1 /* 2 * Copyright (C) 2012 Fusion-io All rights reserved. 3 * Copyright (C) 2012 Intel Corp. All rights reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public 7 * License v2 as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 12 * General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public 15 * License along with this program; if not, write to the 16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 17 * Boston, MA 021110-1307, USA. 18 */ 19 #include <linux/sched.h> 20 #include <linux/wait.h> 21 #include <linux/bio.h> 22 #include <linux/slab.h> 23 #include <linux/buffer_head.h> 24 #include <linux/blkdev.h> 25 #include <linux/random.h> 26 #include <linux/iocontext.h> 27 #include <linux/capability.h> 28 #include <linux/ratelimit.h> 29 #include <linux/kthread.h> 30 #include <linux/raid/pq.h> 31 #include <linux/hash.h> 32 #include <linux/list_sort.h> 33 #include <linux/raid/xor.h> 34 #include <linux/vmalloc.h> 35 #include <asm/div64.h> 36 #include "ctree.h" 37 #include "extent_map.h" 38 #include "disk-io.h" 39 #include "transaction.h" 40 #include "print-tree.h" 41 #include "volumes.h" 42 #include "raid56.h" 43 #include "async-thread.h" 44 #include "check-integrity.h" 45 #include "rcu-string.h" 46 47 /* set when additional merges to this rbio are not allowed */ 48 #define RBIO_RMW_LOCKED_BIT 1 49 50 /* 51 * set when this rbio is sitting in the hash, but it is just a cache 52 * of past RMW 53 */ 54 #define RBIO_CACHE_BIT 2 55 56 /* 57 * set when it is safe to trust the stripe_pages for caching 58 */ 59 #define RBIO_CACHE_READY_BIT 3 60 61 #define RBIO_CACHE_SIZE 1024 62 63 enum btrfs_rbio_ops { 64 BTRFS_RBIO_WRITE, 65 BTRFS_RBIO_READ_REBUILD, 66 BTRFS_RBIO_PARITY_SCRUB, 67 BTRFS_RBIO_REBUILD_MISSING, 68 }; 69 70 struct btrfs_raid_bio { 71 struct btrfs_fs_info *fs_info; 72 struct btrfs_bio *bbio; 73 74 /* while we're doing rmw on a stripe 75 * we put it into a hash table so we can 76 * lock the stripe and merge more rbios 77 * into it. 78 */ 79 struct list_head hash_list; 80 81 /* 82 * LRU list for the stripe cache 83 */ 84 struct list_head stripe_cache; 85 86 /* 87 * for scheduling work in the helper threads 88 */ 89 struct btrfs_work work; 90 91 /* 92 * bio list and bio_list_lock are used 93 * to add more bios into the stripe 94 * in hopes of avoiding the full rmw 95 */ 96 struct bio_list bio_list; 97 spinlock_t bio_list_lock; 98 99 /* also protected by the bio_list_lock, the 100 * plug list is used by the plugging code 101 * to collect partial bios while plugged. The 102 * stripe locking code also uses it to hand off 103 * the stripe lock to the next pending IO 104 */ 105 struct list_head plug_list; 106 107 /* 108 * flags that tell us if it is safe to 109 * merge with this bio 110 */ 111 unsigned long flags; 112 113 /* size of each individual stripe on disk */ 114 int stripe_len; 115 116 /* number of data stripes (no p/q) */ 117 int nr_data; 118 119 int real_stripes; 120 121 int stripe_npages; 122 /* 123 * set if we're doing a parity rebuild 124 * for a read from higher up, which is handled 125 * differently from a parity rebuild as part of 126 * rmw 127 */ 128 enum btrfs_rbio_ops operation; 129 130 /* first bad stripe */ 131 int faila; 132 133 /* second bad stripe (for raid6 use) */ 134 int failb; 135 136 int scrubp; 137 /* 138 * number of pages needed to represent the full 139 * stripe 140 */ 141 int nr_pages; 142 143 /* 144 * size of all the bios in the bio_list. This 145 * helps us decide if the rbio maps to a full 146 * stripe or not 147 */ 148 int bio_list_bytes; 149 150 int generic_bio_cnt; 151 152 atomic_t refs; 153 154 atomic_t stripes_pending; 155 156 atomic_t error; 157 /* 158 * these are two arrays of pointers. We allocate the 159 * rbio big enough to hold them both and setup their 160 * locations when the rbio is allocated 161 */ 162 163 /* pointers to pages that we allocated for 164 * reading/writing stripes directly from the disk (including P/Q) 165 */ 166 struct page **stripe_pages; 167 168 /* 169 * pointers to the pages in the bio_list. Stored 170 * here for faster lookup 171 */ 172 struct page **bio_pages; 173 174 /* 175 * bitmap to record which horizontal stripe has data 176 */ 177 unsigned long *dbitmap; 178 }; 179 180 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio); 181 static noinline void finish_rmw(struct btrfs_raid_bio *rbio); 182 static void rmw_work(struct btrfs_work *work); 183 static void read_rebuild_work(struct btrfs_work *work); 184 static void async_rmw_stripe(struct btrfs_raid_bio *rbio); 185 static void async_read_rebuild(struct btrfs_raid_bio *rbio); 186 static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio); 187 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed); 188 static void __free_raid_bio(struct btrfs_raid_bio *rbio); 189 static void index_rbio_pages(struct btrfs_raid_bio *rbio); 190 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio); 191 192 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio, 193 int need_check); 194 static void async_scrub_parity(struct btrfs_raid_bio *rbio); 195 196 /* 197 * the stripe hash table is used for locking, and to collect 198 * bios in hopes of making a full stripe 199 */ 200 int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info) 201 { 202 struct btrfs_stripe_hash_table *table; 203 struct btrfs_stripe_hash_table *x; 204 struct btrfs_stripe_hash *cur; 205 struct btrfs_stripe_hash *h; 206 int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS; 207 int i; 208 int table_size; 209 210 if (info->stripe_hash_table) 211 return 0; 212 213 /* 214 * The table is large, starting with order 4 and can go as high as 215 * order 7 in case lock debugging is turned on. 216 * 217 * Try harder to allocate and fallback to vmalloc to lower the chance 218 * of a failing mount. 219 */ 220 table_size = sizeof(*table) + sizeof(*h) * num_entries; 221 table = kzalloc(table_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 222 if (!table) { 223 table = vzalloc(table_size); 224 if (!table) 225 return -ENOMEM; 226 } 227 228 spin_lock_init(&table->cache_lock); 229 INIT_LIST_HEAD(&table->stripe_cache); 230 231 h = table->table; 232 233 for (i = 0; i < num_entries; i++) { 234 cur = h + i; 235 INIT_LIST_HEAD(&cur->hash_list); 236 spin_lock_init(&cur->lock); 237 init_waitqueue_head(&cur->wait); 238 } 239 240 x = cmpxchg(&info->stripe_hash_table, NULL, table); 241 if (x) 242 kvfree(x); 243 return 0; 244 } 245 246 /* 247 * caching an rbio means to copy anything from the 248 * bio_pages array into the stripe_pages array. We 249 * use the page uptodate bit in the stripe cache array 250 * to indicate if it has valid data 251 * 252 * once the caching is done, we set the cache ready 253 * bit. 254 */ 255 static void cache_rbio_pages(struct btrfs_raid_bio *rbio) 256 { 257 int i; 258 char *s; 259 char *d; 260 int ret; 261 262 ret = alloc_rbio_pages(rbio); 263 if (ret) 264 return; 265 266 for (i = 0; i < rbio->nr_pages; i++) { 267 if (!rbio->bio_pages[i]) 268 continue; 269 270 s = kmap(rbio->bio_pages[i]); 271 d = kmap(rbio->stripe_pages[i]); 272 273 memcpy(d, s, PAGE_SIZE); 274 275 kunmap(rbio->bio_pages[i]); 276 kunmap(rbio->stripe_pages[i]); 277 SetPageUptodate(rbio->stripe_pages[i]); 278 } 279 set_bit(RBIO_CACHE_READY_BIT, &rbio->flags); 280 } 281 282 /* 283 * we hash on the first logical address of the stripe 284 */ 285 static int rbio_bucket(struct btrfs_raid_bio *rbio) 286 { 287 u64 num = rbio->bbio->raid_map[0]; 288 289 /* 290 * we shift down quite a bit. We're using byte 291 * addressing, and most of the lower bits are zeros. 292 * This tends to upset hash_64, and it consistently 293 * returns just one or two different values. 294 * 295 * shifting off the lower bits fixes things. 296 */ 297 return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS); 298 } 299 300 /* 301 * stealing an rbio means taking all the uptodate pages from the stripe 302 * array in the source rbio and putting them into the destination rbio 303 */ 304 static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest) 305 { 306 int i; 307 struct page *s; 308 struct page *d; 309 310 if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags)) 311 return; 312 313 for (i = 0; i < dest->nr_pages; i++) { 314 s = src->stripe_pages[i]; 315 if (!s || !PageUptodate(s)) { 316 continue; 317 } 318 319 d = dest->stripe_pages[i]; 320 if (d) 321 __free_page(d); 322 323 dest->stripe_pages[i] = s; 324 src->stripe_pages[i] = NULL; 325 } 326 } 327 328 /* 329 * merging means we take the bio_list from the victim and 330 * splice it into the destination. The victim should 331 * be discarded afterwards. 