1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2012 Fusion-io All rights reserved. 4 * Copyright (C) 2012 Intel Corp. All rights reserved. 5 */ 6 7 #include <linux/sched.h> 8 #include <linux/bio.h> 9 #include <linux/slab.h> 10 #include <linux/blkdev.h> 11 #include <linux/raid/pq.h> 12 #include <linux/hash.h> 13 #include <linux/list_sort.h> 14 #include <linux/raid/xor.h> 15 #include <linux/mm.h> 16 #include "messages.h" 17 #include "ctree.h" 18 #include "disk-io.h" 19 #include "volumes.h" 20 #include "raid56.h" 21 #include "async-thread.h" 22 #include "file-item.h" 23 #include "btrfs_inode.h" 24 25 /* set when additional merges to this rbio are not allowed */ 26 #define RBIO_RMW_LOCKED_BIT 1 27 28 /* 29 * set when this rbio is sitting in the hash, but it is just a cache 30 * of past RMW 31 */ 32 #define RBIO_CACHE_BIT 2 33 34 /* 35 * set when it is safe to trust the stripe_pages for caching 36 */ 37 #define RBIO_CACHE_READY_BIT 3 38 39 #define RBIO_CACHE_SIZE 1024 40 41 #define BTRFS_STRIPE_HASH_TABLE_BITS 11 42 43 /* Used by the raid56 code to lock stripes for read/modify/write */ 44 struct btrfs_stripe_hash { 45 struct list_head hash_list; 46 spinlock_t lock; 47 }; 48 49 /* Used by the raid56 code to lock stripes for read/modify/write */ 50 struct btrfs_stripe_hash_table { 51 struct list_head stripe_cache; 52 spinlock_t cache_lock; 53 int cache_size; 54 struct btrfs_stripe_hash table[]; 55 }; 56 57 /* 58 * A bvec like structure to present a sector inside a page. 59 * 60 * Unlike bvec we don't need bvlen, as it's fixed to sectorsize. 61 */ 62 struct sector_ptr { 63 struct page *page; 64 unsigned int pgoff:24; 65 unsigned int uptodate:8; 66 }; 67 68 static void rmw_rbio_work(struct work_struct *work); 69 static void rmw_rbio_work_locked(struct work_struct *work); 70 static void index_rbio_pages(struct btrfs_raid_bio *rbio); 71 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio); 72 73 static int finish_parity_scrub(struct btrfs_raid_bio *rbio); 74 static void scrub_rbio_work_locked(struct work_struct *work); 75 76 static void free_raid_bio_pointers(struct btrfs_raid_bio *rbio) 77 { 78 bitmap_free(rbio->error_bitmap); 79 kfree(rbio->stripe_pages); 80 kfree(rbio->bio_sectors); 81 kfree(rbio->stripe_sectors); 82 kfree(rbio->finish_pointers); 83 } 84 85 static void free_raid_bio(struct btrfs_raid_bio *rbio) 86 { 87 int i; 88 89 if (!refcount_dec_and_test(&rbio->refs)) 90 return; 91 92 WARN_ON(!list_empty(&rbio->stripe_cache)); 93 WARN_ON(!list_empty(&rbio->hash_list)); 94 WARN_ON(!bio_list_empty(&rbio->bio_list)); 95 96 for (i = 0; i < rbio->nr_pages; i++) { 97 if (rbio->stripe_pages[i]) { 98 __free_page(rbio->stripe_pages[i]); 99 rbio->stripe_pages[i] = NULL; 100 } 101 } 102 103 btrfs_put_bioc(rbio->bioc); 104 free_raid_bio_pointers(rbio); 105 kfree(rbio); 106 } 107 108 static void start_async_work(struct btrfs_raid_bio *rbio, work_func_t work_func) 109 { 110 INIT_WORK(&rbio->work, work_func); 111 queue_work(rbio->bioc->fs_info->rmw_workers, &rbio->work); 112 } 113 114 /* 115 * the stripe hash table is used for locking, and to collect 116 * bios in hopes of making a full stripe 117 */ 118 int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info) 119 { 120 struct btrfs_stripe_hash_table *table; 121 struct btrfs_stripe_hash_table *x; 122 struct btrfs_stripe_hash *cur; 123 struct btrfs_stripe_hash *h; 124 int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS; 125 int i; 126 127 if (info->stripe_hash_table) 128 return 0; 129 130 /* 131 * The table is large, starting with order 4 and can go as high as 132 * order 7 in case lock debugging is turned on. 133 * 134 * Try harder to allocate and fallback to vmalloc to lower the chance 135 * of a failing mount. 136 */ 137 table = kvzalloc(struct_size(table, table, num_entries), GFP_KERNEL); 138 if (!table) 139 return -ENOMEM; 140 141 spin_lock_init(&table->cache_lock); 142 INIT_LIST_HEAD(&table->stripe_cache); 143 144 h = table->table; 145 146 for (i = 0; i < num_entries; i++) { 147 cur = h + i; 148 INIT_LIST_HEAD(&cur->hash_list); 149 spin_lock_init(&cur->lock); 150 } 151 152 x = cmpxchg(&info->stripe_hash_table, NULL, table); 153 kvfree(x); 154 return 0; 155 } 156 157 /* 158 * caching an rbio means to copy anything from the 159 * bio_sectors array into the stripe_pages array. We 160 * use the page uptodate bit in the stripe cache array 161 * to indicate if it has valid data 162 * 163 * once the caching is done, we set the cache ready 164 * bit. 165 */ 166 static void cache_rbio_pages(struct btrfs_raid_bio *rbio) 167 { 168 int i; 169 int ret; 170 171 ret = alloc_rbio_pages(rbio); 172 if (ret) 173 return; 174 175 for (i = 0; i < rbio->nr_sectors; i++) { 176 /* Some range not covered by bio (partial write), skip it */ 177 if (!rbio->bio_sectors[i].page) { 178 /* 179 * Even if the sector is not covered by bio, if it is 180 * a data sector it should still be uptodate as it is 181 * read from disk. 182 */ 183 if (i < rbio->nr_data * rbio->stripe_nsectors) 184 ASSERT(rbio->stripe_sectors[i].uptodate); 185 continue; 186 } 187 188 ASSERT(rbio->stripe_sectors[i].page); 189 memcpy_page(rbio->stripe_sectors[i].page, 190 rbio->stripe_sectors[i].pgoff, 191 rbio->bio_sectors[i].page, 192 rbio->bio_sectors[i].pgoff, 193 rbio->bioc->fs_info->sectorsize); 194 rbio->stripe_sectors[i].uptodate = 1; 195 } 196 set_bit(RBIO_CACHE_READY_BIT, &rbio->flags); 197 } 198 199 /* 200 * we hash on the first logical address of the stripe 201 */ 202 static int rbio_bucket(struct btrfs_raid_bio *rbio) 203 { 204 u64 num = rbio->bioc->full_stripe_logical; 205 206 /* 207 * we shift down quite a bit. We're using byte 208 * addressing, and most of the lower bits are zeros. 209 * This tends to upset hash_64, and it consistently 210 * returns just one or two different values. 211 * 212 * shifting off the lower bits fixes things. 213 */ 214 return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS); 215 } 216 217 static bool full_page_sectors_uptodate(struct btrfs_raid_bio *rbio, 218 unsigned int page_nr) 219 { 220 const u32 sectorsize = rbio->bioc->fs_info->sectorsize; 221 const u32 sectors_per_page = PAGE_SIZE / sectorsize; 222 int i; 223 224 ASSERT(page_nr < rbio->nr_pages); 225 226 for (i = sectors_per_page * page_nr; 227 i < sectors_per_page * page_nr + sectors_per_page; 228 i++) { 229 if (!rbio->stripe_sectors[i].uptodate) 230 return false; 231 } 232 return true; 233 } 234 235 /* 236 * Update the stripe_sectors[] array to use correct page and pgoff 237 * 238 * Should be called every time any page pointer in stripes_pages[] got modified. 239 */ 240 static void index_stripe_sectors(struct btrfs_raid_bio *rbio) 241 { 242 const u32 sectorsize = rbio->bioc->fs_info->sectorsize; 243 u32 offset; 244 int i; 245 246 for (i = 0, offset = 0; i < rbio->nr_sectors; i++, offset += sectorsize) { 247 int page_index = offset >> PAGE_SHIFT; 248 249 ASSERT(page_index < rbio->nr_pages); 250 rbio->stripe_sectors[i].page = rbio->stripe_pages[page_index]; 251 rbio->stripe_sectors[i].pgoff = offset_in_page(offset); 252 } 253 } 254 255 static void steal_rbio_page(struct btrfs_raid_bio *src, 256 struct btrfs_raid_bio *dest, int page_nr) 257 { 258 const u32 sectorsize = src->bioc->fs_info->sectorsize; 259 const u32 sectors_per_page = PAGE_SIZE / sectorsize; 260 int i; 261 262 if (dest->stripe_pages[page_nr]) 263 __free_page(dest->stripe_pages[page_nr]); 264 dest->stripe_pages[page_nr] = src->stripe_pages[page_nr]; 265 src->stripe_pages[page_nr] = NULL; 266 267 /* Also update the sector->uptodate bits. */ 268 for (i = sectors_per_page * page_nr; 269 i < sectors_per_page * page_nr + sectors_per_page; i++) 270 dest->stripe_sectors[i].uptodate = true; 271 } 272 273 static bool is_data_stripe_page(struct btrfs_raid_bio *rbio, int page_nr) 274 { 275 const int sector_nr = (page_nr << PAGE_SHIFT) >> 276 rbio->bioc->fs_info->sectorsize_bits; 277 278 /* 279 * We have ensured PAGE_SIZE is aligned with sectorsize, thus 280 * we won't have a page which is half data half parity. 281 * 282 * Thus if the first sector of the page belongs to data stripes, then 283 * the full page belongs to data stripes. 284 */ 285 return (sector_nr < rbio->nr_data * rbio->stripe_nsectors); 286 } 287 288 /* 289 * Stealing an rbio means taking all the uptodate pages from the stripe array 290 * in the source rbio and putting them into the destination rbio. 291 * 292 * This will also update the involved stripe_sectors[] which are referring to 293 * the old pages. 294 */ 295 static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest) 296 { 297 int i; 298 299 if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags)) 300 return; 301 302 for (i = 0; i < dest->nr_pages; i++) { 303 struct page *p = src->stripe_pages[i]; 304 305 /* 306 * We don't need to steal P/Q pages as they will always be 307 * regenerated for RMW or full write anyway. 308 */ 309 if (!is_data_stripe_page(src, i)) 310 continue; 311 312 /* 313 * If @src already has RBIO_CACHE_READY_BIT, it should have 314 * all data stripe pages present and uptodate. 315 */ 316 ASSERT(p); 317 ASSERT(full_page_sectors_uptodate(src, i)); 318 steal_rbio_page(src, dest, i); 319 } 320 index_stripe_sectors(dest); 321 index_stripe_sectors(src); 322 } 323 324 /* 325 * merging means we take the bio_list from the victim and 326 * splice it into the destination. The victim should 327 * be discarded afterwards. 