xref: /linux/fs/btrfs/raid56.c (revision 55f1b540d893da740a81200450014c45a8103f54)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2012 Fusion-io  All rights reserved.
4  * Copyright (C) 2012 Intel Corp. All rights reserved.
5  */
6 
7 #include <linux/sched.h>
8 #include <linux/bio.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/raid/pq.h>
12 #include <linux/hash.h>
13 #include <linux/list_sort.h>
14 #include <linux/raid/xor.h>
15 #include <linux/mm.h>
16 #include "messages.h"
17 #include "ctree.h"
18 #include "disk-io.h"
19 #include "volumes.h"
20 #include "raid56.h"
21 #include "async-thread.h"
22 #include "file-item.h"
23 #include "btrfs_inode.h"
24 
25 /* set when additional merges to this rbio are not allowed */
26 #define RBIO_RMW_LOCKED_BIT	1
27 
28 /*
29  * set when this rbio is sitting in the hash, but it is just a cache
30  * of past RMW
31  */
32 #define RBIO_CACHE_BIT		2
33 
34 /*
35  * set when it is safe to trust the stripe_pages for caching
36  */
37 #define RBIO_CACHE_READY_BIT	3
38 
39 #define RBIO_CACHE_SIZE 1024
40 
41 #define BTRFS_STRIPE_HASH_TABLE_BITS				11
42 
43 static void dump_bioc(const struct btrfs_fs_info *fs_info, const struct btrfs_io_context *bioc)
44 {
45 	if (unlikely(!bioc)) {
46 		btrfs_crit(fs_info, "bioc=NULL");
47 		return;
48 	}
49 	btrfs_crit(fs_info,
50 "bioc logical=%llu full_stripe=%llu size=%llu map_type=0x%llx mirror=%u replace_nr_stripes=%u replace_stripe_src=%d num_stripes=%u",
51 		bioc->logical, bioc->full_stripe_logical, bioc->size,
52 		bioc->map_type, bioc->mirror_num, bioc->replace_nr_stripes,
53 		bioc->replace_stripe_src, bioc->num_stripes);
54 	for (int i = 0; i < bioc->num_stripes; i++) {
55 		btrfs_crit(fs_info, "    nr=%d devid=%llu physical=%llu",
56 			   i, bioc->stripes[i].dev->devid,
57 			   bioc->stripes[i].physical);
58 	}
59 }
60 
61 static void btrfs_dump_rbio(const struct btrfs_fs_info *fs_info,
62 			    const struct btrfs_raid_bio *rbio)
63 {
64 	if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
65 		return;
66 
67 	dump_bioc(fs_info, rbio->bioc);
68 	btrfs_crit(fs_info,
69 "rbio flags=0x%lx nr_sectors=%u nr_data=%u real_stripes=%u stripe_nsectors=%u scrubp=%u dbitmap=0x%lx",
70 		rbio->flags, rbio->nr_sectors, rbio->nr_data,
71 		rbio->real_stripes, rbio->stripe_nsectors,
72 		rbio->scrubp, rbio->dbitmap);
73 }
74 
75 #define ASSERT_RBIO(expr, rbio)						\
76 ({									\
77 	if (IS_ENABLED(CONFIG_BTRFS_ASSERT) && unlikely(!(expr))) {	\
78 		const struct btrfs_fs_info *__fs_info = (rbio)->bioc ?	\
79 					(rbio)->bioc->fs_info : NULL;	\
80 									\
81 		btrfs_dump_rbio(__fs_info, (rbio));			\
82 	}								\
83 	ASSERT((expr));							\
84 })
85 
86 #define ASSERT_RBIO_STRIPE(expr, rbio, stripe_nr)			\
87 ({									\
88 	if (IS_ENABLED(CONFIG_BTRFS_ASSERT) && unlikely(!(expr))) {	\
89 		const struct btrfs_fs_info *__fs_info = (rbio)->bioc ?	\
90 					(rbio)->bioc->fs_info : NULL;	\
91 									\
92 		btrfs_dump_rbio(__fs_info, (rbio));			\
93 		btrfs_crit(__fs_info, "stripe_nr=%d", (stripe_nr));	\
94 	}								\
95 	ASSERT((expr));							\
96 })
97 
98 #define ASSERT_RBIO_SECTOR(expr, rbio, sector_nr)			\
99 ({									\
100 	if (IS_ENABLED(CONFIG_BTRFS_ASSERT) && unlikely(!(expr))) {	\
101 		const struct btrfs_fs_info *__fs_info = (rbio)->bioc ?	\
102 					(rbio)->bioc->fs_info : NULL;	\
103 									\
104 		btrfs_dump_rbio(__fs_info, (rbio));			\
105 		btrfs_crit(__fs_info, "sector_nr=%d", (sector_nr));	\
106 	}								\
107 	ASSERT((expr));							\
108 })
109 
110 #define ASSERT_RBIO_LOGICAL(expr, rbio, logical)			\
111 ({									\
112 	if (IS_ENABLED(CONFIG_BTRFS_ASSERT) && unlikely(!(expr))) {	\
113 		const struct btrfs_fs_info *__fs_info = (rbio)->bioc ?	\
114 					(rbio)->bioc->fs_info : NULL;	\
115 									\
116 		btrfs_dump_rbio(__fs_info, (rbio));			\
117 		btrfs_crit(__fs_info, "logical=%llu", (logical));		\
118 	}								\
119 	ASSERT((expr));							\
120 })
121 
122 /* Used by the raid56 code to lock stripes for read/modify/write */
123 struct btrfs_stripe_hash {
124 	struct list_head hash_list;
125 	spinlock_t lock;
126 };
127 
128 /* Used by the raid56 code to lock stripes for read/modify/write */
129 struct btrfs_stripe_hash_table {
130 	struct list_head stripe_cache;
131 	spinlock_t cache_lock;
132 	int cache_size;
133 	struct btrfs_stripe_hash table[];
134 };
135 
136 /*
137  * A bvec like structure to present a sector inside a page.
138  *
139  * Unlike bvec we don't need bvlen, as it's fixed to sectorsize.
140  */
141 struct sector_ptr {
142 	struct page *page;
143 	unsigned int pgoff:24;
144 	unsigned int uptodate:8;
145 };
146 
147 static void rmw_rbio_work(struct work_struct *work);
148 static void rmw_rbio_work_locked(struct work_struct *work);
149 static void index_rbio_pages(struct btrfs_raid_bio *rbio);
150 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
151 
152 static int finish_parity_scrub(struct btrfs_raid_bio *rbio);
153 static void scrub_rbio_work_locked(struct work_struct *work);
154 
155 static void free_raid_bio_pointers(struct btrfs_raid_bio *rbio)
156 {
157 	bitmap_free(rbio->error_bitmap);
158 	kfree(rbio->stripe_pages);
159 	kfree(rbio->bio_sectors);
160 	kfree(rbio->stripe_sectors);
161 	kfree(rbio->finish_pointers);
162 }
163 
164 static void free_raid_bio(struct btrfs_raid_bio *rbio)
165 {
166 	int i;
167 
168 	if (!refcount_dec_and_test(&rbio->refs))
169 		return;
170 
171 	WARN_ON(!list_empty(&rbio->stripe_cache));
172 	WARN_ON(!list_empty(&rbio->hash_list));
173 	WARN_ON(!bio_list_empty(&rbio->bio_list));
174 
175 	for (i = 0; i < rbio->nr_pages; i++) {
176 		if (rbio->stripe_pages[i]) {
177 			__free_page(rbio->stripe_pages[i]);
178 			rbio->stripe_pages[i] = NULL;
179 		}
180 	}
181 
182 	btrfs_put_bioc(rbio->bioc);
183 	free_raid_bio_pointers(rbio);
184 	kfree(rbio);
185 }
186 
187 static void start_async_work(struct btrfs_raid_bio *rbio, work_func_t work_func)
188 {
189 	INIT_WORK(&rbio->work, work_func);
190 	queue_work(rbio->bioc->fs_info->rmw_workers, &rbio->work);
191 }
192 
193 /*
194  * the stripe hash table is used for locking, and to collect
195  * bios in hopes of making a full stripe
196  */
197 int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
198 {
199 	struct btrfs_stripe_hash_table *table;
200 	struct btrfs_stripe_hash_table *x;
201 	struct btrfs_stripe_hash *cur;
202 	struct btrfs_stripe_hash *h;
203 	int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
204 	int i;
205 
206 	if (info->stripe_hash_table)
207 		return 0;
208 
209 	/*
210 	 * The table is large, starting with order 4 and can go as high as
211 	 * order 7 in case lock debugging is turned on.
212 	 *
213 	 * Try harder to allocate and fallback to vmalloc to lower the chance
214 	 * of a failing mount.
215 	 */
216 	table = kvzalloc(struct_size(table, table, num_entries), GFP_KERNEL);
217 	if (!table)
218 		return -ENOMEM;
219 
220 	spin_lock_init(&table->cache_lock);
221 	INIT_LIST_HEAD(&table->stripe_cache);
222 
223 	h = table->table;
224 
225 	for (i = 0; i < num_entries; i++) {
226 		cur = h + i;
227 		INIT_LIST_HEAD(&cur->hash_list);
228 		spin_lock_init(&cur->lock);
229 	}
230 
231 	x = cmpxchg(&info->stripe_hash_table, NULL, table);
232 	kvfree(x);
233 	return 0;
234 }
235 
236 /*
237  * caching an rbio means to copy anything from the
238  * bio_sectors array into the stripe_pages array.  We
239  * use the page uptodate bit in the stripe cache array
240  * to indicate if it has valid data
241  *
242  * once the caching is done, we set the cache ready
243  * bit.
244  */
245 static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
246 {
247 	int i;
248 	int ret;
249 
250 	ret = alloc_rbio_pages(rbio);
251 	if (ret)
252 		return;
253 
254 	for (i = 0; i < rbio->nr_sectors; i++) {
255 		/* Some range not covered by bio (partial write), skip it */
256 		if (!rbio->bio_sectors[i].page) {
257 			/*
258 			 * Even if the sector is not covered by bio, if it is
259 			 * a data sector it should still be uptodate as it is
260 			 * read from disk.
261 			 */
262 			if (i < rbio->nr_data * rbio->stripe_nsectors)
263 				ASSERT(rbio->stripe_sectors[i].uptodate);
264 			continue;
265 		}
266 
267 		ASSERT(rbio->stripe_sectors[i].page);
268 		memcpy_page(rbio->stripe_sectors[i].page,
269 			    rbio->stripe_sectors[i].pgoff,
270 			    rbio->bio_sectors[i].page,
271 			    rbio->bio_sectors[i].pgoff,
272 			    rbio->bioc->fs_info->sectorsize);
273 		rbio->stripe_sectors[i].uptodate = 1;
274 	}
275 	set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
276 }
277 
278 /*
279  * we hash on the first logical address of the stripe
280  */
281 static int rbio_bucket(struct btrfs_raid_bio *rbio)
282 {
283 	u64 num = rbio->bioc->full_stripe_logical;
284 
285 	/*
286 	 * we shift down quite a bit.  We're using byte
287 	 * addressing, and most of the lower bits are zeros.
288 	 * This tends to upset hash_64, and it consistently
289 	 * returns just one or two different values.
290 	 *
291 	 * shifting off the lower bits fixes things.
292 	 */
293 	return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
294 }
295 
296 static bool full_page_sectors_uptodate(struct btrfs_raid_bio *rbio,
297 				       unsigned int page_nr)
298 {
299 	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
300 	const u32 sectors_per_page = PAGE_SIZE / sectorsize;
301 	int i;
302 
303 	ASSERT(page_nr < rbio->nr_pages);
304 
305 	for (i = sectors_per_page * page_nr;
306 	     i < sectors_per_page * page_nr + sectors_per_page;
307 	     i++) {
308 		if (!rbio->stripe_sectors[i].uptodate)
309 			return false;
310 	}
311 	return true;
312 }
313 
314 /*
315  * Update the stripe_sectors[] array to use correct page and pgoff
316  *
317  * Should be called every time any page pointer in stripes_pages[] got modified.