332 * 333 * must be called with dest->rbio_list_lock held 334 */ 335 static void merge_rbio(struct btrfs_raid_bio *dest, 336 struct btrfs_raid_bio *victim) 337 { 338 bio_list_merge(&dest->bio_list, &victim->bio_list); 339 dest->bio_list_bytes += victim->bio_list_bytes; 340 dest->generic_bio_cnt += victim->generic_bio_cnt; 341 bio_list_init(&victim->bio_list); 342 } 343 344 /* 345 * used to prune items that are in the cache. The caller 346 * must hold the hash table lock. 347 */ 348 static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio) 349 { 350 int bucket = rbio_bucket(rbio); 351 struct btrfs_stripe_hash_table *table; 352 struct btrfs_stripe_hash *h; 353 int freeit = 0; 354 355 /* 356 * check the bit again under the hash table lock. 357 */ 358 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags)) 359 return; 360 361 table = rbio->fs_info->stripe_hash_table; 362 h = table->table + bucket; 363 364 /* hold the lock for the bucket because we may be 365 * removing it from the hash table 366 */ 367 spin_lock(&h->lock); 368 369 /* 370 * hold the lock for the bio list because we need 371 * to make sure the bio list is empty 372 */ 373 spin_lock(&rbio->bio_list_lock); 374 375 if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) { 376 list_del_init(&rbio->stripe_cache); 377 table->cache_size -= 1; 378 freeit = 1; 379 380 /* if the bio list isn't empty, this rbio is 381 * still involved in an IO. We take it out 382 * of the cache list, and drop the ref that 383 * was held for the list. 384 * 385 * If the bio_list was empty, we also remove 386 * the rbio from the hash_table, and drop 387 * the corresponding ref 388 */ 389 if (bio_list_empty(&rbio->bio_list)) { 390 if (!list_empty(&rbio->hash_list)) { 391 list_del_init(&rbio->hash_list); 392 atomic_dec(&rbio->refs); 393 BUG_ON(!list_empty(&rbio->plug_list)); 394 } 395 } 396 } 397 398 spin_unlock(&rbio->bio_list_lock); 399 spin_unlock(&h->lock); 400 401 if (freeit) 402 __free_raid_bio(rbio); 403 } 404 405 /* 406 * prune a given rbio from the cache 407 */ 408 static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio) 409 { 410 struct btrfs_stripe_hash_table *table; 411 unsigned long flags; 412 413 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags)) 414 return; 415 416 table = rbio->fs_info->stripe_hash_table; 417 418 spin_lock_irqsave(&table->cache_lock, flags); 419 __remove_rbio_from_cache(rbio); 420 spin_unlock_irqrestore(&table->cache_lock, flags); 421 } 422 423 /* 424 * remove everything in the cache 425 */ 426 static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info) 427 { 428 struct btrfs_stripe_hash_table *table; 429 unsigned long flags; 430 struct btrfs_raid_bio *rbio; 431 432 table = info->stripe_hash_table; 433 434 spin_lock_irqsave(&table->cache_lock, flags); 435 while (!list_empty(&table->stripe_cache)) { 436 rbio = list_entry(table->stripe_cache.next, 437 struct btrfs_raid_bio, 438 stripe_cache); 439 __remove_rbio_from_cache(rbio); 440 } 441 spin_unlock_irqrestore(&table->cache_lock, flags); 442 } 443 444 /* 445 * remove all cached entries and free the hash table 446 * used by unmount 447 */ 448 void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info) 449 { 450 if (!info->stripe_hash_table) 451 return; 452 btrfs_clear_rbio_cache(info); 453 kvfree(info->stripe_hash_table); 454 info->stripe_hash_table = NULL; 455 } 456 457 /* 458 * insert an rbio into the stripe cache. It 459 * must have already been prepared by calling 460 * cache_rbio_pages 461 * 462 * If this rbio was already cached, it gets 463 * moved to the front of the lru. 464 * 465 * If the size of the rbio cache is too big, we 466 * prune an item. 467 */ 468 static void cache_rbio(struct btrfs_raid_bio *rbio) 469 { 470 struct btrfs_stripe_hash_table *table; 471 unsigned long flags; 472 473 if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags)) 474 return; 475 476 table = rbio->fs_info->stripe_hash_table; 477 478 spin_lock_irqsave(&table->cache_lock, flags); 479 spin_lock(&rbio->bio_list_lock); 480 481 /* bump our ref if we were not in the list before */ 482 if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags)) 483 atomic_inc(&rbio->refs); 484 485 if (!list_empty(&rbio->stripe_cache)){ 486 list_move(&rbio->stripe_cache, &table->stripe_cache); 487 } else { 488 list_add(&rbio->stripe_cache, &table->stripe_cache); 489 table->cache_size += 1; 490 } 491 492 spin_unlock(&rbio->bio_list_lock); 493 494 if (table->cache_size > RBIO_CACHE_SIZE) { 495 struct btrfs_raid_bio *found; 496 497 found = list_entry(table->stripe_cache.prev, 498 struct btrfs_raid_bio, 499 stripe_cache); 500 501 if (found != rbio) 502 __remove_rbio_from_cache(found); 503 } 504 505 spin_unlock_irqrestore(&table->cache_lock, flags); 506 } 507 508 /* 509 * helper function to run the xor_blocks api. It is only 510 * able to do MAX_XOR_BLOCKS at a time, so we need to 511 * loop through. 512 */ 513 static void run_xor(void **pages, int src_cnt, ssize_t len) 514 { 515 int src_off = 0; 516 int xor_src_cnt = 0; 517 void *dest = pages[src_cnt]; 518 519 while(src_cnt > 0) { 520 xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS); 521 xor_blocks(xor_src_cnt, len, dest, pages + src_off); 522 523 src_cnt -= xor_src_cnt; 524 src_off += xor_src_cnt; 525 } 526 } 527 528 /* 529 * returns true if the bio list inside this rbio 530 * covers an entire stripe (no rmw required). 531 * Must be called with the bio list lock held, or 532 * at a time when you know it is impossible to add 533 * new bios into the list 534 */ 535 static int __rbio_is_full(struct btrfs_raid_bio *rbio) 536 { 537 unsigned long size = rbio->bio_list_bytes; 538 int ret = 1; 539 540 if (size != rbio->nr_data * rbio->stripe_len) 541 ret = 0; 542 543 BUG_ON(size > rbio->nr_data * rbio->stripe_len); 544 return ret; 545 } 546 547 static int rbio_is_full(struct btrfs_raid_bio *rbio) 548 { 549 unsigned long flags; 550 int ret; 551 552 spin_lock_irqsave(&rbio->bio_list_lock, flags); 553 ret = __rbio_is_full(rbio); 554 spin_unlock_irqrestore(&rbio->bio_list_lock, flags); 555 return ret; 556 } 557 558 /* 559 * returns 1 if it is safe to merge two rbios together. 560 * The merging is safe if the two rbios correspond to 561 * the same stripe and if they are both going in the same 562 * direction (read vs write), and if neither one is 563 * locked for final IO 564 * 565 * The caller is responsible for locking such that 566 * rmw_locked is safe to test 567 */ 568 static int rbio_can_merge(struct btrfs_raid_bio *last, 569 struct btrfs_raid_bio *cur) 570 { 571 if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) || 572 test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) 573 return 0; 574 575 /* 576 * we can't merge with cached rbios, since the 577 * idea is that when we merge the destination 578 * rbio is going to run our IO for us. We can 579 * steal from cached rbios though, other functions 580 * handle that. 581 */ 582 if (test_bit(RBIO_CACHE_BIT, &last->flags) || 583 test_bit(RBIO_CACHE_BIT, &cur->flags)) 584 return 0; 585 586 if (last->bbio->raid_map[0] != 587 cur->bbio->raid_map[0]) 588 return 0; 589 590 /* we can't merge with different operations */ 591 if (last->operation != cur->operation) 592 return 0; 593 /* 594 * We've need read the full stripe from the drive. 595 * check and repair the parity and write the new results. 596 * 597 * We're not allowed to add any new bios to the 598 * bio list here, anyone else that wants to 599 * change this stripe needs to do their own rmw. 600 */ 601 if (last->operation == BTRFS_RBIO_PARITY_SCRUB || 602 cur->operation == BTRFS_RBIO_PARITY_SCRUB) 603 return 0; 604 605 if (last->operation == BTRFS_RBIO_REBUILD_MISSING || 606 cur->operation == BTRFS_RBIO_REBUILD_MISSING) 607 return 0; 608 609 return 1; 610 } 611 612 static int rbio_stripe_page_index(struct btrfs_raid_bio *rbio, int stripe, 613 int index) 614 { 615 return stripe * rbio->stripe_npages + index; 616 } 617 618 /* 619 * these are just the pages from the rbio array, not from anything 620 * the FS sent down to us 621 */ 622 static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe, 623 int index) 624 { 625 return rbio->stripe_pages[rbio_stripe_page_index(rbio, stripe, index)]; 626 } 627 628 /* 629 * helper to index into the pstripe 630 */ 631 static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index) 632 { 633 return rbio_stripe_page(rbio, rbio->nr_data, index); 634 } 635 636 /* 637 * helper to index into the qstripe, returns null 638 * if there is no qstripe 639 */ 640 static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index) 641 { 642 if (rbio->nr_data + 1 == rbio->real_stripes) 643 return NULL; 644 return rbio_stripe_page(rbio, rbio->nr_data + 1, index); 645 } 646 647 /* 648 * The first stripe in the table for a logical address 649 * has the lock. rbios are added in one of three ways: 650 * 651 * 1) Nobody has the stripe locked yet. The rbio is given 652 * the lock and 0 is returned. The caller must start the IO 653 * themselves. 654 * 655 * 2) Someone has the stripe locked, but we're able to merge 656 * with the lock owner. The rbio is freed and the IO will 657 * start automatically along with the existing rbio. 1 is returned. 658 * 659 * 3) Someone has the stripe locked, but we're not able to merge. 660 * The rbio is added to the lock owner's plug list, or merged into 661 * an rbio already on the plug list. When the lock owner unlocks, 662 * the next rbio on the list is run and the IO is started automatically. 663 * 1 is returned 664 * 665 * If we return 0, the caller still owns the rbio and must continue with 666 * IO submission. If we return 1, the caller must assume the rbio has 667 * already been freed. 668 */ 669 static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio) 670 { 671 int bucket = rbio_bucket(rbio); 672 struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket; 673 struct btrfs_raid_bio *cur; 674 struct btrfs_raid_bio *pending; 675 unsigned long flags; 676 DEFINE_WAIT(wait); 677 struct btrfs_raid_bio *freeit = NULL; 678 struct btrfs_raid_bio *cache_drop = NULL; 679 int ret = 0; 680 681 spin_lock_irqsave(&h->lock, flags); 682 list_for_each_entry(cur, &h->hash_list, hash_list) { 683 if (cur->bbio->raid_map[0] == rbio->bbio->raid_map[0]) { 684 spin_lock(&cur->bio_list_lock); 685 686 /* can we steal this cached rbio's pages? */ 687 if (bio_list_empty(&cur->bio_list) && 688 list_empty(&cur->plug_list) && 689 test_bit(RBIO_CACHE_BIT, &cur->flags) && 690 !