xref: /linux/fs/btrfs/raid56.c (revision 72bea132f3680ee51e7ed2cee62892b6f5121909)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2012 Fusion-io  All rights reserved.
4  * Copyright (C) 2012 Intel Corp. All rights reserved.
5  */
6 
7 #include <linux/sched.h>
8 #include <linux/bio.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/raid/pq.h>
12 #include <linux/hash.h>
13 #include <linux/list_sort.h>
14 #include <linux/raid/xor.h>
15 #include <linux/mm.h>
16 #include "messages.h"
17 #include "ctree.h"
18 #include "disk-io.h"
19 #include "volumes.h"
20 #include "raid56.h"
21 #include "async-thread.h"
22 #include "file-item.h"
23 #include "btrfs_inode.h"
24 
25 /* set when additional merges to this rbio are not allowed */
26 #define RBIO_RMW_LOCKED_BIT	1
27 
28 /*
29  * set when this rbio is sitting in the hash, but it is just a cache
30  * of past RMW
31  */
32 #define RBIO_CACHE_BIT		2
33 
34 /*
35  * set when it is safe to trust the stripe_pages for caching
36  */
37 #define RBIO_CACHE_READY_BIT	3
38 
39 #define RBIO_CACHE_SIZE 1024
40 
41 #define BTRFS_STRIPE_HASH_TABLE_BITS				11
42 
43 /* Used by the raid56 code to lock stripes for read/modify/write */
44 struct btrfs_stripe_hash {
45 	struct list_head hash_list;
46 	spinlock_t lock;
47 };
48 
49 /* Used by the raid56 code to lock stripes for read/modify/write */
50 struct btrfs_stripe_hash_table {
51 	struct list_head stripe_cache;
52 	spinlock_t cache_lock;
53 	int cache_size;
54 	struct btrfs_stripe_hash table[];
55 };
56 
57 /*
58  * A bvec like structure to present a sector inside a page.
59  *
60  * Unlike bvec we don't need bvlen, as it's fixed to sectorsize.
61  */
62 struct sector_ptr {
63 	struct page *page;
64 	unsigned int pgoff:24;
65 	unsigned int uptodate:8;
66 };
67 
68 static void rmw_rbio_work(struct work_struct *work);
69 static void rmw_rbio_work_locked(struct work_struct *work);
70 static void index_rbio_pages(struct btrfs_raid_bio *rbio);
71 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
72 
73 static int finish_parity_scrub(struct btrfs_raid_bio *rbio);
74 static void scrub_rbio_work_locked(struct work_struct *work);
75 
76 static void free_raid_bio_pointers(struct btrfs_raid_bio *rbio)
77 {
78 	bitmap_free(rbio->error_bitmap);
79 	kfree(rbio->stripe_pages);
80 	kfree(rbio->bio_sectors);
81 	kfree(rbio->stripe_sectors);
82 	kfree(rbio->finish_pointers);
83 }
84 
85 static void free_raid_bio(struct btrfs_raid_bio *rbio)
86 {
87 	int i;
88 
89 	if (!refcount_dec_and_test(&rbio->refs))
90 		return;
91 
92 	WARN_ON(!list_empty(&rbio->stripe_cache));
93 	WARN_ON(!list_empty(&rbio->hash_list));
94 	WARN_ON(!bio_list_empty(&rbio->bio_list));
95 
96 	for (i = 0; i < rbio->nr_pages; i++) {
97 		if (rbio->stripe_pages[i]) {
98 			__free_page(rbio->stripe_pages[i]);
99 			rbio->stripe_pages[i] = NULL;
100 		}
101 	}
102 
103 	btrfs_put_bioc(rbio->bioc);
104 	free_raid_bio_pointers(rbio);
105 	kfree(rbio);
106 }
107 
108 static void start_async_work(struct btrfs_raid_bio *rbio, work_func_t work_func)
109 {
110 	INIT_WORK(&rbio->work, work_func);
111 	queue_work(rbio->bioc->fs_info->rmw_workers, &rbio->work);
112 }
113 
114 /*
115  * the stripe hash table is used for locking, and to collect
116  * bios in hopes of making a full stripe
117  */
118 int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
119 {
120 	struct btrfs_stripe_hash_table *table;
121 	struct btrfs_stripe_hash_table *x;
122 	struct btrfs_stripe_hash *cur;
123 	struct btrfs_stripe_hash *h;
124 	int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
125 	int i;
126 
127 	if (info->stripe_hash_table)
128 		return 0;
129 
130 	/*
131 	 * The table is large, starting with order 4 and can go as high as
132 	 * order 7 in case lock debugging is turned on.
133 	 *
134 	 * Try harder to allocate and fallback to vmalloc to lower the chance
135 	 * of a failing mount.
136 	 */
137 	table = kvzalloc(struct_size(table, table, num_entries), GFP_KERNEL);
138 	if (!table)
139 		return -ENOMEM;
140 
141 	spin_lock_init(&table->cache_lock);
142 	INIT_LIST_HEAD(&table->stripe_cache);
143 
144 	h = table->table;
145 
146 	for (i = 0; i < num_entries; i++) {
147 		cur = h + i;
148 		INIT_LIST_HEAD(&cur->hash_list);
149 		spin_lock_init(&cur->lock);
150 	}
151 
152 	x = cmpxchg(&info->stripe_hash_table, NULL, table);
153 	kvfree(x);
154 	return 0;
155 }
156 
157 /*
158  * caching an rbio means to copy anything from the
159  * bio_sectors array into the stripe_pages array.  We
160  * use the page uptodate bit in the stripe cache array
161  * to indicate if it has valid data
162  *
163  * once the caching is done, we set the cache ready
164  * bit.
165  */
166 static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
167 {
168 	int i;
169 	int ret;
170 
171 	ret = alloc_rbio_pages(rbio);
172 	if (ret)
173 		return;
174 
175 	for (i = 0; i < rbio->nr_sectors; i++) {
176 		/* Some range not covered by bio (partial write), skip it */
177 		if (!rbio->bio_sectors[i].page) {
178 			/*
179 			 * Even if the sector is not covered by bio, if it is
180 			 * a data sector it should still be uptodate as it is
181 			 * read from disk.
182 			 */
183 			if (i < rbio->nr_data * rbio->stripe_nsectors)
184 				ASSERT(rbio->stripe_sectors[i].uptodate);
185 			continue;
186 		}
187 
188 		ASSERT(rbio->stripe_sectors[i].page);
189 		memcpy_page(rbio->stripe_sectors[i].page,
190 			    rbio->stripe_sectors[i].pgoff,
191 			    rbio->bio_sectors[i].page,
192 			    rbio->bio_sectors[i].pgoff,
193 			    rbio->bioc->fs_info->sectorsize);
194 		rbio->stripe_sectors[i].uptodate = 1;
195 	}
196 	set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
197 }
198 
199 /*
200  * we hash on the first logical address of the stripe
201  */
202 static int rbio_bucket(struct btrfs_raid_bio *rbio)
203 {
204 	u64 num = rbio->bioc->full_stripe_logical;
205 
206 	/*
207 	 * we shift down quite a bit.  We're using byte
208 	 * addressing, and most of the lower bits are zeros.
209 	 * This tends to upset hash_64, and it consistently
210 	 * returns just one or two different values.
211 	 *
212 	 * shifting off the lower bits fixes things.
213 	 */
214 	return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
215 }
216 
217 static bool full_page_sectors_uptodate(struct btrfs_raid_bio *rbio,
218 				       unsigned int page_nr)
219 {
220 	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
221 	const u32 sectors_per_page = PAGE_SIZE / sectorsize;
222 	int i;
223 
224 	ASSERT(page_nr < rbio->nr_pages);
225 
226 	for (i = sectors_per_page * page_nr;
227 	     i < sectors_per_page * page_nr + sectors_per_page;
228 	     i++) {
229 		if (!rbio->stripe_sectors[i].uptodate)
230 			return false;
231 	}
232 	return true;
233 }
234 
235 /*
236  * Update the stripe_sectors[] array to use correct page and pgoff
237  *
238  * Should be called every time any page pointer in stripes_pages[] got modified.
239  */
240 static void index_stripe_sectors(struct btrfs_raid_bio *rbio)
241 {
242 	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
243 	u32 offset;
244 	int i;
245 
246 	for (i = 0, offset = 0; i < rbio->nr_sectors; i++, offset += sectorsize) {
247 		int page_index = offset >> PAGE_SHIFT;
248 
249 		ASSERT(page_index < rbio->nr_pages);
250 		rbio->stripe_sectors[i].page = rbio->stripe_pages[page_index];
251 		rbio->stripe_sectors[i].pgoff = offset_in_page(offset);
252 	}
253 }
254 
255 static void steal_rbio_page(struct btrfs_raid_bio *src,
256 			    struct btrfs_raid_bio *dest, int page_nr)
257 {
258 	const u32 sectorsize = src->bioc->fs_info->sectorsize;
259 	const u32 sectors_per_page = PAGE_SIZE / sectorsize;
260 	int i;
261 
262 	if (dest->stripe_pages[page_nr])
263 		__free_page(dest->stripe_pages[page_nr]);
264 	dest->stripe_pages[page_nr] = src->stripe_pages[page_nr];
265 	src->stripe_pages[page_nr] = NULL;
266 
267 	/* Also update the sector->uptodate bits. */
268 	for (i = sectors_per_page * page_nr;
269 	     i < sectors_per_page * page_nr + sectors_per_page; i++)
270 		dest->stripe_sectors[i].uptodate = true;
271 }
272 
273 static bool is_data_stripe_page(struct btrfs_raid_bio *rbio, int page_nr)
274 {
275 	const int sector_nr = (page_nr << PAGE_SHIFT) >>
276 			      rbio->bioc->fs_info->sectorsize_bits;
277 
278 	/*
279 	 * We have ensured PAGE_SIZE is aligned with sectorsize, thus
280 	 * we won't have a page which is half data half parity.
281 	 *
282 	 * Thus if the first sector of the page belongs to data stripes, then
283 	 * the full page belongs to data stripes.
284 	 */
285 	return (sector_nr < rbio->nr_data * rbio->stripe_nsectors);
286 }
287 
288 /*
289  * Stealing an rbio means taking all the uptodate pages from the stripe array
290  * in the source rbio and putting them into the destination rbio.
291  *
292  * This will also update the involved stripe_sectors[] which are referring to
293  * the old pages.
294  */
295 static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
296 {
297 	int i;
298 
299 	if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
300 		return;
301 
302 	for (i = 0; i < dest->nr_pages; i++) {
303 		struct page *p = src->stripe_pages[i];
304 
305 		/*
306 		 * We don't need to steal P/Q pages as they will always be
307 		 * regenerated for RMW or full write anyway.
308 		 */
309 		if (!is_data_stripe_page(src, i))
310 			continue;
311 
312 		/*
313 		 * If @src already has RBIO_CACHE_READY_BIT, it should have
314 		 * all data stripe pages present and uptodate.
315 		 */
316 		ASSERT(p);
317 		ASSERT(full_page_sectors_uptodate(src, i));
318 		steal_rbio_page(src, dest, i);
319 	}
320 	index_stripe_sectors(dest);
321 	index_stripe_sectors(src);
322 }
323 
324 /*
325  * merging means we take the bio_list from the victim and
326  * splice it into the destination.  The victim should
327  * be discarded afterwards.
328  *
329  * must be called with dest->rbio_list_lock held
330  */
331 static void merge_rbio(struct btrfs_raid_bio *dest,
332 		       struct btrfs_raid_bio *victim)
333 {
334 	bio_list_merge(&dest->bio_list, &victim->bio_list);
335 	dest->bio_list_bytes += victim->bio_list_bytes;
336 	/* Also inherit the bitmaps from @victim. */
337 	bitmap_or(&dest->dbitmap, &victim->dbitmap, &dest->dbitmap,
338 		  dest->stripe_nsectors);
339 	bio_list_init(&victim->bio_list);
340 }
341 
342 /*
343  * used to prune items that are in the cache.  The caller
344  * must hold the hash table lock.
345  */
346 static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
347 {
348 	int bucket = rbio_bucket(rbio);
349 	struct btrfs_stripe_hash_table *table;
350 	struct btrfs_stripe_hash *h;
351 	int freeit = 0;
352 
353 	/*
354 	 * check the bit again under the hash table lock.
355 	 */
356 	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
357 		return;
358 
359 	table = rbio->bioc->fs_info->stripe_hash_table;
360 	h = table->table + bucket;
361 
362 	/* hold the lock for the bucket because we may be
363 	 * removing it from the hash table
364 	 */
365 	spin_lock(&h->lock);
366 
367 	/*
368 	 * hold the lock for the bio list because we need
369 	 * to make sure the bio list is empty
370 	 */
371 	spin_lock(&rbio->bio_list_lock);
372 
373 	if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
374 		list_del_init(&rbio->stripe_cache);
375 		table->cache_size -= 1;
376 		freeit = 1;
377 
378 		/* if the bio list isn't empty, this rbio is
379 		 * still involved in an IO.  We take it out
380 		 * of the cache list, and drop the ref that
381 		 * was held for the list.