318  */
319 static void index_stripe_sectors(struct btrfs_raid_bio *rbio)
320 {
321 	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
322 	u32 offset;
323 	int i;
324 
325 	for (i = 0, offset = 0; i < rbio->nr_sectors; i++, offset += sectorsize) {
326 		int page_index = offset >> PAGE_SHIFT;
327 
328 		ASSERT(page_index < rbio->nr_pages);
329 		rbio->stripe_sectors[i].page = rbio->stripe_pages[page_index];
330 		rbio->stripe_sectors[i].pgoff = offset_in_page(offset);
331 	}
332 }
333 
334 static void steal_rbio_page(struct btrfs_raid_bio *src,
335 			    struct btrfs_raid_bio *dest, int page_nr)
336 {
337 	const u32 sectorsize = src->bioc->fs_info->sectorsize;
338 	const u32 sectors_per_page = PAGE_SIZE / sectorsize;
339 	int i;
340 
341 	if (dest->stripe_pages[page_nr])
342 		__free_page(dest->stripe_pages[page_nr]);
343 	dest->stripe_pages[page_nr] = src->stripe_pages[page_nr];
344 	src->stripe_pages[page_nr] = NULL;
345 
346 	/* Also update the sector->uptodate bits. */
347 	for (i = sectors_per_page * page_nr;
348 	     i < sectors_per_page * page_nr + sectors_per_page; i++)
349 		dest->stripe_sectors[i].uptodate = true;
350 }
351 
352 static bool is_data_stripe_page(struct btrfs_raid_bio *rbio, int page_nr)
353 {
354 	const int sector_nr = (page_nr << PAGE_SHIFT) >>
355 			      rbio->bioc->fs_info->sectorsize_bits;
356 
357 	/*
358 	 * We have ensured PAGE_SIZE is aligned with sectorsize, thus
359 	 * we won't have a page which is half data half parity.
360 	 *
361 	 * Thus if the first sector of the page belongs to data stripes, then
362 	 * the full page belongs to data stripes.
363 	 */
364 	return (sector_nr < rbio->nr_data * rbio->stripe_nsectors);
365 }
366 
367 /*
368  * Stealing an rbio means taking all the uptodate pages from the stripe array
369  * in the source rbio and putting them into the destination rbio.
370  *
371  * This will also update the involved stripe_sectors[] which are referring to
372  * the old pages.
373  */
374 static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
375 {
376 	int i;
377 
378 	if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
379 		return;
380 
381 	for (i = 0; i < dest->nr_pages; i++) {
382 		struct page *p = src->stripe_pages[i];
383 
384 		/*
385 		 * We don't need to steal P/Q pages as they will always be
386 		 * regenerated for RMW or full write anyway.
387 		 */
388 		if (!is_data_stripe_page(src, i))
389 			continue;
390 
391 		/*
392 		 * If @src already has RBIO_CACHE_READY_BIT, it should have
393 		 * all data stripe pages present and uptodate.
394 		 */
395 		ASSERT(p);
396 		ASSERT(full_page_sectors_uptodate(src, i));
397 		steal_rbio_page(src, dest, i);
398 	}
399 	index_stripe_sectors(dest);
400 	index_stripe_sectors(src);
401 }
402 
403 /*
404  * merging means we take the bio_list from the victim and
405  * splice it into the destination.  The victim should
406  * be discarded afterwards.
407  *
408  * must be called with dest->rbio_list_lock held
409  */
410 static void merge_rbio(struct btrfs_raid_bio *dest,
411 		       struct btrfs_raid_bio *victim)
412 {
413 	bio_list_merge_init(&dest->bio_list, &victim->bio_list);
414 	dest->bio_list_bytes += victim->bio_list_bytes;
415 	/* Also inherit the bitmaps from @victim. */
416 	bitmap_or(&dest->dbitmap, &victim->dbitmap, &dest->dbitmap,
417 		  dest->stripe_nsectors);
418 }
419 
420 /*
421  * used to prune items that are in the cache.  The caller
422  * must hold the hash table lock.
423  */
424 static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
425 {
426 	int bucket = rbio_bucket(rbio);
427 	struct btrfs_stripe_hash_table *table;
428 	struct btrfs_stripe_hash *h;
429 	int freeit = 0;
430 
431 	/*
432 	 * check the bit again under the hash table lock.
433 	 */
434 	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
435 		return;
436 
437 	table = rbio->bioc->fs_info->stripe_hash_table;
438 	h = table->table + bucket;
439 
440 	/* hold the lock for the bucket because we may be
441 	 * removing it from the hash table
442 	 */
443 	spin_lock(&h->lock);
444 
445 	/*
446 	 * hold the lock for the bio list because we need
447 	 * to make sure the bio list is empty
448 	 */
449 	spin_lock(&rbio->bio_list_lock);
450 
451 	if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
452 		list_del_init(&rbio->stripe_cache);
453 		table->cache_size -= 1;
454 		freeit = 1;
455 
456 		/* if the bio list isn't empty, this rbio is
457 		 * still involved in an IO.  We take it out
458 		 * of the cache list, and drop the ref that
459 		 * was held for the list.
460 		 *
461 		 * If the bio_list was empty, we also remove
462 		 * the rbio from the hash_table, and drop
463 		 * the corresponding ref
464 		 */
465 		if (bio_list_empty(&rbio->bio_list)) {
466 			if (!list_empty(&rbio->hash_list)) {
467 				list_del_init(&rbio->hash_list);
468 				refcount_dec(&rbio->refs);
469 				BUG_ON(!list_empty(&rbio->plug_list));
470 			}
471 		}
472 	}
473 
474 	spin_unlock(&rbio->bio_list_lock);
475 	spin_unlock(&h->lock);
476 
477 	if (freeit)
478 		free_raid_bio(rbio);
479 }
480 
481 /*
482  * prune a given rbio from the cache
483  */
484 static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
485 {
486 	struct btrfs_stripe_hash_table *table;
487 
488 	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
489 		return;
490 
491 	table = rbio->bioc->fs_info->stripe_hash_table;
492 
493 	spin_lock(&table->cache_lock);
494 	__remove_rbio_from_cache(rbio);
495 	spin_unlock(&table->cache_lock);
496 }
497 
498 /*
499  * remove everything in the cache
500  */
501 static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
502 {
503 	struct btrfs_stripe_hash_table *table;
504 	struct btrfs_raid_bio *rbio;
505 
506 	table = info->stripe_hash_table;
507 
508 	spin_lock(&table->cache_lock);
509 	while (!list_empty(&table->stripe_cache)) {
510 		rbio = list_entry(table->stripe_cache.next,
511 				  struct btrfs_raid_bio,
512 				  stripe_cache);
513 		__remove_rbio_from_cache(rbio);
514 	}
515 	spin_unlock(&table->cache_lock);
516 }
517 
518 /*
519  * remove all cached entries and free the hash table
520  * used by unmount
521  */
522 void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
523 {
524 	if (!info->stripe_hash_table)
525 		return;
526 	btrfs_clear_rbio_cache(info);
527 	kvfree(info->stripe_hash_table);
528 	info->stripe_hash_table = NULL;
529 }
530 
531 /*
532  * insert an rbio into the stripe cache.  It
533  * must have already been prepared by calling
534  * cache_rbio_pages
535  *
536  * If this rbio was already cached, it gets
537  * moved to the front of the lru.
538  *
539  * If the size of the rbio cache is too big, we
540  * prune an item.
541  */
542 static void cache_rbio(struct btrfs_raid_bio *rbio)
543 {
544 	struct btrfs_stripe_hash_table *table;
545 
546 	if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
547 		return;
548 
549 	table = rbio->bioc->fs_info->stripe_hash_table;
550 
551 	spin_lock(&table->cache_lock);
552 	spin_lock(&rbio->bio_list_lock);
553 
554 	/* bump our ref if we were not in the list before */
555 	if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
556 		refcount_inc(&rbio->refs);
557 
558 	if (!list_empty(&rbio->stripe_cache)){
559 		list_move(&rbio->stripe_cache, &table->stripe_cache);
560 	} else {
561 		list_add(&rbio->stripe_cache, &table->stripe_cache);
562 		table->cache_size += 1;
563 	}
564 
565 	spin_unlock(&rbio->bio_list_lock);
566 
567 	if (table->cache_size > RBIO_CACHE_SIZE) {
568 		struct btrfs_raid_bio *found;
569 
570 		found = list_entry(table->stripe_cache.prev,
571 				  struct btrfs_raid_bio,
572 				  stripe_cache);
573 
574 		if (found != rbio)
575 			__remove_rbio_from_cache(found);
576 	}
577 
578 	spin_unlock(&table->cache_lock);
579 }
580 
581 /*
582  * helper function to run the xor_blocks api.  It is only
583  * able to do MAX_XOR_BLOCKS at a time, so we need to
584  * loop through.
585  */
586 static void run_xor(void **pages, int src_cnt, ssize_t len)
587 {
588 	int src_off = 0;
589 	int xor_src_cnt = 0;
590 	void *dest = pages[src_cnt];
591 
592 	while(src_cnt > 0) {
593 		xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
594 		xor_blocks(xor_src_cnt, len, dest, pages + src_off);
595 
596 		src_cnt -= xor_src_cnt;
597 		src_off += xor_src_cnt;
598 	}
599 }
600 
601 /*
602  * Returns true if the bio list inside this rbio covers an entire stripe (no
603  * rmw required).
604  */
605 static int rbio_is_full(struct btrfs_raid_bio *rbio)
606 {
607 	unsigned long size = rbio->bio_list_bytes;
608 	int ret = 1;
609 
610 	spin_lock(&rbio->bio_list_lock);
611 	if (size != rbio->nr_data * BTRFS_STRIPE_LEN)
612 		ret = 0;
613 	BUG_ON(size > rbio->nr_data * BTRFS_STRIPE_LEN);
614 	spin_unlock(&rbio->bio_list_lock);
615 
616 	return ret;
617 }
618 
619 /*
620  * returns 1 if it is safe to merge two rbios together.
621  * The merging is safe if the two rbios correspond to
622  * the same stripe and if they are both going in the same
623  * direction (read vs write), and if neither one is
624  * locked for final IO
625  *
626  * The caller is responsible for locking such that
627  * rmw_locked is safe to test
628  */
629 static int rbio_can_merge(struct btrfs_raid_bio *last,
630 			  struct btrfs_raid_bio *cur)
631 {
632 	if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
633 	    test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
634 		return 0;
635 
636 	/*
637 	 * we can't merge with cached rbios, since the
638 	 * idea is that when we merge the destination
639 	 * rbio is going to run our IO for us.  We can
640 	 * steal from cached rbios though, other functions
641 	 * handle that.
642 	 */
643 	if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
644 	    test_bit(RBIO_CACHE_BIT, &cur->flags))
645 		return 0;
646 
647 	if (last->bioc->full_stripe_logical != cur->bioc->full_stripe_logical)
648 		return 0;
649 
650 	/* we can't merge with different operations */
651 	if (last->operation != cur->operation)
652 		return 0;
653 	/*
654 	 * We've need read the full stripe from the drive.
655 	 * check and repair the parity and write the new results.
656 	 *
657 	 * We're not allowed to add any new bios to the
658 	 * bio list here, anyone else that wants to
659 	 * change this stripe needs to do their own rmw.
