928 } 1929 /* if we're doing this rebuild as part of an rmw, go through 1930 * and set all of our private rbio pages in the 1931 * failed stripes as uptodate. This way finish_rmw will 1932 * know they can be trusted. If this was a read reconstruction, 1933 * other endio functions will fiddle the uptodate bits 1934 */ 1935 if (rbio->operation == BTRFS_RBIO_WRITE) { 1936 for (i = 0; i < nr_pages; i++) { 1937 if (faila != -1) { 1938 page = rbio_stripe_page(rbio, faila, i); 1939 SetPageUptodate(page); 1940 } 1941 if (failb != -1) { 1942 page = rbio_stripe_page(rbio, failb, i); 1943 SetPageUptodate(page); 1944 } 1945 } 1946 } 1947 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 1948 /* 1949 * if we're rebuilding a read, we have to use 1950 * pages from the bio list 1951 */ 1952 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD || 1953 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) && 1954 (stripe == faila || stripe == failb)) { 1955 page = page_in_rbio(rbio, stripe, pagenr, 0); 1956 } else { 1957 page = rbio_stripe_page(rbio, stripe, pagenr); 1958 } 1959 kunmap(page); 1960 } 1961 } 1962 1963 err = 0; 1964 cleanup: 1965 kfree(pointers); 1966 1967 cleanup_io: 1968 if (rbio->operation == BTRFS_RBIO_READ_REBUILD) { 1969 if (err == 0) 1970 cache_rbio_pages(rbio); 1971 else 1972 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); 1973 1974 rbio_orig_end_io(rbio, err); 1975 } else if (rbio->operation == BTRFS_RBIO_REBUILD_MISSING) { 1976 rbio_orig_end_io(rbio, err); 1977 } else if (err == 0) { 1978 rbio->faila = -1; 1979 rbio->failb = -1; 1980 1981 if (rbio->operation == BTRFS_RBIO_WRITE) 1982 finish_rmw(rbio); 1983 else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) 1984 finish_parity_scrub(rbio, 0); 1985 else 1986 BUG(); 1987 } else { 1988 rbio_orig_end_io(rbio, err); 1989 } 1990 } 1991 1992 /* 1993 * This is called only for stripes we've read from disk to 1994 * reconstruct the parity. 1995 */ 1996 static void raid_recover_end_io(struct bio *bio) 1997 { 1998 struct btrfs_raid_bio *rbio = bio->bi_private; 1999 2000 /* 2001 * we only read stripe pages off the disk, set them 2002 * up to date if there were no errors 2003 */ 2004 if (bio->bi_error) 2005 fail_bio_stripe(rbio, bio); 2006 else 2007 set_bio_pages_uptodate(bio); 2008 bio_put(bio); 2009 2010 if (!atomic_dec_and_test(&rbio->stripes_pending)) 2011 return; 2012 2013 if (atomic_read(&rbio->error) > rbio->bbio->max_errors) 2014 rbio_orig_end_io(rbio, -EIO); 2015 else 2016 __raid_recover_end_io(rbio); 2017 } 2018 2019 /* 2020 * reads everything we need off the disk to reconstruct 2021 * the parity. endio handlers trigger final reconstruction 2022 * when the IO is done. 2023 * 2024 * This is used both for reads from the higher layers and for 2025 * parity construction required to finish a rmw cycle. 2026 */ 2027 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio) 2028 { 2029 int bios_to_read = 0; 2030 struct bio_list bio_list; 2031 int ret; 2032 int nr_pages = DIV_ROUND_UP(rbio->stripe_len, PAGE_CACHE_SIZE); 2033 int pagenr; 2034 int stripe; 2035 struct bio *bio; 2036 2037 bio_list_init(&bio_list); 2038 2039 ret = alloc_rbio_pages(rbio); 2040 if (ret) 2041 goto cleanup; 2042 2043 atomic_set(&rbio->error, 0); 2044 2045 /* 2046 * read everything that hasn't failed. Thanks to the 2047 * stripe cache, it is possible that some or all of these 2048 * pages are going to be uptodate. 