xref: /linux/fs/btrfs/raid56.c (revision 69050f8d6d075dc01af7a5f2f550a8067510366f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2012 Fusion-io  All rights reserved.
4  * Copyright (C) 2012 Intel Corp. All rights reserved.
5  */
6 
7 #include <linux/sched.h>
8 #include <linux/bio.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/raid/pq.h>
12 #include <linux/hash.h>
13 #include <linux/list_sort.h>
14 #include <linux/raid/xor.h>
15 #include <linux/mm.h>
16 #include "messages.h"
17 #include "ctree.h"
18 #include "disk-io.h"
19 #include "volumes.h"
20 #include "raid56.h"
21 #include "async-thread.h"
22 #include "file-item.h"
23 #include "btrfs_inode.h"
24 
25 /* set when additional merges to this rbio are not allowed */
26 #define RBIO_RMW_LOCKED_BIT	1
27 
28 /*
29  * set when this rbio is sitting in the hash, but it is just a cache
30  * of past RMW
31  */
32 #define RBIO_CACHE_BIT		2
33 
34 /*
35  * set when it is safe to trust the stripe_pages for caching
36  */
37 #define RBIO_CACHE_READY_BIT	3
38 
39 #define RBIO_CACHE_SIZE 1024
40 
41 #define BTRFS_STRIPE_HASH_TABLE_BITS				11
42 
43 static void dump_bioc(const struct btrfs_fs_info *fs_info, const struct btrfs_io_context *bioc)
44 {
45 	if (unlikely(!bioc)) {
46 		btrfs_crit(fs_info, "bioc=NULL");
47 		return;
48 	}
49 	btrfs_crit(fs_info,
50 "bioc logical=%llu full_stripe=%llu size=%llu map_type=0x%llx mirror=%u replace_nr_stripes=%u replace_stripe_src=%d num_stripes=%u",
51 		bioc->logical, bioc->full_stripe_logical, bioc->size,
52 		bioc->map_type, bioc->mirror_num, bioc->replace_nr_stripes,
53 		bioc->replace_stripe_src, bioc->num_stripes);
54 	for (int i = 0; i < bioc->num_stripes; i++) {
55 		btrfs_crit(fs_info, "    nr=%d devid=%llu physical=%llu",
56 			   i, bioc->stripes[i].dev->devid,
57 			   bioc->stripes[i].physical);
58 	}
59 }
60 
61 static void btrfs_dump_rbio(const struct btrfs_fs_info *fs_info,
62 			    const struct btrfs_raid_bio *rbio)
63 {
64 	if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
65 		return;
66 
67 	dump_bioc(fs_info, rbio->bioc);
68 	btrfs_crit(fs_info,
69 "rbio flags=0x%lx nr_sectors=%u nr_data=%u real_stripes=%u stripe_nsectors=%u sector_nsteps=%u scrubp=%u dbitmap=0x%lx",
70 		rbio->flags, rbio->nr_sectors, rbio->nr_data,
71 		rbio->real_stripes, rbio->stripe_nsectors,
72 		rbio->sector_nsteps, rbio->scrubp, rbio->dbitmap);
73 }
74 
75 #define ASSERT_RBIO(expr, rbio)						\
76 ({									\
77 	if (IS_ENABLED(CONFIG_BTRFS_ASSERT) && unlikely(!(expr))) {	\
78 		const struct btrfs_fs_info *__fs_info = (rbio)->bioc ?	\
79 					(rbio)->bioc->fs_info : NULL;	\
80 									\
81 		btrfs_dump_rbio(__fs_info, (rbio));			\
82 	}								\
83 	ASSERT((expr));							\
84 })
85 
86 #define ASSERT_RBIO_STRIPE(expr, rbio, stripe_nr)			\
87 ({									\
88 	if (IS_ENABLED(CONFIG_BTRFS_ASSERT) && unlikely(!(expr))) {	\
89 		const struct btrfs_fs_info *__fs_info = (rbio)->bioc ?	\
90 					(rbio)->bioc->fs_info : NULL;	\
91 									\
92 		btrfs_dump_rbio(__fs_info, (rbio));			\
93 		btrfs_crit(__fs_info, "stripe_nr=%d", (stripe_nr));	\
94 	}								\
95 	ASSERT((expr));							\
96 })
97 
98 #define ASSERT_RBIO_SECTOR(expr, rbio, sector_nr)			\
99 ({									\
100 	if (IS_ENABLED(CONFIG_BTRFS_ASSERT) && unlikely(!(expr))) {	\
101 		const struct btrfs_fs_info *__fs_info = (rbio)->bioc ?	\
102 					(rbio)->bioc->fs_info : NULL;	\
103 									\
104 		btrfs_dump_rbio(__fs_info, (rbio));			\
105 		btrfs_crit(__fs_info, "sector_nr=%d", (sector_nr));	\
106 	}								\
107 	ASSERT((expr));							\
108 })
109 
110 #define ASSERT_RBIO_LOGICAL(expr, rbio, logical)			\
111 ({									\
112 	if (IS_ENABLED(CONFIG_BTRFS_ASSERT) && unlikely(!(expr))) {	\
113 		const struct btrfs_fs_info *__fs_info = (rbio)->bioc ?	\
114 					(rbio)->bioc->fs_info : NULL;	\
115 									\
116 		btrfs_dump_rbio(__fs_info, (rbio));			\
117 		btrfs_crit(__fs_info, "logical=%llu", (logical));		\
118 	}								\
119 	ASSERT((expr));							\
120 })
121 
122 /* Used by the raid56 code to lock stripes for read/modify/write */
123 struct btrfs_stripe_hash {
124 	struct list_head hash_list;
125 	spinlock_t lock;
126 };
127 
128 /* Used by the raid56 code to lock stripes for read/modify/write */
129 struct btrfs_stripe_hash_table {
130 	struct list_head stripe_cache;
131 	spinlock_t cache_lock;
132 	int cache_size;
133 	struct btrfs_stripe_hash table[];
134 };
135 
136 /*
137  * The PFN may still be valid, but our paddrs should always be block size
138  * aligned, thus such -1 paddr is definitely not a valid one.
139  */
140 #define INVALID_PADDR	(~(phys_addr_t)0)
141 
142 static void rmw_rbio_work(struct work_struct *work);
143 static void rmw_rbio_work_locked(struct work_struct *work);
144 static void index_rbio_pages(struct btrfs_raid_bio *rbio);
145 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
146 
147 static int finish_parity_scrub(struct btrfs_raid_bio *rbio);
148 static void scrub_rbio_work_locked(struct work_struct *work);
149 
150 static void free_raid_bio_pointers(struct btrfs_raid_bio *rbio)
151 {
152 	bitmap_free(rbio->error_bitmap);
153 	bitmap_free(rbio->stripe_uptodate_bitmap);
154 	kfree(rbio->stripe_pages);
155 	kfree(rbio->bio_paddrs);
156 	kfree(rbio->stripe_paddrs);
157 	kfree(rbio->finish_pointers);
158 }
159 
160 static void free_raid_bio(struct btrfs_raid_bio *rbio)
161 {
162 	int i;
163 
164 	if (!refcount_dec_and_test(&rbio->refs))
165 		return;
166 
167 	WARN_ON(!list_empty(&rbio->stripe_cache));
168 	WARN_ON(!list_empty(&rbio->hash_list));
169 	WARN_ON(!bio_list_empty(&rbio->bio_list));
170 
171 	for (i = 0; i < rbio->nr_pages; i++) {
172 		if (rbio->stripe_pages[i]) {
173 			__free_page(rbio->stripe_pages[i]);
174 			rbio->stripe_pages[i] = NULL;
175 		}
176 	}
177 
178 	btrfs_put_bioc(rbio->bioc);
179 	free_raid_bio_pointers(rbio);
180 	kfree(rbio);
181 }
182 
183 static void start_async_work(struct btrfs_raid_bio *rbio, work_func_t work_func)
184 {
185 	INIT_WORK(&rbio->work, work_func);
186 	queue_work(rbio->bioc->fs_info->rmw_workers, &rbio->work);
187 }
188 
189 /*
190  * the stripe hash table is used for locking, and to collect
191  * bios in hopes of making a full stripe
192  */
193 int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
194 {
195 	struct btrfs_stripe_hash_table *table;
196 	struct btrfs_stripe_hash_table *x;
197 	struct btrfs_stripe_hash *cur;
198 	struct btrfs_stripe_hash *h;
199 	unsigned int num_entries = 1U << BTRFS_STRIPE_HASH_TABLE_BITS;
200 
201 	if (info->stripe_hash_table)
202 		return 0;
203 
204 	/*
205 	 * The table is large, starting with order 4 and can go as high as
206 	 * order 7 in case lock debugging is turned on.
207 	 *
208 	 * Try harder to allocate and fallback to vmalloc to lower the chance
209 	 * of a failing mount.
210 	 */
211 	table = kvzalloc_flex(*table, table, num_entries, GFP_KERNEL);
212 	if (!table)
213 		return -ENOMEM;
214 
215 	spin_lock_init(&table->cache_lock);
216 	INIT_LIST_HEAD(&table->stripe_cache);
217 
218 	h = table->table;
219 
220 	for (unsigned int i = 0; i < num_entries; i++) {
221 		cur = h + i;
222 		INIT_LIST_HEAD(&cur->hash_list);
223 		spin_lock_init(&cur->lock);
224 	}
225 
226 	x = cmpxchg(&info->stripe_hash_table, NULL, table);
227 	kvfree(x);
228 	return 0;
229 }
230 
231 static void memcpy_from_bio_to_stripe(struct btrfs_raid_bio *rbio, unsigned int sector_nr)
232 {
233 	const u32 step = min(rbio->bioc->fs_info->sectorsize, PAGE_SIZE);
234 
235 	ASSERT(sector_nr < rbio->nr_sectors);
236 	for (int i = 0; i < rbio->sector_nsteps; i++) {
237 		unsigned int index = sector_nr * rbio->sector_nsteps + i;
238 		phys_addr_t dst = rbio->stripe_paddrs[index];
239 		phys_addr_t src = rbio->bio_paddrs[index];
240 
241 		ASSERT(dst != INVALID_PADDR);
242 		ASSERT(src != INVALID_PADDR);
243 
244 		memcpy_page(phys_to_page(dst), offset_in_page(dst),
245 			    phys_to_page(src), offset_in_page(src), step);
246 	}
247 }
248 
249 /*
250  * caching an rbio means to copy anything from the
251  * bio_sectors array into the stripe_pages array.  We
252  * use the page uptodate bit in the stripe cache array
253  * to indicate if it has valid data
254  *
255  * once the caching is done, we set the cache ready
256  * bit.
257  */
258 static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
259 {
260 	int i;
261 	int ret;
262 
263 	ret = alloc_rbio_pages(rbio);
264 	if (ret)
265 		return;
266 
267 	for (i = 0; i < rbio->nr_sectors; i++) {
268 		/* Some range not covered by bio (partial write), skip it */
269 		if (rbio->bio_paddrs[i * rbio->sector_nsteps] == INVALID_PADDR) {
270 			/*
271 			 * Even if the sector is not covered by bio, if it is
272 			 * a data sector it should still be uptodate as it is
273 			 * read from disk.
274 			 */
275 			if (i < rbio->nr_data * rbio->stripe_nsectors)
276 				ASSERT(test_bit(i, rbio->stripe_uptodate_bitmap));
277 			continue;
278 		}
279 
280 		memcpy_from_bio_to_stripe(rbio, i);
281 		set_bit(i, rbio->stripe_uptodate_bitmap);
282 	}
283 	set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
284 }
285 
286 /*
287  * we hash on the first logical address of the stripe
288  */
289 static int rbio_bucket(struct btrfs_raid_bio *rbio)
290 {
291 	u64 num = rbio->bioc->full_stripe_logical;
292 
293 	/*
294 	 * we shift down quite a bit.  We're using byte
295 	 * addressing, and most of the lower bits are zeros.
296 	 * This tends to upset hash_64, and it consistently
297 	 * returns just one or two different values.
298 	 *
299 	 * shifting off the lower bits fixes things.
300 	 */
301 	return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
302 }
303 
304 /* Get the sector number of the first sector covered by @page_nr. */
305 static u32 page_nr_to_sector_nr(struct btrfs_raid_bio *rbio, unsigned int page_nr)
306 {
307 	u32 sector_nr;
308 
309 	ASSERT(page_nr < rbio->nr_pages);
310 
311 	sector_nr = (page_nr << PAGE_SHIFT) >> rbio->bioc->fs_info->sectorsize_bits;
312 	ASSERT(sector_nr < rbio->nr_sectors);
313 	return sector_nr;
314 }
315 
316 /*
317  * Get the number of sectors covered by @page_nr.
318  *
319  * For bs > ps cases, the result will always be 1.
320  * For bs <= ps cases, the result will be ps / bs.
321  */
322 static u32 page_nr_to_num_sectors(struct btrfs_raid_bio *rbio, unsigned int page_nr)
323 {
324 	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
325 	u32 nr_sectors;
326 
327 	ASSERT(page_nr < rbio->nr_pages);
328 
329 	nr_sectors = round_up(PAGE_SIZE, fs_info->sectorsize) >> fs_info->sectorsize_bits;
330 	ASSERT(nr_sectors > 0);
331 	return nr_sectors;
332 }
333 
334 static __maybe_unused bool full_page_sectors_uptodate(struct btrfs_raid_bio *rbio,
335 						      unsigned int page_nr)
336 {
337 	const u32 sector_nr = page_nr_to_sector_nr(rbio, page_nr);
338 	const u32 nr_bits = page_nr_to_num_sectors(rbio, page_nr);
339 	int i;
340 
341 	ASSERT(page_nr < rbio->nr_pages);
342 	ASSERT(sector_nr + nr_bits < rbio->nr_sectors);
343 
344 	for (i = sector_nr; i < sector_nr + nr_bits; i++) {
345 		if (!test_bit(i, rbio->stripe_uptodate_bitmap))
346 			return false;
347 	}
348 	return true;
349 }
350 
351 /*
352  * Update the stripe_sectors[] array to use correct page and pgoff
353  *
354  * Should be called every time any page pointer in stripes_pages[] got modified.
