xref: /linux/fs/btrfs/raid56.c (revision c7e1e3ccfbd153c890240a391f258efaedfa94d0)
1 /*
2  * Copyright (C) 2012 Fusion-io  All rights reserved.
3  * Copyright (C) 2012 Intel Corp. All rights reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public
7  * License v2 as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12  * General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public
15  * License along with this program; if not, write to the
16  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17  * Boston, MA 021110-1307, USA.
18  */
19 #include <linux/sched.h>
20 #include <linux/wait.h>
21 #include <linux/bio.h>
22 #include <linux/slab.h>
23 #include <linux/buffer_head.h>
24 #include <linux/blkdev.h>
25 #include <linux/random.h>
26 #include <linux/iocontext.h>
27 #include <linux/capability.h>
28 #include <linux/ratelimit.h>
29 #include <linux/kthread.h>
30 #include <linux/raid/pq.h>
31 #include <linux/hash.h>
32 #include <linux/list_sort.h>
33 #include <linux/raid/xor.h>
34 #include <linux/vmalloc.h>
35 #include <asm/div64.h>
36 #include "ctree.h"
37 #include "extent_map.h"
38 #include "disk-io.h"
39 #include "transaction.h"
40 #include "print-tree.h"
41 #include "volumes.h"
42 #include "raid56.h"
43 #include "async-thread.h"
44 #include "check-integrity.h"
45 #include "rcu-string.h"
46 
47 /* set when additional merges to this rbio are not allowed */
48 #define RBIO_RMW_LOCKED_BIT	1
49 
50 /*
51  * set when this rbio is sitting in the hash, but it is just a cache
52  * of past RMW
53  */
54 #define RBIO_CACHE_BIT		2
55 
56 /*
57  * set when it is safe to trust the stripe_pages for caching
58  */
59 #define RBIO_CACHE_READY_BIT	3
60 
61 #define RBIO_CACHE_SIZE 1024
62 
63 enum btrfs_rbio_ops {
64 	BTRFS_RBIO_WRITE	= 0,
65 	BTRFS_RBIO_READ_REBUILD	= 1,
66 	BTRFS_RBIO_PARITY_SCRUB	= 2,
67 };
68 
69 struct btrfs_raid_bio {
70 	struct btrfs_fs_info *fs_info;
71 	struct btrfs_bio *bbio;
72 
73 	/* while we're doing rmw on a stripe
74 	 * we put it into a hash table so we can
75 	 * lock the stripe and merge more rbios
76 	 * into it.
77 	 */
78 	struct list_head hash_list;
79 
80 	/*
81 	 * LRU list for the stripe cache
82 	 */
83 	struct list_head stripe_cache;
84 
85 	/*
86 	 * for scheduling work in the helper threads
87 	 */
88 	struct btrfs_work work;
89 
90 	/*
91 	 * bio list and bio_list_lock are used
92 	 * to add more bios into the stripe
93 	 * in hopes of avoiding the full rmw
94 	 */
95 	struct bio_list bio_list;
96 	spinlock_t bio_list_lock;
97 
98 	/* also protected by the bio_list_lock, the
99 	 * plug list is used by the plugging code
100 	 * to collect partial bios while plugged.  The
101 	 * stripe locking code also uses it to hand off
102 	 * the stripe lock to the next pending IO
103 	 */
104 	struct list_head plug_list;
105 
106 	/*
107 	 * flags that tell us if it is safe to
108 	 * merge with this bio
109 	 */
110 	unsigned long flags;
111 
112 	/* size of each individual stripe on disk */
113 	int stripe_len;
114 
115 	/* number of data stripes (no p/q) */
116 	int nr_data;
117 
118 	int real_stripes;
119 
120 	int stripe_npages;
121 	/*
122 	 * set if we're doing a parity rebuild
123 	 * for a read from higher up, which is handled
124 	 * differently from a parity rebuild as part of
125 	 * rmw
126 	 */
127 	enum btrfs_rbio_ops operation;
128 
129 	/* first bad stripe */
130 	int faila;
131 
132 	/* second bad stripe (for raid6 use) */
133 	int failb;
134 
135 	int scrubp;
136 	/*
137 	 * number of pages needed to represent the full
138 	 * stripe
139 	 */
140 	int nr_pages;
141 
142 	/*
143 	 * size of all the bios in the bio_list.  This
144 	 * helps us decide if the rbio maps to a full
145 	 * stripe or not
146 	 */
147 	int bio_list_bytes;
148 
149 	int generic_bio_cnt;
150 
151 	atomic_t refs;
152 
153 	atomic_t stripes_pending;
154 
155 	atomic_t error;
156 	/*
157 	 * these are two arrays of pointers.  We allocate the
158 	 * rbio big enough to hold them both and setup their
159 	 * locations when the rbio is allocated
160 	 */
161 
162 	/* pointers to pages that we allocated for
163 	 * reading/writing stripes directly from the disk (including P/Q)
164 	 */
165 	struct page **stripe_pages;
166 
167 	/*
168 	 * pointers to the pages in the bio_list.  Stored
169 	 * here for faster lookup
170 	 */
171 	struct page **bio_pages;
172 
173 	/*
174 	 * bitmap to record which horizontal stripe has data
175 	 */
176 	unsigned long *dbitmap;
177 };
178 
179 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio);
180 static noinline void finish_rmw(struct btrfs_raid_bio *rbio);
181 static void rmw_work(struct btrfs_work *work);
182 static void read_rebuild_work(struct btrfs_work *work);
183 static void async_rmw_stripe(struct btrfs_raid_bio *rbio);
184 static void async_read_rebuild(struct btrfs_raid_bio *rbio);
185 static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
186 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
187 static void __free_raid_bio(struct btrfs_raid_bio *rbio);
188 static void index_rbio_pages(struct btrfs_raid_bio *rbio);
189 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
190 
191 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
192 					 int need_check);
193 static void async_scrub_parity(struct btrfs_raid_bio *rbio);
194 
195 /*
196  * the stripe hash table is used for locking, and to collect
197  * bios in hopes of making a full stripe
198  */
199 int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
200 {
201 	struct btrfs_stripe_hash_table *table;
202 	struct btrfs_stripe_hash_table *x;
203 	struct btrfs_stripe_hash *cur;
204 	struct btrfs_stripe_hash *h;
205 	int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
206 	int i;
207 	int table_size;
208 
209 	if (info->stripe_hash_table)
210 		return 0;
211 
212 	/*
213 	 * The table is large, starting with order 4 and can go as high as
214 	 * order 7 in case lock debugging is turned on.
215 	 *
216 	 * Try harder to allocate and fallback to vmalloc to lower the chance
217 	 * of a failing mount.
218 	 */
219 	table_size = sizeof(*table) + sizeof(*h) * num_entries;
220 	table = kzalloc(table_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
221 	if (!table) {
222 		table = vzalloc(table_size);
223 		if (!table)
224 			return -ENOMEM;
225 	}
226 
227 	spin_lock_init(&table->cache_lock);
228 	INIT_LIST_HEAD(&table->stripe_cache);
229 
230 	h = table->table;
231 
232 	for (i = 0; i < num_entries; i++) {
233 		cur = h + i;
234 		INIT_LIST_HEAD(&cur->hash_list);
235 		spin_lock_init(&cur->lock);
236 		init_waitqueue_head(&cur->wait);
237 	}
238 
239 	x = cmpxchg(&info->stripe_hash_table, NULL, table);
240 	if (x)
241 		kvfree(x);
242 	return 0;
243 }
244 
245 /*
246  * caching an rbio means to copy anything from the
247  * bio_pages array into the stripe_pages array.  We
248  * use the page uptodate bit in the stripe cache array
249  * to indicate if it has valid data
250  *
251  * once the caching is done, we set the cache ready
252  * bit.
253  */
254 static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
255 {
256 	int i;
257 	char *s;
258 	char *d;
259 	int ret;
260 
261 	ret = alloc_rbio_pages(rbio);
262 	if (ret)
263 		return;
264 
265 	for (i = 0; i < rbio->nr_pages; i++) {
266 		if (!rbio->bio_pages[i])
267 			continue;
268 
269 		s = kmap(rbio->bio_pages[i]);
270 		d = kmap(rbio->stripe_pages[i]);
271 
272 		memcpy(d, s, PAGE_CACHE_SIZE);
273 
274 		kunmap(rbio->bio_pages[i]);
275 		kunmap(rbio->stripe_pages[i]);
276 		SetPageUptodate(rbio->stripe_pages[i]);
277 	}
278 	set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
279 }
280 
281 /*
282  * we hash on the first logical address of the stripe
283  */
284 static int rbio_bucket(struct btrfs_raid_bio *rbio)
285 {
286 	u64 num = rbio->bbio->raid_map[0];
287 
288 	/*
289 	 * we shift down quite a bit.  We're using byte
290 	 * addressing, and most of the lower bits are zeros.
291 	 * This tends to upset hash_64, and it consistently
292 	 * returns just one or two different values.
293 	 *
294 	 * shifting off the lower bits fixes things.
295 	 */
296 	return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
297 }
298 
299 /*
300  * stealing an rbio means taking all the uptodate pages from the stripe
301  * array in the source rbio and putting them into the destination rbio
302  */
303 static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
304 {
305 	int i;
306 	struct page *s;
307 	struct page *d;
308 
309 	if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
310 		return;
311 
312 	for (i = 0; i < dest->nr_pages; i++) {
313 		s = src->stripe_pages[i];
314 		if (!s || !PageUptodate(s)) {
315 			continue;
316 		}
317 
318 		d = dest->stripe_pages[i];
319 		if (d)
320 			__free_page(d);
321 
322 		dest->stripe_pages[i] = s;
323 		src->stripe_pages[i] = NULL;
324 	}
325 }
326 
327 /*
328  * merging means we take the bio_list from the victim and
329  * splice it into the destination.  The victim should
330  * be discarded afterwards.
331  *
332  * must be called with dest->rbio_list_lock held
333  */
334 static void merge_rbio(struct btrfs_raid_bio *dest,
335 		       struct btrfs_raid_bio *victim)
336 {
337 	bio_list_merge(&dest->bio_list, &victim->bio_list);
338 	dest->bio_list_bytes += victim->bio_list_bytes;
339 	dest->generic_bio_cnt += victim->generic_bio_cnt;
340 	bio_list_init(&victim->bio_list);
341 }
342 
343 /*
344  * used to prune items that are in the cache.  The caller
345  * must hold the hash table lock.
346  */
347 static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
348 {
349 	int bucket = rbio_bucket(rbio);
350 	struct btrfs_stripe_hash_table *table;
351 	struct btrfs_stripe_hash *h;
352 	int freeit = 0;
353 
354 	/*
355 	 * check the bit again under the hash table lock.
356 	 */
357 	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
358 		return;
359 
360 	table = rbio->fs_info->stripe_hash_table;
361 	h = table->table + bucket;
362 
363 	/* hold the lock for the bucket because we may be
364 	 * removing it from the hash table
365 	 */
366 	spin_lock(&h->lock);
367 
368 	/*
369 	 * hold the lock for the bio list because we need
370 	 * to make sure the bio list is empty
371 	 */
372 	spin_lock(&rbio->bio_list_lock);
373 
374 	if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
375 		list_del_init(&rbio->stripe_cache);
376 		table->cache_size -= 1;
377 		freeit = 1;
378 
379 		/* if the bio list isn't empty, this rbio is
380 		 * still involved in an IO.  We take it out
381 		 * of the cache list, and drop the ref that
382 		 * was held for the list.