382 		 *
383 		 * If the bio_list was empty, we also remove
384 		 * the rbio from the hash_table, and drop
385 		 * the corresponding ref
386 		 */
387 		if (bio_list_empty(&rbio->bio_list)) {
388 			if (!list_empty(&rbio->hash_list)) {
389 				list_del_init(&rbio->hash_list);
390 				refcount_dec(&rbio->refs);
391 				BUG_ON(!list_empty(&rbio->plug_list));
392 			}
393 		}
394 	}
395 
396 	spin_unlock(&rbio->bio_list_lock);
397 	spin_unlock(&h->lock);
398 
399 	if (freeit)
400 		free_raid_bio(rbio);
401 }
402 
403 /*
404  * prune a given rbio from the cache
405  */
406 static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
407 {
408 	struct btrfs_stripe_hash_table *table;
409 
410 	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
411 		return;
412 
413 	table = rbio->bioc->fs_info->stripe_hash_table;
414 
415 	spin_lock(&table->cache_lock);
416 	__remove_rbio_from_cache(rbio);
417 	spin_unlock(&table->cache_lock);
418 }
419 
420 /*
421  * remove everything in the cache
422  */
423 static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
424 {
425 	struct btrfs_stripe_hash_table *table;
426 	struct btrfs_raid_bio *rbio;
427 
428 	table = info->stripe_hash_table;
429 
430 	spin_lock(&table->cache_lock);
431 	while (!list_empty(&table->stripe_cache)) {
432 		rbio = list_entry(table->stripe_cache.next,
433 				  struct btrfs_raid_bio,
434 				  stripe_cache);
435 		__remove_rbio_from_cache(rbio);
436 	}
437 	spin_unlock(&table->cache_lock);
438 }
439 
440 /*
441  * remove all cached entries and free the hash table
442  * used by unmount
443  */
444 void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
445 {
446 	if (!info->stripe_hash_table)
447 		return;
448 	btrfs_clear_rbio_cache(info);
449 	kvfree(info->stripe_hash_table);
450 	info->stripe_hash_table = NULL;
451 }
452 
453 /*
454  * insert an rbio into the stripe cache.  It
455  * must have already been prepared by calling
456  * cache_rbio_pages
457  *
458  * If this rbio was already cached, it gets
459  * moved to the front of the lru.
460  *
461  * If the size of the rbio cache is too big, we
462  * prune an item.
463  */
464 static void cache_rbio(struct btrfs_raid_bio *rbio)
465 {
466 	struct btrfs_stripe_hash_table *table;
467 
468 	if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
469 		return;
470 
471 	table = rbio->bioc->fs_info->stripe_hash_table;
472 
473 	spin_lock(&table->cache_lock);
474 	spin_lock(&rbio->bio_list_lock);
475 
476 	/* bump our ref if we were not in the list before */
477 	if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
478 		refcount_inc(&rbio->refs);
479 
480 	if (!list_empty(&rbio->stripe_cache)){
481 		list_move(&rbio->stripe_cache, &table->stripe_cache);
482 	} else {
483 		list_add(&rbio->stripe_cache, &table->stripe_cache);
484 		table->cache_size += 1;
485 	}
486 
487 	spin_unlock(&rbio->bio_list_lock);
488 
489 	if (table->cache_size > RBIO_CACHE_SIZE) {
490 		struct btrfs_raid_bio *found;
491 
492 		found = list_entry(table->stripe_cache.prev,
493 				  struct btrfs_raid_bio,
494 				  stripe_cache);
495 
496 		if (found != rbio)
497 			__remove_rbio_from_cache(found);
498 	}
499 
500 	spin_unlock(&table->cache_lock);
501 }
502 
503 /*
504  * helper function to run the xor_blocks api.  It is only
505  * able to do MAX_XOR_BLOCKS at a time, so we need to
506  * loop through.
507  */
508 static void run_xor(void **pages, int src_cnt, ssize_t len)
509 {
510 	int src_off = 0;
511 	int xor_src_cnt = 0;
512 	void *dest = pages[src_cnt];
513 
514 	while(src_cnt > 0) {
515 		xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
516 		xor_blocks(xor_src_cnt, len, dest, pages + src_off);
517 
518 		src_cnt -= xor_src_cnt;
519 		src_off += xor_src_cnt;
520 	}
521 }
522 
523 /*
524  * Returns true if the bio list inside this rbio covers an entire stripe (no
525  * rmw required).
526  */
527 static int rbio_is_full(struct btrfs_raid_bio *rbio)
528 {
529 	unsigned long size = rbio->bio_list_bytes;
530 	int ret = 1;
531 
532 	spin_lock(&rbio->bio_list_lock);
533 	if (size != rbio->nr_data * BTRFS_STRIPE_LEN)
534 		ret = 0;
535 	BUG_ON(size > rbio->nr_data * BTRFS_STRIPE_LEN);
536 	spin_unlock(&rbio->bio_list_lock);
537 
538 	return ret;
539 }
540 
541 /*
542  * returns 1 if it is safe to merge two rbios together.
543  * The merging is safe if the two rbios correspond to
544  * the same stripe and if they are both going in the same
545  * direction (read vs write), and if neither one is
546  * locked for final IO
547  *
548  * The caller is responsible for locking such that
549  * rmw_locked is safe to test
550  */
551 static int rbio_can_merge(struct btrfs_raid_bio *last,
552 			  struct btrfs_raid_bio *cur)
553 {
554 	if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
555 	    test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
556 		return 0;
557 
558 	/*
559 	 * we can't merge with cached rbios, since the
560 	 * idea is that when we merge the destination
561 	 * rbio is going to run our IO for us.  We can
562 	 * steal from cached rbios though, other functions
563 	 * handle that.
564 	 */
565 	if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
566 	    test_bit(RBIO_CACHE_BIT, &cur->flags))
567 		return 0;
568 
569 	if (last->bioc->full_stripe_logical != cur->bioc->full_stripe_logical)
570 		return 0;
571 
572 	/* we can't merge with different operations */
573 	if (last->operation != cur->operation)
574 		return 0;
575 	/*
576 	 * We've need read the full stripe from the drive.
577 	 * check and repair the parity and write the new results.
578 	 *
579 	 * We're not allowed to add any new bios to the
580 	 * bio list here, anyone else that wants to
581 	 * change this stripe needs to do their own rmw.
582 	 */
583 	if (last->operation == BTRFS_RBIO_PARITY_SCRUB)
584 		return 0;
585 
586 	if (last->operation == BTRFS_RBIO_READ_REBUILD)
587 		return 0;
588 
589 	return 1;
590 }
591 
592 static unsigned int rbio_stripe_sector_index(const struct btrfs_raid_bio *rbio,
593 					     unsigned int stripe_nr,
594 					     unsigned int sector_nr)
595 {
596 	ASSERT(stripe_nr < rbio->real_stripes);
597 	ASSERT(sector_nr < rbio->stripe_nsectors);
598 
599 	return stripe_nr * rbio->stripe_nsectors + sector_nr;
600 }
601 
602 /* Return a sector from rbio->stripe_sectors, not from the bio list */
603 static struct sector_ptr *rbio_stripe_sector(const struct btrfs_raid_bio *rbio,
604 					     unsigned int stripe_nr,
605 					     unsigned int sector_nr)
606 {
607 	return &rbio->stripe_sectors[rbio_stripe_sector_index(rbio, stripe_nr,
608 							      sector_nr)];
609 }
610 
611 /* Grab a sector inside P stripe */
612 static struct sector_ptr *rbio_pstripe_sector(const struct btrfs_raid_bio *rbio,
613 					      unsigned int sector_nr)
614 {
615 	return rbio_stripe_sector(rbio, rbio->nr_data, sector_nr);
616 }
617 
618 /* Grab a sector inside Q stripe, return NULL if not RAID6 */
619 static struct sector_ptr *rbio_qstripe_sector(const struct btrfs_raid_bio *rbio,
620 					      unsigned int sector_nr)
621 {
622 	if (rbio->nr_data + 1 == rbio->real_stripes)
623 		return NULL;
624 	return rbio_stripe_sector(rbio, rbio->nr_data + 1, sector_nr);
625 }
626 
627 /*
628  * The first stripe in the table for a logical address
629  * has the lock.  rbios are added in one of three ways:
630  *
631  * 1) Nobody has the stripe locked yet.  The rbio is given
632  * the lock and 0 is returned.  The caller must start the IO
633  * themselves.
634  *
635  * 2) Someone has the stripe locked, but we're able to merge
636  * with the lock owner.  The rbio is freed and the IO will
637  * start automatically along with the existing rbio.  1 is returned.
638  *
639  * 3) Someone has the stripe locked, but we're not able to merge.
640  * The rbio is added to the lock owner's plug list, or merged into
641  * an rbio already on the plug list.  When the lock owner unlocks,
642  * the next rbio on the list is run and the IO is started automatically.
643  * 1 is returned
644  *
645  * If we return 0, the caller still owns the rbio and must continue with
646  * IO submission.  If we return 1, the caller must assume the rbio has
647  * already been freed.
648  */
649 static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
650 {
651 	struct btrfs_stripe_hash *h;
652 	struct btrfs_raid_bio *cur;
653 	struct btrfs_raid_bio *pending;
654 	struct btrfs_raid_bio *freeit = NULL;
655 	struct btrfs_raid_bio *cache_drop = NULL;
656 	int ret = 0;
657 
658 	h = rbio->bioc->fs_info->stripe_hash_table->table + rbio_bucket(rbio);
659 
660 	spin_lock(&h->lock);
661 	list_for_each_entry(cur, &h->hash_list, hash_list) {
662 		if (cur->bioc->full_stripe_logical != rbio->bioc->full_stripe_logical)
663 			continue;
664 
665 		spin_lock(&cur->bio_list_lock);
666 
667 		/* Can we steal this cached rbio's pages? */
668 		if (bio_list_empty(&cur->bio_list) &&
669 		    list_empty(&cur->plug_list) &&
670 		    test_bit(RBIO_CACHE_BIT, &cur->flags) &&
671 		    !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
672 			list_del_init(&cur->hash_list);
673 			refcount_dec(&cur->refs);
674 
675 			steal_rbio(cur, rbio);
676 			cache_drop = cur;
677 			spin_unlock(&cur->bio_list_lock);
678 
679 			goto lockit;
680 		}
681 
682 		/* Can we merge into the lock owner? */
683 		if (rbio_can_merge(cur, rbio)) {
684 			merge_rbio(cur, rbio);
685 			spin_unlock(&cur->bio_list_lock);
686 			freeit = rbio;
687 			ret = 1;
688 			goto out;
689 		}
690 
691 
692 		/*
693 		 * We couldn't merge with the running rbio, see if we can merge
694 		 * with the pending ones.  We don't have to check for rmw_locked
695 		 * because there is no way they are inside finish_rmw right now
696 		 */
697 		list_for_each_entry(pending, &cur->plug_list, plug_list) {
698 			if (rbio_can_merge(pending, rbio)) {
699 				merge_rbio(pending, rbio);
700 				spin_unlock(&cur->bio_list_lock);
701 				freeit = rbio;
702 				ret = 1;
703 				goto out;
704 			}
705 		}
706 
707 		/*
708 		 * No merging, put us on the tail of the plug list, our rbio
709 		 * will be started with the currently running rbio unlocks
710 		 */
711 		list_add_tail(&rbio->plug_list, &cur->plug_list);
712 		spin_unlock(&cur->bio_list_lock);
713 		ret = 1;
714 		goto out;
715 	}
716 lockit:
717 	refcount_inc(&rbio->refs);
718 	list_add(&rbio->hash_list, &h->hash_list);
719 out:
720 	spin_unlock(&h->lock);
721 	if (cache_drop)
722 		remove_rbio_from_cache(cache_drop);
723 	if (freeit)
724 		free_raid_bio(freeit);
725 	return ret;
726 }
727 
728 static void recover_rbio_work_locked(struct work_struct *work);
729 
730 /*
731  * called as rmw or parity rebuild is completed.  If the plug list has more
732  * rbios waiting for this stripe, the next one on the list will be started
733  */
734 static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
735 {
736 	int bucket;
737 	struct btrfs_stripe_hash *h;
738 	int keep_cache = 0;
739 
740 	bucket = rbio_bucket(rbio);
741 	h = rbio->bioc->fs_info->stripe_hash_table->table + bucket;
742 
743 	if (list_empty(&rbio->plug_list))
744 		cache_rbio(rbio);
745 
746 	spin_lock(&h->lock);
747 	spin_lock(&rbio->bio_list_lock);
748 
749 	if (!list_empty(&rbio->hash_list)) {
750 		/*
751 		 * if we're still cached and there is no other IO
752 		 * to perform, just leave this rbio here for others
753 		 * to steal from later
754 		 */
755 		if (list_empty(&rbio->plug_list) &&
756 		    test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
757 			keep_cache = 1;
758 			clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
759 			BUG_ON(!bio_list_empty(&rbio->bio_list));
760 			goto done;
761 		}
762 
763 		list_del_init(&rbio->hash_list);
764 		refcount_dec(&rbio->refs);
765 
766 		/*
767 		 * we use the plug list to hold all the rbios
768 		 * waiting for the chance to lock this stripe.