355  */
356 static void index_stripe_sectors(struct btrfs_raid_bio *rbio)
357 {
358 	const u32 step = min(rbio->bioc->fs_info->sectorsize, PAGE_SIZE);
359 	u32 offset;
360 	int i;
361 
362 	for (i = 0, offset = 0; i < rbio->nr_sectors * rbio->sector_nsteps;
363 	     i++, offset += step) {
364 		int page_index = offset >> PAGE_SHIFT;
365 
366 		ASSERT(page_index < rbio->nr_pages);
367 		if (!rbio->stripe_pages[page_index])
368 			continue;
369 
370 		rbio->stripe_paddrs[i] = page_to_phys(rbio->stripe_pages[page_index]) +
371 					 offset_in_page(offset);
372 	}
373 }
374 
375 static void steal_rbio_page(struct btrfs_raid_bio *src,
376 			    struct btrfs_raid_bio *dest, int page_nr)
377 {
378 	const u32 sector_nr = page_nr_to_sector_nr(src, page_nr);
379 	const u32 nr_bits = page_nr_to_num_sectors(src, page_nr);
380 
381 	ASSERT(page_nr < src->nr_pages);
382 	ASSERT(sector_nr + nr_bits < src->nr_sectors);
383 
384 	if (dest->stripe_pages[page_nr])
385 		__free_page(dest->stripe_pages[page_nr]);
386 	dest->stripe_pages[page_nr] = src->stripe_pages[page_nr];
387 	src->stripe_pages[page_nr] = NULL;
388 
389 	/* Also update the stripe_uptodate_bitmap bits. */
390 	bitmap_set(dest->stripe_uptodate_bitmap, sector_nr, nr_bits);
391 }
392 
393 static bool is_data_stripe_page(struct btrfs_raid_bio *rbio, int page_nr)
394 {
395 	const int sector_nr = page_nr_to_sector_nr(rbio, page_nr);
396 
397 	/*
398 	 * We have ensured PAGE_SIZE is aligned with sectorsize, thus
399 	 * we won't have a page which is half data half parity.
400 	 *
401 	 * Thus if the first sector of the page belongs to data stripes, then
402 	 * the full page belongs to data stripes.
403 	 */
404 	return (sector_nr < rbio->nr_data * rbio->stripe_nsectors);
405 }
406 
407 /*
408  * Stealing an rbio means taking all the uptodate pages from the stripe array
409  * in the source rbio and putting them into the destination rbio.
410  *
411  * This will also update the involved stripe_sectors[] which are referring to
412  * the old pages.
413  */
414 static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
415 {
416 	int i;
417 
418 	if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
419 		return;
420 
421 	for (i = 0; i < dest->nr_pages; i++) {
422 		struct page *p = src->stripe_pages[i];
423 
424 		/*
425 		 * We don't need to steal P/Q pages as they will always be
426 		 * regenerated for RMW or full write anyway.
427 		 */
428 		if (!is_data_stripe_page(src, i))
429 			continue;
430 
431 		/*
432 		 * If @src already has RBIO_CACHE_READY_BIT, it should have
433 		 * all data stripe pages present and uptodate.
434 		 */
435 		ASSERT(p);
436 		ASSERT(full_page_sectors_uptodate(src, i));
437 		steal_rbio_page(src, dest, i);
438 	}
439 	index_stripe_sectors(dest);
440 	index_stripe_sectors(src);
441 }
442 
443 /*
444  * merging means we take the bio_list from the victim and
445  * splice it into the destination.  The victim should
446  * be discarded afterwards.
447  *
448  * must be called with dest->rbio_list_lock held
449  */
450 static void merge_rbio(struct btrfs_raid_bio *dest,
451 		       struct btrfs_raid_bio *victim)
452 {
453 	bio_list_merge_init(&dest->bio_list, &victim->bio_list);
454 	dest->bio_list_bytes += victim->bio_list_bytes;
455 	/* Also inherit the bitmaps from @victim. */
456 	bitmap_or(&dest->dbitmap, &victim->dbitmap, &dest->dbitmap,
457 		  dest->stripe_nsectors);
458 }
459 
460 /*
461  * used to prune items that are in the cache.  The caller
462  * must hold the hash table lock.
463  */
464 static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
465 {
466 	int bucket = rbio_bucket(rbio);
467 	struct btrfs_stripe_hash_table *table;
468 	struct btrfs_stripe_hash *h;
469 	int freeit = 0;
470 
471 	/*
472 	 * check the bit again under the hash table lock.
473 	 */
474 	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
475 		return;
476 
477 	table = rbio->bioc->fs_info->stripe_hash_table;
478 	h = table->table + bucket;
479 
480 	/* hold the lock for the bucket because we may be
481 	 * removing it from the hash table
482 	 */
483 	spin_lock(&h->lock);
484 
485 	/*
486 	 * hold the lock for the bio list because we need
487 	 * to make sure the bio list is empty
488 	 */
489 	spin_lock(&rbio->bio_list_lock);
490 
491 	if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
492 		list_del_init(&rbio->stripe_cache);
493 		table->cache_size -= 1;
494 		freeit = 1;
495 
496 		/* if the bio list isn't empty, this rbio is
497 		 * still involved in an IO.  We take it out
498 		 * of the cache list, and drop the ref that
499 		 * was held for the list.
500 		 *
501 		 * If the bio_list was empty, we also remove
502 		 * the rbio from the hash_table, and drop
503 		 * the corresponding ref
504 		 */
505 		if (bio_list_empty(&rbio->bio_list)) {
506 			if (!list_empty(&rbio->hash_list)) {
507 				list_del_init(&rbio->hash_list);
508 				refcount_dec(&rbio->refs);
509 				BUG_ON(!list_empty(&rbio->plug_list));
510 			}
511 		}
512 	}
513 
514 	spin_unlock(&rbio->bio_list_lock);
515 	spin_unlock(&h->lock);
516 
517 	if (freeit)
518 		free_raid_bio(rbio);
519 }
520 
521 /*
522  * prune a given rbio from the cache
523  */
524 static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
525 {
526 	struct btrfs_stripe_hash_table *table;
527 
528 	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
529 		return;
530 
531 	table = rbio->bioc->fs_info->stripe_hash_table;
532 
533 	spin_lock(&table->cache_lock);
534 	__remove_rbio_from_cache(rbio);
535 	spin_unlock(&table->cache_lock);
536 }
537 
538 /*
539  * remove everything in the cache
540  */
541 static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
542 {
543 	struct btrfs_stripe_hash_table *table;
544 	struct btrfs_raid_bio *rbio;
545 
546 	table = info->stripe_hash_table;
547 
548 	spin_lock(&table->cache_lock);
549 	while (!list_empty(&table->stripe_cache)) {
550 		rbio = list_first_entry(&table->stripe_cache,
551 					struct btrfs_raid_bio, stripe_cache);
552 		__remove_rbio_from_cache(rbio);
553 	}
554 	spin_unlock(&table->cache_lock);
555 }
556 
557 /*
558  * remove all cached entries and free the hash table
559  * used by unmount
560  */
561 void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
562 {
563 	if (!info->stripe_hash_table)
564 		return;
565 	btrfs_clear_rbio_cache(info);
566 	kvfree(info->stripe_hash_table);
567 	info->stripe_hash_table = NULL;
568 }
569 
570 /*
571  * insert an rbio into the stripe cache.  It
572  * must have already been prepared by calling
573  * cache_rbio_pages
574  *
575  * If this rbio was already cached, it gets
576  * moved to the front of the lru.
577  *
578  * If the size of the rbio cache is too big, we
579  * prune an item.
580  */
581 static void cache_rbio(struct btrfs_raid_bio *rbio)
582 {
583 	struct btrfs_stripe_hash_table *table;
584 
585 	if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
586 		return;
587 
588 	table = rbio->bioc->fs_info->stripe_hash_table;
589 
590 	spin_lock(&table->cache_lock);
591 	spin_lock(&rbio->bio_list_lock);
592 
593 	/* bump our ref if we were not in the list before */
594 	if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
595 		refcount_inc(&rbio->refs);
596 
597 	if (!list_empty(&rbio->stripe_cache)){
598 		list_move(&rbio->stripe_cache, &table->stripe_cache);
599 	} else {
600 		list_add(&rbio->stripe_cache, &table->stripe_cache);
601 		table->cache_size += 1;
602 	}
603 
604 	spin_unlock(&rbio->bio_list_lock);
605 
606 	if (table->cache_size > RBIO_CACHE_SIZE) {
607 		struct btrfs_raid_bio *found;
608 
609 		found = list_last_entry(&table->stripe_cache,
610 					struct btrfs_raid_bio,
611 					stripe_cache);
612 
613 		if (found != rbio)
614 			__remove_rbio_from_cache(found);
615 	}
616 
617 	spin_unlock(&table->cache_lock);
618 }
619 
620 /*
621  * helper function to run the xor_blocks api.  It is only
622  * able to do MAX_XOR_BLOCKS at a time, so we need to
623  * loop through.
624  */
625 static void run_xor(void **pages, int src_cnt, ssize_t len)
626 {
627 	int src_off = 0;
628 	int xor_src_cnt = 0;
629 	void *dest = pages[src_cnt];
630 
631 	while(src_cnt > 0) {
632 		xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
633 		xor_blocks(xor_src_cnt, len, dest, pages + src_off);
634 
635 		src_cnt -= xor_src_cnt;
636 		src_off += xor_src_cnt;
637 	}
638 }
639 
640 /*
641  * Returns true if the bio list inside this rbio covers an entire stripe (no
642  * rmw required).
643  */
644 static int rbio_is_full(struct btrfs_raid_bio *rbio)
645 {
646 	unsigned long size = rbio->bio_list_bytes;
647 	int ret = 1;
648 
649 	spin_lock(&rbio->bio_list_lock);
650 	if (size != rbio->nr_data * BTRFS_STRIPE_LEN)
651 		ret = 0;
652 	BUG_ON(size > rbio->nr_data * BTRFS_STRIPE_LEN);
653 	spin_unlock(&rbio->bio_list_lock);
654 
655 	return ret;
656 }
657 
658 /*
659  * returns 1 if it is safe to merge two rbios together.
660  * The merging is safe if the two rbios correspond to
661  * the same stripe and if they are both going in the same
662  * direction (read vs write), and if neither one is
663  * locked for final IO
664  *
665  * The caller is responsible for locking such that
666  * rmw_locked is safe to test
667  */
668 static int rbio_can_merge(struct btrfs_raid_bio *last,
669 			  struct btrfs_raid_bio *cur)
670 {
671 	if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
672 	    test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
673 		return 0;
674 
675 	/*
676 	 * we can't merge with cached rbios, since the
677 	 * idea is that when we merge the destination
678 	 * rbio is going to run our IO for us.  We can
679 	 * steal from cached rbios though, other functions
680 	 * handle that.
681 	 */
682 	if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
683 	    test_bit(RBIO_CACHE_BIT, &cur->flags))
684 		return 0;
685 
686 	if (last->bioc->full_stripe_logical != cur->bioc->full_stripe_logical)
687 		return 0;
688 
689 	/* we can't merge with different operations */
690 	if (last->operation != cur->operation)
691 		return 0;
692 	/*
693 	 * We've need read the full stripe from the drive.
694 	 * check and repair the parity and write the new results.
695 	 *
696 	 * We're not allowed to add any new bios to the
697 	 * bio list here, anyone else that wants to
698 	 * change this stripe needs to do their own rmw.
699 	 */
700 	if (last->operation == BTRFS_RBIO_PARITY_SCRUB)
701 		return 0;
702 
703 	if (last->operation == BTRFS_RBIO_READ_REBUILD)
704 		return 0;
705 
706 	return 1;
707 }
708 
709 /* Return the sector index for @stripe_nr and @sector_nr. */
710 static unsigned int rbio_sector_index(const struct btrfs_raid_bio *rbio,
711 				      unsigned int stripe_nr,
712 				      unsigned int sector_nr)
713 {
714 	unsigned int ret;
715 
716 	ASSERT_RBIO_STRIPE(stripe_nr < rbio->real_stripes, rbio, stripe_nr);
717 	ASSERT_RBIO_SECTOR(sector_nr < rbio->stripe_nsectors, rbio, sector_nr);
718 
719 	ret = stripe_nr * rbio->stripe_nsectors + sector_nr;
720 	ASSERT(ret < rbio->nr_sectors);
721 	return ret;
722 }
723 
724 /* Return the paddr array index for @stripe_nr, @sector_nr and @step_nr. */
725 static unsigned int rbio_paddr_index(const struct btrfs_raid_bio *rbio,
726 				     unsigned int stripe_nr,
727 				     unsigned int sector_nr,
728 				     unsigned int step_nr)
729 {
730 	unsigned int ret;
731 
732 	ASSERT_RBIO_SECTOR(step_nr < rbio->sector_nsteps, rbio, step_nr);
733 
734 	ret = rbio_sector_index(rbio, stripe_nr, sector_nr) * rbio->sector_nsteps + step_nr;
735 	ASSERT(ret < rbio->nr_sectors * rbio->sector_nsteps);
736 	return ret;
737 }
738 
739 static phys_addr_t rbio_stripe_paddr(const struct btrfs_raid_bio *rbio,
740 					  unsigned int stripe_nr, unsigned int sector_nr,
741 					  unsigned int step_nr)
742 {
743 	return rbio->stripe_paddrs[rbio_paddr_index(rbio, stripe_nr, sector_nr, step_nr)];
744 }
745 
746 static phys_addr_t rbio_pstripe_paddr(const struct btrfs_raid_bio *rbio,
747 					   unsigned int sector_nr, unsigned int step_nr)
748 {
749 	return rbio_stripe_paddr(rbio, rbio->nr_data, sector_nr, step_nr);
750 }
751 
752 static phys_addr_t rbio_qstripe_paddr(const struct btrfs_raid_bio *rbio,
753 					   unsigned int sector_nr, unsigned int step_nr)
754 {
755 	if (rbio->nr_data + 1 == rbio->real_stripes)
756 		return INVALID_PADDR;
757 	return rbio_stripe_paddr(rbio, rbio->nr_data + 1, sector_nr, step_nr);
758 }
759 
760 /* Return a paddr pointer into the rbio::stripe_paddrs[] for the specified sector. */
761 static phys_addr_t *rbio_stripe_paddrs(const struct btrfs_raid_bio *rbio,
762 				       unsigned int stripe_nr, unsigned int sector_nr)
763 {
764 	return &rbio->stripe_paddrs[rbio_paddr_index(rbio, stripe_nr, sector_nr, 0)];
765 }
766 
767 /*
768  * The first stripe in the table for a logical address
769  * has the lock.  rbios are added in one of three ways:
770  *
771  * 1) Nobody has the stripe locked yet.  The rbio is given
772  * the lock and 0 is returned.  The caller must start the IO
773  * themselves.
774  *
775  * 2) Someone has the stripe locked, but we're able to merge
776  * with the lock owner.  The rbio is freed and the IO will
777  * start automatically along with the existing rbio.  1 is returned.
778  *
779  * 3) Someone has the stripe locked, but we're not able to merge.
780  * The rbio is added to the lock owner's plug list, or merged into
781  * an rbio already on the plug list.  When the lock owner unlocks,
782  * the next rbio on the list is run and the IO is started automatically.
783  * 1 is returned
784  *
785  * If we return 0, the caller still owns the rbio and must continue with
786  * IO submission.  If we return 1, the caller must assume the rbio has
787  * already been freed.