383 		 *
384 		 * If the bio_list was empty, we also remove
385 		 * the rbio from the hash_table, and drop
386 		 * the corresponding ref
387 		 */
388 		if (bio_list_empty(&rbio->bio_list)) {
389 			if (!list_empty(&rbio->hash_list)) {
390 				list_del_init(&rbio->hash_list);
391 				atomic_dec(&rbio->refs);
392 				BUG_ON(!list_empty(&rbio->plug_list));
393 			}
394 		}
395 	}
396 
397 	spin_unlock(&rbio->bio_list_lock);
398 	spin_unlock(&h->lock);
399 
400 	if (freeit)
401 		__free_raid_bio(rbio);
402 }
403 
404 /*
405  * prune a given rbio from the cache
406  */
407 static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
408 {
409 	struct btrfs_stripe_hash_table *table;
410 	unsigned long flags;
411 
412 	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
413 		return;
414 
415 	table = rbio->fs_info->stripe_hash_table;
416 
417 	spin_lock_irqsave(&table->cache_lock, flags);
418 	__remove_rbio_from_cache(rbio);
419 	spin_unlock_irqrestore(&table->cache_lock, flags);
420 }
421 
422 /*
423  * remove everything in the cache
424  */
425 static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
426 {
427 	struct btrfs_stripe_hash_table *table;
428 	unsigned long flags;
429 	struct btrfs_raid_bio *rbio;
430 
431 	table = info->stripe_hash_table;
432 
433 	spin_lock_irqsave(&table->cache_lock, flags);
434 	while (!list_empty(&table->stripe_cache)) {
435 		rbio = list_entry(table->stripe_cache.next,
436 				  struct btrfs_raid_bio,
437 				  stripe_cache);
438 		__remove_rbio_from_cache(rbio);
439 	}
440 	spin_unlock_irqrestore(&table->cache_lock, flags);
441 }
442 
443 /*
444  * remove all cached entries and free the hash table
445  * used by unmount
446  */
447 void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
448 {
449 	if (!info->stripe_hash_table)
450 		return;
451 	btrfs_clear_rbio_cache(info);
452 	kvfree(info->stripe_hash_table);
453 	info->stripe_hash_table = NULL;
454 }
455 
456 /*
457  * insert an rbio into the stripe cache.  It
458  * must have already been prepared by calling
459  * cache_rbio_pages
460  *
461  * If this rbio was already cached, it gets
462  * moved to the front of the lru.
463  *
464  * If the size of the rbio cache is too big, we
465  * prune an item.
466  */
467 static void cache_rbio(struct btrfs_raid_bio *rbio)
468 {
469 	struct btrfs_stripe_hash_table *table;
470 	unsigned long flags;
471 
472 	if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
473 		return;
474 
475 	table = rbio->fs_info->stripe_hash_table;
476 
477 	spin_lock_irqsave(&table->cache_lock, flags);
478 	spin_lock(&rbio->bio_list_lock);
479 
480 	/* bump our ref if we were not in the list before */
481 	if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
482 		atomic_inc(&rbio->refs);
483 
484 	if (!list_empty(&rbio->stripe_cache)){
485 		list_move(&rbio->stripe_cache, &table->stripe_cache);
486 	} else {
487 		list_add(&rbio->stripe_cache, &table->stripe_cache);
488 		table->cache_size += 1;
489 	}
490 
491 	spin_unlock(&rbio->bio_list_lock);
492 
493 	if (table->cache_size > RBIO_CACHE_SIZE) {
494 		struct btrfs_raid_bio *found;
495 
496 		found = list_entry(table->stripe_cache.prev,
497 				  struct btrfs_raid_bio,
498 				  stripe_cache);
499 
500 		if (found != rbio)
501 			__remove_rbio_from_cache(found);
502 	}
503 
504 	spin_unlock_irqrestore(&table->cache_lock, flags);
505 	return;
506 }
507 
508 /*
509  * helper function to run the xor_blocks api.  It is only
510  * able to do MAX_XOR_BLOCKS at a time, so we need to
511  * loop through.
512  */
513 static void run_xor(void **pages, int src_cnt, ssize_t len)
514 {
515 	int src_off = 0;
516 	int xor_src_cnt = 0;
517 	void *dest = pages[src_cnt];
518 
519 	while(src_cnt > 0) {
520 		xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
521 		xor_blocks(xor_src_cnt, len, dest, pages + src_off);
522 
523 		src_cnt -= xor_src_cnt;
524 		src_off += xor_src_cnt;
525 	}
526 }
527 
528 /*
529  * returns true if the bio list inside this rbio
530  * covers an entire stripe (no rmw required).
531  * Must be called with the bio list lock held, or
532  * at a time when you know it is impossible to add
533  * new bios into the list
534  */
535 static int __rbio_is_full(struct btrfs_raid_bio *rbio)
536 {
537 	unsigned long size = rbio->bio_list_bytes;
538 	int ret = 1;
539 
540 	if (size != rbio->nr_data * rbio->stripe_len)
541 		ret = 0;
542 
543 	BUG_ON(size > rbio->nr_data * rbio->stripe_len);
544 	return ret;
545 }
546 
547 static int rbio_is_full(struct btrfs_raid_bio *rbio)
548 {
549 	unsigned long flags;
550 	int ret;
551 
552 	spin_lock_irqsave(&rbio->bio_list_lock, flags);
553 	ret = __rbio_is_full(rbio);
554 	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
555 	return ret;
556 }
557 
558 /*
559  * returns 1 if it is safe to merge two rbios together.
560  * The merging is safe if the two rbios correspond to
561  * the same stripe and if they are both going in the same
562  * direction (read vs write), and if neither one is
563  * locked for final IO
564  *
565  * The caller is responsible for locking such that
566  * rmw_locked is safe to test
567  */
568 static int rbio_can_merge(struct btrfs_raid_bio *last,
569 			  struct btrfs_raid_bio *cur)
570 {
571 	if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
572 	    test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
573 		return 0;
574 
575 	/*
576 	 * we can't merge with cached rbios, since the
577 	 * idea is that when we merge the destination
578 	 * rbio is going to run our IO for us.  We can
579 	 * steal from cached rbio's though, other functions
580 	 * handle that.
581 	 */
582 	if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
583 	    test_bit(RBIO_CACHE_BIT, &cur->flags))
584 		return 0;
585 
586 	if (last->bbio->raid_map[0] !=
587 	    cur->bbio->raid_map[0])
588 		return 0;
589 
590 	/* we can't merge with different operations */
591 	if (last->operation != cur->operation)
592 		return 0;
593 	/*
594 	 * We've need read the full stripe from the drive.
595 	 * check and repair the parity and write the new results.
596 	 *
597 	 * We're not allowed to add any new bios to the
598 	 * bio list here, anyone else that wants to
599 	 * change this stripe needs to do their own rmw.
600 	 */
601 	if (last->operation == BTRFS_RBIO_PARITY_SCRUB ||
602 	    cur->operation == BTRFS_RBIO_PARITY_SCRUB)
603 		return 0;
604 
605 	return 1;
606 }
607 
608 /*
609  * helper to index into the pstripe
610  */
611 static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index)
612 {
613 	index += (rbio->nr_data * rbio->stripe_len) >> PAGE_CACHE_SHIFT;
614 	return rbio->stripe_pages[index];
615 }
616 
617 /*
618  * helper to index into the qstripe, returns null
619  * if there is no qstripe
620  */
621 static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index)
622 {
623 	if (rbio->nr_data + 1 == rbio->real_stripes)
624 		return NULL;
625 
626 	index += ((rbio->nr_data + 1) * rbio->stripe_len) >>
627 		PAGE_CACHE_SHIFT;
628 	return rbio->stripe_pages[index];
629 }
630 
631 /*
632  * The first stripe in the table for a logical address
633  * has the lock.  rbios are added in one of three ways:
634  *
635  * 1) Nobody has the stripe locked yet.  The rbio is given
636  * the lock and 0 is returned.  The caller must start the IO
637  * themselves.
638  *
639  * 2) Someone has the stripe locked, but we're able to merge
640  * with the lock owner.  The rbio is freed and the IO will
641  * start automatically along with the existing rbio.  1 is returned.
642  *
643  * 3) Someone has the stripe locked, but we're not able to merge.
644  * The rbio is added to the lock owner's plug list, or merged into
645  * an rbio already on the plug list.  When the lock owner unlocks,
646  * the next rbio on the list is run and the IO is started automatically.
647  * 1 is returned
648  *
649  * If we return 0, the caller still owns the rbio and must continue with
650  * IO submission.  If we return 1, the caller must assume the rbio has
651  * already been freed.
652  */
653 static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
654 {
655 	int bucket = rbio_bucket(rbio);
656 	struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket;
657 	struct btrfs_raid_bio *cur;
658 	struct btrfs_raid_bio *pending;
659 	unsigned long flags;
660 	DEFINE_WAIT(wait);
661 	struct btrfs_raid_bio *freeit = NULL;
662 	struct btrfs_raid_bio *cache_drop = NULL;
663 	int ret = 0;
664 	int walk = 0;
665 
666 	spin_lock_irqsave(&h->lock, flags);
667 	list_for_each_entry(cur, &h->hash_list, hash_list) {
668 		walk++;
669 		if (cur->bbio->raid_map[0] == rbio->bbio->raid_map[0]) {
670 			spin_lock(&cur->bio_list_lock);
671 
672 			/* can we steal this cached rbio's pages? */
673 			if (bio_list_empty(&cur->bio_list) &&
674 			    list_empty(&cur->plug_list) &&
675 			    test_bit(RBIO_CACHE_BIT, &cur->flags) &&
676 			    !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
677 				list_del_init(&cur->hash_list);
678 				atomic_dec(&cur->refs);
679 
680 				steal_rbio(cur, rbio);
681 				cache_drop = cur;
682 				spin_unlock(&cur->bio_list_lock);
683 
684 				goto lockit;
685 			}
686 
687 			/* can we merge into the lock owner? */
688 			if (rbio_can_merge(cur, rbio)) {
689 				merge_rbio(cur, rbio);
690 				spin_unlock(&cur->bio_list_lock);
691 				freeit = rbio;
692 				ret = 1;
693 				goto out;
694 			}
695 
696 
697 			/*
698 			 * we couldn't merge with the running
699 			 * rbio, see if we can merge with the
700 			 * pending ones.  We don't have to
701 			 * check for rmw_locked because there
702 			 * is no way they are inside finish_rmw
703 			 * right now
704 			 */
705 			list_for_each_entry(pending, &cur->plug_list,
706 					    plug_list) {
707 				if (rbio_can_merge(pending, rbio)) {
708 					merge_rbio(pending, rbio);
709 					spin_unlock(&cur->bio_list_lock);
710 					freeit = rbio;
711 					ret = 1;
712 					goto out;
713 				}
714 			}
715 
716 			/* no merging, put us on the tail of the plug list,
717 			 * our rbio will be started with the currently
718 			 * running rbio unlocks
719 			 */
720 			list_add_tail(&rbio->plug_list, &cur->plug_list);
721 			spin_unlock(&cur->bio_list_lock);
722 			ret = 1;
723 			goto out;
724 		}
725 	}
726 lockit:
727 	atomic_inc(&rbio->refs);
728 	list_add(&rbio->hash_list, &h->hash_list);
729 out:
730 	spin_unlock_irqrestore(&h->lock, flags);
731 	if (cache_drop)
732 		remove_rbio_from_cache(cache_drop);
733 	if (freeit)
734 		__free_raid_bio(freeit);
735 	return ret;
736 }
737 
738 /*
739  * called as rmw or parity rebuild is completed.  If the plug list has more
740  * rbios waiting for this stripe, the next one on the list will be started
741  */
742 static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
743 {
744 	int bucket;
745 	struct btrfs_stripe_hash *h;
746 	unsigned long flags;
747 	int keep_cache = 0;
748 
749 	bucket = rbio_bucket(rbio);
750 	h = rbio->fs_info->stripe_hash_table->table + bucket;
751 
752 	if (list_empty(&rbio->plug_list))
753 		cache_rbio(rbio);
754 
755 	spin_lock_irqsave(&h->lock, flags);
756 	spin_lock(&rbio->bio_list_lock);
757 
758 	if (!list_empty(&rbio->hash_list)) {
759 		/*
760 		 * if we're still cached and there is no other IO
761 		 * to perform, just leave this rbio here for others
762 		 * to steal from later
763 		 */
764 		if (list_empty(&rbio->plug_list) &&
765 		    test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
766 			keep_cache = 1;
767 			clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
768 			BUG_ON(!bio_list_empty(&rbio->bio_list));
769 			goto done;
770 		}
771 
772 		list_del_init(&rbio->hash_list);
773 		atomic_dec(&rbio->refs);
774 
775 		/*
776 		 * we use the plug list to hold all the rbios
777 		 * waiting for the chance to lock this stripe.
