1 /* 2 * Copyright (C) 2012 Fusion-io All rights reserved. 3 * Copyright (C) 2012 Intel Corp. All rights reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public 7 * License v2 as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 12 * General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public 15 * License along with this program; if not, write to the 16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 17 * Boston, MA 021110-1307, USA. 18 */ 19 #include <linux/sched.h> 20 #include <linux/wait.h> 21 #include <linux/bio.h> 22 #include <linux/slab.h> 23 #include <linux/buffer_head.h> 24 #include <linux/blkdev.h> 25 #include <linux/random.h> 26 #include <linux/iocontext.h> 27 #include <linux/capability.h> 28 #include <linux/ratelimit.h> 29 #include <linux/kthread.h> 30 #include <linux/raid/pq.h> 31 #include <linux/hash.h> 32 #include <linux/list_sort.h> 33 #include <linux/raid/xor.h> 34 #include <linux/mm.h> 35 #include <asm/div64.h> 36 #include "ctree.h" 37 #include "extent_map.h" 38 #include "disk-io.h" 39 #include "transaction.h" 40 #include "print-tree.h" 41 #include "volumes.h" 42 #include "raid56.h" 43 #include "async-thread.h" 44 #include "check-integrity.h" 45 #include "rcu-string.h" 46 47 /* set when additional merges to this rbio are not allowed */ 48 #define RBIO_RMW_LOCKED_BIT 1 49 50 /* 51 * set when this rbio is sitting in the hash, but it is just a cache 52 * of past RMW 53 */ 54 #define RBIO_CACHE_BIT 2 55 56 /* 57 * set when it is safe to trust the stripe_pages for caching 58 */ 59 #define RBIO_CACHE_READY_BIT 3 60 61 #define RBIO_CACHE_SIZE 1024 62 63 enum btrfs_rbio_ops { 64 BTRFS_RBIO_WRITE, 65 BTRFS_RBIO_READ_REBUILD, 66 BTRFS_RBIO_PARITY_SCRUB, 67 BTRFS_RBIO_REBUILD_MISSING, 68 }; 69 70 struct btrfs_raid_bio { 71 struct btrfs_fs_info *fs_info; 72 struct btrfs_bio *bbio; 73 74 /* while we're doing rmw on a stripe 75 * we put it into a hash table so we can 76 * lock the stripe and merge more rbios 77 * into it. 78 */ 79 struct list_head hash_list; 80 81 /* 82 * LRU list for the stripe cache 83 */ 84 struct list_head stripe_cache; 85 86 /* 87 * for scheduling work in the helper threads 88 */ 89 struct btrfs_work work; 90 91 /* 92 * bio list and bio_list_lock are used 93 * to add more bios into the stripe 94 * in hopes of avoiding the full rmw 95 */ 96 struct bio_list bio_list; 97 spinlock_t bio_list_lock; 98 99 /* also protected by the bio_list_lock, the 100 * plug list is used by the plugging code 101 * to collect partial bios while plugged. The 102 * stripe locking code also uses it to hand off 103 * the stripe lock to the next pending IO 104 */ 105 struct list_head plug_list; 106 107 /* 108 * flags that tell us if it is safe to 109 * merge with this bio 110 */ 111 unsigned long flags; 112 113 /* size of each individual stripe on disk */ 114 int stripe_len; 115 116 /* number of data stripes (no p/q) */ 117 int nr_data; 118 119 int real_stripes; 120 121 int stripe_npages; 122 /* 123 * set if we're doing a parity rebuild 124 * for a read from higher up, which is handled 125 * differently from a parity rebuild as part of 126 * rmw 127 */ 128 enum btrfs_rbio_ops operation; 129 130 /* first bad stripe */ 131 int faila; 132 133 /* second bad stripe (for raid6 use) */ 134 int failb; 135 136 int scrubp; 137 /* 138 * number of pages needed to represent the full 139 * stripe 140 */ 141 int nr_pages; 142 143 /* 144 * size of all the bios in the bio_list. This 145 * helps us decide if the rbio maps to a full 146 * stripe or not 147 */ 148 int bio_list_bytes; 149 150 int generic_bio_cnt; 151 152 refcount_t refs; 153 154 atomic_t stripes_pending; 155 156 atomic_t error; 157 /* 158 * these are two arrays of pointers. We allocate the 159 * rbio big enough to hold them both and setup their 160 * locations when the rbio is allocated 161 */ 162 163 /* pointers to pages that we allocated for 164 * reading/writing stripes directly from the disk (including P/Q) 165 */ 166 struct page **stripe_pages; 167 168 /* 169 * pointers to the pages in the bio_list. Stored 170 * here for faster lookup 171 */ 172 struct page **bio_pages; 173 174 /* 175 * bitmap to record which horizontal stripe has data 176 */ 177 unsigned long *dbitmap; 178 }; 179 180 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio); 181 static noinline void finish_rmw(struct btrfs_raid_bio *rbio); 182 static void rmw_work(struct btrfs_work *work); 183 static void read_rebuild_work(struct btrfs_work *work); 184 static void async_rmw_stripe(struct btrfs_raid_bio *rbio); 185 static void async_read_rebuild(struct btrfs_raid_bio *rbio); 186 static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio); 187 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed); 188 static void __free_raid_bio(struct btrfs_raid_bio *rbio); 189 static void index_rbio_pages(struct btrfs_raid_bio *rbio); 190 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio); 191 192 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio, 193 int need_check); 194 static void async_scrub_parity(struct btrfs_raid_bio *rbio); 195 196 /* 197 * the stripe hash table is used for locking, and to collect 198 * bios in hopes of making a full stripe 199 */ 200 int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info) 201 { 202 struct btrfs_stripe_hash_table *table; 203 struct btrfs_stripe_hash_table *x; 204 struct btrfs_stripe_hash *cur; 205 struct btrfs_stripe_hash *h; 206 int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS; 207 int i; 208 int table_size; 209 210 if (info->stripe_hash_table) 211 return 0; 212 213 /* 214 * The table is large, starting with order 4 and can go as high as 215 * order 7 in case lock debugging is turned on. 216 * 217 * Try harder to allocate and fallback to vmalloc to lower the chance 218 * of a failing mount. 219 */ 220 table_size = sizeof(*table) + sizeof(*h) * num_entries; 221 table = kvzalloc(table_size, GFP_KERNEL); 222 if (!table) 223 return -ENOMEM; 224 225 spin_lock_init(&table->cache_lock); 226 INIT_LIST_HEAD(&table->stripe_cache); 227 228 h = table->table; 229 230 for (i = 0; i < num_entries; i++) { 231 cur = h + i; 232 INIT_LIST_HEAD(&cur->hash_list); 233 spin_lock_init(&cur->lock); 234 init_waitqueue_head(&cur->wait); 235 } 236 237 x = cmpxchg(&info->stripe_hash_table, NULL, table); 238 if (x) 239 kvfree(x); 240 return 0; 241 } 242 243 /* 244 * caching an rbio means to copy anything from the 245 * bio_pages array into the stripe_pages array. We 246 * use the page uptodate bit in the stripe cache array 247 * to indicate if it has valid data 248 * 249 * once the caching is done, we set the cache ready 250 * bit. 251 */ 252 static void cache_rbio_pages(struct btrfs_raid_bio *rbio) 253 { 254 int i; 255 char *s; 256 char *d; 257 int ret; 258 259 ret = alloc_rbio_pages(rbio); 260 if (ret) 261 return; 262 263 for (i = 0; i < rbio->nr_pages; i++) { 264 if (!rbio->bio_pages[i]) 265 continue; 266 267 s = kmap(rbio->bio_pages[i]); 268 d = kmap(rbio->stripe_pages[i]); 269 270 memcpy(d, s, PAGE_SIZE); 271 272 kunmap(rbio->bio_pages[i]); 273 kunmap(rbio->stripe_pages[i]); 274 SetPageUptodate(rbio->stripe_pages[i]); 275 } 276 set_bit(RBIO_CACHE_READY_BIT, &rbio->flags); 277 } 278 279 /* 280 * we hash on the first logical address of the stripe 281 */ 282 static int rbio_bucket(struct btrfs_raid_bio *rbio) 283 { 284 u64 num = rbio->bbio->raid_map[0]; 285 286 /* 287 * we shift down quite a bit. We're using byte 288 * addressing, and most of the lower bits are zeros. 289 * This tends to upset hash_64, and it consistently 290 * returns just one or two different values. 291 * 292 * shifting off the lower bits fixes things. 293 */ 294 return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS); 295 } 296 297 /* 298 * stealing an rbio means taking all the uptodate pages from the stripe 299 * array in the source rbio and putting them into the destination rbio 300 */ 301 static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest) 302 { 303 int i; 304 struct page *s; 305 struct page *d; 306 307 if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags)) 308 return; 309 310 for (i = 0; i < dest->nr_pages; i++) { 311 s = src->stripe_pages[i]; 312 if (!s || !PageUptodate(s)) { 313 continue; 314 } 315 316 d = dest->stripe_pages[i]; 317 if (d) 318 __free_page(d); 319 320 dest->stripe_pages[i] = s; 321 src->stripe_pages[i] = NULL; 322 } 323 } 324 325 /* 326 * merging means we take the bio_list from the victim and 327 * splice it into the destination. The victim should 328 * be discarded afterwards. 