788  */
789 static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
790 {
791 	struct btrfs_stripe_hash *h;
792 	struct btrfs_raid_bio *cur;
793 	struct btrfs_raid_bio *pending;
794 	struct btrfs_raid_bio *freeit = NULL;
795 	struct btrfs_raid_bio *cache_drop = NULL;
796 	int ret = 0;
797 
798 	h = rbio->bioc->fs_info->stripe_hash_table->table + rbio_bucket(rbio);
799 
800 	spin_lock(&h->lock);
801 	list_for_each_entry(cur, &h->hash_list, hash_list) {
802 		if (cur->bioc->full_stripe_logical != rbio->bioc->full_stripe_logical)
803 			continue;
804 
805 		spin_lock(&cur->bio_list_lock);
806 
807 		/* Can we steal this cached rbio's pages? */
808 		if (bio_list_empty(&cur->bio_list) &&
809 		    list_empty(&cur->plug_list) &&
810 		    test_bit(RBIO_CACHE_BIT, &cur->flags) &&
811 		    !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
812 			list_del_init(&cur->hash_list);
813 			refcount_dec(&cur->refs);
814 
815 			steal_rbio(cur, rbio);
816 			cache_drop = cur;
817 			spin_unlock(&cur->bio_list_lock);
818 
819 			goto lockit;
820 		}
821 
822 		/* Can we merge into the lock owner? */
823 		if (rbio_can_merge(cur, rbio)) {
824 			merge_rbio(cur, rbio);
825 			spin_unlock(&cur->bio_list_lock);
826 			freeit = rbio;
827 			ret = 1;
828 			goto out;
829 		}
830 
831 
832 		/*
833 		 * We couldn't merge with the running rbio, see if we can merge
834 		 * with the pending ones.  We don't have to check for rmw_locked
835 		 * because there is no way they are inside finish_rmw right now
836 		 */
837 		list_for_each_entry(pending, &cur->plug_list, plug_list) {
838 			if (rbio_can_merge(pending, rbio)) {
839 				merge_rbio(pending, rbio);
840 				spin_unlock(&cur->bio_list_lock);
841 				freeit = rbio;
842 				ret = 1;
843 				goto out;
844 			}
845 		}
846 
847 		/*
848 		 * No merging, put us on the tail of the plug list, our rbio
849 		 * will be started with the currently running rbio unlocks
850 		 */
851 		list_add_tail(&rbio->plug_list, &cur->plug_list);
852 		spin_unlock(&cur->bio_list_lock);
853 		ret = 1;
854 		goto out;
855 	}
856 lockit:
857 	refcount_inc(&rbio->refs);
858 	list_add(&rbio->hash_list, &h->hash_list);
859 out:
860 	spin_unlock(&h->lock);
861 	if (cache_drop)
862 		remove_rbio_from_cache(cache_drop);
863 	if (freeit)
864 		free_raid_bio(freeit);
865 	return ret;
866 }
867 
868 static void recover_rbio_work_locked(struct work_struct *work);
869 
870 /*
871  * called as rmw or parity rebuild is completed.  If the plug list has more
872  * rbios waiting for this stripe, the next one on the list will be started
873  */
874 static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
875 {
876 	int bucket;
877 	struct btrfs_stripe_hash *h;
878 	int keep_cache = 0;
879 
880 	bucket = rbio_bucket(rbio);
881 	h = rbio->bioc->fs_info->stripe_hash_table->table + bucket;
882 
883 	if (list_empty(&rbio->plug_list))
884 		cache_rbio(rbio);
885 
886 	spin_lock(&h->lock);
887 	spin_lock(&rbio->bio_list_lock);
888 
889 	if (!list_empty(&rbio->hash_list)) {
890 		/*
891 		 * if we're still cached and there is no other IO
892 		 * to perform, just leave this rbio here for others
893 		 * to steal from later
894 		 */
895 		if (list_empty(&rbio->plug_list) &&
896 		    test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
897 			keep_cache = 1;
898 			clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
899 			BUG_ON(!bio_list_empty(&rbio->bio_list));
900 			goto done;
901 		}
902 
903 		list_del_init(&rbio->hash_list);
904 		refcount_dec(&rbio->refs);
905 
906 		/*
907 		 * we use the plug list to hold all the rbios
908 		 * waiting for the chance to lock this stripe.
909 		 * hand the lock over to one of them.
910 		 */
911 		if (!list_empty(&rbio->plug_list)) {
912 			struct btrfs_raid_bio *next;
913 			struct list_head *head = rbio->plug_list.next;
914 
915 			next = list_entry(head, struct btrfs_raid_bio,
916 					  plug_list);
917 
918 			list_del_init(&rbio->plug_list);
919 
920 			list_add(&next->hash_list, &h->hash_list);
921 			refcount_inc(&next->refs);
922 			spin_unlock(&rbio->bio_list_lock);
923 			spin_unlock(&h->lock);
924 
925 			if (next->operation == BTRFS_RBIO_READ_REBUILD) {
926 				start_async_work(next, recover_rbio_work_locked);
927 			} else if (next->operation == BTRFS_RBIO_WRITE) {
928 				steal_rbio(rbio, next);
929 				start_async_work(next, rmw_rbio_work_locked);
930 			} else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
931 				steal_rbio(rbio, next);
932 				start_async_work(next, scrub_rbio_work_locked);
933 			}
934 
935 			goto done_nolock;
936 		}
937 	}
938 done:
939 	spin_unlock(&rbio->bio_list_lock);
940 	spin_unlock(&h->lock);
941 
942 done_nolock:
943 	if (!keep_cache)
944 		remove_rbio_from_cache(rbio);
945 }
946 
947 static void rbio_endio_bio_list(struct bio *cur, blk_status_t status)
948 {
949 	struct bio *next;
950 
951 	while (cur) {
952 		next = cur->bi_next;
953 		cur->bi_next = NULL;
954 		cur->bi_status = status;
955 		bio_endio(cur);
956 		cur = next;
957 	}
958 }
959 
960 /*
961  * this frees the rbio and runs through all the bios in the
962  * bio_list and calls end_io on them
963  */
964 static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t status)
965 {
966 	struct bio *cur = bio_list_get(&rbio->bio_list);
967 	struct bio *extra;
968 
969 	kfree(rbio->csum_buf);
970 	bitmap_free(rbio->csum_bitmap);
971 	rbio->csum_buf = NULL;
972 	rbio->csum_bitmap = NULL;
973 
974 	/*
975 	 * Clear the data bitmap, as the rbio may be cached for later usage.
976 	 * do this before before unlock_stripe() so there will be no new bio
977 	 * for this bio.
978 	 */
979 	bitmap_clear(&rbio->dbitmap, 0, rbio->stripe_nsectors);
980 
981 	/*
982 	 * At this moment, rbio->bio_list is empty, however since rbio does not
983 	 * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the
984 	 * hash list, rbio may be merged with others so that rbio->bio_list
985 	 * becomes non-empty.
986 	 * Once unlock_stripe() is done, rbio->bio_list will not be updated any
987 	 * more and we can call bio_endio() on all queued bios.
988 	 */
989 	unlock_stripe(rbio);
990 	extra = bio_list_get(&rbio->bio_list);
991 	free_raid_bio(rbio);
992 
993 	rbio_endio_bio_list(cur, status);
994 	if (extra)
995 		rbio_endio_bio_list(extra, status);
996 }
997 
998 /*
999  * Get paddr pointer for the sector specified by its @stripe_nr and @sector_nr.
1000  *
1001  * @rbio:               The raid bio
1002  * @stripe_nr:          Stripe number, valid range [0, real_stripe)
1003  * @sector_nr:		Sector number inside the stripe,
1004  *			valid range [0, stripe_nsectors)
1005  * @bio_list_only:      Whether to use sectors inside the bio list only.
1006  *
1007  * The read/modify/write code wants to reuse the original bio page as much
1008  * as possible, and only use stripe_sectors as fallback.
1009  *
1010  * Return NULL if bio_list_only is set but the specified sector has no
1011  * coresponding bio.
1012  */
1013 static phys_addr_t *sector_paddrs_in_rbio(struct btrfs_raid_bio *rbio,
1014 					  int stripe_nr, int sector_nr,
1015 					  bool bio_list_only)
1016 {
1017 	phys_addr_t *ret = NULL;
1018 	const int index = rbio_paddr_index(rbio, stripe_nr, sector_nr, 0);
1019 
1020 	ASSERT(index >= 0 && index < rbio->nr_sectors * rbio->sector_nsteps);
1021 
1022 	scoped_guard(spinlock, &rbio->bio_list_lock) {
1023 		if (rbio->bio_paddrs[index] != INVALID_PADDR || bio_list_only) {
1024 			/* Don't return sector without a valid page pointer */
1025 			if (rbio->bio_paddrs[index] != INVALID_PADDR)
1026 				ret = &rbio->bio_paddrs[index];
1027 			return ret;
1028 		}
1029 	}
1030 	return &rbio->stripe_paddrs[index];
1031 }
1032 
1033 /*
1034  * Similar to sector_paddr_in_rbio(), but with extra consideration for
1035  * bs > ps cases, where we can have multiple steps for a fs block.
1036  */
1037 static phys_addr_t sector_paddr_in_rbio(struct btrfs_raid_bio *rbio,
1038 					int stripe_nr, int sector_nr, int step_nr,
1039 					bool bio_list_only)
1040 {
1041 	phys_addr_t ret = INVALID_PADDR;
1042 	const int index = rbio_paddr_index(rbio, stripe_nr, sector_nr, step_nr);
1043 
1044 	ASSERT(index >= 0 && index < rbio->nr_sectors * rbio->sector_nsteps);
1045 
1046 	scoped_guard(spinlock, &rbio->bio_list_lock) {
1047 		if (rbio->bio_paddrs[index] != INVALID_PADDR || bio_list_only) {
1048 			/* Don't return sector without a valid page pointer */
1049 			if (rbio->bio_paddrs[index] != INVALID_PADDR)
1050 				ret = rbio->bio_paddrs[index];
1051 			return ret;
1052 		}
1053 	}
1054 	return rbio->stripe_paddrs[index];
1055 }
1056 
1057 /*
1058  * allocation and initial setup for the btrfs_raid_bio.  Not
1059  * this does not allocate any pages for rbio->pages.
1060  */
1061 static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info,
1062 					 struct btrfs_io_context *bioc)
1063 {
1064 	const unsigned int real_stripes = bioc->num_stripes - bioc->replace_nr_stripes;
1065 	const unsigned int stripe_npages = BTRFS_STRIPE_LEN >> PAGE_SHIFT;
1066 	const unsigned int num_pages = stripe_npages * real_stripes;
1067 	const unsigned int stripe_nsectors =
1068 		BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits;
1069 	const unsigned int num_sectors = stripe_nsectors * real_stripes;
1070 	const unsigned int step = min(fs_info->sectorsize, PAGE_SIZE);
1071 	const unsigned int sector_nsteps = fs_info->sectorsize / step;
1072 	struct btrfs_raid_bio *rbio;
1073 
1074 	/*
1075 	 * For bs <= ps cases, ps must be aligned to bs.
1076 	 * For bs > ps cases, bs must be aligned to ps.
1077 	 */
1078 	ASSERT(IS_ALIGNED(PAGE_SIZE, fs_info->sectorsize) ||
1079 	       IS_ALIGNED(fs_info->sectorsize, PAGE_SIZE));
1080 	/*
1081 	 * Our current stripe len should be fixed to 64k thus stripe_nsectors
1082 	 * (at most 16) should be no larger than BITS_PER_LONG.
1083 	 */
1084 	ASSERT(stripe_nsectors <= BITS_PER_LONG);
1085 
1086 	/*
1087 	 * Real stripes must be between 2 (2 disks RAID5, aka RAID1) and 256
1088 	 * (limited by u8).
1089 	 */
1090 	ASSERT(real_stripes >= 2);
1091 	ASSERT(real_stripes <= U8_MAX);
1092 
1093 	rbio = kzalloc_obj(*rbio, GFP_NOFS);
1094 	if (!rbio)
1095 		return ERR_PTR(-ENOMEM);
1096 	rbio->stripe_pages = kzalloc_objs(struct page *, num_pages, GFP_NOFS);
1097 	rbio->bio_paddrs = kzalloc_objs(phys_addr_t,
1098 					num_sectors * sector_nsteps, GFP_NOFS);
1099 	rbio->stripe_paddrs = kzalloc_objs(phys_addr_t,
1100 					   num_sectors * sector_nsteps,
1101 					   GFP_NOFS);
1102 	rbio->finish_pointers = kcalloc(real_stripes, sizeof(void *), GFP_NOFS);
1103 	rbio->error_bitmap = bitmap_zalloc(num_sectors, GFP_NOFS);
1104 	rbio->stripe_uptodate_bitmap = bitmap_zalloc(num_sectors, GFP_NOFS);
1105 
1106 	if (!rbio->stripe_pages || !rbio->bio_paddrs || !rbio->stripe_paddrs ||
1107 	    !rbio->finish_pointers || !rbio->error_bitmap || !rbio->stripe_uptodate_bitmap) {
1108 		free_raid_bio_pointers(rbio);
1109 		kfree(rbio);
1110 		return ERR_PTR(-ENOMEM);
1111 	}
1112 	for (int i = 0; i < num_sectors * sector_nsteps; i++) {
1113 		rbio->stripe_paddrs[i] = INVALID_PADDR;
1114 		rbio->bio_paddrs[i] = INVALID_PADDR;
1115 	}
1116 
1117 	bio_list_init(&rbio->bio_list);
1118 	init_waitqueue_head(&rbio->io_wait);
1119 	INIT_LIST_HEAD(&rbio->plug_list);
1120 	spin_lock_init(&rbio->bio_list_lock);
1121 	INIT_LIST_HEAD(&rbio->stripe_cache);
1122 	INIT_LIST_HEAD(&rbio->hash_list);
1123 	btrfs_get_bioc(bioc);
1124 	rbio->bioc = bioc;
1125 	rbio->nr_pages = num_pages;
1126 	rbio->nr_sectors = num_sectors;
1127 	rbio->real_stripes = real_stripes;
1128 	rbio->stripe_npages = stripe_npages;
1129 	rbio->stripe_nsectors = stripe_nsectors;
1130 	rbio->sector_nsteps = sector_nsteps;
1131 	refcount_set(&rbio->refs, 1);
1132 	atomic_set(&rbio->stripes_pending, 0);
1133 
1134 	ASSERT(btrfs_nr_parity_stripes(bioc->map_type));
1135 	rbio->nr_data = real_stripes - btrfs_nr_parity_stripes(bioc->map_type);
1136 	ASSERT(rbio->nr_data > 0);
1137 
1138 	return rbio;
1139 }
1140 
1141 /* allocate pages for all the stripes in the bio, including parity */
1142 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
1143 {
1144 	int ret;
1145 
1146 	ret = btrfs_alloc_page_array(rbio->nr_pages, rbio->stripe_pages, false);
1147 	if (ret < 0)
1148 		return ret;
1149 	/* Mapping all sectors */
1150 	index_stripe_sectors(rbio);
1151 	return 0;
1152 }
1153 
1154 /* only allocate pages for p/q stripes */
1155 static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
1156 {
1157 	const int data_pages = rbio->nr_data * rbio->stripe_npages;
1158 	int ret;
1159 
1160 	ret = btrfs_alloc_page_array(rbio->nr_pages - data_pages,
1161 				     rbio->stripe_pages + data_pages, false);
1162 	if (ret < 0)
1163 		return ret;
1164 
1165 	index_stripe_sectors(rbio);
1166 	return 0;
1167 }
1168 
1169 /*
1170  * Return the total number of errors found in the vertical stripe of @sector_nr.