778 		 * hand the lock over to one of them.
779 		 */
780 		if (!list_empty(&rbio->plug_list)) {
781 			struct btrfs_raid_bio *next;
782 			struct list_head *head = rbio->plug_list.next;
783 
784 			next = list_entry(head, struct btrfs_raid_bio,
785 					  plug_list);
786 
787 			list_del_init(&rbio->plug_list);
788 
789 			list_add(&next->hash_list, &h->hash_list);
790 			atomic_inc(&next->refs);
791 			spin_unlock(&rbio->bio_list_lock);
792 			spin_unlock_irqrestore(&h->lock, flags);
793 
794 			if (next->operation == BTRFS_RBIO_READ_REBUILD)
795 				async_read_rebuild(next);
796 			else if (next->operation == BTRFS_RBIO_WRITE) {
797 				steal_rbio(rbio, next);
798 				async_rmw_stripe(next);
799 			} else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
800 				steal_rbio(rbio, next);
801 				async_scrub_parity(next);
802 			}
803 
804 			goto done_nolock;
805 		} else  if (waitqueue_active(&h->wait)) {
806 			spin_unlock(&rbio->bio_list_lock);
807 			spin_unlock_irqrestore(&h->lock, flags);
808 			wake_up(&h->wait);
809 			goto done_nolock;
810 		}
811 	}
812 done:
813 	spin_unlock(&rbio->bio_list_lock);
814 	spin_unlock_irqrestore(&h->lock, flags);
815 
816 done_nolock:
817 	if (!keep_cache)
818 		remove_rbio_from_cache(rbio);
819 }
820 
821 static void __free_raid_bio(struct btrfs_raid_bio *rbio)
822 {
823 	int i;
824 
825 	WARN_ON(atomic_read(&rbio->refs) < 0);
826 	if (!atomic_dec_and_test(&rbio->refs))
827 		return;
828 
829 	WARN_ON(!list_empty(&rbio->stripe_cache));
830 	WARN_ON(!list_empty(&rbio->hash_list));
831 	WARN_ON(!bio_list_empty(&rbio->bio_list));
832 
833 	for (i = 0; i < rbio->nr_pages; i++) {
834 		if (rbio->stripe_pages[i]) {
835 			__free_page(rbio->stripe_pages[i]);
836 			rbio->stripe_pages[i] = NULL;
837 		}
838 	}
839 
840 	btrfs_put_bbio(rbio->bbio);
841 	kfree(rbio);
842 }
843 
844 static void free_raid_bio(struct btrfs_raid_bio *rbio)
845 {
846 	unlock_stripe(rbio);
847 	__free_raid_bio(rbio);
848 }
849 
850 /*
851  * this frees the rbio and runs through all the bios in the
852  * bio_list and calls end_io on them
853  */
854 static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, int err)
855 {
856 	struct bio *cur = bio_list_get(&rbio->bio_list);
857 	struct bio *next;
858 
859 	if (rbio->generic_bio_cnt)
860 		btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt);
861 
862 	free_raid_bio(rbio);
863 
864 	while (cur) {
865 		next = cur->bi_next;
866 		cur->bi_next = NULL;
867 		cur->bi_error = err;
868 		bio_endio(cur);
869 		cur = next;
870 	}
871 }
872 
873 /*
874  * end io function used by finish_rmw.  When we finally
875  * get here, we've written a full stripe
876  */
877 static void raid_write_end_io(struct bio *bio)
878 {
879 	struct btrfs_raid_bio *rbio = bio->bi_private;
880 	int err = bio->bi_error;
881 
882 	if (err)
883 		fail_bio_stripe(rbio, bio);
884 
885 	bio_put(bio);
886 
887 	if (!atomic_dec_and_test(&rbio->stripes_pending))
888 		return;
889 
890 	err = 0;
891 
892 	/* OK, we have read all the stripes we need to. */
893 	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
894 		err = -EIO;
895 
896 	rbio_orig_end_io(rbio, err);
897 	return;
898 }
899 
900 /*
901  * the read/modify/write code wants to use the original bio for
902  * any pages it included, and then use the rbio for everything
903  * else.  This function decides if a given index (stripe number)
904  * and page number in that stripe fall inside the original bio
905  * or the rbio.
906  *
907  * if you set bio_list_only, you'll get a NULL back for any ranges
908  * that are outside the bio_list
909  *
910  * This doesn't take any refs on anything, you get a bare page pointer
911  * and the caller must bump refs as required.
912  *
913  * You must call index_rbio_pages once before you can trust
914  * the answers from this function.
915  */
916 static struct page *page_in_rbio(struct btrfs_raid_bio *rbio,
917 				 int index, int pagenr, int bio_list_only)
918 {
919 	int chunk_page;
920 	struct page *p = NULL;
921 
922 	chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr;
923 
924 	spin_lock_irq(&rbio->bio_list_lock);
925 	p = rbio->bio_pages[chunk_page];
926 	spin_unlock_irq(&rbio->bio_list_lock);
927 
928 	if (p || bio_list_only)
929 		return p;
930 
931 	return rbio->stripe_pages[chunk_page];
932 }
933 
934 /*
935  * number of pages we need for the entire stripe across all the
936  * drives
937  */
938 static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes)
939 {
940 	unsigned long nr = stripe_len * nr_stripes;
941 	return DIV_ROUND_UP(nr, PAGE_CACHE_SIZE);
942 }
943 
944 /*
945  * allocation and initial setup for the btrfs_raid_bio.  Not
946  * this does not allocate any pages for rbio->pages.
947  */
948 static struct btrfs_raid_bio *alloc_rbio(struct btrfs_root *root,
949 			  struct btrfs_bio *bbio, u64 stripe_len)
950 {
951 	struct btrfs_raid_bio *rbio;
952 	int nr_data = 0;
953 	int real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
954 	int num_pages = rbio_nr_pages(stripe_len, real_stripes);
955 	int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE);
956 	void *p;
957 
958 	rbio = kzalloc(sizeof(*rbio) + num_pages * sizeof(struct page *) * 2 +
959 		       DIV_ROUND_UP(stripe_npages, BITS_PER_LONG / 8),
960 			GFP_NOFS);
961 	if (!rbio)
962 		return ERR_PTR(-ENOMEM);
963 
964 	bio_list_init(&rbio->bio_list);
965 	INIT_LIST_HEAD(&rbio->plug_list);
966 	spin_lock_init(&rbio->bio_list_lock);
967 	INIT_LIST_HEAD(&rbio->stripe_cache);
968 	INIT_LIST_HEAD(&rbio->hash_list);
969 	rbio->bbio = bbio;
970 	rbio->fs_info = root->fs_info;
971 	rbio->stripe_len = stripe_len;
972 	rbio->nr_pages = num_pages;
973 	rbio->real_stripes = real_stripes;
974 	rbio->stripe_npages = stripe_npages;
975 	rbio->faila = -1;
976 	rbio->failb = -1;
977 	atomic_set(&rbio->refs, 1);
978 	atomic_set(&rbio->error, 0);
979 	atomic_set(&rbio->stripes_pending, 0);
980 
981 	/*
982 	 * the stripe_pages and bio_pages array point to the extra
983 	 * memory we allocated past the end of the rbio
984 	 */
985 	p = rbio + 1;
986 	rbio->stripe_pages = p;
987 	rbio->bio_pages = p + sizeof(struct page *) * num_pages;
988 	rbio->dbitmap = p + sizeof(struct page *) * num_pages * 2;
989 
990 	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
991 		nr_data = real_stripes - 1;
992 	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
993 		nr_data = real_stripes - 2;
994 	else
995 		BUG();
996 
997 	rbio->nr_data = nr_data;
998 	return rbio;
999 }
1000 
1001 /* allocate pages for all the stripes in the bio, including parity */
1002 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
1003 {
1004 	int i;
1005 	struct page *page;
1006 
1007 	for (i = 0; i < rbio->nr_pages; i++) {
1008 		if (rbio->stripe_pages[i])
1009 			continue;
1010 		page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1011 		if (!page)
1012 			return -ENOMEM;
1013 		rbio->stripe_pages[i] = page;
1014 		ClearPageUptodate(page);
1015 	}
1016 	return 0;
1017 }
1018 
1019 /* allocate pages for just the p/q stripes */
1020 static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
1021 {
1022 	int i;
1023 	struct page *page;
1024 
1025 	i = (rbio->nr_data * rbio->stripe_len) >> PAGE_CACHE_SHIFT;
1026 
1027 	for (; i < rbio->nr_pages; i++) {
1028 		if (rbio->stripe_pages[i])
1029 			continue;
1030 		page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1031 		if (!page)
1032 			return -ENOMEM;
1033 		rbio->stripe_pages[i] = page;
1034 	}
1035 	return 0;
1036 }
1037 
1038 /*
1039  * add a single page from a specific stripe into our list of bios for IO
1040  * this will try to merge into existing bios if possible, and returns
1041  * zero if all went well.