329 * 330 * must be called with dest->rbio_list_lock held 331 */ 332 static void merge_rbio(struct btrfs_raid_bio *dest, 333 struct btrfs_raid_bio *victim) 334 { 335 bio_list_merge(&dest->bio_list, &victim->bio_list); 336 dest->bio_list_bytes += victim->bio_list_bytes; 337 dest->generic_bio_cnt += victim->generic_bio_cnt; 338 bio_list_init(&victim->bio_list); 339 } 340 341 /* 342 * used to prune items that are in the cache. The caller 343 * must hold the hash table lock. 344 */ 345 static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio) 346 { 347 int bucket = rbio_bucket(rbio); 348 struct btrfs_stripe_hash_table *table; 349 struct btrfs_stripe_hash *h; 350 int freeit = 0; 351 352 /* 353 * check the bit again under the hash table lock. 354 */ 355 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags)) 356 return; 357 358 table = rbio->fs_info->stripe_hash_table; 359 h = table->table + bucket; 360 361 /* hold the lock for the bucket because we may be 362 * removing it from the hash table 363 */ 364 spin_lock(&h->lock); 365 366 /* 367 * hold the lock for the bio list because we need 368 * to make sure the bio list is empty 369 */ 370 spin_lock(&rbio->bio_list_lock); 371 372 if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) { 373 list_del_init(&rbio->stripe_cache); 374 table->cache_size -= 1; 375 freeit = 1; 376 377 /* if the bio list isn't empty, this rbio is 378 * still involved in an IO. We take it out 379 * of the cache list, and drop the ref that 380 * was held for the list. 381 * 382 * If the bio_list was empty, we also remove 383 * the rbio from the hash_table, and drop 384 * the corresponding ref 385 */ 386 if (bio_list_empty(&rbio->bio_list)) { 387 if (!list_empty(&rbio->hash_list)) { 388 list_del_init(&rbio->hash_list); 389 refcount_dec(&rbio->refs); 390 BUG_ON(!list_empty(&rbio->plug_list)); 391 } 392 } 393 } 394 395 spin_unlock(&rbio->bio_list_lock); 396 spin_unlock(&h->lock); 397 398 if (freeit) 399 __free_raid_bio(rbio); 400 } 401 402 /* 403 * prune a given rbio from the cache 404 */ 405 static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio) 406 { 407 struct btrfs_stripe_hash_table *table; 408 unsigned long flags; 409 410 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags)) 411 return; 412 413 table = rbio->fs_info->stripe_hash_table; 414 415 spin_lock_irqsave(&table->cache_lock, flags); 416 __remove_rbio_from_cache(rbio); 417 spin_unlock_irqrestore(&table->cache_lock, flags); 418 } 419 420 /* 421 * remove everything in the cache 422 */ 423 static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info) 424 { 425 struct btrfs_stripe_hash_table *table; 426 unsigned long flags; 427 struct btrfs_raid_bio *rbio; 428 429 table = info->stripe_hash_table; 430 431 spin_lock_irqsave(&table->cache_lock, flags); 432 while (!list_empty(&table->stripe_cache)) { 433 rbio = list_entry(table->stripe_cache.next, 434 struct btrfs_raid_bio, 435 stripe_cache); 436 __remove_rbio_from_cache(rbio); 437 } 438 spin_unlock_irqrestore(&table->cache_lock, flags); 439 } 440 441 /* 442 * remove all cached entries and free the hash table 443 * used by unmount 444 */ 445 void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info) 446 { 447 if (!info->stripe_hash_table) 448 return; 449 btrfs_clear_rbio_cache(info); 450 kvfree(info->stripe_hash_table); 451 info->stripe_hash_table = NULL; 452 } 453 454 /* 455 * insert an rbio into the stripe cache. It 456 * must have already been prepared by calling 457 * cache_rbio_pages 458 * 459 * If this rbio was already cached, it gets 460 * moved to the front of the lru. 461 * 462 * If the size of the rbio cache is too big, we 463 * prune an item. 464 */ 465 static void cache_rbio(struct btrfs_raid_bio *rbio) 466 { 467 struct btrfs_stripe_hash_table *table; 468 unsigned long flags; 469 470 if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags)) 471 return; 472 473 table = rbio->fs_info->stripe_hash_table; 474 475 spin_lock_irqsave(&table->cache_lock, flags); 476 spin_lock(&rbio->bio_list_lock); 477 478 /* bump our ref if we were not in the list before */ 479 if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags)) 480 refcount_inc(&rbio->refs); 481 482 if (!list_empty(&rbio->stripe_cache)){ 483 list_move(&rbio->stripe_cache, &table->stripe_cache); 484 } else { 485 list_add(&rbio->stripe_cache, &table->stripe_cache); 486 table->cache_size += 1; 487 } 488 489 spin_unlock(&rbio->bio_list_lock); 490 491 if (table->cache_size > RBIO_CACHE_SIZE) { 492 struct btrfs_raid_bio *found; 493 494 found = list_entry(table->stripe_cache.prev, 495 struct btrfs_raid_bio, 496 stripe_cache); 497 498 if (found != rbio) 499 __remove_rbio_from_cache(found); 500 } 501 502 spin_unlock_irqrestore(&table->cache_lock, flags); 503 } 504 505 /* 506 * helper function to run the xor_blocks api. It is only 507 * able to do MAX_XOR_BLOCKS at a time, so we need to 508 * loop through. 509 */ 510 static void run_xor(void **pages, int src_cnt, ssize_t len) 511 { 512 int src_off = 0; 513 int xor_src_cnt = 0; 514 void *dest = pages[src_cnt]; 515 516 while(src_cnt > 0) { 517 xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS); 518 xor_blocks(xor_src_cnt, len, dest, pages + src_off); 519 520 src_cnt -= xor_src_cnt; 521 src_off += xor_src_cnt; 522 } 523 } 524 525 /* 526 * returns true if the bio list inside this rbio 527 * covers an entire stripe (no rmw required). 528 * Must be called with the bio list lock held, or 529 * at a time when you know it is impossible to add 530 * new bios into the list 531 */ 532 static int __rbio_is_full(struct btrfs_raid_bio *rbio) 533 { 534 unsigned long size = rbio->bio_list_bytes; 535 int ret = 1; 536 537 if (size != rbio->nr_data * rbio->stripe_len) 538 ret = 0; 539 540 BUG_ON(size > rbio->nr_data * rbio->stripe_len); 541 return ret; 542 } 543 544 static int rbio_is_full(struct btrfs_raid_bio *rbio) 545 { 546 unsigned long flags; 547 int ret; 548 549 spin_lock_irqsave(&rbio->bio_list_lock, flags); 550 ret = __rbio_is_full(rbio); 551 spin_unlock_irqrestore(&rbio->bio_list_lock, flags); 552 return ret; 553 } 554 555 /* 556 * returns 1 if it is safe to merge two rbios together. 557 * The merging is safe if the two rbios correspond to 558 * the same stripe and if they are both going in the same 559 * direction (read vs write), and if neither one is 560 * locked for final IO 561 * 562 * The caller is responsible for locking such that 563 * rmw_locked is safe to test 564 */ 565 static int rbio_can_merge(struct btrfs_raid_bio *last, 566 struct btrfs_raid_bio *cur) 567 { 568 if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) || 569 test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) 570 return 0; 571 572 /* 573 * we can't merge with cached rbios, since the 574 * idea is that when we merge the destination 575 * rbio is going to run our IO for us. We can 576 * steal from cached rbios though, other functions 577 * handle that. 578 */ 579 if (test_bit(RBIO_CACHE_BIT, &last->flags) || 580 test_bit(RBIO_CACHE_BIT, &cur->flags)) 581 return 0; 582 583 if (last->bbio->raid_map[0] != 584 cur->bbio->raid_map[0]) 585 return 0; 586 587 /* we can't merge with different operations */ 588 if (last->operation != cur->operation) 589 return 0; 590 /* 591 * We've need read the full stripe from the drive. 592 * check and repair the parity and write the new results. 593 * 594 * We're not allowed to add any new bios to the 595 * bio list here, anyone else that wants to 596 * change this stripe needs to do their own rmw. 597 */ 598 if (last->operation == BTRFS_RBIO_PARITY_SCRUB || 599 cur->operation == BTRFS_RBIO_PARITY_SCRUB) 600 return 0; 601 602 if (last->operation == BTRFS_RBIO_REBUILD_MISSING || 603 cur->operation == BTRFS_RBIO_REBUILD_MISSING) 604 return 0; 605 606 return 1; 607 } 608 609 static int rbio_stripe_page_index(struct btrfs_raid_bio *rbio, int stripe, 610 int index) 611 { 612 return stripe * rbio->stripe_npages + index; 613 } 614 615 /* 616 * these are just the pages from the rbio array, not from anything 617 * the FS sent down to us 618 */ 619 static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe, 620 int index) 621 { 622 return rbio->stripe_pages[rbio_stripe_page_index(rbio, stripe, index)]; 623 } 624 625 /* 626 * helper to index into the pstripe 627 */ 628 static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index) 629 { 630 return rbio_stripe_page(rbio, rbio->nr_data, index); 631 } 632 633 /* 634 * helper to index into the qstripe, returns null 635 * if there is no qstripe 636 */ 637 static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index) 638 { 639 if (rbio->nr_data + 1 == rbio->real_stripes) 640 return NULL; 641 return rbio_stripe_page(rbio, rbio->nr_data + 1, index); 642 } 643 644 /* 645 * The first stripe in the table for a logical address 646 * has the lock. rbios are added in one of three ways: 647 * 648 * 1) Nobody has the stripe locked yet. The rbio is given 649 * the lock and 0 is returned. The caller must start the IO 650 * themselves. 651 * 652 * 2) Someone has the stripe locked, but we're able to merge 653 * with the lock owner. The rbio is freed and the IO will 654 * start automatically along with the existing rbio. 1 is returned. 655 * 656 * 3) Someone has the stripe locked, but we're not able to merge. 657 * The rbio is added to the lock owner's plug list, or merged into 658 * an rbio already on the plug list. When the lock owner unlocks, 659 * the next rbio on the list is run and the IO is started automatically. 660 * 1 is returned 661 * 662 * If we return 0, the caller still owns the rbio and must continue with 663 * IO submission. If we return 1, the caller must assume the rbio has 664 * already been freed. 665 */ 666 static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio) 667 { 668 int bucket = rbio_bucket(rbio); 669 struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket; 670 struct btrfs_raid_bio *cur; 671 struct btrfs_raid_bio *pending; 672 unsigned long flags; 673 DEFINE_WAIT(wait); 674 struct btrfs_raid_bio *freeit = NULL; 675 struct btrfs_raid_bio *cache_drop = NULL; 676 int ret = 0; 677 678 spin_lock_irqsave(&h->lock, flags); 679 list_for_each_entry(cur, &h->hash_list, hash_list) { 680 if (cur->bbio->raid_map[0] == rbio->bbio->raid_map[0]) { 681 spin_lock(&cur->bio_list_lock); 682 683 /* can we steal this cached rbio's pages? */ 684 if (bio_list_empty(&cur->bio_list) && 685 list_empty(&cur->plug_list) && 686 test_bit(RBIO_CACHE_BIT, &cur->flags) && 687 !