660 	 */
661 	if (last->operation == BTRFS_RBIO_PARITY_SCRUB)
662 		return 0;
663 
664 	if (last->operation == BTRFS_RBIO_READ_REBUILD)
665 		return 0;
666 
667 	return 1;
668 }
669 
670 static unsigned int rbio_stripe_sector_index(const struct btrfs_raid_bio *rbio,
671 					     unsigned int stripe_nr,
672 					     unsigned int sector_nr)
673 {
674 	ASSERT_RBIO_STRIPE(stripe_nr < rbio->real_stripes, rbio, stripe_nr);
675 	ASSERT_RBIO_SECTOR(sector_nr < rbio->stripe_nsectors, rbio, sector_nr);
676 
677 	return stripe_nr * rbio->stripe_nsectors + sector_nr;
678 }
679 
680 /* Return a sector from rbio->stripe_sectors, not from the bio list */
681 static struct sector_ptr *rbio_stripe_sector(const struct btrfs_raid_bio *rbio,
682 					     unsigned int stripe_nr,
683 					     unsigned int sector_nr)
684 {
685 	return &rbio->stripe_sectors[rbio_stripe_sector_index(rbio, stripe_nr,
686 							      sector_nr)];
687 }
688 
689 /* Grab a sector inside P stripe */
690 static struct sector_ptr *rbio_pstripe_sector(const struct btrfs_raid_bio *rbio,
691 					      unsigned int sector_nr)
692 {
693 	return rbio_stripe_sector(rbio, rbio->nr_data, sector_nr);
694 }
695 
696 /* Grab a sector inside Q stripe, return NULL if not RAID6 */
697 static struct sector_ptr *rbio_qstripe_sector(const struct btrfs_raid_bio *rbio,
698 					      unsigned int sector_nr)
699 {
700 	if (rbio->nr_data + 1 == rbio->real_stripes)
701 		return NULL;
702 	return rbio_stripe_sector(rbio, rbio->nr_data + 1, sector_nr);
703 }
704 
705 /*
706  * The first stripe in the table for a logical address
707  * has the lock.  rbios are added in one of three ways:
708  *
709  * 1) Nobody has the stripe locked yet.  The rbio is given
710  * the lock and 0 is returned.  The caller must start the IO
711  * themselves.
712  *
713  * 2) Someone has the stripe locked, but we're able to merge
714  * with the lock owner.  The rbio is freed and the IO will
715  * start automatically along with the existing rbio.  1 is returned.
716  *
717  * 3) Someone has the stripe locked, but we're not able to merge.
718  * The rbio is added to the lock owner's plug list, or merged into
719  * an rbio already on the plug list.  When the lock owner unlocks,
720  * the next rbio on the list is run and the IO is started automatically.
721  * 1 is returned
722  *
723  * If we return 0, the caller still owns the rbio and must continue with
724  * IO submission.  If we return 1, the caller must assume the rbio has
725  * already been freed.
726  */
727 static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
728 {
729 	struct btrfs_stripe_hash *h;
730 	struct btrfs_raid_bio *cur;
731 	struct btrfs_raid_bio *pending;
732 	struct btrfs_raid_bio *freeit = NULL;
733 	struct btrfs_raid_bio *cache_drop = NULL;
734 	int ret = 0;
735 
736 	h = rbio->bioc->fs_info->stripe_hash_table->table + rbio_bucket(rbio);
737 
738 	spin_lock(&h->lock);
739 	list_for_each_entry(cur, &h->hash_list, hash_list) {
740 		if (cur->bioc->full_stripe_logical != rbio->bioc->full_stripe_logical)
741 			continue;
742 
743 		spin_lock(&cur->bio_list_lock);
744 
745 		/* Can we steal this cached rbio's pages? */
746 		if (bio_list_empty(&cur->bio_list) &&
747 		    list_empty(&cur->plug_list) &&
748 		    test_bit(RBIO_CACHE_BIT, &cur->flags) &&
749 		    !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
750 			list_del_init(&cur->hash_list);
751 			refcount_dec(&cur->refs);
752 
753 			steal_rbio(cur, rbio);
754 			cache_drop = cur;
755 			spin_unlock(&cur->bio_list_lock);
756 
757 			goto lockit;
758 		}
759 
760 		/* Can we merge into the lock owner? */
761 		if (rbio_can_merge(cur, rbio)) {
762 			merge_rbio(cur, rbio);
763 			spin_unlock(&cur->bio_list_lock);
764 			freeit = rbio;
765 			ret = 1;
766 			goto out;
767 		}
768 
769 
770 		/*
771 		 * We couldn't merge with the running rbio, see if we can merge
772 		 * with the pending ones.  We don't have to check for rmw_locked
773 		 * because there is no way they are inside finish_rmw right now
774 		 */
775 		list_for_each_entry(pending, &cur->plug_list, plug_list) {
776 			if (rbio_can_merge(pending, rbio)) {
777 				merge_rbio(pending, rbio);
778 				spin_unlock(&cur->bio_list_lock);
779 				freeit = rbio;
780 				ret = 1;
781 				goto out;
782 			}
783 		}
784 
785 		/*
786 		 * No merging, put us on the tail of the plug list, our rbio
787 		 * will be started with the currently running rbio unlocks
788 		 */
789 		list_add_tail(&rbio->plug_list, &cur->plug_list);
790 		spin_unlock(&cur->bio_list_lock);
791 		ret = 1;
792 		goto out;
793 	}
794 lockit:
795 	refcount_inc(&rbio->refs);
796 	list_add(&rbio->hash_list, &h->hash_list);
797 out:
798 	spin_unlock(&h->lock);
799 	if (cache_drop)
800 		remove_rbio_from_cache(cache_drop);
801 	if (freeit)
802 		free_raid_bio(freeit);
803 	return ret;
804 }
805 
806 static void recover_rbio_work_locked(struct work_struct *work);
807 
808 /*
809  * called as rmw or parity rebuild is completed.  If the plug list has more
810  * rbios waiting for this stripe, the next one on the list will be started
811  */
812 static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
813 {
814 	int bucket;
815 	struct btrfs_stripe_hash *h;
816 	int keep_cache = 0;
817 
818 	bucket = rbio_bucket(rbio);
819 	h = rbio->bioc->fs_info->stripe_hash_table->table + bucket;
820 
821 	if (list_empty(&rbio->plug_list))
822 		cache_rbio(rbio);
823 
824 	spin_lock(&h->lock);
825 	spin_lock(&rbio->bio_list_lock);
826 
827 	if (!list_empty(&rbio->hash_list)) {
828 		/*
829 		 * if we're still cached and there is no other IO
830 		 * to perform, just leave this rbio here for others
831 		 * to steal from later
832 		 */
833 		if (list_empty(&rbio->plug_list) &&
834 		    test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
835 			keep_cache = 1;
836 			clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
837 			BUG_ON(!bio_list_empty(&rbio->bio_list));
838 			goto done;
839 		}
840 
841 		list_del_init(&rbio->hash_list);
842 		refcount_dec(&rbio->refs);
843 
844 		/*
845 		 * we use the plug list to hold all the rbios
846 		 * waiting for the chance to lock this stripe.
847 		 * hand the lock over to one of them.
848 		 */
849 		if (!list_empty(&rbio->plug_list)) {
850 			struct btrfs_raid_bio *next;
851 			struct list_head *head = rbio->plug_list.next;
852 
853 			next = list_entry(head, struct btrfs_raid_bio,
854 					  plug_list);
855 
856 			list_del_init(&rbio->plug_list);
857 
858 			list_add(&next->hash_list, &h->hash_list);
859 			refcount_inc(&next->refs);
860 			spin_unlock(&rbio->bio_list_lock);
861 			spin_unlock(&h->lock);
862 
863 			if (next->operation == BTRFS_RBIO_READ_REBUILD) {
864 				start_async_work(next, recover_rbio_work_locked);
865 			} else if (next->operation == BTRFS_RBIO_WRITE) {
866 				steal_rbio(rbio, next);
867 				start_async_work(next, rmw_rbio_work_locked);
868 			} else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
869 				steal_rbio(rbio, next);
870 				start_async_work(next, scrub_rbio_work_locked);
871 			}
872 
873 			goto done_nolock;
874 		}
875 	}
876 done:
877 	spin_unlock(&rbio->bio_list_lock);
878 	spin_unlock(&h->lock);
879 
880 done_nolock:
881 	if (!keep_cache)
882 		remove_rbio_from_cache(rbio);
883 }
884 
885 static void rbio_endio_bio_list(struct bio *cur, blk_status_t err)
886 {
887 	struct bio *next;
888 
889 	while (cur) {
890 		next = cur->bi_next;
891 		cur->bi_next = NULL;
892 		cur->bi_status = err;
893 		bio_endio(cur);
894 		cur = next;
895 	}
896 }
897 
898 /*
899  * this frees the rbio and runs through all the bios in the
900  * bio_list and calls end_io on them
901  */
902 static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err)
903 {
904 	struct bio *cur = bio_list_get(&rbio->bio_list);
905 	struct bio *extra;
906 
907 	kfree(rbio->csum_buf);
908 	bitmap_free(rbio->csum_bitmap);
909 	rbio->csum_buf = NULL;
910 	rbio->csum_bitmap = NULL;
911 
912 	/*
913 	 * Clear the data bitmap, as the rbio may be cached for later usage.
914 	 * do this before before unlock_stripe() so there will be no new bio
915 	 * for this bio.
916 	 */
917 	bitmap_clear(&rbio->dbitmap, 0, rbio->stripe_nsectors);
918 
919 	/*
920 	 * At this moment, rbio->bio_list is empty, however since rbio does not
921 	 * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the
922 	 * hash list, rbio may be merged with others so that rbio->bio_list
923 	 * becomes non-empty.
924 	 * Once unlock_stripe() is done, rbio->bio_list will not be updated any
925 	 * more and we can call bio_endio() on all queued bios.
926 	 */
927 	unlock_stripe(rbio);
928 	extra = bio_list_get(&rbio->bio_list);
929 	free_raid_bio(rbio);
930 
931 	rbio_endio_bio_list(cur, err);
932 	if (extra)
933 		rbio_endio_bio_list(extra, err);
934 }
935 
936 /*
937  * Get a sector pointer specified by its @stripe_nr and @sector_nr.
938  *
939  * @rbio:               The raid bio
940  * @stripe_nr:          Stripe number, valid range [0, real_stripe)
941  * @sector_nr:		Sector number inside the stripe,
942  *			valid range [0, stripe_nsectors)
943  * @bio_list_only:      Whether to use sectors inside the bio list only.
944  *
945  * The read/modify/write code wants to reuse the original bio page as much
946  * as possible, and only use stripe_sectors as fallback.
947  */
948 static struct sector_ptr *sector_in_rbio(struct btrfs_raid_bio *rbio,
949 					 int stripe_nr, int sector_nr,
950 					 bool bio_list_only)
951 {
952 	struct sector_ptr *sector;
953 	int index;
954 
955 	ASSERT_RBIO_STRIPE(stripe_nr >= 0 && stripe_nr < rbio->real_stripes,
956 			   rbio, stripe_nr);
957 	ASSERT_RBIO_SECTOR(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors,
958 			   rbio, sector_nr);
959 
960 	index = stripe_nr * rbio->stripe_nsectors + sector_nr;
961 	ASSERT(index >= 0 && index < rbio->nr_sectors);
962 
963 	spin_lock(&rbio->bio_list_lock);
964 	sector = &rbio->bio_sectors[index];
965 	if (sector->page || bio_list_only) {
966 		/* Don't return sector without a valid page pointer */
967 		if (!sector->page)
968 			sector = NULL;
969 		spin_unlock(&rbio->bio_list_lock);
970 		return sector;
971 	}
972 	spin_unlock(&rbio->bio_list_lock);
973 
974 	return &rbio->stripe_sectors[index];
975 }
976 
977 /*
978  * allocation and initial setup for the btrfs_raid_bio.  Not
979  * this does not allocate any pages for rbio->pages.