1042  */
1043 static int rbio_add_io_page(struct btrfs_raid_bio *rbio,
1044 			    struct bio_list *bio_list,
1045 			    struct page *page,
1046 			    int stripe_nr,
1047 			    unsigned long page_index,
1048 			    unsigned long bio_max_len)
1049 {
1050 	struct bio *last = bio_list->tail;
1051 	u64 last_end = 0;
1052 	int ret;
1053 	struct bio *bio;
1054 	struct btrfs_bio_stripe *stripe;
1055 	u64 disk_start;
1056 
1057 	stripe = &rbio->bbio->stripes[stripe_nr];
1058 	disk_start = stripe->physical + (page_index << PAGE_CACHE_SHIFT);
1059 
1060 	/* if the device is missing, just fail this stripe */
1061 	if (!stripe->dev->bdev)
1062 		return fail_rbio_index(rbio, stripe_nr);
1063 
1064 	/* see if we can add this page onto our existing bio */
1065 	if (last) {
1066 		last_end = (u64)last->bi_iter.bi_sector << 9;
1067 		last_end += last->bi_iter.bi_size;
1068 
1069 		/*
1070 		 * we can't merge these if they are from different
1071 		 * devices or if they are not contiguous
1072 		 */
1073 		if (last_end == disk_start && stripe->dev->bdev &&
1074 		    !last->bi_error &&
1075 		    last->bi_bdev == stripe->dev->bdev) {
1076 			ret = bio_add_page(last, page, PAGE_CACHE_SIZE, 0);
1077 			if (ret == PAGE_CACHE_SIZE)
1078 				return 0;
1079 		}
1080 	}
1081 
1082 	/* put a new bio on the list */
1083 	bio = btrfs_io_bio_alloc(GFP_NOFS, bio_max_len >> PAGE_SHIFT?:1);
1084 	if (!bio)
1085 		return -ENOMEM;
1086 
1087 	bio->bi_iter.bi_size = 0;
1088 	bio->bi_bdev = stripe->dev->bdev;
1089 	bio->bi_iter.bi_sector = disk_start >> 9;
1090 
1091 	bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
1092 	bio_list_add(bio_list, bio);
1093 	return 0;
1094 }
1095 
1096 /*
1097  * while we're doing the read/modify/write cycle, we could
1098  * have errors in reading pages off the disk.  This checks
1099  * for errors and if we're not able to read the page it'll
1100  * trigger parity reconstruction.  The rmw will be finished
1101  * after we've reconstructed the failed stripes
1102  */
1103 static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio)
1104 {
1105 	if (rbio->faila >= 0 || rbio->failb >= 0) {
1106 		BUG_ON(rbio->faila == rbio->real_stripes - 1);
1107 		__raid56_parity_recover(rbio);
1108 	} else {
1109 		finish_rmw(rbio);
1110 	}
1111 }
1112 
1113 /*
1114  * these are just the pages from the rbio array, not from anything
1115  * the FS sent down to us
1116  */
1117 static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe, int page)
1118 {
1119 	int index;
1120 	index = stripe * (rbio->stripe_len >> PAGE_CACHE_SHIFT);
1121 	index += page;
1122 	return rbio->stripe_pages[index];
1123 }
1124 
1125 /*
1126  * helper function to walk our bio list and populate the bio_pages array with
1127  * the result.  This seems expensive, but it is faster than constantly
1128  * searching through the bio list as we setup the IO in finish_rmw or stripe
1129  * reconstruction.
1130  *
1131  * This must be called before you trust the answers from page_in_rbio
1132  */
1133 static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1134 {
1135 	struct bio *bio;
1136 	u64 start;
1137 	unsigned long stripe_offset;
1138 	unsigned long page_index;
1139 	struct page *p;
1140 	int i;
1141 
1142 	spin_lock_irq(&rbio->bio_list_lock);
1143 	bio_list_for_each(bio, &rbio->bio_list) {
1144 		start = (u64)bio->bi_iter.bi_sector << 9;
1145 		stripe_offset = start - rbio->bbio->raid_map[0];
1146 		page_index = stripe_offset >> PAGE_CACHE_SHIFT;
1147 
1148 		for (i = 0; i < bio->bi_vcnt; i++) {
1149 			p = bio->bi_io_vec[i].bv_page;
1150 			rbio->bio_pages[page_index + i] = p;
1151 		}
1152 	}
1153 	spin_unlock_irq(&rbio->bio_list_lock);
1154 }
1155 
1156 /*
1157  * this is called from one of two situations.  We either
1158  * have a full stripe from the higher layers, or we've read all
1159  * the missing bits off disk.
1160  *
1161  * This will calculate the parity and then send down any
1162  * changed blocks.
1163  */
1164 static noinline void finish_rmw(struct btrfs_raid_bio *rbio)
1165 {
1166 	struct btrfs_bio *bbio = rbio->bbio;
1167 	void *pointers[rbio->real_stripes];
1168 	int stripe_len = rbio->stripe_len;
1169 	int nr_data = rbio->nr_data;
1170 	int stripe;
1171 	int pagenr;
1172 	int p_stripe = -1;
1173 	int q_stripe = -1;
1174 	struct bio_list bio_list;
1175 	struct bio *bio;
1176 	int pages_per_stripe = stripe_len >> PAGE_CACHE_SHIFT;
1177 	int ret;
1178 
1179 	bio_list_init(&bio_list);
1180 
1181 	if (rbio->real_stripes - rbio->nr_data == 1) {
1182 		p_stripe = rbio->real_stripes - 1;
1183 	} else if (rbio->real_stripes - rbio->nr_data == 2) {
1184 		p_stripe = rbio->real_stripes - 2;
1185 		q_stripe = rbio->real_stripes - 1;
1186 	} else {
1187 		BUG();
1188 	}
1189 
1190 	/* at this point we either have a full stripe,
1191 	 * or we've read the full stripe from the drive.
1192 	 * recalculate the parity and write the new results.
1193 	 *
1194 	 * We're not allowed to add any new bios to the
1195 	 * bio list here, anyone else that wants to
1196 	 * change this stripe needs to do their own rmw.
1197 	 */
1198 	spin_lock_irq(&rbio->bio_list_lock);
1199 	set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1200 	spin_unlock_irq(&rbio->bio_list_lock);
1201 
1202 	atomic_set(&rbio->error, 0);
1203 
1204 	/*
1205 	 * now that we've set rmw_locked, run through the
1206 	 * bio list one last time and map the page pointers
1207 	 *
1208 	 * We don't cache full rbios because we're assuming
1209 	 * the higher layers are unlikely to use this area of
1210 	 * the disk again soon.  If they do use it again,
1211 	 * hopefully they will send another full bio.
1212 	 */
1213 	index_rbio_pages(rbio);
1214 	if (!rbio_is_full(rbio))
1215 		cache_rbio_pages(rbio);
1216 	else
1217 		clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1218 
1219 	for (pagenr = 0; pagenr < pages_per_stripe; pagenr++) {
1220 		struct page *p;
1221 		/* first collect one page from each data stripe */
1222 		for (stripe = 0; stripe < nr_data; stripe++) {
1223 			p = page_in_rbio(rbio, stripe, pagenr, 0);
1224 			pointers[stripe] = kmap(p);
1225 		}
1226 
1227 		/* then add the parity stripe */
1228 		p = rbio_pstripe_page(rbio, pagenr);
1229 		SetPageUptodate(p);
1230 		pointers[stripe++] = kmap(p);
1231 
1232 		if (q_stripe != -1) {
1233 
1234 			/*
1235 			 * raid6, add the qstripe and call the
1236 			 * library function to fill in our p/q
1237 			 */
1238 			p = rbio_qstripe_page(rbio, pagenr);
1239 			SetPageUptodate(p);
1240 			pointers[stripe++] = kmap(p);
1241 
1242 			raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
1243 						pointers);
1244 		} else {
1245 			/* raid5 */
1246 			memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
1247 			run_xor(pointers + 1, nr_data - 1, PAGE_CACHE_SIZE);
1248 		}
1249 
1250 
1251 		for (stripe = 0; stripe < rbio->real_stripes; stripe++)
1252 			kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
1253 	}
1254 
1255 	/*
1256 	 * time to start writing.  Make bios for everything from the
1257 	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
1258 	 * everything else.
1259 	 */
1260 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1261 		for (pagenr = 0; pagenr < pages_per_stripe; pagenr++) {
1262 			struct page *page;
1263 			if (stripe < rbio->nr_data) {
1264 				page = page_in_rbio(rbio, stripe, pagenr, 1);
1265 				if (!page)
1266 					continue;
1267 			} else {
1268 			       page = rbio_stripe_page(rbio, stripe, pagenr);
1269 			}
1270 
1271 			ret = rbio_add_io_page(rbio, &bio_list,
1272 				       page, stripe, pagenr, rbio->stripe_len);
1273 			if (ret)
1274 				goto cleanup;
1275 		}
1276 	}
1277 
1278 	if (likely(!bbio->num_tgtdevs))
1279 		goto write_data;
1280 
1281 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1282 		if (!bbio->tgtdev_map[stripe])
1283 			continue;
1284 
1285 		for (pagenr = 0; pagenr < pages_per_stripe; pagenr++) {
1286 			struct page *page;
1287 			if (stripe < rbio->nr_data) {
1288 				page = page_in_rbio(rbio, stripe, pagenr, 1);
1289 				if (!page)
1290 					continue;
1291 			} else {
1292 			       page = rbio_stripe_page(rbio, stripe, pagenr);
1293 			}
1294 
1295 			ret = rbio_add_io_page(rbio, &bio_list, page,
1296 					       rbio->bbio->tgtdev_map[stripe],
1297 					       pagenr, rbio->stripe_len);
1298 			if (ret)
1299 				goto cleanup;
1300 		}
1301 	}
1302 
1303 write_data:
1304 	atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list));
1305 	BUG_ON(atomic_read(&rbio->stripes_pending) == 0);
1306 
1307 	while (1) {
1308 		bio = bio_list_pop(&bio_list);
1309 		if (!bio)
1310 			break;
1311 
1312 		bio->bi_private = rbio;
1313 		bio->bi_end_io = raid_write_end_io;
1314 		submit_bio(WRITE, bio);
1315 	}
1316 	return;
1317 
1318 cleanup:
1319 	rbio_orig_end_io(rbio, -EIO);
1320 }
1321 
1322 /*
1323  * helper to find the stripe number for a given bio.  Used to figure out which
1324  * stripe has failed.  This expects the bio to correspond to a physical disk,
1325  * so it looks up based on physical sector numbers.
1326  */
1327 static int find_bio_stripe(struct btrfs_raid_bio *rbio,
1328 			   struct bio *bio)
1329 {
1330 	u64 physical = bio->bi_iter.bi_sector;
1331 	u64 stripe_start;
1332 	int i;
1333 	struct btrfs_bio_stripe *stripe;
1334 
1335 	physical <<= 9;
1336 
1337 	for (i = 0; i < rbio->bbio->num_stripes; i++) {
1338 		stripe = &rbio->bbio->stripes[i];
1339 		stripe_start = stripe->physical;
1340 		if (physical >= stripe_start &&
1341 		    physical < stripe_start + rbio->stripe_len &&
1342 		    bio->bi_bdev == stripe->dev->bdev) {
1343 			return i;
1344 		}
1345 	}
1346 	return -1;
1347 }
1348 
1349 /*
1350  * helper to find the stripe number for a given
1351  * bio (before mapping).  Used to figure out which stripe has
1352  * failed.  This looks up based on logical block numbers.