769 		 * hand the lock over to one of them.
770 		 */
771 		if (!list_empty(&rbio->plug_list)) {
772 			struct btrfs_raid_bio *next;
773 			struct list_head *head = rbio->plug_list.next;
774 
775 			next = list_entry(head, struct btrfs_raid_bio,
776 					  plug_list);
777 
778 			list_del_init(&rbio->plug_list);
779 
780 			list_add(&next->hash_list, &h->hash_list);
781 			refcount_inc(&next->refs);
782 			spin_unlock(&rbio->bio_list_lock);
783 			spin_unlock(&h->lock);
784 
785 			if (next->operation == BTRFS_RBIO_READ_REBUILD) {
786 				start_async_work(next, recover_rbio_work_locked);
787 			} else if (next->operation == BTRFS_RBIO_WRITE) {
788 				steal_rbio(rbio, next);
789 				start_async_work(next, rmw_rbio_work_locked);
790 			} else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
791 				steal_rbio(rbio, next);
792 				start_async_work(next, scrub_rbio_work_locked);
793 			}
794 
795 			goto done_nolock;
796 		}
797 	}
798 done:
799 	spin_unlock(&rbio->bio_list_lock);
800 	spin_unlock(&h->lock);
801 
802 done_nolock:
803 	if (!keep_cache)
804 		remove_rbio_from_cache(rbio);
805 }
806 
807 static void rbio_endio_bio_list(struct bio *cur, blk_status_t err)
808 {
809 	struct bio *next;
810 
811 	while (cur) {
812 		next = cur->bi_next;
813 		cur->bi_next = NULL;
814 		cur->bi_status = err;
815 		bio_endio(cur);
816 		cur = next;
817 	}
818 }
819 
820 /*
821  * this frees the rbio and runs through all the bios in the
822  * bio_list and calls end_io on them
823  */
824 static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err)
825 {
826 	struct bio *cur = bio_list_get(&rbio->bio_list);
827 	struct bio *extra;
828 
829 	kfree(rbio->csum_buf);
830 	bitmap_free(rbio->csum_bitmap);
831 	rbio->csum_buf = NULL;
832 	rbio->csum_bitmap = NULL;
833 
834 	/*
835 	 * Clear the data bitmap, as the rbio may be cached for later usage.
836 	 * do this before before unlock_stripe() so there will be no new bio
837 	 * for this bio.
838 	 */
839 	bitmap_clear(&rbio->dbitmap, 0, rbio->stripe_nsectors);
840 
841 	/*
842 	 * At this moment, rbio->bio_list is empty, however since rbio does not
843 	 * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the
844 	 * hash list, rbio may be merged with others so that rbio->bio_list
845 	 * becomes non-empty.
846 	 * Once unlock_stripe() is done, rbio->bio_list will not be updated any
847 	 * more and we can call bio_endio() on all queued bios.
848 	 */
849 	unlock_stripe(rbio);
850 	extra = bio_list_get(&rbio->bio_list);
851 	free_raid_bio(rbio);
852 
853 	rbio_endio_bio_list(cur, err);
854 	if (extra)
855 		rbio_endio_bio_list(extra, err);
856 }
857 
858 /*
859  * Get a sector pointer specified by its @stripe_nr and @sector_nr.
860  *
861  * @rbio:               The raid bio
862  * @stripe_nr:          Stripe number, valid range [0, real_stripe)
863  * @sector_nr:		Sector number inside the stripe,
864  *			valid range [0, stripe_nsectors)
865  * @bio_list_only:      Whether to use sectors inside the bio list only.
866  *
867  * The read/modify/write code wants to reuse the original bio page as much
868  * as possible, and only use stripe_sectors as fallback.
869  */
870 static struct sector_ptr *sector_in_rbio(struct btrfs_raid_bio *rbio,
871 					 int stripe_nr, int sector_nr,
872 					 bool bio_list_only)
873 {
874 	struct sector_ptr *sector;
875 	int index;
876 
877 	ASSERT(stripe_nr >= 0 && stripe_nr < rbio->real_stripes);
878 	ASSERT(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors);
879 
880 	index = stripe_nr * rbio->stripe_nsectors + sector_nr;
881 	ASSERT(index >= 0 && index < rbio->nr_sectors);
882 
883 	spin_lock(&rbio->bio_list_lock);
884 	sector = &rbio->bio_sectors[index];
885 	if (sector->page || bio_list_only) {
886 		/* Don't return sector without a valid page pointer */
887 		if (!sector->page)
888 			sector = NULL;
889 		spin_unlock(&rbio->bio_list_lock);
890 		return sector;
891 	}
892 	spin_unlock(&rbio->bio_list_lock);
893 
894 	return &rbio->stripe_sectors[index];
895 }
896 
897 /*
898  * allocation and initial setup for the btrfs_raid_bio.  Not
899  * this does not allocate any pages for rbio->pages.
900  */
901 static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info,
902 					 struct btrfs_io_context *bioc)
903 {
904 	const unsigned int real_stripes = bioc->num_stripes - bioc->replace_nr_stripes;
905 	const unsigned int stripe_npages = BTRFS_STRIPE_LEN >> PAGE_SHIFT;
906 	const unsigned int num_pages = stripe_npages * real_stripes;
907 	const unsigned int stripe_nsectors =
908 		BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits;
909 	const unsigned int num_sectors = stripe_nsectors * real_stripes;
910 	struct btrfs_raid_bio *rbio;
911 
912 	/* PAGE_SIZE must also be aligned to sectorsize for subpage support */
913 	ASSERT(IS_ALIGNED(PAGE_SIZE, fs_info->sectorsize));
914 	/*
915 	 * Our current stripe len should be fixed to 64k thus stripe_nsectors
916 	 * (at most 16) should be no larger than BITS_PER_LONG.
917 	 */
918 	ASSERT(stripe_nsectors <= BITS_PER_LONG);
919 
920 	/*
921 	 * Real stripes must be between 2 (2 disks RAID5, aka RAID1) and 256
922 	 * (limited by u8).
923 	 */
924 	ASSERT(real_stripes >= 2);
925 	ASSERT(real_stripes <= U8_MAX);
926 
927 	rbio = kzalloc(sizeof(*rbio), GFP_NOFS);
928 	if (!rbio)
929 		return ERR_PTR(-ENOMEM);
930 	rbio->stripe_pages = kcalloc(num_pages, sizeof(struct page *),
931 				     GFP_NOFS);
932 	rbio->bio_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr),
933 				    GFP_NOFS);
934 	rbio->stripe_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr),
935 				       GFP_NOFS);
936 	rbio->finish_pointers = kcalloc(real_stripes, sizeof(void *), GFP_NOFS);
937 	rbio->error_bitmap = bitmap_zalloc(num_sectors, GFP_NOFS);
938 
939 	if (!rbio->stripe_pages || !rbio->bio_sectors || !rbio->stripe_sectors ||
940 	    !rbio->finish_pointers || !rbio->error_bitmap) {
941 		free_raid_bio_pointers(rbio);
942 		kfree(rbio);
943 		return ERR_PTR(-ENOMEM);
944 	}
945 
946 	bio_list_init(&rbio->bio_list);
947 	init_waitqueue_head(&rbio->io_wait);
948 	INIT_LIST_HEAD(&rbio->plug_list);
949 	spin_lock_init(&rbio->bio_list_lock);
950 	INIT_LIST_HEAD(&rbio->stripe_cache);
951 	INIT_LIST_HEAD(&rbio->hash_list);
952 	btrfs_get_bioc(bioc);
953 	rbio->bioc = bioc;
954 	rbio->nr_pages = num_pages;
955 	rbio->nr_sectors = num_sectors;
956 	rbio->real_stripes = real_stripes;
957 	rbio->stripe_npages = stripe_npages;
958 	rbio->stripe_nsectors = stripe_nsectors;
959 	refcount_set(&rbio->refs, 1);
960 	atomic_set(&rbio->stripes_pending, 0);
961 
962 	ASSERT(btrfs_nr_parity_stripes(bioc->map_type));
963 	rbio->nr_data = real_stripes - btrfs_nr_parity_stripes(bioc->map_type);
964 	ASSERT(rbio->nr_data > 0);
965 
966 	return rbio;
967 }
968 
969 /* allocate pages for all the stripes in the bio, including parity */
970 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
971 {
972 	int ret;
973 
974 	ret = btrfs_alloc_page_array(rbio->nr_pages, rbio->stripe_pages, 0);
975 	if (ret < 0)
976 		return ret;
977 	/* Mapping all sectors */
978 	index_stripe_sectors(rbio);
979 	return 0;
980 }
981 
982 /* only allocate pages for p/q stripes */
983 static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
984 {
985 	const int data_pages = rbio->nr_data * rbio->stripe_npages;
986 	int ret;
987 
988 	ret = btrfs_alloc_page_array(rbio->nr_pages - data_pages,
989 				     rbio->stripe_pages + data_pages, 0);
990 	if (ret < 0)
991 		return ret;
992 
993 	index_stripe_sectors(rbio);
994 	return 0;
995 }
996 
997 /*
998  * Return the total number of errors found in the vertical stripe of @sector_nr.
999  *
1000  * @faila and @failb will also be updated to the first and second stripe
1001  * number of the errors.
1002  */
1003 static int get_rbio_veritical_errors(struct btrfs_raid_bio *rbio, int sector_nr,
1004 				     int *faila, int *failb)
1005 {
1006 	int stripe_nr;
1007 	int found_errors = 0;
1008 
1009 	if (faila || failb) {
1010 		/*
1011 		 * Both @faila and @failb should be valid pointers if any of
1012 		 * them is specified.
1013 		 */
1014 		ASSERT(faila && failb);
1015 		*faila = -1;
1016 		*failb = -1;
1017 	}
1018 
1019 	for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
1020 		int total_sector_nr = stripe_nr * rbio->stripe_nsectors + sector_nr;
1021 
1022 		if (test_bit(total_sector_nr, rbio->error_bitmap)) {
1023 			found_errors++;
1024 			if (faila) {
1025 				/* Update faila and failb. */
1026 				if (*faila < 0)
1027 					*faila = stripe_nr;
1028 				else if (*failb < 0)
1029 					*failb = stripe_nr;
1030 			}
1031 		}
1032 	}
1033 	return found_errors;
1034 }
1035 
1036 /*
1037  * Add a single sector @sector into our list of bios for IO.
1038  *
1039  * Return 0 if everything went well.
1040  * Return <0 for error.
1041  */
1042 static int rbio_add_io_sector(struct btrfs_raid_bio *rbio,
1043 			      struct bio_list *bio_list,
1044 			      struct sector_ptr *sector,
1045 			      unsigned int stripe_nr,
1046 			      unsigned int sector_nr,
1047 			      enum req_op op)
1048 {
1049 	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1050 	struct bio *last = bio_list->tail;
1051 	int ret;
1052 	struct bio *bio;
1053 	struct btrfs_io_stripe *stripe;
1054 	u64 disk_start;
1055 
1056 	/*
1057 	 * Note: here stripe_nr has taken device replace into consideration,
1058 	 * thus it can be larger than rbio->real_stripe.
1059 	 * So here we check against bioc->num_stripes, not rbio->real_stripes.
1060 	 */
1061 	ASSERT(stripe_nr >= 0 && stripe_nr < rbio->bioc->num_stripes);
1062 	ASSERT(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors);
1063 	ASSERT(sector->page);
1064 
1065 	stripe = &rbio->bioc->stripes[stripe_nr];
1066 	disk_start = stripe->physical + sector_nr * sectorsize;
1067 
1068 	/* if the device is missing, just fail this stripe */
1069 	if (!stripe->dev->bdev) {
1070 		int found_errors;
1071 
1072 		set_bit(stripe_nr * rbio->stripe_nsectors + sector_nr,
1073 			rbio->error_bitmap);
1074 
1075 		/* Check if we have reached tolerance early. */
1076 		found_errors = get_rbio_veritical_errors(rbio, sector_nr,
1077 							 NULL, NULL);
1078 		if (found_errors > rbio->bioc->max_errors)
1079 			return -EIO;
1080 		return 0;
1081 	}
1082 
1083 	/* see if we can add this page onto our existing bio */
1084 	if (last) {
1085 		u64 last_end = last->bi_iter.bi_sector << SECTOR_SHIFT;
1086 		last_end += last->bi_iter.bi_size;
1087 
1088 		/*
1089 		 * we can't merge these if they are from different
1090 		 * devices or if they are not contiguous
1091 		 */
1092 		if (last_end == disk_start && !last->bi_status &&
1093 		    last->bi_bdev == stripe->dev->bdev) {
1094 			ret = bio_add_page(last, sector->page, sectorsize,
1095 					   sector->pgoff);
1096 			if (ret == sectorsize)
1097 				return 0;
1098 		}
1099 	}
1100 
1101 	/* put a new bio on the list */
1102 	bio = bio_alloc(stripe->dev->bdev,
1103 			max(BTRFS_STRIPE_LEN >> PAGE_SHIFT, 1),
1104 			op, GFP_NOFS);
1105 	bio->bi_iter.bi_sector = disk_start >> SECTOR_SHIFT;
1106 	bio->bi_private = rbio;
1107 
1108 	__bio_add_page(bio, sector->page, sectorsize, sector->pgoff);
1109 	bio_list_add(bio_list, bio);
1110 	return 0;
1111 }
1112 
1113 static void index_one_bio(struct btrfs_raid_bio *rbio, struct bio *bio)
1114 {
1115 	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1116 	struct bio_vec bvec;
1117 	struct bvec_iter iter;
1118 	u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
1119 		     rbio->bioc->full_stripe_logical;
1120 
1121 	bio_for_each_segment(bvec, bio, iter) {
1122 		u32 bvec_offset;
1123 
1124 		for (bvec_offset = 0; bvec_offset < bvec.bv_len;
1125 		     bvec_offset += sectorsize, offset += sectorsize) {
1126 			int index = offset / sectorsize;
1127 			struct sector_ptr *sector = &rbio->bio_sectors[index];
1128 
1129 			sector->page = bvec.bv_page;
1130 			sector->pgoff = bvec.bv_offset + bvec_offset;
1131 			ASSERT(sector->pgoff < PAGE_SIZE);
1132 		}
1133 	}
1134 }
1135 
1136 /*
1137  * helper function to walk our bio list and populate the bio_pages array with
1138  * the result.  This seems expensive, but it is faster than constantly
1139  * searching through the bio list as we setup the IO in finish_rmw or stripe
1140  * reconstruction.