2049 */ 2050 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 2051 if (rbio->faila == stripe || rbio->failb == stripe) { 2052 atomic_inc(&rbio->error); 2053 continue; 2054 } 2055 2056 for (pagenr = 0; pagenr < nr_pages; pagenr++) { 2057 struct page *p; 2058 2059 /* 2060 * the rmw code may have already read this 2061 * page in 2062 */ 2063 p = rbio_stripe_page(rbio, stripe, pagenr); 2064 if (PageUptodate(p)) 2065 continue; 2066 2067 ret = rbio_add_io_page(rbio, &bio_list, 2068 rbio_stripe_page(rbio, stripe, pagenr), 2069 stripe, pagenr, rbio->stripe_len); 2070 if (ret < 0) 2071 goto cleanup; 2072 } 2073 } 2074 2075 bios_to_read = bio_list_size(&bio_list); 2076 if (!bios_to_read) { 2077 /* 2078 * we might have no bios to read just because the pages 2079 * were up to date, or we might have no bios to read because 2080 * the devices were gone. 2081 */ 2082 if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) { 2083 __raid_recover_end_io(rbio); 2084 goto out; 2085 } else { 2086 goto cleanup; 2087 } 2088 } 2089 2090 /* 2091 * the bbio may be freed once we submit the last bio. Make sure 2092 * not to touch it after that 2093 */ 2094 atomic_set(&rbio->stripes_pending, bios_to_read); 2095 while (1) { 2096 bio = bio_list_pop(&bio_list); 2097 if (!bio) 2098 break; 2099 2100 bio->bi_private = rbio; 2101 bio->bi_end_io = raid_recover_end_io; 2102 2103 btrfs_bio_wq_end_io(rbio->fs_info, bio, 2104 BTRFS_WQ_ENDIO_RAID56); 2105 2106 submit_bio(READ, bio); 2107 } 2108 out: 2109 return 0; 2110 2111 cleanup: 2112 if (rbio->operation == BTRFS_RBIO_READ_REBUILD || 2113 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) 2114 rbio_orig_end_io(rbio, -EIO); 2115 return -EIO; 2116 } 2117 2118 /* 2119 * the main entry point for reads from the higher layers. This 2120 * is really only called when the normal read path had a failure, 2121 * so we assume the bio they send down corresponds to a failed part 2122 * of the drive. 2123 */ 2124 int raid56_parity_recover(struct btrfs_root *root, struct bio *bio, 2125 struct btrfs_bio *bbio, u64 stripe_len, 2126 int mirror_num, int generic_io) 2127 { 2128 struct btrfs_raid_bio *rbio; 2129 int ret; 2130 2131 rbio = alloc_rbio(root, bbio, stripe_len); 2132 if (IS_ERR(rbio)) { 2133 if (generic_io) 2134 btrfs_put_bbio(bbio); 2135 return PTR_ERR(rbio); 2136 } 2137 2138 rbio->operation = BTRFS_RBIO_READ_REBUILD; 2139 bio_list_add(&rbio->bio_list, bio); 2140 rbio->bio_list_bytes = bio->bi_iter.bi_size; 2141 2142 rbio->faila = find_logical_bio_stripe(rbio, bio); 2143 if (rbio->faila == -1) { 2144 BUG(); 2145 if (generic_io) 2146 btrfs_put_bbio(bbio); 2147 kfree(rbio); 2148 return -EIO; 2149 } 2150 2151 if (generic_io) { 2152 btrfs_bio_counter_inc_noblocked(root->fs_info); 2153 rbio->generic_bio_cnt = 1; 2154 } else { 2155 btrfs_get_bbio(bbio); 2156 } 2157 2158 /* 2159 * reconstruct from the q stripe if they are 2160 * asking for mirror 3 2161 */ 2162 if (mirror_num == 3) 2163 rbio->failb = rbio->real_stripes - 2; 2164 2165 ret = lock_stripe_add(rbio); 2166 2167 /* 2168 * __raid56_parity_recover will end the bio with 2169 * any errors it hits. We don't want to return 2170 * its error value up the stack because our caller 2171 * will end up calling bio_endio with any nonzero 2172 * return 2173 */ 2174 if (ret == 0) 2175 __raid56_parity_recover(rbio); 2176 /* 2177 * our rbio has been added to the list of 2178 * rbios that will be handled after the 2179 * currently lock owner is done 2180 */ 2181 return 0; 2182 2183 } 2184 2185 static void rmw_work(struct btrfs_work *work) 2186 { 2187 struct btrfs_raid_bio *rbio; 2188 2189 rbio = container_of(work, struct btrfs_raid_bio, work); 2190 raid56_rmw_stripe(rbio); 2191 } 2192 2193 static void read_rebuild_work(struct btrfs_work *work) 2194 { 2195 struct btrfs_raid_bio *rbio; 2196 2197 rbio = container_of(work, struct btrfs_raid_bio, work); 2198 __raid56_parity_recover(rbio); 2199 } 2200 2201 /* 2202 * The following code is used to scrub/replace the parity stripe 2203 * 2204 * Note: We need make sure all the pages that add into the scrub/replace 2205 * raid bio are correct and not be changed during the scrub/replace. That 2206 * is those pages just hold metadata or file data with checksum. 