328 * 329 * must be called with dest->rbio_list_lock held 330 */ 331 static void merge_rbio(struct btrfs_raid_bio *dest, 332 struct btrfs_raid_bio *victim) 333 { 334 bio_list_merge(&dest->bio_list, &victim->bio_list); 335 dest->bio_list_bytes += victim->bio_list_bytes; 336 /* Also inherit the bitmaps from @victim. */ 337 bitmap_or(&dest->dbitmap, &victim->dbitmap, &dest->dbitmap, 338 dest->stripe_nsectors); 339 bio_list_init(&victim->bio_list); 340 } 341 342 /* 343 * used to prune items that are in the cache. The caller 344 * must hold the hash table lock. 345 */ 346 static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio) 347 { 348 int bucket = rbio_bucket(rbio); 349 struct btrfs_stripe_hash_table *table; 350 struct btrfs_stripe_hash *h; 351 int freeit = 0; 352 353 /* 354 * check the bit again under the hash table lock. 355 */ 356 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags)) 357 return; 358 359 table = rbio->bioc->fs_info->stripe_hash_table; 360 h = table->table + bucket; 361 362 /* hold the lock for the bucket because we may be 363 * removing it from the hash table 364 */ 365 spin_lock(&h->lock); 366 367 /* 368 * hold the lock for the bio list because we need 369 * to make sure the bio list is empty 370 */ 371 spin_lock(&rbio->bio_list_lock); 372 373 if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) { 374 list_del_init(&rbio->stripe_cache); 375 table->cache_size -= 1; 376 freeit = 1; 377 378 /* if the bio list isn't empty, this rbio is 379 * still involved in an IO. We take it out 380 * of the cache list, and drop the ref that 381 * was held for the list. 382 * 383 * If the bio_list was empty, we also remove 384 * the rbio from the hash_table, and drop 385 * the corresponding ref 386 */ 387 if (bio_list_empty(&rbio->bio_list)) { 388 if (!list_empty(&rbio->hash_list)) { 389 list_del_init(&rbio->hash_list); 390 refcount_dec(&rbio->refs); 391 BUG_ON(!list_empty(&rbio->plug_list)); 392 } 393 } 394 } 395 396 spin_unlock(&rbio->bio_list_lock); 397 spin_unlock(&h->lock); 398 399 if (freeit) 400 free_raid_bio(rbio); 401 } 402 403 /* 404 * prune a given rbio from the cache 405 */ 406 static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio) 407 { 408 struct btrfs_stripe_hash_table *table; 409 410 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags)) 411 return; 412 413 table = rbio->bioc->fs_info->stripe_hash_table; 414 415 spin_lock(&table->cache_lock); 416 __remove_rbio_from_cache(rbio); 417 spin_unlock(&table->cache_lock); 418 } 419 420 /* 421 * remove everything in the cache 422 */ 423 static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info) 424 { 425 struct btrfs_stripe_hash_table *table; 426 struct btrfs_raid_bio *rbio; 427 428 table = info->stripe_hash_table; 429 430 spin_lock(&table->cache_lock); 431 while (!list_empty(&table->stripe_cache)) { 432 rbio = list_entry(table->stripe_cache.next, 433 struct btrfs_raid_bio, 434 stripe_cache); 435 __remove_rbio_from_cache(rbio); 436 } 437 spin_unlock(&table->cache_lock); 438 } 439 440 /* 441 * remove all cached entries and free the hash table 442 * used by unmount 443 */ 444 void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info) 445 { 446 if (!info->stripe_hash_table) 447 return; 448 btrfs_clear_rbio_cache(info); 449 kvfree(info->stripe_hash_table); 450 info->stripe_hash_table = NULL; 451 } 452 453 /* 454 * insert an rbio into the stripe cache. It 455 * must have already been prepared by calling 456 * cache_rbio_pages 457 * 458 * If this rbio was already cached, it gets 459 * moved to the front of the lru. 460 * 461 * If the size of the rbio cache is too big, we 462 * prune an item. 463 */ 464 static void cache_rbio(struct btrfs_raid_bio *rbio) 465 { 466 struct btrfs_stripe_hash_table *table; 467 468 if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags)) 469 return; 470 471 table = rbio->bioc->fs_info->stripe_hash_table; 472 473 spin_lock(&table->cache_lock); 474 spin_lock(&rbio->bio_list_lock); 475 476 /* bump our ref if we were not in the list before */ 477 if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags)) 478 refcount_inc(&rbio->refs); 479 480 if (!list_empty(&rbio->stripe_cache)){ 481 list_move(&rbio->stripe_cache, &table->stripe_cache); 482 } else { 483 list_add(&rbio->stripe_cache, &table->stripe_cache); 484 table->cache_size += 1; 485 } 486 487 spin_unlock(&rbio->bio_list_lock); 488 489 if (table->cache_size > RBIO_CACHE_SIZE) { 490 struct btrfs_raid_bio *found; 491 492 found = list_entry(table->stripe_cache.prev, 493 struct btrfs_raid_bio, 494 stripe_cache); 495 496 if (found != rbio) 497 __remove_rbio_from_cache(found); 498 } 499 500 spin_unlock(&table->cache_lock); 501 } 502 503 /* 504 * helper function to run the xor_blocks api. It is only 505 * able to do MAX_XOR_BLOCKS at a time, so we need to 506 * loop through. 507 */ 508 static void run_xor(void **pages, int src_cnt, ssize_t len) 509 { 510 int src_off = 0; 511 int xor_src_cnt = 0; 512 void *dest = pages[src_cnt]; 513 514 while(src_cnt > 0) { 515 xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS); 516 xor_blocks(xor_src_cnt, len, dest, pages + src_off); 517 518 src_cnt -= xor_src_cnt; 519 src_off += xor_src_cnt; 520 } 521 } 522 523 /* 524 * Returns true if the bio list inside this rbio covers an entire stripe (no 525 * rmw required). 526 */ 527 static int rbio_is_full(struct btrfs_raid_bio *rbio) 528 { 529 unsigned long size = rbio->bio_list_bytes; 530 int ret = 1; 531 532 spin_lock(&rbio->bio_list_lock); 533 if (size != rbio->nr_data * BTRFS_STRIPE_LEN) 534 ret = 0; 535 BUG_ON(size > rbio->nr_data * BTRFS_STRIPE_LEN); 536 spin_unlock(&rbio->bio_list_lock); 537 538 return ret; 539 } 540 541 /* 542 * returns 1 if it is safe to merge two rbios together. 543 * The merging is safe if the two rbios correspond to 544 * the same stripe and if they are both going in the same 545 * direction (read vs write), and if neither one is 546 * locked for final IO 547 * 548 * The caller is responsible for locking such that 549 * rmw_locked is safe to test 550 */ 551 static int rbio_can_merge(struct btrfs_raid_bio *last, 552 struct btrfs_raid_bio *cur) 553 { 554 if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) || 555 test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) 556 return 0; 557 558 /* 559 * we can't merge with cached rbios, since the 560 * idea is that when we merge the destination 561 * rbio is going to run our IO for us. We can 562 * steal from cached rbios though, other functions 563 * handle that. 564 */ 565 if (test_bit(RBIO_CACHE_BIT, &last->flags) || 566 test_bit(RBIO_CACHE_BIT, &cur->flags)) 567 return 0; 568 569 if (last->bioc->full_stripe_logical != cur->bioc->full_stripe_logical) 570 return 0; 571 572 /* we can't merge with different operations */ 573 if (last->operation != cur->operation) 574 return 0; 575 /* 576 * We've need read the full stripe from the drive. 577 * check and repair the parity and write the new results. 578 * 579 * We're not allowed to add any new bios to the 580 * bio list here, anyone else that wants to 581 * change this stripe needs to do their own rmw. 582 */ 583 if (last->operation == BTRFS_RBIO_PARITY_SCRUB) 584 return 0; 585 586 if (last->operation == BTRFS_RBIO_READ_REBUILD) 587 return 0; 588 589 return 1; 590 } 591 592 static unsigned int rbio_stripe_sector_index(const struct btrfs_raid_bio *rbio, 593 unsigned int stripe_nr, 594 unsigned int sector_nr) 595 { 596 ASSERT(stripe_nr < rbio->real_stripes); 597 ASSERT(sector_nr < rbio->stripe_nsectors); 598 599 return stripe_nr * rbio->stripe_nsectors + sector_nr; 600 } 601 602 /* Return a sector from rbio->stripe_sectors, not from the bio list */ 603 static struct sector_ptr *rbio_stripe_sector(const struct btrfs_raid_bio *rbio, 604 unsigned int stripe_nr, 605 unsigned int sector_nr) 606 { 607 return &rbio->stripe_sectors[rbio_stripe_sector_index(rbio, stripe_nr, 608 sector_nr)]; 609 } 610 611 /* Grab a sector inside P stripe */ 612 static struct sector_ptr *rbio_pstripe_sector(const struct btrfs_raid_bio *rbio, 613 unsigned int sector_nr) 614 { 615 return rbio_stripe_sector(rbio, rbio->nr_data, sector_nr); 616 } 617 618 /* Grab a sector inside Q stripe, return NULL if not RAID6 */ 619 static struct sector_ptr *rbio_qstripe_sector(const struct btrfs_raid_bio *rbio, 620 unsigned int sector_nr) 621 { 622 if (rbio->nr_data + 1 == rbio->real_stripes) 623 return NULL; 624 return rbio_stripe_sector(rbio, rbio->nr_data + 1, sector_nr); 625 } 626 627 /* 628 * The first stripe in the table for a logical address 629 * has the lock. rbios are added in one of three ways: 630 * 631 * 1) Nobody has the stripe locked yet. The rbio is given 632 * the lock and 0 is returned. The caller must start the IO 633 * themselves. 634 * 635 * 2) Someone has the stripe locked, but we're able to merge 636 * with the lock owner. The rbio is freed and the IO will 637 * start automatically along with the existing rbio. 1 is returned. 638 * 639 * 3) Someone has the stripe locked, but we're not able to merge. 640 * The rbio is added to the lock owner's plug list, or merged into 641 * an rbio already on the plug list. When the lock owner unlocks, 642 * the next rbio on the list is run and the IO is started automatically. 643 * 1 is returned 644 * 645 * If we return 0, the caller still owns the rbio and must continue with 646 * IO submission. If we return 1, the caller must assume the rbio has 647 * already been freed. 648 */ 649 static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio) 650 { 651 struct btrfs_stripe_hash *h; 652 struct btrfs_raid_bio *cur; 653 struct btrfs_raid_bio *pending; 654 struct btrfs_raid_bio *freeit = NULL; 655 struct btrfs_raid_bio *cache_drop = NULL; 656 int ret = 0; 657 658 h = rbio->bioc->fs_info->stripe_hash_table->table + rbio_bucket(rbio); 659 660 spin_lock(&h->lock); 661 list_for_each_entry(cur, &h->hash_list, hash_list) { 662 if (cur->bioc->full_stripe_logical != rbio->bioc->full_stripe_logical) 663 continue; 664 665 spin_lock(&cur->bio_list_lock); 666 667 /* Can we steal this cached rbio's pages? */ 668 if (bio_list_empty(&cur->bio_list) && 669 list_empty(&cur->plug_list) && 670 test_bit(RBIO_CACHE_BIT, &cur->flags) && 671 !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) { 672 list_del_init(&cur->hash_list); 673 refcount_dec(&cur->refs); 674 675 steal_rbio(cur, rbio); 676 cache_drop = cur; 677 spin_unlock(&cur->bio_list_lock); 678 679 goto lockit; 680 } 681 682 /* Can we merge into the lock owner? */ 683 if (rbio_can_merge(cur, rbio)) { 684 merge_rbio(cur, rbio); 685 spin_unlock(&cur->bio_list_lock); 686 freeit = rbio; 687 ret = 1; 688 goto out; 689 } 690 691 692 /* 693 * We couldn't merge with the running rbio, see if we can merge 694 * with the pending ones. We don't have to check for rmw_locked 695 * because there is no way they are inside finish_rmw right now 696 */ 697 list_for_each_entry(pending, &cur->plug_list, plug_list) { 698 if (rbio_can_merge(pending, rbio)) { 699 merge_rbio(pending, rbio); 700 spin_unlock(&cur->bio_list_lock); 701 freeit = rbio; 702 ret = 1; 703 goto out; 704 } 705 } 706 707 /* 708 * No merging, put us on the tail of the plug list, our rbio 709 * will be started with the currently running rbio unlocks 710 */ 711 list_add_tail(&rbio->plug_list, &cur->plug_list); 712 spin_unlock(&cur->bio_list_lock); 713 ret = 1; 714 goto out; 715 } 716 lockit: 717 refcount_inc(&rbio->refs); 718 list_add(&rbio->hash_list, &h->hash_list); 719 out: 720 spin_unlock(&h->lock); 721 if (cache_drop) 722 remove_rbio_from_cache(cache_drop); 723 if (freeit) 724 free_raid_bio(freeit); 725 return ret; 726 } 727 728 static void recover_rbio_work_locked(struct work_struct *work); 729 730 /* 731 * called as rmw or parity rebuild is completed. If the plug list has more 732 * rbios waiting for this stripe, the next one on the list will be started 733 */ 734 static noinline void unlock_stripe(struct btrfs_raid_bio *rbio) 735 { 736 int bucket; 737 struct btrfs_stripe_hash *h; 738 int keep_cache = 0; 739 740 bucket = rbio_bucket(rbio); 741 h = rbio->bioc->fs_info->stripe_hash_table->table + bucket; 742 743 if (list_empty(&rbio->plug_list)) 744 cache_rbio(rbio); 745 746 spin_lock(&h->lock); 747 spin_lock(&rbio->bio_list_lock); 748 749 if (!list_empty(&rbio->hash_list)) { 750 /* 751 * if we're still cached and there is no other IO 752 * to perform, just leave this rbio here for others 753 * to steal from later 754 */ 755 if (list_empty(&rbio->plug_list) && 756 test_bit(RBIO_CACHE_BIT, &rbio->flags)) { 757 keep_cache = 1; 758 clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); 759 BUG_ON(!bio_list_empty(&rbio->bio_list)); 760 goto done; 761 } 762 763 list_del_init(&rbio->hash_list); 764 refcount_dec(&rbio->refs); 765 766 /* 767 * we use the plug list to hold all the rbios 768 * waiting for the chance to lock this stripe. 