980  */
981 static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info,
982 					 struct btrfs_io_context *bioc)
983 {
984 	const unsigned int real_stripes = bioc->num_stripes - bioc->replace_nr_stripes;
985 	const unsigned int stripe_npages = BTRFS_STRIPE_LEN >> PAGE_SHIFT;
986 	const unsigned int num_pages = stripe_npages * real_stripes;
987 	const unsigned int stripe_nsectors =
988 		BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits;
989 	const unsigned int num_sectors = stripe_nsectors * real_stripes;
990 	struct btrfs_raid_bio *rbio;
991 
992 	/* PAGE_SIZE must also be aligned to sectorsize for subpage support */
993 	ASSERT(IS_ALIGNED(PAGE_SIZE, fs_info->sectorsize));
994 	/*
995 	 * Our current stripe len should be fixed to 64k thus stripe_nsectors
996 	 * (at most 16) should be no larger than BITS_PER_LONG.
997 	 */
998 	ASSERT(stripe_nsectors <= BITS_PER_LONG);
999 
1000 	/*
1001 	 * Real stripes must be between 2 (2 disks RAID5, aka RAID1) and 256
1002 	 * (limited by u8).
1003 	 */
1004 	ASSERT(real_stripes >= 2);
1005 	ASSERT(real_stripes <= U8_MAX);
1006 
1007 	rbio = kzalloc(sizeof(*rbio), GFP_NOFS);
1008 	if (!rbio)
1009 		return ERR_PTR(-ENOMEM);
1010 	rbio->stripe_pages = kcalloc(num_pages, sizeof(struct page *),
1011 				     GFP_NOFS);
1012 	rbio->bio_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr),
1013 				    GFP_NOFS);
1014 	rbio->stripe_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr),
1015 				       GFP_NOFS);
1016 	rbio->finish_pointers = kcalloc(real_stripes, sizeof(void *), GFP_NOFS);
1017 	rbio->error_bitmap = bitmap_zalloc(num_sectors, GFP_NOFS);
1018 
1019 	if (!rbio->stripe_pages || !rbio->bio_sectors || !rbio->stripe_sectors ||
1020 	    !rbio->finish_pointers || !rbio->error_bitmap) {
1021 		free_raid_bio_pointers(rbio);
1022 		kfree(rbio);
1023 		return ERR_PTR(-ENOMEM);
1024 	}
1025 
1026 	bio_list_init(&rbio->bio_list);
1027 	init_waitqueue_head(&rbio->io_wait);
1028 	INIT_LIST_HEAD(&rbio->plug_list);
1029 	spin_lock_init(&rbio->bio_list_lock);
1030 	INIT_LIST_HEAD(&rbio->stripe_cache);
1031 	INIT_LIST_HEAD(&rbio->hash_list);
1032 	btrfs_get_bioc(bioc);
1033 	rbio->bioc = bioc;
1034 	rbio->nr_pages = num_pages;
1035 	rbio->nr_sectors = num_sectors;
1036 	rbio->real_stripes = real_stripes;
1037 	rbio->stripe_npages = stripe_npages;
1038 	rbio->stripe_nsectors = stripe_nsectors;
1039 	refcount_set(&rbio->refs, 1);
1040 	atomic_set(&rbio->stripes_pending, 0);
1041 
1042 	ASSERT(btrfs_nr_parity_stripes(bioc->map_type));
1043 	rbio->nr_data = real_stripes - btrfs_nr_parity_stripes(bioc->map_type);
1044 	ASSERT(rbio->nr_data > 0);
1045 
1046 	return rbio;
1047 }
1048 
1049 /* allocate pages for all the stripes in the bio, including parity */
1050 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
1051 {
1052 	int ret;
1053 
1054 	ret = btrfs_alloc_page_array(rbio->nr_pages, rbio->stripe_pages, false);
1055 	if (ret < 0)
1056 		return ret;
1057 	/* Mapping all sectors */
1058 	index_stripe_sectors(rbio);
1059 	return 0;
1060 }
1061 
1062 /* only allocate pages for p/q stripes */
1063 static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
1064 {
1065 	const int data_pages = rbio->nr_data * rbio->stripe_npages;
1066 	int ret;
1067 
1068 	ret = btrfs_alloc_page_array(rbio->nr_pages - data_pages,
1069 				     rbio->stripe_pages + data_pages, false);
1070 	if (ret < 0)
1071 		return ret;
1072 
1073 	index_stripe_sectors(rbio);
1074 	return 0;
1075 }
1076 
1077 /*
1078  * Return the total number of errors found in the vertical stripe of @sector_nr.
1079  *
1080  * @faila and @failb will also be updated to the first and second stripe
1081  * number of the errors.
1082  */
1083 static int get_rbio_veritical_errors(struct btrfs_raid_bio *rbio, int sector_nr,
1084 				     int *faila, int *failb)
1085 {
1086 	int stripe_nr;
1087 	int found_errors = 0;
1088 
1089 	if (faila || failb) {
1090 		/*
1091 		 * Both @faila and @failb should be valid pointers if any of
1092 		 * them is specified.
1093 		 */
1094 		ASSERT(faila && failb);
1095 		*faila = -1;
1096 		*failb = -1;
1097 	}
1098 
1099 	for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
1100 		int total_sector_nr = stripe_nr * rbio->stripe_nsectors + sector_nr;
1101 
1102 		if (test_bit(total_sector_nr, rbio->error_bitmap)) {
1103 			found_errors++;
1104 			if (faila) {
1105 				/* Update faila and failb. */
1106 				if (*faila < 0)
1107 					*faila = stripe_nr;
1108 				else if (*failb < 0)
1109 					*failb = stripe_nr;
1110 			}
1111 		}
1112 	}
1113 	return found_errors;
1114 }
1115 
1116 /*
1117  * Add a single sector @sector into our list of bios for IO.
1118  *
1119  * Return 0 if everything went well.
1120  * Return <0 for error.
1121  */
1122 static int rbio_add_io_sector(struct btrfs_raid_bio *rbio,
1123 			      struct bio_list *bio_list,
1124 			      struct sector_ptr *sector,
1125 			      unsigned int stripe_nr,
1126 			      unsigned int sector_nr,
1127 			      enum req_op op)
1128 {
1129 	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1130 	struct bio *last = bio_list->tail;
1131 	int ret;
1132 	struct bio *bio;
1133 	struct btrfs_io_stripe *stripe;
1134 	u64 disk_start;
1135 
1136 	/*
1137 	 * Note: here stripe_nr has taken device replace into consideration,
1138 	 * thus it can be larger than rbio->real_stripe.
1139 	 * So here we check against bioc->num_stripes, not rbio->real_stripes.
1140 	 */
1141 	ASSERT_RBIO_STRIPE(stripe_nr >= 0 && stripe_nr < rbio->bioc->num_stripes,
1142 			   rbio, stripe_nr);
1143 	ASSERT_RBIO_SECTOR(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors,
1144 			   rbio, sector_nr);
1145 	ASSERT(sector->page);
1146 
1147 	stripe = &rbio->bioc->stripes[stripe_nr];
1148 	disk_start = stripe->physical + sector_nr * sectorsize;
1149 
1150 	/* if the device is missing, just fail this stripe */
1151 	if (!stripe->dev->bdev) {
1152 		int found_errors;
1153 
1154 		set_bit(stripe_nr * rbio->stripe_nsectors + sector_nr,
1155 			rbio->error_bitmap);
1156 
1157 		/* Check if we have reached tolerance early. */
1158 		found_errors = get_rbio_veritical_errors(rbio, sector_nr,
1159 							 NULL, NULL);
1160 		if (found_errors > rbio->bioc->max_errors)
1161 			return -EIO;
1162 		return 0;
1163 	}
1164 
1165 	/* see if we can add this page onto our existing bio */
1166 	if (last) {
1167 		u64 last_end = last->bi_iter.bi_sector << SECTOR_SHIFT;
1168 		last_end += last->bi_iter.bi_size;
1169 
1170 		/*
1171 		 * we can't merge these if they are from different
1172 		 * devices or if they are not contiguous
1173 		 */
1174 		if (last_end == disk_start && !last->bi_status &&
1175 		    last->bi_bdev == stripe->dev->bdev) {
1176 			ret = bio_add_page(last, sector->page, sectorsize,
1177 					   sector->pgoff);
1178 			if (ret == sectorsize)
1179 				return 0;
1180 		}
1181 	}
1182 
1183 	/* put a new bio on the list */
1184 	bio = bio_alloc(stripe->dev->bdev,
1185 			max(BTRFS_STRIPE_LEN >> PAGE_SHIFT, 1),
1186 			op, GFP_NOFS);
1187 	bio->bi_iter.bi_sector = disk_start >> SECTOR_SHIFT;
1188 	bio->bi_private = rbio;
1189 
1190 	__bio_add_page(bio, sector->page, sectorsize, sector->pgoff);
1191 	bio_list_add(bio_list, bio);
1192 	return 0;
1193 }
1194 
1195 static void index_one_bio(struct btrfs_raid_bio *rbio, struct bio *bio)
1196 {
1197 	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1198 	struct bio_vec bvec;
1199 	struct bvec_iter iter;
1200 	u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
1201 		     rbio->bioc->full_stripe_logical;
1202 
1203 	bio_for_each_segment(bvec, bio, iter) {
1204 		u32 bvec_offset;
1205 
1206 		for (bvec_offset = 0; bvec_offset < bvec.bv_len;
1207 		     bvec_offset += sectorsize, offset += sectorsize) {
1208 			int index = offset / sectorsize;
1209 			struct sector_ptr *sector = &rbio->bio_sectors[index];
1210 
1211 			sector->page = bvec.bv_page;
1212 			sector->pgoff = bvec.bv_offset + bvec_offset;
1213 			ASSERT(sector->pgoff < PAGE_SIZE);
1214 		}
1215 	}
1216 }
1217 
1218 /*
1219  * helper function to walk our bio list and populate the bio_pages array with
1220  * the result.  This seems expensive, but it is faster than constantly
1221  * searching through the bio list as we setup the IO in finish_rmw or stripe
1222  * reconstruction.
1223  *
1224  * This must be called before you trust the answers from page_in_rbio
1225  */
1226 static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1227 {
1228 	struct bio *bio;
1229 
1230 	spin_lock(&rbio->bio_list_lock);
1231 	bio_list_for_each(bio, &rbio->bio_list)
1232 		index_one_bio(rbio, bio);
1233 
1234 	spin_unlock(&rbio->bio_list_lock);
1235 }
1236 
1237 static void bio_get_trace_info(struct btrfs_raid_bio *rbio, struct bio *bio,
1238 			       struct raid56_bio_trace_info *trace_info)
1239 {
1240 	const struct btrfs_io_context *bioc = rbio->bioc;
1241 	int i;
1242 
1243 	ASSERT(bioc);
1244 
1245 	/* We rely on bio->bi_bdev to find the stripe number. */
1246 	if (!bio->bi_bdev)
1247 		goto not_found;
1248 
1249 	for (i = 0; i < bioc->num_stripes; i++) {
1250 		if (bio->bi_bdev != bioc->stripes[i].dev->bdev)
1251 			continue;
1252 		trace_info->stripe_nr = i;
1253 		trace_info->devid = bioc->stripes[i].dev->devid;
1254 		trace_info->offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
1255 				     bioc->stripes[i].physical;
1256 		return;
1257 	}
1258 
1259 not_found:
1260 	trace_info->devid = -1;
1261 	trace_info->offset = -1;
1262 	trace_info->stripe_nr = -1;
1263 }
1264 
1265 static inline void bio_list_put(struct bio_list *bio_list)
1266 {
1267 	struct bio *bio;
1268 
1269 	while ((bio = bio_list_pop(bio_list)))
1270 		bio_put(bio);
1271 }
1272 
1273 static void assert_rbio(struct btrfs_raid_bio *rbio)
1274 {
1275 	if (!IS_ENABLED(CONFIG_BTRFS_DEBUG) ||
1276 	    !IS_ENABLED(CONFIG_BTRFS_ASSERT))
1277 		return;
1278 
1279 	/*
1280 	 * At least two stripes (2 disks RAID5), and since real_stripes is U8,
1281 	 * we won't go beyond 256 disks anyway.