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) { 688 list_del_init(&cur->hash_list); 689 refcount_dec(&cur->refs); 690 691 steal_rbio(cur, rbio); 692 cache_drop = cur; 693 spin_unlock(&cur->bio_list_lock); 694 695 goto lockit; 696 } 697 698 /* can we merge into the lock owner? */ 699 if (rbio_can_merge(cur, rbio)) { 700 merge_rbio(cur, rbio); 701 spin_unlock(&cur->bio_list_lock); 702 freeit = rbio; 703 ret = 1; 704 goto out; 705 } 706 707 708 /* 709 * we couldn't merge with the running 710 * rbio, see if we can merge with the 711 * pending ones. We don't have to 712 * check for rmw_locked because there 713 * is no way they are inside finish_rmw 714 * right now 715 */ 716 list_for_each_entry(pending, &cur->plug_list, 717 plug_list) { 718 if (rbio_can_merge(pending, rbio)) { 719 merge_rbio(pending, rbio); 720 spin_unlock(&cur->bio_list_lock); 721 freeit = rbio; 722 ret = 1; 723 goto out; 724 } 725 } 726 727 /* no merging, put us on the tail of the plug list, 728 * our rbio will be started with the currently 729 * running rbio unlocks 730 */ 731 list_add_tail(&rbio->plug_list, &cur->plug_list); 732 spin_unlock(&cur->bio_list_lock); 733 ret = 1; 734 goto out; 735 } 736 } 737 lockit: 738 refcount_inc(&rbio->refs); 739 list_add(&rbio->hash_list, &h->hash_list); 740 out: 741 spin_unlock_irqrestore(&h->lock, flags); 742 if (cache_drop) 743 remove_rbio_from_cache(cache_drop); 744 if (freeit) 745 __free_raid_bio(freeit); 746 return ret; 747 } 748 749 /* 750 * called as rmw or parity rebuild is completed. If the plug list has more 751 * rbios waiting for this stripe, the next one on the list will be started 752 */ 753 static noinline void unlock_stripe(struct btrfs_raid_bio *rbio) 754 { 755 int bucket; 756 struct btrfs_stripe_hash *h; 757 unsigned long flags; 758 int keep_cache = 0; 759 760 bucket = rbio_bucket(rbio); 761 h = rbio->fs_info->stripe_hash_table->table + bucket; 762 763 if (list_empty(&rbio->plug_list)) 764 cache_rbio(rbio); 765 766 spin_lock_irqsave(&h->lock, flags); 767 spin_lock(&rbio->bio_list_lock); 768 769 if (!list_empty(&rbio->hash_list)) { 770 /* 771 * if we're still cached and there is no other IO 772 * to perform, just leave this rbio here for others 773 * to steal from later 774 */ 775 if (list_empty(&rbio->plug_list) && 776 test_bit(RBIO_CACHE_BIT, &rbio->flags)) { 777 keep_cache = 1; 778 clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); 779 BUG_ON(!bio_list_empty(&rbio->bio_list)); 780 goto done; 781 } 782 783 list_del_init(&rbio->hash_list); 784 refcount_dec(&rbio->refs); 785 786 /* 787 * we use the plug list to hold all the rbios 788 * waiting for the chance to lock this stripe. 789 * hand the lock over to one of them. 790 */ 791 if (!list_empty(&rbio->plug_list)) { 792 struct btrfs_raid_bio *next; 793 struct list_head *head = rbio->plug_list.next; 794 795 next = list_entry(head, struct btrfs_raid_bio, 796 plug_list); 797 798 list_del_init(&rbio->plug_list); 799 800 list_add(&next->hash_list, &h->hash_list); 801 refcount_inc(&next->refs); 802 spin_unlock(&rbio->bio_list_lock); 803 spin_unlock_irqrestore(&h->lock, flags); 804 805 if (next->operation == BTRFS_RBIO_READ_REBUILD) 806 async_read_rebuild(next); 807 else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) { 808 steal_rbio(rbio, next); 809 async_read_rebuild(next); 810 } else if (next->operation == BTRFS_RBIO_WRITE) { 811 steal_rbio(rbio, next); 812 async_rmw_stripe(next); 813 } else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) { 814 steal_rbio(rbio, next); 815 async_scrub_parity(next); 816 } 817 818 goto done_nolock; 819 /* 820 * The barrier for this waitqueue_active is not needed, 821 * we're protected by h->lock and can't miss a wakeup. 822 */ 823 } else if (waitqueue_active(&h->wait)) { 824 spin_unlock(&rbio->bio_list_lock); 825 spin_unlock_irqrestore(&h->lock, flags); 826 wake_up(&h->wait); 827 goto done_nolock; 828 } 829 } 830 done: 831 spin_unlock(&rbio->bio_list_lock); 832 spin_unlock_irqrestore(&h->lock, flags); 833 834 done_nolock: 835 if (!keep_cache) 836 remove_rbio_from_cache(rbio); 837 } 838 839 static void __free_raid_bio(struct btrfs_raid_bio *rbio) 840 { 841 int i; 842 843 if (!refcount_dec_and_test(&rbio->refs)) 844 return; 845 846 WARN_ON(!list_empty(&rbio->stripe_cache)); 847 WARN_ON(!list_empty(&rbio->hash_list)); 848 WARN_ON(!bio_list_empty(&rbio->bio_list)); 849 850 for (i = 0; i < rbio->nr_pages; i++) { 851 if (rbio->stripe_pages[i]) { 852 __free_page(rbio->stripe_pages[i]); 853 rbio->stripe_pages[i] = NULL; 854 } 855 } 856 857 btrfs_put_bbio(rbio->bbio); 858 kfree(rbio); 859 } 860 861 static void free_raid_bio(struct btrfs_raid_bio *rbio) 862 { 863 unlock_stripe(rbio); 864 __free_raid_bio(rbio); 865 } 866 867 /* 868 * this frees the rbio and runs through all the bios in the 869 * bio_list and calls end_io on them 870 */ 871 static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err) 872 { 873 struct bio *cur = bio_list_get(&rbio->bio_list); 874 struct bio *next; 875 876 if (rbio->generic_bio_cnt) 877 btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt); 878 879 free_raid_bio(rbio); 880 881 while (cur) { 882 next = cur->bi_next; 883 cur->bi_next = NULL; 884 cur->bi_status = err; 885 bio_endio(cur); 886 cur = next; 887 } 888 } 889 890 /* 891 * end io function used by finish_rmw. When we finally 892 * get here, we've written a full stripe 893 */ 894 static void raid_write_end_io(struct bio *bio) 895 { 896 struct btrfs_raid_bio *rbio = bio->bi_private; 897 blk_status_t err = bio->bi_status; 898 int max_errors; 899 900 if (err) 901 fail_bio_stripe(rbio, bio); 902 903 bio_put(bio); 904 905 if (!atomic_dec_and_test(&rbio->stripes_pending)) 906 return; 907 908 err = BLK_STS_OK; 909 910 /* OK, we have read all the stripes we need to. */ 911 max_errors = (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) ? 912 0 : rbio->bbio->max_errors; 913 if (atomic_read(&rbio->error) > max_errors) 914 err = BLK_STS_IOERR; 915 916 rbio_orig_end_io(rbio, err); 917 } 918 919 /* 920 * the read/modify/write code wants to use the original bio for 921 * any pages it included, and then use the rbio for everything 922 * else. This function decides if a given index (stripe number) 923 * and page number in that stripe fall inside the original bio 924 * or the rbio. 925 * 926 * if you set bio_list_only, you'll get a NULL back for any ranges 927 * that are outside the bio_list 928 * 929 * This doesn't take any refs on anything, you get a bare page pointer 930 * and the caller must bump refs as required. 931 * 932 * You must call index_rbio_pages once before you can trust 933 * the answers from this function. 934 */ 935 static struct page *page_in_rbio(struct btrfs_raid_bio *rbio, 936 int index, int pagenr, int bio_list_only) 937 { 938 int chunk_page; 939 struct page *p = NULL; 940 941 chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr; 942 943 spin_lock_irq(&rbio->bio_list_lock); 944 p = rbio->bio_pages[chunk_page]; 945 spin_unlock_irq(&rbio->bio_list_lock); 946 947 if (p || bio_list_only) 948 return p; 949 950 return rbio->stripe_pages[chunk_page]; 951 } 952 953 /* 954 * number of pages we need for the entire stripe across all the 955 * drives 956 */ 957 static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes) 958 { 959 return DIV_ROUND_UP(stripe_len, PAGE_SIZE) * nr_stripes; 960 } 961 962 /* 963 * allocation and initial setup for the btrfs_raid_bio. Not 964 * this does not allocate any pages for rbio->pages. 965 */ 966 static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info, 967 struct btrfs_bio *bbio, 968 u64 stripe_len) 969 { 970 struct btrfs_raid_bio *rbio; 971 int nr_data = 0; 972 int real_stripes = bbio->num_stripes - bbio->num_tgtdevs; 973 int num_pages = rbio_nr_pages(stripe_len, real_stripes); 974 int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE); 975 void *p; 976 977 rbio = kzalloc(sizeof(*rbio) + num_pages * sizeof(struct page *) * 2 + 978 DIV_ROUND_UP(stripe_npages, BITS_PER_LONG) * 979 sizeof(long), GFP_NOFS); 980 if (!rbio) 981 return ERR_PTR(-ENOMEM); 982 983 bio_list_init(&rbio->bio_list); 984 INIT_LIST_HEAD(&rbio->plug_list); 985 spin_lock_init(&rbio->bio_list_lock); 986 INIT_LIST_HEAD(&rbio->stripe_cache); 987 INIT_LIST_HEAD(&rbio->hash_list); 988 rbio->bbio = bbio; 989 rbio->fs_info = fs_info; 990 rbio->stripe_len = stripe_len; 991 rbio->nr_pages = num_pages; 992 rbio->real_stripes = real_stripes; 993 rbio->stripe_npages = stripe_npages; 994 rbio->faila = -1; 995 rbio->failb = -1; 996 refcount_set(&rbio->refs, 1); 997 atomic_set(&rbio->error, 0); 998 atomic_set(&rbio->stripes_pending, 0); 999 1000 /* 1001 * the stripe_pages and bio_pages array point to the extra 1002 * memory we allocated past the end of the rbio 1003 */ 1004 p = rbio + 1; 1005 rbio->stripe_pages = p; 1006 rbio->bio_pages = p + sizeof(struct page *) * num_pages; 1007 rbio->dbitmap = p + sizeof(struct page *) * num_pages * 2; 1008 1009 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5) 1010 nr_data = real_stripes - 1; 1011 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) 1012 nr_data = real_stripes - 2; 1013 else 1014 BUG(); 1015 1016 rbio->nr_data = nr_data; 1017 return rbio; 1018 } 1019 1020 /* allocate pages for all the stripes in the bio, including parity */ 1021 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio) 1022 { 1023 int i; 1024 struct page *page; 1025 1026 for (i = 0; i < rbio->nr_pages; i++) { 1027 if (rbio->stripe_pages[i]) 1028 