769 * hand the lock over to one of them. 770 */ 771 if (!list_empty(&rbio->plug_list)) { 772 struct btrfs_raid_bio *next; 773 struct list_head *head = rbio->plug_list.next; 774 775 next = list_entry(head, struct btrfs_raid_bio, 776 plug_list); 777 778 list_del_init(&rbio->plug_list); 779 780 list_add(&next->hash_list, &h->hash_list); 781 refcount_inc(&next->refs); 782 spin_unlock(&rbio->bio_list_lock); 783 spin_unlock(&h->lock); 784 785 if (next->operation == BTRFS_RBIO_READ_REBUILD) { 786 start_async_work(next, recover_rbio_work_locked); 787 } else if (next->operation == BTRFS_RBIO_WRITE) { 788 steal_rbio(rbio, next); 789 start_async_work(next, rmw_rbio_work_locked); 790 } else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) { 791 steal_rbio(rbio, next); 792 start_async_work(next, scrub_rbio_work_locked); 793 } 794 795 goto done_nolock; 796 } 797 } 798 done: 799 spin_unlock(&rbio->bio_list_lock); 800 spin_unlock(&h->lock); 801 802 done_nolock: 803 if (!keep_cache) 804 remove_rbio_from_cache(rbio); 805 } 806 807 static void rbio_endio_bio_list(struct bio *cur, blk_status_t err) 808 { 809 struct bio *next; 810 811 while (cur) { 812 next = cur->bi_next; 813 cur->bi_next = NULL; 814 cur->bi_status = err; 815 bio_endio(cur); 816 cur = next; 817 } 818 } 819 820 /* 821 * this frees the rbio and runs through all the bios in the 822 * bio_list and calls end_io on them 823 */ 824 static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err) 825 { 826 struct bio *cur = bio_list_get(&rbio->bio_list); 827 struct bio *extra; 828 829 kfree(rbio->csum_buf); 830 bitmap_free(rbio->csum_bitmap); 831 rbio->csum_buf = NULL; 832 rbio->csum_bitmap = NULL; 833 834 /* 835 * Clear the data bitmap, as the rbio may be cached for later usage. 836 * do this before before unlock_stripe() so there will be no new bio 837 * for this bio. 838 */ 839 bitmap_clear(&rbio->dbitmap, 0, rbio->stripe_nsectors); 840 841 /* 842 * At this moment, rbio->bio_list is empty, however since rbio does not 843 * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the 844 * hash list, rbio may be merged with others so that rbio->bio_list 845 * becomes non-empty. 846 * Once unlock_stripe() is done, rbio->bio_list will not be updated any 847 * more and we can call bio_endio() on all queued bios. 848 */ 849 unlock_stripe(rbio); 850 extra = bio_list_get(&rbio->bio_list); 851 free_raid_bio(rbio); 852 853 rbio_endio_bio_list(cur, err); 854 if (extra) 855 rbio_endio_bio_list(extra, err); 856 } 857 858 /* 859 * Get a sector pointer specified by its @stripe_nr and @sector_nr. 860 * 861 * @rbio: The raid bio 862 * @stripe_nr: Stripe number, valid range [0, real_stripe) 863 * @sector_nr: Sector number inside the stripe, 864 * valid range [0, stripe_nsectors) 865 * @bio_list_only: Whether to use sectors inside the bio list only. 866 * 867 * The read/modify/write code wants to reuse the original bio page as much 868 * as possible, and only use stripe_sectors as fallback. 869 */ 870 static struct sector_ptr *sector_in_rbio(struct btrfs_raid_bio *rbio, 871 int stripe_nr, int sector_nr, 872 bool bio_list_only) 873 { 874 struct sector_ptr *sector; 875 int index; 876 877 ASSERT(stripe_nr >= 0 && stripe_nr < rbio->real_stripes); 878 ASSERT(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors); 879 880 index = stripe_nr * rbio->stripe_nsectors + sector_nr; 881 ASSERT(index >= 0 && index < rbio->nr_sectors); 882 883 spin_lock(&rbio->bio_list_lock); 884 sector = &rbio->bio_sectors[index]; 885 if (sector->page || bio_list_only) { 886 /* Don't return sector without a valid page pointer */ 887 if (!sector->page) 888 sector = NULL; 889 spin_unlock(&rbio->bio_list_lock); 890 return sector; 891 } 892 spin_unlock(&rbio->bio_list_lock); 893 894 return &rbio->stripe_sectors[index]; 895 } 896 897 /* 898 * allocation and initial setup for the btrfs_raid_bio. Not 899 * this does not allocate any pages for rbio->pages. 900 */ 901 static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info, 902 struct btrfs_io_context *bioc) 903 { 904 const unsigned int real_stripes = bioc->num_stripes - bioc->replace_nr_stripes; 905 const unsigned int stripe_npages = BTRFS_STRIPE_LEN >> PAGE_SHIFT; 906 const unsigned int num_pages = stripe_npages * real_stripes; 907 const unsigned int stripe_nsectors = 908 BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits; 909 const unsigned int num_sectors = stripe_nsectors * real_stripes; 910 struct btrfs_raid_bio *rbio; 911 912 /* PAGE_SIZE must also be aligned to sectorsize for subpage support */ 913 ASSERT(IS_ALIGNED(PAGE_SIZE, fs_info->sectorsize)); 914 /* 915 * Our current stripe len should be fixed to 64k thus stripe_nsectors 916 * (at most 16) should be no larger than BITS_PER_LONG. 917 */ 918 ASSERT(stripe_nsectors <= BITS_PER_LONG); 919 920 /* 921 * Real stripes must be between 2 (2 disks RAID5, aka RAID1) and 256 922 * (limited by u8). 923 */ 924 ASSERT(real_stripes >= 2); 925 ASSERT(real_stripes <= U8_MAX); 926 927 rbio = kzalloc(sizeof(*rbio), GFP_NOFS); 928 if (!rbio) 929 return ERR_PTR(-ENOMEM); 930 rbio->stripe_pages = kcalloc(num_pages, sizeof(struct page *), 931 GFP_NOFS); 932 rbio->bio_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr), 933 GFP_NOFS); 934 rbio->stripe_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr), 935 GFP_NOFS); 936 rbio->finish_pointers = kcalloc(real_stripes, sizeof(void *), GFP_NOFS); 937 rbio->error_bitmap = bitmap_zalloc(num_sectors, GFP_NOFS); 938 939 if (!rbio->stripe_pages || !rbio->bio_sectors || !rbio->stripe_sectors || 940 !rbio->finish_pointers || !rbio->error_bitmap) { 941 free_raid_bio_pointers(rbio); 942 kfree(rbio); 943 return ERR_PTR(-ENOMEM); 944 } 945 946 bio_list_init(&rbio->bio_list); 947 init_waitqueue_head(&rbio->io_wait); 948 INIT_LIST_HEAD(&rbio->plug_list); 949 spin_lock_init(&rbio->bio_list_lock); 950 INIT_LIST_HEAD(&rbio->stripe_cache); 951 INIT_LIST_HEAD(&rbio->hash_list); 952 btrfs_get_bioc(bioc); 953 rbio->bioc = bioc; 954 rbio->nr_pages = num_pages; 955 rbio->nr_sectors = num_sectors; 956 rbio->real_stripes = real_stripes; 957 rbio->stripe_npages = stripe_npages; 958 rbio->stripe_nsectors = stripe_nsectors; 959 refcount_set(&rbio->refs, 1); 960 atomic_set(&rbio->stripes_pending, 0); 961 962 ASSERT(btrfs_nr_parity_stripes(bioc->map_type)); 963 rbio->nr_data = real_stripes - btrfs_nr_parity_stripes(bioc->map_type); 964 ASSERT(rbio->nr_data > 0); 965 966 return rbio; 967 } 968 969 /* allocate pages for all the stripes in the bio, including parity */ 970 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio) 971 { 972 int ret; 973 974 ret = btrfs_alloc_page_array(rbio->nr_pages, rbio->stripe_pages, 0); 975 if (ret < 0) 976 return ret; 977 /* Mapping all sectors */ 978 index_stripe_sectors(rbio); 979 return 0; 980 } 981 982 /* only allocate pages for p/q stripes */ 983 static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio) 984 { 985 const int data_pages = rbio->nr_data * rbio->stripe_npages; 986 int ret; 987 988 ret = btrfs_alloc_page_array(rbio->nr_pages - data_pages, 989 rbio->stripe_pages + data_pages, 0); 990 if (ret < 0) 991 return ret; 992 993 index_stripe_sectors(rbio); 994 return 0; 995 } 996 997 /* 998 * Return the total number of errors found in the vertical stripe of @sector_nr. 999 * 1000 * @faila and @failb will also be updated to the first and second stripe 1001 * number of the errors. 1002 */ 1003 static int get_rbio_veritical_errors(struct btrfs_raid_bio *rbio, int sector_nr, 1004 int *faila, int *failb) 1005 { 1006 int stripe_nr; 1007 int found_errors = 0; 1008 1009 if (faila || failb) { 1010 /* 1011 * Both @faila and @failb should be valid pointers if any of 1012 * them is specified. 1013 */ 1014 ASSERT(faila && failb); 1015 *faila = -1; 1016 *failb = -1; 1017 } 1018 1019 for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) { 1020 int total_sector_nr = stripe_nr * rbio->stripe_nsectors + sector_nr; 1021 1022 if (test_bit(total_sector_nr, rbio->error_bitmap)) { 1023 found_errors++; 1024 if (faila) { 1025 /* Update faila and failb. */ 1026 if (*faila < 0) 1027 *faila = stripe_nr; 1028 else if (*failb < 0) 1029 *failb = stripe_nr; 1030 } 1031 } 1032 } 1033 return found_errors; 1034 } 1035 1036 /* 1037 * Add a single sector @sector into our list of bios for IO. 1038 * 1039 * Return 0 if everything went well. 1040 * Return <0 for error. 1041 */ 1042 static int rbio_add_io_sector(struct btrfs_raid_bio *rbio, 1043 struct bio_list *bio_list, 1044 struct sector_ptr *sector, 1045 unsigned int stripe_nr, 1046 unsigned int sector_nr, 1047 enum req_op op) 1048 { 1049 const u32 sectorsize = rbio->bioc->fs_info->sectorsize; 1050 struct bio *last = bio_list->tail; 1051 int ret; 1052 struct bio *bio; 1053 struct btrfs_io_stripe *stripe; 1054 u64 disk_start; 1055 1056 /* 1057 * Note: here stripe_nr has taken device replace into consideration, 1058 * thus it can be larger than rbio->real_stripe. 1059 * So here we check against bioc->num_stripes, not rbio->real_stripes. 