1282 	 */
1283 	ASSERT_RBIO(rbio->real_stripes >= 2, rbio);
1284 	ASSERT_RBIO(rbio->nr_data > 0, rbio);
1285 
1286 	/*
1287 	 * This is another check to make sure nr data stripes is smaller
1288 	 * than total stripes.
1289 	 */
1290 	ASSERT_RBIO(rbio->nr_data < rbio->real_stripes, rbio);
1291 }
1292 
1293 /* Generate PQ for one vertical stripe. */
1294 static void generate_pq_vertical(struct btrfs_raid_bio *rbio, int sectornr)
1295 {
1296 	void **pointers = rbio->finish_pointers;
1297 	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1298 	struct sector_ptr *sector;
1299 	int stripe;
1300 	const bool has_qstripe = rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6;
1301 
1302 	/* First collect one sector from each data stripe */
1303 	for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1304 		sector = sector_in_rbio(rbio, stripe, sectornr, 0);
1305 		pointers[stripe] = kmap_local_page(sector->page) +
1306 				   sector->pgoff;
1307 	}
1308 
1309 	/* Then add the parity stripe */
1310 	sector = rbio_pstripe_sector(rbio, sectornr);
1311 	sector->uptodate = 1;
1312 	pointers[stripe++] = kmap_local_page(sector->page) + sector->pgoff;
1313 
1314 	if (has_qstripe) {
1315 		/*
1316 		 * RAID6, add the qstripe and call the library function
1317 		 * to fill in our p/q
1318 		 */
1319 		sector = rbio_qstripe_sector(rbio, sectornr);
1320 		sector->uptodate = 1;
1321 		pointers[stripe++] = kmap_local_page(sector->page) +
1322 				     sector->pgoff;
1323 
1324 		assert_rbio(rbio);
1325 		raid6_call.gen_syndrome(rbio->real_stripes, sectorsize,
1326 					pointers);
1327 	} else {
1328 		/* raid5 */
1329 		memcpy(pointers[rbio->nr_data], pointers[0], sectorsize);
1330 		run_xor(pointers + 1, rbio->nr_data - 1, sectorsize);
1331 	}
1332 	for (stripe = stripe - 1; stripe >= 0; stripe--)
1333 		kunmap_local(pointers[stripe]);
1334 }
1335 
1336 static int rmw_assemble_write_bios(struct btrfs_raid_bio *rbio,
1337 				   struct bio_list *bio_list)
1338 {
1339 	/* The total sector number inside the full stripe. */
1340 	int total_sector_nr;
1341 	int sectornr;
1342 	int stripe;
1343 	int ret;
1344 
1345 	ASSERT(bio_list_size(bio_list) == 0);
1346 
1347 	/* We should have at least one data sector. */
1348 	ASSERT(bitmap_weight(&rbio->dbitmap, rbio->stripe_nsectors));
1349 
1350 	/*
1351 	 * Reset errors, as we may have errors inherited from from degraded
1352 	 * write.
1353 	 */
1354 	bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
1355 
1356 	/*
1357 	 * Start assembly.  Make bios for everything from the higher layers (the
1358 	 * bio_list in our rbio) and our P/Q.  Ignore everything else.
1359 	 */
1360 	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
1361 	     total_sector_nr++) {
1362 		struct sector_ptr *sector;
1363 
1364 		stripe = total_sector_nr / rbio->stripe_nsectors;
1365 		sectornr = total_sector_nr % rbio->stripe_nsectors;
1366 
1367 		/* This vertical stripe has no data, skip it. */
1368 		if (!test_bit(sectornr, &rbio->dbitmap))
1369 			continue;
1370 
1371 		if (stripe < rbio->nr_data) {
1372 			sector = sector_in_rbio(rbio, stripe, sectornr, 1);
1373 			if (!sector)
1374 				continue;
1375 		} else {
1376 			sector = rbio_stripe_sector(rbio, stripe, sectornr);
1377 		}
1378 
1379 		ret = rbio_add_io_sector(rbio, bio_list, sector, stripe,
1380 					 sectornr, REQ_OP_WRITE);
1381 		if (ret)
1382 			goto error;
1383 	}
1384 
1385 	if (likely(!rbio->bioc->replace_nr_stripes))
1386 		return 0;
1387 
1388 	/*
1389 	 * Make a copy for the replace target device.
1390 	 *
1391 	 * Thus the source stripe number (in replace_stripe_src) should be valid.
1392 	 */
1393 	ASSERT(rbio->bioc->replace_stripe_src >= 0);
1394 
1395 	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
1396 	     total_sector_nr++) {
1397 		struct sector_ptr *sector;
1398 
1399 		stripe = total_sector_nr / rbio->stripe_nsectors;
1400 		sectornr = total_sector_nr % rbio->stripe_nsectors;
1401 
1402 		/*
1403 		 * For RAID56, there is only one device that can be replaced,
1404 		 * and replace_stripe_src[0] indicates the stripe number we
1405 		 * need to copy from.
1406 		 */
1407 		if (stripe != rbio->bioc->replace_stripe_src) {
1408 			/*
1409 			 * We can skip the whole stripe completely, note
1410 			 * total_sector_nr will be increased by one anyway.
1411 			 */
1412 			ASSERT(sectornr == 0);
1413 			total_sector_nr += rbio->stripe_nsectors - 1;
1414 			continue;
1415 		}
1416 
1417 		/* This vertical stripe has no data, skip it. */
1418 		if (!test_bit(sectornr, &rbio->dbitmap))
1419 			continue;
1420 
1421 		if (stripe < rbio->nr_data) {
1422 			sector = sector_in_rbio(rbio, stripe, sectornr, 1);
1423 			if (!sector)
1424 				continue;
1425 		} else {
1426 			sector = rbio_stripe_sector(rbio, stripe, sectornr);
1427 		}
1428 
1429 		ret = rbio_add_io_sector(rbio, bio_list, sector,
1430 					 rbio->real_stripes,
1431 					 sectornr, REQ_OP_WRITE);
1432 		if (ret)
1433 			goto error;
1434 	}
1435 
1436 	return 0;
1437 error:
1438 	bio_list_put(bio_list);
1439 	return -EIO;
1440 }
1441 
1442 static void set_rbio_range_error(struct btrfs_raid_bio *rbio, struct bio *bio)
1443 {
1444 	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1445 	u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
1446 		     rbio->bioc->full_stripe_logical;
1447 	int total_nr_sector = offset >> fs_info->sectorsize_bits;
1448 
1449 	ASSERT(total_nr_sector < rbio->nr_data * rbio->stripe_nsectors);
1450 
1451 	bitmap_set(rbio->error_bitmap, total_nr_sector,
1452 		   bio->bi_iter.bi_size >> fs_info->sectorsize_bits);
1453 
1454 	/*
1455 	 * Special handling for raid56_alloc_missing_rbio() used by
1456 	 * scrub/replace.  Unlike call path in raid56_parity_recover(), they
1457 	 * pass an empty bio here.  Thus we have to find out the missing device
1458 	 * and mark the stripe error instead.
1459 	 */
1460 	if (bio->bi_iter.bi_size == 0) {
1461 		bool found_missing = false;
1462 		int stripe_nr;
1463 
1464 		for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
1465 			if (!rbio->bioc->stripes[stripe_nr].dev->bdev) {
1466 				found_missing = true;
1467 				bitmap_set(rbio->error_bitmap,
1468 					   stripe_nr * rbio->stripe_nsectors,
1469 					   rbio->stripe_nsectors);
1470 			}
1471 		}
1472 		ASSERT(found_missing);
1473 	}
1474 }
1475 
1476 /*
1477  * For subpage case, we can no longer set page Up-to-date directly for
1478  * stripe_pages[], thus we need to locate the sector.
1479  */
1480 static struct sector_ptr *find_stripe_sector(struct btrfs_raid_bio *rbio,
1481 					     struct page *page,
1482 					     unsigned int pgoff)
1483 {
1484 	int i;
1485 
1486 	for (i = 0; i < rbio->nr_sectors; i++) {
1487 		struct sector_ptr *sector = &rbio->stripe_sectors[i];
1488 
1489 		if (sector->page == page && sector->pgoff == pgoff)
1490 			return sector;
1491 	}
1492 	return NULL;
1493 }
1494 
1495 /*
1496  * this sets each page in the bio uptodate.  It should only be used on private
1497  * rbio pages, nothing that comes in from the higher layers
1498  */
1499 static void set_bio_pages_uptodate(struct btrfs_raid_bio *rbio, struct bio *bio)
1500 {
1501 	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1502 	struct bio_vec *bvec;
1503 	struct bvec_iter_all iter_all;
1504 
1505 	ASSERT(!bio_flagged(bio, BIO_CLONED));
1506 
1507 	bio_for_each_segment_all(bvec, bio, iter_all) {
1508 		struct sector_ptr *sector;
1509 		int pgoff;
1510 
1511 		for (pgoff = bvec->bv_offset; pgoff - bvec->bv_offset < bvec->bv_len;
1512 		     pgoff += sectorsize) {
1513 			sector = find_stripe_sector(rbio, bvec->bv_page, pgoff);
1514 			ASSERT(sector);
1515 			if (sector)
1516 				sector->uptodate = 1;
1517 		}
1518 	}
1519 }
1520 
1521 static int get_bio_sector_nr(struct btrfs_raid_bio *rbio, struct bio *bio)
1522 {
1523 	struct bio_vec *bv = bio_first_bvec_all(bio);
1524 	int i;
1525 
1526 	for (i = 0; i < rbio->nr_sectors; i++) {
1527 		struct sector_ptr *sector;
1528 
1529 		sector = &rbio->stripe_sectors[i];
1530 		if (sector->page == bv->bv_page && sector->pgoff == bv->bv_offset)
1531 			break;
1532 		sector = &rbio->bio_sectors[i];
1533 		if (sector->page == bv->bv_page && sector->pgoff == bv->bv_offset)
1534 			break;
1535 	}
1536 	ASSERT(i < rbio->nr_sectors);
1537 	return i;
1538 }
1539 
1540 static void rbio_update_error_bitmap(struct btrfs_raid_bio *rbio, struct bio *bio)
1541 {
1542 	int total_sector_nr = get_bio_sector_nr(rbio, bio);
1543 	u32 bio_size = 0;
1544 	struct bio_vec *bvec;
1545 	int i;
1546 
1547 	bio_for_each_bvec_all(bvec, bio, i)
1548 		bio_size += bvec->bv_len;
1549 
1550 	/*
1551 	 * Since we can have multiple bios touching the error_bitmap, we cannot
1552 	 * call bitmap_set() without protection.
1553 	 *
1554 	 * Instead use set_bit() for each bit, as set_bit() itself is atomic.