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) { 691 list_del_init(&cur->hash_list); 692 atomic_dec(&cur->refs); 693 694 steal_rbio(cur, rbio); 695 cache_drop = cur; 696 spin_unlock(&cur->bio_list_lock); 697 698 goto lockit; 699 } 700 701 /* can we merge into the lock owner? */ 702 if (rbio_can_merge(cur, rbio)) { 703 merge_rbio(cur, rbio); 704 spin_unlock(&cur->bio_list_lock); 705 freeit = rbio; 706 ret = 1; 707 goto out; 708 } 709 710 711 /* 712 * we couldn't merge with the running 713 * rbio, see if we can merge with the 714 * pending ones. We don't have to 715 * check for rmw_locked because there 716 * is no way they are inside finish_rmw 717 * right now 718 */ 719 list_for_each_entry(pending, &cur->plug_list, 720 plug_list) { 721 if (rbio_can_merge(pending, rbio)) { 722 merge_rbio(pending, rbio); 723 spin_unlock(&cur->bio_list_lock); 724 freeit = rbio; 725 ret = 1; 726 goto out; 727 } 728 } 729 730 /* no merging, put us on the tail of the plug list, 731 * our rbio will be started with the currently 732 * running rbio unlocks 733 */ 734 list_add_tail(&rbio->plug_list, &cur->plug_list); 735 spin_unlock(&cur->bio_list_lock); 736 ret = 1; 737 goto out; 738 } 739 } 740 lockit: 741 atomic_inc(&rbio->refs); 742 list_add(&rbio->hash_list, &h->hash_list); 743 out: 744 spin_unlock_irqrestore(&h->lock, flags); 745 if (cache_drop) 746 remove_rbio_from_cache(cache_drop); 747 if (freeit) 748 __free_raid_bio(freeit); 749 return ret; 750 } 751 752 /* 753 * called as rmw or parity rebuild is completed. If the plug list has more 754 * rbios waiting for this stripe, the next one on the list will be started 755 */ 756 static noinline void unlock_stripe(struct btrfs_raid_bio *rbio) 757 { 758 int bucket; 759 struct btrfs_stripe_hash *h; 760 unsigned long flags; 761 int keep_cache = 0; 762 763 bucket = rbio_bucket(rbio); 764 h = rbio->fs_info->stripe_hash_table->table + bucket; 765 766 if (list_empty(&rbio->plug_list)) 767 cache_rbio(rbio); 768 769 spin_lock_irqsave(&h->lock, flags); 770 spin_lock(&rbio->bio_list_lock); 771 772 if (!list_empty(&rbio->hash_list)) { 773 /* 774 * if we're still cached and there is no other IO 775 * to perform, just leave this rbio here for others 776 * to steal from later 777 */ 778 if (list_empty(&rbio->plug_list) && 779 test_bit(RBIO_CACHE_BIT, &rbio->flags)) { 780 keep_cache = 1; 781 clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); 782 BUG_ON(!bio_list_empty(&rbio->bio_list)); 783 goto done; 784 } 785 786 list_del_init(&rbio->hash_list); 787 atomic_dec(&rbio->refs); 788 789 /* 790 * we use the plug list to hold all the rbios 791 * waiting for the chance to lock this stripe. 792 * hand the lock over to one of them. 793 */ 794 if (!list_empty(&rbio->plug_list)) { 795 struct btrfs_raid_bio *next; 796 struct list_head *head = rbio->plug_list.next; 797 798 next = list_entry(head, struct btrfs_raid_bio, 799 plug_list); 800 801 list_del_init(&rbio->plug_list); 802 803 list_add(&next->hash_list, &h->hash_list); 804 atomic_inc(&next->refs); 805 spin_unlock(&rbio->bio_list_lock); 806 spin_unlock_irqrestore(&h->lock, flags); 807 808 if (next->operation == BTRFS_RBIO_READ_REBUILD) 809 async_read_rebuild(next); 810 else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) { 811 steal_rbio(rbio, next); 812 async_read_rebuild(next); 813 } else if (next->operation == BTRFS_RBIO_WRITE) { 814 steal_rbio(rbio, next); 815 async_rmw_stripe(next); 816 } else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) { 817 steal_rbio(rbio, next); 818 async_scrub_parity(next); 819 } 820 821 goto done_nolock; 822 /* 823 * The barrier for this waitqueue_active is not needed, 824 * we're protected by h->lock and can't miss a wakeup. 825 */ 826 } else if (waitqueue_active(&h->wait)) { 827 spin_unlock(&rbio->bio_list_lock); 828 spin_unlock_irqrestore(&h->lock, flags); 829 wake_up(&h->wait); 830 goto done_nolock; 831 } 832 } 833 done: 834 spin_unlock(&rbio->bio_list_lock); 835 spin_unlock_irqrestore(&h->lock, flags); 836 837 done_nolock: 838 if (!keep_cache) 839 remove_rbio_from_cache(rbio); 840 } 841 842 static void __free_raid_bio(struct btrfs_raid_bio *rbio) 843 { 844 int i; 845 846 WARN_ON(atomic_read(&rbio->refs) < 0); 847 if (!atomic_dec_and_test(&rbio->refs)) 848 return; 849 850 WARN_ON(!list_empty(&rbio->stripe_cache)); 851 WARN_ON(!list_empty(&rbio->hash_list)); 852 WARN_ON(!bio_list_empty(&rbio->bio_list)); 853 854 for (i = 0; i < rbio->nr_pages; i++) { 855 if (rbio->stripe_pages[i]) { 856 __free_page(rbio->stripe_pages[i]); 857 rbio->stripe_pages[i] = NULL; 858 } 859 } 860 861 btrfs_put_bbio(rbio->bbio); 862 kfree(rbio); 863 } 864 865 static void free_raid_bio(struct btrfs_raid_bio *rbio) 866 { 867 unlock_stripe(rbio); 868 __free_raid_bio(rbio); 869 } 870 871 /* 872 * this frees the rbio and runs through all the bios in the 873 * bio_list and calls end_io on them 874 */ 875 static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, int err) 876 { 877 struct bio *cur = bio_list_get(&rbio->bio_list); 878 struct bio *next; 879 880 if (rbio->generic_bio_cnt) 881 btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt); 882 883 free_raid_bio(rbio); 884 885 while (cur) { 886 next = cur->bi_next; 887 cur->bi_next = NULL; 888 cur->bi_error = err; 889 bio_endio(cur); 890 cur = next; 891 } 892 } 893 894 /* 895 * end io function used by finish_rmw. When we finally 896 * get here, we've written a full stripe 897 */ 898 static void raid_write_end_io(struct bio *bio) 899 { 900 struct btrfs_raid_bio *rbio = bio->bi_private; 901 int err = bio->bi_error; 902 int max_errors; 903 904 if (err) 905 fail_bio_stripe(rbio, bio); 906 907 bio_put(bio); 908 909 if (!atomic_dec_and_test(&rbio->stripes_pending)) 910 return; 911 912 err = 0; 913 914 /* OK, we have read all the stripes we need to. */ 915 max_errors = (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) ? 916 0 : rbio->bbio->max_errors; 917 if (atomic_read(&rbio->error) > max_errors) 918 err = -EIO; 919 920 rbio_orig_end_io(rbio, err); 921 } 922 923 /* 924 * the read/modify/write code wants to use the original bio for 925 * any pages it included, and then use the rbio for everything 926 * else. This function decides if a given index (stripe number) 927 * and page number in that stripe fall inside the original bio 928 * or the rbio. 929 * 930 * if you set bio_list_only, you'll get a NULL back for any ranges 931 * that are outside the bio_list 932 * 933 * This doesn't take any refs on anything, you get a bare page pointer 934 * and the caller must bump refs as required. 935 * 936 * You must call index_rbio_pages once before you can trust 937 * the answers from this function. 938 */ 939 static struct page *page_in_rbio(struct btrfs_raid_bio *rbio, 940 int index, int pagenr, int bio_list_only) 941 { 942 int chunk_page; 943 struct page *p = NULL; 944 945 chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr; 946 947 spin_lock_irq(&rbio->bio_list_lock); 948 p = rbio->bio_pages[chunk_page]; 949 spin_unlock_irq(&rbio->bio_list_lock); 950 951 if (p || bio_list_only) 952 return p; 953 954 return rbio->stripe_pages[chunk_page]; 955 } 956 957 /* 958 * number of pages we need for the entire stripe across all the 959 * drives 960 */ 961 static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes) 962 { 963 return DIV_ROUND_UP(stripe_len, PAGE_SIZE) * nr_stripes; 964 } 965 966 /* 967 * allocation and initial setup for the btrfs_raid_bio. Not 968 * this does not allocate any pages for rbio->pages. 969 */ 970 static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info, 971 struct btrfs_bio *bbio, 972 u64 stripe_len) 973 { 974 struct btrfs_raid_bio *rbio; 975 int nr_data = 0; 976 int real_stripes = bbio->num_stripes - bbio->num_tgtdevs; 977 int num_pages = rbio_nr_pages(stripe_len, real_stripes); 978 int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE); 979 void *p; 980 981 rbio = kzalloc(sizeof(*rbio) + num_pages * sizeof(struct page *) * 2 + 982 DIV_ROUND_UP(stripe_npages, BITS_PER_LONG) * 983 sizeof(long), GFP_NOFS); 984 if (!rbio) 985 return ERR_PTR(-ENOMEM); 986 987 bio_list_init(&rbio->bio_list); 988 INIT_LIST_HEAD(&rbio->plug_list); 989 spin_lock_init(&rbio->bio_list_lock); 990 INIT_LIST_HEAD(&rbio->stripe_cache); 991 INIT_LIST_HEAD(&rbio->hash_list); 992 rbio->bbio = bbio; 993 rbio->fs_info = fs_info; 994 rbio->stripe_len = stripe_len; 995 rbio->nr_pages = num_pages; 996 rbio->real_stripes = real_stripes; 997 rbio->stripe_npages = stripe_npages; 998 rbio->faila = -1; 999 rbio->failb = -1; 1000 atomic_set(&rbio->refs, 1); 1001 atomic_set(&rbio->error, 0); 1002 atomic_set(&rbio->stripes_pending, 0); 1003 1004 /* 1005 * the stripe_pages and bio_pages array point to the extra 1006 * memory we allocated past the end of the rbio 1007 */ 1008 p = rbio + 1; 1009 rbio->stripe_pages = p; 1010 rbio->bio_pages = p + sizeof(struct page *) * num_pages; 1011 rbio->dbitmap = p + sizeof(struct page *) * num_pages * 2; 1012 1013 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5) 1014 nr_data = real_stripes - 1; 1015 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) 1016 nr_data = real_stripes - 2; 1017 else 1018 BUG(); 1019 1020 rbio->nr_data = nr_data; 1021 return rbio; 1022 } 1023 1024 /* allocate pages for all the stripes in the bio, including parity */ 1025 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio) 1026 { 1027 int i; 1028 struct page *page; 1029 1030 for (i = 0; i < rbio->nr_pages; i++) { 1031 if (rbio->stripe_pages[i]) 1032 continue; 1033 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 1034 if (!page) 1035 return -ENOMEM; 1036 rbio->stripe_pages[i] = page; 1037 } 1038 return 0; 1039 } 1040 1041 /* only allocate pages for p/q stripes */ 1042 static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio) 1043 { 1044 int i; 1045 struct page *page; 1046 1047 i = rbio_stripe_page_index(rbio, rbio->nr_data, 0); 1048 1049 for (; i < rbio->nr_pages; i++) { 1050 if (rbio->stripe_pages[i]) 1051 continue; 1052 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 1053 if (!page) 1054 return -ENOMEM; 1055 rbio->stripe_pages[i] = page; 1056 } 1057 return 0; 1058 } 1059 1060 /* 1061 * add a single page from a specific stripe into our list of bios for IO 1062 * this will try to merge into existing bios if possible, and returns 1063 * zero if all went well. 1064 */ 1065 static int rbio_add_io_page(struct btrfs_raid_bio *rbio, 1066 struct bio_list *bio_list, 1067 struct page *page, 1068 int stripe_nr, 1069 unsigned long page_index, 1070 unsigned long bio_max_len) 1071 { 1072 struct bio *last = bio_list->tail; 1073 u64 last_end = 0; 1074 int ret; 1075 struct bio *bio; 1076 struct btrfs_bio_stripe *stripe; 1077 u64 disk_start; 1078 1079 stripe = &rbio->bbio->stripes[stripe_nr]; 1080 disk_start = stripe->physical + (page_index << PAGE_SHIFT); 1081 1082 /* if the device is missing, just fail this stripe */ 1083 if (!stripe->dev->bdev) 1084 return fail_rbio_index(rbio, stripe_nr); 1085 1086 /* see if we can add this page onto our existing bio */ 1087 if (last) { 1088 last_end = (u64)last->bi_iter.bi_sector << 9; 1089 last_end += last->bi_iter.bi_size; 1090 1091 /* 1092 * we can't merge these if they are from different 1093 * devices or if they are not contiguous 1094 */ 1095 if (last_end == disk_start && stripe->dev->bdev && 1096 !last->bi_error && 1097 last->bi_bdev == stripe->dev->bdev) { 1098 ret = bio_add_page(last, page, PAGE_SIZE, 0); 1099 if (ret == PAGE_SIZE) 1100 return 0; 1101 } 1102 } 1103 1104 /* put a new bio on the list */ 1105 bio = btrfs_io_bio_alloc(GFP_NOFS, bio_max_len >> PAGE_SHIFT?:1); 1106 if (!bio) 1107 return -ENOMEM; 1108 1109 bio->bi_iter.bi_size = 0; 1110 bio->bi_bdev = stripe->dev->bdev; 1111 bio->bi_iter.bi_sector = disk_start >> 9; 1112 1113 bio_add_page(bio, page, PAGE_SIZE, 0); 1114 bio_list_add(bio_list, bio); 1115 return 0; 1116 } 1117 1118 /* 1119 * while we're doing the read/modify/write cycle, we could 1120 * have errors in reading pages off the disk. This checks 1121 * for errors and if we're not able to read the page it'll 1122 * trigger parity reconstruction. The rmw will be finished 1123 * after we've reconstructed the failed stripes 1124 */ 1125 static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio) 1126 { 1127 if (rbio->faila >= 0 || rbio->failb >= 0) { 1128 BUG_ON(rbio->faila == rbio->real_stripes - 1); 1129 __raid56_parity_recover(rbio); 1130 } else { 1131 finish_rmw(rbio); 1132 } 1133 } 1134 1135 /* 1136 * helper function to walk our bio list and populate the bio_pages array with 1137 * the result. This seems expensive, but it is faster than constantly 1138 * searching through the bio list as we setup the IO in finish_rmw or stripe 1139 * reconstruction. 1140 * 1141 * This must be called before you trust the answers from page_in_rbio 1142 */ 1143 static void index_rbio_pages(struct btrfs_raid_bio *rbio) 1144 { 1145 struct bio *bio; 1146 struct bio_vec *bvec; 1147 u64 start; 1148 unsigned long stripe_offset; 1149 unsigned long page_index; 1150 int i; 1151 1152 spin_lock_irq(&rbio->bio_list_lock); 1153 bio_list_for_each(bio, &rbio->bio_list) { 1154 start = (u64)bio->bi_iter.bi_sector << 9; 1155 stripe_offset = start - rbio->bbio->raid_map[0]; 1156 page_index = stripe_offset >> PAGE_SHIFT; 1157 1158 bio_for_each_segment_all(bvec, bio, i) 1159 rbio->bio_pages[page_index + i] = bvec->bv_page; 1160 } 1161 spin_unlock_irq(&rbio->bio_list_lock); 1162 } 1163 1164 /* 1165 * this is called from one of two situations. We either 1166 * have a full stripe from the higher layers, or we've read all 1167 * the missing bits off disk. 1168 * 1169 * This will calculate the parity and then send down any 1170 * changed blocks. 1171 */ 1172 static noinline void finish_rmw(struct btrfs_raid_bio *rbio) 1173 { 1174 struct btrfs_bio *bbio = rbio->bbio; 1175 void *pointers[rbio->real_stripes]; 1176 int nr_data = rbio->nr_data; 1177 int stripe; 1178 int pagenr; 1179 int p_stripe = -1; 1180 int q_stripe = -1; 1181 struct bio_list bio_list; 1182 struct bio *bio; 1183 int ret; 1184 1185 bio_list_init(&bio_list); 1186 1187 if (rbio->real_stripes - rbio->nr_data == 1) { 1188 p_stripe = rbio->real_stripes - 1; 1189 } else if (rbio->real_stripes - rbio->nr_data == 2) { 1190 p_stripe = rbio->real_stripes - 2; 1191 q_stripe = rbio->real_stripes - 1; 1192 } else { 1193 BUG(); 1194 } 1195 1196 /* at this point we either have a full stripe, 1197 * or we've read the full stripe from the drive. 1198 * recalculate the parity and write the new results. 1199 * 1200 * We're not allowed to add any new bios to the 1201 * bio list here, anyone else that wants to 1202 * change this stripe needs to do their own rmw. 1203 */ 1204 spin_lock_irq(&rbio->bio_list_lock); 1205 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); 1206 spin_unlock_irq(&rbio->bio_list_lock); 1207 1208 atomic_set(&rbio->error, 0); 1209 1210 /* 1211 * now that we've set rmw_locked, run through the 1212 * bio list one last time and map the page pointers 1213 * 1214 * We don't cache full rbios because we're assuming 1215 * the higher layers are unlikely to use this area of 1216 * the disk again soon. If they do use it again, 1217 * hopefully they will send another full bio. 1218 */ 1219 index_rbio_pages(rbio); 1220 if (!rbio_is_full(rbio)) 1221 cache_rbio_pages(rbio); 1222 else 1223 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); 1224 1225 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { 1226 struct page *p; 1227 /* first collect one page from each data stripe */ 1228 for (stripe = 0; stripe < nr_data; stripe++) { 1229 p = page_in_rbio(rbio, stripe, pagenr, 0); 1230 pointers[stripe] = kmap(p); 1231 } 1232 1233 /* then add the parity stripe */ 1234 p = rbio_pstripe_page(rbio, pagenr); 1235 SetPageUptodate(p); 1236 pointers[stripe++] = kmap(p); 1237 1238 if (q_stripe != -1) { 1239 1240 /* 1241 * raid6, add the qstripe and call the 1242 * library function to fill in our p/q 1243 */ 1244 p = rbio_qstripe_page(rbio, pagenr); 1245 SetPageUptodate(p); 1246 pointers[stripe++] = kmap(p); 1247 1248 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE, 1249 pointers); 1250 } else { 1251 /* raid5 */ 1252 memcpy(pointers[nr_data], pointers[0], PAGE_SIZE); 1253 run_xor(pointers + 1, nr_data - 1, PAGE_SIZE); 1254 } 1255 1256 1257 for (stripe = 0; stripe < rbio->real_stripes; stripe++) 1258 kunmap(page_in_rbio(rbio, stripe, pagenr, 0)); 1259 } 1260 1261 /* 1262 * time to start writing. Make bios for everything from the 1263 * higher layers (the bio_list in our rbio) and our p/q. Ignore 1264 * everything else. 1265 */ 1266 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 1267 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { 1268 struct page *page; 1269 if (stripe < rbio->nr_data) { 1270 page = page_in_rbio(rbio, stripe, pagenr, 1); 1271 if (!page) 1272 continue; 1273 } else { 1274 page = rbio_stripe_page(rbio, stripe, pagenr); 1275 } 1276 1277 ret = rbio_add_io_page(rbio, &bio_list, 1278 page, stripe, pagenr, rbio->stripe_len); 1279 if (ret) 1280 goto cleanup; 1281 } 1282 } 1283 1284 if (likely(!bbio->num_tgtdevs)) 1285 goto write_data; 1286 1287 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 1288 if (!bbio->tgtdev_map[stripe]) 1289 continue; 1290 1291 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { 1292 struct page *page; 1293 if (stripe < rbio->nr_data) { 1294 page = page_in_rbio(rbio, stripe, pagenr, 1); 1295 if (!page) 1296 continue; 1297 } else { 1298 page = rbio_stripe_page(rbio, stripe, pagenr); 1299 } 1300 1301 ret = rbio_add_io_page(rbio, &bio_list, page, 1302 rbio->bbio->tgtdev_map[stripe], 1303 pagenr, rbio->stripe_len); 1304 if (ret) 1305 goto cleanup; 1306 } 1307 } 1308 1309 write_data: 1310 atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list)); 1311 BUG_ON(atomic_read(&rbio->stripes_pending) == 0); 1312 1313 while (1) { 1314 bio = bio_list_pop(&bio_list); 1315 if (!bio) 1316 break; 1317 1318 bio->bi_private = rbio; 1319 bio->bi_end_io = raid_write_end_io; 1320 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 1321 1322 submit_bio(bio); 1323 } 1324 return; 1325 1326 cleanup: 1327 rbio_orig_end_io(rbio, -EIO); 1328 } 1329 1330 /* 1331 * helper to find the stripe number for a given bio. Used to figure out which 1332 * stripe has failed. This expects the bio to correspond to a physical disk, 1333 * so it looks up based on physical sector numbers. 