1171  *
1172  * @faila and @failb will also be updated to the first and second stripe
1173  * number of the errors.
1174  */
1175 static int get_rbio_vertical_errors(struct btrfs_raid_bio *rbio, int sector_nr,
1176 				    int *faila, int *failb)
1177 {
1178 	int stripe_nr;
1179 	int found_errors = 0;
1180 
1181 	if (faila || failb) {
1182 		/*
1183 		 * Both @faila and @failb should be valid pointers if any of
1184 		 * them is specified.
1185 		 */
1186 		ASSERT(faila && failb);
1187 		*faila = -1;
1188 		*failb = -1;
1189 	}
1190 
1191 	for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
1192 		int total_sector_nr = stripe_nr * rbio->stripe_nsectors + sector_nr;
1193 
1194 		if (test_bit(total_sector_nr, rbio->error_bitmap)) {
1195 			found_errors++;
1196 			if (faila) {
1197 				/* Update faila and failb. */
1198 				if (*faila < 0)
1199 					*faila = stripe_nr;
1200 				else if (*failb < 0)
1201 					*failb = stripe_nr;
1202 			}
1203 		}
1204 	}
1205 	return found_errors;
1206 }
1207 
1208 static int bio_add_paddrs(struct bio *bio, phys_addr_t *paddrs, unsigned int nr_steps,
1209 			  unsigned int step)
1210 {
1211 	int added = 0;
1212 	int ret;
1213 
1214 	for (int i = 0; i < nr_steps; i++) {
1215 		ret = bio_add_page(bio, phys_to_page(paddrs[i]), step,
1216 				   offset_in_page(paddrs[i]));
1217 		if (ret != step)
1218 			goto revert;
1219 		added += ret;
1220 	}
1221 	return added;
1222 revert:
1223 	/*
1224 	 * We don't need to revert the bvec, as the bio will be submitted immediately,
1225 	 * as long as the size is reduced the extra bvec will not be accessed.
1226 	 */
1227 	bio->bi_iter.bi_size -= added;
1228 	return 0;
1229 }
1230 
1231 /*
1232  * Add a single sector @sector into our list of bios for IO.
1233  *
1234  * Return 0 if everything went well.
1235  * Return <0 for error, and no byte will be added to @rbio.
1236  */
1237 static int rbio_add_io_paddrs(struct btrfs_raid_bio *rbio, struct bio_list *bio_list,
1238 			      phys_addr_t *paddrs, unsigned int stripe_nr,
1239 			      unsigned int sector_nr, enum req_op op)
1240 {
1241 	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1242 	const u32 step = min(sectorsize, PAGE_SIZE);
1243 	struct bio *last = bio_list->tail;
1244 	int ret;
1245 	struct bio *bio;
1246 	struct btrfs_io_stripe *stripe;
1247 	u64 disk_start;
1248 
1249 	/*
1250 	 * Note: here stripe_nr has taken device replace into consideration,
1251 	 * thus it can be larger than rbio->real_stripe.
1252 	 * So here we check against bioc->num_stripes, not rbio->real_stripes.
1253 	 */
1254 	ASSERT_RBIO_STRIPE(stripe_nr >= 0 && stripe_nr < rbio->bioc->num_stripes,
1255 			   rbio, stripe_nr);
1256 	ASSERT_RBIO_SECTOR(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors,
1257 			   rbio, sector_nr);
1258 	ASSERT(paddrs != NULL);
1259 
1260 	stripe = &rbio->bioc->stripes[stripe_nr];
1261 	disk_start = stripe->physical + sector_nr * sectorsize;
1262 
1263 	/* if the device is missing, just fail this stripe */
1264 	if (!stripe->dev->bdev) {
1265 		int found_errors;
1266 
1267 		set_bit(stripe_nr * rbio->stripe_nsectors + sector_nr,
1268 			rbio->error_bitmap);
1269 
1270 		/* Check if we have reached tolerance early. */
1271 		found_errors = get_rbio_vertical_errors(rbio, sector_nr,
1272 							NULL, NULL);
1273 		if (unlikely(found_errors > rbio->bioc->max_errors))
1274 			return -EIO;
1275 		return 0;
1276 	}
1277 
1278 	/* see if we can add this page onto our existing bio */
1279 	if (last) {
1280 		u64 last_end = last->bi_iter.bi_sector << SECTOR_SHIFT;
1281 		last_end += last->bi_iter.bi_size;
1282 
1283 		/*
1284 		 * we can't merge these if they are from different
1285 		 * devices or if they are not contiguous
1286 		 */
1287 		if (last_end == disk_start && !last->bi_status &&
1288 		    last->bi_bdev == stripe->dev->bdev) {
1289 			ret = bio_add_paddrs(last, paddrs, rbio->sector_nsteps, step);
1290 			if (ret == sectorsize)
1291 				return 0;
1292 		}
1293 	}
1294 
1295 	/* put a new bio on the list */
1296 	bio = bio_alloc(stripe->dev->bdev,
1297 			max(BTRFS_STRIPE_LEN >> PAGE_SHIFT, 1),
1298 			op, GFP_NOFS);
1299 	bio->bi_iter.bi_sector = disk_start >> SECTOR_SHIFT;
1300 	bio->bi_private = rbio;
1301 
1302 	ret = bio_add_paddrs(bio, paddrs, rbio->sector_nsteps, step);
1303 	ASSERT(ret == sectorsize);
1304 	bio_list_add(bio_list, bio);
1305 	return 0;
1306 }
1307 
1308 static void index_one_bio(struct btrfs_raid_bio *rbio, struct bio *bio)
1309 {
1310 	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1311 	const u32 step = min(fs_info->sectorsize, PAGE_SIZE);
1312 	const u32 step_bits = min(fs_info->sectorsize_bits, PAGE_SHIFT);
1313 	struct bvec_iter iter = bio->bi_iter;
1314 	phys_addr_t paddr;
1315 	u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
1316 		     rbio->bioc->full_stripe_logical;
1317 
1318 	btrfs_bio_for_each_block(paddr, bio, &iter, step) {
1319 		unsigned int index = (offset >> step_bits);
1320 
1321 		rbio->bio_paddrs[index] = paddr;
1322 		offset += step;
1323 	}
1324 }
1325 
1326 /*
1327  * helper function to walk our bio list and populate the bio_pages array with
1328  * the result.  This seems expensive, but it is faster than constantly
1329  * searching through the bio list as we setup the IO in finish_rmw or stripe
1330  * reconstruction.
1331  *
1332  * This must be called before you trust the answers from page_in_rbio
1333  */
1334 static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1335 {
1336 	struct bio *bio;
1337 
1338 	spin_lock(&rbio->bio_list_lock);
1339 	bio_list_for_each(bio, &rbio->bio_list)
1340 		index_one_bio(rbio, bio);
1341 
1342 	spin_unlock(&rbio->bio_list_lock);
1343 }
1344 
1345 static void bio_get_trace_info(struct btrfs_raid_bio *rbio, struct bio *bio,
1346 			       struct raid56_bio_trace_info *trace_info)
1347 {
1348 	const struct btrfs_io_context *bioc = rbio->bioc;
1349 	int i;
1350 
1351 	ASSERT(bioc);
1352 
1353 	/* We rely on bio->bi_bdev to find the stripe number. */
1354 	if (!bio->bi_bdev)
1355 		goto not_found;
1356 
1357 	for (i = 0; i < bioc->num_stripes; i++) {
1358 		if (bio->bi_bdev != bioc->stripes[i].dev->bdev)
1359 			continue;
1360 		trace_info->stripe_nr = i;
1361 		trace_info->devid = bioc->stripes[i].dev->devid;
1362 		trace_info->offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
1363 				     bioc->stripes[i].physical;
1364 		return;
1365 	}
1366 
1367 not_found:
1368 	trace_info->devid = -1;
1369 	trace_info->offset = -1;
1370 	trace_info->stripe_nr = -1;
1371 }
1372 
1373 static inline void bio_list_put(struct bio_list *bio_list)
1374 {
1375 	struct bio *bio;
1376 
1377 	while ((bio = bio_list_pop(bio_list)))
1378 		bio_put(bio);
1379 }
1380 
1381 static void assert_rbio(struct btrfs_raid_bio *rbio)
1382 {
1383 	if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
1384 		return;
1385 
1386 	/*
1387 	 * At least two stripes (2 disks RAID5), and since real_stripes is U8,
1388 	 * we won't go beyond 256 disks anyway.
1389 	 */
1390 	ASSERT_RBIO(rbio->real_stripes >= 2, rbio);
1391 	ASSERT_RBIO(rbio->nr_data > 0, rbio);
1392 
1393 	/*
1394 	 * This is another check to make sure nr data stripes is smaller
1395 	 * than total stripes.
1396 	 */
1397 	ASSERT_RBIO(rbio->nr_data < rbio->real_stripes, rbio);
1398 }
1399 
1400 static inline void *kmap_local_paddr(phys_addr_t paddr)
1401 {
1402 	/* The sector pointer must have a page mapped to it. */
1403 	ASSERT(paddr != INVALID_PADDR);
1404 
1405 	return kmap_local_page(phys_to_page(paddr)) + offset_in_page(paddr);
1406 }
1407 
1408 static void generate_pq_vertical_step(struct btrfs_raid_bio *rbio, unsigned int sector_nr,
1409 				      unsigned int step_nr)
1410 {
1411 	void **pointers = rbio->finish_pointers;
1412 	const u32 step = min(rbio->bioc->fs_info->sectorsize, PAGE_SIZE);
1413 	int stripe;
1414 	const bool has_qstripe = rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6;
1415 
1416 	/* First collect one sector from each data stripe */
1417 	for (stripe = 0; stripe < rbio->nr_data; stripe++)
1418 		pointers[stripe] = kmap_local_paddr(
1419 				sector_paddr_in_rbio(rbio, stripe, sector_nr, step_nr, 0));
1420 
1421 	/* Then add the parity stripe */
1422 	pointers[stripe++] = kmap_local_paddr(rbio_pstripe_paddr(rbio, sector_nr, step_nr));
1423 
1424 	if (has_qstripe) {
1425 		/*
1426 		 * RAID6, add the qstripe and call the library function
1427 		 * to fill in our p/q
1428 		 */
1429 		pointers[stripe++] = kmap_local_paddr(
1430 				rbio_qstripe_paddr(rbio, sector_nr, step_nr));
1431 
1432 		assert_rbio(rbio);
1433 		raid6_call.gen_syndrome(rbio->real_stripes, step, pointers);
1434 	} else {
1435 		/* raid5 */
1436 		memcpy(pointers[rbio->nr_data], pointers[0], step);
1437 		run_xor(pointers + 1, rbio->nr_data - 1, step);
1438 	}
1439 	for (stripe = stripe - 1; stripe >= 0; stripe--)
1440 		kunmap_local(pointers[stripe]);
1441 }
1442 
1443 /* Generate PQ for one vertical stripe. */
1444 static void generate_pq_vertical(struct btrfs_raid_bio *rbio, int sectornr)
1445 {
1446 	const bool has_qstripe = (rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6);
1447 
1448 	for (int i = 0; i < rbio->sector_nsteps; i++)
1449 		generate_pq_vertical_step(rbio, sectornr, i);
1450 
1451 	set_bit(rbio_sector_index(rbio, rbio->nr_data, sectornr),
1452 		rbio->stripe_uptodate_bitmap);
1453 	if (has_qstripe)
1454 		set_bit(rbio_sector_index(rbio, rbio->nr_data + 1, sectornr),
1455 			rbio->stripe_uptodate_bitmap);
1456 }
1457 
1458 static int rmw_assemble_write_bios(struct btrfs_raid_bio *rbio,
1459 				   struct bio_list *bio_list)
1460 {
1461 	/* The total sector number inside the full stripe. */
1462 	int total_sector_nr;
1463 	int sectornr;
1464 	int stripe;
1465 	int ret;
1466 
1467 	ASSERT(bio_list_size(bio_list) == 0);
1468 
1469 	/* We should have at least one data sector. */
1470 	ASSERT(bitmap_weight(&rbio->dbitmap, rbio->stripe_nsectors));
1471 
1472 	/*
1473 	 * Reset errors, as we may have errors inherited from from degraded
1474 	 * write.
1475 	 */
1476 	bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
1477 
1478 	/*
1479 	 * Start assembly.  Make bios for everything from the higher layers (the
1480 	 * bio_list in our rbio) and our P/Q.  Ignore everything else.
1481 	 */
1482 	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
1483 	     total_sector_nr++) {
1484 		phys_addr_t *paddrs;
1485 
1486 		stripe = total_sector_nr / rbio->stripe_nsectors;
1487 		sectornr = total_sector_nr % rbio->stripe_nsectors;
1488 
1489 		/* This vertical stripe has no data, skip it. */
1490 		if (!test_bit(sectornr, &rbio->dbitmap))
1491 			continue;
1492 
1493 		if (stripe < rbio->nr_data) {
1494 			paddrs = sector_paddrs_in_rbio(rbio, stripe, sectornr, 1);
1495 			if (paddrs == NULL)
1496 				continue;
1497 		} else {
1498 			paddrs = rbio_stripe_paddrs(rbio, stripe, sectornr);
1499 		}
1500 
1501 		ret = rbio_add_io_paddrs(rbio, bio_list, paddrs, stripe,
1502 					 sectornr, REQ_OP_WRITE);
1503 		if (ret)
1504 			goto error;
1505 	}
1506 
1507 	if (likely(!rbio->bioc->replace_nr_stripes))
1508 		return 0;
1509 
1510 	/*
1511 	 * Make a copy for the replace target device.
1512 	 *
1513 	 * Thus the source stripe number (in replace_stripe_src) should be valid.
1514 	 */
1515 	ASSERT(rbio->bioc->replace_stripe_src >= 0);
1516 
1517 	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
1518 	     total_sector_nr++) {
1519 		phys_addr_t *paddrs;
1520 
1521 		stripe = total_sector_nr / rbio->stripe_nsectors;
1522 		sectornr = total_sector_nr % rbio->stripe_nsectors;
1523 
1524 		/*
1525 		 * For RAID56, there is only one device that can be replaced,
1526 		 * and replace_stripe_src[0] indicates the stripe number we
1527 		 * need to copy from.