1555 	 */
1556 	for (i = total_sector_nr; i < total_sector_nr +
1557 	     (bio_size >> rbio->bioc->fs_info->sectorsize_bits); i++)
1558 		set_bit(i, rbio->error_bitmap);
1559 }
1560 
1561 /* Verify the data sectors at read time. */
1562 static void verify_bio_data_sectors(struct btrfs_raid_bio *rbio,
1563 				    struct bio *bio)
1564 {
1565 	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1566 	int total_sector_nr = get_bio_sector_nr(rbio, bio);
1567 	struct bio_vec *bvec;
1568 	struct bvec_iter_all iter_all;
1569 
1570 	/* No data csum for the whole stripe, no need to verify. */
1571 	if (!rbio->csum_bitmap || !rbio->csum_buf)
1572 		return;
1573 
1574 	/* P/Q stripes, they have no data csum to verify against. */
1575 	if (total_sector_nr >= rbio->nr_data * rbio->stripe_nsectors)
1576 		return;
1577 
1578 	bio_for_each_segment_all(bvec, bio, iter_all) {
1579 		int bv_offset;
1580 
1581 		for (bv_offset = bvec->bv_offset;
1582 		     bv_offset < bvec->bv_offset + bvec->bv_len;
1583 		     bv_offset += fs_info->sectorsize, total_sector_nr++) {
1584 			u8 csum_buf[BTRFS_CSUM_SIZE];
1585 			u8 *expected_csum = rbio->csum_buf +
1586 					    total_sector_nr * fs_info->csum_size;
1587 			int ret;
1588 
1589 			/* No csum for this sector, skip to the next sector. */
1590 			if (!test_bit(total_sector_nr, rbio->csum_bitmap))
1591 				continue;
1592 
1593 			ret = btrfs_check_sector_csum(fs_info, bvec->bv_page,
1594 				bv_offset, csum_buf, expected_csum);
1595 			if (ret < 0)
1596 				set_bit(total_sector_nr, rbio->error_bitmap);
1597 		}
1598 	}
1599 }
1600 
1601 static void raid_wait_read_end_io(struct bio *bio)
1602 {
1603 	struct btrfs_raid_bio *rbio = bio->bi_private;
1604 
1605 	if (bio->bi_status) {
1606 		rbio_update_error_bitmap(rbio, bio);
1607 	} else {
1608 		set_bio_pages_uptodate(rbio, bio);
1609 		verify_bio_data_sectors(rbio, bio);
1610 	}
1611 
1612 	bio_put(bio);
1613 	if (atomic_dec_and_test(&rbio->stripes_pending))
1614 		wake_up(&rbio->io_wait);
1615 }
1616 
1617 static void submit_read_wait_bio_list(struct btrfs_raid_bio *rbio,
1618 			     struct bio_list *bio_list)
1619 {
1620 	struct bio *bio;
1621 
1622 	atomic_set(&rbio->stripes_pending, bio_list_size(bio_list));
1623 	while ((bio = bio_list_pop(bio_list))) {
1624 		bio->bi_end_io = raid_wait_read_end_io;
1625 
1626 		if (trace_raid56_read_enabled()) {
1627 			struct raid56_bio_trace_info trace_info = { 0 };
1628 
1629 			bio_get_trace_info(rbio, bio, &trace_info);
1630 			trace_raid56_read(rbio, bio, &trace_info);
1631 		}
1632 		submit_bio(bio);
1633 	}
1634 
1635 	wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
1636 }
1637 
1638 static int alloc_rbio_data_pages(struct btrfs_raid_bio *rbio)
1639 {
1640 	const int data_pages = rbio->nr_data * rbio->stripe_npages;
1641 	int ret;
1642 
1643 	ret = btrfs_alloc_page_array(data_pages, rbio->stripe_pages, false);
1644 	if (ret < 0)
1645 		return ret;
1646 
1647 	index_stripe_sectors(rbio);
1648 	return 0;
1649 }
1650 
1651 /*
1652  * We use plugging call backs to collect full stripes.
1653  * Any time we get a partial stripe write while plugged
1654  * we collect it into a list.  When the unplug comes down,
1655  * we sort the list by logical block number and merge
1656  * everything we can into the same rbios
1657  */
1658 struct btrfs_plug_cb {
1659 	struct blk_plug_cb cb;
1660 	struct btrfs_fs_info *info;
1661 	struct list_head rbio_list;
1662 };
1663 
1664 /*
1665  * rbios on the plug list are sorted for easier merging.
1666  */
1667 static int plug_cmp(void *priv, const struct list_head *a,
1668 		    const struct list_head *b)
1669 {
1670 	const struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1671 						       plug_list);
1672 	const struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1673 						       plug_list);
1674 	u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1675 	u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1676 
1677 	if (a_sector < b_sector)
1678 		return -1;
1679 	if (a_sector > b_sector)
1680 		return 1;
1681 	return 0;
1682 }
1683 
1684 static void raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1685 {
1686 	struct btrfs_plug_cb *plug = container_of(cb, struct btrfs_plug_cb, cb);
1687 	struct btrfs_raid_bio *cur;
1688 	struct btrfs_raid_bio *last = NULL;
1689 
1690 	list_sort(NULL, &plug->rbio_list, plug_cmp);
1691 
1692 	while (!list_empty(&plug->rbio_list)) {
1693 		cur = list_entry(plug->rbio_list.next,
1694 				 struct btrfs_raid_bio, plug_list);
1695 		list_del_init(&cur->plug_list);
1696 
1697 		if (rbio_is_full(cur)) {
1698 			/* We have a full stripe, queue it down. */
1699 			start_async_work(cur, rmw_rbio_work);
1700 			continue;
1701 		}
1702 		if (last) {
1703 			if (rbio_can_merge(last, cur)) {
1704 				merge_rbio(last, cur);
1705 				free_raid_bio(cur);
1706 				continue;
1707 			}
1708 			start_async_work(last, rmw_rbio_work);
1709 		}
1710 		last = cur;
1711 	}
1712 	if (last)
1713 		start_async_work(last, rmw_rbio_work);
1714 	kfree(plug);
1715 }
1716 
1717 /* Add the original bio into rbio->bio_list, and update rbio::dbitmap. */
1718 static void rbio_add_bio(struct btrfs_raid_bio *rbio, struct bio *orig_bio)
1719 {
1720 	const struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1721 	const u64 orig_logical = orig_bio->bi_iter.bi_sector << SECTOR_SHIFT;
1722 	const u64 full_stripe_start = rbio->bioc->full_stripe_logical;
1723 	const u32 orig_len = orig_bio->bi_iter.bi_size;
1724 	const u32 sectorsize = fs_info->sectorsize;
1725 	u64 cur_logical;
1726 
1727 	ASSERT_RBIO_LOGICAL(orig_logical >= full_stripe_start &&
1728 			    orig_logical + orig_len <= full_stripe_start +
1729 			    rbio->nr_data * BTRFS_STRIPE_LEN,
1730 			    rbio, orig_logical);
1731 
1732 	bio_list_add(&rbio->bio_list, orig_bio);
1733 	rbio->bio_list_bytes += orig_bio->bi_iter.bi_size;
1734 
1735 	/* Update the dbitmap. */
1736 	for (cur_logical = orig_logical; cur_logical < orig_logical + orig_len;
1737 	     cur_logical += sectorsize) {
1738 		int bit = ((u32)(cur_logical - full_stripe_start) >>
1739 			   fs_info->sectorsize_bits) % rbio->stripe_nsectors;
1740 
1741 		set_bit(bit, &rbio->dbitmap);
1742 	}
1743 }
1744 
1745 /*
1746  * our main entry point for writes from the rest of the FS.
1747  */
1748 void raid56_parity_write(struct bio *bio, struct btrfs_io_context *bioc)
1749 {
1750 	struct btrfs_fs_info *fs_info = bioc->fs_info;
1751 	struct btrfs_raid_bio *rbio;
1752 	struct btrfs_plug_cb *plug = NULL;
1753 	struct blk_plug_cb *cb;
1754 
1755 	rbio = alloc_rbio(fs_info, bioc);
1756 	if (IS_ERR(rbio)) {
1757 		bio->bi_status = errno_to_blk_status(PTR_ERR(rbio));
1758 		bio_endio(bio);
1759 		return;
1760 	}
1761 	rbio->operation = BTRFS_RBIO_WRITE;
1762 	rbio_add_bio(rbio, bio);
1763 
1764 	/*
1765 	 * Don't plug on full rbios, just get them out the door
1766 	 * as quickly as we can
1767 	 */
1768 	if (!rbio_is_full(rbio)) {
1769 		cb = blk_check_plugged(raid_unplug, fs_info, sizeof(*plug));
1770 		if (cb) {
1771 			plug = container_of(cb, struct btrfs_plug_cb, cb);
1772 			if (!plug->info) {
1773 				plug->info = fs_info;
1774 				INIT_LIST_HEAD(&plug->rbio_list);
1775 			}
1776 			list_add_tail(&rbio->plug_list, &plug->rbio_list);
1777 			return;
1778 		}
1779 	}
1780 
1781 	/*
1782 	 * Either we don't have any existing plug, or we're doing a full stripe,
1783 	 * queue the rmw work now.
1784 	 */
1785 	start_async_work(rbio, rmw_rbio_work);
1786 }
1787 
1788 static int verify_one_sector(struct btrfs_raid_bio *rbio,
1789 			     int stripe_nr, int sector_nr)
1790 {
1791 	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1792 	struct sector_ptr *sector;
1793 	u8 csum_buf[BTRFS_CSUM_SIZE];
1794 	u8 *csum_expected;
1795 	int ret;
1796 
1797 	if (!rbio->csum_bitmap || !rbio->csum_buf)
1798 		return 0;
1799 
1800 	/* No way to verify P/Q as they are not covered by data csum. */
1801 	if (stripe_nr >= rbio->nr_data)
1802 		return 0;
1803 	/*
1804 	 * If we're rebuilding a read, we have to use pages from the
1805 	 * bio list if possible.
1806 	 */
1807 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
1808 		sector = sector_in_rbio(rbio, stripe_nr, sector_nr, 0);
1809 	} else {
1810 		sector = rbio_stripe_sector(rbio, stripe_nr, sector_nr);
1811 	}
1812 
1813 	ASSERT(sector->page);
1814 
1815 	csum_expected = rbio->csum_buf +
1816 			(stripe_nr * rbio->stripe_nsectors + sector_nr) *
1817 			fs_info->csum_size;
1818 	ret = btrfs_check_sector_csum(fs_info, sector->page, sector->pgoff,
1819 				      csum_buf, csum_expected);
1820 	return ret;
1821 }
1822 
1823 /*
1824  * Recover a vertical stripe specified by @sector_nr.
1825  * @*pointers are the pre-allocated pointers by the caller, so we don't
1826  * need to allocate/free the pointers again and again.
1827  */
1828 static int recover_vertical(struct btrfs_raid_bio *rbio, int sector_nr,
1829 			    void **pointers, void **unmap_array)
1830 {
1831 	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1832 	struct sector_ptr *sector;
1833 	const u32 sectorsize = fs_info->sectorsize;
1834 	int found_errors;
1835 	int faila;
1836 	int failb;
1837 	int stripe_nr;
1838 	int ret = 0;
1839 
1840 	/*
1841 	 * Now we just use bitmap to mark the horizontal stripes in
1842 	 * which we have data when doing parity scrub.
1843 	 */
1844 	if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1845 	    !test_bit(sector_nr, &rbio->dbitmap))
1846 		return 0;
1847 
1848 	found_errors = get_rbio_veritical_errors(rbio, sector_nr, &faila,
1849 						 &failb);
1850 	/*
1851 	 * No errors in the vertical stripe, skip it.  Can happen for recovery
1852 	 * which only part of a stripe failed csum check.
1853 	 */
1854 	if (!found_errors)
1855 		return 0;
1856 
1857 	if (found_errors > rbio->bioc->max_errors)
1858 		return -EIO;
1859 
1860 	/*
1861 	 * Setup our array of pointers with sectors from each stripe
1862 	 *
1863 	 * NOTE: store a duplicate array of pointers to preserve the
1864 	 * pointer order.