1141  *
1142  * This must be called before you trust the answers from page_in_rbio
1143  */
1144 static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1145 {
1146 	struct bio *bio;
1147 
1148 	spin_lock(&rbio->bio_list_lock);
1149 	bio_list_for_each(bio, &rbio->bio_list)
1150 		index_one_bio(rbio, bio);
1151 
1152 	spin_unlock(&rbio->bio_list_lock);
1153 }
1154 
1155 static void bio_get_trace_info(struct btrfs_raid_bio *rbio, struct bio *bio,
1156 			       struct raid56_bio_trace_info *trace_info)
1157 {
1158 	const struct btrfs_io_context *bioc = rbio->bioc;
1159 	int i;
1160 
1161 	ASSERT(bioc);
1162 
1163 	/* We rely on bio->bi_bdev to find the stripe number. */
1164 	if (!bio->bi_bdev)
1165 		goto not_found;
1166 
1167 	for (i = 0; i < bioc->num_stripes; i++) {
1168 		if (bio->bi_bdev != bioc->stripes[i].dev->bdev)
1169 			continue;
1170 		trace_info->stripe_nr = i;
1171 		trace_info->devid = bioc->stripes[i].dev->devid;
1172 		trace_info->offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
1173 				     bioc->stripes[i].physical;
1174 		return;
1175 	}
1176 
1177 not_found:
1178 	trace_info->devid = -1;
1179 	trace_info->offset = -1;
1180 	trace_info->stripe_nr = -1;
1181 }
1182 
1183 static inline void bio_list_put(struct bio_list *bio_list)
1184 {
1185 	struct bio *bio;
1186 
1187 	while ((bio = bio_list_pop(bio_list)))
1188 		bio_put(bio);
1189 }
1190 
1191 static void assert_rbio(struct btrfs_raid_bio *rbio)
1192 {
1193 	if (!IS_ENABLED(CONFIG_BTRFS_DEBUG) ||
1194 	    !IS_ENABLED(CONFIG_BTRFS_ASSERT))
1195 		return;
1196 
1197 	/*
1198 	 * At least two stripes (2 disks RAID5), and since real_stripes is U8,
1199 	 * we won't go beyond 256 disks anyway.
1200 	 */
1201 	ASSERT(rbio->real_stripes >= 2);
1202 	ASSERT(rbio->nr_data > 0);
1203 
1204 	/*
1205 	 * This is another check to make sure nr data stripes is smaller
1206 	 * than total stripes.
1207 	 */
1208 	ASSERT(rbio->nr_data < rbio->real_stripes);
1209 }
1210 
1211 /* Generate PQ for one vertical stripe. */
1212 static void generate_pq_vertical(struct btrfs_raid_bio *rbio, int sectornr)
1213 {
1214 	void **pointers = rbio->finish_pointers;
1215 	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1216 	struct sector_ptr *sector;
1217 	int stripe;
1218 	const bool has_qstripe = rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6;
1219 
1220 	/* First collect one sector from each data stripe */
1221 	for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1222 		sector = sector_in_rbio(rbio, stripe, sectornr, 0);
1223 		pointers[stripe] = kmap_local_page(sector->page) +
1224 				   sector->pgoff;
1225 	}
1226 
1227 	/* Then add the parity stripe */
1228 	sector = rbio_pstripe_sector(rbio, sectornr);
1229 	sector->uptodate = 1;
1230 	pointers[stripe++] = kmap_local_page(sector->page) + sector->pgoff;
1231 
1232 	if (has_qstripe) {
1233 		/*
1234 		 * RAID6, add the qstripe and call the library function
1235 		 * to fill in our p/q
1236 		 */
1237 		sector = rbio_qstripe_sector(rbio, sectornr);
1238 		sector->uptodate = 1;
1239 		pointers[stripe++] = kmap_local_page(sector->page) +
1240 				     sector->pgoff;
1241 
1242 		assert_rbio(rbio);
1243 		raid6_call.gen_syndrome(rbio->real_stripes, sectorsize,
1244 					pointers);
1245 	} else {
1246 		/* raid5 */
1247 		memcpy(pointers[rbio->nr_data], pointers[0], sectorsize);
1248 		run_xor(pointers + 1, rbio->nr_data - 1, sectorsize);
1249 	}
1250 	for (stripe = stripe - 1; stripe >= 0; stripe--)
1251 		kunmap_local(pointers[stripe]);
1252 }
1253 
1254 static int rmw_assemble_write_bios(struct btrfs_raid_bio *rbio,
1255 				   struct bio_list *bio_list)
1256 {
1257 	/* The total sector number inside the full stripe. */
1258 	int total_sector_nr;
1259 	int sectornr;
1260 	int stripe;
1261 	int ret;
1262 
1263 	ASSERT(bio_list_size(bio_list) == 0);
1264 
1265 	/* We should have at least one data sector. */
1266 	ASSERT(bitmap_weight(&rbio->dbitmap, rbio->stripe_nsectors));
1267 
1268 	/*
1269 	 * Reset errors, as we may have errors inherited from from degraded
1270 	 * write.
1271 	 */
1272 	bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
1273 
1274 	/*
1275 	 * Start assembly.  Make bios for everything from the higher layers (the
1276 	 * bio_list in our rbio) and our P/Q.  Ignore everything else.
1277 	 */
1278 	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
1279 	     total_sector_nr++) {
1280 		struct sector_ptr *sector;
1281 
1282 		stripe = total_sector_nr / rbio->stripe_nsectors;
1283 		sectornr = total_sector_nr % rbio->stripe_nsectors;
1284 
1285 		/* This vertical stripe has no data, skip it. */
1286 		if (!test_bit(sectornr, &rbio->dbitmap))
1287 			continue;
1288 
1289 		if (stripe < rbio->nr_data) {
1290 			sector = sector_in_rbio(rbio, stripe, sectornr, 1);
1291 			if (!sector)
1292 				continue;
1293 		} else {
1294 			sector = rbio_stripe_sector(rbio, stripe, sectornr);
1295 		}
1296 
1297 		ret = rbio_add_io_sector(rbio, bio_list, sector, stripe,
1298 					 sectornr, REQ_OP_WRITE);
1299 		if (ret)
1300 			goto error;
1301 	}
1302 
1303 	if (likely(!rbio->bioc->replace_nr_stripes))
1304 		return 0;
1305 
1306 	/*
1307 	 * Make a copy for the replace target device.
1308 	 *
1309 	 * Thus the source stripe number (in replace_stripe_src) should be valid.
1310 	 */
1311 	ASSERT(rbio->bioc->replace_stripe_src >= 0);
1312 
1313 	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
1314 	     total_sector_nr++) {
1315 		struct sector_ptr *sector;
1316 
1317 		stripe = total_sector_nr / rbio->stripe_nsectors;
1318 		sectornr = total_sector_nr % rbio->stripe_nsectors;
1319 
1320 		/*
1321 		 * For RAID56, there is only one device that can be replaced,
1322 		 * and replace_stripe_src[0] indicates the stripe number we
1323 		 * need to copy from.
1324 		 */
1325 		if (stripe != rbio->bioc->replace_stripe_src) {
1326 			/*
1327 			 * We can skip the whole stripe completely, note
1328 			 * total_sector_nr will be increased by one anyway.
1329 			 */
1330 			ASSERT(sectornr == 0);
1331 			total_sector_nr += rbio->stripe_nsectors - 1;
1332 			continue;
1333 		}
1334 
1335 		/* This vertical stripe has no data, skip it. */
1336 		if (!test_bit(sectornr, &rbio->dbitmap))
1337 			continue;
1338 
1339 		if (stripe < rbio->nr_data) {
1340 			sector = sector_in_rbio(rbio, stripe, sectornr, 1);
1341 			if (!sector)
1342 				continue;
1343 		} else {
1344 			sector = rbio_stripe_sector(rbio, stripe, sectornr);
1345 		}
1346 
1347 		ret = rbio_add_io_sector(rbio, bio_list, sector,
1348 					 rbio->real_stripes,
1349 					 sectornr, REQ_OP_WRITE);
1350 		if (ret)
1351 			goto error;
1352 	}
1353 
1354 	return 0;
1355 error:
1356 	bio_list_put(bio_list);
1357 	return -EIO;
1358 }
1359 
1360 static void set_rbio_range_error(struct btrfs_raid_bio *rbio, struct bio *bio)
1361 {
1362 	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1363 	u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
1364 		     rbio->bioc->full_stripe_logical;
1365 	int total_nr_sector = offset >> fs_info->sectorsize_bits;
1366 
1367 	ASSERT(total_nr_sector < rbio->nr_data * rbio->stripe_nsectors);
1368 
1369 	bitmap_set(rbio->error_bitmap, total_nr_sector,
1370 		   bio->bi_iter.bi_size >> fs_info->sectorsize_bits);
1371 
1372 	/*
1373 	 * Special handling for raid56_alloc_missing_rbio() used by
1374 	 * scrub/replace.  Unlike call path in raid56_parity_recover(), they
1375 	 * pass an empty bio here.  Thus we have to find out the missing device
1376 	 * and mark the stripe error instead.
1377 	 */
1378 	if (bio->bi_iter.bi_size == 0) {
1379 		bool found_missing = false;
1380 		int stripe_nr;
1381 
1382 		for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
1383 			if (!rbio->bioc->stripes[stripe_nr].dev->bdev) {
1384 				found_missing = true;
1385 				bitmap_set(rbio->error_bitmap,
1386 					   stripe_nr * rbio->stripe_nsectors,
1387 					   rbio->stripe_nsectors);
1388 			}
1389 		}
1390 		ASSERT(found_missing);
1391 	}
1392 }
1393 
1394 /*
1395  * For subpage case, we can no longer set page Up-to-date directly for
1396  * stripe_pages[], thus we need to locate the sector.
1397  */
1398 static struct sector_ptr *find_stripe_sector(struct btrfs_raid_bio *rbio,
1399 					     struct page *page,
1400 					     unsigned int pgoff)
1401 {
1402 	int i;
1403 
1404 	for (i = 0; i < rbio->nr_sectors; i++) {
1405 		struct sector_ptr *sector = &rbio->stripe_sectors[i];
1406 
1407 		if (sector->page == page && sector->pgoff == pgoff)
1408 			return sector;
1409 	}
1410 	return NULL;
1411 }
1412 
1413 /*
1414  * this sets each page in the bio uptodate.  It should only be used on private
1415  * rbio pages, nothing that comes in from the higher layers
1416  */
1417 static void set_bio_pages_uptodate(struct btrfs_raid_bio *rbio, struct bio *bio)
1418 {
1419 	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1420 	struct bio_vec *bvec;
1421 	struct bvec_iter_all iter_all;
1422 
1423 	ASSERT(!bio_flagged(bio, BIO_CLONED));
1424 
1425 	bio_for_each_segment_all(bvec, bio, iter_all) {
1426 		struct sector_ptr *sector;
1427 		int pgoff;
1428 
1429 		for (pgoff = bvec->bv_offset; pgoff - bvec->bv_offset < bvec->bv_len;
1430 		     pgoff += sectorsize) {
1431 			sector = find_stripe_sector(rbio, bvec->bv_page, pgoff);
1432 			ASSERT(sector);
1433 			if (sector)
1434 				sector->uptodate = 1;
1435 		}
1436 	}
1437 }
1438 
1439 static int get_bio_sector_nr(struct btrfs_raid_bio *rbio, struct bio *bio)
1440 {
1441 	struct bio_vec *bv = bio_first_bvec_all(bio);
1442 	int i;
1443 
1444 	for (i = 0; i < rbio->nr_sectors; i++) {
1445 		struct sector_ptr *sector;
1446 
1447 		sector = &rbio->stripe_sectors[i];
1448 		if (sector->page == bv->bv_page && sector->pgoff == bv->bv_offset)
1449 			break;
1450 		sector = &rbio->bio_sectors[i];
1451 		if (sector->page == bv->bv_page && sector->pgoff == bv->bv_offset)
1452 			break;
1453 	}
1454 	ASSERT(i < rbio->nr_sectors);
1455 	return i;
1456 }
1457 
1458 static void rbio_update_error_bitmap(struct btrfs_raid_bio *rbio, struct bio *bio)
1459 {
1460 	int total_sector_nr = get_bio_sector_nr(rbio, bio);
1461 	u32 bio_size = 0;
1462 	struct bio_vec *bvec;
1463 	int i;
1464 
1465 	bio_for_each_bvec_all(bvec, bio, i)
1466 		bio_size += bvec->bv_len;
1467 
1468 	/*
1469 	 * Since we can have multiple bios touching the error_bitmap, we cannot
1470 	 * call bitmap_set() without protection.