1334 */ 1335 static int find_bio_stripe(struct btrfs_raid_bio *rbio, 1336 struct bio *bio) 1337 { 1338 u64 physical = bio->bi_iter.bi_sector; 1339 u64 stripe_start; 1340 int i; 1341 struct btrfs_bio_stripe *stripe; 1342 1343 physical <<= 9; 1344 1345 for (i = 0; i < rbio->bbio->num_stripes; i++) { 1346 stripe = &rbio->bbio->stripes[i]; 1347 stripe_start = stripe->physical; 1348 if (physical >= stripe_start && 1349 physical < stripe_start + rbio->stripe_len && 1350 bio->bi_bdev == stripe->dev->bdev) { 1351 return i; 1352 } 1353 } 1354 return -1; 1355 } 1356 1357 /* 1358 * helper to find the stripe number for a given 1359 * bio (before mapping). Used to figure out which stripe has 1360 * failed. This looks up based on logical block numbers. 1361 */ 1362 static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio, 1363 struct bio *bio) 1364 { 1365 u64 logical = bio->bi_iter.bi_sector; 1366 u64 stripe_start; 1367 int i; 1368 1369 logical <<= 9; 1370 1371 for (i = 0; i < rbio->nr_data; i++) { 1372 stripe_start = rbio->bbio->raid_map[i]; 1373 if (logical >= stripe_start && 1374 logical < stripe_start + rbio->stripe_len) { 1375 return i; 1376 } 1377 } 1378 return -1; 1379 } 1380 1381 /* 1382 * returns -EIO if we had too many failures 1383 */ 1384 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed) 1385 { 1386 unsigned long flags; 1387 int ret = 0; 1388 1389 spin_lock_irqsave(&rbio->bio_list_lock, flags); 1390 1391 /* we already know this stripe is bad, move on */ 1392 if (rbio->faila == failed || rbio->failb == failed) 1393 goto out; 1394 1395 if (rbio->faila == -1) { 1396 /* first failure on this rbio */ 1397 rbio->faila = failed; 1398 atomic_inc(&rbio->error); 1399 } else if (rbio->failb == -1) { 1400 /* second failure on this rbio */ 1401 rbio->failb = failed; 1402 atomic_inc(&rbio->error); 1403 } else { 1404 ret = -EIO; 1405 } 1406 out: 1407 spin_unlock_irqrestore(&rbio->bio_list_lock, flags); 1408 1409 return ret; 1410 } 1411 1412 /* 1413 * helper to fail a stripe based on a physical disk 1414 * bio. 1415 */ 1416 static int fail_bio_stripe(struct btrfs_raid_bio *rbio, 1417 struct bio *bio) 1418 { 1419 int failed = find_bio_stripe(rbio, bio); 1420 1421 if (failed < 0) 1422 return -EIO; 1423 1424 return fail_rbio_index(rbio, failed); 1425 } 1426 1427 /* 1428 * this sets each page in the bio uptodate. It should only be used on private 1429 * rbio pages, nothing that comes in from the higher layers 1430 */ 1431 static void set_bio_pages_uptodate(struct bio *bio) 1432 { 1433 struct bio_vec *bvec; 1434 int i; 1435 1436 bio_for_each_segment_all(bvec, bio, i) 1437 SetPageUptodate(bvec->bv_page); 1438 } 1439 1440 /* 1441 * end io for the read phase of the rmw cycle. All the bios here are physical 1442 * stripe bios we've read from the disk so we can recalculate the parity of the 1443 * stripe. 1444 * 1445 * This will usually kick off finish_rmw once all the bios are read in, but it 1446 * may trigger parity reconstruction if we had any errors along the way 1447 */ 1448 static void raid_rmw_end_io(struct bio *bio) 1449 { 1450 struct btrfs_raid_bio *rbio = bio->bi_private; 1451 1452 if (bio->bi_error) 1453 fail_bio_stripe(rbio, bio); 1454 else 1455 set_bio_pages_uptodate(bio); 1456 1457 bio_put(bio); 1458 1459 if (!atomic_dec_and_test(&rbio->stripes_pending)) 1460 return; 1461 1462 if (atomic_read(&rbio->error) > rbio->bbio->max_errors) 1463 goto cleanup; 1464 1465 /* 1466 * this will normally call finish_rmw to start our write 1467 * but if there are any failed stripes we'll reconstruct 1468 * from parity first 1469 */ 1470 validate_rbio_for_rmw(rbio); 1471 return; 1472 1473 cleanup: 1474 1475 rbio_orig_end_io(rbio, -EIO); 1476 } 1477 1478 static void async_rmw_stripe(struct btrfs_raid_bio *rbio) 1479 { 1480 btrfs_init_work(&rbio->work, btrfs_rmw_helper, rmw_work, NULL, NULL); 1481 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work); 1482 } 1483 1484 static void async_read_rebuild(struct btrfs_raid_bio *rbio) 1485 { 1486 btrfs_init_work(&rbio->work, btrfs_rmw_helper, 1487 read_rebuild_work, NULL, NULL); 1488 1489 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work); 1490 } 1491 1492 /* 1493 * the stripe must be locked by the caller. It will 1494 * unlock after all the writes are done 1495 */ 1496 static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio) 1497 { 1498 int bios_to_read = 0; 1499 struct bio_list bio_list; 1500 int ret; 1501 int pagenr; 1502 int stripe; 1503 struct bio *bio; 1504 1505 bio_list_init(&bio_list); 1506 1507 ret = alloc_rbio_pages(rbio); 1508 if (ret) 1509 goto cleanup; 1510 1511 index_rbio_pages(rbio); 1512 1513 atomic_set(&rbio->error, 0); 1514 /* 1515 * build a list of bios to read all the missing parts of this 1516 * stripe 1517 */ 1518 for (stripe = 0; stripe < rbio->nr_data; stripe++) { 1519 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { 1520 struct page *page; 1521 /* 1522 * we want to find all the pages missing from 1523 * the rbio and read them from the disk. If 1524 * page_in_rbio finds a page in the bio list 1525 * we don't need to read it off the stripe. 1526 */ 1527 page = page_in_rbio(rbio, stripe, pagenr, 1); 1528 if (page) 1529 continue; 1530 1531 page = rbio_stripe_page(rbio, stripe, pagenr); 1532 /* 1533 * the bio cache may have handed us an uptodate 1534 * page. If so, be happy and use it 1535 */ 1536 if (PageUptodate(page)) 1537 continue; 1538 1539 ret = rbio_add_io_page(rbio, &bio_list, page, 1540 stripe, pagenr, rbio->stripe_len); 1541 if (ret) 1542 goto cleanup; 1543 } 1544 } 1545 1546 bios_to_read = bio_list_size(&bio_list); 1547 if (!bios_to_read) { 1548 /* 1549 * this can happen if others have merged with 1550 * us, it means there is nothing left to read. 1551 * But if there are missing devices it may not be 1552 * safe to do the full stripe write yet. 1553 */ 1554 goto finish; 1555 } 1556 1557 /* 1558 * the bbio may be freed once we submit the last bio. Make sure 1559 * not to touch it after that 1560 */ 1561 atomic_set(&rbio->stripes_pending, bios_to_read); 1562 while (1) { 1563 bio = bio_list_pop(&bio_list); 1564 if (!bio) 1565 break; 1566 1567 bio->bi_private = rbio; 1568 bio->bi_end_io = raid_rmw_end_io; 1569 bio_set_op_attrs(bio, REQ_OP_READ, 0); 1570 1571 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56); 1572 1573 submit_bio(bio); 1574 } 1575 /* the actual write will happen once the reads are done */ 1576 return 0; 1577 1578 cleanup: 1579 rbio_orig_end_io(rbio, -EIO); 1580 return -EIO; 1581 1582 finish: 1583 validate_rbio_for_rmw(rbio); 1584 return 0; 1585 } 1586 1587 /* 1588 * if the upper layers pass in a full stripe, we thank them by only allocating 1589 * enough pages to hold the parity, and sending it all down quickly. 1590 */ 1591 static int full_stripe_write(struct btrfs_raid_bio *rbio) 1592 { 1593 int ret; 1594 1595 ret = alloc_rbio_parity_pages(rbio); 1596 if (ret) { 1597 __free_raid_bio(rbio); 1598 return ret; 1599 } 1600 1601 ret = lock_stripe_add(rbio); 1602 if (ret == 0) 1603 finish_rmw(rbio); 1604 return 0; 1605 } 1606 1607 /* 1608 * partial stripe writes get handed over to async helpers. 1609 * We're really hoping to merge a few more writes into this 1610 * rbio before calculating new parity 1611 */ 1612 static int partial_stripe_write(struct btrfs_raid_bio *rbio) 1613 { 1614 int ret; 1615 1616 ret = lock_stripe_add(rbio); 1617 if (ret == 0) 1618 async_rmw_stripe(rbio); 1619 return 0; 1620 } 1621 1622 /* 1623 * sometimes while we were reading from the drive to 1624 * recalculate parity, enough new bios come into create 1625 * a full stripe. So we do a check here to see if we can 1626 * go directly to finish_rmw 1627 */ 1628 static int __raid56_parity_write(struct btrfs_raid_bio *rbio) 1629 { 1630 /* head off into rmw land if we don't have a full stripe */ 1631 if (!rbio_is_full(rbio)) 1632 return partial_stripe_write(rbio); 1633 return full_stripe_write(rbio); 1634 } 1635 1636 /* 1637 * We use plugging call backs to collect full stripes. 1638 * Any time we get a partial stripe write while plugged 1639 * we collect it into a list. When the unplug comes down, 1640 * we sort the list by logical block number and merge 1641 * everything we can into the same rbios 1642 */ 1643 struct btrfs_plug_cb { 1644 struct blk_plug_cb cb; 1645 struct btrfs_fs_info *info; 1646 struct list_head rbio_list; 1647 struct btrfs_work work; 1648 }; 1649 1650 /* 1651 * rbios on the plug list are sorted for easier merging. 1652 */ 1653 static int plug_cmp(void *priv, struct list_head *a, struct list_head *b) 1654 { 1655 struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio, 1656 plug_list); 1657 struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio, 1658 plug_list); 1659 u64 a_sector = ra->bio_list.head->bi_iter.bi_sector; 1660 u64 b_sector = rb->bio_list.head->bi_iter.bi_sector; 1661 1662 if (a_sector < b_sector) 1663 return -1; 1664 if (a_sector > b_sector) 1665 return 1; 1666 return 0; 1667 } 1668 1669 static void run_plug(struct btrfs_plug_cb *plug) 1670 { 1671 struct btrfs_raid_bio *cur; 1672 struct btrfs_raid_bio *last = NULL; 1673 1674 /* 1675 * sort our plug list then try to merge 1676 * everything we can in hopes of creating full 1677 * stripes. 