1865 	 */
1866 	for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
1867 		/*
1868 		 * If we're rebuilding a read, we have to use pages from the
1869 		 * bio list if possible.
1870 		 */
1871 		if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
1872 			sector = sector_in_rbio(rbio, stripe_nr, sector_nr, 0);
1873 		} else {
1874 			sector = rbio_stripe_sector(rbio, stripe_nr, sector_nr);
1875 		}
1876 		ASSERT(sector->page);
1877 		pointers[stripe_nr] = kmap_local_page(sector->page) +
1878 				   sector->pgoff;
1879 		unmap_array[stripe_nr] = pointers[stripe_nr];
1880 	}
1881 
1882 	/* All raid6 handling here */
1883 	if (rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6) {
1884 		/* Single failure, rebuild from parity raid5 style */
1885 		if (failb < 0) {
1886 			if (faila == rbio->nr_data)
1887 				/*
1888 				 * Just the P stripe has failed, without
1889 				 * a bad data or Q stripe.
1890 				 * We have nothing to do, just skip the
1891 				 * recovery for this stripe.
1892 				 */
1893 				goto cleanup;
1894 			/*
1895 			 * a single failure in raid6 is rebuilt
1896 			 * in the pstripe code below
1897 			 */
1898 			goto pstripe;
1899 		}
1900 
1901 		/*
1902 		 * If the q stripe is failed, do a pstripe reconstruction from
1903 		 * the xors.
1904 		 * If both the q stripe and the P stripe are failed, we're
1905 		 * here due to a crc mismatch and we can't give them the
1906 		 * data they want.
1907 		 */
1908 		if (failb == rbio->real_stripes - 1) {
1909 			if (faila == rbio->real_stripes - 2)
1910 				/*
1911 				 * Only P and Q are corrupted.
1912 				 * We only care about data stripes recovery,
1913 				 * can skip this vertical stripe.
1914 				 */
1915 				goto cleanup;
1916 			/*
1917 			 * Otherwise we have one bad data stripe and
1918 			 * a good P stripe.  raid5!
1919 			 */
1920 			goto pstripe;
1921 		}
1922 
1923 		if (failb == rbio->real_stripes - 2) {
1924 			raid6_datap_recov(rbio->real_stripes, sectorsize,
1925 					  faila, pointers);
1926 		} else {
1927 			raid6_2data_recov(rbio->real_stripes, sectorsize,
1928 					  faila, failb, pointers);
1929 		}
1930 	} else {
1931 		void *p;
1932 
1933 		/* Rebuild from P stripe here (raid5 or raid6). */
1934 		ASSERT(failb == -1);
1935 pstripe:
1936 		/* Copy parity block into failed block to start with */
1937 		memcpy(pointers[faila], pointers[rbio->nr_data], sectorsize);
1938 
1939 		/* Rearrange the pointer array */
1940 		p = pointers[faila];
1941 		for (stripe_nr = faila; stripe_nr < rbio->nr_data - 1;
1942 		     stripe_nr++)
1943 			pointers[stripe_nr] = pointers[stripe_nr + 1];
1944 		pointers[rbio->nr_data - 1] = p;
1945 
1946 		/* Xor in the rest */
1947 		run_xor(pointers, rbio->nr_data - 1, sectorsize);
1948 
1949 	}
1950 
1951 	/*
1952 	 * No matter if this is a RMW or recovery, we should have all
1953 	 * failed sectors repaired in the vertical stripe, thus they are now
1954 	 * uptodate.
1955 	 * Especially if we determine to cache the rbio, we need to
1956 	 * have at least all data sectors uptodate.
1957 	 *
1958 	 * If possible, also check if the repaired sector matches its data
1959 	 * checksum.
1960 	 */
1961 	if (faila >= 0) {
1962 		ret = verify_one_sector(rbio, faila, sector_nr);
1963 		if (ret < 0)
1964 			goto cleanup;
1965 
1966 		sector = rbio_stripe_sector(rbio, faila, sector_nr);
1967 		sector->uptodate = 1;
1968 	}
1969 	if (failb >= 0) {
1970 		ret = verify_one_sector(rbio, failb, sector_nr);
1971 		if (ret < 0)
1972 			goto cleanup;
1973 
1974 		sector = rbio_stripe_sector(rbio, failb, sector_nr);
1975 		sector->uptodate = 1;
1976 	}
1977 
1978 cleanup:
1979 	for (stripe_nr = rbio->real_stripes - 1; stripe_nr >= 0; stripe_nr--)
1980 		kunmap_local(unmap_array[stripe_nr]);
1981 	return ret;
1982 }
1983 
1984 static int recover_sectors(struct btrfs_raid_bio *rbio)
1985 {
1986 	void **pointers = NULL;
1987 	void **unmap_array = NULL;
1988 	int sectornr;
1989 	int ret = 0;
1990 
1991 	/*
1992 	 * @pointers array stores the pointer for each sector.
1993 	 *
1994 	 * @unmap_array stores copy of pointers that does not get reordered
1995 	 * during reconstruction so that kunmap_local works.
1996 	 */
1997 	pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1998 	unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1999 	if (!pointers || !unmap_array) {
2000 		ret = -ENOMEM;
2001 		goto out;
2002 	}
2003 
2004 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
2005 		spin_lock(&rbio->bio_list_lock);
2006 		set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
2007 		spin_unlock(&rbio->bio_list_lock);
2008 	}
2009 
2010 	index_rbio_pages(rbio);
2011 
2012 	for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) {
2013 		ret = recover_vertical(rbio, sectornr, pointers, unmap_array);
2014 		if (ret < 0)
2015 			break;
2016 	}
2017 
2018 out:
2019 	kfree(pointers);
2020 	kfree(unmap_array);
2021 	return ret;
2022 }
2023 
2024 static void recover_rbio(struct btrfs_raid_bio *rbio)
2025 {
2026 	struct bio_list bio_list = BIO_EMPTY_LIST;
2027 	int total_sector_nr;
2028 	int ret = 0;
2029 
2030 	/*
2031 	 * Either we're doing recover for a read failure or degraded write,
2032 	 * caller should have set error bitmap correctly.
2033 	 */
2034 	ASSERT(bitmap_weight(rbio->error_bitmap, rbio->nr_sectors));
2035 
2036 	/* For recovery, we need to read all sectors including P/Q. */
2037 	ret = alloc_rbio_pages(rbio);
2038 	if (ret < 0)
2039 		goto out;
2040 
2041 	index_rbio_pages(rbio);
2042 
2043 	/*
2044 	 * Read everything that hasn't failed. However this time we will
2045 	 * not trust any cached sector.
2046 	 * As we may read out some stale data but higher layer is not reading
2047 	 * that stale part.
2048 	 *
2049 	 * So here we always re-read everything in recovery path.
2050 	 */
2051 	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
2052 	     total_sector_nr++) {
2053 		int stripe = total_sector_nr / rbio->stripe_nsectors;
2054 		int sectornr = total_sector_nr % rbio->stripe_nsectors;
2055 		struct sector_ptr *sector;
2056 
2057 		/*
2058 		 * Skip the range which has error.  It can be a range which is
2059 		 * marked error (for csum mismatch), or it can be a missing
2060 		 * device.
2061 		 */
2062 		if (!rbio->bioc->stripes[stripe].dev->bdev ||
2063 		    test_bit(total_sector_nr, rbio->error_bitmap)) {
2064 			/*
2065 			 * Also set the error bit for missing device, which
2066 			 * may not yet have its error bit set.
2067 			 */
2068 			set_bit(total_sector_nr, rbio->error_bitmap);
2069 			continue;
2070 		}
2071 
2072 		sector = rbio_stripe_sector(rbio, stripe, sectornr);
2073 		ret = rbio_add_io_sector(rbio, &bio_list, sector, stripe,
2074 					 sectornr, REQ_OP_READ);
2075 		if (ret < 0) {
2076 			bio_list_put(&bio_list);
2077 			goto out;
2078 		}
2079 	}
2080 
2081 	submit_read_wait_bio_list(rbio, &bio_list);
2082 	ret = recover_sectors(rbio);
2083 out:
2084 	rbio_orig_end_io(rbio, errno_to_blk_status(ret));
2085 }
2086 
2087 static void recover_rbio_work(struct work_struct *work)
2088 {
2089 	struct btrfs_raid_bio *rbio;
2090 
2091 	rbio = container_of(work, struct btrfs_raid_bio, work);
2092 	if (!lock_stripe_add(rbio))
2093 		recover_rbio(rbio);
2094 }
2095 
2096 static void recover_rbio_work_locked(struct work_struct *work)
2097 {
2098 	recover_rbio(container_of(work, struct btrfs_raid_bio, work));
2099 }
2100 
2101 static void set_rbio_raid6_extra_error(struct btrfs_raid_bio *rbio, int mirror_num)
2102 {
2103 	bool found = false;
2104 	int sector_nr;
2105 
2106 	/*
2107 	 * This is for RAID6 extra recovery tries, thus mirror number should
2108 	 * be large than 2.
2109 	 * Mirror 1 means read from data stripes. Mirror 2 means rebuild using
2110 	 * RAID5 methods.
2111 	 */
2112 	ASSERT(mirror_num > 2);
2113 	for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
2114 		int found_errors;
2115 		int faila;
2116 		int failb;
2117 
2118 		found_errors = get_rbio_veritical_errors(rbio, sector_nr,
2119 							 &faila, &failb);
2120 		/* This vertical stripe doesn't have errors. */
2121 		if (!found_errors)
2122 			continue;
2123 
2124 		/*
2125 		 * If we found errors, there should be only one error marked
2126 		 * by previous set_rbio_range_error().
2127 		 */
2128 		ASSERT(found_errors == 1);
2129 		found = true;
2130 
2131 		/* Now select another stripe to mark as error. */
2132 		failb = rbio->real_stripes - (mirror_num - 1);
2133 		if (failb <= faila)
2134 			failb--;
2135 
2136 		/* Set the extra bit in error bitmap. */
2137 		if (failb >= 0)
2138 			set_bit(failb * rbio->stripe_nsectors + sector_nr,
2139 				rbio->error_bitmap);
2140 	}
2141 
2142 	/* We should found at least one vertical stripe with error.*/
2143 	ASSERT(found);
2144 }
2145 
2146 /*
2147  * the main entry point for reads from the higher layers.  This
2148  * is really only called when the normal read path had a failure,
2149  * so we assume the bio they send down corresponds to a failed part
2150  * of the drive.
2151  */
2152 void raid56_parity_recover(struct bio *bio, struct btrfs_io_context *bioc,
2153 			   int mirror_num)
2154 {
2155 	struct btrfs_fs_info *fs_info = bioc->fs_info;
2156 	struct btrfs_raid_bio *rbio;
2157 
2158 	rbio = alloc_rbio(fs_info, bioc);
2159 	if (IS_ERR(rbio)) {
2160 		bio->bi_status = errno_to_blk_status(PTR_ERR(rbio));
2161 		bio_endio(bio);
2162 		return;
2163 	}
2164 
2165 	rbio->operation = BTRFS_RBIO_READ_REBUILD;
2166 	rbio_add_bio(rbio, bio);
2167 
2168 	set_rbio_range_error(rbio, bio);
2169 
2170 	/*
2171 	 * Loop retry:
2172 	 * for 'mirror == 2', reconstruct from all other stripes.
2173 	 * for 'mirror_num > 2', select a stripe to fail on every retry.