1471 	 *
1472 	 * Instead use set_bit() for each bit, as set_bit() itself is atomic.
1473 	 */
1474 	for (i = total_sector_nr; i < total_sector_nr +
1475 	     (bio_size >> rbio->bioc->fs_info->sectorsize_bits); i++)
1476 		set_bit(i, rbio->error_bitmap);
1477 }
1478 
1479 /* Verify the data sectors at read time. */
1480 static void verify_bio_data_sectors(struct btrfs_raid_bio *rbio,
1481 				    struct bio *bio)
1482 {
1483 	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1484 	int total_sector_nr = get_bio_sector_nr(rbio, bio);
1485 	struct bio_vec *bvec;
1486 	struct bvec_iter_all iter_all;
1487 
1488 	/* No data csum for the whole stripe, no need to verify. */
1489 	if (!rbio->csum_bitmap || !rbio->csum_buf)
1490 		return;
1491 
1492 	/* P/Q stripes, they have no data csum to verify against. */
1493 	if (total_sector_nr >= rbio->nr_data * rbio->stripe_nsectors)
1494 		return;
1495 
1496 	bio_for_each_segment_all(bvec, bio, iter_all) {
1497 		int bv_offset;
1498 
1499 		for (bv_offset = bvec->bv_offset;
1500 		     bv_offset < bvec->bv_offset + bvec->bv_len;
1501 		     bv_offset += fs_info->sectorsize, total_sector_nr++) {
1502 			u8 csum_buf[BTRFS_CSUM_SIZE];
1503 			u8 *expected_csum = rbio->csum_buf +
1504 					    total_sector_nr * fs_info->csum_size;
1505 			int ret;
1506 
1507 			/* No csum for this sector, skip to the next sector. */
1508 			if (!test_bit(total_sector_nr, rbio->csum_bitmap))
1509 				continue;
1510 
1511 			ret = btrfs_check_sector_csum(fs_info, bvec->bv_page,
1512 				bv_offset, csum_buf, expected_csum);
1513 			if (ret < 0)
1514 				set_bit(total_sector_nr, rbio->error_bitmap);
1515 		}
1516 	}
1517 }
1518 
1519 static void raid_wait_read_end_io(struct bio *bio)
1520 {
1521 	struct btrfs_raid_bio *rbio = bio->bi_private;
1522 
1523 	if (bio->bi_status) {
1524 		rbio_update_error_bitmap(rbio, bio);
1525 	} else {
1526 		set_bio_pages_uptodate(rbio, bio);
1527 		verify_bio_data_sectors(rbio, bio);
1528 	}
1529 
1530 	bio_put(bio);
1531 	if (atomic_dec_and_test(&rbio->stripes_pending))
1532 		wake_up(&rbio->io_wait);
1533 }
1534 
1535 static void submit_read_wait_bio_list(struct btrfs_raid_bio *rbio,
1536 			     struct bio_list *bio_list)
1537 {
1538 	struct bio *bio;
1539 
1540 	atomic_set(&rbio->stripes_pending, bio_list_size(bio_list));
1541 	while ((bio = bio_list_pop(bio_list))) {
1542 		bio->bi_end_io = raid_wait_read_end_io;
1543 
1544 		if (trace_raid56_read_enabled()) {
1545 			struct raid56_bio_trace_info trace_info = { 0 };
1546 
1547 			bio_get_trace_info(rbio, bio, &trace_info);
1548 			trace_raid56_read(rbio, bio, &trace_info);
1549 		}
1550 		submit_bio(bio);
1551 	}
1552 
1553 	wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
1554 }
1555 
1556 static int alloc_rbio_data_pages(struct btrfs_raid_bio *rbio)
1557 {
1558 	const int data_pages = rbio->nr_data * rbio->stripe_npages;
1559 	int ret;
1560 
1561 	ret = btrfs_alloc_page_array(data_pages, rbio->stripe_pages, 0);
1562 	if (ret < 0)
1563 		return ret;
1564 
1565 	index_stripe_sectors(rbio);
1566 	return 0;
1567 }
1568 
1569 /*
1570  * We use plugging call backs to collect full stripes.
1571  * Any time we get a partial stripe write while plugged
1572  * we collect it into a list.  When the unplug comes down,
1573  * we sort the list by logical block number and merge
1574  * everything we can into the same rbios
1575  */
1576 struct btrfs_plug_cb {
1577 	struct blk_plug_cb cb;
1578 	struct btrfs_fs_info *info;
1579 	struct list_head rbio_list;
1580 };
1581 
1582 /*
1583  * rbios on the plug list are sorted for easier merging.
1584  */
1585 static int plug_cmp(void *priv, const struct list_head *a,
1586 		    const struct list_head *b)
1587 {
1588 	const struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1589 						       plug_list);
1590 	const struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1591 						       plug_list);
1592 	u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1593 	u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1594 
1595 	if (a_sector < b_sector)
1596 		return -1;
1597 	if (a_sector > b_sector)
1598 		return 1;
1599 	return 0;
1600 }
1601 
1602 static void raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1603 {
1604 	struct btrfs_plug_cb *plug = container_of(cb, struct btrfs_plug_cb, cb);
1605 	struct btrfs_raid_bio *cur;
1606 	struct btrfs_raid_bio *last = NULL;
1607 
1608 	list_sort(NULL, &plug->rbio_list, plug_cmp);
1609 
1610 	while (!list_empty(&plug->rbio_list)) {
1611 		cur = list_entry(plug->rbio_list.next,
1612 				 struct btrfs_raid_bio, plug_list);
1613 		list_del_init(&cur->plug_list);
1614 
1615 		if (rbio_is_full(cur)) {
1616 			/* We have a full stripe, queue it down. */
1617 			start_async_work(cur, rmw_rbio_work);
1618 			continue;
1619 		}
1620 		if (last) {
1621 			if (rbio_can_merge(last, cur)) {
1622 				merge_rbio(last, cur);
1623 				free_raid_bio(cur);
1624 				continue;
1625 			}
1626 			start_async_work(last, rmw_rbio_work);
1627 		}
1628 		last = cur;
1629 	}
1630 	if (last)
1631 		start_async_work(last, rmw_rbio_work);
1632 	kfree(plug);
1633 }
1634 
1635 /* Add the original bio into rbio->bio_list, and update rbio::dbitmap. */
1636 static void rbio_add_bio(struct btrfs_raid_bio *rbio, struct bio *orig_bio)
1637 {
1638 	const struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1639 	const u64 orig_logical = orig_bio->bi_iter.bi_sector << SECTOR_SHIFT;
1640 	const u64 full_stripe_start = rbio->bioc->full_stripe_logical;
1641 	const u32 orig_len = orig_bio->bi_iter.bi_size;
1642 	const u32 sectorsize = fs_info->sectorsize;
1643 	u64 cur_logical;
1644 
1645 	ASSERT(orig_logical >= full_stripe_start &&
1646 	       orig_logical + orig_len <= full_stripe_start +
1647 	       rbio->nr_data * BTRFS_STRIPE_LEN);
1648 
1649 	bio_list_add(&rbio->bio_list, orig_bio);
1650 	rbio->bio_list_bytes += orig_bio->bi_iter.bi_size;
1651 
1652 	/* Update the dbitmap. */
1653 	for (cur_logical = orig_logical; cur_logical < orig_logical + orig_len;
1654 	     cur_logical += sectorsize) {
1655 		int bit = ((u32)(cur_logical - full_stripe_start) >>
1656 			   fs_info->sectorsize_bits) % rbio->stripe_nsectors;
1657 
1658 		set_bit(bit, &rbio->dbitmap);
1659 	}
1660 }
1661 
1662 /*
1663  * our main entry point for writes from the rest of the FS.
1664  */
1665 void raid56_parity_write(struct bio *bio, struct btrfs_io_context *bioc)
1666 {
1667 	struct btrfs_fs_info *fs_info = bioc->fs_info;
1668 	struct btrfs_raid_bio *rbio;
1669 	struct btrfs_plug_cb *plug = NULL;
1670 	struct blk_plug_cb *cb;
1671 
1672 	rbio = alloc_rbio(fs_info, bioc);
1673 	if (IS_ERR(rbio)) {
1674 		bio->bi_status = errno_to_blk_status(PTR_ERR(rbio));
1675 		bio_endio(bio);
1676 		return;
1677 	}
1678 	rbio->operation = BTRFS_RBIO_WRITE;
1679 	rbio_add_bio(rbio, bio);
1680 
1681 	/*
1682 	 * Don't plug on full rbios, just get them out the door
1683 	 * as quickly as we can
1684 	 */
1685 	if (!rbio_is_full(rbio)) {
1686 		cb = blk_check_plugged(raid_unplug, fs_info, sizeof(*plug));
1687 		if (cb) {
1688 			plug = container_of(cb, struct btrfs_plug_cb, cb);
1689 			if (!plug->info) {
1690 				plug->info = fs_info;
1691 				INIT_LIST_HEAD(&plug->rbio_list);
1692 			}
1693 			list_add_tail(&rbio->plug_list, &plug->rbio_list);
1694 			return;
1695 		}
1696 	}
1697 
1698 	/*
1699 	 * Either we don't have any existing plug, or we're doing a full stripe,
1700 	 * queue the rmw work now.
1701 	 */
1702 	start_async_work(rbio, rmw_rbio_work);
1703 }
1704 
1705 static int verify_one_sector(struct btrfs_raid_bio *rbio,
1706 			     int stripe_nr, int sector_nr)
1707 {
1708 	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1709 	struct sector_ptr *sector;
1710 	u8 csum_buf[BTRFS_CSUM_SIZE];
1711 	u8 *csum_expected;
1712 	int ret;
1713 
1714 	if (!rbio->csum_bitmap || !rbio->csum_buf)
1715 		return 0;
1716 
1717 	/* No way to verify P/Q as they are not covered by data csum. */
1718 	if (stripe_nr >= rbio->nr_data)
1719 		return 0;
1720 	/*
1721 	 * If we're rebuilding a read, we have to use pages from the
1722 	 * bio list if possible.
1723 	 */
1724 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
1725 		sector = sector_in_rbio(rbio, stripe_nr, sector_nr, 0);
1726 	} else {
1727 		sector = rbio_stripe_sector(rbio, stripe_nr, sector_nr);
1728 	}
1729 
1730 	ASSERT(sector->page);
1731 
1732 	csum_expected = rbio->csum_buf +
1733 			(stripe_nr * rbio->stripe_nsectors + sector_nr) *
1734 			fs_info->csum_size;
1735 	ret = btrfs_check_sector_csum(fs_info, sector->page, sector->pgoff,
1736 				      csum_buf, csum_expected);
1737 	return ret;
1738 }
1739 
1740 /*
1741  * Recover a vertical stripe specified by @sector_nr.
1742  * @*pointers are the pre-allocated pointers by the caller, so we don't
1743  * need to allocate/free the pointers again and again.
1744  */
1745 static int recover_vertical(struct btrfs_raid_bio *rbio, int sector_nr,
1746 			    void **pointers, void **unmap_array)
1747 {
1748 	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1749 	struct sector_ptr *sector;
1750 	const u32 sectorsize = fs_info->sectorsize;
1751 	int found_errors;
1752 	int faila;
1753 	int failb;
1754 	int stripe_nr;
1755 	int ret = 0;
1756 
1757 	/*
1758 	 * Now we just use bitmap to mark the horizontal stripes in
1759 	 * which we have data when doing parity scrub.
1760 	 */
1761 	if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1762 	    !test_bit(sector_nr, &rbio->dbitmap))
1763 		return 0;
1764 
1765 	found_errors = get_rbio_veritical_errors(rbio, sector_nr, &faila,
1766 						 &failb);
1767 	/*
1768 	 * No errors in the vertical stripe, skip it.  Can happen for recovery
1769 	 * which only part of a stripe failed csum check.