2207 */ 2208 2209 struct btrfs_raid_bio * 2210 raid56_parity_alloc_scrub_rbio(struct btrfs_root *root, struct bio *bio, 2211 struct btrfs_bio *bbio, u64 stripe_len, 2212 struct btrfs_device *scrub_dev, 2213 unsigned long *dbitmap, int stripe_nsectors) 2214 { 2215 struct btrfs_raid_bio *rbio; 2216 int i; 2217 2218 rbio = alloc_rbio(root, bbio, stripe_len); 2219 if (IS_ERR(rbio)) 2220 return NULL; 2221 bio_list_add(&rbio->bio_list, bio); 2222 /* 2223 * This is a special bio which is used to hold the completion handler 2224 * and make the scrub rbio is similar to the other types 2225 */ 2226 ASSERT(!bio->bi_iter.bi_size); 2227 rbio->operation = BTRFS_RBIO_PARITY_SCRUB; 2228 2229 for (i = 0; i < rbio->real_stripes; i++) { 2230 if (bbio->stripes[i].dev == scrub_dev) { 2231 rbio->scrubp = i; 2232 break; 2233 } 2234 } 2235 2236 /* Now we just support the sectorsize equals to page size */ 2237 ASSERT(root->sectorsize == PAGE_SIZE); 2238 ASSERT(rbio->stripe_npages == stripe_nsectors); 2239 bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors); 2240 2241 return rbio; 2242 } 2243 2244 /* Used for both parity scrub and missing. */ 2245 void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page, 2246 u64 logical) 2247 { 2248 int stripe_offset; 2249 int index; 2250 2251 ASSERT(logical >= rbio->bbio->raid_map[0]); 2252 ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] + 2253 rbio->stripe_len * rbio->nr_data); 2254 stripe_offset = (int)(logical - rbio->bbio->raid_map[0]); 2255 index = stripe_offset >> PAGE_CACHE_SHIFT; 2256 rbio->bio_pages[index] = page; 2257 } 2258 2259 /* 2260 * We just scrub the parity that we have correct data on the same horizontal, 2261 * so we needn't allocate all pages for all the stripes. 2262 */ 2263 static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio) 2264 { 2265 int i; 2266 int bit; 2267 int index; 2268 struct page *page; 2269 2270 for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) { 2271 for (i = 0; i < rbio->real_stripes; i++) { 2272 index = i * rbio->stripe_npages + bit; 2273 if (rbio->stripe_pages[index]) 2274 continue; 2275 2276 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 2277 if (!page) 2278 return -ENOMEM; 2279 rbio->stripe_pages[index] = page; 2280 ClearPageUptodate(page); 2281 } 2282 } 2283 return 0; 2284 } 2285 2286 /* 2287 * end io function used by finish_rmw. When we finally 2288 * get here, we've written a full stripe 2289 */ 2290 static void raid_write_parity_end_io(struct bio *bio) 2291 { 2292 struct btrfs_raid_bio *rbio = bio->bi_private; 2293 int err = bio->bi_error; 2294 2295 if (bio->bi_error) 2296 fail_bio_stripe(rbio, bio); 2297 2298 bio_put(bio); 2299 2300 if (!atomic_dec_and_test(&rbio->stripes_pending)) 2301 return; 2302 2303 err = 0; 2304 2305 if (atomic_read(&rbio->error)) 2306 err = -EIO; 2307 2308 rbio_orig_end_io(rbio, err); 2309 } 2310 2311 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio, 2312 int need_check) 2313 { 2314 struct btrfs_bio *bbio = rbio->bbio; 2315 void *pointers[rbio->real_stripes]; 2316 DECLARE_BITMAP(pbitmap, rbio->stripe_npages); 2317 int nr_data = rbio->nr_data; 2318 int stripe; 2319 int pagenr; 2320 int p_stripe = -1; 2321 int q_stripe = -1; 2322 struct page *p_page = NULL; 2323 struct page *q_page = NULL; 2324 struct bio_list bio_list; 2325 struct bio *bio; 2326 int is_replace = 0; 