1060 */ 1061 ASSERT(stripe_nr >= 0 && stripe_nr < rbio->bioc->num_stripes); 1062 ASSERT(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors); 1063 ASSERT(sector->page); 1064 1065 stripe = &rbio->bioc->stripes[stripe_nr]; 1066 disk_start = stripe->physical + sector_nr * sectorsize; 1067 1068 /* if the device is missing, just fail this stripe */ 1069 if (!stripe->dev->bdev) { 1070 int found_errors; 1071 1072 set_bit(stripe_nr * rbio->stripe_nsectors + sector_nr, 1073 rbio->error_bitmap); 1074 1075 /* Check if we have reached tolerance early. */ 1076 found_errors = get_rbio_veritical_errors(rbio, sector_nr, 1077 NULL, NULL); 1078 if (found_errors > rbio->bioc->max_errors) 1079 return -EIO; 1080 return 0; 1081 } 1082 1083 /* see if we can add this page onto our existing bio */ 1084 if (last) { 1085 u64 last_end = last->bi_iter.bi_sector << SECTOR_SHIFT; 1086 last_end += last->bi_iter.bi_size; 1087 1088 /* 1089 * we can't merge these if they are from different 1090 * devices or if they are not contiguous 1091 */ 1092 if (last_end == disk_start && !last->bi_status && 1093 last->bi_bdev == stripe->dev->bdev) { 1094 ret = bio_add_page(last, sector->page, sectorsize, 1095 sector->pgoff); 1096 if (ret == sectorsize) 1097 return 0; 1098 } 1099 } 1100 1101 /* put a new bio on the list */ 1102 bio = bio_alloc(stripe->dev->bdev, 1103 max(BTRFS_STRIPE_LEN >> PAGE_SHIFT, 1), 1104 op, GFP_NOFS); 1105 bio->bi_iter.bi_sector = disk_start >> SECTOR_SHIFT; 1106 bio->bi_private = rbio; 1107 1108 __bio_add_page(bio, sector->page, sectorsize, sector->pgoff); 1109 bio_list_add(bio_list, bio); 1110 return 0; 1111 } 1112 1113 static void index_one_bio(struct btrfs_raid_bio *rbio, struct bio *bio) 1114 { 1115 const u32 sectorsize = rbio->bioc->fs_info->sectorsize; 1116 struct bio_vec bvec; 1117 struct bvec_iter iter; 1118 u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) - 1119 rbio->bioc->full_stripe_logical; 1120 1121 bio_for_each_segment(bvec, bio, iter) { 1122 u32 bvec_offset; 1123 1124 for (bvec_offset = 0; bvec_offset < bvec.bv_len; 1125 bvec_offset += sectorsize, offset += sectorsize) { 1126 int index = offset / sectorsize; 1127 struct sector_ptr *sector = &rbio->bio_sectors[index]; 1128 1129 sector->page = bvec.bv_page; 1130 sector->pgoff = bvec.bv_offset + bvec_offset; 1131 ASSERT(sector->pgoff < PAGE_SIZE); 1132 } 1133 } 1134 } 1135 1136 /* 1137 * helper function to walk our bio list and populate the bio_pages array with 1138 * the result. This seems expensive, but it is faster than constantly 1139 * searching through the bio list as we setup the IO in finish_rmw or stripe 1140 * reconstruction. 1141 * 1142 * This must be called before you trust the answers from page_in_rbio 1143 */ 1144 static void index_rbio_pages(struct btrfs_raid_bio *rbio) 1145 { 1146 struct bio *bio; 1147 1148 spin_lock(&rbio->bio_list_lock); 1149 bio_list_for_each(bio, &rbio->bio_list) 1150 index_one_bio(rbio, bio); 1151 1152 spin_unlock(&rbio->bio_list_lock); 1153 } 1154 1155 static void bio_get_trace_info(struct btrfs_raid_bio *rbio, struct bio *bio, 1156 struct raid56_bio_trace_info *trace_info) 1157 { 1158 const struct btrfs_io_context *bioc = rbio->bioc; 1159 int i; 1160 1161 ASSERT(bioc); 1162 1163 /* We rely on bio->bi_bdev to find the stripe number. */ 1164 if (!bio->bi_bdev) 1165 goto not_found; 1166 1167 for (i = 0; i < bioc->num_stripes; i++) { 1168 if (bio->bi_bdev != bioc->stripes[i].dev->bdev) 1169 continue; 1170 trace_info->stripe_nr = i; 1171 trace_info->devid = bioc->stripes[i].dev->devid; 1172 trace_info->offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) - 1173 bioc->stripes[i].physical; 1174 return; 1175 } 1176 1177 not_found: 1178 trace_info->devid = -1; 1179 trace_info->offset = -1; 1180 trace_info->stripe_nr = -1; 1181 } 1182 1183 static inline void bio_list_put(struct bio_list *bio_list) 1184 { 1185 struct bio *bio; 1186 1187 while ((bio = bio_list_pop(bio_list))) 1188 bio_put(bio); 1189 } 1190 1191 static void assert_rbio(struct btrfs_raid_bio *rbio) 1192 { 1193 if (!IS_ENABLED(CONFIG_BTRFS_DEBUG) || 1194 !IS_ENABLED(CONFIG_BTRFS_ASSERT)) 1195 return; 1196 1197 /* 1198 * At least two stripes (2 disks RAID5), and since real_stripes is U8, 1199 * we won't go beyond 256 disks anyway. 1200 */ 1201 ASSERT(rbio->real_stripes >= 2); 1202 ASSERT(rbio->nr_data > 0); 1203 1204 /* 1205 * This is another check to make sure nr data stripes is smaller 1206 * than total stripes. 1207 */ 1208 ASSERT(rbio->nr_data < rbio->real_stripes); 1209 } 1210 1211 /* Generate PQ for one vertical stripe. */ 1212 static void generate_pq_vertical(struct btrfs_raid_bio *rbio, int sectornr) 1213 { 1214 void **pointers = rbio->finish_pointers; 1215 const u32 sectorsize = rbio->bioc->fs_info->sectorsize; 1216 struct sector_ptr *sector; 1217 int stripe; 1218 const bool has_qstripe = rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6; 1219 1220 /* First collect one sector from each data stripe */ 1221 for (stripe = 0; stripe < rbio->nr_data; stripe++) { 1222 sector = sector_in_rbio(rbio, stripe, sectornr, 0); 1223 pointers[stripe] = kmap_local_page(sector->page) + 1224 sector->pgoff; 1225 } 1226 1227 /* Then add the parity stripe */ 1228 sector = rbio_pstripe_sector(rbio, sectornr); 1229 sector->uptodate = 1; 1230 pointers[stripe++] = kmap_local_page(sector->page) + sector->pgoff; 1231 1232 if (has_qstripe) { 1233 /* 1234 * RAID6, add the qstripe and call the library function 1235 * to fill in our p/q 1236 */ 1237 sector = rbio_qstripe_sector(rbio, sectornr); 1238 sector->uptodate = 1; 1239 pointers[stripe++] = kmap_local_page(sector->page) + 1240 sector->pgoff; 1241 1242 assert_rbio(rbio); 1243 raid6_call.gen_syndrome(rbio->real_stripes, sectorsize, 1244 pointers); 1245 } else { 1246 /* raid5 */ 1247 memcpy(pointers[rbio->nr_data], pointers[0], sectorsize); 1248 run_xor(pointers + 1, rbio->nr_data - 1, sectorsize); 1249 } 1250 for (stripe = stripe - 1; stripe >= 0; stripe--) 1251 kunmap_local(pointers[stripe]); 1252 } 1253 1254 static int rmw_assemble_write_bios(struct btrfs_raid_bio *rbio, 1255 struct bio_list *bio_list) 1256 { 1257 /* The total sector number inside the full stripe. */ 1258 int total_sector_nr; 1259 int sectornr; 1260 int stripe; 1261 int ret; 1262 1263 ASSERT(bio_list_size(bio_list) == 0); 1264 1265 /* We should have at least one data sector. */ 1266 ASSERT(bitmap_weight(&rbio->dbitmap, rbio->stripe_nsectors)); 1267 1268 /* 1269 * Reset errors, as we may have errors inherited from from degraded 1270 * write. 1271 */ 1272 bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors); 1273 1274 /* 1275 * Start assembly. Make bios for everything from the higher layers (the 1276 * bio_list in our rbio) and our P/Q. Ignore everything else. 1277 */ 1278 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors; 1279 total_sector_nr++) { 1280 struct sector_ptr *sector; 1281 1282 stripe = total_sector_nr / rbio->stripe_nsectors; 1283 sectornr = total_sector_nr % rbio->stripe_nsectors; 1284 1285 /* This vertical stripe has no data, skip it. */ 1286 if (!test_bit(sectornr, &rbio->dbitmap)) 1287 continue; 1288 1289 if (stripe < rbio->nr_data) { 1290 sector = sector_in_rbio(rbio, stripe, sectornr, 1); 1291 if (!sector) 1292 continue; 1293 } else { 1294 sector = rbio_stripe_sector(rbio, stripe, sectornr); 1295 } 1296 1297 ret = rbio_add_io_sector(rbio, bio_list, sector, stripe, 1298 sectornr, REQ_OP_WRITE); 1299 if (ret) 1300 goto error; 1301 } 1302 1303 if (likely(!rbio->bioc->replace_nr_stripes)) 1304 return 0; 1305 1306 /* 1307 * Make a copy for the replace target device. 1308 * 1309 * Thus the source stripe number (in replace_stripe_src) should be valid. 1310 */ 1311 ASSERT(rbio->bioc->replace_stripe_src >= 0); 1312 1313 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors; 1314 total_sector_nr++) { 1315 struct sector_ptr *sector; 1316 1317 stripe = total_sector_nr / rbio->stripe_nsectors; 1318 sectornr = total_sector_nr % rbio->stripe_nsectors; 1319 1320 /* 1321 * For RAID56, there is only one device that can be replaced, 1322 * and replace_stripe_src[0] indicates the stripe number we 1323 * need to copy from. 1324 */ 1325 if (stripe != rbio->bioc->replace_stripe_src) { 1326 /* 1327 * We can skip the whole stripe completely, note 1328 * total_sector_nr will be increased by one anyway. 1329 */ 1330 ASSERT(sectornr == 0); 1331 total_sector_nr += rbio->stripe_nsectors - 1; 1332 continue; 1333 } 1334 1335 /* This vertical stripe has no data, skip it. */ 1336 if (!test_bit(sectornr, &rbio->dbitmap)) 1337 continue; 1338 1339 if (stripe < rbio->nr_data) { 1340 sector = sector_in_rbio(rbio, stripe, sectornr, 1); 1341 if (!sector) 1342 continue; 1343 } else { 1344 sector = rbio_stripe_sector(rbio, stripe, sectornr); 1345 } 1346 1347 ret = rbio_add_io_sector(rbio, bio_list, sector, 1348 rbio->real_stripes, 1349 sectornr, REQ_OP_WRITE); 1350 if (ret) 1351 goto error; 1352 } 1353 1354 return 0; 1355 error: 1356 bio_list_put(bio_list); 1357 return -EIO; 1358 } 1359 1360 static void set_rbio_range_error(struct btrfs_raid_bio *rbio, struct bio *bio) 1361 { 1362 struct btrfs_fs_info *fs_info = rbio->bioc->fs_info; 1363 u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) - 1364 rbio->bioc->full_stripe_logical; 1365 int total_nr_sector = offset >> fs_info->sectorsize_bits; 1366 1367 ASSERT(total_nr_sector < rbio->nr_data * rbio->stripe_nsectors); 1368 1369 bitmap_set(rbio->error_bitmap, total_nr_sector, 1370 bio->bi_iter.bi_size >> fs_info->sectorsize_bits); 1371 1372 /* 1373 * Special handling for raid56_alloc_missing_rbio() used by 1374 * scrub/replace. Unlike call path in raid56_parity_recover(), they 1375 * pass an empty bio here. Thus we have to find out the missing device 1376 * and mark the stripe error instead. 1377 */ 1378 if (bio->bi_iter.bi_size == 0) { 1379 bool found_missing = false; 1380 int stripe_nr; 1381 1382 for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) { 1383 if (!rbio->bioc->stripes[stripe_nr].dev->bdev) { 1384 found_missing = true; 1385 bitmap_set(rbio->error_bitmap, 1386 stripe_nr * rbio->stripe_nsectors, 1387 rbio->stripe_nsectors); 1388 } 1389 } 1390 ASSERT(found_missing); 1391 } 1392 } 1393 1394 /* 1395 * For subpage case, we can no longer set page Up-to-date directly for 1396 * stripe_pages[], thus we need to locate the sector. 