1770 	 */
1771 	if (!found_errors)
1772 		return 0;
1773 
1774 	if (found_errors > rbio->bioc->max_errors)
1775 		return -EIO;
1776 
1777 	/*
1778 	 * Setup our array of pointers with sectors from each stripe
1779 	 *
1780 	 * NOTE: store a duplicate array of pointers to preserve the
1781 	 * pointer order.
1782 	 */
1783 	for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
1784 		/*
1785 		 * If we're rebuilding a read, we have to use pages from the
1786 		 * bio list if possible.
1787 		 */
1788 		if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
1789 			sector = sector_in_rbio(rbio, stripe_nr, sector_nr, 0);
1790 		} else {
1791 			sector = rbio_stripe_sector(rbio, stripe_nr, sector_nr);
1792 		}
1793 		ASSERT(sector->page);
1794 		pointers[stripe_nr] = kmap_local_page(sector->page) +
1795 				   sector->pgoff;
1796 		unmap_array[stripe_nr] = pointers[stripe_nr];
1797 	}
1798 
1799 	/* All raid6 handling here */
1800 	if (rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6) {
1801 		/* Single failure, rebuild from parity raid5 style */
1802 		if (failb < 0) {
1803 			if (faila == rbio->nr_data)
1804 				/*
1805 				 * Just the P stripe has failed, without
1806 				 * a bad data or Q stripe.
1807 				 * We have nothing to do, just skip the
1808 				 * recovery for this stripe.
1809 				 */
1810 				goto cleanup;
1811 			/*
1812 			 * a single failure in raid6 is rebuilt
1813 			 * in the pstripe code below
1814 			 */
1815 			goto pstripe;
1816 		}
1817 
1818 		/*
1819 		 * If the q stripe is failed, do a pstripe reconstruction from
1820 		 * the xors.
1821 		 * If both the q stripe and the P stripe are failed, we're
1822 		 * here due to a crc mismatch and we can't give them the
1823 		 * data they want.
1824 		 */
1825 		if (failb == rbio->real_stripes - 1) {
1826 			if (faila == rbio->real_stripes - 2)
1827 				/*
1828 				 * Only P and Q are corrupted.
1829 				 * We only care about data stripes recovery,
1830 				 * can skip this vertical stripe.
1831 				 */
1832 				goto cleanup;
1833 			/*
1834 			 * Otherwise we have one bad data stripe and
1835 			 * a good P stripe.  raid5!
1836 			 */
1837 			goto pstripe;
1838 		}
1839 
1840 		if (failb == rbio->real_stripes - 2) {
1841 			raid6_datap_recov(rbio->real_stripes, sectorsize,
1842 					  faila, pointers);
1843 		} else {
1844 			raid6_2data_recov(rbio->real_stripes, sectorsize,
1845 					  faila, failb, pointers);
1846 		}
1847 	} else {
1848 		void *p;
1849 
1850 		/* Rebuild from P stripe here (raid5 or raid6). */
1851 		ASSERT(failb == -1);
1852 pstripe:
1853 		/* Copy parity block into failed block to start with */
1854 		memcpy(pointers[faila], pointers[rbio->nr_data], sectorsize);
1855 
1856 		/* Rearrange the pointer array */
1857 		p = pointers[faila];
1858 		for (stripe_nr = faila; stripe_nr < rbio->nr_data - 1;
1859 		     stripe_nr++)
1860 			pointers[stripe_nr] = pointers[stripe_nr + 1];
1861 		pointers[rbio->nr_data - 1] = p;
1862 
1863 		/* Xor in the rest */
1864 		run_xor(pointers, rbio->nr_data - 1, sectorsize);
1865 
1866 	}
1867 
1868 	/*
1869 	 * No matter if this is a RMW or recovery, we should have all
1870 	 * failed sectors repaired in the vertical stripe, thus they are now
1871 	 * uptodate.
1872 	 * Especially if we determine to cache the rbio, we need to
1873 	 * have at least all data sectors uptodate.
1874 	 *
1875 	 * If possible, also check if the repaired sector matches its data
1876 	 * checksum.
1877 	 */
1878 	if (faila >= 0) {
1879 		ret = verify_one_sector(rbio, faila, sector_nr);
1880 		if (ret < 0)
1881 			goto cleanup;
1882 
1883 		sector = rbio_stripe_sector(rbio, faila, sector_nr);
1884 		sector->uptodate = 1;
1885 	}
1886 	if (failb >= 0) {
1887 		ret = verify_one_sector(rbio, failb, sector_nr);
1888 		if (ret < 0)
1889 			goto cleanup;
1890 
1891 		sector = rbio_stripe_sector(rbio, failb, sector_nr);
1892 		sector->uptodate = 1;
1893 	}
1894 
1895 cleanup:
1896 	for (stripe_nr = rbio->real_stripes - 1; stripe_nr >= 0; stripe_nr--)
1897 		kunmap_local(unmap_array[stripe_nr]);
1898 	return ret;
1899 }
1900 
1901 static int recover_sectors(struct btrfs_raid_bio *rbio)
1902 {
1903 	void **pointers = NULL;
1904 	void **unmap_array = NULL;
1905 	int sectornr;
1906 	int ret = 0;
1907 
1908 	/*
1909 	 * @pointers array stores the pointer for each sector.
1910 	 *
1911 	 * @unmap_array stores copy of pointers that does not get reordered
1912 	 * during reconstruction so that kunmap_local works.
1913 	 */
1914 	pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1915 	unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1916 	if (!pointers || !unmap_array) {
1917 		ret = -ENOMEM;
1918 		goto out;
1919 	}
1920 
1921 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
1922 		spin_lock(&rbio->bio_list_lock);
1923 		set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1924 		spin_unlock(&rbio->bio_list_lock);
1925 	}
1926 
1927 	index_rbio_pages(rbio);
1928 
1929 	for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) {
1930 		ret = recover_vertical(rbio, sectornr, pointers, unmap_array);
1931 		if (ret < 0)
1932 			break;
1933 	}
1934 
1935 out:
1936 	kfree(pointers);
1937 	kfree(unmap_array);
1938 	return ret;
1939 }
1940 
1941 static void recover_rbio(struct btrfs_raid_bio *rbio)
1942 {
1943 	struct bio_list bio_list = BIO_EMPTY_LIST;
1944 	int total_sector_nr;
1945 	int ret = 0;
1946 
1947 	/*
1948 	 * Either we're doing recover for a read failure or degraded write,
1949 	 * caller should have set error bitmap correctly.
1950 	 */
1951 	ASSERT(bitmap_weight(rbio->error_bitmap, rbio->nr_sectors));
1952 
1953 	/* For recovery, we need to read all sectors including P/Q. */
1954 	ret = alloc_rbio_pages(rbio);
1955 	if (ret < 0)
1956 		goto out;
1957 
1958 	index_rbio_pages(rbio);
1959 
1960 	/*
1961 	 * Read everything that hasn't failed. However this time we will
1962 	 * not trust any cached sector.
1963 	 * As we may read out some stale data but higher layer is not reading
1964 	 * that stale part.
1965 	 *
1966 	 * So here we always re-read everything in recovery path.
1967 	 */
1968 	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
1969 	     total_sector_nr++) {
1970 		int stripe = total_sector_nr / rbio->stripe_nsectors;
1971 		int sectornr = total_sector_nr % rbio->stripe_nsectors;
1972 		struct sector_ptr *sector;
1973 
1974 		/*
1975 		 * Skip the range which has error.  It can be a range which is
1976 		 * marked error (for csum mismatch), or it can be a missing
1977 		 * device.
1978 		 */
1979 		if (!rbio->bioc->stripes[stripe].dev->bdev ||
1980 		    test_bit(total_sector_nr, rbio->error_bitmap)) {
1981 			/*
1982 			 * Also set the error bit for missing device, which
1983 			 * may not yet have its error bit set.
1984 			 */
1985 			set_bit(total_sector_nr, rbio->error_bitmap);
1986 			continue;
1987 		}
1988 
1989 		sector = rbio_stripe_sector(rbio, stripe, sectornr);
1990 		ret = rbio_add_io_sector(rbio, &bio_list, sector, stripe,
1991 					 sectornr, REQ_OP_READ);
1992 		if (ret < 0) {
1993 			bio_list_put(&bio_list);
1994 			goto out;
1995 		}
1996 	}
1997 
1998 	submit_read_wait_bio_list(rbio, &bio_list);
1999 	ret = recover_sectors(rbio);
2000 out:
2001 	rbio_orig_end_io(rbio, errno_to_blk_status(ret));
2002 }
2003 
2004 static void recover_rbio_work(struct work_struct *work)
2005 {
2006 	struct btrfs_raid_bio *rbio;
2007 
2008 	rbio = container_of(work, struct btrfs_raid_bio, work);
2009 	if (!lock_stripe_add(rbio))
2010 		recover_rbio(rbio);
2011 }
2012 
2013 static void recover_rbio_work_locked(struct work_struct *work)
2014 {
2015 	recover_rbio(container_of(work, struct btrfs_raid_bio, work));
2016 }
2017 
2018 static void set_rbio_raid6_extra_error(struct btrfs_raid_bio *rbio, int mirror_num)
2019 {
2020 	bool found = false;
2021 	int sector_nr;
2022 
2023 	/*
2024 	 * This is for RAID6 extra recovery tries, thus mirror number should
2025 	 * be large than 2.
2026 	 * Mirror 1 means read from data stripes. Mirror 2 means rebuild using
2027 	 * RAID5 methods.
2028 	 */
2029 	ASSERT(mirror_num > 2);
2030 	for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
2031 		int found_errors;
2032 		int faila;
2033 		int failb;
2034 
2035 		found_errors = get_rbio_veritical_errors(rbio, sector_nr,
2036 							 &faila, &failb);
2037 		/* This vertical stripe doesn't have errors. */
2038 		if (!found_errors)
2039 			continue;
2040 
2041 		/*
2042 		 * If we found errors, there should be only one error marked
2043 		 * by previous set_rbio_range_error().
2044 		 */
2045 		ASSERT(found_errors == 1);
2046 		found = true;
2047 
2048 		/* Now select another stripe to mark as error. */
2049 		failb = rbio->real_stripes - (mirror_num - 1);
2050 		if (failb <= faila)
2051 			failb--;
2052 
2053 		/* Set the extra bit in error bitmap. */
2054 		if (failb >= 0)
2055 			set_bit(failb * rbio->stripe_nsectors + sector_nr,
2056 				rbio->error_bitmap);
2057 	}
2058 
2059 	/* We should found at least one vertical stripe with error.*/
2060 	ASSERT(found);
2061 }
2062 
2063 /*
2064  * the main entry point for reads from the higher layers.  This
2065  * is really only called when the normal read path had a failure,
2066  * so we assume the bio they send down corresponds to a failed part
2067  * of the drive.
2068  */
2069 void raid56_parity_recover(struct bio *bio, struct btrfs_io_context *bioc,
2070 			   int mirror_num)
2071 {
2072 	struct btrfs_fs_info *fs_info = bioc->fs_info;
2073 	struct btrfs_raid_bio *rbio;
2074 
2075 	rbio = alloc_rbio(fs_info, bioc);
2076 	if (IS_ERR(rbio)) {
2077 		bio->bi_status = errno_to_blk_status(PTR_ERR(rbio));
2078 		bio_endio(bio);
2079 		return;
2080 	}
2081 
2082 	rbio->operation = BTRFS_RBIO_READ_REBUILD;
2083 	rbio_add_bio(rbio, bio);
2084 
2085 	set_rbio_range_error(rbio, bio);
2086 
2087 	/*
2088 	 * Loop retry:
2089 	 * for 'mirror == 2', reconstruct from all other stripes.
2090 	 * for 'mirror_num > 2', select a stripe to fail on every retry.
2091 	 */
2092 	if (mirror_num > 2)
2093 		set_rbio_raid6_extra_error(rbio, mirror_num);
2094 
2095 	start_async_work(rbio, recover_rbio_work);
2096 }
2097 
2098 static void fill_data_csums(struct btrfs_raid_bio *rbio)
2099 {
2100 	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
2101 	struct btrfs_root *csum_root = btrfs_csum_root(fs_info,
2102 						       rbio->bioc->full_stripe_logical);
2103 	const u64 start = rbio->bioc->full_stripe_logical;
2104 	const u32 len = (rbio->nr_data * rbio->stripe_nsectors) <<
2105 			fs_info->sectorsize_bits;
2106 	int ret;
2107 
2108 	/* The rbio should not have its csum buffer initialized. */
2109 	ASSERT(!rbio->csum_buf && !rbio->csum_bitmap);
2110 
2111 	/*
2112 	 * Skip the csum search if:
2113 	 *
2114 	 * - The rbio doesn't belong to data block groups
2115 	 *   Then we are doing IO for tree blocks, no need to search csums.
2116 	 *
2117 	 * - The rbio belongs to mixed block groups
2118 	 *   This is to avoid deadlock, as we're already holding the full
2119 	 *   stripe lock, if we trigger a metadata read, and it needs to do
2120 	 *   raid56 recovery, we will deadlock.