2327 int ret; 2328 2329 bio_list_init(&bio_list); 2330 2331 if (rbio->real_stripes - rbio->nr_data == 1) { 2332 p_stripe = rbio->real_stripes - 1; 2333 } else if (rbio->real_stripes - rbio->nr_data == 2) { 2334 p_stripe = rbio->real_stripes - 2; 2335 q_stripe = rbio->real_stripes - 1; 2336 } else { 2337 BUG(); 2338 } 2339 2340 if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) { 2341 is_replace = 1; 2342 bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages); 2343 } 2344 2345 /* 2346 * Because the higher layers(scrubber) are unlikely to 2347 * use this area of the disk again soon, so don't cache 2348 * it. 2349 */ 2350 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); 2351 2352 if (!need_check) 2353 goto writeback; 2354 2355 p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 2356 if (!p_page) 2357 goto cleanup; 2358 SetPageUptodate(p_page); 2359 2360 if (q_stripe != -1) { 2361 q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 2362 if (!q_page) { 2363 __free_page(p_page); 2364 goto cleanup; 2365 } 2366 SetPageUptodate(q_page); 2367 } 2368 2369 atomic_set(&rbio->error, 0); 2370 2371 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) { 2372 struct page *p; 2373 void *parity; 2374 /* first collect one page from each data stripe */ 2375 for (stripe = 0; stripe < nr_data; stripe++) { 2376 p = page_in_rbio(rbio, stripe, pagenr, 0); 2377 pointers[stripe] = kmap(p); 2378 } 2379 2380 /* then add the parity stripe */ 2381 pointers[stripe++] = kmap(p_page); 2382 2383 if (q_stripe != -1) { 2384 2385 /* 2386 * raid6, add the qstripe and call the 2387 * library function to fill in our p/q 2388 */ 2389 pointers[stripe++] = kmap(q_page); 2390 2391 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE, 2392 pointers); 2393 } else { 2394 /* raid5 */ 2395 memcpy(pointers[nr_data], pointers[0], PAGE_SIZE); 2396 run_xor(pointers + 1, nr_data - 1, PAGE_CACHE_SIZE); 2397 } 2398 2399 /* Check scrubbing pairty and repair it */ 2400 p = rbio_stripe_page(rbio, rbio->scrubp, pagenr); 2401 parity = kmap(p); 2402 if (memcmp(parity, pointers[rbio->scrubp], PAGE_CACHE_SIZE)) 2403 memcpy(parity, pointers[rbio->scrubp], PAGE_CACHE_SIZE); 2404 else 2405 /* Parity is right, needn't writeback */ 2406 bitmap_clear(rbio->dbitmap, pagenr, 1); 2407 kunmap(p); 2408 2409 for (stripe = 0; stripe < rbio->real_stripes; stripe++) 2410 kunmap(page_in_rbio(rbio, stripe, pagenr, 0)); 2411 } 2412 2413 __free_page(p_page); 2414 if (q_page) 2415 __free_page(q_page); 2416 2417 writeback: 2418 /* 2419 * time to start writing. Make bios for everything from the 2420 * higher layers (the bio_list in our rbio) and our p/q. Ignore 2421 * everything else. 2422 */ 2423 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) { 2424 struct page *page; 2425 2426 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr); 2427 ret = rbio_add_io_page(rbio, &bio_list, 2428 page, rbio->scrubp, pagenr, rbio->stripe_len); 2429 if (ret) 2430 goto cleanup; 2431 } 2432 2433 if (!is_replace) 2434 goto submit_write; 2435 2436 for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) { 2437 struct page *page; 2438 2439 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr); 2440 ret = rbio_add_io_page(rbio, &bio_list, page, 2441 bbio->tgtdev_map[rbio->scrubp], 2442 pagenr, rbio->stripe_len); 2443 if (ret) 2444 goto cleanup; 2445 } 2446 2447 submit_write: 2448 nr_data = bio_list_size(&bio_list); 2449 if (!nr_data) { 2450 /* Every parity is right */ 2451 rbio_orig_end_io(rbio, 0); 2452 return; 2453 } 2454 2455 atomic_set(&rbio->stripes_pending, nr_data); 2456 2457 while (1) { 2458 bio = bio_list_pop(&bio_list); 2459 if (!bio) 2460 break; 2461 2462 