1397 */ 1398 static struct sector_ptr *find_stripe_sector(struct btrfs_raid_bio *rbio, 1399 struct page *page, 1400 unsigned int pgoff) 1401 { 1402 int i; 1403 1404 for (i = 0; i < rbio->nr_sectors; i++) { 1405 struct sector_ptr *sector = &rbio->stripe_sectors[i]; 1406 1407 if (sector->page == page && sector->pgoff == pgoff) 1408 return sector; 1409 } 1410 return NULL; 1411 } 1412 1413 /* 1414 * this sets each page in the bio uptodate. It should only be used on private 1415 * rbio pages, nothing that comes in from the higher layers 1416 */ 1417 static void set_bio_pages_uptodate(struct btrfs_raid_bio *rbio, struct bio *bio) 1418 { 1419 const u32 sectorsize = rbio->bioc->fs_info->sectorsize; 1420 struct bio_vec *bvec; 1421 struct bvec_iter_all iter_all; 1422 1423 ASSERT(!bio_flagged(bio, BIO_CLONED)); 1424 1425 bio_for_each_segment_all(bvec, bio, iter_all) { 1426 struct sector_ptr *sector; 1427 int pgoff; 1428 1429 for (pgoff = bvec->bv_offset; pgoff - bvec->bv_offset < bvec->bv_len; 1430 pgoff += sectorsize) { 1431 sector = find_stripe_sector(rbio, bvec->bv_page, pgoff); 1432 ASSERT(sector); 1433 if (sector) 1434 sector->uptodate = 1; 1435 } 1436 } 1437 } 1438 1439 static int get_bio_sector_nr(struct btrfs_raid_bio *rbio, struct bio *bio) 1440 { 1441 struct bio_vec *bv = bio_first_bvec_all(bio); 1442 int i; 1443 1444 for (i = 0; i < rbio->nr_sectors; i++) { 1445 struct sector_ptr *sector; 1446 1447 sector = &rbio->stripe_sectors[i]; 1448 if (sector->page == bv->bv_page && sector->pgoff == bv->bv_offset) 1449 break; 1450 sector = &rbio->bio_sectors[i]; 1451 if (sector->page == bv->bv_page && sector->pgoff == bv->bv_offset) 1452 break; 1453 } 1454 ASSERT(i < rbio->nr_sectors); 1455 return i; 1456 } 1457 1458 static void rbio_update_error_bitmap(struct btrfs_raid_bio *rbio, struct bio *bio) 1459 { 1460 int total_sector_nr = get_bio_sector_nr(rbio, bio); 1461 u32 bio_size = 0; 1462 struct bio_vec *bvec; 1463 int i; 1464 1465 bio_for_each_bvec_all(bvec, bio, i) 1466 bio_size += bvec->bv_len; 1467 1468 /* 1469 * Since we can have multiple bios touching the error_bitmap, we cannot 1470 * call bitmap_set() without protection. 1471 * 1472 * Instead use set_bit() for each bit, as set_bit() itself is atomic. 1473 */ 1474 for (i = total_sector_nr; i < total_sector_nr + 1475 (bio_size >> rbio->bioc->fs_info->sectorsize_bits); i++) 1476 set_bit(i, rbio->error_bitmap); 1477 } 1478 1479 /* Verify the data sectors at read time. */ 1480 static void verify_bio_data_sectors(struct btrfs_raid_bio *rbio, 1481 struct bio *bio) 1482 { 1483 struct btrfs_fs_info *fs_info = rbio->bioc->fs_info; 1484 int total_sector_nr = get_bio_sector_nr(rbio, bio); 1485 struct bio_vec *bvec; 1486 struct bvec_iter_all iter_all; 1487 1488 /* No data csum for the whole stripe, no need to verify. */ 1489 if (!rbio->csum_bitmap || !rbio->csum_buf) 1490 return; 1491 1492 /* P/Q stripes, they have no data csum to verify against. */ 1493 if (total_sector_nr >= rbio->nr_data * rbio->stripe_nsectors) 1494 return; 1495 1496 bio_for_each_segment_all(bvec, bio, iter_all) { 1497 int bv_offset; 1498 1499 for (bv_offset = bvec->bv_offset; 1500 bv_offset < bvec->bv_offset + bvec->bv_len; 1501 bv_offset += fs_info->sectorsize, total_sector_nr++) { 1502 u8 csum_buf[BTRFS_CSUM_SIZE]; 1503 u8 *expected_csum = rbio->csum_buf + 1504 total_sector_nr * fs_info->csum_size; 1505 int ret; 1506 1507 /* No csum for this sector, skip to the next sector. */ 1508 if (!test_bit(total_sector_nr, rbio->csum_bitmap)) 1509 continue; 1510 1511 ret = btrfs_check_sector_csum(fs_info, bvec->bv_page, 1512 bv_offset, csum_buf, expected_csum); 1513 if (ret < 0) 1514 set_bit(total_sector_nr, rbio->error_bitmap); 1515 } 1516 } 1517 } 1518 1519 static void raid_wait_read_end_io(struct bio *bio) 1520 { 1521 struct btrfs_raid_bio *rbio = bio->bi_private; 1522 1523 if (bio->bi_status) { 1524 rbio_update_error_bitmap(rbio, bio); 1525 } else { 1526 set_bio_pages_uptodate(rbio, bio); 1527 verify_bio_data_sectors(rbio, bio); 1528 } 1529 1530 bio_put(bio); 1531 if (atomic_dec_and_test(&rbio->stripes_pending)) 1532 wake_up(&rbio->io_wait); 1533 } 1534 1535 static void submit_read_wait_bio_list(struct btrfs_raid_bio *rbio, 1536 struct bio_list *bio_list) 1537 { 1538 struct bio *bio; 1539 1540 atomic_set(&rbio->stripes_pending, bio_list_size(bio_list)); 1541 while ((bio = bio_list_pop(bio_list))) { 1542 bio->bi_end_io = raid_wait_read_end_io; 1543 1544 if (trace_raid56_read_enabled()) { 1545 struct raid56_bio_trace_info trace_info = { 0 }; 1546 1547 bio_get_trace_info(rbio, bio, &trace_info); 1548 trace_raid56_read(rbio, bio, &trace_info); 1549 } 1550 submit_bio(bio); 1551 } 1552 1553 wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0); 1554 } 1555 1556 static int alloc_rbio_data_pages(struct btrfs_raid_bio *rbio) 1557 { 1558 const int data_pages = rbio->nr_data * rbio->stripe_npages; 1559 int ret; 1560 1561 ret = btrfs_alloc_page_array(data_pages, rbio->stripe_pages, 0); 1562 if (ret < 0) 1563 return ret; 1564 1565 index_stripe_sectors(rbio); 1566 return 0; 1567 } 1568 1569 /* 1570 * We use plugging call backs to collect full stripes. 1571 * Any time we get a partial stripe write while plugged 1572 * we collect it into a list. When the unplug comes down, 1573 * we sort the list by logical block number and merge 1574 * everything we can into the same rbios 1575 */ 1576 struct btrfs_plug_cb { 1577 struct blk_plug_cb cb; 1578 struct btrfs_fs_info *info; 1579 struct list_head rbio_list; 1580 }; 1581 1582 /* 1583 * rbios on the plug list are sorted for easier merging. 1584 */ 1585 static int plug_cmp(void *priv, const struct list_head *a, 1586 const struct list_head *b) 1587 { 1588 const struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio, 1589 plug_list); 1590 const struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio, 1591 plug_list); 1592 u64 a_sector = ra->bio_list.head->bi_iter.bi_sector; 1593 u64 b_sector = rb->bio_list.head->bi_iter.bi_sector; 1594 1595 if (a_sector < b_sector) 1596 return -1; 1597 if (a_sector > b_sector) 1598 return 1; 1599 return 0; 1600 } 1601 1602 static void raid_unplug(struct blk_plug_cb *cb, bool from_schedule) 1603 { 1604 struct btrfs_plug_cb *plug = container_of(cb, struct btrfs_plug_cb, cb); 1605 struct btrfs_raid_bio *cur; 1606 struct btrfs_raid_bio *last = NULL; 1607 1608 list_sort(NULL, &plug->rbio_list, plug_cmp); 1609 1610 while (!list_empty(&plug->rbio_list)) { 1611 cur = list_entry(plug->rbio_list.next, 1612 struct btrfs_raid_bio, plug_list); 1613 list_del_init(&cur->plug_list); 1614 1615 if (rbio_is_full(cur)) { 1616 /* We have a full stripe, queue it down. */ 1617 start_async_work(cur, rmw_rbio_work); 1618 continue; 1619 } 1620 if (last) { 1621 if (rbio_can_merge(last, cur)) { 1622 merge_rbio(last, cur); 1623 free_raid_bio(cur); 1624 continue; 1625 } 1626 start_async_work(last, rmw_rbio_work); 1627 } 1628 last = cur; 1629 } 1630 if (last) 1631 start_async_work(last, rmw_rbio_work); 1632 kfree(plug); 1633 } 1634 1635 /* Add the original bio into rbio->bio_list, and update rbio::dbitmap. */ 1636 static void rbio_add_bio(struct btrfs_raid_bio *rbio, struct bio *orig_bio) 1637 { 1638 const struct btrfs_fs_info *fs_info = rbio->bioc->fs_info; 1639 const u64 orig_logical = orig_bio->bi_iter.bi_sector << SECTOR_SHIFT; 1640 const u64 full_stripe_start = rbio->bioc->full_stripe_logical; 1641 const u32 orig_len = orig_bio->bi_iter.bi_size; 1642 const u32 sectorsize = fs_info->sectorsize; 1643 u64 cur_logical; 1644 1645 ASSERT(orig_logical >= full_stripe_start && 1646 orig_logical + orig_len <= full_stripe_start + 1647 rbio->nr_data * BTRFS_STRIPE_LEN); 1648 1649 bio_list_add(&rbio->bio_list, orig_bio); 1650 rbio->bio_list_bytes += orig_bio->bi_iter.bi_size; 1651 1652 /* Update the dbitmap. */ 1653 for (cur_logical = orig_logical; cur_logical < orig_logical + orig_len; 1654 cur_logical += sectorsize) { 1655 int bit = ((u32)(cur_logical - full_stripe_start) >> 1656 fs_info->sectorsize_bits) % rbio->stripe_nsectors; 1657 1658 set_bit(bit, &rbio->dbitmap); 1659 } 1660 } 1661 1662 /* 1663 * our main entry point for writes from the rest of the FS. 1664 */ 1665 void raid56_parity_write(struct bio *bio, struct btrfs_io_context *bioc) 1666 { 1667 struct btrfs_fs_info *fs_info = bioc->fs_info; 1668 struct btrfs_raid_bio *rbio; 1669 struct btrfs_plug_cb *plug = NULL; 1670 struct blk_plug_cb *cb; 1671 1672 rbio = alloc_rbio(fs_info, bioc); 1673 if (IS_ERR(rbio)) { 1674 bio->bi_status = errno_to_blk_status(PTR_ERR(rbio)); 1675 bio_endio(bio); 1676 return; 1677 } 1678 rbio->operation = BTRFS_RBIO_WRITE; 1679 rbio_add_bio(rbio, bio); 1680 1681 /* 1682 * Don't plug on full rbios, just get them out the door 1683 * as quickly as we can 1684 */ 1685 if (!rbio_is_full(rbio)) { 1686 cb = blk_check_plugged(raid_unplug, fs_info, sizeof(*plug)); 1687 if (cb) { 1688 plug = container_of(cb, struct btrfs_plug_cb, cb); 1689 if (!plug->info) { 1690 plug->info = fs_info; 1691 INIT_LIST_HEAD(&plug->rbio_list); 1692 } 1693 list_add_tail(&rbio->plug_list, &plug->rbio_list); 1694 return; 1695 } 1696 } 1697 1698 /* 1699 * Either we don't have any existing plug, or we're doing a full stripe, 1700 * queue the rmw work now. 1701 */ 1702 start_async_work(rbio, rmw_rbio_work); 1703 } 1704 1705 static int verify_one_sector(struct btrfs_raid_bio *rbio, 1706 int stripe_nr, int sector_nr) 1707 { 1708 struct btrfs_fs_info *fs_info = rbio->bioc->fs_info; 1709 struct sector_ptr *sector; 1710 u8 csum_buf[BTRFS_CSUM_SIZE]; 1711 u8 *csum_expected; 1712 int ret; 1713 1714 if (!rbio->csum_bitmap || !rbio->csum_buf) 1715 return 0; 1716 1717 /* No way to verify P/Q as they are not covered by data csum. */ 1718 if (stripe_nr >= rbio->nr_data) 1719 return 0; 1720 /* 1721 * If we're rebuilding a read, we have to use pages from the 1722 * bio list if possible. 1723 */ 1724 if (rbio->operation == BTRFS_RBIO_READ_REBUILD) { 1725 sector = sector_in_rbio(rbio, stripe_nr, sector_nr, 0); 1726 } else { 1727 sector = rbio_stripe_sector(rbio, stripe_nr, sector_nr); 1728 } 1729 1730 ASSERT(sector->page); 1731 1732 csum_expected = rbio->csum_buf + 1733 (stripe_nr * rbio->stripe_nsectors + sector_nr) * 1734 fs_info->csum_size; 1735 ret = btrfs_check_sector_csum(fs_info, sector->page, sector->pgoff, 1736 csum_buf, csum_expected); 1737 return ret; 1738 } 1739 1740 /* 1741 * Recover a vertical stripe specified by @sector_nr. 1742 * @*pointers are the pre-allocated pointers by the caller, so we don't 1743 * need to allocate/free the pointers again and again. 1744 */ 1745 static int recover_vertical(struct btrfs_raid_bio *rbio, int sector_nr, 1746 void **pointers, void **unmap_array) 1747 { 1748 struct btrfs_fs_info *fs_info = rbio->bioc->fs_info; 1749 struct sector_ptr *sector; 1750 const u32 sectorsize = fs_info->sectorsize; 1751 int found_errors; 1752 int faila; 1753 int failb; 1754 int stripe_nr; 1755 int ret = 0; 1756 1757 /* 1758 * Now we just use bitmap to mark the horizontal stripes in 1759 * which we have data when doing parity scrub. 1760 */ 1761 if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB && 1762 !test_bit(sector_nr, &rbio->dbitmap)) 1763 return 0; 1764 1765 found_errors = get_rbio_veritical_errors(rbio, sector_nr, &faila, 1766 &failb); 1767 /* 1768 * No errors in the vertical stripe, skip it. Can happen for recovery 1769 * which only part of a stripe failed csum check. 