1678 */ 1679 list_sort(NULL, &plug->rbio_list, plug_cmp); 1680 while (!list_empty(&plug->rbio_list)) { 1681 cur = list_entry(plug->rbio_list.next, 1682 struct btrfs_raid_bio, plug_list); 1683 list_del_init(&cur->plug_list); 1684 1685 if (rbio_is_full(cur)) { 1686 /* we have a full stripe, send it down */ 1687 full_stripe_write(cur); 1688 continue; 1689 } 1690 if (last) { 1691 if (rbio_can_merge(last, cur)) { 1692 merge_rbio(last, cur); 1693 __free_raid_bio(cur); 1694 continue; 1695 1696 } 1697 __raid56_parity_write(last); 1698 } 1699 last = cur; 1700 } 1701 if (last) { 1702 __raid56_parity_write(last); 1703 } 1704 kfree(plug); 1705 } 1706 1707 /* 1708 * if the unplug comes from schedule, we have to push the 1709 * work off to a helper thread 1710 */ 1711 static void unplug_work(struct btrfs_work *work) 1712 { 1713 struct btrfs_plug_cb *plug; 1714 plug = container_of(work, struct btrfs_plug_cb, work); 1715 run_plug(plug); 1716 } 1717 1718 static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule) 1719 { 1720 struct btrfs_plug_cb *plug; 1721 plug = container_of(cb, struct btrfs_plug_cb, cb); 1722 1723 if (from_schedule) { 1724 btrfs_init_work(&plug->work, btrfs_rmw_helper, 1725 unplug_work, NULL, NULL); 1726 btrfs_queue_work(plug->info->rmw_workers, 1727 &plug->work); 1728 return; 1729 } 1730 run_plug(plug); 1731 } 1732 1733 /* 1734 * our main entry point for writes from the rest of the FS. 1735 */ 1736 int raid56_parity_write(struct btrfs_fs_info *fs_info, struct bio *bio, 1737 struct btrfs_bio *bbio, u64 stripe_len) 1738 { 1739 struct btrfs_raid_bio *rbio; 1740 struct btrfs_plug_cb *plug = NULL; 1741 struct blk_plug_cb *cb; 1742 int ret; 1743 1744 rbio = alloc_rbio(fs_info, bbio, stripe_len); 1745 if (IS_ERR(rbio)) { 1746 btrfs_put_bbio(bbio); 1747 return PTR_ERR(rbio); 1748 } 1749 bio_list_add(&rbio->bio_list, bio); 1750 rbio->bio_list_bytes = bio->bi_iter.bi_size; 1751 rbio->operation = BTRFS_RBIO_WRITE; 1752 1753 btrfs_bio_counter_inc_noblocked(fs_info); 1754 rbio->generic_bio_cnt = 1; 1755 1756 /* 1757 * don't plug on full rbios, just get them out the door 1758 * as quickly as we can 1759 */ 1760 if (rbio_is_full(rbio)) { 1761 ret = full_stripe_write(rbio); 1762 if (ret) 1763 btrfs_bio_counter_dec(fs_info); 1764 return ret; 1765 } 1766 1767 cb = blk_check_plugged(btrfs_raid_unplug, fs_info, sizeof(*plug)); 1768 if (cb) { 1769 plug = container_of(cb, struct btrfs_plug_cb, cb); 1770 if (!plug->info) { 1771 plug->info = fs_info; 1772 INIT_LIST_HEAD(&plug->rbio_list); 1773 } 1774 list_add_tail(&rbio->plug_list, &plug->rbio_list); 1775 ret = 0; 1776 } else { 1777 ret = __raid56_parity_write(rbio); 1778 if (ret) 1779 btrfs_bio_counter_dec(fs_info); 1780 } 1781 return ret; 1782 } 1783 1784 /* 1785 * all parity reconstruction happens here. We've read in everything 1786 * we can find from the drives and this does the heavy lifting of 1787 * sorting the good from the bad. 1788 */ 1789 static void __raid_recover_end_io(struct btrfs_raid_bio *rbio) 1790 { 1791 int pagenr, stripe; 1792 void **pointers; 1793 int faila = -1, failb = -1; 1794 struct page *page; 1795 int err; 1796 int i; 1797 1798 pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS); 1799 if (!pointers) { 1800 err = -ENOMEM; 1801 goto cleanup_io; 1802 } 1803 1804 faila = rbio->faila; 1805 failb = rbio->failb; 1806 1807 if (rbio->operation == BTRFS_RBIO_READ_REBUILD || 1808 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) { 1809 spin_lock_irq(&rbio->bio_list_lock); 1810 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); 1811 spin_unlock_irq(&rbio->bio_list_lock); 1812 } 1813 1814 index_rbio_pages(rbio); 1815 1816 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { 1817 /* 1818 * Now we just use bitmap to mark the horizontal stripes in 1819 * which we have data when doing parity scrub. 1820 */ 1821 if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB && 1822 !test_bit(pagenr, rbio->dbitmap)) 1823 continue; 1824 1825 /* setup our array of pointers with pages 1826 * from each stripe 1827 */ 1828 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 1829 /* 1830 * if we're rebuilding a read, we have to use 1831 * pages from the bio list 1832 */ 1833 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD || 1834 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) && 1835 (stripe == faila || stripe == failb)) { 1836 page = page_in_rbio(rbio, stripe, pagenr, 0); 1837 } else { 1838 page = rbio_stripe_page(rbio, stripe, pagenr); 1839 } 1840 pointers[stripe] = kmap(page); 1841 } 1842 1843 /* all raid6 handling here */ 1844 if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) { 1845 /* 1846 * single failure, rebuild from parity raid5 1847 * style 1848 */ 1849 if (failb < 0) { 1850 if (faila == rbio->nr_data) { 1851 /* 1852 * Just the P stripe has failed, without 1853 * a bad data or Q stripe. 1854 * TODO, we should redo the xor here. 1855 */ 1856 err = -EIO; 1857 goto cleanup; 1858 } 1859 /* 1860 * a single failure in raid6 is rebuilt 1861 * in the pstripe code below 1862 */ 1863 goto pstripe; 1864 } 1865 1866 /* make sure our ps and qs are in order */ 1867 if (faila > failb) { 1868 int tmp = failb; 1869 failb = faila; 1870 faila = tmp; 1871 } 1872 1873 /* if the q stripe is failed, do a pstripe reconstruction 1874 * from the xors. 1875 * If both the q stripe and the P stripe are failed, we're 1876 * here due to a crc mismatch and we can't give them the 1877 * data they want 1878 */ 1879 if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) { 1880 if (rbio->bbio->raid_map[faila] == 1881 RAID5_P_STRIPE) { 1882 err = -EIO; 1883 goto cleanup; 1884 } 1885 /* 1886 * otherwise we have one bad data stripe and 1887 * a good P stripe. raid5! 1888 */ 1889 goto pstripe; 1890 } 1891 1892 if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) { 1893 raid6_datap_recov(rbio->real_stripes, 1894 PAGE_SIZE, faila, pointers); 1895 } else { 1896 raid6_2data_recov(rbio->real_stripes, 1897 PAGE_SIZE, faila, failb, 1898 pointers); 1899 } 1900 } else { 1901 void *p; 1902 1903 /* rebuild from P stripe here (raid5 or raid6) */ 1904 BUG_ON(failb != -1); 1905 pstripe: 1906 /* Copy parity block into failed block to start with */ 1907 memcpy(pointers[faila], 1908 pointers[rbio->nr_data], 1909 PAGE_SIZE); 1910 1911 /* rearrange the pointer array */ 1912 p = pointers[faila]; 1913 for (stripe = faila; stripe < rbio->nr_data - 1; stripe++) 1914 pointers[stripe] = pointers[stripe + 1]; 1915 pointers[rbio->nr_data - 1] = p; 1916 1917 /* xor in the rest */ 1918 run_xor(pointers, rbio->nr_data - 1, PAGE_SIZE); 1919 } 1920 /* if we're doing this rebuild as part of an rmw, go through 1921 * and set all of our private rbio pages in the 1922 * failed stripes as uptodate. This way finish_rmw will 1923 * know they can be trusted. If this was a read reconstruction, 1924 * other endio functions will fiddle the uptodate bits 1925 */ 1926 if (rbio->operation == BTRFS_RBIO_WRITE) { 1927 for (i = 0; i < rbio->stripe_npages; i++) { 1928 if (faila != -1) { 1929 page = rbio_stripe_page(rbio, faila, i); 1930 SetPageUptodate(page); 1931 } 1932 if (failb != -1) { 1933 page = rbio_stripe_page(rbio, failb, i); 1934 SetPageUptodate(page); 1935 } 1936 } 1937 } 1938 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 1939 /* 1940 * if we're rebuilding a read, we have to use 1941 * pages from the bio list 1942 */ 1943 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD || 1944 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) && 1945 (stripe == faila || stripe == failb)) { 1946 page = page_in_rbio(rbio, stripe, pagenr, 0); 1947 } else { 1948 page = rbio_stripe_page(rbio, stripe, pagenr); 1949 } 1950 kunmap(page); 1951 } 1952 } 1953 1954 err = 0; 1955 cleanup: 1956 kfree(pointers); 1957 1958 cleanup_io: 1959 if (rbio->operation == BTRFS_RBIO_READ_REBUILD) { 1960 if (err == 0) 1961 cache_rbio_pages(rbio); 1962 else 1963 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); 1964 1965 rbio_orig_end_io(rbio, err); 1966 } else if (rbio->operation == BTRFS_RBIO_REBUILD_MISSING) { 1967 rbio_orig_end_io(rbio, err); 1968 } else if (err == 0) { 1969 rbio->faila = -1; 1970 rbio->failb = -1; 1971 1972 if (rbio->operation == BTRFS_RBIO_WRITE) 1973 finish_rmw(rbio); 1974 else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) 1975 finish_parity_scrub(rbio, 0); 1976 else 1977 BUG(); 1978 } else { 1979 rbio_orig_end_io(rbio, err); 1980 } 1981 } 1982 1983 /* 1984 * This is called only for stripes we've read from disk to 1985 * reconstruct the parity. 1986 */ 1987 static void raid_recover_end_io(struct bio *bio) 1988 { 1989 struct btrfs_raid_bio *rbio = bio->bi_private; 1990 1991 /* 1992 * we only read stripe pages off the disk, set them 1993 * up to date if there were no errors 1994 */ 1995 if (bio->bi_error) 1996 fail_bio_stripe(rbio, bio); 1997 else 1998 set_bio_pages_uptodate(bio); 1999 bio_put(bio); 2000 2001 if (!atomic_dec_and_test(&rbio->stripes_pending)) 2002 return; 2003 2004 if (atomic_read(&rbio->error) > rbio->bbio->max_errors) 2005 rbio_orig_end_io(rbio, -EIO); 2006 else 2007 __raid_recover_end_io(rbio); 2008 } 2009 2010 /* 2011 * reads everything we need off the disk to reconstruct 2012 * the parity. endio handlers trigger final reconstruction 2013 * when the IO is done. 2014 * 2015 * This is used both for reads from the higher layers and for 2016 * parity construction required to finish a rmw cycle. 