bio->bi_private = rbio; 2463 bio->bi_end_io = raid_write_parity_end_io; 2464 submit_bio(WRITE, bio); 2465 } 2466 return; 2467 2468 cleanup: 2469 rbio_orig_end_io(rbio, -EIO); 2470 } 2471 2472 static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe) 2473 { 2474 if (stripe >= 0 && stripe < rbio->nr_data) 2475 return 1; 2476 return 0; 2477 } 2478 2479 /* 2480 * While we're doing the parity check and repair, we could have errors 2481 * in reading pages off the disk. This checks for errors and if we're 2482 * not able to read the page it'll trigger parity reconstruction. The 2483 * parity scrub will be finished after we've reconstructed the failed 2484 * stripes 2485 */ 2486 static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio) 2487 { 2488 if (atomic_read(&rbio->error) > rbio->bbio->max_errors) 2489 goto cleanup; 2490 2491 if (rbio->faila >= 0 || rbio->failb >= 0) { 2492 int dfail = 0, failp = -1; 2493 2494 if (is_data_stripe(rbio, rbio->faila)) 2495 dfail++; 2496 else if (is_parity_stripe(rbio->faila)) 2497 failp = rbio->faila; 2498 2499 if (is_data_stripe(rbio, rbio->failb)) 2500 dfail++; 2501 else if (is_parity_stripe(rbio->failb)) 2502 failp = rbio->failb; 2503 2504 /* 2505 * Because we can not use a scrubbing parity to repair 2506 * the data, so the capability of the repair is declined. 2507 * (In the case of RAID5, we can not repair anything) 2508 */ 2509 if (dfail > rbio->bbio->max_errors - 1) 2510 goto cleanup; 2511 2512 /* 2513 * If all data is good, only parity is correctly, just 2514 * repair the parity. 2515 */ 2516 if (dfail == 0) { 2517 finish_parity_scrub(rbio, 0); 2518 return; 2519 } 2520 2521 /* 2522 * Here means we got one corrupted data stripe and one 2523 * corrupted parity on RAID6, if the corrupted parity 2524 * is scrubbing parity, luckly, use the other one to repair 2525 * the data, or we can not repair the data stripe. 2526 */ 2527 if (failp != rbio->scrubp) 2528 goto cleanup; 2529 2530 __raid_recover_end_io(rbio); 2531 } else { 2532 finish_parity_scrub(rbio, 1); 2533 } 2534 return; 2535 2536 cleanup: 2537 rbio_orig_end_io(rbio, -EIO); 2538 } 2539 2540 /* 2541 * end io for the read phase of the rmw cycle. All the bios here are physical 2542 * stripe bios we've read from the disk so we can recalculate the parity of the 2543 * stripe. 2544 * 2545 * This will usually kick off finish_rmw once all the bios are read in, but it 2546 * may trigger parity reconstruction if we had any errors along the way 2547 */ 2548 static void raid56_parity_scrub_end_io(struct bio *bio) 2549 { 2550 struct btrfs_raid_bio *rbio = bio->bi_private; 2551 2552 if (bio->bi_error) 2553 fail_bio_stripe(rbio, bio); 2554 else 2555 set_bio_pages_uptodate(bio); 2556 2557 bio_put(bio); 2558 2559 if (!atomic_dec_and_test(&rbio->stripes_pending)) 2560 return; 2561 2562 /* 2563 * this will normally call finish_rmw to start our write 2564 * but if there are any failed stripes we'll reconstruct 2565 * from parity first 2566 */ 2567 validate_rbio_for_parity_scrub(rbio); 2568 } 2569 2570 static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio) 2571 { 2572 int bios_to_read = 0; 2573 struct bio_list bio_list; 2574 int ret; 2575 int pagenr; 2576 int stripe; 2577 struct bio *bio; 2578 2579 ret = alloc_rbio_essential_pages(rbio); 2580 if (ret) 2581 goto cleanup; 2582 2583 bio_list_init(&bio_list); 2584 2585 atomic_set(&rbio->error, 0); 2586 /* 2587 * build a list of bios to read all the missing parts of this 2588 * stripe 2589 */ 2590 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 2591 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) { 2592 struct page *page; 2593 /* 2594 * we want to find all the pages missing from 2595 * the rbio and read them from the disk. If 2596 * page_in_rbio finds a page in the bio list 2597 * we don't need to read it off the stripe. 