2121 	 */
2122 	if (!(rbio->bioc->map_type & BTRFS_BLOCK_GROUP_DATA) ||
2123 	    rbio->bioc->map_type & BTRFS_BLOCK_GROUP_METADATA)
2124 		return;
2125 
2126 	rbio->csum_buf = kzalloc(rbio->nr_data * rbio->stripe_nsectors *
2127 				 fs_info->csum_size, GFP_NOFS);
2128 	rbio->csum_bitmap = bitmap_zalloc(rbio->nr_data * rbio->stripe_nsectors,
2129 					  GFP_NOFS);
2130 	if (!rbio->csum_buf || !rbio->csum_bitmap) {
2131 		ret = -ENOMEM;
2132 		goto error;
2133 	}
2134 
2135 	ret = btrfs_lookup_csums_bitmap(csum_root, NULL, start, start + len - 1,
2136 					rbio->csum_buf, rbio->csum_bitmap);
2137 	if (ret < 0)
2138 		goto error;
2139 	if (bitmap_empty(rbio->csum_bitmap, len >> fs_info->sectorsize_bits))
2140 		goto no_csum;
2141 	return;
2142 
2143 error:
2144 	/*
2145 	 * We failed to allocate memory or grab the csum, but it's not fatal,
2146 	 * we can still continue.  But better to warn users that RMW is no
2147 	 * longer safe for this particular sub-stripe write.
2148 	 */
2149 	btrfs_warn_rl(fs_info,
2150 "sub-stripe write for full stripe %llu is not safe, failed to get csum: %d",
2151 			rbio->bioc->full_stripe_logical, ret);
2152 no_csum:
2153 	kfree(rbio->csum_buf);
2154 	bitmap_free(rbio->csum_bitmap);
2155 	rbio->csum_buf = NULL;
2156 	rbio->csum_bitmap = NULL;
2157 }
2158 
2159 static int rmw_read_wait_recover(struct btrfs_raid_bio *rbio)
2160 {
2161 	struct bio_list bio_list = BIO_EMPTY_LIST;
2162 	int total_sector_nr;
2163 	int ret = 0;
2164 
2165 	/*
2166 	 * Fill the data csums we need for data verification.  We need to fill
2167 	 * the csum_bitmap/csum_buf first, as our endio function will try to
2168 	 * verify the data sectors.
2169 	 */
2170 	fill_data_csums(rbio);
2171 
2172 	/*
2173 	 * Build a list of bios to read all sectors (including data and P/Q).
2174 	 *
2175 	 * This behavior is to compensate the later csum verification and recovery.
2176 	 */
2177 	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
2178 	     total_sector_nr++) {
2179 		struct sector_ptr *sector;
2180 		int stripe = total_sector_nr / rbio->stripe_nsectors;
2181 		int sectornr = total_sector_nr % rbio->stripe_nsectors;
2182 
2183 		sector = rbio_stripe_sector(rbio, stripe, sectornr);
2184 		ret = rbio_add_io_sector(rbio, &bio_list, sector,
2185 			       stripe, sectornr, REQ_OP_READ);
2186 		if (ret) {
2187 			bio_list_put(&bio_list);
2188 			return ret;
2189 		}
2190 	}
2191 
2192 	/*
2193 	 * We may or may not have any corrupted sectors (including missing dev
2194 	 * and csum mismatch), just let recover_sectors() to handle them all.
2195 	 */
2196 	submit_read_wait_bio_list(rbio, &bio_list);
2197 	return recover_sectors(rbio);
2198 }
2199 
2200 static void raid_wait_write_end_io(struct bio *bio)
2201 {
2202 	struct btrfs_raid_bio *rbio = bio->bi_private;
2203 	blk_status_t err = bio->bi_status;
2204 
2205 	if (err)
2206 		rbio_update_error_bitmap(rbio, bio);
2207 	bio_put(bio);
2208 	if (atomic_dec_and_test(&rbio->stripes_pending))
2209 		wake_up(&rbio->io_wait);
2210 }
2211 
2212 static void submit_write_bios(struct btrfs_raid_bio *rbio,
2213 			      struct bio_list *bio_list)
2214 {
2215 	struct bio *bio;
2216 
2217 	atomic_set(&rbio->stripes_pending, bio_list_size(bio_list));
2218 	while ((bio = bio_list_pop(bio_list))) {
2219 		bio->bi_end_io = raid_wait_write_end_io;
2220 
2221 		if (trace_raid56_write_enabled()) {
2222 			struct raid56_bio_trace_info trace_info = { 0 };
2223 
2224 			bio_get_trace_info(rbio, bio, &trace_info);
2225 			trace_raid56_write(rbio, bio, &trace_info);
2226 		}
2227 		submit_bio(bio);
2228 	}
2229 }
2230 
2231 /*
2232  * To determine if we need to read any sector from the disk.
2233  * Should only be utilized in RMW path, to skip cached rbio.
2234  */
2235 static bool need_read_stripe_sectors(struct btrfs_raid_bio *rbio)
2236 {
2237 	int i;
2238 
2239 	for (i = 0; i < rbio->nr_data * rbio->stripe_nsectors; i++) {
2240 		struct sector_ptr *sector = &rbio->stripe_sectors[i];
2241 
2242 		/*
2243 		 * We have a sector which doesn't have page nor uptodate,
2244 		 * thus this rbio can not be cached one, as cached one must
2245 		 * have all its data sectors present and uptodate.
2246 		 */
2247 		if (!sector->page || !sector->uptodate)
2248 			return true;
2249 	}
2250 	return false;
2251 }
2252 
2253 static void rmw_rbio(struct btrfs_raid_bio *rbio)
2254 {
2255 	struct bio_list bio_list;
2256 	int sectornr;
2257 	int ret = 0;
2258 
2259 	/*
2260 	 * Allocate the pages for parity first, as P/Q pages will always be
2261 	 * needed for both full-stripe and sub-stripe writes.
2262 	 */
2263 	ret = alloc_rbio_parity_pages(rbio);
2264 	if (ret < 0)
2265 		goto out;
2266 
2267 	/*
2268 	 * Either full stripe write, or we have every data sector already
2269 	 * cached, can go to write path immediately.
2270 	 */
2271 	if (!rbio_is_full(rbio) && need_read_stripe_sectors(rbio)) {
2272 		/*
2273 		 * Now we're doing sub-stripe write, also need all data stripes
2274 		 * to do the full RMW.
2275 		 */
2276 		ret = alloc_rbio_data_pages(rbio);
2277 		if (ret < 0)
2278 			goto out;
2279 
2280 		index_rbio_pages(rbio);
2281 
2282 		ret = rmw_read_wait_recover(rbio);
2283 		if (ret < 0)
2284 			goto out;
2285 	}
2286 
2287 	/*
2288 	 * At this stage we're not allowed to add any new bios to the
2289 	 * bio list any more, anyone else that wants to change this stripe
2290 	 * needs to do their own rmw.
2291 	 */
2292 	spin_lock(&rbio->bio_list_lock);
2293 	set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
2294 	spin_unlock(&rbio->bio_list_lock);
2295 
2296 	bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
2297 
2298 	index_rbio_pages(rbio);
2299 
2300 	/*
2301 	 * We don't cache full rbios because we're assuming
2302 	 * the higher layers are unlikely to use this area of
2303 	 * the disk again soon.  If they do use it again,
2304 	 * hopefully they will send another full bio.
2305 	 */
2306 	if (!rbio_is_full(rbio))
2307 		cache_rbio_pages(rbio);
2308 	else
2309 		clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2310 
2311 	for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++)
2312 		generate_pq_vertical(rbio, sectornr);
2313 
2314 	bio_list_init(&bio_list);
2315 	ret = rmw_assemble_write_bios(rbio, &bio_list);
2316 	if (ret < 0)
2317 		goto out;
2318 
2319 	/* We should have at least one bio assembled. */
2320 	ASSERT(bio_list_size(&bio_list));
2321 	submit_write_bios(rbio, &bio_list);
2322 	wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
2323 
2324 	/* We may have more errors than our tolerance during the read. */
2325 	for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) {
2326 		int found_errors;
2327 
2328 		found_errors = get_rbio_veritical_errors(rbio, sectornr, NULL, NULL);
2329 		if (found_errors > rbio->bioc->max_errors) {
2330 			ret = -EIO;
2331 			break;
2332 		}
2333 	}
2334 out:
2335 	rbio_orig_end_io(rbio, errno_to_blk_status(ret));
2336 }
2337 
2338 static void rmw_rbio_work(struct work_struct *work)
2339 {
2340 	struct btrfs_raid_bio *rbio;
2341 
2342 	rbio = container_of(work, struct btrfs_raid_bio, work);
2343 	if (lock_stripe_add(rbio) == 0)
2344 		rmw_rbio(rbio);
2345 }
2346 
2347 static void rmw_rbio_work_locked(struct work_struct *work)
2348 {
2349 	rmw_rbio(container_of(work, struct btrfs_raid_bio, work));
2350 }
2351 
2352 /*
2353  * The following code is used to scrub/replace the parity stripe
2354  *
2355  * Caller must have already increased bio_counter for getting @bioc.
2356  *
2357  * Note: We need make sure all the pages that add into the scrub/replace
2358  * raid bio are correct and not be changed during the scrub/replace. That
2359  * is those pages just hold metadata or file data with checksum.
2360  */
2361 
2362 struct btrfs_raid_bio *raid56_parity_alloc_scrub_rbio(struct bio *bio,
2363 				struct btrfs_io_context *bioc,
2364 				struct btrfs_device *scrub_dev,
2365 				unsigned long *dbitmap, int stripe_nsectors)
2366 {
2367 	struct btrfs_fs_info *fs_info = bioc->fs_info;
2368 	struct btrfs_raid_bio *rbio;
2369 	int i;
2370 
2371 	rbio = alloc_rbio(fs_info, bioc);
2372 	if (IS_ERR(rbio))
2373 		return NULL;
2374 	bio_list_add(&rbio->bio_list, bio);
2375 	/*
2376 	 * This is a special bio which is used to hold the completion handler
2377 	 * and make the scrub rbio is similar to the other types
2378 	 */
2379 	ASSERT(!bio->bi_iter.bi_size);
2380 	rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2381 
2382 	/*
2383 	 * After mapping bioc with BTRFS_MAP_WRITE, parities have been sorted
2384 	 * to the end position, so this search can start from the first parity
2385 	 * stripe.
2386 	 */
2387 	for (i = rbio->nr_data; i < rbio->real_stripes; i++) {
2388 		if (bioc->stripes[i].dev == scrub_dev) {
2389 			rbio->scrubp = i;
2390 			break;
2391 		}
2392 	}
2393 	ASSERT(i < rbio->real_stripes);
2394 
2395 	bitmap_copy(&rbio->dbitmap, dbitmap, stripe_nsectors);
2396 	return rbio;
2397 }
2398 
2399 /*
2400  * We just scrub the parity that we have correct data on the same horizontal,
2401  * so we needn't allocate all pages for all the stripes.
2402  */
2403 static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2404 {
2405 	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
2406 	int total_sector_nr;
2407 
2408 	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
2409 	     total_sector_nr++) {
2410 		struct page *page;
2411 		int sectornr = total_sector_nr % rbio->stripe_nsectors;
2412 		int index = (total_sector_nr * sectorsize) >> PAGE_SHIFT;
2413 
2414 		if (!test_bit(sectornr, &rbio->dbitmap))
2415 			continue;
2416 		if (rbio->stripe_pages[index])
2417 			continue;
2418 		page = alloc_page(GFP_NOFS);
2419 		if (!page)
2420 			return -ENOMEM;
2421 		rbio->stripe_pages[index] = page;
2422 	}
2423 	index_stripe_sectors(rbio);
2424 	return 0;
2425 }
2426 
2427 static int finish_parity_scrub(struct btrfs_raid_bio *rbio)
2428 {
2429 	struct btrfs_io_context *bioc = rbio->bioc;
2430 	const u32 sectorsize = bioc->fs_info->sectorsize;
2431 	void **pointers = rbio->finish_pointers;
2432 	unsigned long *pbitmap = &rbio->finish_pbitmap;
2433 	int nr_data = rbio->nr_data;
2434 	int stripe;
2435 	int sectornr;
2436 	bool has_qstripe;
2437 	struct sector_ptr p_sector = { 0 };
2438 	struct sector_ptr q_sector = { 0 };
2439 	struct bio_list bio_list;
2440 	int is_replace = 0;
2441 	int ret;
2442 
2443 	bio_list_init(&bio_list);
2444 
2445 	if (rbio->real_stripes - rbio->nr_data == 1)
2446 		has_qstripe = false;
2447 	else if (rbio->real_stripes - rbio->nr_data == 2)
2448 		has_qstripe = true;
2449 	else
2450 		BUG();
2451 
2452 	/*
2453 	 * Replace is running and our P/Q stripe is being replaced, then we
2454 	 * need to duplicate the final write to replace target.