continue; 1029 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 1030 if (!page) 1031 return -ENOMEM; 1032 rbio->stripe_pages[i] = page; 1033 } 1034 return 0; 1035 } 1036 1037 /* only allocate pages for p/q stripes */ 1038 static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio) 1039 { 1040 int i; 1041 struct page *page; 1042 1043 i = rbio_stripe_page_index(rbio, rbio->nr_data, 0); 1044 1045 for (; i < rbio->nr_pages; i++) { 1046 if (rbio->stripe_pages[i]) 1047 continue; 1048 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 1049 if (!page) 1050 return -ENOMEM; 1051 rbio->stripe_pages[i] = page; 1052 } 1053 return 0; 1054 } 1055 1056 /* 1057 * add a single page from a specific stripe into our list of bios for IO 1058 * this will try to merge into existing bios if possible, and returns 1059 * zero if all went well. 1060 */ 1061 static int rbio_add_io_page(struct btrfs_raid_bio *rbio, 1062 struct bio_list *bio_list, 1063 struct page *page, 1064 int stripe_nr, 1065 unsigned long page_index, 1066 unsigned long bio_max_len) 1067 { 1068 struct bio *last = bio_list->tail; 1069 u64 last_end = 0; 1070 int ret; 1071 struct bio *bio; 1072 struct btrfs_bio_stripe *stripe; 1073 u64 disk_start; 1074 1075 stripe = &rbio->bbio->stripes[stripe_nr]; 1076 disk_start = stripe->physical + (page_index << PAGE_SHIFT); 1077 1078 /* if the device is missing, just fail this stripe */ 1079 if (!stripe->dev->bdev) 1080 return fail_rbio_index(rbio, stripe_nr); 1081 1082 /* see if we can add this page onto our existing bio */ 1083 if (last) { 1084 last_end = (u64)last->bi_iter.bi_sector << 9; 1085 last_end += last->bi_iter.bi_size; 1086 1087 /* 1088 * we can't merge these if they are from different 1089 * devices or if they are not contiguous 1090 */ 1091 if (last_end == disk_start && stripe->dev->bdev && 1092 !last->bi_status && 1093 last->bi_disk == stripe->dev->bdev->bd_disk && 1094 last->bi_partno == stripe->dev->bdev->bd_partno) { 1095 ret = bio_add_page(last, page, PAGE_SIZE, 0); 1096 if (ret == PAGE_SIZE) 1097 return 0; 1098 } 1099 } 1100 1101 /* put a new bio on the list */ 1102 bio = btrfs_io_bio_alloc(bio_max_len >> PAGE_SHIFT ?: 1); 1103 bio->bi_iter.bi_size = 0; 1104 bio_set_dev(bio, stripe->dev->bdev); 1105 bio->bi_iter.bi_sector = disk_start >> 9; 1106 1107 bio_add_page(bio, page, PAGE_SIZE, 0); 1108 bio_list_add(bio_list, bio); 1109 return 0; 1110 } 1111 1112 /* 1113 * while we're doing the read/modify/write cycle, we could 1114 * have errors in reading pages off the disk. This checks 1115 * for errors and if we're not able to read the page it'll 1116 * trigger parity reconstruction. The rmw will be finished 1117 * after we've reconstructed the failed stripes 1118 */ 1119 static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio) 1120 { 1121 if (rbio->faila >= 0 || rbio->failb >= 0) { 1122 BUG_ON(rbio->faila == rbio->real_stripes - 1); 1123 __raid56_parity_recover(rbio); 1124 } else { 1125 finish_rmw(rbio); 1126 } 1127 } 1128 1129 /* 1130 * helper function to walk our bio list and populate the bio_pages array with 1131 * the result. This seems expensive, but it is faster than constantly 1132 * searching through the bio list as we setup the IO in finish_rmw or stripe 1133 * reconstruction. 1134 * 1135 * This must be called before you trust the answers from page_in_rbio 1136 */ 1137 static void index_rbio_pages(struct btrfs_raid_bio *rbio) 1138 { 1139 struct bio *bio; 1140 u64 start; 1141 unsigned long stripe_offset; 1142 unsigned long page_index; 1143 1144 spin_lock_irq(&rbio->bio_list_lock); 1145 bio_list_for_each(bio, &rbio->bio_list) { 1146 struct bio_vec bvec; 1147 struct bvec_iter iter; 1148 int i = 0; 1149 1150 start = (u64)bio->bi_iter.bi_sector << 9; 1151 stripe_offset = start - rbio->bbio->raid_map[0]; 1152 page_index = stripe_offset >> PAGE_SHIFT; 1153 1154 if (bio_flagged(bio, BIO_CLONED)) 1155 bio->bi_iter = btrfs_io_bio(bio)->iter; 1156 1157 bio_for_each_segment(bvec, bio, iter) { 1158 rbio->bio_pages[page_index + i] = bvec.bv_page; 1159 i++; 1160 } 1161 } 1162 spin_unlock_irq(&rbio->bio_list_lock); 1163 } 1164 1165 /* 1166 * this is called from one of two situations. We either 1167 * have a full stripe from the higher layers, or we've read all 1168 * the missing bits off disk. 1169 * 1170 * This will calculate the parity and then send down any 1171 * changed blocks. 1172 */ 1173 static noinline void finish_rmw(struct btrfs_raid_bio *rbio) 1174 { 1175 struct btrfs_bio *bbio = rbio->bbio; 1176 void *pointers[rbio->real_stripes]; 1177 int nr_data = rbio->nr_data; 1178 int stripe; 1179 int pagenr; 1180 int p_stripe = -1; 1181 int q_stripe = -1; 1182 struct bio_list bio_list; 1183 struct bio *bio; 1184 int ret; 1185 1186 bio_list_init(&bio_list); 1187 1188 if (rbio->real_stripes - rbio->nr_data == 1) { 1189 p_stripe = rbio->real_stripes - 1; 1190 } else if (rbio->real_stripes - rbio->nr_data == 2) { 1191 p_stripe = rbio->real_stripes - 2; 1192 q_stripe = rbio->real_stripes - 1; 1193 } else { 1194 BUG(); 1195 } 1196 1197 /* at this point we either have a full stripe, 1198 * or we've read the full stripe from the drive. 1199 * recalculate the parity and write the new results. 1200 * 1201 * We're not allowed to add any new bios to the 1202 * bio list here, anyone else that wants to 1203 * change this stripe needs to do their own rmw. 1204 */ 1205 spin_lock_irq(&rbio->bio_list_lock); 1206 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); 1207 spin_unlock_irq(&rbio->bio_list_lock); 1208 1209 atomic_set(&rbio->error, 0); 1210 1211 /* 1212 * now that we've set rmw_locked, run through the 1213 * bio list one last time and map the page pointers 1214 * 1215 * We don't cache full rbios because we're assuming 1216 * the higher layers are unlikely to use this area of 1217 * the disk again soon. If they do use it again, 1218 * hopefully they will send another full bio. 1219 */ 1220 index_rbio_pages(rbio); 1221 if (!rbio_is_full(rbio)) 1222 cache_rbio_pages(rbio); 1223 else 1224 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); 1225 1226 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { 1227 struct page *p; 1228 /* first collect one page from each data stripe */ 1229 for (stripe = 0; stripe < nr_data; stripe++) { 1230 p = page_in_rbio(rbio, stripe, pagenr, 0); 1231 pointers[stripe] = kmap(p); 1232 } 1233 1234 /* then add the parity stripe */ 1235 p = rbio_pstripe_page(rbio, pagenr); 1236 SetPageUptodate(p); 1237 pointers[stripe++] = kmap(p); 1238 1239 if (q_stripe != -1) { 1240 1241 /* 1242 * raid6, add the qstripe and call the 1243 * library function to fill in our p/q 1244 */ 1245 p = rbio_qstripe_page(rbio, pagenr); 1246 SetPageUptodate(p); 1247 pointers[stripe++] = kmap(p); 1248 1249 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE, 1250 pointers); 1251 } else { 1252 /* raid5 */ 1253 memcpy(pointers[nr_data], pointers[0], PAGE_SIZE); 1254 run_xor(pointers + 1, nr_data - 1, PAGE_SIZE); 1255 } 1256 1257 1258 for (stripe = 0; stripe < rbio->real_stripes; stripe++) 1259 kunmap(page_in_rbio(rbio, stripe, pagenr, 0)); 1260 } 1261 1262 /* 1263 * time to start writing. Make bios for everything from the 1264 * higher layers (the bio_list in our rbio) and our p/q. Ignore 1265 * everything else. 1266 */ 1267 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 1268 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { 1269 struct page *page; 1270 if (stripe < rbio->nr_data) { 1271 page = page_in_rbio(rbio, stripe, pagenr, 1); 1272 if (!page) 1273 continue; 1274 } else { 1275 page = rbio_stripe_page(rbio, stripe, pagenr); 1276 } 1277 1278 ret = rbio_add_io_page(rbio, &bio_list, 1279 page, stripe, pagenr, rbio->stripe_len); 1280 if (ret) 1281 goto cleanup; 1282 } 1283 } 1284 1285 if (likely(!bbio->num_tgtdevs)) 1286 goto write_data; 1287 1288 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 1289 if (!bbio->tgtdev_map[stripe]) 1290 continue; 1291 1292 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { 1293 struct page *page; 1294 if (stripe < rbio->nr_data) { 1295 page = page_in_rbio(rbio, stripe, pagenr, 1); 1296 if (!page) 1297 continue; 1298 } else { 1299 page = rbio_stripe_page(rbio, stripe, pagenr); 1300 } 1301 1302 ret = rbio_add_io_page(rbio, &bio_list, page, 1303 rbio->bbio->tgtdev_map[stripe], 1304 pagenr, rbio->stripe_len); 1305 if (ret) 1306 goto cleanup; 1307 } 1308 } 1309 1310 write_data: 1311 atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list)); 1312 BUG_ON(atomic_read(&rbio->stripes_pending) == 0); 1313 1314 while (1) { 1315 bio = bio_list_pop(&bio_list); 1316 if (!bio) 1317 break; 1318 1319 bio->bi_private = rbio; 1320 bio->bi_end_io = raid_write_end_io; 1321 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 1322 1323 submit_bio(bio); 1324 } 1325 return; 1326 1327 cleanup: 1328 rbio_orig_end_io(rbio, BLK_STS_IOERR); 1329 } 1330 1331 /* 1332 * helper to find the stripe number for a given bio. Used to figure out which 1333 * stripe has failed. This expects the bio to correspond to a physical disk, 1334 * so it looks up based on physical sector numbers. 1335 */ 1336 static int find_bio_stripe(struct btrfs_raid_bio *rbio, 1337 struct bio *bio) 1338 { 1339 u64 physical = bio->bi_iter.bi_sector; 1340 u64 stripe_start; 1341 int i; 1342 struct btrfs_bio_stripe *stripe; 1343 1344 physical <<= 9; 1345 1346 for (i = 0; i < rbio->bbio->num_stripes; i++) { 1347 stripe = &rbio->bbio->stripes[i]; 1348 stripe_start = stripe->physical; 1349 if (physical >= stripe_start && 1350 physical < stripe_start + rbio->stripe_len && 1351 bio->bi_disk == stripe->dev->bdev->bd_disk && 1352 bio->bi_partno == stripe->dev->bdev->bd_partno) { 1353 return i; 1354 } 1355 } 1356 return -1; 1357 } 1358 1359 /* 1360 * helper to find the stripe number for a given 1361 * bio (before mapping). Used to figure out which stripe has 1362 * failed. This looks up based on logical block numbers. 