2017 */ 2018 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio) 2019 { 2020 int bios_to_read = 0; 2021 struct bio_list bio_list; 2022 int ret; 2023 int pagenr; 2024 int stripe; 2025 struct bio *bio; 2026 2027 bio_list_init(&bio_list); 2028 2029 ret = alloc_rbio_pages(rbio); 2030 if (ret) 2031 goto cleanup; 2032 2033 atomic_set(&rbio->error, 0); 2034 2035 /* 2036 * read everything that hasn't failed. Thanks to the 2037 * stripe cache, it is possible that some or all of these 2038 * pages are going to be uptodate. 2039 */ 2040 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 2041 if (rbio->faila == stripe || rbio->failb == stripe) { 2042 atomic_inc(&rbio->error); 2043 continue; 2044 } 2045 2046 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { 2047 struct page *p; 2048 2049 /* 2050 * the rmw code may have already read this 2051 * page in 2052 */ 2053 p = rbio_stripe_page(rbio, stripe, pagenr); 2054 if (PageUptodate(p)) 2055 continue; 2056 2057 ret = rbio_add_io_page(rbio, &bio_list, 2058 rbio_stripe_page(rbio, stripe, pagenr), 2059 stripe, pagenr, rbio->stripe_len); 2060 if (ret < 0) 2061 goto cleanup; 2062 } 2063 } 2064 2065 bios_to_read = bio_list_size(&bio_list); 2066 if (!bios_to_read) { 2067 /* 2068 * we might have no bios to read just because the pages 2069 * were up to date, or we might have no bios to read because 2070 * the devices were gone. 2071 */ 2072 if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) { 2073 __raid_recover_end_io(rbio); 2074 goto out; 2075 } else { 2076 goto cleanup; 2077 } 2078 } 2079 2080 /* 2081 * the bbio may be freed once we submit the last bio. Make sure 2082 * not to touch it after that 2083 */ 2084 atomic_set(&rbio->stripes_pending, bios_to_read); 2085 while (1) { 2086 bio = bio_list_pop(&bio_list); 2087 if (!bio) 2088 break; 2089 2090 bio->bi_private = rbio; 2091 bio->bi_end_io = raid_recover_end_io; 2092 bio_set_op_attrs(bio, REQ_OP_READ, 0); 2093 2094 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56); 2095 2096 submit_bio(bio); 2097 } 2098 out: 2099 return 0; 2100 2101 cleanup: 2102 if (rbio->operation == BTRFS_RBIO_READ_REBUILD || 2103 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) 2104 rbio_orig_end_io(rbio, -EIO); 2105 return -EIO; 2106 } 2107 2108 /* 2109 * the main entry point for reads from the higher layers. This 2110 * is really only called when the normal read path had a failure, 2111 * so we assume the bio they send down corresponds to a failed part 2112 * of the drive. 2113 */ 2114 int raid56_parity_recover(struct btrfs_fs_info *fs_info, struct bio *bio, 2115 struct btrfs_bio *bbio, u64 stripe_len, 2116 int mirror_num, int generic_io) 2117 { 2118 struct btrfs_raid_bio *rbio; 2119 int ret; 2120 2121 rbio = alloc_rbio(fs_info, bbio, stripe_len); 2122 if (IS_ERR(rbio)) { 2123 if (generic_io) 2124 btrfs_put_bbio(bbio); 2125 return PTR_ERR(rbio); 2126 } 2127 2128 rbio->operation = BTRFS_RBIO_READ_REBUILD; 2129 bio_list_add(&rbio->bio_list, bio); 2130 rbio->bio_list_bytes = bio->bi_iter.bi_size; 2131 2132 rbio->faila = find_logical_bio_stripe(rbio, bio); 2133 if (rbio->faila == -1) { 2134 btrfs_warn(fs_info, 2135 "%s could not find the bad stripe in raid56 so that we cannot recover any more (bio has logical %llu len %llu, bbio has map_type %llu)", 2136 __func__, (u64)bio->bi_iter.bi_sector << 9, 2137 (u64)bio->bi_iter.bi_size, bbio->map_type); 2138 if (generic_io) 2139 btrfs_put_bbio(bbio); 2140 kfree(rbio); 2141 return -EIO; 2142 } 2143 2144 if (generic_io) { 2145 btrfs_bio_counter_inc_noblocked(fs_info); 2146 rbio->generic_bio_cnt = 1; 2147 } else { 2148 btrfs_get_bbio(bbio); 2149 } 2150 2151 /* 2152 * reconstruct from the q stripe if they are 2153 * asking for mirror 3 2154 */ 2155 if (mirror_num == 3) 2156 rbio->failb = rbio->real_stripes - 2; 2157 2158 ret = lock_stripe_add(rbio); 2159 2160 /* 2161 * __raid56_parity_recover will end the bio with 2162 * any errors it hits. We don't want to return 2163 * its error value up the stack because our caller 2164 * will end up calling bio_endio with any nonzero 2165 * return 2166 */ 2167 if (ret == 0) 2168 __raid56_parity_recover(rbio); 2169 /* 2170 * our rbio has been added to the list of 2171 * rbios that will be handled after the 2172 * currently lock owner is done 2173 */ 2174 return 0; 2175 2176 } 2177 2178 static void rmw_work(struct btrfs_work *work) 2179 { 2180 struct btrfs_raid_bio *rbio; 2181 2182 rbio = container_of(work, struct btrfs_raid_bio, work); 2183 raid56_rmw_stripe(rbio); 2184 } 2185 2186 static void read_rebuild_work(struct btrfs_work *work) 2187 { 2188 struct btrfs_raid_bio *rbio; 2189 2190 rbio = container_of(work, struct btrfs_raid_bio, work); 2191 __raid56_parity_recover(rbio); 2192 } 2193 2194 /* 2195 * The following code is used to scrub/replace the parity stripe 2196 * 2197 * Note: We need make sure all the pages that add into the scrub/replace 2198 * raid bio are correct and not be changed during the scrub/replace. That 2199 * is those pages just hold metadata or file data with checksum. 2200 */ 2201 2202 struct btrfs_raid_bio * 2203 raid56_parity_alloc_scrub_rbio(struct btrfs_fs_info *fs_info, struct bio *bio, 2204 struct btrfs_bio *bbio, u64 stripe_len, 2205 struct btrfs_device *scrub_dev, 2206 unsigned long *dbitmap, int stripe_nsectors) 2207 { 2208 struct btrfs_raid_bio *rbio; 2209 int i; 2210 2211 rbio = alloc_rbio(fs_info, bbio, stripe_len); 2212 if (IS_ERR(rbio)) 2213 return NULL; 2214 bio_list_add(&rbio->bio_list, bio); 2215 /* 2216 * This is a special bio which is used to hold the completion handler 2217 * and make the scrub rbio is similar to the other types 2218 */ 2219 ASSERT(!bio->bi_iter.bi_size); 2220 rbio->operation = BTRFS_RBIO_PARITY_SCRUB; 2221 2222 for (i = 0; i < rbio->real_stripes; i++) { 2223 if (bbio->stripes[i].dev == scrub_dev) { 2224 rbio->scrubp = i; 2225 break; 2226 } 2227 } 2228 2229 /* Now we just support the sectorsize equals to page size */ 2230 ASSERT(fs_info->sectorsize == PAGE_SIZE); 2231 ASSERT(rbio->stripe_npages == stripe_nsectors); 2232 bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors); 2233 2234 return rbio; 2235 } 2236 2237 /* Used for both parity scrub and missing. */ 2238 void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page, 2239 u64 logical) 2240 { 2241 int stripe_offset; 2242 int index; 2243 2244 ASSERT(logical >= rbio->bbio->raid_map[0]); 2245 ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] + 2246 rbio->stripe_len * rbio->nr_data); 2247 stripe_offset = (int)(logical - rbio->bbio->raid_map[0]); 2248 index = stripe_offset >> PAGE_SHIFT; 2249 rbio->bio_pages[index] = page; 2250 } 2251 2252 /* 2253 * We just scrub the parity that we have correct data on the same horizontal, 2254 * so we needn't allocate all pages for all the stripes. 2255 */ 2256 static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio) 2257 { 2258 int i; 2259 int bit; 2260 int index; 2261 struct page *page; 2262 2263 for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) { 2264 for (i = 0; i < rbio->real_stripes; i++) { 2265 index = i * rbio->stripe_npages + bit; 2266 if (rbio->stripe_pages[index]) 2267 continue; 2268 2269 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 2270 if (!page) 2271 return -ENOMEM; 2272 rbio->stripe_pages[index] = page; 2273 } 2274 } 2275 return 0; 2276 } 2277 2278 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio, 2279 int need_check) 2280 { 2281 struct btrfs_bio *bbio = rbio->bbio; 2282 void *pointers[rbio->real_stripes]; 2283 DECLARE_BITMAP(pbitmap, rbio->stripe_npages); 2284 int nr_data = rbio->nr_data; 2285 int stripe; 2286 int pagenr; 2287 int p_stripe = -1; 2288 int q_stripe = -1; 2289 struct page *p_page = NULL; 2290 struct page *q_page = NULL; 2291 struct bio_list bio_list; 2292 struct bio *bio; 2293 int is_replace = 0; 2294 int ret; 2295 2296 bio_list_init(&bio_list); 2297 2298 if (rbio->real_stripes - rbio->nr_data == 1) { 2299 p_stripe = rbio->real_stripes - 1; 2300 } else if (rbio->real_stripes - rbio->nr_data == 2) { 2301 p_stripe = rbio->real_stripes - 2; 2302 q_stripe = rbio->real_stripes - 1; 2303 } else { 2304 BUG(); 2305 } 2306 2307 if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) { 2308 is_replace = 1; 2309 bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages); 2310 } 2311 2312 /* 2313 * Because the higher layers(scrubber) are unlikely to 2314 * use this area of the disk again soon, so don't cache 2315 * it. 2316 */ 2317 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); 2318 2319 if (!need_check) 2320 goto writeback; 2321 2322 p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 2323 if (!p_page) 2324 goto cleanup; 2325 SetPageUptodate(p_page); 2326 2327 if (q_stripe != -1) { 2328 q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 2329 if (!q_page) { 2330 __free_page(p_page); 2331 goto cleanup; 2332 } 2333 SetPageUptodate(q_page); 2334 } 2335 2336 atomic_set(&rbio->error, 0); 2337 2338 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) { 2339 struct page *p; 2340 void *parity; 2341 /* first collect one page from each data stripe */ 2342 for (stripe = 0; stripe < nr_data; stripe++) { 2343 p = page_in_rbio(rbio, stripe, pagenr, 0); 2344 pointers[stripe] = kmap(p); 2345 } 2346 2347 /* then add the parity stripe */ 2348 pointers[stripe++] = kmap(p_page); 2349 2350 if (q_stripe != -1) { 2351 2352 /* 2353 * raid6, add the qstripe and call the 2354 * library function to fill in our p/q 2355 */ 2356 pointers[stripe++] = kmap(q_page); 2357 