1770 */ 1771 if (!found_errors) 1772 return 0; 1773 1774 if (found_errors > rbio->bioc->max_errors) 1775 return -EIO; 1776 1777 /* 1778 * Setup our array of pointers with sectors from each stripe 1779 * 1780 * NOTE: store a duplicate array of pointers to preserve the 1781 * pointer order. 1782 */ 1783 for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) { 1784 /* 1785 * If we're rebuilding a read, we have to use pages from the 1786 * bio list if possible. 1787 */ 1788 if (rbio->operation == BTRFS_RBIO_READ_REBUILD) { 1789 sector = sector_in_rbio(rbio, stripe_nr, sector_nr, 0); 1790 } else { 1791 sector = rbio_stripe_sector(rbio, stripe_nr, sector_nr); 1792 } 1793 ASSERT(sector->page); 1794 pointers[stripe_nr] = kmap_local_page(sector->page) + 1795 sector->pgoff; 1796 unmap_array[stripe_nr] = pointers[stripe_nr]; 1797 } 1798 1799 /* All raid6 handling here */ 1800 if (rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6) { 1801 /* Single failure, rebuild from parity raid5 style */ 1802 if (failb < 0) { 1803 if (faila == rbio->nr_data) 1804 /* 1805 * Just the P stripe has failed, without 1806 * a bad data or Q stripe. 1807 * We have nothing to do, just skip the 1808 * recovery for this stripe. 1809 */ 1810 goto cleanup; 1811 /* 1812 * a single failure in raid6 is rebuilt 1813 * in the pstripe code below 1814 */ 1815 goto pstripe; 1816 } 1817 1818 /* 1819 * If the q stripe is failed, do a pstripe reconstruction from 1820 * the xors. 1821 * If both the q stripe and the P stripe are failed, we're 1822 * here due to a crc mismatch and we can't give them the 1823 * data they want. 1824 */ 1825 if (failb == rbio->real_stripes - 1) { 1826 if (faila == rbio->real_stripes - 2) 1827 /* 1828 * Only P and Q are corrupted. 1829 * We only care about data stripes recovery, 1830 * can skip this vertical stripe. 1831 */ 1832 goto cleanup; 1833 /* 1834 * Otherwise we have one bad data stripe and 1835 * a good P stripe. raid5! 1836 */ 1837 goto pstripe; 1838 } 1839 1840 if (failb == rbio->real_stripes - 2) { 1841 raid6_datap_recov(rbio->real_stripes, sectorsize, 1842 faila, pointers); 1843 } else { 1844 raid6_2data_recov(rbio->real_stripes, sectorsize, 1845 faila, failb, pointers); 1846 } 1847 } else { 1848 void *p; 1849 1850 /* Rebuild from P stripe here (raid5 or raid6). */ 1851 ASSERT(failb == -1); 1852 pstripe: 1853 /* Copy parity block into failed block to start with */ 1854 memcpy(pointers[faila], pointers[rbio->nr_data], sectorsize); 1855 1856 /* Rearrange the pointer array */ 1857 p = pointers[faila]; 1858 for (stripe_nr = faila; stripe_nr < rbio->nr_data - 1; 1859 stripe_nr++) 1860 pointers[stripe_nr] = pointers[stripe_nr + 1]; 1861 pointers[rbio->nr_data - 1] = p; 1862 1863 /* Xor in the rest */ 1864 run_xor(pointers, rbio->nr_data - 1, sectorsize); 1865 1866 } 1867 1868 /* 1869 * No matter if this is a RMW or recovery, we should have all 1870 * failed sectors repaired in the vertical stripe, thus they are now 1871 * uptodate. 1872 * Especially if we determine to cache the rbio, we need to 1873 * have at least all data sectors uptodate. 1874 * 1875 * If possible, also check if the repaired sector matches its data 1876 * checksum. 1877 */ 1878 if (faila >= 0) { 1879 ret = verify_one_sector(rbio, faila, sector_nr); 1880 if (ret < 0) 1881 goto cleanup; 1882 1883 sector = rbio_stripe_sector(rbio, faila, sector_nr); 1884 sector->uptodate = 1; 1885 } 1886 if (failb >= 0) { 1887 ret = verify_one_sector(rbio, failb, sector_nr); 1888 if (ret < 0) 1889 goto cleanup; 1890 1891 sector = rbio_stripe_sector(rbio, failb, sector_nr); 1892 sector->uptodate = 1; 1893 } 1894 1895 cleanup: 1896 for (stripe_nr = rbio->real_stripes - 1; stripe_nr >= 0; stripe_nr--) 1897 kunmap_local(unmap_array[stripe_nr]); 1898 return ret; 1899 } 1900 1901 static int recover_sectors(struct btrfs_raid_bio *rbio) 1902 { 1903 void **pointers = NULL; 1904 void **unmap_array = NULL; 1905 int sectornr; 1906 int ret = 0; 1907 1908 /* 1909 * @pointers array stores the pointer for each sector. 1910 * 1911 * @unmap_array stores copy of pointers that does not get reordered 1912 * during reconstruction so that kunmap_local works. 1913 */ 1914 pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS); 1915 unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS); 1916 if (!pointers || !unmap_array) { 1917 ret = -ENOMEM; 1918 goto out; 1919 } 1920 1921 if (rbio->operation == BTRFS_RBIO_READ_REBUILD) { 1922 spin_lock(&rbio->bio_list_lock); 1923 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); 1924 spin_unlock(&rbio->bio_list_lock); 1925 } 1926 1927 index_rbio_pages(rbio); 1928 1929 for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) { 1930 ret = recover_vertical(rbio, sectornr, pointers, unmap_array); 1931 if (ret < 0) 1932 break; 1933 } 1934 1935 out: 1936 kfree(pointers); 1937 kfree(unmap_array); 1938 return ret; 1939 } 1940 1941 static void recover_rbio(struct btrfs_raid_bio *rbio) 1942 { 1943 struct bio_list bio_list = BIO_EMPTY_LIST; 1944 int total_sector_nr; 1945 int ret = 0; 1946 1947 /* 1948 * Either we're doing recover for a read failure or degraded write, 1949 * caller should have set error bitmap correctly. 1950 */ 1951 ASSERT(bitmap_weight(rbio->error_bitmap, rbio->nr_sectors)); 1952 1953 /* For recovery, we need to read all sectors including P/Q. */ 1954 ret = alloc_rbio_pages(rbio); 1955 if (ret < 0) 1956 goto out; 1957 1958 index_rbio_pages(rbio); 1959 1960 /* 1961 * Read everything that hasn't failed. However this time we will 1962 * not trust any cached sector. 1963 * As we may read out some stale data but higher layer is not reading 1964 * that stale part. 1965 * 1966 * So here we always re-read everything in recovery path. 1967 */ 1968 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors; 1969 total_sector_nr++) { 1970 int stripe = total_sector_nr / rbio->stripe_nsectors; 1971 int sectornr = total_sector_nr % rbio->stripe_nsectors; 1972 struct sector_ptr *sector; 1973 1974 /* 1975 * Skip the range which has error. It can be a range which is 1976 * marked error (for csum mismatch), or it can be a missing 1977 * device. 1978 */ 1979 if (!rbio->bioc->stripes[stripe].dev->bdev || 1980 test_bit(total_sector_nr, rbio->error_bitmap)) { 1981 /* 1982 * Also set the error bit for missing device, which 1983 * may not yet have its error bit set. 1984 */ 1985 set_bit(total_sector_nr, rbio->error_bitmap); 1986 continue; 1987 } 1988 1989 sector = rbio_stripe_sector(rbio, stripe, sectornr); 1990 ret = rbio_add_io_sector(rbio, &bio_list, sector, stripe, 1991 sectornr, REQ_OP_READ); 1992 if (ret < 0) { 1993 bio_list_put(&bio_list); 1994 goto out; 1995 } 1996 } 1997 1998 submit_read_wait_bio_list(rbio, &bio_list); 1999 ret = recover_sectors(rbio); 2000 out: 2001 rbio_orig_end_io(rbio, errno_to_blk_status(ret)); 2002 } 2003 2004 static void recover_rbio_work(struct work_struct *work) 2005 { 2006 struct btrfs_raid_bio *rbio; 2007 2008 rbio = container_of(work, struct btrfs_raid_bio, work); 2009 if (!lock_stripe_add(rbio)) 2010 recover_rbio(rbio); 2011 } 2012 2013 static void recover_rbio_work_locked(struct work_struct *work) 2014 { 2015 recover_rbio(container_of(work, struct btrfs_raid_bio, work)); 2016 } 2017 2018 static void set_rbio_raid6_extra_error(struct btrfs_raid_bio *rbio, int mirror_num) 2019 { 2020 bool found = false; 2021 int sector_nr; 2022 2023 /* 2024 * This is for RAID6 extra recovery tries, thus mirror number should 2025 * be large than 2. 2026 * Mirror 1 means read from data stripes. Mirror 2 means rebuild using 2027 * RAID5 methods. 2028 */ 2029 ASSERT(mirror_num > 2); 2030 for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) { 2031 int found_errors; 2032 int faila; 2033 int failb; 2034 2035 found_errors = get_rbio_veritical_errors(rbio, sector_nr, 2036 &faila, &failb); 2037 /* This vertical stripe doesn't have errors. */ 2038 if (!found_errors) 2039 continue; 2040 2041 /* 2042 * If we found errors, there should be only one error marked 2043 * by previous set_rbio_range_error(). 2044 */ 2045 ASSERT(found_errors == 1); 2046 found = true; 2047 2048 /* Now select another stripe to mark as error. */ 2049 failb = rbio->real_stripes - (mirror_num - 1); 2050 if (failb <= faila) 2051 failb--; 2052 2053 /* Set the extra bit in error bitmap. */ 2054 if (failb >= 0) 2055 set_bit(failb * rbio->stripe_nsectors + sector_nr, 2056 rbio->error_bitmap); 2057 } 2058 2059 /* We should found at least one vertical stripe with error.*/ 2060 ASSERT(found); 2061 } 2062 2063 /* 2064 * the main entry point for reads from the higher layers. This 2065 * is really only called when the normal read path had a failure, 2066 * so we assume the bio they send down corresponds to a failed part 2067 * of the drive. 2068 */ 2069 void raid56_parity_recover(struct bio *bio, struct btrfs_io_context *bioc, 2070 int mirror_num) 2071 { 2072 struct btrfs_fs_info *fs_info = bioc->fs_info; 2073 struct btrfs_raid_bio *rbio; 2074 2075 rbio = alloc_rbio(fs_info, bioc); 2076 if (IS_ERR(rbio)) { 2077 bio->bi_status = errno_to_blk_status(PTR_ERR(rbio)); 2078 bio_endio(bio); 2079 return; 2080 } 2081 2082 rbio->operation = BTRFS_RBIO_READ_REBUILD; 2083 rbio_add_bio(rbio, bio); 2084 2085 set_rbio_range_error(rbio, bio); 2086 2087 /* 2088 * Loop retry: 2089 * for 'mirror == 2', reconstruct from all other stripes. 2090 * for 'mirror_num > 2', select a stripe to fail on every retry. 2091 */ 2092 if (mirror_num > 2) 2093 set_rbio_raid6_extra_error(rbio, mirror_num); 2094 2095 start_async_work(rbio, recover_rbio_work); 2096 } 2097 2098 static void fill_data_csums(struct btrfs_raid_bio *rbio) 2099 { 2100 struct btrfs_fs_info *fs_info = rbio->bioc->fs_info; 2101 struct btrfs_root *csum_root = btrfs_csum_root(fs_info, 2102 rbio->bioc->full_stripe_logical); 2103 const u64 start = rbio->bioc->full_stripe_logical; 2104 const u32 len = (rbio->nr_data * rbio->stripe_nsectors) << 2105 fs_info->sectorsize_bits; 2106 int ret; 2107 2108 /* The rbio should not have its csum buffer initialized. */ 2109 ASSERT(!rbio->csum_buf && !rbio->csum_bitmap); 2110 2111 /* 2112 * Skip the csum search if: 2113 * 2114 * - The rbio doesn't belong to data block groups 2115 * Then we are doing IO for tree blocks, no need to search csums. 2116 * 2117 * - The rbio belongs to mixed block groups 2118 * This is to avoid deadlock, as we're already holding the full 2119 * stripe lock, if we trigger a metadata read, and it needs to do 2120 * raid56 recovery, we will deadlock. 