1353  */
1354 static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio,
1355 				   struct bio *bio)
1356 {
1357 	u64 logical = bio->bi_iter.bi_sector;
1358 	u64 stripe_start;
1359 	int i;
1360 
1361 	logical <<= 9;
1362 
1363 	for (i = 0; i < rbio->nr_data; i++) {
1364 		stripe_start = rbio->bbio->raid_map[i];
1365 		if (logical >= stripe_start &&
1366 		    logical < stripe_start + rbio->stripe_len) {
1367 			return i;
1368 		}
1369 	}
1370 	return -1;
1371 }
1372 
1373 /*
1374  * returns -EIO if we had too many failures
1375  */
1376 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed)
1377 {
1378 	unsigned long flags;
1379 	int ret = 0;
1380 
1381 	spin_lock_irqsave(&rbio->bio_list_lock, flags);
1382 
1383 	/* we already know this stripe is bad, move on */
1384 	if (rbio->faila == failed || rbio->failb == failed)
1385 		goto out;
1386 
1387 	if (rbio->faila == -1) {
1388 		/* first failure on this rbio */
1389 		rbio->faila = failed;
1390 		atomic_inc(&rbio->error);
1391 	} else if (rbio->failb == -1) {
1392 		/* second failure on this rbio */
1393 		rbio->failb = failed;
1394 		atomic_inc(&rbio->error);
1395 	} else {
1396 		ret = -EIO;
1397 	}
1398 out:
1399 	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
1400 
1401 	return ret;
1402 }
1403 
1404 /*
1405  * helper to fail a stripe based on a physical disk
1406  * bio.
1407  */
1408 static int fail_bio_stripe(struct btrfs_raid_bio *rbio,
1409 			   struct bio *bio)
1410 {
1411 	int failed = find_bio_stripe(rbio, bio);
1412 
1413 	if (failed < 0)
1414 		return -EIO;
1415 
1416 	return fail_rbio_index(rbio, failed);
1417 }
1418 
1419 /*
1420  * this sets each page in the bio uptodate.  It should only be used on private
1421  * rbio pages, nothing that comes in from the higher layers
1422  */
1423 static void set_bio_pages_uptodate(struct bio *bio)
1424 {
1425 	int i;
1426 	struct page *p;
1427 
1428 	for (i = 0; i < bio->bi_vcnt; i++) {
1429 		p = bio->bi_io_vec[i].bv_page;
1430 		SetPageUptodate(p);
1431 	}
1432 }
1433 
1434 /*
1435  * end io for the read phase of the rmw cycle.  All the bios here are physical
1436  * stripe bios we've read from the disk so we can recalculate the parity of the
1437  * stripe.
1438  *
1439  * This will usually kick off finish_rmw once all the bios are read in, but it
1440  * may trigger parity reconstruction if we had any errors along the way
1441  */
1442 static void raid_rmw_end_io(struct bio *bio)
1443 {
1444 	struct btrfs_raid_bio *rbio = bio->bi_private;
1445 
1446 	if (bio->bi_error)
1447 		fail_bio_stripe(rbio, bio);
1448 	else
1449 		set_bio_pages_uptodate(bio);
1450 
1451 	bio_put(bio);
1452 
1453 	if (!atomic_dec_and_test(&rbio->stripes_pending))
1454 		return;
1455 
1456 	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
1457 		goto cleanup;
1458 
1459 	/*
1460 	 * this will normally call finish_rmw to start our write
1461 	 * but if there are any failed stripes we'll reconstruct
1462 	 * from parity first
1463 	 */
1464 	validate_rbio_for_rmw(rbio);
1465 	return;
1466 
1467 cleanup:
1468 
1469 	rbio_orig_end_io(rbio, -EIO);
1470 }
1471 
1472 static void async_rmw_stripe(struct btrfs_raid_bio *rbio)
1473 {
1474 	btrfs_init_work(&rbio->work, btrfs_rmw_helper,
1475 			rmw_work, NULL, NULL);
1476 
1477 	btrfs_queue_work(rbio->fs_info->rmw_workers,
1478 			 &rbio->work);
1479 }
1480 
1481 static void async_read_rebuild(struct btrfs_raid_bio *rbio)
1482 {
1483 	btrfs_init_work(&rbio->work, btrfs_rmw_helper,
1484 			read_rebuild_work, NULL, NULL);
1485 
1486 	btrfs_queue_work(rbio->fs_info->rmw_workers,
1487 			 &rbio->work);
1488 }
1489 
1490 /*
1491  * the stripe must be locked by the caller.  It will
1492  * unlock after all the writes are done
1493  */
1494 static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio)
1495 {
1496 	int bios_to_read = 0;
1497 	struct bio_list bio_list;
1498 	int ret;
1499 	int nr_pages = DIV_ROUND_UP(rbio->stripe_len, PAGE_CACHE_SIZE);
1500 	int pagenr;
1501 	int stripe;
1502 	struct bio *bio;
1503 
1504 	bio_list_init(&bio_list);
1505 
1506 	ret = alloc_rbio_pages(rbio);
1507 	if (ret)
1508 		goto cleanup;
1509 
1510 	index_rbio_pages(rbio);
1511 
1512 	atomic_set(&rbio->error, 0);
1513 	/*
1514 	 * build a list of bios to read all the missing parts of this
1515 	 * stripe
1516 	 */
1517 	for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1518 		for (pagenr = 0; pagenr < nr_pages; pagenr++) {
1519 			struct page *page;
1520 			/*
1521 			 * we want to find all the pages missing from
1522 			 * the rbio and read them from the disk.  If
1523 			 * page_in_rbio finds a page in the bio list
1524 			 * we don't need to read it off the stripe.
1525 			 */
1526 			page = page_in_rbio(rbio, stripe, pagenr, 1);
1527 			if (page)
1528 				continue;
1529 
1530 			page = rbio_stripe_page(rbio, stripe, pagenr);
1531 			/*
1532 			 * the bio cache may have handed us an uptodate
1533 			 * page.  If so, be happy and use it
1534 			 */
1535 			if (PageUptodate(page))
1536 				continue;
1537 
1538 			ret = rbio_add_io_page(rbio, &bio_list, page,
1539 				       stripe, pagenr, rbio->stripe_len);
1540 			if (ret)
1541 				goto cleanup;
1542 		}
1543 	}
1544 
1545 	bios_to_read = bio_list_size(&bio_list);
1546 	if (!bios_to_read) {
1547 		/*
1548 		 * this can happen if others have merged with
1549 		 * us, it means there is nothing left to read.
1550 		 * But if there are missing devices it may not be
1551 		 * safe to do the full stripe write yet.
1552 		 */
1553 		goto finish;
1554 	}
1555 
1556 	/*
1557 	 * the bbio may be freed once we submit the last bio.  Make sure
1558 	 * not to touch it after that
1559 	 */
1560 	atomic_set(&rbio->stripes_pending, bios_to_read);
1561 	while (1) {
1562 		bio = bio_list_pop(&bio_list);
1563 		if (!bio)
1564 			break;
1565 
1566 		bio->bi_private = rbio;
1567 		bio->bi_end_io = raid_rmw_end_io;
1568 
1569 		btrfs_bio_wq_end_io(rbio->fs_info, bio,
1570 				    BTRFS_WQ_ENDIO_RAID56);
1571 
1572 		submit_bio(READ, bio);
1573 	}
1574 	/* the actual write will happen once the reads are done */
1575 	return 0;
1576 
1577 cleanup:
1578 	rbio_orig_end_io(rbio, -EIO);
1579 	return -EIO;
1580 
1581 finish:
1582 	validate_rbio_for_rmw(rbio);
1583 	return 0;
1584 }
1585 
1586 /*
1587  * if the upper layers pass in a full stripe, we thank them by only allocating
1588  * enough pages to hold the parity, and sending it all down quickly.
1589  */
1590 static int full_stripe_write(struct btrfs_raid_bio *rbio)
1591 {
1592 	int ret;
1593 
1594 	ret = alloc_rbio_parity_pages(rbio);
1595 	if (ret) {
1596 		__free_raid_bio(rbio);
1597 		return ret;
1598 	}
1599 
1600 	ret = lock_stripe_add(rbio);
1601 	if (ret == 0)
1602 		finish_rmw(rbio);
1603 	return 0;
1604 }
1605 
1606 /*
1607  * partial stripe writes get handed over to async helpers.
1608  * We're really hoping to merge a few more writes into this
1609  * rbio before calculating new parity
1610  */
1611 static int partial_stripe_write(struct btrfs_raid_bio *rbio)
1612 {
1613 	int ret;
1614 
1615 	ret = lock_stripe_add(rbio);
1616 	if (ret == 0)
1617 		async_rmw_stripe(rbio);
1618 	return 0;
1619 }
1620 
1621 /*
1622  * sometimes while we were reading from the drive to
1623  * recalculate parity, enough new bios come into create
1624  * a full stripe.  So we do a check here to see if we can
1625  * go directly to finish_rmw
1626  */
1627 static int __raid56_parity_write(struct btrfs_raid_bio *rbio)
1628 {
1629 	/* head off into rmw land if we don't have a full stripe */
1630 	if (!rbio_is_full(rbio))
1631 		return partial_stripe_write(rbio);
1632 	return full_stripe_write(rbio);
1633 }
1634 
1635 /*
1636  * We use plugging call backs to collect full stripes.
1637  * Any time we get a partial stripe write while plugged
1638  * we collect it into a list.  When the unplug comes down,
1639  * we sort the list by logical block number and merge
1640  * everything we can into the same rbios
1641  */
1642 struct btrfs_plug_cb {
1643 	struct blk_plug_cb cb;
1644 	struct btrfs_fs_info *info;
1645 	struct list_head rbio_list;
1646 	struct btrfs_work work;
1647 };
1648 
1649 /*
1650  * rbios on the plug list are sorted for easier merging.
1651  */
1652 static int plug_cmp(void *priv, struct list_head *a, struct list_head *b)
1653 {
1654 	struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1655 						 plug_list);
1656 	struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1657 						 plug_list);
1658 	u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1659 	u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1660 
1661 	if (a_sector < b_sector)
1662 		return -1;
1663 	if (a_sector > b_sector)
1664 		return 1;
1665 	return 0;
1666 }
1667 
1668 static void run_plug(struct btrfs_plug_cb *plug)
1669 {
1670 	struct btrfs_raid_bio *cur;
1671 	struct btrfs_raid_bio *last = NULL;
1672 
1673 	/*
1674 	 * sort our plug list then try to merge
1675 	 * everything we can in hopes of creating full
1676 	 * stripes.