1528 		 */
1529 		if (stripe != rbio->bioc->replace_stripe_src) {
1530 			/*
1531 			 * We can skip the whole stripe completely, note
1532 			 * total_sector_nr will be increased by one anyway.
1533 			 */
1534 			ASSERT(sectornr == 0);
1535 			total_sector_nr += rbio->stripe_nsectors - 1;
1536 			continue;
1537 		}
1538 
1539 		/* This vertical stripe has no data, skip it. */
1540 		if (!test_bit(sectornr, &rbio->dbitmap))
1541 			continue;
1542 
1543 		if (stripe < rbio->nr_data) {
1544 			paddrs = sector_paddrs_in_rbio(rbio, stripe, sectornr, 1);
1545 			if (paddrs == NULL)
1546 				continue;
1547 		} else {
1548 			paddrs = rbio_stripe_paddrs(rbio, stripe, sectornr);
1549 		}
1550 
1551 		ret = rbio_add_io_paddrs(rbio, bio_list, paddrs,
1552 					 rbio->real_stripes,
1553 					 sectornr, REQ_OP_WRITE);
1554 		if (ret)
1555 			goto error;
1556 	}
1557 
1558 	return 0;
1559 error:
1560 	bio_list_put(bio_list);
1561 	return -EIO;
1562 }
1563 
1564 static void set_rbio_range_error(struct btrfs_raid_bio *rbio, struct bio *bio)
1565 {
1566 	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1567 	u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
1568 		     rbio->bioc->full_stripe_logical;
1569 	int total_nr_sector = offset >> fs_info->sectorsize_bits;
1570 
1571 	ASSERT(total_nr_sector < rbio->nr_data * rbio->stripe_nsectors);
1572 
1573 	bitmap_set(rbio->error_bitmap, total_nr_sector,
1574 		   bio->bi_iter.bi_size >> fs_info->sectorsize_bits);
1575 
1576 	/*
1577 	 * Special handling for raid56_alloc_missing_rbio() used by
1578 	 * scrub/replace.  Unlike call path in raid56_parity_recover(), they
1579 	 * pass an empty bio here.  Thus we have to find out the missing device
1580 	 * and mark the stripe error instead.
1581 	 */
1582 	if (bio->bi_iter.bi_size == 0) {
1583 		bool found_missing = false;
1584 		int stripe_nr;
1585 
1586 		for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
1587 			if (!rbio->bioc->stripes[stripe_nr].dev->bdev) {
1588 				found_missing = true;
1589 				bitmap_set(rbio->error_bitmap,
1590 					   stripe_nr * rbio->stripe_nsectors,
1591 					   rbio->stripe_nsectors);
1592 			}
1593 		}
1594 		ASSERT(found_missing);
1595 	}
1596 }
1597 
1598 /*
1599  * Return the index inside the rbio->stripe_sectors[] array.
1600  *
1601  * Return -1 if not found.
1602  */
1603 static int find_stripe_sector_nr(struct btrfs_raid_bio *rbio, phys_addr_t paddr)
1604 {
1605 	for (int i = 0; i < rbio->nr_sectors; i++) {
1606 		if (rbio->stripe_paddrs[i * rbio->sector_nsteps] == paddr)
1607 			return i;
1608 	}
1609 	return -1;
1610 }
1611 
1612 /*
1613  * this sets each page in the bio uptodate.  It should only be used on private
1614  * rbio pages, nothing that comes in from the higher layers
1615  */
1616 static void set_bio_pages_uptodate(struct btrfs_raid_bio *rbio, struct bio *bio)
1617 {
1618 	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1619 	const u32 step = min(sectorsize, PAGE_SIZE);
1620 	u32 offset = 0;
1621 	phys_addr_t paddr;
1622 
1623 	ASSERT(!bio_flagged(bio, BIO_CLONED));
1624 
1625 	btrfs_bio_for_each_block_all(paddr, bio, step) {
1626 		/* Hitting the first step of a sector. */
1627 		if (IS_ALIGNED(offset, sectorsize)) {
1628 			int sector_nr = find_stripe_sector_nr(rbio, paddr);
1629 
1630 			ASSERT(sector_nr >= 0);
1631 			if (sector_nr >= 0)
1632 				set_bit(sector_nr, rbio->stripe_uptodate_bitmap);
1633 		}
1634 		offset += step;
1635 	}
1636 }
1637 
1638 static int get_bio_sector_nr(struct btrfs_raid_bio *rbio, struct bio *bio)
1639 {
1640 	phys_addr_t bvec_paddr = bvec_phys(bio_first_bvec_all(bio));
1641 	int i;
1642 
1643 	for (i = 0; i < rbio->nr_sectors; i++) {
1644 		if (rbio->stripe_paddrs[i * rbio->sector_nsteps] == bvec_paddr)
1645 			break;
1646 		if (rbio->bio_paddrs[i * rbio->sector_nsteps] == bvec_paddr)
1647 			break;
1648 	}
1649 	ASSERT(i < rbio->nr_sectors);
1650 	return i;
1651 }
1652 
1653 static void rbio_update_error_bitmap(struct btrfs_raid_bio *rbio, struct bio *bio)
1654 {
1655 	int total_sector_nr = get_bio_sector_nr(rbio, bio);
1656 	u32 bio_size = 0;
1657 	struct bio_vec *bvec;
1658 	int i;
1659 
1660 	bio_for_each_bvec_all(bvec, bio, i)
1661 		bio_size += bvec->bv_len;
1662 
1663 	/*
1664 	 * Since we can have multiple bios touching the error_bitmap, we cannot
1665 	 * call bitmap_set() without protection.
1666 	 *
1667 	 * Instead use set_bit() for each bit, as set_bit() itself is atomic.
1668 	 */
1669 	for (i = total_sector_nr; i < total_sector_nr +
1670 	     (bio_size >> rbio->bioc->fs_info->sectorsize_bits); i++)
1671 		set_bit(i, rbio->error_bitmap);
1672 }
1673 
1674 /* Verify the data sectors at read time. */
1675 static void verify_bio_data_sectors(struct btrfs_raid_bio *rbio,
1676 				    struct bio *bio)
1677 {
1678 	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1679 	const u32 step = min(fs_info->sectorsize, PAGE_SIZE);
1680 	const u32 nr_steps = rbio->sector_nsteps;
1681 	int total_sector_nr = get_bio_sector_nr(rbio, bio);
1682 	u32 offset = 0;
1683 	phys_addr_t paddrs[BTRFS_MAX_BLOCKSIZE / PAGE_SIZE];
1684 	phys_addr_t paddr;
1685 
1686 	/* No data csum for the whole stripe, no need to verify. */
1687 	if (!rbio->csum_bitmap || !rbio->csum_buf)
1688 		return;
1689 
1690 	/* P/Q stripes, they have no data csum to verify against. */
1691 	if (total_sector_nr >= rbio->nr_data * rbio->stripe_nsectors)
1692 		return;
1693 
1694 	btrfs_bio_for_each_block_all(paddr, bio, step) {
1695 		u8 csum_buf[BTRFS_CSUM_SIZE];
1696 		u8 *expected_csum;
1697 
1698 		paddrs[(offset / step) % nr_steps] = paddr;
1699 		offset += step;
1700 
1701 		/* Not yet covering the full fs block, continue to the next step. */
1702 		if (!IS_ALIGNED(offset, fs_info->sectorsize))
1703 			continue;
1704 
1705 		/* No csum for this sector, skip to the next sector. */
1706 		if (!test_bit(total_sector_nr, rbio->csum_bitmap))
1707 			continue;
1708 
1709 		expected_csum = rbio->csum_buf + total_sector_nr * fs_info->csum_size;
1710 		btrfs_calculate_block_csum_pages(fs_info, paddrs, csum_buf);
1711 		if (unlikely(memcmp(csum_buf, expected_csum, fs_info->csum_size) != 0))
1712 			set_bit(total_sector_nr, rbio->error_bitmap);
1713 		total_sector_nr++;
1714 	}
1715 }
1716 
1717 static void raid_wait_read_end_io(struct bio *bio)
1718 {
1719 	struct btrfs_raid_bio *rbio = bio->bi_private;
1720 
1721 	if (bio->bi_status) {
1722 		rbio_update_error_bitmap(rbio, bio);
1723 	} else {
1724 		set_bio_pages_uptodate(rbio, bio);
1725 		verify_bio_data_sectors(rbio, bio);
1726 	}
1727 
1728 	bio_put(bio);
1729 	if (atomic_dec_and_test(&rbio->stripes_pending))
1730 		wake_up(&rbio->io_wait);
1731 }
1732 
1733 static void submit_read_wait_bio_list(struct btrfs_raid_bio *rbio,
1734 			     struct bio_list *bio_list)
1735 {
1736 	struct bio *bio;
1737 
1738 	atomic_set(&rbio->stripes_pending, bio_list_size(bio_list));
1739 	while ((bio = bio_list_pop(bio_list))) {
1740 		bio->bi_end_io = raid_wait_read_end_io;
1741 
1742 		if (trace_raid56_read_enabled()) {
1743 			struct raid56_bio_trace_info trace_info = { 0 };
1744 
1745 			bio_get_trace_info(rbio, bio, &trace_info);
1746 			trace_raid56_read(rbio, bio, &trace_info);
1747 		}
1748 		submit_bio(bio);
1749 	}
1750 
1751 	wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
1752 }
1753 
1754 static int alloc_rbio_data_pages(struct btrfs_raid_bio *rbio)
1755 {
1756 	const int data_pages = rbio->nr_data * rbio->stripe_npages;
1757 	int ret;
1758 
1759 	ret = btrfs_alloc_page_array(data_pages, rbio->stripe_pages, false);
1760 	if (ret < 0)
1761 		return ret;
1762 
1763 	index_stripe_sectors(rbio);
1764 	return 0;
1765 }
1766 
1767 /*
1768  * We use plugging call backs to collect full stripes.
1769  * Any time we get a partial stripe write while plugged
1770  * we collect it into a list.  When the unplug comes down,
1771  * we sort the list by logical block number and merge
1772  * everything we can into the same rbios
1773  */
1774 struct btrfs_plug_cb {
1775 	struct blk_plug_cb cb;
1776 	struct btrfs_fs_info *info;
1777 	struct list_head rbio_list;
1778 };
1779 
1780 /*
1781  * rbios on the plug list are sorted for easier merging.
1782  */
1783 static int plug_cmp(void *priv, const struct list_head *a,
1784 		    const struct list_head *b)
1785 {
1786 	const struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1787 						       plug_list);
1788 	const struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1789 						       plug_list);
1790 	u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1791 	u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1792 
1793 	if (a_sector < b_sector)
1794 		return -1;
1795 	if (a_sector > b_sector)
1796 		return 1;
1797 	return 0;
1798 }
1799 
1800 static void raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1801 {
1802 	struct btrfs_plug_cb *plug = container_of(cb, struct btrfs_plug_cb, cb);
1803 	struct btrfs_raid_bio *cur;
1804 	struct btrfs_raid_bio *last = NULL;
1805 
1806 	list_sort(NULL, &plug->rbio_list, plug_cmp);
1807 
1808 	while (!list_empty(&plug->rbio_list)) {
1809 		cur = list_first_entry(&plug->rbio_list,
1810 				       struct btrfs_raid_bio, plug_list);
1811 		list_del_init(&cur->plug_list);
1812 
1813 		if (rbio_is_full(cur)) {
1814 			/* We have a full stripe, queue it down. */
1815 			start_async_work(cur, rmw_rbio_work);
1816 			continue;
1817 		}
1818 		if (last) {
1819 			if (rbio_can_merge(last, cur)) {
1820 				merge_rbio(last, cur);
1821 				free_raid_bio(cur);
1822 				continue;
1823 			}
1824 			start_async_work(last, rmw_rbio_work);
1825 		}
1826 		last = cur;
1827 	}
1828 	if (last)
1829 		start_async_work(last, rmw_rbio_work);
1830 	kfree(plug);
1831 }
1832 
1833 /* Add the original bio into rbio->bio_list, and update rbio::dbitmap. */
1834 static void rbio_add_bio(struct btrfs_raid_bio *rbio, struct bio *orig_bio)
1835 {
1836 	const struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1837 	const u64 orig_logical = orig_bio->bi_iter.bi_sector << SECTOR_SHIFT;
1838 	const u64 full_stripe_start = rbio->bioc->full_stripe_logical;
1839 	const u32 orig_len = orig_bio->bi_iter.bi_size;
1840 	const u32 sectorsize = fs_info->sectorsize;
1841 	u64 cur_logical;
1842 
1843 	ASSERT_RBIO_LOGICAL(orig_logical >= full_stripe_start &&
1844 			    orig_logical + orig_len <= full_stripe_start +
1845 			    rbio->nr_data * BTRFS_STRIPE_LEN,
1846 			    rbio, orig_logical);
1847 
1848 	bio_list_add(&rbio->bio_list, orig_bio);
1849 	rbio->bio_list_bytes += orig_bio->bi_iter.bi_size;
1850 
1851 	/* Update the dbitmap. */
1852 	for (cur_logical = orig_logical; cur_logical < orig_logical + orig_len;
1853 	     cur_logical += sectorsize) {
1854 		int bit = ((u32)(cur_logical - full_stripe_start) >>
1855 			   fs_info->sectorsize_bits) % rbio->stripe_nsectors;
1856 
1857 		set_bit(bit, &rbio->dbitmap);
1858 	}
1859 }
1860 
1861 /*
1862  * our main entry point for writes from the rest of the FS.
1863  */
1864 void raid56_parity_write(struct bio *bio, struct btrfs_io_context *bioc)
1865 {
1866 	struct btrfs_fs_info *fs_info = bioc->fs_info;
1867 	struct btrfs_raid_bio *rbio;
1868 	struct btrfs_plug_cb *plug = NULL;
1869 	struct blk_plug_cb *cb;
1870 
1871 	rbio = alloc_rbio(fs_info, bioc);
1872 	if (IS_ERR(rbio)) {
1873 		bio->bi_status = errno_to_blk_status(PTR_ERR(rbio));
1874 		bio_endio(bio);
1875 		return;
1876 	}
1877 	rbio->operation = BTRFS_RBIO_WRITE;
1878 	rbio_add_bio(rbio, bio);
1879 
1880 	/*
1881 	 * Don't plug on full rbios, just get them out the door
1882 	 * as quickly as we can
1883 	 */
1884 	if (!rbio_is_full(rbio)) {
1885 		cb = blk_check_plugged(raid_unplug, fs_info, sizeof(*plug));
1886 		if (cb) {
1887 			plug = container_of(cb, struct btrfs_plug_cb, cb);
1888 			if (!plug->info) {
1889 				plug->info = fs_info;
1890 				INIT_LIST_HEAD(&plug->rbio_list);
1891 			}
1892 			list_add_tail(&rbio->plug_list, &plug->rbio_list);
1893 			return;
1894 		}
1895 	}
1896 
1897 	/*
1898 	 * Either we don't have any existing plug, or we're doing a full stripe,
1899 	 * queue the rmw work now.