2121 */ 2122 if (!(rbio->bioc->map_type & BTRFS_BLOCK_GROUP_DATA) || 2123 rbio->bioc->map_type & BTRFS_BLOCK_GROUP_METADATA) 2124 return; 2125 2126 rbio->csum_buf = kzalloc(rbio->nr_data * rbio->stripe_nsectors * 2127 fs_info->csum_size, GFP_NOFS); 2128 rbio->csum_bitmap = bitmap_zalloc(rbio->nr_data * rbio->stripe_nsectors, 2129 GFP_NOFS); 2130 if (!rbio->csum_buf || !rbio->csum_bitmap) { 2131 ret = -ENOMEM; 2132 goto error; 2133 } 2134 2135 ret = btrfs_lookup_csums_bitmap(csum_root, NULL, start, start + len - 1, 2136 rbio->csum_buf, rbio->csum_bitmap); 2137 if (ret < 0) 2138 goto error; 2139 if (bitmap_empty(rbio->csum_bitmap, len >> fs_info->sectorsize_bits)) 2140 goto no_csum; 2141 return; 2142 2143 error: 2144 /* 2145 * We failed to allocate memory or grab the csum, but it's not fatal, 2146 * we can still continue. But better to warn users that RMW is no 2147 * longer safe for this particular sub-stripe write. 2148 */ 2149 btrfs_warn_rl(fs_info, 2150 "sub-stripe write for full stripe %llu is not safe, failed to get csum: %d", 2151 rbio->bioc->full_stripe_logical, ret); 2152 no_csum: 2153 kfree(rbio->csum_buf); 2154 bitmap_free(rbio->csum_bitmap); 2155 rbio->csum_buf = NULL; 2156 rbio->csum_bitmap = NULL; 2157 } 2158 2159 static int rmw_read_wait_recover(struct btrfs_raid_bio *rbio) 2160 { 2161 struct bio_list bio_list = BIO_EMPTY_LIST; 2162 int total_sector_nr; 2163 int ret = 0; 2164 2165 /* 2166 * Fill the data csums we need for data verification. We need to fill 2167 * the csum_bitmap/csum_buf first, as our endio function will try to 2168 * verify the data sectors. 2169 */ 2170 fill_data_csums(rbio); 2171 2172 /* 2173 * Build a list of bios to read all sectors (including data and P/Q). 2174 * 2175 * This behavior is to compensate the later csum verification and recovery. 2176 */ 2177 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors; 2178 total_sector_nr++) { 2179 struct sector_ptr *sector; 2180 int stripe = total_sector_nr / rbio->stripe_nsectors; 2181 int sectornr = total_sector_nr % rbio->stripe_nsectors; 2182 2183 sector = rbio_stripe_sector(rbio, stripe, sectornr); 2184 ret = rbio_add_io_sector(rbio, &bio_list, sector, 2185 stripe, sectornr, REQ_OP_READ); 2186 if (ret) { 2187 bio_list_put(&bio_list); 2188 return ret; 2189 } 2190 } 2191 2192 /* 2193 * We may or may not have any corrupted sectors (including missing dev 2194 * and csum mismatch), just let recover_sectors() to handle them all. 2195 */ 2196 submit_read_wait_bio_list(rbio, &bio_list); 2197 return recover_sectors(rbio); 2198 } 2199 2200 static void raid_wait_write_end_io(struct bio *bio) 2201 { 2202 struct btrfs_raid_bio *rbio = bio->bi_private; 2203 blk_status_t err = bio->bi_status; 2204 2205 if (err) 2206 rbio_update_error_bitmap(rbio, bio); 2207 bio_put(bio); 2208 if (atomic_dec_and_test(&rbio->stripes_pending)) 2209 wake_up(&rbio->io_wait); 2210 } 2211 2212 static void submit_write_bios(struct btrfs_raid_bio *rbio, 2213 struct bio_list *bio_list) 2214 { 2215 struct bio *bio; 2216 2217 atomic_set(&rbio->stripes_pending, bio_list_size(bio_list)); 2218 while ((bio = bio_list_pop(bio_list))) { 2219 bio->bi_end_io = raid_wait_write_end_io; 2220 2221 if (trace_raid56_write_enabled()) { 2222 struct raid56_bio_trace_info trace_info = { 0 }; 2223 2224 bio_get_trace_info(rbio, bio, &trace_info); 2225 trace_raid56_write(rbio, bio, &trace_info); 2226 } 2227 submit_bio(bio); 2228 } 2229 } 2230 2231 /* 2232 * To determine if we need to read any sector from the disk. 2233 * Should only be utilized in RMW path, to skip cached rbio. 2234 */ 2235 static bool need_read_stripe_sectors(struct btrfs_raid_bio *rbio) 2236 { 2237 int i; 2238 2239 for (i = 0; i < rbio->nr_data * rbio->stripe_nsectors; i++) { 2240 struct sector_ptr *sector = &rbio->stripe_sectors[i]; 2241 2242 /* 2243 * We have a sector which doesn't have page nor uptodate, 2244 * thus this rbio can not be cached one, as cached one must 2245 * have all its data sectors present and uptodate. 2246 */ 2247 if (!sector->page || !sector->uptodate) 2248 return true; 2249 } 2250 return false; 2251 } 2252 2253 static void rmw_rbio(struct btrfs_raid_bio *rbio) 2254 { 2255 struct bio_list bio_list; 2256 int sectornr; 2257 int ret = 0; 2258 2259 /* 2260 * Allocate the pages for parity first, as P/Q pages will always be 2261 * needed for both full-stripe and sub-stripe writes. 2262 */ 2263 ret = alloc_rbio_parity_pages(rbio); 2264 if (ret < 0) 2265 goto out; 2266 2267 /* 2268 * Either full stripe write, or we have every data sector already 2269 * cached, can go to write path immediately. 2270 */ 2271 if (!rbio_is_full(rbio) && need_read_stripe_sectors(rbio)) { 2272 /* 2273 * Now we're doing sub-stripe write, also need all data stripes 2274 * to do the full RMW. 2275 */ 2276 ret = alloc_rbio_data_pages(rbio); 2277 if (ret < 0) 2278 goto out; 2279 2280 index_rbio_pages(rbio); 2281 2282 ret = rmw_read_wait_recover(rbio); 2283 if (ret < 0) 2284 goto out; 2285 } 2286 2287 /* 2288 * At this stage we're not allowed to add any new bios to the 2289 * bio list any more, anyone else that wants to change this stripe 2290 * needs to do their own rmw. 2291 */ 2292 spin_lock(&rbio->bio_list_lock); 2293 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); 2294 spin_unlock(&rbio->bio_list_lock); 2295 2296 bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors); 2297 2298 index_rbio_pages(rbio); 2299 2300 /* 2301 * We don't cache full rbios because we're assuming 2302 * the higher layers are unlikely to use this area of 2303 * the disk again soon. If they do use it again, 2304 * hopefully they will send another full bio. 2305 */ 2306 if (!rbio_is_full(rbio)) 2307 cache_rbio_pages(rbio); 2308 else 2309 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); 2310 2311 for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) 2312 generate_pq_vertical(rbio, sectornr); 2313 2314 bio_list_init(&bio_list); 2315 ret = rmw_assemble_write_bios(rbio, &bio_list); 2316 if (ret < 0) 2317 goto out; 2318 2319 /* We should have at least one bio assembled. */ 2320 ASSERT(bio_list_size(&bio_list)); 2321 submit_write_bios(rbio, &bio_list); 2322 wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0); 2323 2324 /* We may have more errors than our tolerance during the read. */ 2325 for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) { 2326 int found_errors; 2327 2328 found_errors = get_rbio_veritical_errors(rbio, sectornr, NULL, NULL); 2329 if (found_errors > rbio->bioc->max_errors) { 2330 ret = -EIO; 2331 break; 2332 } 2333 } 2334 out: 2335 rbio_orig_end_io(rbio, errno_to_blk_status(ret)); 2336 } 2337 2338 static void rmw_rbio_work(struct work_struct *work) 2339 { 2340 struct btrfs_raid_bio *rbio; 2341 2342 rbio = container_of(work, struct btrfs_raid_bio, work); 2343 if (lock_stripe_add(rbio) == 0) 2344 rmw_rbio(rbio); 2345 } 2346 2347 static void rmw_rbio_work_locked(struct work_struct *work) 2348 { 2349 rmw_rbio(container_of(work, struct btrfs_raid_bio, work)); 2350 } 2351 2352 /* 2353 * The following code is used to scrub/replace the parity stripe 2354 * 2355 * Caller must have already increased bio_counter for getting @bioc. 2356 * 2357 * Note: We need make sure all the pages that add into the scrub/replace 2358 * raid bio are correct and not be changed during the scrub/replace. That 2359 * is those pages just hold metadata or file data with checksum. 2360 */ 2361 2362 struct btrfs_raid_bio *raid56_parity_alloc_scrub_rbio(struct bio *bio, 2363 struct btrfs_io_context *bioc, 2364 struct btrfs_device *scrub_dev, 2365 unsigned long *dbitmap, int stripe_nsectors) 2366 { 2367 struct btrfs_fs_info *fs_info = bioc->fs_info; 2368 struct btrfs_raid_bio *rbio; 2369 int i; 2370 2371 rbio = alloc_rbio(fs_info, bioc); 2372 if (IS_ERR(rbio)) 2373 return NULL; 2374 bio_list_add(&rbio->bio_list, bio); 2375 /* 2376 * This is a special bio which is used to hold the completion handler 2377 * and make the scrub rbio is similar to the other types 2378 */ 2379 ASSERT(!bio->bi_iter.bi_size); 2380 rbio->operation = BTRFS_RBIO_PARITY_SCRUB; 2381 2382 /* 2383 * After mapping bioc with BTRFS_MAP_WRITE, parities have been sorted 2384 * to the end position, so this search can start from the first parity 2385 * stripe. 2386 */ 2387 for (i = rbio->nr_data; i < rbio->real_stripes; i++) { 2388 if (bioc->stripes[i].dev == scrub_dev) { 2389 rbio->scrubp = i; 2390 break; 2391 } 2392 } 2393 ASSERT(i < rbio->real_stripes); 2394 2395 bitmap_copy(&rbio->dbitmap, dbitmap, stripe_nsectors); 2396 return rbio; 2397 } 2398 2399 /* 2400 * We just scrub the parity that we have correct data on the same horizontal, 2401 * so we needn't allocate all pages for all the stripes. 2402 */ 2403 static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio) 2404 { 2405 const u32 sectorsize = rbio->bioc->fs_info->sectorsize; 2406 int total_sector_nr; 2407 2408 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors; 2409 total_sector_nr++) { 2410 struct page *page; 2411 int sectornr = total_sector_nr % rbio->stripe_nsectors; 2412 int index = (total_sector_nr * sectorsize) >> PAGE_SHIFT; 2413 2414 if (!test_bit(sectornr, &rbio->dbitmap)) 2415 continue; 2416 if (rbio->stripe_pages[index]) 2417 continue; 2418 page = alloc_page(GFP_NOFS); 2419 if (!page) 2420 return -ENOMEM; 2421 rbio->stripe_pages[index] = page; 2422 } 2423 index_stripe_sectors(rbio); 2424 return 0; 2425 } 2426 2427 static int finish_parity_scrub(struct btrfs_raid_bio *rbio) 2428 { 2429 struct btrfs_io_context *bioc = rbio->bioc; 2430 const u32 sectorsize = bioc->fs_info->sectorsize; 2431 void **pointers = rbio->finish_pointers; 2432 unsigned long *pbitmap = &rbio->finish_pbitmap; 2433 int nr_data = rbio->nr_data; 2434 int stripe; 2435 int sectornr; 2436 bool has_qstripe; 2437 struct sector_ptr p_sector = { 0 }; 2438 struct sector_ptr q_sector = { 0 }; 2439 struct bio_list bio_list; 2440 int is_replace = 0; 2441 int ret; 2442 2443 bio_list_init(&bio_list); 2444 2445 if (rbio->real_stripes - rbio->nr_data == 1) 2446 has_qstripe = false; 2447 else if (rbio->real_stripes - rbio->nr_data == 2) 2448 has_qstripe = true; 2449 else 2450 BUG(); 2451 2452 /* 2453 * Replace is running and our P/Q stripe is being replaced, then we 2454 * need to duplicate the final write to replace target. 