1363 */ 1364 static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio, 1365 struct bio *bio) 1366 { 1367 u64 logical = bio->bi_iter.bi_sector; 1368 u64 stripe_start; 1369 int i; 1370 1371 logical <<= 9; 1372 1373 for (i = 0; i < rbio->nr_data; i++) { 1374 stripe_start = rbio->bbio->raid_map[i]; 1375 if (logical >= stripe_start && 1376 logical < stripe_start + rbio->stripe_len) { 1377 return i; 1378 } 1379 } 1380 return -1; 1381 } 1382 1383 /* 1384 * returns -EIO if we had too many failures 1385 */ 1386 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed) 1387 { 1388 unsigned long flags; 1389 int ret = 0; 1390 1391 spin_lock_irqsave(&rbio->bio_list_lock, flags); 1392 1393 /* we already know this stripe is bad, move on */ 1394 if (rbio->faila == failed || rbio->failb == failed) 1395 goto out; 1396 1397 if (rbio->faila == -1) { 1398 /* first failure on this rbio */ 1399 rbio->faila = failed; 1400 atomic_inc(&rbio->error); 1401 } else if (rbio->failb == -1) { 1402 /* second failure on this rbio */ 1403 rbio->failb = failed; 1404 atomic_inc(&rbio->error); 1405 } else { 1406 ret = -EIO; 1407 } 1408 out: 1409 spin_unlock_irqrestore(&rbio->bio_list_lock, flags); 1410 1411 return ret; 1412 } 1413 1414 /* 1415 * helper to fail a stripe based on a physical disk 1416 * bio. 1417 */ 1418 static int fail_bio_stripe(struct btrfs_raid_bio *rbio, 1419 struct bio *bio) 1420 { 1421 int failed = find_bio_stripe(rbio, bio); 1422 1423 if (failed < 0) 1424 return -EIO; 1425 1426 return fail_rbio_index(rbio, failed); 1427 } 1428 1429 /* 1430 * this sets each page in the bio uptodate. It should only be used on private 1431 * rbio pages, nothing that comes in from the higher layers 1432 */ 1433 static void set_bio_pages_uptodate(struct bio *bio) 1434 { 1435 struct bio_vec bvec; 1436 struct bvec_iter iter; 1437 1438 if (bio_flagged(bio, BIO_CLONED)) 1439 bio->bi_iter = btrfs_io_bio(bio)->iter; 1440 1441 bio_for_each_segment(bvec, bio, iter) 1442 SetPageUptodate(bvec.bv_page); 1443 } 1444 1445 /* 1446 * end io for the read phase of the rmw cycle. All the bios here are physical 1447 * stripe bios we've read from the disk so we can recalculate the parity of the 1448 * stripe. 1449 * 1450 * This will usually kick off finish_rmw once all the bios are read in, but it 1451 * may trigger parity reconstruction if we had any errors along the way 1452 */ 1453 static void raid_rmw_end_io(struct bio *bio) 1454 { 1455 struct btrfs_raid_bio *rbio = bio->bi_private; 1456 1457 if (bio->bi_status) 1458 fail_bio_stripe(rbio, bio); 1459 else 1460 set_bio_pages_uptodate(bio); 1461 1462 bio_put(bio); 1463 1464 if (!atomic_dec_and_test(&rbio->stripes_pending)) 1465 return; 1466 1467 if (atomic_read(&rbio->error) > rbio->bbio->max_errors) 1468 goto cleanup; 1469 1470 /* 1471 * this will normally call finish_rmw to start our write 1472 * but if there are any failed stripes we'll reconstruct 1473 * from parity first 1474 */ 1475 validate_rbio_for_rmw(rbio); 1476 return; 1477 1478 cleanup: 1479 1480 rbio_orig_end_io(rbio, BLK_STS_IOERR); 1481 } 1482 1483 static void async_rmw_stripe(struct btrfs_raid_bio *rbio) 1484 { 1485 btrfs_init_work(&rbio->work, btrfs_rmw_helper, rmw_work, NULL, NULL); 1486 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work); 1487 } 1488 1489 static void async_read_rebuild(struct btrfs_raid_bio *rbio) 1490 { 1491 btrfs_init_work(&rbio->work, btrfs_rmw_helper, 1492 read_rebuild_work, NULL, NULL); 1493 1494 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work); 1495 } 1496 1497 /* 1498 * the stripe must be locked by the caller. It will 1499 * unlock after all the writes are done 1500 */ 1501 static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio) 1502 { 1503 int bios_to_read = 0; 1504 struct bio_list bio_list; 1505 int ret; 1506 int pagenr; 1507 int stripe; 1508 struct bio *bio; 1509 1510 bio_list_init(&bio_list); 1511 1512 ret = alloc_rbio_pages(rbio); 1513 if (ret) 1514 goto cleanup; 1515 1516 index_rbio_pages(rbio); 1517 1518 atomic_set(&rbio->error, 0); 1519 /* 1520 * build a list of bios to read all the missing parts of this 1521 * stripe 1522 */ 1523 for (stripe = 0; stripe < rbio->nr_data; stripe++) { 1524 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { 1525 struct page *page; 1526 /* 1527 * we want to find all the pages missing from 1528 * the rbio and read them from the disk. If 1529 * page_in_rbio finds a page in the bio list 1530 * we don't need to read it off the stripe. 1531 */ 1532 page = page_in_rbio(rbio, stripe, pagenr, 1); 1533 if (page) 1534 continue; 1535 1536 page = rbio_stripe_page(rbio, stripe, pagenr); 1537 /* 1538 * the bio cache may have handed us an uptodate 1539 * page. If so, be happy and use it 1540 */ 1541 if (PageUptodate(page)) 1542 continue; 1543 1544 ret = rbio_add_io_page(rbio, &bio_list, page, 1545 stripe, pagenr, rbio->stripe_len); 1546 if (ret) 1547 goto cleanup; 1548 } 1549 } 1550 1551 bios_to_read = bio_list_size(&bio_list); 1552 if (!bios_to_read) { 1553 /* 1554 * this can happen if others have merged with 1555 * us, it means there is nothing left to read. 1556 * But if there are missing devices it may not be 1557 * safe to do the full stripe write yet. 1558 */ 1559 goto finish; 1560 } 1561 1562 /* 1563 * the bbio may be freed once we submit the last bio. Make sure 1564 * not to touch it after that 1565 */ 1566 atomic_set(&rbio->stripes_pending, bios_to_read); 1567 while (1) { 1568 bio = bio_list_pop(&bio_list); 1569 if (!bio) 1570 break; 1571 1572 bio->bi_private = rbio; 1573 bio->bi_end_io = raid_rmw_end_io; 1574 bio_set_op_attrs(bio, REQ_OP_READ, 0); 1575 1576 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56); 1577 1578 submit_bio(bio); 1579 } 1580 /* the actual write will happen once the reads are done */ 1581 return 0; 1582 1583 cleanup: 1584 rbio_orig_end_io(rbio, BLK_STS_IOERR); 1585 return -EIO; 1586 1587 finish: 1588 validate_rbio_for_rmw(rbio); 1589 return 0; 1590 } 1591 1592 /* 1593 * if the upper layers pass in a full stripe, we thank them by only allocating 1594 * enough pages to hold the parity, and sending it all down quickly. 1595 */ 1596 static int full_stripe_write(struct btrfs_raid_bio *rbio) 1597 { 1598 int ret; 1599 1600 ret = alloc_rbio_parity_pages(rbio); 1601 if (ret) { 1602 __free_raid_bio(rbio); 1603 return ret; 1604 } 1605 1606 ret = lock_stripe_add(rbio); 1607 if (ret == 0) 1608 finish_rmw(rbio); 1609 return 0; 1610 } 1611 1612 /* 1613 * partial stripe writes get handed over to async helpers. 1614 * We're really hoping to merge a few more writes into this 1615 * rbio before calculating new parity 1616 */ 1617 static int partial_stripe_write(struct btrfs_raid_bio *rbio) 1618 { 1619 int ret; 1620 1621 ret = lock_stripe_add(rbio); 1622 if (ret == 0) 1623 async_rmw_stripe(rbio); 1624 return 0; 1625 } 1626 1627 /* 1628 * sometimes while we were reading from the drive to 1629 * recalculate parity, enough new bios come into create 1630 * a full stripe. So we do a check here to see if we can 1631 * go directly to finish_rmw 1632 */ 1633 static int __raid56_parity_write(struct btrfs_raid_bio *rbio) 1634 { 1635 /* head off into rmw land if we don't have a full stripe */ 1636 if (!rbio_is_full(rbio)) 1637 return partial_stripe_write(rbio); 1638 return full_stripe_write(rbio); 1639 } 1640 1641 /* 1642 * We use plugging call backs to collect full stripes. 1643 * Any time we get a partial stripe write while plugged 1644 * we collect it into a list. When the unplug comes down, 1645 * we sort the list by logical block number and merge 1646 * everything we can into the same rbios 1647 */ 1648 struct btrfs_plug_cb { 1649 struct blk_plug_cb cb; 1650 struct btrfs_fs_info *info; 1651 struct list_head rbio_list; 1652 struct btrfs_work work; 1653 }; 1654 1655 /* 1656 * rbios on the plug list are sorted for easier merging. 1657 */ 1658 static int plug_cmp(void *priv, struct list_head *a, struct list_head *b) 1659 { 1660 struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio, 1661 plug_list); 1662 struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio, 1663 plug_list); 1664 u64 a_sector = ra->bio_list.head->bi_iter.bi_sector; 1665 u64 b_sector = rb->bio_list.head->bi_iter.bi_sector; 1666 1667 if (a_sector < b_sector) 1668 return -1; 1669 if (a_sector > b_sector) 1670 return 1; 1671 return 0; 1672 } 1673 1674 static void run_plug(struct btrfs_plug_cb *plug) 1675 { 1676 struct btrfs_raid_bio *cur; 1677 struct btrfs_raid_bio *last = NULL; 1678 1679 /* 1680 * sort our plug list then try to merge 1681 * everything we can in hopes of creating full 1682 * stripes. 