1900 	 */
1901 	start_async_work(rbio, rmw_rbio_work);
1902 }
1903 
1904 static int verify_one_sector(struct btrfs_raid_bio *rbio,
1905 			     int stripe_nr, int sector_nr)
1906 {
1907 	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1908 	phys_addr_t *paddrs;
1909 	u8 csum_buf[BTRFS_CSUM_SIZE];
1910 	u8 *csum_expected;
1911 
1912 	if (!rbio->csum_bitmap || !rbio->csum_buf)
1913 		return 0;
1914 
1915 	/* No way to verify P/Q as they are not covered by data csum. */
1916 	if (stripe_nr >= rbio->nr_data)
1917 		return 0;
1918 	/*
1919 	 * If we're rebuilding a read, we have to use pages from the
1920 	 * bio list if possible.
1921 	 */
1922 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
1923 		paddrs = sector_paddrs_in_rbio(rbio, stripe_nr, sector_nr, 0);
1924 	} else {
1925 		paddrs = rbio_stripe_paddrs(rbio, stripe_nr, sector_nr);
1926 	}
1927 
1928 	csum_expected = rbio->csum_buf +
1929 			(stripe_nr * rbio->stripe_nsectors + sector_nr) *
1930 			fs_info->csum_size;
1931 	btrfs_calculate_block_csum_pages(fs_info, paddrs, csum_buf);
1932 	if (unlikely(memcmp(csum_buf, csum_expected, fs_info->csum_size) != 0))
1933 		return -EIO;
1934 	return 0;
1935 }
1936 
1937 static void recover_vertical_step(struct btrfs_raid_bio *rbio,
1938 				  unsigned int sector_nr,
1939 				  unsigned int step_nr,
1940 				  int faila, int failb,
1941 				  void **pointers, void **unmap_array)
1942 {
1943 	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1944 	const u32 step = min(fs_info->sectorsize, PAGE_SIZE);
1945 	int stripe_nr;
1946 
1947 	ASSERT(step_nr < rbio->sector_nsteps);
1948 	ASSERT(sector_nr < rbio->stripe_nsectors);
1949 
1950 	/*
1951 	 * Setup our array of pointers with sectors from each stripe
1952 	 *
1953 	 * NOTE: store a duplicate array of pointers to preserve the
1954 	 * pointer order.
1955 	 */
1956 	for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
1957 		phys_addr_t paddr;
1958 
1959 		/*
1960 		 * If we're rebuilding a read, we have to use pages from the
1961 		 * bio list if possible.
1962 		 */
1963 		if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
1964 			paddr = sector_paddr_in_rbio(rbio, stripe_nr, sector_nr, step_nr, 0);
1965 		} else {
1966 			paddr = rbio_stripe_paddr(rbio, stripe_nr, sector_nr, step_nr);
1967 		}
1968 		pointers[stripe_nr] = kmap_local_paddr(paddr);
1969 		unmap_array[stripe_nr] = pointers[stripe_nr];
1970 	}
1971 
1972 	/* All raid6 handling here */
1973 	if (rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6) {
1974 		/* Single failure, rebuild from parity raid5 style */
1975 		if (failb < 0) {
1976 			if (faila == rbio->nr_data)
1977 				/*
1978 				 * Just the P stripe has failed, without
1979 				 * a bad data or Q stripe.
1980 				 * We have nothing to do, just skip the
1981 				 * recovery for this stripe.
1982 				 */
1983 				goto cleanup;
1984 			/*
1985 			 * a single failure in raid6 is rebuilt
1986 			 * in the pstripe code below
1987 			 */
1988 			goto pstripe;
1989 		}
1990 
1991 		/*
1992 		 * If the q stripe is failed, do a pstripe reconstruction from
1993 		 * the xors.
1994 		 * If both the q stripe and the P stripe are failed, we're
1995 		 * here due to a crc mismatch and we can't give them the
1996 		 * data they want.
1997 		 */
1998 		if (failb == rbio->real_stripes - 1) {
1999 			if (faila == rbio->real_stripes - 2)
2000 				/*
2001 				 * Only P and Q are corrupted.
2002 				 * We only care about data stripes recovery,
2003 				 * can skip this vertical stripe.
2004 				 */
2005 				goto cleanup;
2006 			/*
2007 			 * Otherwise we have one bad data stripe and
2008 			 * a good P stripe.  raid5!
2009 			 */
2010 			goto pstripe;
2011 		}
2012 
2013 		if (failb == rbio->real_stripes - 2) {
2014 			raid6_datap_recov(rbio->real_stripes, step,
2015 					  faila, pointers);
2016 		} else {
2017 			raid6_2data_recov(rbio->real_stripes, step,
2018 					  faila, failb, pointers);
2019 		}
2020 	} else {
2021 		void *p;
2022 
2023 		/* Rebuild from P stripe here (raid5 or raid6). */
2024 		ASSERT(failb == -1);
2025 pstripe:
2026 		/* Copy parity block into failed block to start with */
2027 		memcpy(pointers[faila], pointers[rbio->nr_data], step);
2028 
2029 		/* Rearrange the pointer array */
2030 		p = pointers[faila];
2031 		for (stripe_nr = faila; stripe_nr < rbio->nr_data - 1;
2032 		     stripe_nr++)
2033 			pointers[stripe_nr] = pointers[stripe_nr + 1];
2034 		pointers[rbio->nr_data - 1] = p;
2035 
2036 		/* Xor in the rest */
2037 		run_xor(pointers, rbio->nr_data - 1, step);
2038 	}
2039 
2040 cleanup:
2041 	for (stripe_nr = rbio->real_stripes - 1; stripe_nr >= 0; stripe_nr--)
2042 		kunmap_local(unmap_array[stripe_nr]);
2043 }
2044 
2045 /*
2046  * Recover a vertical stripe specified by @sector_nr.
2047  * @*pointers are the pre-allocated pointers by the caller, so we don't
2048  * need to allocate/free the pointers again and again.
2049  */
2050 static int recover_vertical(struct btrfs_raid_bio *rbio, int sector_nr,
2051 			    void **pointers, void **unmap_array)
2052 {
2053 	int found_errors;
2054 	int faila;
2055 	int failb;
2056 	int ret = 0;
2057 
2058 	/*
2059 	 * Now we just use bitmap to mark the horizontal stripes in
2060 	 * which we have data when doing parity scrub.
2061 	 */
2062 	if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
2063 	    !test_bit(sector_nr, &rbio->dbitmap))
2064 		return 0;
2065 
2066 	found_errors = get_rbio_vertical_errors(rbio, sector_nr, &faila,
2067 						&failb);
2068 	/*
2069 	 * No errors in the vertical stripe, skip it.  Can happen for recovery
2070 	 * which only part of a stripe failed csum check.
2071 	 */
2072 	if (!found_errors)
2073 		return 0;
2074 
2075 	if (unlikely(found_errors > rbio->bioc->max_errors))
2076 		return -EIO;
2077 
2078 	for (int i = 0; i < rbio->sector_nsteps; i++)
2079 		recover_vertical_step(rbio, sector_nr, i, faila, failb,
2080 					    pointers, unmap_array);
2081 	if (faila >= 0) {
2082 		ret = verify_one_sector(rbio, faila, sector_nr);
2083 		if (ret < 0)
2084 			return ret;
2085 
2086 		set_bit(rbio_sector_index(rbio, faila, sector_nr),
2087 			rbio->stripe_uptodate_bitmap);
2088 	}
2089 	if (failb >= 0) {
2090 		ret = verify_one_sector(rbio, failb, sector_nr);
2091 		if (ret < 0)
2092 			return ret;
2093 
2094 		set_bit(rbio_sector_index(rbio, failb, sector_nr),
2095 			rbio->stripe_uptodate_bitmap);
2096 	}
2097 	return ret;
2098 }
2099 
2100 static int recover_sectors(struct btrfs_raid_bio *rbio)
2101 {
2102 	void **pointers = NULL;
2103 	void **unmap_array = NULL;
2104 	int sectornr;
2105 	int ret = 0;
2106 
2107 	/*
2108 	 * @pointers array stores the pointer for each sector.
2109 	 *
2110 	 * @unmap_array stores copy of pointers that does not get reordered
2111 	 * during reconstruction so that kunmap_local works.
2112 	 */
2113 	pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
2114 	unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
2115 	if (!pointers || !unmap_array) {
2116 		ret = -ENOMEM;
2117 		goto out;
2118 	}
2119 
2120 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
2121 		spin_lock(&rbio->bio_list_lock);
2122 		set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
2123 		spin_unlock(&rbio->bio_list_lock);
2124 	}
2125 
2126 	index_rbio_pages(rbio);
2127 
2128 	for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) {
2129 		ret = recover_vertical(rbio, sectornr, pointers, unmap_array);
2130 		if (ret < 0)
2131 			break;
2132 	}
2133 
2134 out:
2135 	kfree(pointers);
2136 	kfree(unmap_array);
2137 	return ret;
2138 }
2139 
2140 static void recover_rbio(struct btrfs_raid_bio *rbio)
2141 {
2142 	struct bio_list bio_list = BIO_EMPTY_LIST;
2143 	int total_sector_nr;
2144 	int ret = 0;
2145 
2146 	/*
2147 	 * Either we're doing recover for a read failure or degraded write,
2148 	 * caller should have set error bitmap correctly.
2149 	 */
2150 	ASSERT(bitmap_weight(rbio->error_bitmap, rbio->nr_sectors));
2151 
2152 	/* For recovery, we need to read all sectors including P/Q. */
2153 	ret = alloc_rbio_pages(rbio);
2154 	if (ret < 0)
2155 		goto out;
2156 
2157 	index_rbio_pages(rbio);
2158 
2159 	/*
2160 	 * Read everything that hasn't failed. However this time we will
2161 	 * not trust any cached sector.
2162 	 * As we may read out some stale data but higher layer is not reading
2163 	 * that stale part.
2164 	 *
2165 	 * So here we always re-read everything in recovery path.
2166 	 */
2167 	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
2168 	     total_sector_nr++) {
2169 		int stripe = total_sector_nr / rbio->stripe_nsectors;
2170 		int sectornr = total_sector_nr % rbio->stripe_nsectors;
2171 		phys_addr_t *paddrs;
2172 
2173 		/*
2174 		 * Skip the range which has error.  It can be a range which is
2175 		 * marked error (for csum mismatch), or it can be a missing
2176 		 * device.
2177 		 */
2178 		if (!rbio->bioc->stripes[stripe].dev->bdev ||
2179 		    test_bit(total_sector_nr, rbio->error_bitmap)) {
2180 			/*
2181 			 * Also set the error bit for missing device, which
2182 			 * may not yet have its error bit set.
2183 			 */
2184 			set_bit(total_sector_nr, rbio->error_bitmap);
2185 			continue;
2186 		}
2187 
2188 		paddrs = rbio_stripe_paddrs(rbio, stripe, sectornr);
2189 		ret = rbio_add_io_paddrs(rbio, &bio_list, paddrs, stripe,
2190 					 sectornr, REQ_OP_READ);
2191 		if (ret < 0) {
2192 			bio_list_put(&bio_list);
2193 			goto out;
2194 		}
2195 	}
2196 
2197 	submit_read_wait_bio_list(rbio, &bio_list);
2198 	ret = recover_sectors(rbio);
2199 out:
2200 	rbio_orig_end_io(rbio, errno_to_blk_status(ret));
2201 }
2202 
2203 static void recover_rbio_work(struct work_struct *work)
2204 {
2205 	struct btrfs_raid_bio *rbio;
2206 
2207 	rbio = container_of(work, struct btrfs_raid_bio, work);
2208 	if (!lock_stripe_add(rbio))
2209 		recover_rbio(rbio);
2210 }
2211 
2212 static void recover_rbio_work_locked(struct work_struct *work)
2213 {
2214 	recover_rbio(container_of(work, struct btrfs_raid_bio, work));
2215 }
2216 
2217 static void set_rbio_raid6_extra_error(struct btrfs_raid_bio *rbio, int mirror_num)
2218 {
2219 	bool found = false;
2220 	int sector_nr;
2221 
2222 	/*
2223 	 * This is for RAID6 extra recovery tries, thus mirror number should
2224 	 * be large than 2.
2225 	 * Mirror 1 means read from data stripes. Mirror 2 means rebuild using
2226 	 * RAID5 methods.
2227 	 */
2228 	ASSERT(mirror_num > 2);
2229 	for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
2230 		int found_errors;
2231 		int faila;
2232 		int failb;
2233 
2234 		found_errors = get_rbio_vertical_errors(rbio, sector_nr,
2235 							 &faila, &failb);
2236 		/* This vertical stripe doesn't have errors. */
2237 		if (!found_errors)
2238 			continue;
2239 
2240 		/*
2241 		 * If we found errors, there should be only one error marked
2242 		 * by previous set_rbio_range_error().
2243 		 */
2244 		ASSERT(found_errors == 1);
2245 		found = true;
2246 
2247 		/* Now select another stripe to mark as error. */
2248 		failb = rbio->real_stripes - (mirror_num - 1);
2249 		if (failb <= faila)
2250 			failb--;
2251 
2252 		/* Set the extra bit in error bitmap. */
2253 		if (failb >= 0)
2254 			set_bit(failb * rbio->stripe_nsectors + sector_nr,
2255 				rbio->error_bitmap);
2256 	}
2257 
2258 	/* We should found at least one vertical stripe with error.*/
2259 	ASSERT(found);
2260 }
2261 
2262 /*
2263  * the main entry point for reads from the higher layers.  This
2264  * is really only called when the normal read path had a failure,
2265  * so we assume the bio they send down corresponds to a failed part
2266  * of the drive.
2267  */
2268 void raid56_parity_recover(struct bio *bio, struct btrfs_io_context *bioc,
2269 			   int mirror_num)
2270 {
2271 	struct btrfs_fs_info *fs_info = bioc->fs_info;
2272 	struct btrfs_raid_bio *rbio;
2273 
2274 	rbio = alloc_rbio(fs_info, bioc);
2275 	if (IS_ERR(rbio)) {
2276 		bio->bi_status = errno_to_blk_status(PTR_ERR(rbio));
2277 		bio_endio(bio);
2278 		return;
2279 	}
2280 
2281 	rbio->operation = BTRFS_RBIO_READ_REBUILD;
2282 	rbio_add_bio(rbio, bio);
2283 
2284 	set_rbio_range_error(rbio, bio);
2285 
2286 	/*
2287 	 * Loop retry:
2288 	 * for 'mirror == 2', reconstruct from all other stripes.
2289 	 * for 'mirror_num > 2', select a stripe to fail on every retry.