1677 	 */
1678 	list_sort(NULL, &plug->rbio_list, plug_cmp);
1679 	while (!list_empty(&plug->rbio_list)) {
1680 		cur = list_entry(plug->rbio_list.next,
1681 				 struct btrfs_raid_bio, plug_list);
1682 		list_del_init(&cur->plug_list);
1683 
1684 		if (rbio_is_full(cur)) {
1685 			/* we have a full stripe, send it down */
1686 			full_stripe_write(cur);
1687 			continue;
1688 		}
1689 		if (last) {
1690 			if (rbio_can_merge(last, cur)) {
1691 				merge_rbio(last, cur);
1692 				__free_raid_bio(cur);
1693 				continue;
1694 
1695 			}
1696 			__raid56_parity_write(last);
1697 		}
1698 		last = cur;
1699 	}
1700 	if (last) {
1701 		__raid56_parity_write(last);
1702 	}
1703 	kfree(plug);
1704 }
1705 
1706 /*
1707  * if the unplug comes from schedule, we have to push the
1708  * work off to a helper thread
1709  */
1710 static void unplug_work(struct btrfs_work *work)
1711 {
1712 	struct btrfs_plug_cb *plug;
1713 	plug = container_of(work, struct btrfs_plug_cb, work);
1714 	run_plug(plug);
1715 }
1716 
1717 static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1718 {
1719 	struct btrfs_plug_cb *plug;
1720 	plug = container_of(cb, struct btrfs_plug_cb, cb);
1721 
1722 	if (from_schedule) {
1723 		btrfs_init_work(&plug->work, btrfs_rmw_helper,
1724 				unplug_work, NULL, NULL);
1725 		btrfs_queue_work(plug->info->rmw_workers,
1726 				 &plug->work);
1727 		return;
1728 	}
1729 	run_plug(plug);
1730 }
1731 
1732 /*
1733  * our main entry point for writes from the rest of the FS.
1734  */
1735 int raid56_parity_write(struct btrfs_root *root, struct bio *bio,
1736 			struct btrfs_bio *bbio, u64 stripe_len)
1737 {
1738 	struct btrfs_raid_bio *rbio;
1739 	struct btrfs_plug_cb *plug = NULL;
1740 	struct blk_plug_cb *cb;
1741 	int ret;
1742 
1743 	rbio = alloc_rbio(root, bbio, stripe_len);
1744 	if (IS_ERR(rbio)) {
1745 		btrfs_put_bbio(bbio);
1746 		return PTR_ERR(rbio);
1747 	}
1748 	bio_list_add(&rbio->bio_list, bio);
1749 	rbio->bio_list_bytes = bio->bi_iter.bi_size;
1750 	rbio->operation = BTRFS_RBIO_WRITE;
1751 
1752 	btrfs_bio_counter_inc_noblocked(root->fs_info);
1753 	rbio->generic_bio_cnt = 1;
1754 
1755 	/*
1756 	 * don't plug on full rbios, just get them out the door
1757 	 * as quickly as we can
1758 	 */
1759 	if (rbio_is_full(rbio)) {
1760 		ret = full_stripe_write(rbio);
1761 		if (ret)
1762 			btrfs_bio_counter_dec(root->fs_info);
1763 		return ret;
1764 	}
1765 
1766 	cb = blk_check_plugged(btrfs_raid_unplug, root->fs_info,
1767 			       sizeof(*plug));
1768 	if (cb) {
1769 		plug = container_of(cb, struct btrfs_plug_cb, cb);
1770 		if (!plug->info) {
1771 			plug->info = root->fs_info;
1772 			INIT_LIST_HEAD(&plug->rbio_list);
1773 		}
1774 		list_add_tail(&rbio->plug_list, &plug->rbio_list);
1775 		ret = 0;
1776 	} else {
1777 		ret = __raid56_parity_write(rbio);
1778 		if (ret)
1779 			btrfs_bio_counter_dec(root->fs_info);
1780 	}
1781 	return ret;
1782 }
1783 
1784 /*
1785  * all parity reconstruction happens here.  We've read in everything
1786  * we can find from the drives and this does the heavy lifting of
1787  * sorting the good from the bad.
1788  */
1789 static void __raid_recover_end_io(struct btrfs_raid_bio *rbio)
1790 {
1791 	int pagenr, stripe;
1792 	void **pointers;
1793 	int faila = -1, failb = -1;
1794 	int nr_pages = DIV_ROUND_UP(rbio->stripe_len, PAGE_CACHE_SIZE);
1795 	struct page *page;
1796 	int err;
1797 	int i;
1798 
1799 	pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1800 	if (!pointers) {
1801 		err = -ENOMEM;
1802 		goto cleanup_io;
1803 	}
1804 
1805 	faila = rbio->faila;
1806 	failb = rbio->failb;
1807 
1808 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
1809 		spin_lock_irq(&rbio->bio_list_lock);
1810 		set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1811 		spin_unlock_irq(&rbio->bio_list_lock);
1812 	}
1813 
1814 	index_rbio_pages(rbio);
1815 
1816 	for (pagenr = 0; pagenr < nr_pages; pagenr++) {
1817 		/*
1818 		 * Now we just use bitmap to mark the horizontal stripes in
1819 		 * which we have data when doing parity scrub.
1820 		 */
1821 		if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1822 		    !test_bit(pagenr, rbio->dbitmap))
1823 			continue;
1824 
1825 		/* setup our array of pointers with pages
1826 		 * from each stripe
1827 		 */
1828 		for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1829 			/*
1830 			 * if we're rebuilding a read, we have to use
1831 			 * pages from the bio list
1832 			 */
1833 			if (rbio->operation == BTRFS_RBIO_READ_REBUILD &&
1834 			    (stripe == faila || stripe == failb)) {
1835 				page = page_in_rbio(rbio, stripe, pagenr, 0);
1836 			} else {
1837 				page = rbio_stripe_page(rbio, stripe, pagenr);
1838 			}
1839 			pointers[stripe] = kmap(page);
1840 		}
1841 
1842 		/* all raid6 handling here */
1843 		if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) {
1844 			/*
1845 			 * single failure, rebuild from parity raid5
1846 			 * style
1847 			 */
1848 			if (failb < 0) {
1849 				if (faila == rbio->nr_data) {
1850 					/*
1851 					 * Just the P stripe has failed, without
1852 					 * a bad data or Q stripe.
1853 					 * TODO, we should redo the xor here.
1854 					 */
1855 					err = -EIO;
1856 					goto cleanup;
1857 				}
1858 				/*
1859 				 * a single failure in raid6 is rebuilt
1860 				 * in the pstripe code below
1861 				 */
1862 				goto pstripe;
1863 			}
1864 
1865 			/* make sure our ps and qs are in order */
1866 			if (faila > failb) {
1867 				int tmp = failb;
1868 				failb = faila;
1869 				faila = tmp;
1870 			}
1871 
1872 			/* if the q stripe is failed, do a pstripe reconstruction
1873 			 * from the xors.
1874 			 * If both the q stripe and the P stripe are failed, we're
1875 			 * here due to a crc mismatch and we can't give them the
1876 			 * data they want
1877 			 */
1878 			if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) {
1879 				if (rbio->bbio->raid_map[faila] ==
1880 				    RAID5_P_STRIPE) {
1881 					err = -EIO;
1882 					goto cleanup;
1883 				}
1884 				/*
1885 				 * otherwise we have one bad data stripe and
1886 				 * a good P stripe.  raid5!
1887 				 */
1888 				goto pstripe;
1889 			}
1890 
1891 			if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) {
1892 				raid6_datap_recov(rbio->real_stripes,
1893 						  PAGE_SIZE, faila, pointers);
1894 			} else {
1895 				raid6_2data_recov(rbio->real_stripes,
1896 						  PAGE_SIZE, faila, failb,
1897 						  pointers);
1898 			}
1899 		} else {
1900 			void *p;
1901 
1902 			/* rebuild from P stripe here (raid5 or raid6) */
1903 			BUG_ON(failb != -1);
1904 pstripe:
1905 			/* Copy parity block into failed block to start with */
1906 			memcpy(pointers[faila],
1907 			       pointers[rbio->nr_data],
1908 			       PAGE_CACHE_SIZE);
1909 
1910 			/* rearrange the pointer array */
1911 			p = pointers[faila];
1912 			for (stripe = faila; stripe < rbio->nr_data - 1; stripe++)
1913 				pointers[stripe] = pointers[stripe + 1];
1914 			pointers[rbio->nr_data - 1] = p;
1915 
1916 			/* xor in the rest */
1917 			run_xor(pointers, rbio->nr_data - 1, PAGE_CACHE_SIZE);
1918 		}
1919 		/* if we're doing this rebuild as part of an rmw, go through
1920 		 * and set all of our private rbio pages in the
1921 		 * failed stripes as uptodate.  This way finish_rmw will
1922 		 * know they can be trusted.  If this was a read reconstruction,
1923 		 * other endio functions will fiddle the uptodate bits
1924 		 */
1925 		if (rbio->operation == BTRFS_RBIO_WRITE) {
1926 			for (i = 0;  i < nr_pages; i++) {
1927 				if (faila != -1) {
1928 					page = rbio_stripe_page(rbio, faila, i);
1929 					SetPageUptodate(page);
1930 				}
1931 				if (failb != -1) {
1932 					page = rbio_stripe_page(rbio, failb, i);
1933 					SetPageUptodate(page);
1934 				}
1935 			}
1936 		}
1937 		for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1938 			/*
1939 			 * if we're rebuilding a read, we have to use
1940 			 * pages from the bio list
1941 			 */
1942 			if (rbio->operation == BTRFS_RBIO_READ_REBUILD &&
1943 			    (stripe == faila || stripe == failb)) {
1944 				page = page_in_rbio(rbio, stripe, pagenr, 0);
1945 			} else {
1946 				page = rbio_stripe_page(rbio, stripe, pagenr);
1947 			}
1948 			kunmap(page);
1949 		}
1950 	}
1951 
1952 	err = 0;
1953 cleanup:
1954 	kfree(pointers);
1955 
1956 cleanup_io:
1957 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
1958 		if (err == 0)
1959 			cache_rbio_pages(rbio);
1960 		else
1961 			clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1962 
1963 		rbio_orig_end_io(rbio, err);
1964 	} else if (err == 0) {
1965 		rbio->faila = -1;
1966 		rbio->failb = -1;
1967 
1968 		if (rbio->operation == BTRFS_RBIO_WRITE)
1969 			finish_rmw(rbio);
1970 		else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB)
1971 			finish_parity_scrub(rbio, 0);
1972 		else
1973 			BUG();
1974 	} else {
1975 		rbio_orig_end_io(rbio, err);
1976 	}
1977 }
1978 
1979 /*
1980  * This is called only for stripes we've read from disk to
1981  * reconstruct the parity.
1982  */
1983 static void raid_recover_end_io(struct bio *bio)
1984 {
1985 	struct btrfs_raid_bio *rbio = bio->bi_private;
1986 
1987 	/*
1988 	 * we only read stripe pages off the disk, set them
1989 	 * up to date if there were no errors
1990 	 */
1991 	if (bio->bi_error)
1992 		fail_bio_stripe(rbio, bio);
1993 	else
1994 		set_bio_pages_uptodate(bio);
1995 	bio_put(bio);
1996 
1997 	if (!atomic_dec_and_test(&rbio->stripes_pending))
1998 		return;
1999 
2000 	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2001 		rbio_orig_end_io(rbio, -EIO);
2002 	else
2003 		__raid_recover_end_io(rbio);
2004 }
2005 
2006 /*
2007  * reads everything we need off the disk to reconstruct
2008  * the parity. endio handlers trigger final reconstruction
2009  * when the IO is done.