2358 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE, 2359 pointers); 2360 } else { 2361 /* raid5 */ 2362 memcpy(pointers[nr_data], pointers[0], PAGE_SIZE); 2363 run_xor(pointers + 1, nr_data - 1, PAGE_SIZE); 2364 } 2365 2366 /* Check scrubbing parity and repair it */ 2367 p = rbio_stripe_page(rbio, rbio->scrubp, pagenr); 2368 parity = kmap(p); 2369 if (memcmp(parity, pointers[rbio->scrubp], PAGE_SIZE)) 2370 memcpy(parity, pointers[rbio->scrubp], PAGE_SIZE); 2371 else 2372 /* Parity is right, needn't writeback */ 2373 bitmap_clear(rbio->dbitmap, pagenr, 1); 2374 kunmap(p); 2375 2376 for (stripe = 0; stripe < rbio->real_stripes; stripe++) 2377 kunmap(page_in_rbio(rbio, stripe, pagenr, 0)); 2378 } 2379 2380 __free_page(p_page); 2381 if (q_page) 2382 __free_page(q_page); 2383 2384 writeback: 2385 /* 2386 * time to start writing. Make bios for everything from the 2387 * higher layers (the bio_list in our rbio) and our p/q. Ignore 2388 * everything else. 2389 */ 2390 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) { 2391 struct page *page; 2392 2393 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr); 2394 ret = rbio_add_io_page(rbio, &bio_list, 2395 page, rbio->scrubp, pagenr, rbio->stripe_len); 2396 if (ret) 2397 goto cleanup; 2398 } 2399 2400 if (!is_replace) 2401 goto submit_write; 2402 2403 for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) { 2404 struct page *page; 2405 2406 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr); 2407 ret = rbio_add_io_page(rbio, &bio_list, page, 2408 bbio->tgtdev_map[rbio->scrubp], 2409 pagenr, rbio->stripe_len); 2410 if (ret) 2411 goto cleanup; 2412 } 2413 2414 submit_write: 2415 nr_data = bio_list_size(&bio_list); 2416 if (!nr_data) { 2417 /* Every parity is right */ 2418 rbio_orig_end_io(rbio, 0); 2419 return; 2420 } 2421 2422 atomic_set(&rbio->stripes_pending, nr_data); 2423 2424 while (1) { 2425 bio = bio_list_pop(&bio_list); 2426 if (!bio) 2427 break; 2428 2429 bio->bi_private = rbio; 2430 bio->bi_end_io = raid_write_end_io; 2431 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 2432 2433 submit_bio(bio); 2434 } 2435 return; 2436 2437 cleanup: 2438 rbio_orig_end_io(rbio, -EIO); 2439 } 2440 2441 static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe) 2442 { 2443 if (stripe >= 0 && stripe < rbio->nr_data) 2444 return 1; 2445 return 0; 2446 } 2447 2448 /* 2449 * While we're doing the parity check and repair, we could have errors 2450 * in reading pages off the disk. This checks for errors and if we're 2451 * not able to read the page it'll trigger parity reconstruction. The 2452 * parity scrub will be finished after we've reconstructed the failed 2453 * stripes 2454 */ 2455 static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio) 2456 { 2457 if (atomic_read(&rbio->error) > rbio->bbio->max_errors) 2458 goto cleanup; 2459 2460 if (rbio->faila >= 0 || rbio->failb >= 0) { 2461 int dfail = 0, failp = -1; 2462 2463 if (is_data_stripe(rbio, rbio->faila)) 2464 dfail++; 2465 else if (is_parity_stripe(rbio->faila)) 2466 failp = rbio->faila; 2467 2468 if (is_data_stripe(rbio, rbio->failb)) 2469 dfail++; 2470 else if (is_parity_stripe(rbio->failb)) 2471 failp = rbio->failb; 2472 2473 /* 2474 * Because we can not use a scrubbing parity to repair 2475 * the data, so the capability of the repair is declined. 2476 * (In the case of RAID5, we can not repair anything) 2477 */ 2478 if (dfail > rbio->bbio->max_errors - 1) 2479 goto cleanup; 2480 2481 /* 2482 * If all data is good, only parity is correctly, just 2483 * repair the parity. 2484 */ 2485 if (dfail == 0) { 2486 finish_parity_scrub(rbio, 0); 2487 return; 2488 } 2489 2490 /* 2491 * Here means we got one corrupted data stripe and one 2492 * corrupted parity on RAID6, if the corrupted parity 2493 * is scrubbing parity, luckily, use the other one to repair 2494 * the data, or we can not repair the data stripe. 2495 */ 2496 if (failp != rbio->scrubp) 2497 goto cleanup; 2498 2499 __raid_recover_end_io(rbio); 2500 } else { 2501 finish_parity_scrub(rbio, 1); 2502 } 2503 return; 2504 2505 cleanup: 2506 rbio_orig_end_io(rbio, -EIO); 2507 } 2508 2509 /* 2510 * end io for the read phase of the rmw cycle. All the bios here are physical 2511 * stripe bios we've read from the disk so we can recalculate the parity of the 2512 * stripe. 2513 * 2514 * This will usually kick off finish_rmw once all the bios are read in, but it 2515 * may trigger parity reconstruction if we had any errors along the way 2516 */ 2517 static void raid56_parity_scrub_end_io(struct bio *bio) 2518 { 2519 struct btrfs_raid_bio *rbio = bio->bi_private; 2520 2521 if (bio->bi_error) 2522 fail_bio_stripe(rbio, bio); 2523 else 2524 set_bio_pages_uptodate(bio); 2525 2526 bio_put(bio); 2527 2528 if (!atomic_dec_and_test(&rbio->stripes_pending)) 2529 return; 2530 2531 /* 2532 * this will normally call finish_rmw to start our write 2533 * but if there are any failed stripes we'll reconstruct 2534 * from parity first 2535 */ 2536 validate_rbio_for_parity_scrub(rbio); 2537 } 2538 2539 static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio) 2540 { 2541 int bios_to_read = 0; 2542 struct bio_list bio_list; 2543 int ret; 2544 int pagenr; 2545 int stripe; 2546 struct bio *bio; 2547 2548 ret = alloc_rbio_essential_pages(rbio); 2549 if (ret) 2550 goto cleanup; 2551 2552 bio_list_init(&bio_list); 2553 2554 atomic_set(&rbio->error, 0); 2555 /* 2556 * build a list of bios to read all the missing parts of this 2557 * stripe 2558 */ 2559 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 2560 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) { 2561 struct page *page; 2562 /* 2563 * we want to find all the pages missing from 2564 * the rbio and read them from the disk. If 2565 * page_in_rbio finds a page in the bio list 2566 * we don't need to read it off the stripe. 2567 */ 2568 page = page_in_rbio(rbio, stripe, pagenr, 1); 2569 if (page) 2570 continue; 2571 2572 page = rbio_stripe_page(rbio, stripe, pagenr); 2573 /* 2574 * the bio cache may have handed us an uptodate 2575 * page. If so, be happy and use it 2576 */ 2577 if (PageUptodate(page)) 2578 continue; 2579 2580 ret = rbio_add_io_page(rbio, &bio_list, page, 2581 stripe, pagenr, rbio->stripe_len); 2582 if (ret) 2583 goto cleanup; 2584 } 2585 } 2586 2587 bios_to_read = bio_list_size(&bio_list); 2588 if (!bios_to_read) { 2589 /* 2590 * this can happen if others have merged with 2591 * us, it means there is nothing left to read. 2592 * But if there are missing devices it may not be 2593 * safe to do the full stripe write yet. 2594 */ 2595 goto finish; 2596 } 2597 2598 /* 2599 * the bbio may be freed once we submit the last bio. Make sure 2600 * not to touch it after that 2601 */ 2602 atomic_set(&rbio->stripes_pending, bios_to_read); 2603 while (1) { 2604 bio = bio_list_pop(&bio_list); 2605 if (!bio) 2606 break; 2607 2608 bio->bi_private = rbio; 2609 bio->bi_end_io = raid56_parity_scrub_end_io; 2610 bio_set_op_attrs(bio, REQ_OP_READ, 0); 2611 2612 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56); 2613 2614 submit_bio(bio); 2615 } 2616 /* the actual write will happen once the reads are done */ 2617 return; 2618 2619 cleanup: 2620 rbio_orig_end_io(rbio, -EIO); 2621 return; 2622 2623 finish: 2624 validate_rbio_for_parity_scrub(rbio); 2625 } 2626 2627 static void scrub_parity_work(struct btrfs_work *work) 2628 { 2629 struct btrfs_raid_bio *rbio; 2630 2631 rbio = container_of(work, struct btrfs_raid_bio, work); 2632 raid56_parity_scrub_stripe(rbio); 2633 } 2634 2635 static void async_scrub_parity(struct btrfs_raid_bio *rbio) 2636 { 2637 btrfs_init_work(&rbio->work, btrfs_rmw_helper, 2638 scrub_parity_work, NULL, NULL); 2639 2640 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work); 2641 } 2642 2643 void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio) 2644 { 2645 if (!lock_stripe_add(rbio)) 2646 async_scrub_parity(rbio); 2647 } 2648 2649 /* The following code is used for dev replace of a missing RAID 5/6 device. */ 2650 2651 struct btrfs_raid_bio * 2652 raid56_alloc_missing_rbio(struct btrfs_fs_info *fs_info, struct bio *bio, 2653 struct btrfs_bio *bbio, u64 length) 2654 { 2655 struct btrfs_raid_bio *rbio; 2656 2657 rbio = alloc_rbio(fs_info, bbio, length); 2658 if (IS_ERR(rbio)) 2659 return NULL; 2660 2661 rbio->operation = BTRFS_RBIO_REBUILD_MISSING; 2662 bio_list_add(&rbio->bio_list, bio); 2663 /* 2664 * This is a special bio which is used to hold the completion handler 2665 * and make the scrub rbio is similar to the other types 2666 */ 2667 ASSERT(!bio->bi_iter.bi_size); 2668 2669 rbio->faila = find_logical_bio_stripe(rbio, bio); 2670 if (rbio->faila == -1) { 2671 BUG(); 2672 kfree(rbio); 2673 return NULL; 2674 } 2675 2676 return rbio; 2677 } 2678 2679 static void missing_raid56_work(struct btrfs_work *work) 2680 { 2681 struct btrfs_raid_bio *rbio; 2682 2683 rbio = container_of(work, struct btrfs_raid_bio, work); 2684 __raid56_parity_recover(rbio); 2685 } 2686 2687 static void async_missing_raid56(struct btrfs_raid_bio *rbio) 2688 { 2689 btrfs_init_work(&rbio->work, btrfs_rmw_helper, 2690 missing_raid56_work, NULL, NULL); 2691 2692 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work); 2693 } 2694 2695 void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio) 2696 { 2697 if (!lock_stripe_add(rbio)) 2698 async_missing_raid56(rbio); 2699 } 2700