2290 	 */
2291 	if (mirror_num > 2)
2292 		set_rbio_raid6_extra_error(rbio, mirror_num);
2293 
2294 	start_async_work(rbio, recover_rbio_work);
2295 }
2296 
2297 static void fill_data_csums(struct btrfs_raid_bio *rbio)
2298 {
2299 	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
2300 	struct btrfs_root *csum_root = btrfs_csum_root(fs_info,
2301 						       rbio->bioc->full_stripe_logical);
2302 	const u64 start = rbio->bioc->full_stripe_logical;
2303 	const u32 len = (rbio->nr_data * rbio->stripe_nsectors) <<
2304 			fs_info->sectorsize_bits;
2305 	int ret;
2306 
2307 	/* The rbio should not have its csum buffer initialized. */
2308 	ASSERT(!rbio->csum_buf && !rbio->csum_bitmap);
2309 
2310 	/*
2311 	 * Skip the csum search if:
2312 	 *
2313 	 * - The rbio doesn't belong to data block groups
2314 	 *   Then we are doing IO for tree blocks, no need to search csums.
2315 	 *
2316 	 * - The rbio belongs to mixed block groups
2317 	 *   This is to avoid deadlock, as we're already holding the full
2318 	 *   stripe lock, if we trigger a metadata read, and it needs to do
2319 	 *   raid56 recovery, we will deadlock.
2320 	 */
2321 	if (!(rbio->bioc->map_type & BTRFS_BLOCK_GROUP_DATA) ||
2322 	    rbio->bioc->map_type & BTRFS_BLOCK_GROUP_METADATA)
2323 		return;
2324 
2325 	rbio->csum_buf = kzalloc(rbio->nr_data * rbio->stripe_nsectors *
2326 				 fs_info->csum_size, GFP_NOFS);
2327 	rbio->csum_bitmap = bitmap_zalloc(rbio->nr_data * rbio->stripe_nsectors,
2328 					  GFP_NOFS);
2329 	if (!rbio->csum_buf || !rbio->csum_bitmap) {
2330 		ret = -ENOMEM;
2331 		goto error;
2332 	}
2333 
2334 	ret = btrfs_lookup_csums_bitmap(csum_root, NULL, start, start + len - 1,
2335 					rbio->csum_buf, rbio->csum_bitmap);
2336 	if (ret < 0)
2337 		goto error;
2338 	if (bitmap_empty(rbio->csum_bitmap, len >> fs_info->sectorsize_bits))
2339 		goto no_csum;
2340 	return;
2341 
2342 error:
2343 	/*
2344 	 * We failed to allocate memory or grab the csum, but it's not fatal,
2345 	 * we can still continue.  But better to warn users that RMW is no
2346 	 * longer safe for this particular sub-stripe write.
2347 	 */
2348 	btrfs_warn_rl(fs_info,
2349 "sub-stripe write for full stripe %llu is not safe, failed to get csum: %d",
2350 			rbio->bioc->full_stripe_logical, ret);
2351 no_csum:
2352 	kfree(rbio->csum_buf);
2353 	bitmap_free(rbio->csum_bitmap);
2354 	rbio->csum_buf = NULL;
2355 	rbio->csum_bitmap = NULL;
2356 }
2357 
2358 static int rmw_read_wait_recover(struct btrfs_raid_bio *rbio)
2359 {
2360 	struct bio_list bio_list = BIO_EMPTY_LIST;
2361 	int total_sector_nr;
2362 	int ret = 0;
2363 
2364 	/*
2365 	 * Fill the data csums we need for data verification.  We need to fill
2366 	 * the csum_bitmap/csum_buf first, as our endio function will try to
2367 	 * verify the data sectors.
2368 	 */
2369 	fill_data_csums(rbio);
2370 
2371 	/*
2372 	 * Build a list of bios to read all sectors (including data and P/Q).
2373 	 *
2374 	 * This behavior is to compensate the later csum verification and recovery.
2375 	 */
2376 	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
2377 	     total_sector_nr++) {
2378 		int stripe = total_sector_nr / rbio->stripe_nsectors;
2379 		int sectornr = total_sector_nr % rbio->stripe_nsectors;
2380 		phys_addr_t *paddrs;
2381 
2382 		paddrs = rbio_stripe_paddrs(rbio, stripe, sectornr);
2383 		ret = rbio_add_io_paddrs(rbio, &bio_list, paddrs, stripe,
2384 					 sectornr, REQ_OP_READ);
2385 		if (ret) {
2386 			bio_list_put(&bio_list);
2387 			return ret;
2388 		}
2389 	}
2390 
2391 	/*
2392 	 * We may or may not have any corrupted sectors (including missing dev
2393 	 * and csum mismatch), just let recover_sectors() to handle them all.
2394 	 */
2395 	submit_read_wait_bio_list(rbio, &bio_list);
2396 	return recover_sectors(rbio);
2397 }
2398 
2399 static void raid_wait_write_end_io(struct bio *bio)
2400 {
2401 	struct btrfs_raid_bio *rbio = bio->bi_private;
2402 
2403 	if (bio->bi_status)
2404 		rbio_update_error_bitmap(rbio, bio);
2405 	bio_put(bio);
2406 	if (atomic_dec_and_test(&rbio->stripes_pending))
2407 		wake_up(&rbio->io_wait);
2408 }
2409 
2410 static void submit_write_bios(struct btrfs_raid_bio *rbio,
2411 			      struct bio_list *bio_list)
2412 {
2413 	struct bio *bio;
2414 
2415 	atomic_set(&rbio->stripes_pending, bio_list_size(bio_list));
2416 	while ((bio = bio_list_pop(bio_list))) {
2417 		bio->bi_end_io = raid_wait_write_end_io;
2418 
2419 		if (trace_raid56_write_enabled()) {
2420 			struct raid56_bio_trace_info trace_info = { 0 };
2421 
2422 			bio_get_trace_info(rbio, bio, &trace_info);
2423 			trace_raid56_write(rbio, bio, &trace_info);
2424 		}
2425 		submit_bio(bio);
2426 	}
2427 }
2428 
2429 /*
2430  * To determine if we need to read any sector from the disk.
2431  * Should only be utilized in RMW path, to skip cached rbio.
2432  */
2433 static bool need_read_stripe_sectors(struct btrfs_raid_bio *rbio)
2434 {
2435 	int i;
2436 
2437 	for (i = 0; i < rbio->nr_data * rbio->stripe_nsectors; i++) {
2438 		phys_addr_t paddr = rbio->stripe_paddrs[i * rbio->sector_nsteps];
2439 
2440 		/*
2441 		 * We have a sector which doesn't have page nor uptodate,
2442 		 * thus this rbio can not be cached one, as cached one must
2443 		 * have all its data sectors present and uptodate.
2444 		 */
2445 		if (paddr == INVALID_PADDR ||
2446 		    !test_bit(i, rbio->stripe_uptodate_bitmap))
2447 			return true;
2448 	}
2449 	return false;
2450 }
2451 
2452 static void rmw_rbio(struct btrfs_raid_bio *rbio)
2453 {
2454 	struct bio_list bio_list;
2455 	int sectornr;
2456 	int ret = 0;
2457 
2458 	/*
2459 	 * Allocate the pages for parity first, as P/Q pages will always be
2460 	 * needed for both full-stripe and sub-stripe writes.
2461 	 */
2462 	ret = alloc_rbio_parity_pages(rbio);
2463 	if (ret < 0)
2464 		goto out;
2465 
2466 	/*
2467 	 * Either full stripe write, or we have every data sector already
2468 	 * cached, can go to write path immediately.
2469 	 */
2470 	if (!rbio_is_full(rbio) && need_read_stripe_sectors(rbio)) {
2471 		/*
2472 		 * Now we're doing sub-stripe write, also need all data stripes
2473 		 * to do the full RMW.
2474 		 */
2475 		ret = alloc_rbio_data_pages(rbio);
2476 		if (ret < 0)
2477 			goto out;
2478 
2479 		index_rbio_pages(rbio);
2480 
2481 		ret = rmw_read_wait_recover(rbio);
2482 		if (ret < 0)
2483 			goto out;
2484 	}
2485 
2486 	/*
2487 	 * At this stage we're not allowed to add any new bios to the
2488 	 * bio list any more, anyone else that wants to change this stripe
2489 	 * needs to do their own rmw.
2490 	 */
2491 	spin_lock(&rbio->bio_list_lock);
2492 	set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
2493 	spin_unlock(&rbio->bio_list_lock);
2494 
2495 	bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
2496 
2497 	index_rbio_pages(rbio);
2498 
2499 	/*
2500 	 * We don't cache full rbios because we're assuming
2501 	 * the higher layers are unlikely to use this area of
2502 	 * the disk again soon.  If they do use it again,
2503 	 * hopefully they will send another full bio.
2504 	 */
2505 	if (!rbio_is_full(rbio))
2506 		cache_rbio_pages(rbio);
2507 	else
2508 		clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2509 
2510 	for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++)
2511 		generate_pq_vertical(rbio, sectornr);
2512 
2513 	bio_list_init(&bio_list);
2514 	ret = rmw_assemble_write_bios(rbio, &bio_list);
2515 	if (ret < 0)
2516 		goto out;
2517 
2518 	/* We should have at least one bio assembled. */
2519 	ASSERT(bio_list_size(&bio_list));
2520 	submit_write_bios(rbio, &bio_list);
2521 	wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
2522 
2523 	/* We may have more errors than our tolerance during the read. */
2524 	for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) {
2525 		int found_errors;
2526 
2527 		found_errors = get_rbio_vertical_errors(rbio, sectornr, NULL, NULL);
2528 		if (unlikely(found_errors > rbio->bioc->max_errors)) {
2529 			ret = -EIO;
2530 			break;
2531 		}
2532 	}
2533 out:
2534 	rbio_orig_end_io(rbio, errno_to_blk_status(ret));
2535 }
2536 
2537 static void rmw_rbio_work(struct work_struct *work)
2538 {
2539 	struct btrfs_raid_bio *rbio;
2540 
2541 	rbio = container_of(work, struct btrfs_raid_bio, work);
2542 	if (lock_stripe_add(rbio) == 0)
2543 		rmw_rbio(rbio);
2544 }
2545 
2546 static void rmw_rbio_work_locked(struct work_struct *work)
2547 {
2548 	rmw_rbio(container_of(work, struct btrfs_raid_bio, work));
2549 }
2550 
2551 /*
2552  * The following code is used to scrub/replace the parity stripe
2553  *
2554  * Caller must have already increased bio_counter for getting @bioc.
2555  *
2556  * Note: We need make sure all the pages that add into the scrub/replace
2557  * raid bio are correct and not be changed during the scrub/replace. That
2558  * is those pages just hold metadata or file data with checksum.
2559  */
2560 
2561 struct btrfs_raid_bio *raid56_parity_alloc_scrub_rbio(struct bio *bio,
2562 				struct btrfs_io_context *bioc,
2563 				struct btrfs_device *scrub_dev,
2564 				unsigned long *dbitmap, int stripe_nsectors)
2565 {
2566 	struct btrfs_fs_info *fs_info = bioc->fs_info;
2567 	struct btrfs_raid_bio *rbio;
2568 	int i;
2569 
2570 	rbio = alloc_rbio(fs_info, bioc);
2571 	if (IS_ERR(rbio))
2572 		return NULL;
2573 	bio_list_add(&rbio->bio_list, bio);
2574 	/*
2575 	 * This is a special bio which is used to hold the completion handler
2576 	 * and make the scrub rbio is similar to the other types
2577 	 */
2578 	ASSERT(!bio->bi_iter.bi_size);
2579 	rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2580 
2581 	/*
2582 	 * After mapping bioc with BTRFS_MAP_WRITE, parities have been sorted
2583 	 * to the end position, so this search can start from the first parity
2584 	 * stripe.
2585 	 */
2586 	for (i = rbio->nr_data; i < rbio->real_stripes; i++) {
2587 		if (bioc->stripes[i].dev == scrub_dev) {
2588 			rbio->scrubp = i;
2589 			break;
2590 		}
2591 	}
2592 	ASSERT_RBIO_STRIPE(i < rbio->real_stripes, rbio, i);
2593 
2594 	bitmap_copy(&rbio->dbitmap, dbitmap, stripe_nsectors);
2595 	return rbio;
2596 }
2597 
2598 static int alloc_rbio_sector_pages(struct btrfs_raid_bio *rbio,
2599 				  int sector_nr)
2600 {
2601 	const u32 step = min(PAGE_SIZE, rbio->bioc->fs_info->sectorsize);
2602 	const u32 base = sector_nr * rbio->sector_nsteps;
2603 
2604 	for (int i = base; i < base + rbio->sector_nsteps; i++) {
2605 		const unsigned int page_index = (i * step) >> PAGE_SHIFT;
2606 		struct page *page;
2607 
2608 		if (rbio->stripe_pages[page_index])
2609 			continue;
2610 		page = alloc_page(GFP_NOFS);
2611 		if (!page)
2612 			return -ENOMEM;
2613 		rbio->stripe_pages[page_index] = page;
2614 	}
2615 	return 0;
2616 }
2617 
2618 /*
2619  * We just scrub the parity that we have correct data on the same horizontal,
2620  * so we needn't allocate all pages for all the stripes.
2621  */
2622 static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2623 {
2624 	int total_sector_nr;
2625 
2626 	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
2627 	     total_sector_nr++) {
2628 		int sectornr = total_sector_nr % rbio->stripe_nsectors;
2629 		int ret;
2630 
2631 		if (!test_bit(sectornr, &rbio->dbitmap))
2632 			continue;
2633 		ret = alloc_rbio_sector_pages(rbio, total_sector_nr);
2634 		if (ret < 0)
2635 			return ret;
2636 	}
2637 	index_stripe_sectors(rbio);
2638 	return 0;
2639 }
2640 
2641 /* Return true if the content of the step matches the caclulated one. */
2642 static bool verify_one_parity_step(struct btrfs_raid_bio *rbio,
2643 				   void *pointers[], unsigned int sector_nr,
2644 				   unsigned int step_nr)
2645 {
2646 	const unsigned int nr_data = rbio->nr_data;
2647 	const bool has_qstripe = (rbio->real_stripes - rbio->nr_data == 2);
2648 	const u32 step = min(rbio->bioc->fs_info->sectorsize, PAGE_SIZE);
2649 	void *parity;
2650 	bool ret = false;
2651 
2652 	ASSERT(step_nr < rbio->sector_nsteps);
2653 
2654 	/* First collect one page from each data stripe. */
2655 	for (int stripe = 0; stripe < nr_data; stripe++)
2656 		pointers[stripe] = kmap_local_paddr(
2657 				sector_paddr_in_rbio(rbio, stripe, sector_nr,
2658 						     step_nr, 0));
2659 
2660 	if (has_qstripe) {
2661 		assert_rbio(rbio);
2662 		/* RAID6, call the library function to fill in our P/Q. */
2663 		raid6_call.gen_syndrome(rbio->real_stripes, step, pointers);
2664 	} else {
2665 		/* RAID5. */
2666 		memcpy(pointers[nr_data], pointers[0], step);
2667 		run_xor(pointers + 1, nr_data - 1, step);
2668 	}
2669 
2670 	/* Check scrubbing parity and repair it. */
2671 	parity = kmap_local_paddr(rbio_stripe_paddr(rbio, rbio->scrubp, sector_nr, step_nr));
2672 	if (memcmp(parity, pointers[rbio->scrubp], step) != 0)
2673 		memcpy(parity, pointers[rbio->scrubp], step);
2674 	else
2675 		ret = true;
2676 	kunmap_local(parity);
2677 
2678 	for (int stripe = nr_data - 1; stripe >= 0; stripe--)
2679 		kunmap_local(pointers[stripe]);
2680 	return ret;
2681 }
2682 
2683 /*
2684  * The @pointers array should have the P/Q parity already mapped.