2455 	 */
2456 	if (bioc->replace_nr_stripes && bioc->replace_stripe_src == rbio->scrubp) {
2457 		is_replace = 1;
2458 		bitmap_copy(pbitmap, &rbio->dbitmap, rbio->stripe_nsectors);
2459 	}
2460 
2461 	/*
2462 	 * Because the higher layers(scrubber) are unlikely to
2463 	 * use this area of the disk again soon, so don't cache
2464 	 * it.
2465 	 */
2466 	clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2467 
2468 	p_sector.page = alloc_page(GFP_NOFS);
2469 	if (!p_sector.page)
2470 		return -ENOMEM;
2471 	p_sector.pgoff = 0;
2472 	p_sector.uptodate = 1;
2473 
2474 	if (has_qstripe) {
2475 		/* RAID6, allocate and map temp space for the Q stripe */
2476 		q_sector.page = alloc_page(GFP_NOFS);
2477 		if (!q_sector.page) {
2478 			__free_page(p_sector.page);
2479 			p_sector.page = NULL;
2480 			return -ENOMEM;
2481 		}
2482 		q_sector.pgoff = 0;
2483 		q_sector.uptodate = 1;
2484 		pointers[rbio->real_stripes - 1] = kmap_local_page(q_sector.page);
2485 	}
2486 
2487 	bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
2488 
2489 	/* Map the parity stripe just once */
2490 	pointers[nr_data] = kmap_local_page(p_sector.page);
2491 
2492 	for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) {
2493 		struct sector_ptr *sector;
2494 		void *parity;
2495 
2496 		/* first collect one page from each data stripe */
2497 		for (stripe = 0; stripe < nr_data; stripe++) {
2498 			sector = sector_in_rbio(rbio, stripe, sectornr, 0);
2499 			pointers[stripe] = kmap_local_page(sector->page) +
2500 					   sector->pgoff;
2501 		}
2502 
2503 		if (has_qstripe) {
2504 			assert_rbio(rbio);
2505 			/* RAID6, call the library function to fill in our P/Q */
2506 			raid6_call.gen_syndrome(rbio->real_stripes, sectorsize,
2507 						pointers);
2508 		} else {
2509 			/* raid5 */
2510 			memcpy(pointers[nr_data], pointers[0], sectorsize);
2511 			run_xor(pointers + 1, nr_data - 1, sectorsize);
2512 		}
2513 
2514 		/* Check scrubbing parity and repair it */
2515 		sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
2516 		parity = kmap_local_page(sector->page) + sector->pgoff;
2517 		if (memcmp(parity, pointers[rbio->scrubp], sectorsize) != 0)
2518 			memcpy(parity, pointers[rbio->scrubp], sectorsize);
2519 		else
2520 			/* Parity is right, needn't writeback */
2521 			bitmap_clear(&rbio->dbitmap, sectornr, 1);
2522 		kunmap_local(parity);
2523 
2524 		for (stripe = nr_data - 1; stripe >= 0; stripe--)
2525 			kunmap_local(pointers[stripe]);
2526 	}
2527 
2528 	kunmap_local(pointers[nr_data]);
2529 	__free_page(p_sector.page);
2530 	p_sector.page = NULL;
2531 	if (q_sector.page) {
2532 		kunmap_local(pointers[rbio->real_stripes - 1]);
2533 		__free_page(q_sector.page);
2534 		q_sector.page = NULL;
2535 	}
2536 
2537 	/*
2538 	 * time to start writing.  Make bios for everything from the
2539 	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
2540 	 * everything else.
2541 	 */
2542 	for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) {
2543 		struct sector_ptr *sector;
2544 
2545 		sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
2546 		ret = rbio_add_io_sector(rbio, &bio_list, sector, rbio->scrubp,
2547 					 sectornr, REQ_OP_WRITE);
2548 		if (ret)
2549 			goto cleanup;
2550 	}
2551 
2552 	if (!is_replace)
2553 		goto submit_write;
2554 
2555 	/*
2556 	 * Replace is running and our parity stripe needs to be duplicated to
2557 	 * the target device.  Check we have a valid source stripe number.
2558 	 */
2559 	ASSERT(rbio->bioc->replace_stripe_src >= 0);
2560 	for_each_set_bit(sectornr, pbitmap, rbio->stripe_nsectors) {
2561 		struct sector_ptr *sector;
2562 
2563 		sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
2564 		ret = rbio_add_io_sector(rbio, &bio_list, sector,
2565 					 rbio->real_stripes,
2566 					 sectornr, REQ_OP_WRITE);
2567 		if (ret)
2568 			goto cleanup;
2569 	}
2570 
2571 submit_write:
2572 	submit_write_bios(rbio, &bio_list);
2573 	return 0;
2574 
2575 cleanup:
2576 	bio_list_put(&bio_list);
2577 	return ret;
2578 }
2579 
2580 static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2581 {
2582 	if (stripe >= 0 && stripe < rbio->nr_data)
2583 		return 1;
2584 	return 0;
2585 }
2586 
2587 static int recover_scrub_rbio(struct btrfs_raid_bio *rbio)
2588 {
2589 	void **pointers = NULL;
2590 	void **unmap_array = NULL;
2591 	int sector_nr;
2592 	int ret = 0;
2593 
2594 	/*
2595 	 * @pointers array stores the pointer for each sector.
2596 	 *
2597 	 * @unmap_array stores copy of pointers that does not get reordered
2598 	 * during reconstruction so that kunmap_local works.
2599 	 */
2600 	pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
2601 	unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
2602 	if (!pointers || !unmap_array) {
2603 		ret = -ENOMEM;
2604 		goto out;
2605 	}
2606 
2607 	for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
2608 		int dfail = 0, failp = -1;
2609 		int faila;
2610 		int failb;
2611 		int found_errors;
2612 
2613 		found_errors = get_rbio_veritical_errors(rbio, sector_nr,
2614 							 &faila, &failb);
2615 		if (found_errors > rbio->bioc->max_errors) {
2616 			ret = -EIO;
2617 			goto out;
2618 		}
2619 		if (found_errors == 0)
2620 			continue;
2621 
2622 		/* We should have at least one error here. */
2623 		ASSERT(faila >= 0 || failb >= 0);
2624 
2625 		if (is_data_stripe(rbio, faila))
2626 			dfail++;
2627 		else if (is_parity_stripe(faila))
2628 			failp = faila;
2629 
2630 		if (is_data_stripe(rbio, failb))
2631 			dfail++;
2632 		else if (is_parity_stripe(failb))
2633 			failp = failb;
2634 		/*
2635 		 * Because we can not use a scrubbing parity to repair the
2636 		 * data, so the capability of the repair is declined.  (In the
2637 		 * case of RAID5, we can not repair anything.)
2638 		 */
2639 		if (dfail > rbio->bioc->max_errors - 1) {
2640 			ret = -EIO;
2641 			goto out;
2642 		}
2643 		/*
2644 		 * If all data is good, only parity is correctly, just repair
2645 		 * the parity, no need to recover data stripes.
2646 		 */
2647 		if (dfail == 0)
2648 			continue;
2649 
2650 		/*
2651 		 * Here means we got one corrupted data stripe and one
2652 		 * corrupted parity on RAID6, if the corrupted parity is
2653 		 * scrubbing parity, luckily, use the other one to repair the
2654 		 * data, or we can not repair the data stripe.
2655 		 */
2656 		if (failp != rbio->scrubp) {
2657 			ret = -EIO;
2658 			goto out;
2659 		}
2660 
2661 		ret = recover_vertical(rbio, sector_nr, pointers, unmap_array);
2662 		if (ret < 0)
2663 			goto out;
2664 	}
2665 out:
2666 	kfree(pointers);
2667 	kfree(unmap_array);
2668 	return ret;
2669 }
2670 
2671 static int scrub_assemble_read_bios(struct btrfs_raid_bio *rbio)
2672 {
2673 	struct bio_list bio_list = BIO_EMPTY_LIST;
2674 	int total_sector_nr;
2675 	int ret = 0;
2676 
2677 	/* Build a list of bios to read all the missing parts. */
2678 	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
2679 	     total_sector_nr++) {
2680 		int sectornr = total_sector_nr % rbio->stripe_nsectors;
2681 		int stripe = total_sector_nr / rbio->stripe_nsectors;
2682 		struct sector_ptr *sector;
2683 
2684 		/* No data in the vertical stripe, no need to read. */
2685 		if (!test_bit(sectornr, &rbio->dbitmap))
2686 			continue;
2687 
2688 		/*
2689 		 * We want to find all the sectors missing from the rbio and
2690 		 * read them from the disk. If sector_in_rbio() finds a sector
2691 		 * in the bio list we don't need to read it off the stripe.
2692 		 */
2693 		sector = sector_in_rbio(rbio, stripe, sectornr, 1);
2694 		if (sector)
2695 			continue;
2696 
2697 		sector = rbio_stripe_sector(rbio, stripe, sectornr);
2698 		/*
2699 		 * The bio cache may have handed us an uptodate sector.  If so,
2700 		 * use it.
2701 		 */
2702 		if (sector->uptodate)
2703 			continue;
2704 
2705 		ret = rbio_add_io_sector(rbio, &bio_list, sector, stripe,
2706 					 sectornr, REQ_OP_READ);
2707 		if (ret) {
2708 			bio_list_put(&bio_list);
2709 			return ret;
2710 		}
2711 	}
2712 
2713 	submit_read_wait_bio_list(rbio, &bio_list);
2714 	return 0;
2715 }
2716 
2717 static void scrub_rbio(struct btrfs_raid_bio *rbio)
2718 {
2719 	int sector_nr;
2720 	int ret;
2721 
2722 	ret = alloc_rbio_essential_pages(rbio);
2723 	if (ret)
2724 		goto out;
2725 
2726 	bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
2727 
2728 	ret = scrub_assemble_read_bios(rbio);
2729 	if (ret < 0)
2730 		goto out;
2731 
2732 	/* We may have some failures, recover the failed sectors first. */
2733 	ret = recover_scrub_rbio(rbio);
2734 	if (ret < 0)
2735 		goto out;
2736 
2737 	/*
2738 	 * We have every sector properly prepared. Can finish the scrub
2739 	 * and writeback the good content.
2740 	 */
2741 	ret = finish_parity_scrub(rbio);
2742 	wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
2743 	for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
2744 		int found_errors;
2745 
2746 		found_errors = get_rbio_veritical_errors(rbio, sector_nr, NULL, NULL);
2747 		if (found_errors > rbio->bioc->max_errors) {
2748 			ret = -EIO;
2749 			break;
2750 		}
2751 	}
2752 out:
2753 	rbio_orig_end_io(rbio, errno_to_blk_status(ret));
2754 }
2755 
2756 static void scrub_rbio_work_locked(struct work_struct *work)
2757 {
2758 	scrub_rbio(container_of(work, struct btrfs_raid_bio, work));
2759 }
2760 
2761 void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2762 {
2763 	if (!lock_stripe_add(rbio))
2764 		start_async_work(rbio, scrub_rbio_work_locked);
2765 }
2766 
2767 /*
2768  * This is for scrub call sites where we already have correct data contents.
2769  * This allows us to avoid reading data stripes again.
2770  *
2771  * Unfortunately here we have to do page copy, other than reusing the pages.
2772  * This is due to the fact rbio has its own page management for its cache.
2773  */
2774 void raid56_parity_cache_data_pages(struct btrfs_raid_bio *rbio,
2775 				    struct page **data_pages, u64 data_logical)
2776 {
2777 	const u64 offset_in_full_stripe = data_logical -
2778 					  rbio->bioc->full_stripe_logical;
2779 	const int page_index = offset_in_full_stripe >> PAGE_SHIFT;
2780 	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
2781 	const u32 sectors_per_page = PAGE_SIZE / sectorsize;
2782 	int ret;
2783 
2784 	/*
2785 	 * If we hit ENOMEM temporarily, but later at
2786 	 * raid56_parity_submit_scrub_rbio() time it succeeded, we just do
2787 	 * the extra read, not a big deal.
2788 	 *
2789 	 * If we hit ENOMEM later at raid56_parity_submit_scrub_rbio() time,
2790 	 * the bio would got proper error number set.
2791 	 */
2792 	ret = alloc_rbio_data_pages(rbio);
2793 	if (ret < 0)
2794 		return;
2795 
2796 	/* data_logical must be at stripe boundary and inside the full stripe. */
2797 	ASSERT(IS_ALIGNED(offset_in_full_stripe, BTRFS_STRIPE_LEN));
2798 	ASSERT(offset_in_full_stripe < (rbio->nr_data << BTRFS_STRIPE_LEN_SHIFT));
2799 
2800 	for (int page_nr = 0; page_nr < (BTRFS_STRIPE_LEN >> PAGE_SHIFT); page_nr++) {
2801 		struct page *dst = rbio->stripe_pages[page_nr + page_index];
2802 		struct page *src = data_pages[page_nr];
2803 
2804 		memcpy_page(dst, 0, src, 0, PAGE_SIZE);
2805 		for (int sector_nr = sectors_per_page * page_index;
2806 		     sector_nr < sectors_per_page * (page_index + 1);
2807 		     sector_nr++)
2808 			rbio->stripe_sectors[sector_nr].uptodate = true;
2809 	}
2810 }
2811