2598 */ 2599 page = page_in_rbio(rbio, stripe, pagenr, 1); 2600 if (page) 2601 continue; 2602 2603 page = rbio_stripe_page(rbio, stripe, pagenr); 2604 /* 2605 * the bio cache may have handed us an uptodate 2606 * page. If so, be happy and use it 2607 */ 2608 if (PageUptodate(page)) 2609 continue; 2610 2611 ret = rbio_add_io_page(rbio, &bio_list, page, 2612 stripe, pagenr, rbio->stripe_len); 2613 if (ret) 2614 goto cleanup; 2615 } 2616 } 2617 2618 bios_to_read = bio_list_size(&bio_list); 2619 if (!bios_to_read) { 2620 /* 2621 * this can happen if others have merged with 2622 * us, it means there is nothing left to read. 2623 * But if there are missing devices it may not be 2624 * safe to do the full stripe write yet. 2625 */ 2626 goto finish; 2627 } 2628 2629 /* 2630 * the bbio may be freed once we submit the last bio. Make sure 2631 * not to touch it after that 2632 */ 2633 atomic_set(&rbio->stripes_pending, bios_to_read); 2634 while (1) { 2635 bio = bio_list_pop(&bio_list); 2636 if (!bio) 2637 break; 2638 2639 bio->bi_private = rbio; 2640 bio->bi_end_io = raid56_parity_scrub_end_io; 2641 2642 btrfs_bio_wq_end_io(rbio->fs_info, bio, 2643 BTRFS_WQ_ENDIO_RAID56); 2644 2645 submit_bio(READ, bio); 2646 } 2647 /* the actual write will happen once the reads are done */ 2648 return; 2649 2650 cleanup: 2651 rbio_orig_end_io(rbio, -EIO); 2652 return; 2653 2654 finish: 2655 validate_rbio_for_parity_scrub(rbio); 2656 } 2657 2658 static void scrub_parity_work(struct btrfs_work *work) 2659 { 2660 struct btrfs_raid_bio *rbio; 2661 2662 rbio = container_of(work, struct btrfs_raid_bio, work); 2663 raid56_parity_scrub_stripe(rbio); 2664 } 2665 2666 static void async_scrub_parity(struct btrfs_raid_bio *rbio) 2667 { 2668 btrfs_init_work(&rbio->work, btrfs_rmw_helper, 2669 scrub_parity_work, NULL, NULL); 2670 2671 btrfs_queue_work(rbio->fs_info->rmw_workers, 2672 &rbio->work); 2673 } 2674 2675 void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio) 2676 { 2677 if (!lock_stripe_add(rbio)) 2678 async_scrub_parity(rbio); 2679 } 2680 2681 /* The following code is used for dev replace of a missing RAID 5/6 device. */ 2682 2683 struct btrfs_raid_bio * 2684 raid56_alloc_missing_rbio(struct btrfs_root *root, struct bio *bio, 2685 struct btrfs_bio *bbio, u64 length) 2686 { 2687 struct btrfs_raid_bio *rbio; 2688 2689 rbio = alloc_rbio(root, bbio, length); 2690 if (IS_ERR(rbio)) 2691 return NULL; 2692 2693 rbio->operation = BTRFS_RBIO_REBUILD_MISSING; 2694 bio_list_add(&rbio->bio_list, bio); 2695 /* 2696 * This is a special bio which is used to hold the completion handler 2697 * and make the scrub rbio is similar to the other types 2698 */ 2699 ASSERT(!bio->bi_iter.bi_size); 2700 2701 rbio->faila = find_logical_bio_stripe(rbio, bio); 2702 if (rbio->faila == -1) { 2703 BUG(); 2704 kfree(rbio); 2705 return NULL; 2706 } 2707 2708 return rbio; 2709 } 2710 2711 static void missing_raid56_work(struct btrfs_work *work) 2712 { 2713 struct btrfs_raid_bio *rbio; 2714 2715 rbio = container_of(work, struct btrfs_raid_bio, work); 2716 __raid56_parity_recover(rbio); 2717 } 2718 2719 static void async_missing_raid56(struct btrfs_raid_bio *rbio) 2720 { 2721 btrfs_init_work(&rbio->work, btrfs_rmw_helper, 2722 missing_raid56_work, NULL, NULL); 2723 2724 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work); 2725 } 2726 2727 void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio) 2728 { 2729 if (!lock_stripe_add(rbio)) 2730 async_missing_raid56(rbio); 2731 } 2732