2010  *
2011  * This is used both for reads from the higher layers and for
2012  * parity construction required to finish a rmw cycle.
2013  */
2014 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio)
2015 {
2016 	int bios_to_read = 0;
2017 	struct bio_list bio_list;
2018 	int ret;
2019 	int nr_pages = DIV_ROUND_UP(rbio->stripe_len, PAGE_CACHE_SIZE);
2020 	int pagenr;
2021 	int stripe;
2022 	struct bio *bio;
2023 
2024 	bio_list_init(&bio_list);
2025 
2026 	ret = alloc_rbio_pages(rbio);
2027 	if (ret)
2028 		goto cleanup;
2029 
2030 	atomic_set(&rbio->error, 0);
2031 
2032 	/*
2033 	 * read everything that hasn't failed.  Thanks to the
2034 	 * stripe cache, it is possible that some or all of these
2035 	 * pages are going to be uptodate.
2036 	 */
2037 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2038 		if (rbio->faila == stripe || rbio->failb == stripe) {
2039 			atomic_inc(&rbio->error);
2040 			continue;
2041 		}
2042 
2043 		for (pagenr = 0; pagenr < nr_pages; pagenr++) {
2044 			struct page *p;
2045 
2046 			/*
2047 			 * the rmw code may have already read this
2048 			 * page in
2049 			 */
2050 			p = rbio_stripe_page(rbio, stripe, pagenr);
2051 			if (PageUptodate(p))
2052 				continue;
2053 
2054 			ret = rbio_add_io_page(rbio, &bio_list,
2055 				       rbio_stripe_page(rbio, stripe, pagenr),
2056 				       stripe, pagenr, rbio->stripe_len);
2057 			if (ret < 0)
2058 				goto cleanup;
2059 		}
2060 	}
2061 
2062 	bios_to_read = bio_list_size(&bio_list);
2063 	if (!bios_to_read) {
2064 		/*
2065 		 * we might have no bios to read just because the pages
2066 		 * were up to date, or we might have no bios to read because
2067 		 * the devices were gone.
2068 		 */
2069 		if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) {
2070 			__raid_recover_end_io(rbio);
2071 			goto out;
2072 		} else {
2073 			goto cleanup;
2074 		}
2075 	}
2076 
2077 	/*
2078 	 * the bbio may be freed once we submit the last bio.  Make sure
2079 	 * not to touch it after that
2080 	 */
2081 	atomic_set(&rbio->stripes_pending, bios_to_read);
2082 	while (1) {
2083 		bio = bio_list_pop(&bio_list);
2084 		if (!bio)
2085 			break;
2086 
2087 		bio->bi_private = rbio;
2088 		bio->bi_end_io = raid_recover_end_io;
2089 
2090 		btrfs_bio_wq_end_io(rbio->fs_info, bio,
2091 				    BTRFS_WQ_ENDIO_RAID56);
2092 
2093 		submit_bio(READ, bio);
2094 	}
2095 out:
2096 	return 0;
2097 
2098 cleanup:
2099 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD)
2100 		rbio_orig_end_io(rbio, -EIO);
2101 	return -EIO;
2102 }
2103 
2104 /*
2105  * the main entry point for reads from the higher layers.  This
2106  * is really only called when the normal read path had a failure,
2107  * so we assume the bio they send down corresponds to a failed part
2108  * of the drive.
2109  */
2110 int raid56_parity_recover(struct btrfs_root *root, struct bio *bio,
2111 			  struct btrfs_bio *bbio, u64 stripe_len,
2112 			  int mirror_num, int generic_io)
2113 {
2114 	struct btrfs_raid_bio *rbio;
2115 	int ret;
2116 
2117 	rbio = alloc_rbio(root, bbio, stripe_len);
2118 	if (IS_ERR(rbio)) {
2119 		if (generic_io)
2120 			btrfs_put_bbio(bbio);
2121 		return PTR_ERR(rbio);
2122 	}
2123 
2124 	rbio->operation = BTRFS_RBIO_READ_REBUILD;
2125 	bio_list_add(&rbio->bio_list, bio);
2126 	rbio->bio_list_bytes = bio->bi_iter.bi_size;
2127 
2128 	rbio->faila = find_logical_bio_stripe(rbio, bio);
2129 	if (rbio->faila == -1) {
2130 		BUG();
2131 		if (generic_io)
2132 			btrfs_put_bbio(bbio);
2133 		kfree(rbio);
2134 		return -EIO;
2135 	}
2136 
2137 	if (generic_io) {
2138 		btrfs_bio_counter_inc_noblocked(root->fs_info);
2139 		rbio->generic_bio_cnt = 1;
2140 	} else {
2141 		btrfs_get_bbio(bbio);
2142 	}
2143 
2144 	/*
2145 	 * reconstruct from the q stripe if they are
2146 	 * asking for mirror 3
2147 	 */
2148 	if (mirror_num == 3)
2149 		rbio->failb = rbio->real_stripes - 2;
2150 
2151 	ret = lock_stripe_add(rbio);
2152 
2153 	/*
2154 	 * __raid56_parity_recover will end the bio with
2155 	 * any errors it hits.  We don't want to return
2156 	 * its error value up the stack because our caller
2157 	 * will end up calling bio_endio with any nonzero
2158 	 * return
2159 	 */
2160 	if (ret == 0)
2161 		__raid56_parity_recover(rbio);
2162 	/*
2163 	 * our rbio has been added to the list of
2164 	 * rbios that will be handled after the
2165 	 * currently lock owner is done
2166 	 */
2167 	return 0;
2168 
2169 }
2170 
2171 static void rmw_work(struct btrfs_work *work)
2172 {
2173 	struct btrfs_raid_bio *rbio;
2174 
2175 	rbio = container_of(work, struct btrfs_raid_bio, work);
2176 	raid56_rmw_stripe(rbio);
2177 }
2178 
2179 static void read_rebuild_work(struct btrfs_work *work)
2180 {
2181 	struct btrfs_raid_bio *rbio;
2182 
2183 	rbio = container_of(work, struct btrfs_raid_bio, work);
2184 	__raid56_parity_recover(rbio);
2185 }
2186 
2187 /*
2188  * The following code is used to scrub/replace the parity stripe
2189  *
2190  * Note: We need make sure all the pages that add into the scrub/replace
2191  * raid bio are correct and not be changed during the scrub/replace. That
2192  * is those pages just hold metadata or file data with checksum.
2193  */
2194 
2195 struct btrfs_raid_bio *
2196 raid56_parity_alloc_scrub_rbio(struct btrfs_root *root, struct bio *bio,
2197 			       struct btrfs_bio *bbio, u64 stripe_len,
2198 			       struct btrfs_device *scrub_dev,
2199 			       unsigned long *dbitmap, int stripe_nsectors)
2200 {
2201 	struct btrfs_raid_bio *rbio;
2202 	int i;
2203 
2204 	rbio = alloc_rbio(root, bbio, stripe_len);
2205 	if (IS_ERR(rbio))
2206 		return NULL;
2207 	bio_list_add(&rbio->bio_list, bio);
2208 	/*
2209 	 * This is a special bio which is used to hold the completion handler
2210 	 * and make the scrub rbio is similar to the other types
2211 	 */
2212 	ASSERT(!bio->bi_iter.bi_size);
2213 	rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2214 
2215 	for (i = 0; i < rbio->real_stripes; i++) {
2216 		if (bbio->stripes[i].dev == scrub_dev) {
2217 			rbio->scrubp = i;
2218 			break;
2219 		}
2220 	}
2221 
2222 	/* Now we just support the sectorsize equals to page size */
2223 	ASSERT(root->sectorsize == PAGE_SIZE);
2224 	ASSERT(rbio->stripe_npages == stripe_nsectors);
2225 	bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors);
2226 
2227 	return rbio;
2228 }
2229 
2230 void raid56_parity_add_scrub_pages(struct btrfs_raid_bio *rbio,
2231 				   struct page *page, u64 logical)
2232 {
2233 	int stripe_offset;
2234 	int index;
2235 
2236 	ASSERT(logical >= rbio->bbio->raid_map[0]);
2237 	ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] +
2238 				rbio->stripe_len * rbio->nr_data);
2239 	stripe_offset = (int)(logical - rbio->bbio->raid_map[0]);
2240 	index = stripe_offset >> PAGE_CACHE_SHIFT;
2241 	rbio->bio_pages[index] = page;
2242 }
2243 
2244 /*
2245  * We just scrub the parity that we have correct data on the same horizontal,
2246  * so we needn't allocate all pages for all the stripes.
2247  */
2248 static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2249 {
2250 	int i;
2251 	int bit;
2252 	int index;
2253 	struct page *page;
2254 
2255 	for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) {
2256 		for (i = 0; i < rbio->real_stripes; i++) {
2257 			index = i * rbio->stripe_npages + bit;
2258 			if (rbio->stripe_pages[index])
2259 				continue;
2260 
2261 			page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2262 			if (!page)
2263 				return -ENOMEM;
2264 			rbio->stripe_pages[index] = page;
2265 			ClearPageUptodate(page);
2266 		}
2267 	}
2268 	return 0;
2269 }
2270 
2271 /*
2272  * end io function used by finish_rmw.  When we finally
2273  * get here, we've written a full stripe
2274  */
2275 static void raid_write_parity_end_io(struct bio *bio)
2276 {
2277 	struct btrfs_raid_bio *rbio = bio->bi_private;
2278 	int err = bio->bi_error;
2279 
2280 	if (bio->bi_error)
2281 		fail_bio_stripe(rbio, bio);
2282 
2283 	bio_put(bio);
2284 
2285 	if (!atomic_dec_and_test(&rbio->stripes_pending))
2286 		return;
2287 
2288 	err = 0;
2289 
2290 	if (atomic_read(&rbio->error))
2291 		err = -EIO;
2292 
2293 	rbio_orig_end_io(rbio, err);
2294 }
2295 
2296 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
2297 					 int need_check)
2298 {
2299 	struct btrfs_bio *bbio = rbio->bbio;
2300 	void *pointers[rbio->real_stripes];
2301 	DECLARE_BITMAP(pbitmap, rbio->stripe_npages);
2302 	int nr_data = rbio->nr_data;
2303 	int stripe;
2304 	int pagenr;
2305 	int p_stripe = -1;
2306 	int q_stripe = -1;
2307 	struct page *p_page = NULL;
2308 	struct page *q_page = NULL;
2309 	struct bio_list bio_list;
2310 	struct bio *bio;
2311 	int is_replace = 0;
2312 	int ret;
2313 
2314 	bio_list_init(&bio_list);
2315 
2316 	if (rbio->real_stripes - rbio->nr_data == 1) {
2317 		p_stripe = rbio->real_stripes - 1;
2318 	} else if (rbio->real_stripes - rbio->nr_data == 2) {
2319 		p_stripe = rbio->real_stripes - 2;
2320 		q_stripe = rbio->real_stripes - 1;
2321 	} else {
2322 		BUG();
2323 	}
2324 
2325 	if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) {
2326 		is_replace = 1;
2327 		bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages);
2328 	}
2329 
2330 	/*
2331 	 * Because the higher layers(scrubber) are unlikely to
2332 	 * use this area of the disk again soon, so don't cache
2333 	 * it.