2685  */
2686 static void verify_one_parity_sector(struct btrfs_raid_bio *rbio,
2687 				     void *pointers[], unsigned int sector_nr)
2688 {
2689 	bool found_error = false;
2690 
2691 	for (int step_nr = 0; step_nr < rbio->sector_nsteps; step_nr++) {
2692 		bool match;
2693 
2694 		match = verify_one_parity_step(rbio, pointers, sector_nr, step_nr);
2695 		if (!match)
2696 			found_error = true;
2697 	}
2698 	if (!found_error)
2699 		bitmap_clear(&rbio->dbitmap, sector_nr, 1);
2700 }
2701 
2702 static int finish_parity_scrub(struct btrfs_raid_bio *rbio)
2703 {
2704 	struct btrfs_io_context *bioc = rbio->bioc;
2705 	void **pointers = rbio->finish_pointers;
2706 	unsigned long *pbitmap = &rbio->finish_pbitmap;
2707 	int nr_data = rbio->nr_data;
2708 	int sectornr;
2709 	bool has_qstripe;
2710 	struct page *page;
2711 	phys_addr_t p_paddr = INVALID_PADDR;
2712 	phys_addr_t q_paddr = INVALID_PADDR;
2713 	struct bio_list bio_list;
2714 	int is_replace = 0;
2715 	int ret;
2716 
2717 	bio_list_init(&bio_list);
2718 
2719 	if (rbio->real_stripes - rbio->nr_data == 1)
2720 		has_qstripe = false;
2721 	else if (rbio->real_stripes - rbio->nr_data == 2)
2722 		has_qstripe = true;
2723 	else
2724 		BUG();
2725 
2726 	/*
2727 	 * Replace is running and our P/Q stripe is being replaced, then we
2728 	 * need to duplicate the final write to replace target.
2729 	 */
2730 	if (bioc->replace_nr_stripes && bioc->replace_stripe_src == rbio->scrubp) {
2731 		is_replace = 1;
2732 		bitmap_copy(pbitmap, &rbio->dbitmap, rbio->stripe_nsectors);
2733 	}
2734 
2735 	/*
2736 	 * Because the higher layers(scrubber) are unlikely to
2737 	 * use this area of the disk again soon, so don't cache
2738 	 * it.
2739 	 */
2740 	clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2741 
2742 	page = alloc_page(GFP_NOFS);
2743 	if (!page)
2744 		return -ENOMEM;
2745 	p_paddr = page_to_phys(page);
2746 	page = NULL;
2747 	pointers[nr_data] = kmap_local_paddr(p_paddr);
2748 
2749 	if (has_qstripe) {
2750 		/* RAID6, allocate and map temp space for the Q stripe */
2751 		page = alloc_page(GFP_NOFS);
2752 		if (!page) {
2753 			__free_page(phys_to_page(p_paddr));
2754 			p_paddr = INVALID_PADDR;
2755 			return -ENOMEM;
2756 		}
2757 		q_paddr = page_to_phys(page);
2758 		page = NULL;
2759 		pointers[rbio->real_stripes - 1] = kmap_local_paddr(q_paddr);
2760 	}
2761 
2762 	bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
2763 
2764 	/* Map the parity stripe just once */
2765 
2766 	for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors)
2767 		verify_one_parity_sector(rbio, pointers, sectornr);
2768 
2769 	kunmap_local(pointers[nr_data]);
2770 	__free_page(phys_to_page(p_paddr));
2771 	p_paddr = INVALID_PADDR;
2772 	if (q_paddr != INVALID_PADDR) {
2773 		__free_page(phys_to_page(q_paddr));
2774 		q_paddr = INVALID_PADDR;
2775 	}
2776 
2777 	/*
2778 	 * time to start writing.  Make bios for everything from the
2779 	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
2780 	 * everything else.
2781 	 */
2782 	for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) {
2783 		phys_addr_t *paddrs;
2784 
2785 		paddrs = rbio_stripe_paddrs(rbio, rbio->scrubp, sectornr);
2786 		ret = rbio_add_io_paddrs(rbio, &bio_list, paddrs, rbio->scrubp,
2787 					 sectornr, REQ_OP_WRITE);
2788 		if (ret)
2789 			goto cleanup;
2790 	}
2791 
2792 	if (!is_replace)
2793 		goto submit_write;
2794 
2795 	/*
2796 	 * Replace is running and our parity stripe needs to be duplicated to
2797 	 * the target device.  Check we have a valid source stripe number.
2798 	 */
2799 	ASSERT_RBIO(rbio->bioc->replace_stripe_src >= 0, rbio);
2800 	for_each_set_bit(sectornr, pbitmap, rbio->stripe_nsectors) {
2801 		phys_addr_t *paddrs;
2802 
2803 		paddrs = rbio_stripe_paddrs(rbio, rbio->scrubp, sectornr);
2804 		ret = rbio_add_io_paddrs(rbio, &bio_list, paddrs, rbio->real_stripes,
2805 					 sectornr, REQ_OP_WRITE);
2806 		if (ret)
2807 			goto cleanup;
2808 	}
2809 
2810 submit_write:
2811 	submit_write_bios(rbio, &bio_list);
2812 	return 0;
2813 
2814 cleanup:
2815 	bio_list_put(&bio_list);
2816 	return ret;
2817 }
2818 
2819 static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2820 {
2821 	if (stripe >= 0 && stripe < rbio->nr_data)
2822 		return 1;
2823 	return 0;
2824 }
2825 
2826 static int recover_scrub_rbio(struct btrfs_raid_bio *rbio)
2827 {
2828 	void **pointers = NULL;
2829 	void **unmap_array = NULL;
2830 	int sector_nr;
2831 	int ret = 0;
2832 
2833 	/*
2834 	 * @pointers array stores the pointer for each sector.
2835 	 *
2836 	 * @unmap_array stores copy of pointers that does not get reordered
2837 	 * during reconstruction so that kunmap_local works.
2838 	 */
2839 	pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
2840 	unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
2841 	if (!pointers || !unmap_array) {
2842 		ret = -ENOMEM;
2843 		goto out;
2844 	}
2845 
2846 	for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
2847 		int dfail = 0, failp = -1;
2848 		int faila;
2849 		int failb;
2850 		int found_errors;
2851 
2852 		found_errors = get_rbio_vertical_errors(rbio, sector_nr,
2853 							 &faila, &failb);
2854 		if (unlikely(found_errors > rbio->bioc->max_errors)) {
2855 			ret = -EIO;
2856 			goto out;
2857 		}
2858 		if (found_errors == 0)
2859 			continue;
2860 
2861 		/* We should have at least one error here. */
2862 		ASSERT(faila >= 0 || failb >= 0);
2863 
2864 		if (is_data_stripe(rbio, faila))
2865 			dfail++;
2866 		else if (is_parity_stripe(faila))
2867 			failp = faila;
2868 
2869 		if (is_data_stripe(rbio, failb))
2870 			dfail++;
2871 		else if (is_parity_stripe(failb))
2872 			failp = failb;
2873 		/*
2874 		 * Because we can not use a scrubbing parity to repair the
2875 		 * data, so the capability of the repair is declined.  (In the
2876 		 * case of RAID5, we can not repair anything.)
2877 		 */
2878 		if (unlikely(dfail > rbio->bioc->max_errors - 1)) {
2879 			ret = -EIO;
2880 			goto out;
2881 		}
2882 		/*
2883 		 * If all data is good, only parity is correctly, just repair
2884 		 * the parity, no need to recover data stripes.
2885 		 */
2886 		if (dfail == 0)
2887 			continue;
2888 
2889 		/*
2890 		 * Here means we got one corrupted data stripe and one
2891 		 * corrupted parity on RAID6, if the corrupted parity is
2892 		 * scrubbing parity, luckily, use the other one to repair the
2893 		 * data, or we can not repair the data stripe.
2894 		 */
2895 		if (unlikely(failp != rbio->scrubp)) {
2896 			ret = -EIO;
2897 			goto out;
2898 		}
2899 
2900 		ret = recover_vertical(rbio, sector_nr, pointers, unmap_array);
2901 		if (ret < 0)
2902 			goto out;
2903 	}
2904 out:
2905 	kfree(pointers);
2906 	kfree(unmap_array);
2907 	return ret;
2908 }
2909 
2910 static int scrub_assemble_read_bios(struct btrfs_raid_bio *rbio)
2911 {
2912 	struct bio_list bio_list = BIO_EMPTY_LIST;
2913 	int total_sector_nr;
2914 	int ret = 0;
2915 
2916 	/* Build a list of bios to read all the missing parts. */
2917 	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
2918 	     total_sector_nr++) {
2919 		int sectornr = total_sector_nr % rbio->stripe_nsectors;
2920 		int stripe = total_sector_nr / rbio->stripe_nsectors;
2921 		phys_addr_t *paddrs;
2922 
2923 		/* No data in the vertical stripe, no need to read. */
2924 		if (!test_bit(sectornr, &rbio->dbitmap))
2925 			continue;
2926 
2927 		/*
2928 		 * We want to find all the sectors missing from the rbio and
2929 		 * read them from the disk. If sector_paddr_in_rbio() finds a sector
2930 		 * in the bio list we don't need to read it off the stripe.
2931 		 */
2932 		paddrs = sector_paddrs_in_rbio(rbio, stripe, sectornr, 1);
2933 		if (paddrs == NULL)
2934 			continue;
2935 
2936 		paddrs = rbio_stripe_paddrs(rbio, stripe, sectornr);
2937 		/*
2938 		 * The bio cache may have handed us an uptodate sector.  If so,
2939 		 * use it.
2940 		 */
2941 		if (test_bit(rbio_sector_index(rbio, stripe, sectornr),
2942 			     rbio->stripe_uptodate_bitmap))
2943 			continue;
2944 
2945 		ret = rbio_add_io_paddrs(rbio, &bio_list, paddrs, stripe,
2946 					 sectornr, REQ_OP_READ);
2947 		if (ret) {
2948 			bio_list_put(&bio_list);
2949 			return ret;
2950 		}
2951 	}
2952 
2953 	submit_read_wait_bio_list(rbio, &bio_list);
2954 	return 0;
2955 }
2956 
2957 static void scrub_rbio(struct btrfs_raid_bio *rbio)
2958 {
2959 	int sector_nr;
2960 	int ret;
2961 
2962 	ret = alloc_rbio_essential_pages(rbio);
2963 	if (ret)
2964 		goto out;
2965 
2966 	bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
2967 
2968 	ret = scrub_assemble_read_bios(rbio);
2969 	if (ret < 0)
2970 		goto out;
2971 
2972 	/* We may have some failures, recover the failed sectors first. */
2973 	ret = recover_scrub_rbio(rbio);
2974 	if (ret < 0)
2975 		goto out;
2976 
2977 	/*
2978 	 * We have every sector properly prepared. Can finish the scrub
2979 	 * and writeback the good content.
2980 	 */
2981 	ret = finish_parity_scrub(rbio);
2982 	wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
2983 	for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
2984 		int found_errors;
2985 
2986 		found_errors = get_rbio_vertical_errors(rbio, sector_nr, NULL, NULL);
2987 		if (unlikely(found_errors > rbio->bioc->max_errors)) {
2988 			ret = -EIO;
2989 			break;
2990 		}
2991 	}
2992 out:
2993 	rbio_orig_end_io(rbio, errno_to_blk_status(ret));
2994 }
2995 
2996 static void scrub_rbio_work_locked(struct work_struct *work)
2997 {
2998 	scrub_rbio(container_of(work, struct btrfs_raid_bio, work));
2999 }
3000 
3001 void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
3002 {
3003 	if (!lock_stripe_add(rbio))
3004 		start_async_work(rbio, scrub_rbio_work_locked);
3005 }
3006 
3007 /*
3008  * This is for scrub call sites where we already have correct data contents.
3009  * This allows us to avoid reading data stripes again.
3010  *
3011  * Unfortunately here we have to do folio copy, other than reusing the pages.
3012  * This is due to the fact rbio has its own page management for its cache.
3013  */
3014 void raid56_parity_cache_data_folios(struct btrfs_raid_bio *rbio,
3015 				     struct folio **data_folios, u64 data_logical)
3016 {
3017 	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
3018 	const u64 offset_in_full_stripe = data_logical -
3019 					  rbio->bioc->full_stripe_logical;
3020 	unsigned int findex = 0;
3021 	unsigned int foffset = 0;
3022 	int ret;
3023 
3024 	/*
3025 	 * If we hit ENOMEM temporarily, but later at
3026 	 * raid56_parity_submit_scrub_rbio() time it succeeded, we just do
3027 	 * the extra read, not a big deal.
3028 	 *
3029 	 * If we hit ENOMEM later at raid56_parity_submit_scrub_rbio() time,
3030 	 * the bio would got proper error number set.
3031 	 */
3032 	ret = alloc_rbio_data_pages(rbio);
3033 	if (ret < 0)
3034 		return;
3035 
3036 	/* data_logical must be at stripe boundary and inside the full stripe. */
3037 	ASSERT(IS_ALIGNED(offset_in_full_stripe, BTRFS_STRIPE_LEN));
3038 	ASSERT(offset_in_full_stripe < (rbio->nr_data << BTRFS_STRIPE_LEN_SHIFT));
3039 
3040 	for (unsigned int cur_off = offset_in_full_stripe;
3041 	     cur_off < offset_in_full_stripe + BTRFS_STRIPE_LEN;
3042 	     cur_off += PAGE_SIZE) {
3043 		const unsigned int pindex = cur_off >> PAGE_SHIFT;
3044 		void *kaddr;
3045 
3046 		kaddr = kmap_local_page(rbio->stripe_pages[pindex]);
3047 		memcpy_from_folio(kaddr, data_folios[findex], foffset, PAGE_SIZE);
3048 		kunmap_local(kaddr);
3049 
3050 		foffset += PAGE_SIZE;
3051 		ASSERT(foffset <= folio_size(data_folios[findex]));
3052 		if (foffset == folio_size(data_folios[findex])) {
3053 			findex++;
3054 			foffset = 0;
3055 		}
3056 	}
3057 	bitmap_set(rbio->stripe_uptodate_bitmap,
3058 		   offset_in_full_stripe >> fs_info->sectorsize_bits,
3059 		   BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
3060 }
3061