1683 */ 1684 list_sort(NULL, &plug->rbio_list, plug_cmp); 1685 while (!list_empty(&plug->rbio_list)) { 1686 cur = list_entry(plug->rbio_list.next, 1687 struct btrfs_raid_bio, plug_list); 1688 list_del_init(&cur->plug_list); 1689 1690 if (rbio_is_full(cur)) { 1691 /* we have a full stripe, send it down */ 1692 full_stripe_write(cur); 1693 continue; 1694 } 1695 if (last) { 1696 if (rbio_can_merge(last, cur)) { 1697 merge_rbio(last, cur); 1698 __free_raid_bio(cur); 1699 continue; 1700 1701 } 1702 __raid56_parity_write(last); 1703 } 1704 last = cur; 1705 } 1706 if (last) { 1707 __raid56_parity_write(last); 1708 } 1709 kfree(plug); 1710 } 1711 1712 /* 1713 * if the unplug comes from schedule, we have to push the 1714 * work off to a helper thread 1715 */ 1716 static void unplug_work(struct btrfs_work *work) 1717 { 1718 struct btrfs_plug_cb *plug; 1719 plug = container_of(work, struct btrfs_plug_cb, work); 1720 run_plug(plug); 1721 } 1722 1723 static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule) 1724 { 1725 struct btrfs_plug_cb *plug; 1726 plug = container_of(cb, struct btrfs_plug_cb, cb); 1727 1728 if (from_schedule) { 1729 btrfs_init_work(&plug->work, btrfs_rmw_helper, 1730 unplug_work, NULL, NULL); 1731 btrfs_queue_work(plug->info->rmw_workers, 1732 &plug->work); 1733 return; 1734 } 1735 run_plug(plug); 1736 } 1737 1738 /* 1739 * our main entry point for writes from the rest of the FS. 1740 */ 1741 int raid56_parity_write(struct btrfs_fs_info *fs_info, struct bio *bio, 1742 struct btrfs_bio *bbio, u64 stripe_len) 1743 { 1744 struct btrfs_raid_bio *rbio; 1745 struct btrfs_plug_cb *plug = NULL; 1746 struct blk_plug_cb *cb; 1747 int ret; 1748 1749 rbio = alloc_rbio(fs_info, bbio, stripe_len); 1750 if (IS_ERR(rbio)) { 1751 btrfs_put_bbio(bbio); 1752 return PTR_ERR(rbio); 1753 } 1754 bio_list_add(&rbio->bio_list, bio); 1755 rbio->bio_list_bytes = bio->bi_iter.bi_size; 1756 rbio->operation = BTRFS_RBIO_WRITE; 1757 1758 btrfs_bio_counter_inc_noblocked(fs_info); 1759 rbio->generic_bio_cnt = 1; 1760 1761 /* 1762 * don't plug on full rbios, just get them out the door 1763 * as quickly as we can 1764 */ 1765 if (rbio_is_full(rbio)) { 1766 ret = full_stripe_write(rbio); 1767 if (ret) 1768 btrfs_bio_counter_dec(fs_info); 1769 return ret; 1770 } 1771 1772 cb = blk_check_plugged(btrfs_raid_unplug, fs_info, sizeof(*plug)); 1773 if (cb) { 1774 plug = container_of(cb, struct btrfs_plug_cb, cb); 1775 if (!plug->info) { 1776 plug->info = fs_info; 1777 INIT_LIST_HEAD(&plug->rbio_list); 1778 } 1779 list_add_tail(&rbio->plug_list, &plug->rbio_list); 1780 ret = 0; 1781 } else { 1782 ret = __raid56_parity_write(rbio); 1783 if (ret) 1784 btrfs_bio_counter_dec(fs_info); 1785 } 1786 return ret; 1787 } 1788 1789 /* 1790 * all parity reconstruction happens here. We've read in everything 1791 * we can find from the drives and this does the heavy lifting of 1792 * sorting the good from the bad. 1793 */ 1794 static void __raid_recover_end_io(struct btrfs_raid_bio *rbio) 1795 { 1796 int pagenr, stripe; 1797 void **pointers; 1798 int faila = -1, failb = -1; 1799 struct page *page; 1800 blk_status_t err; 1801 int i; 1802 1803 pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS); 1804 if (!pointers) { 1805 err = BLK_STS_RESOURCE; 1806 goto cleanup_io; 1807 } 1808 1809 faila = rbio->faila; 1810 failb = rbio->failb; 1811 1812 if (rbio->operation == BTRFS_RBIO_READ_REBUILD || 1813 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) { 1814 spin_lock_irq(&rbio->bio_list_lock); 1815 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); 1816 spin_unlock_irq(&rbio->bio_list_lock); 1817 } 1818 1819 index_rbio_pages(rbio); 1820 1821 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { 1822 /* 1823 * Now we just use bitmap to mark the horizontal stripes in 1824 * which we have data when doing parity scrub. 1825 */ 1826 if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB && 1827 !test_bit(pagenr, rbio->dbitmap)) 1828 continue; 1829 1830 /* setup our array of pointers with pages 1831 * from each stripe 1832 */ 1833 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 1834 /* 1835 * if we're rebuilding a read, we have to use 1836 * pages from the bio list 1837 */ 1838 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD || 1839 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) && 1840 (stripe == faila || stripe == failb)) { 1841 page = page_in_rbio(rbio, stripe, pagenr, 0); 1842 } else { 1843 page = rbio_stripe_page(rbio, stripe, pagenr); 1844 } 1845 pointers[stripe] = kmap(page); 1846 } 1847 1848 /* all raid6 handling here */ 1849 if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) { 1850 /* 1851 * single failure, rebuild from parity raid5 1852 * style 1853 */ 1854 if (failb < 0) { 1855 if (faila == rbio->nr_data) { 1856 /* 1857 * Just the P stripe has failed, without 1858 * a bad data or Q stripe. 1859 * TODO, we should redo the xor here. 1860 */ 1861 err = BLK_STS_IOERR; 1862 goto cleanup; 1863 } 1864 /* 1865 * a single failure in raid6 is rebuilt 1866 * in the pstripe code below 1867 */ 1868 goto pstripe; 1869 } 1870 1871 /* make sure our ps and qs are in order */ 1872 if (faila > failb) { 1873 int tmp = failb; 1874 failb = faila; 1875 faila = tmp; 1876 } 1877 1878 /* if the q stripe is failed, do a pstripe reconstruction 1879 * from the xors. 1880 * If both the q stripe and the P stripe are failed, we're 1881 * here due to a crc mismatch and we can't give them the 1882 * data they want 1883 */ 1884 if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) { 1885 if (rbio->bbio->raid_map[faila] == 1886 RAID5_P_STRIPE) { 1887 err = BLK_STS_IOERR; 1888 goto cleanup; 1889 } 1890 /* 1891 * otherwise we have one bad data stripe and 1892 * a good P stripe. raid5! 1893 */ 1894 goto pstripe; 1895 } 1896 1897 if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) { 1898 raid6_datap_recov(rbio->real_stripes, 1899 PAGE_SIZE, faila, pointers); 1900 } else { 1901 raid6_2data_recov(rbio->real_stripes, 1902 PAGE_SIZE, faila, failb, 1903 pointers); 1904 } 1905 } else { 1906 void *p; 1907 1908 /* rebuild from P stripe here (raid5 or raid6) */ 1909 BUG_ON(failb != -1); 1910 pstripe: 1911 /* Copy parity block into failed block to start with */ 1912 memcpy(pointers[faila], 1913 pointers[rbio->nr_data], 1914 PAGE_SIZE); 1915 1916 /* rearrange the pointer array */ 1917 p = pointers[faila]; 1918 for (stripe = faila; stripe < rbio->nr_data - 1; stripe++) 1919 pointers[stripe] = pointers[stripe + 1]; 1920 pointers[rbio->nr_data - 1] = p; 1921 1922 /* xor in the rest */ 1923 run_xor(pointers, rbio->nr_data - 1, PAGE_SIZE); 1924 } 1925 /* if we're doing this rebuild as part of an rmw, go through 1926 * and set all of our private rbio pages in the 1927 * failed stripes as uptodate. This way finish_rmw will 1928 * know they can be trusted. If this was a read reconstruction, 1929 * other endio functions will fiddle the uptodate bits 1930 */ 1931 if (rbio->operation == BTRFS_RBIO_WRITE) { 1932 for (i = 0; i < rbio->stripe_npages; i++) { 1933 if (faila != -1) { 1934 page = rbio_stripe_page(rbio, faila, i); 1935 SetPageUptodate(page); 1936 } 1937 if (failb != -1) { 1938 page = rbio_stripe_page(rbio, failb, i); 1939 SetPageUptodate(page); 1940 } 1941 } 1942 } 1943 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 1944 /* 1945 * if we're rebuilding a read, we have to use 1946 * pages from the bio list 1947 */ 1948 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD || 1949 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) && 1950 (stripe == faila || stripe == failb)) { 1951 page = page_in_rbio(rbio, stripe, pagenr, 0); 1952 } else { 1953 page = rbio_stripe_page(rbio, stripe, pagenr); 1954 } 1955 kunmap(page); 1956 } 1957 } 1958 1959 err = BLK_STS_OK; 1960 cleanup: 1961 kfree(pointers); 1962 1963 cleanup_io: 1964 if (rbio->operation == BTRFS_RBIO_READ_REBUILD) { 1965 if (err == BLK_STS_OK) 1966 cache_rbio_pages(rbio); 1967 else 1968 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); 1969 1970 rbio_orig_end_io(rbio, err); 1971 } else if (rbio->operation == BTRFS_RBIO_REBUILD_MISSING) { 1972 rbio_orig_end_io(rbio, err); 1973 } else if (err == BLK_STS_OK) { 1974 rbio->faila = -1; 1975 rbio->failb = -1; 1976 1977 if (rbio->operation == BTRFS_RBIO_WRITE) 1978 finish_rmw(rbio); 1979 else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) 1980 finish_parity_scrub(rbio, 0); 1981 else 1982 BUG(); 1983 } else { 1984 rbio_orig_end_io(rbio, err); 1985 } 1986 } 1987 1988 /* 1989 * This is called only for stripes we've read from disk to 1990 * reconstruct the parity. 1991 */ 1992 static void raid_recover_end_io(struct bio *bio) 1993 { 1994 struct btrfs_raid_bio *rbio = bio->bi_private; 1995 1996 /* 1997 * we only read stripe pages off the disk, set them 1998 * up to date if there were no errors 1999 */ 2000 if (bio->bi_status) 2001 fail_bio_stripe(rbio, bio); 2002 else 2003 set_bio_pages_uptodate(bio); 2004 bio_put(bio); 2005 2006 if (!atomic_dec_and_test(&rbio->stripes_pending)) 2007 return; 2008 2009 if (atomic_read(&rbio->error) > rbio->bbio->max_errors) 2010 rbio_orig_end_io(rbio, BLK_STS_IOERR); 2011 else 2012 __raid_recover_end_io(rbio); 2013 } 2014 2015 /* 2016 * reads everything we need off the disk to reconstruct 2017 * the parity. endio handlers trigger final reconstruction 2018 * when the IO is done. 2019 * 2020 * This is used both for reads from the higher layers and for 2021 * parity construction required to finish a rmw cycle. 2022 */ 2023 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio) 2024 { 2025 int bios_to_read = 0; 2026 struct bio_list bio_list; 2027 int ret; 2028 int pagenr; 2029 int stripe; 2030 struct bio *bio; 2031 2032 bio_list_init(&bio_list); 2033 2034 ret = alloc_rbio_pages(rbio); 2035 if (ret) 2036 goto cleanup; 2037 2038 atomic_set(&rbio->error, 0); 2039 2040 /* 2041 * read everything that hasn't failed. Thanks to the 2042 * stripe cache, it is possible that some or all of these 2043 * pages are going to be uptodate. 