2334 	 */
2335 	clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2336 
2337 	if (!need_check)
2338 		goto writeback;
2339 
2340 	p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2341 	if (!p_page)
2342 		goto cleanup;
2343 	SetPageUptodate(p_page);
2344 
2345 	if (q_stripe != -1) {
2346 		q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2347 		if (!q_page) {
2348 			__free_page(p_page);
2349 			goto cleanup;
2350 		}
2351 		SetPageUptodate(q_page);
2352 	}
2353 
2354 	atomic_set(&rbio->error, 0);
2355 
2356 	for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2357 		struct page *p;
2358 		void *parity;
2359 		/* first collect one page from each data stripe */
2360 		for (stripe = 0; stripe < nr_data; stripe++) {
2361 			p = page_in_rbio(rbio, stripe, pagenr, 0);
2362 			pointers[stripe] = kmap(p);
2363 		}
2364 
2365 		/* then add the parity stripe */
2366 		pointers[stripe++] = kmap(p_page);
2367 
2368 		if (q_stripe != -1) {
2369 
2370 			/*
2371 			 * raid6, add the qstripe and call the
2372 			 * library function to fill in our p/q
2373 			 */
2374 			pointers[stripe++] = kmap(q_page);
2375 
2376 			raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
2377 						pointers);
2378 		} else {
2379 			/* raid5 */
2380 			memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
2381 			run_xor(pointers + 1, nr_data - 1, PAGE_CACHE_SIZE);
2382 		}
2383 
2384 		/* Check scrubbing pairty and repair it */
2385 		p = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2386 		parity = kmap(p);
2387 		if (memcmp(parity, pointers[rbio->scrubp], PAGE_CACHE_SIZE))
2388 			memcpy(parity, pointers[rbio->scrubp], PAGE_CACHE_SIZE);
2389 		else
2390 			/* Parity is right, needn't writeback */
2391 			bitmap_clear(rbio->dbitmap, pagenr, 1);
2392 		kunmap(p);
2393 
2394 		for (stripe = 0; stripe < rbio->real_stripes; stripe++)
2395 			kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
2396 	}
2397 
2398 	__free_page(p_page);
2399 	if (q_page)
2400 		__free_page(q_page);
2401 
2402 writeback:
2403 	/*
2404 	 * time to start writing.  Make bios for everything from the
2405 	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
2406 	 * everything else.
2407 	 */
2408 	for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2409 		struct page *page;
2410 
2411 		page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2412 		ret = rbio_add_io_page(rbio, &bio_list,
2413 			       page, rbio->scrubp, pagenr, rbio->stripe_len);
2414 		if (ret)
2415 			goto cleanup;
2416 	}
2417 
2418 	if (!is_replace)
2419 		goto submit_write;
2420 
2421 	for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) {
2422 		struct page *page;
2423 
2424 		page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2425 		ret = rbio_add_io_page(rbio, &bio_list, page,
2426 				       bbio->tgtdev_map[rbio->scrubp],
2427 				       pagenr, rbio->stripe_len);
2428 		if (ret)
2429 			goto cleanup;
2430 	}
2431 
2432 submit_write:
2433 	nr_data = bio_list_size(&bio_list);
2434 	if (!nr_data) {
2435 		/* Every parity is right */
2436 		rbio_orig_end_io(rbio, 0);
2437 		return;
2438 	}
2439 
2440 	atomic_set(&rbio->stripes_pending, nr_data);
2441 
2442 	while (1) {
2443 		bio = bio_list_pop(&bio_list);
2444 		if (!bio)
2445 			break;
2446 
2447 		bio->bi_private = rbio;
2448 		bio->bi_end_io = raid_write_parity_end_io;
2449 		submit_bio(WRITE, bio);
2450 	}
2451 	return;
2452 
2453 cleanup:
2454 	rbio_orig_end_io(rbio, -EIO);
2455 }
2456 
2457 static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2458 {
2459 	if (stripe >= 0 && stripe < rbio->nr_data)
2460 		return 1;
2461 	return 0;
2462 }
2463 
2464 /*
2465  * While we're doing the parity check and repair, we could have errors
2466  * in reading pages off the disk.  This checks for errors and if we're
2467  * not able to read the page it'll trigger parity reconstruction.  The
2468  * parity scrub will be finished after we've reconstructed the failed
2469  * stripes
2470  */
2471 static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio)
2472 {
2473 	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2474 		goto cleanup;
2475 
2476 	if (rbio->faila >= 0 || rbio->failb >= 0) {
2477 		int dfail = 0, failp = -1;
2478 
2479 		if (is_data_stripe(rbio, rbio->faila))
2480 			dfail++;
2481 		else if (is_parity_stripe(rbio->faila))
2482 			failp = rbio->faila;
2483 
2484 		if (is_data_stripe(rbio, rbio->failb))
2485 			dfail++;
2486 		else if (is_parity_stripe(rbio->failb))
2487 			failp = rbio->failb;
2488 
2489 		/*
2490 		 * Because we can not use a scrubbing parity to repair
2491 		 * the data, so the capability of the repair is declined.
2492 		 * (In the case of RAID5, we can not repair anything)
2493 		 */
2494 		if (dfail > rbio->bbio->max_errors - 1)
2495 			goto cleanup;
2496 
2497 		/*
2498 		 * If all data is good, only parity is correctly, just
2499 		 * repair the parity.
2500 		 */
2501 		if (dfail == 0) {
2502 			finish_parity_scrub(rbio, 0);
2503 			return;
2504 		}
2505 
2506 		/*
2507 		 * Here means we got one corrupted data stripe and one
2508 		 * corrupted parity on RAID6, if the corrupted parity
2509 		 * is scrubbing parity, luckly, use the other one to repair
2510 		 * the data, or we can not repair the data stripe.
2511 		 */
2512 		if (failp != rbio->scrubp)
2513 			goto cleanup;
2514 
2515 		__raid_recover_end_io(rbio);
2516 	} else {
2517 		finish_parity_scrub(rbio, 1);
2518 	}
2519 	return;
2520 
2521 cleanup:
2522 	rbio_orig_end_io(rbio, -EIO);
2523 }
2524 
2525 /*
2526  * end io for the read phase of the rmw cycle.  All the bios here are physical
2527  * stripe bios we've read from the disk so we can recalculate the parity of the
2528  * stripe.
2529  *
2530  * This will usually kick off finish_rmw once all the bios are read in, but it
2531  * may trigger parity reconstruction if we had any errors along the way
2532  */
2533 static void raid56_parity_scrub_end_io(struct bio *bio)
2534 {
2535 	struct btrfs_raid_bio *rbio = bio->bi_private;
2536 
2537 	if (bio->bi_error)
2538 		fail_bio_stripe(rbio, bio);
2539 	else
2540 		set_bio_pages_uptodate(bio);
2541 
2542 	bio_put(bio);
2543 
2544 	if (!atomic_dec_and_test(&rbio->stripes_pending))
2545 		return;
2546 
2547 	/*
2548 	 * this will normally call finish_rmw to start our write
2549 	 * but if there are any failed stripes we'll reconstruct
2550 	 * from parity first
2551 	 */
2552 	validate_rbio_for_parity_scrub(rbio);
2553 }
2554 
2555 static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio)
2556 {
2557 	int bios_to_read = 0;
2558 	struct bio_list bio_list;
2559 	int ret;
2560 	int pagenr;
2561 	int stripe;
2562 	struct bio *bio;
2563 
2564 	ret = alloc_rbio_essential_pages(rbio);
2565 	if (ret)
2566 		goto cleanup;
2567 
2568 	bio_list_init(&bio_list);
2569 
2570 	atomic_set(&rbio->error, 0);
2571 	/*
2572 	 * build a list of bios to read all the missing parts of this
2573 	 * stripe
2574 	 */
2575 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2576 		for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2577 			struct page *page;
2578 			/*
2579 			 * we want to find all the pages missing from
2580 			 * the rbio and read them from the disk.  If
2581 			 * page_in_rbio finds a page in the bio list
2582 			 * we don't need to read it off the stripe.
2583 			 */
2584 			page = page_in_rbio(rbio, stripe, pagenr, 1);
2585 			if (page)
2586 				continue;
2587 
2588 			page = rbio_stripe_page(rbio, stripe, pagenr);
2589 			/*
2590 			 * the bio cache may have handed us an uptodate
2591 			 * page.  If so, be happy and use it
2592 			 */
2593 			if (PageUptodate(page))
2594 				continue;
2595 
2596 			ret = rbio_add_io_page(rbio, &bio_list, page,
2597 				       stripe, pagenr, rbio->stripe_len);
2598 			if (ret)
2599 				goto cleanup;
2600 		}
2601 	}
2602 
2603 	bios_to_read = bio_list_size(&bio_list);
2604 	if (!bios_to_read) {
2605 		/*
2606 		 * this can happen if others have merged with
2607 		 * us, it means there is nothing left to read.
2608 		 * But if there are missing devices it may not be
2609 		 * safe to do the full stripe write yet.
2610 		 */
2611 		goto finish;
2612 	}
2613 
2614 	/*
2615 	 * the bbio may be freed once we submit the last bio.  Make sure
2616 	 * not to touch it after that
2617 	 */
2618 	atomic_set(&rbio->stripes_pending, bios_to_read);
2619 	while (1) {
2620 		bio = bio_list_pop(&bio_list);
2621 		if (!bio)
2622 			break;
2623 
2624 		bio->bi_private = rbio;
2625 		bio->bi_end_io = raid56_parity_scrub_end_io;
2626 
2627 		btrfs_bio_wq_end_io(rbio->fs_info, bio,
2628 				    BTRFS_WQ_ENDIO_RAID56);
2629 
2630 		submit_bio(READ, bio);
2631 	}
2632 	/* the actual write will happen once the reads are done */
2633 	return;
2634 
2635 cleanup:
2636 	rbio_orig_end_io(rbio, -EIO);
2637 	return;
2638 
2639 finish:
2640 	validate_rbio_for_parity_scrub(rbio);
2641 }
2642 
2643 static void scrub_parity_work(struct btrfs_work *work)
2644 {
2645 	struct btrfs_raid_bio *rbio;
2646 
2647 	rbio = container_of(work, struct btrfs_raid_bio, work);
2648 	raid56_parity_scrub_stripe(rbio);
2649 }
2650 
2651 static void async_scrub_parity(struct btrfs_raid_bio *rbio)
2652 {
2653 	btrfs_init_work(&rbio->work, btrfs_rmw_helper,
2654 			scrub_parity_work, NULL, NULL);
2655 
2656 	btrfs_queue_work(rbio->fs_info->rmw_workers,
2657 			 &rbio->work);
2658 }
2659 
2660 void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2661 {
2662 	if (!lock_stripe_add(rbio))
2663 		async_scrub_parity(rbio);
2664 }
2665