2455 */ 2456 if (bioc->replace_nr_stripes && bioc->replace_stripe_src == rbio->scrubp) { 2457 is_replace = 1; 2458 bitmap_copy(pbitmap, &rbio->dbitmap, rbio->stripe_nsectors); 2459 } 2460 2461 /* 2462 * Because the higher layers(scrubber) are unlikely to 2463 * use this area of the disk again soon, so don't cache 2464 * it. 2465 */ 2466 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); 2467 2468 p_sector.page = alloc_page(GFP_NOFS); 2469 if (!p_sector.page) 2470 return -ENOMEM; 2471 p_sector.pgoff = 0; 2472 p_sector.uptodate = 1; 2473 2474 if (has_qstripe) { 2475 /* RAID6, allocate and map temp space for the Q stripe */ 2476 q_sector.page = alloc_page(GFP_NOFS); 2477 if (!q_sector.page) { 2478 __free_page(p_sector.page); 2479 p_sector.page = NULL; 2480 return -ENOMEM; 2481 } 2482 q_sector.pgoff = 0; 2483 q_sector.uptodate = 1; 2484 pointers[rbio->real_stripes - 1] = kmap_local_page(q_sector.page); 2485 } 2486 2487 bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors); 2488 2489 /* Map the parity stripe just once */ 2490 pointers[nr_data] = kmap_local_page(p_sector.page); 2491 2492 for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) { 2493 struct sector_ptr *sector; 2494 void *parity; 2495 2496 /* first collect one page from each data stripe */ 2497 for (stripe = 0; stripe < nr_data; stripe++) { 2498 sector = sector_in_rbio(rbio, stripe, sectornr, 0); 2499 pointers[stripe] = kmap_local_page(sector->page) + 2500 sector->pgoff; 2501 } 2502 2503 if (has_qstripe) { 2504 assert_rbio(rbio); 2505 /* RAID6, call the library function to fill in our P/Q */ 2506 raid6_call.gen_syndrome(rbio->real_stripes, sectorsize, 2507 pointers); 2508 } else { 2509 /* raid5 */ 2510 memcpy(pointers[nr_data], pointers[0], sectorsize); 2511 run_xor(pointers + 1, nr_data - 1, sectorsize); 2512 } 2513 2514 /* Check scrubbing parity and repair it */ 2515 sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr); 2516 parity = kmap_local_page(sector->page) + sector->pgoff; 2517 if (memcmp(parity, pointers[rbio->scrubp], sectorsize) != 0) 2518 memcpy(parity, pointers[rbio->scrubp], sectorsize); 2519 else 2520 /* Parity is right, needn't writeback */ 2521 bitmap_clear(&rbio->dbitmap, sectornr, 1); 2522 kunmap_local(parity); 2523 2524 for (stripe = nr_data - 1; stripe >= 0; stripe--) 2525 kunmap_local(pointers[stripe]); 2526 } 2527 2528 kunmap_local(pointers[nr_data]); 2529 __free_page(p_sector.page); 2530 p_sector.page = NULL; 2531 if (q_sector.page) { 2532 kunmap_local(pointers[rbio->real_stripes - 1]); 2533 __free_page(q_sector.page); 2534 q_sector.page = NULL; 2535 } 2536 2537 /* 2538 * time to start writing. Make bios for everything from the 2539 * higher layers (the bio_list in our rbio) and our p/q. Ignore 2540 * everything else. 2541 */ 2542 for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) { 2543 struct sector_ptr *sector; 2544 2545 sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr); 2546 ret = rbio_add_io_sector(rbio, &bio_list, sector, rbio->scrubp, 2547 sectornr, REQ_OP_WRITE); 2548 if (ret) 2549 goto cleanup; 2550 } 2551 2552 if (!is_replace) 2553 goto submit_write; 2554 2555 /* 2556 * Replace is running and our parity stripe needs to be duplicated to 2557 * the target device. Check we have a valid source stripe number. 2558 */ 2559 ASSERT(rbio->bioc->replace_stripe_src >= 0); 2560 for_each_set_bit(sectornr, pbitmap, rbio->stripe_nsectors) { 2561 struct sector_ptr *sector; 2562 2563 sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr); 2564 ret = rbio_add_io_sector(rbio, &bio_list, sector, 2565 rbio->real_stripes, 2566 sectornr, REQ_OP_WRITE); 2567 if (ret) 2568 goto cleanup; 2569 } 2570 2571 submit_write: 2572 submit_write_bios(rbio, &bio_list); 2573 return 0; 2574 2575 cleanup: 2576 bio_list_put(&bio_list); 2577 return ret; 2578 } 2579 2580 static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe) 2581 { 2582 if (stripe >= 0 && stripe < rbio->nr_data) 2583 return 1; 2584 return 0; 2585 } 2586 2587 static int recover_scrub_rbio(struct btrfs_raid_bio *rbio) 2588 { 2589 void **pointers = NULL; 2590 void **unmap_array = NULL; 2591 int sector_nr; 2592 int ret = 0; 2593 2594 /* 2595 * @pointers array stores the pointer for each sector. 2596 * 2597 * @unmap_array stores copy of pointers that does not get reordered 2598 * during reconstruction so that kunmap_local works. 2599 */ 2600 pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS); 2601 unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS); 2602 if (!pointers || !unmap_array) { 2603 ret = -ENOMEM; 2604 goto out; 2605 } 2606 2607 for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) { 2608 int dfail = 0, failp = -1; 2609 int faila; 2610 int failb; 2611 int found_errors; 2612 2613 found_errors = get_rbio_veritical_errors(rbio, sector_nr, 2614 &faila, &failb); 2615 if (found_errors > rbio->bioc->max_errors) { 2616 ret = -EIO; 2617 goto out; 2618 } 2619 if (found_errors == 0) 2620 continue; 2621 2622 /* We should have at least one error here. */ 2623 ASSERT(faila >= 0 || failb >= 0); 2624 2625 if (is_data_stripe(rbio, faila)) 2626 dfail++; 2627 else if (is_parity_stripe(faila)) 2628 failp = faila; 2629 2630 if (is_data_stripe(rbio, failb)) 2631 dfail++; 2632 else if (is_parity_stripe(failb)) 2633 failp = failb; 2634 /* 2635 * Because we can not use a scrubbing parity to repair the 2636 * data, so the capability of the repair is declined. (In the 2637 * case of RAID5, we can not repair anything.) 2638 */ 2639 if (dfail > rbio->bioc->max_errors - 1) { 2640 ret = -EIO; 2641 goto out; 2642 } 2643 /* 2644 * If all data is good, only parity is correctly, just repair 2645 * the parity, no need to recover data stripes. 2646 */ 2647 if (dfail == 0) 2648 continue; 2649 2650 /* 2651 * Here means we got one corrupted data stripe and one 2652 * corrupted parity on RAID6, if the corrupted parity is 2653 * scrubbing parity, luckily, use the other one to repair the 2654 * data, or we can not repair the data stripe. 2655 */ 2656 if (failp != rbio->scrubp) { 2657 ret = -EIO; 2658 goto out; 2659 } 2660 2661 ret = recover_vertical(rbio, sector_nr, pointers, unmap_array); 2662 if (ret < 0) 2663 goto out; 2664 } 2665 out: 2666 kfree(pointers); 2667 kfree(unmap_array); 2668 return ret; 2669 } 2670 2671 static int scrub_assemble_read_bios(struct btrfs_raid_bio *rbio) 2672 { 2673 struct bio_list bio_list = BIO_EMPTY_LIST; 2674 int total_sector_nr; 2675 int ret = 0; 2676 2677 /* Build a list of bios to read all the missing parts. */ 2678 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors; 2679 total_sector_nr++) { 2680 int sectornr = total_sector_nr % rbio->stripe_nsectors; 2681 int stripe = total_sector_nr / rbio->stripe_nsectors; 2682 struct sector_ptr *sector; 2683 2684 /* No data in the vertical stripe, no need to read. */ 2685 if (!test_bit(sectornr, &rbio->dbitmap)) 2686 continue; 2687 2688 /* 2689 * We want to find all the sectors missing from the rbio and 2690 * read them from the disk. If sector_in_rbio() finds a sector 2691 * in the bio list we don't need to read it off the stripe. 2692 */ 2693 sector = sector_in_rbio(rbio, stripe, sectornr, 1); 2694 if (sector) 2695 continue; 2696 2697 sector = rbio_stripe_sector(rbio, stripe, sectornr); 2698 /* 2699 * The bio cache may have handed us an uptodate sector. If so, 2700 * use it. 2701 */ 2702 if (sector->uptodate) 2703 continue; 2704 2705 ret = rbio_add_io_sector(rbio, &bio_list, sector, stripe, 2706 sectornr, REQ_OP_READ); 2707 if (ret) { 2708 bio_list_put(&bio_list); 2709 return ret; 2710 } 2711 } 2712 2713 submit_read_wait_bio_list(rbio, &bio_list); 2714 return 0; 2715 } 2716 2717 static void scrub_rbio(struct btrfs_raid_bio *rbio) 2718 { 2719 int sector_nr; 2720 int ret; 2721 2722 ret = alloc_rbio_essential_pages(rbio); 2723 if (ret) 2724 goto out; 2725 2726 bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors); 2727 2728 ret = scrub_assemble_read_bios(rbio); 2729 if (ret < 0) 2730 goto out; 2731 2732 /* We may have some failures, recover the failed sectors first. */ 2733 ret = recover_scrub_rbio(rbio); 2734 if (ret < 0) 2735 goto out; 2736 2737 /* 2738 * We have every sector properly prepared. Can finish the scrub 2739 * and writeback the good content. 2740 */ 2741 ret = finish_parity_scrub(rbio); 2742 wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0); 2743 for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) { 2744 int found_errors; 2745 2746 found_errors = get_rbio_veritical_errors(rbio, sector_nr, NULL, NULL); 2747 if (found_errors > rbio->bioc->max_errors) { 2748 ret = -EIO; 2749 break; 2750 } 2751 } 2752 out: 2753 rbio_orig_end_io(rbio, errno_to_blk_status(ret)); 2754 } 2755 2756 static void scrub_rbio_work_locked(struct work_struct *work) 2757 { 2758 scrub_rbio(container_of(work, struct btrfs_raid_bio, work)); 2759 } 2760 2761 void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio) 2762 { 2763 if (!lock_stripe_add(rbio)) 2764 start_async_work(rbio, scrub_rbio_work_locked); 2765 } 2766 2767 /* 2768 * This is for scrub call sites where we already have correct data contents. 2769 * This allows us to avoid reading data stripes again. 2770 * 2771 * Unfortunately here we have to do page copy, other than reusing the pages. 2772 * This is due to the fact rbio has its own page management for its cache. 2773 */ 2774 void raid56_parity_cache_data_pages(struct btrfs_raid_bio *rbio, 2775 struct page **data_pages, u64 data_logical) 2776 { 2777 const u64 offset_in_full_stripe = data_logical - 2778 rbio->bioc->full_stripe_logical; 2779 const int page_index = offset_in_full_stripe >> PAGE_SHIFT; 2780 const u32 sectorsize = rbio->bioc->fs_info->sectorsize; 2781 const u32 sectors_per_page = PAGE_SIZE / sectorsize; 2782 int ret; 2783 2784 /* 2785 * If we hit ENOMEM temporarily, but later at 2786 * raid56_parity_submit_scrub_rbio() time it succeeded, we just do 2787 * the extra read, not a big deal. 2788 * 2789 * If we hit ENOMEM later at raid56_parity_submit_scrub_rbio() time, 2790 * the bio would got proper error number set. 2791 */ 2792 ret = alloc_rbio_data_pages(rbio); 2793 if (ret < 0) 2794 return; 2795 2796 /* data_logical must be at stripe boundary and inside the full stripe. */ 2797 ASSERT(IS_ALIGNED(offset_in_full_stripe, BTRFS_STRIPE_LEN)); 2798 ASSERT(offset_in_full_stripe < (rbio->nr_data << BTRFS_STRIPE_LEN_SHIFT)); 2799 2800 for (int page_nr = 0; page_nr < (BTRFS_STRIPE_LEN >> PAGE_SHIFT); page_nr++) { 2801 struct page *dst = rbio->stripe_pages[page_nr + page_index]; 2802 struct page *src = data_pages[page_nr]; 2803 2804 memcpy_page(dst, 0, src, 0, PAGE_SIZE); 2805 for (int sector_nr = sectors_per_page * page_index; 2806 sector_nr < sectors_per_page * (page_index + 1); 2807 sector_nr++) 2808 rbio->stripe_sectors[sector_nr].uptodate = true; 2809 } 2810 } 2811