2044 */ 2045 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 2046 if (rbio->faila == stripe || rbio->failb == stripe) { 2047 atomic_inc(&rbio->error); 2048 continue; 2049 } 2050 2051 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { 2052 struct page *p; 2053 2054 /* 2055 * the rmw code may have already read this 2056 * page in 2057 */ 2058 p = rbio_stripe_page(rbio, stripe, pagenr); 2059 if (PageUptodate(p)) 2060 continue; 2061 2062 ret = rbio_add_io_page(rbio, &bio_list, 2063 rbio_stripe_page(rbio, stripe, pagenr), 2064 stripe, pagenr, rbio->stripe_len); 2065 if (ret < 0) 2066 goto cleanup; 2067 } 2068 } 2069 2070 bios_to_read = bio_list_size(&bio_list); 2071 if (!bios_to_read) { 2072 /* 2073 * we might have no bios to read just because the pages 2074 * were up to date, or we might have no bios to read because 2075 * the devices were gone. 2076 */ 2077 if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) { 2078 __raid_recover_end_io(rbio); 2079 goto out; 2080 } else { 2081 goto cleanup; 2082 } 2083 } 2084 2085 /* 2086 * the bbio may be freed once we submit the last bio. Make sure 2087 * not to touch it after that 2088 */ 2089 atomic_set(&rbio->stripes_pending, bios_to_read); 2090 while (1) { 2091 bio = bio_list_pop(&bio_list); 2092 if (!bio) 2093 break; 2094 2095 bio->bi_private = rbio; 2096 bio->bi_end_io = raid_recover_end_io; 2097 bio_set_op_attrs(bio, REQ_OP_READ, 0); 2098 2099 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56); 2100 2101 submit_bio(bio); 2102 } 2103 out: 2104 return 0; 2105 2106 cleanup: 2107 if (rbio->operation == BTRFS_RBIO_READ_REBUILD || 2108 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) 2109 rbio_orig_end_io(rbio, BLK_STS_IOERR); 2110 return -EIO; 2111 } 2112 2113 /* 2114 * the main entry point for reads from the higher layers. This 2115 * is really only called when the normal read path had a failure, 2116 * so we assume the bio they send down corresponds to a failed part 2117 * of the drive. 2118 */ 2119 int raid56_parity_recover(struct btrfs_fs_info *fs_info, struct bio *bio, 2120 struct btrfs_bio *bbio, u64 stripe_len, 2121 int mirror_num, int generic_io) 2122 { 2123 struct btrfs_raid_bio *rbio; 2124 int ret; 2125 2126 if (generic_io) { 2127 ASSERT(bbio->mirror_num == mirror_num); 2128 btrfs_io_bio(bio)->mirror_num = mirror_num; 2129 } 2130 2131 rbio = alloc_rbio(fs_info, bbio, stripe_len); 2132 if (IS_ERR(rbio)) { 2133 if (generic_io) 2134 btrfs_put_bbio(bbio); 2135 return PTR_ERR(rbio); 2136 } 2137 2138 rbio->operation = BTRFS_RBIO_READ_REBUILD; 2139 bio_list_add(&rbio->bio_list, bio); 2140 rbio->bio_list_bytes = bio->bi_iter.bi_size; 2141 2142 rbio->faila = find_logical_bio_stripe(rbio, bio); 2143 if (rbio->faila == -1) { 2144 btrfs_warn(fs_info, 2145 "%s could not find the bad stripe in raid56 so that we cannot recover any more (bio has logical %llu len %llu, bbio has map_type %llu)", 2146 __func__, (u64)bio->bi_iter.bi_sector << 9, 2147 (u64)bio->bi_iter.bi_size, bbio->map_type); 2148 if (generic_io) 2149 btrfs_put_bbio(bbio); 2150 kfree(rbio); 2151 return -EIO; 2152 } 2153 2154 if (generic_io) { 2155 btrfs_bio_counter_inc_noblocked(fs_info); 2156 rbio->generic_bio_cnt = 1; 2157 } else { 2158 btrfs_get_bbio(bbio); 2159 } 2160 2161 /* 2162 * reconstruct from the q stripe if they are 2163 * asking for mirror 3 2164 */ 2165 if (mirror_num == 3) 2166 rbio->failb = rbio->real_stripes - 2; 2167 2168 ret = lock_stripe_add(rbio); 2169 2170 /* 2171 * __raid56_parity_recover will end the bio with 2172 * any errors it hits. We don't want to return 2173 * its error value up the stack because our caller 2174 * will end up calling bio_endio with any nonzero 2175 * return 2176 */ 2177 if (ret == 0) 2178 __raid56_parity_recover(rbio); 2179 /* 2180 * our rbio has been added to the list of 2181 * rbios that will be handled after the 2182 * currently lock owner is done 2183 */ 2184 return 0; 2185 2186 } 2187 2188 static void rmw_work(struct btrfs_work *work) 2189 { 2190 struct btrfs_raid_bio *rbio; 2191 2192 rbio = container_of(work, struct btrfs_raid_bio, work); 2193 raid56_rmw_stripe(rbio); 2194 } 2195 2196 static void read_rebuild_work(struct btrfs_work *work) 2197 { 2198 struct btrfs_raid_bio *rbio; 2199 2200 rbio = container_of(work, struct btrfs_raid_bio, work); 2201 __raid56_parity_recover(rbio); 2202 } 2203 2204 /* 2205 * The following code is used to scrub/replace the parity stripe 2206 * 2207 * Caller must have already increased bio_counter for getting @bbio. 2208 * 2209 * Note: We need make sure all the pages that add into the scrub/replace 2210 * raid bio are correct and not be changed during the scrub/replace. That 2211 * is those pages just hold metadata or file data with checksum. 2212 */ 2213 2214 struct btrfs_raid_bio * 2215 raid56_parity_alloc_scrub_rbio(struct btrfs_fs_info *fs_info, struct bio *bio, 2216 struct btrfs_bio *bbio, u64 stripe_len, 2217 struct btrfs_device *scrub_dev, 2218 unsigned long *dbitmap, int stripe_nsectors) 2219 { 2220 struct btrfs_raid_bio *rbio; 2221 int i; 2222 2223 rbio = alloc_rbio(fs_info, bbio, stripe_len); 2224 if (IS_ERR(rbio)) 2225 return NULL; 2226 bio_list_add(&rbio->bio_list, bio); 2227 /* 2228 * This is a special bio which is used to hold the completion handler 2229 * and make the scrub rbio is similar to the other types 2230 */ 2231 ASSERT(!bio->bi_iter.bi_size); 2232 rbio->operation = BTRFS_RBIO_PARITY_SCRUB; 2233 2234 for (i = 0; i < rbio->real_stripes; i++) { 2235 if (bbio->stripes[i].dev == scrub_dev) { 2236 rbio->scrubp = i; 2237 break; 2238 } 2239 } 2240 2241 /* Now we just support the sectorsize equals to page size */ 2242 ASSERT(fs_info->sectorsize == PAGE_SIZE); 2243 ASSERT(rbio->stripe_npages == stripe_nsectors); 2244 bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors); 2245 2246 /* 2247 * We have already increased bio_counter when getting bbio, record it 2248 * so we can free it at rbio_orig_end_io(). 2249 */ 2250 rbio->generic_bio_cnt = 1; 2251 2252 return rbio; 2253 } 2254 2255 /* Used for both parity scrub and missing. */ 2256 void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page, 2257 u64 logical) 2258 { 2259 int stripe_offset; 2260 int index; 2261 2262 ASSERT(logical >= rbio->bbio->raid_map[0]); 2263 ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] + 2264 rbio->stripe_len * rbio->nr_data); 2265 stripe_offset = (int)(logical - rbio->bbio->raid_map[0]); 2266 index = stripe_offset >> PAGE_SHIFT; 2267 rbio->bio_pages[index] = page; 2268 } 2269 2270 /* 2271 * We just scrub the parity that we have correct data on the same horizontal, 2272 * so we needn't allocate all pages for all the stripes. 2273 */ 2274 static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio) 2275 { 2276 int i; 2277 int bit; 2278 int index; 2279 struct page *page; 2280 2281 for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) { 2282 for (i = 0; i < rbio->real_stripes; i++) { 2283 index = i * rbio->stripe_npages + bit; 2284 if (rbio->stripe_pages[index]) 2285 continue; 2286 2287 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 2288 if (!page) 2289 return -ENOMEM; 2290 rbio->stripe_pages[index] = page; 2291 } 2292 } 2293 return 0; 2294 } 2295 2296 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio, 2297 int need_check) 2298 { 2299 struct btrfs_bio *bbio = rbio->bbio; 2300 void *pointers[rbio->real_stripes]; 2301 DECLARE_BITMAP(pbitmap, rbio->stripe_npages); 2302 int nr_data = rbio->nr_data; 2303 int stripe; 2304 int pagenr; 2305 int p_stripe = -1; 2306 int q_stripe = -1; 2307 struct page *p_page = NULL; 2308 struct page *q_page = NULL; 2309 struct bio_list bio_list; 2310 struct bio *bio; 2311 int is_replace = 0; 2312 int ret; 2313 2314 bio_list_init(&bio_list); 2315 2316 if (rbio->real_stripes - rbio->nr_data == 1) { 2317 p_stripe = rbio->real_stripes - 1; 2318 } else if (rbio->real_stripes - rbio->nr_data == 2) { 2319 p_stripe = rbio->real_stripes - 2; 2320 q_stripe = rbio->real_stripes - 1; 2321 } else { 2322 BUG(); 2323 } 2324 2325 if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) { 2326 is_replace = 1; 2327 bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages); 2328 } 2329 2330 /* 2331 * Because the higher layers(scrubber) are unlikely to 2332 * use this area of the disk again soon, so don't cache 2333 * it. 2334 */ 2335 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); 2336 2337 if (!need_check) 2338 goto writeback; 2339 2340 p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 2341 if (!p_page) 2342 goto cleanup; 2343 SetPageUptodate(p_page); 2344 2345 if (q_stripe != -1) { 2346 q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 2347 if (!q_page) { 2348 __free_page(p_page); 2349 goto cleanup; 2350 } 2351 SetPageUptodate(q_page); 2352 } 2353 2354 atomic_set(&rbio->error, 0); 2355 2356 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) { 2357 struct page *p; 2358 void *parity; 2359 /* first collect one page from each data stripe */ 2360 for (stripe = 0; stripe < nr_data; stripe++) { 2361 p = page_in_rbio(rbio, stripe, pagenr, 0); 2362 pointers[stripe] = kmap(p); 2363 } 2364 2365 /* then add the parity stripe */ 2366 pointers[stripe++] = kmap(p_page); 2367 2368 if (q_stripe != -1) { 2369 2370 /* 2371 * raid6, add the qstripe and call the 2372 * library function to fill in our p/q 2373 */ 2374 pointers[stripe++] = kmap(q_page); 2375 2376 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE, 2377 pointers); 2378 } else { 2379 /* raid5 */ 2380 memcpy(pointers[nr_data], pointers[0], PAGE_SIZE); 2381 run_xor(pointers + 1, nr_data - 1, PAGE_SIZE); 2382 } 2383 2384 /* Check scrubbing parity and repair it */ 2385 p = rbio_stripe_page(rbio, rbio->scrubp, pagenr); 2386 parity = kmap(p); 2387 if (memcmp(parity, pointers[rbio->scrubp], PAGE_SIZE)) 2388 memcpy(parity, pointers[rbio->scrubp], PAGE_SIZE); 2389 else 2390 /* Parity is right, needn't writeback */ 2391 bitmap_clear(rbio->dbitmap, pagenr, 1); 2392 kunmap(p); 2393 2394 for (stripe = 0; stripe < rbio->real_stripes; stripe++) 2395 kunmap(page_in_rbio(rbio, stripe, pagenr, 0)); 2396 } 2397 2398 __free_page(p_page); 2399 if (q_page) 2400 __free_page(q_page); 2401 2402 writeback: 2403 /* 2404 * time to start writing. Make bios for everything from the 2405 * higher layers (the bio_list in our rbio) and our p/q. Ignore 2406 * everything else. 2407 */ 2408 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) { 2409 struct page *page; 2410 2411 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr); 2412 ret = rbio_add_io_page(rbio, &bio_list, 2413 page, rbio->scrubp, pagenr, rbio->stripe_len); 2414 if (ret) 2415 goto cleanup; 2416 } 2417 2418 if (!is_replace) 2419 goto submit_write; 2420 2421 for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) { 2422 struct page *page; 2423 2424 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr); 2425 ret = rbio_add_io_page(rbio, &bio_list, page, 2426 bbio->tgtdev_map[rbio->scrubp], 2427 pagenr, rbio->stripe_len); 2428 if (ret) 2429 goto cleanup; 2430 } 2431 2432 submit_write: 2433 nr_data = bio_list_size(&bio_list); 2434 if (!nr_data) { 2435 /* Every parity is right */ 2436 rbio_orig_end_io(rbio, BLK_STS_OK); 2437 return; 2438 } 2439 2440 atomic_set(&rbio->stripes_pending, nr_data); 2441 2442 while (1) { 2443 bio = bio_list_pop(&bio_list); 2444 if (!bio) 2445 break; 2446 2447 bio->bi_private = rbio; 2448 bio->bi_end_io = raid_write_end_io; 2449 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 2450 2451 submit_bio(bio); 2452 } 2453 return; 2454 2455 cleanup: 2456 rbio_orig_end_io(rbio, BLK_STS_IOERR); 2457 } 2458 2459 static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe) 2460 { 2461 if (stripe >= 0 && stripe < rbio->nr_data) 2462 return 1; 2463 return 0; 2464 } 2465 2466 /* 2467 * While we're doing the parity check and repair, we could have errors 2468 * in reading pages off the disk. This checks for errors and if we're 2469 * not able to read the page it'll trigger parity reconstruction. The 2470 * parity scrub will be finished after we've reconstructed the failed 2471 * stripes 2472 */ 2473 static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio) 2474 { 2475 if (atomic_read(&rbio->error) > rbio->bbio->max_errors) 2476 goto cleanup; 2477 2478 if (rbio->faila >= 0 || rbio->failb >= 0) { 2479 int dfail = 0, failp = -1; 2480 2481 if (is_data_stripe(rbio, rbio->faila)) 2482 dfail++; 2483 else if (is_parity_stripe(rbio->faila)) 2484 failp = rbio->faila; 2485 2486 if (is_data_stripe(rbio, rbio->failb)) 2487 dfail++; 2488 else if (is_parity_stripe(rbio->failb)) 2489 failp = rbio->failb; 2490 2491 /* 2492 * Because we can not use a scrubbing parity to repair 2493 * the data, so the capability of the repair is declined. 2494 * (In the case of RAID5, we can not repair anything) 2495 */ 2496 if (dfail > rbio->bbio->max_errors - 1) 2497 goto cleanup; 2498 2499 /* 2500 * If all data is good, only parity is correctly, just 2501 * repair the parity. 2502 */ 2503 if (dfail == 0) { 2504 finish_parity_scrub(rbio, 0); 2505 return; 2506 } 2507 2508 /* 2509 * Here means we got one corrupted data stripe and one 2510 * corrupted parity on RAID6, if the corrupted parity 2511 * is scrubbing parity, luckily, use the other one to repair 2512 * the data, or we can not repair the data stripe. 2513 */ 2514 if (failp != rbio->scrubp) 2515 goto cleanup; 2516 2517 __raid_recover_end_io(rbio); 2518 } else { 2519 finish_parity_scrub(rbio, 1); 2520 } 2521 return; 2522 2523 cleanup: 2524 rbio_orig_end_io(rbio, BLK_STS_IOERR); 2525 } 2526 2527 /* 2528 * end io for the read phase of the rmw cycle. All the bios here are physical 2529 * stripe bios we've read from the disk so we can recalculate the parity of the 2530 * stripe. 2531 * 2532 * This will usually kick off finish_rmw once all the bios are read in, but it 2533 * may trigger parity reconstruction if we had any errors along the way 2534 */ 2535 static void raid56_parity_scrub_end_io(struct bio *bio) 2536 { 2537 struct btrfs_raid_bio *rbio = bio->bi_private; 2538 2539 if (bio->bi_status) 2540 fail_bio_stripe(rbio, bio); 2541 else 2542 set_bio_pages_uptodate(bio); 2543 2544 bio_put(bio); 2545 2546 if (!atomic_dec_and_test(&rbio->stripes_pending)) 2547 return; 2548 2549 /* 2550 * this will normally call finish_rmw to start our write 2551 * but if there are any failed stripes we'll reconstruct 2552 * from parity first 2553 */ 2554 validate_rbio_for_parity_scrub(rbio); 2555 } 2556 2557 static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio) 2558 { 2559 int bios_to_read = 0; 2560 struct bio_list bio_list; 2561 int ret; 2562 int pagenr; 2563 int stripe; 2564 struct bio *bio; 2565 2566 ret = alloc_rbio_essential_pages(rbio); 2567 if (ret) 2568 goto cleanup; 2569 2570 bio_list_init(&bio_list); 2571 2572 atomic_set(&rbio->error, 0); 2573 /* 2574 * build a list of bios to read all the missing parts of this 2575 * stripe 2576 */ 2577 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 2578 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) { 2579 struct page *page; 2580 /* 2581 * we want to find all the pages missing from 2582 * the rbio and read them from the disk. If 2583 * page_in_rbio finds a page in the bio list 2584 * we don't need to read it off the stripe. 2585 */ 2586 page = page_in_rbio(rbio, stripe, pagenr, 1); 2587 if (page) 2588 continue; 2589 2590 page = rbio_stripe_page(rbio, stripe, pagenr); 2591 /* 2592 * the bio cache may have handed us an uptodate 2593 * page. If so, be happy and use it 2594 */ 2595 if (PageUptodate(page)) 2596 continue; 2597 2598 ret = rbio_add_io_page(rbio, &bio_list, page, 2599 stripe, pagenr, rbio->stripe_len); 2600 if (ret) 2601 goto cleanup; 2602 } 2603 } 2604 2605 bios_to_read = bio_list_size(&bio_list); 2606 if (!bios_to_read) { 2607 /* 2608 * this can happen if others have merged with 2609 * us, it means there is nothing left to read. 2610 * But if there are missing devices it may not be 2611 * safe to do the full stripe write yet. 2612 */ 2613 goto finish; 2614 } 2615 2616 /* 2617 * the bbio may be freed once we submit the last bio. Make sure 2618 * not to touch it after that 2619 */ 2620 atomic_set(&rbio->stripes_pending, bios_to_read); 2621 while (1) { 2622 bio = bio_list_pop(&bio_list); 2623 if (!bio) 2624 break; 2625 2626 bio->bi_private = rbio; 2627 bio->bi_end_io = raid56_parity_scrub_end_io; 2628 bio_set_op_attrs(bio, REQ_OP_READ, 0); 2629 2630 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56); 2631 2632 submit_bio(bio); 2633 } 2634 /* the actual write will happen once the reads are done */ 2635 return; 2636 2637 cleanup: 2638 rbio_orig_end_io(rbio, BLK_STS_IOERR); 2639 return; 2640 2641 finish: 2642 validate_rbio_for_parity_scrub(rbio); 2643 } 2644 2645 static void scrub_parity_work(struct btrfs_work *work) 2646 { 2647 struct btrfs_raid_bio *rbio; 2648 2649 rbio = container_of(work, struct btrfs_raid_bio, work); 2650 raid56_parity_scrub_stripe(rbio); 2651 } 2652 2653 static void async_scrub_parity(struct btrfs_raid_bio *rbio) 2654 { 2655 btrfs_init_work(&rbio->work, btrfs_rmw_helper, 2656 scrub_parity_work, NULL, NULL); 2657 2658 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work); 2659 } 2660 2661 void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio) 2662 { 2663 if (!lock_stripe_add(rbio)) 2664 async_scrub_parity(rbio); 2665 } 2666 2667 /* The following code is used for dev replace of a missing RAID 5/6 device. */ 2668 2669 struct btrfs_raid_bio * 2670 raid56_alloc_missing_rbio(struct btrfs_fs_info *fs_info, struct bio *bio, 2671 struct btrfs_bio *bbio, u64 length) 2672 { 2673 struct btrfs_raid_bio *rbio; 2674 2675 rbio = alloc_rbio(fs_info, bbio, length); 2676 if (IS_ERR(rbio)) 2677 return NULL; 2678 2679 rbio->operation = BTRFS_RBIO_REBUILD_MISSING; 2680 bio_list_add(&rbio->bio_list, bio); 2681 /* 2682 * This is a special bio which is used to hold the completion handler 2683 * and make the scrub rbio is similar to the other types 2684 */ 2685 ASSERT(!bio->bi_iter.bi_size); 2686 2687 rbio->faila = find_logical_bio_stripe(rbio, bio); 2688 if (rbio->faila == -1) { 2689 BUG(); 2690 kfree(rbio); 2691 return NULL; 2692 } 2693 2694 /* 2695 * When we get bbio, we have already increased bio_counter, record it 2696 * so we can free it at rbio_orig_end_io() 2697 */ 2698 rbio->generic_bio_cnt = 1; 2699 2700 return rbio; 2701 } 2702 2703 static void missing_raid56_work(struct btrfs_work *work) 2704 { 2705 struct btrfs_raid_bio *rbio; 2706 2707 rbio = container_of(work, struct btrfs_raid_bio, work); 2708 __raid56_parity_recover(rbio); 2709 } 2710 2711 static void async_missing_raid56(struct btrfs_raid_bio *rbio) 2712 { 2713 btrfs_init_work(&rbio->work, btrfs_rmw_helper, 2714 missing_raid56_work, NULL, NULL); 2715 2716 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work); 2717 } 2718 2719 void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio) 2720 { 2721 if (!lock_stripe_add(rbio)) 2722 async_missing_raid56(rbio); 2723 } 2724