2174 	 */
2175 	if (mirror_num > 2)
2176 		set_rbio_raid6_extra_error(rbio, mirror_num);
2177 
2178 	start_async_work(rbio, recover_rbio_work);
2179 }
2180 
2181 static void fill_data_csums(struct btrfs_raid_bio *rbio)
2182 {
2183 	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
2184 	struct btrfs_root *csum_root = btrfs_csum_root(fs_info,
2185 						       rbio->bioc->full_stripe_logical);
2186 	const u64 start = rbio->bioc->full_stripe_logical;
2187 	const u32 len = (rbio->nr_data * rbio->stripe_nsectors) <<
2188 			fs_info->sectorsize_bits;
2189 	int ret;
2190 
2191 	/* The rbio should not have its csum buffer initialized. */
2192 	ASSERT(!rbio->csum_buf && !rbio->csum_bitmap);
2193 
2194 	/*
2195 	 * Skip the csum search if:
2196 	 *
2197 	 * - The rbio doesn't belong to data block groups
2198 	 *   Then we are doing IO for tree blocks, no need to search csums.
2199 	 *
2200 	 * - The rbio belongs to mixed block groups
2201 	 *   This is to avoid deadlock, as we're already holding the full
2202 	 *   stripe lock, if we trigger a metadata read, and it needs to do
2203 	 *   raid56 recovery, we will deadlock.
2204 	 */
2205 	if (!(rbio->bioc->map_type & BTRFS_BLOCK_GROUP_DATA) ||
2206 	    rbio->bioc->map_type & BTRFS_BLOCK_GROUP_METADATA)
2207 		return;
2208 
2209 	rbio->csum_buf = kzalloc(rbio->nr_data * rbio->stripe_nsectors *
2210 				 fs_info->csum_size, GFP_NOFS);
2211 	rbio->csum_bitmap = bitmap_zalloc(rbio->nr_data * rbio->stripe_nsectors,
2212 					  GFP_NOFS);
2213 	if (!rbio->csum_buf || !rbio->csum_bitmap) {
2214 		ret = -ENOMEM;
2215 		goto error;
2216 	}
2217 
2218 	ret = btrfs_lookup_csums_bitmap(csum_root, NULL, start, start + len - 1,
2219 					rbio->csum_buf, rbio->csum_bitmap);
2220 	if (ret < 0)
2221 		goto error;
2222 	if (bitmap_empty(rbio->csum_bitmap, len >> fs_info->sectorsize_bits))
2223 		goto no_csum;
2224 	return;
2225 
2226 error:
2227 	/*
2228 	 * We failed to allocate memory or grab the csum, but it's not fatal,
2229 	 * we can still continue.  But better to warn users that RMW is no
2230 	 * longer safe for this particular sub-stripe write.
2231 	 */
2232 	btrfs_warn_rl(fs_info,
2233 "sub-stripe write for full stripe %llu is not safe, failed to get csum: %d",
2234 			rbio->bioc->full_stripe_logical, ret);
2235 no_csum:
2236 	kfree(rbio->csum_buf);
2237 	bitmap_free(rbio->csum_bitmap);
2238 	rbio->csum_buf = NULL;
2239 	rbio->csum_bitmap = NULL;
2240 }
2241 
2242 static int rmw_read_wait_recover(struct btrfs_raid_bio *rbio)
2243 {
2244 	struct bio_list bio_list = BIO_EMPTY_LIST;
2245 	int total_sector_nr;
2246 	int ret = 0;
2247 
2248 	/*
2249 	 * Fill the data csums we need for data verification.  We need to fill
2250 	 * the csum_bitmap/csum_buf first, as our endio function will try to
2251 	 * verify the data sectors.
2252 	 */
2253 	fill_data_csums(rbio);
2254 
2255 	/*
2256 	 * Build a list of bios to read all sectors (including data and P/Q).
2257 	 *
2258 	 * This behavior is to compensate the later csum verification and recovery.
2259 	 */
2260 	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
2261 	     total_sector_nr++) {
2262 		struct sector_ptr *sector;
2263 		int stripe = total_sector_nr / rbio->stripe_nsectors;
2264 		int sectornr = total_sector_nr % rbio->stripe_nsectors;
2265 
2266 		sector = rbio_stripe_sector(rbio, stripe, sectornr);
2267 		ret = rbio_add_io_sector(rbio, &bio_list, sector,
2268 			       stripe, sectornr, REQ_OP_READ);
2269 		if (ret) {
2270 			bio_list_put(&bio_list);
2271 			return ret;
2272 		}
2273 	}
2274 
2275 	/*
2276 	 * We may or may not have any corrupted sectors (including missing dev
2277 	 * and csum mismatch), just let recover_sectors() to handle them all.
2278 	 */
2279 	submit_read_wait_bio_list(rbio, &bio_list);
2280 	return recover_sectors(rbio);
2281 }
2282 
2283 static void raid_wait_write_end_io(struct bio *bio)
2284 {
2285 	struct btrfs_raid_bio *rbio = bio->bi_private;
2286 	blk_status_t err = bio->bi_status;
2287 
2288 	if (err)
2289 		rbio_update_error_bitmap(rbio, bio);
2290 	bio_put(bio);
2291 	if (atomic_dec_and_test(&rbio->stripes_pending))
2292 		wake_up(&rbio->io_wait);
2293 }
2294 
2295 static void submit_write_bios(struct btrfs_raid_bio *rbio,
2296 			      struct bio_list *bio_list)
2297 {
2298 	struct bio *bio;
2299 
2300 	atomic_set(&rbio->stripes_pending, bio_list_size(bio_list));
2301 	while ((bio = bio_list_pop(bio_list))) {
2302 		bio->bi_end_io = raid_wait_write_end_io;
2303 
2304 		if (trace_raid56_write_enabled()) {
2305 			struct raid56_bio_trace_info trace_info = { 0 };
2306 
2307 			bio_get_trace_info(rbio, bio, &trace_info);
2308 			trace_raid56_write(rbio, bio, &trace_info);
2309 		}
2310 		submit_bio(bio);
2311 	}
2312 }
2313 
2314 /*
2315  * To determine if we need to read any sector from the disk.
2316  * Should only be utilized in RMW path, to skip cached rbio.
2317  */
2318 static bool need_read_stripe_sectors(struct btrfs_raid_bio *rbio)
2319 {
2320 	int i;
2321 
2322 	for (i = 0; i < rbio->nr_data * rbio->stripe_nsectors; i++) {
2323 		struct sector_ptr *sector = &rbio->stripe_sectors[i];
2324 
2325 		/*
2326 		 * We have a sector which doesn't have page nor uptodate,
2327 		 * thus this rbio can not be cached one, as cached one must
2328 		 * have all its data sectors present and uptodate.
2329 		 */
2330 		if (!sector->page || !sector->uptodate)
2331 			return true;
2332 	}
2333 	return false;
2334 }
2335 
2336 static void rmw_rbio(struct btrfs_raid_bio *rbio)
2337 {
2338 	struct bio_list bio_list;
2339 	int sectornr;
2340 	int ret = 0;
2341 
2342 	/*
2343 	 * Allocate the pages for parity first, as P/Q pages will always be
2344 	 * needed for both full-stripe and sub-stripe writes.
2345 	 */
2346 	ret = alloc_rbio_parity_pages(rbio);
2347 	if (ret < 0)
2348 		goto out;
2349 
2350 	/*
2351 	 * Either full stripe write, or we have every data sector already
2352 	 * cached, can go to write path immediately.
2353 	 */
2354 	if (!rbio_is_full(rbio) && need_read_stripe_sectors(rbio)) {
2355 		/*
2356 		 * Now we're doing sub-stripe write, also need all data stripes
2357 		 * to do the full RMW.
2358 		 */
2359 		ret = alloc_rbio_data_pages(rbio);
2360 		if (ret < 0)
2361 			goto out;
2362 
2363 		index_rbio_pages(rbio);
2364 
2365 		ret = rmw_read_wait_recover(rbio);
2366 		if (ret < 0)
2367 			goto out;
2368 	}
2369 
2370 	/*
2371 	 * At this stage we're not allowed to add any new bios to the
2372 	 * bio list any more, anyone else that wants to change this stripe
2373 	 * needs to do their own rmw.
2374 	 */
2375 	spin_lock(&rbio->bio_list_lock);
2376 	set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
2377 	spin_unlock(&rbio->bio_list_lock);
2378 
2379 	bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
2380 
2381 	index_rbio_pages(rbio);
2382 
2383 	/*
2384 	 * We don't cache full rbios because we're assuming
2385 	 * the higher layers are unlikely to use this area of
2386 	 * the disk again soon.  If they do use it again,
2387 	 * hopefully they will send another full bio.
2388 	 */
2389 	if (!rbio_is_full(rbio))
2390 		cache_rbio_pages(rbio);
2391 	else
2392 		clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2393 
2394 	for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++)
2395 		generate_pq_vertical(rbio, sectornr);
2396 
2397 	bio_list_init(&bio_list);
2398 	ret = rmw_assemble_write_bios(rbio, &bio_list);
2399 	if (ret < 0)
2400 		goto out;
2401 
2402 	/* We should have at least one bio assembled. */
2403 	ASSERT(bio_list_size(&bio_list));
2404 	submit_write_bios(rbio, &bio_list);
2405 	wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
2406 
2407 	/* We may have more errors than our tolerance during the read. */
2408 	for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) {
2409 		int found_errors;
2410 
2411 		found_errors = get_rbio_veritical_errors(rbio, sectornr, NULL, NULL);
2412 		if (found_errors > rbio->bioc->max_errors) {
2413 			ret = -EIO;
2414 			break;
2415 		}
2416 	}
2417 out:
2418 	rbio_orig_end_io(rbio, errno_to_blk_status(ret));
2419 }
2420 
2421 static void rmw_rbio_work(struct work_struct *work)
2422 {
2423 	struct btrfs_raid_bio *rbio;
2424 
2425 	rbio = container_of(work, struct btrfs_raid_bio, work);
2426 	if (lock_stripe_add(rbio) == 0)
2427 		rmw_rbio(rbio);
2428 }
2429 
2430 static void rmw_rbio_work_locked(struct work_struct *work)
2431 {
2432 	rmw_rbio(container_of(work, struct btrfs_raid_bio, work));
2433 }
2434 
2435 /*
2436  * The following code is used to scrub/replace the parity stripe
2437  *
2438  * Caller must have already increased bio_counter for getting @bioc.
2439  *
2440  * Note: We need make sure all the pages that add into the scrub/replace
2441  * raid bio are correct and not be changed during the scrub/replace. That
2442  * is those pages just hold metadata or file data with checksum.
2443  */
2444 
2445 struct btrfs_raid_bio *raid56_parity_alloc_scrub_rbio(struct bio *bio,
2446 				struct btrfs_io_context *bioc,
2447 				struct btrfs_device *scrub_dev,
2448 				unsigned long *dbitmap, int stripe_nsectors)
2449 {
2450 	struct btrfs_fs_info *fs_info = bioc->fs_info;
2451 	struct btrfs_raid_bio *rbio;
2452 	int i;
2453 
2454 	rbio = alloc_rbio(fs_info, bioc);
2455 	if (IS_ERR(rbio))
2456 		return NULL;
2457 	bio_list_add(&rbio->bio_list, bio);
2458 	/*
2459 	 * This is a special bio which is used to hold the completion handler
2460 	 * and make the scrub rbio is similar to the other types
2461 	 */
2462 	ASSERT(!bio->bi_iter.bi_size);
2463 	rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2464 
2465 	/*
2466 	 * After mapping bioc with BTRFS_MAP_WRITE, parities have been sorted
2467 	 * to the end position, so this search can start from the first parity
2468 	 * stripe.
2469 	 */
2470 	for (i = rbio->nr_data; i < rbio->real_stripes; i++) {
2471 		if (bioc->stripes[i].dev == scrub_dev) {
2472 			rbio->scrubp = i;
2473 			break;
2474 		}
2475 	}
2476 	ASSERT_RBIO_STRIPE(i < rbio->real_stripes, rbio, i);
2477 
2478 	bitmap_copy(&rbio->dbitmap, dbitmap, stripe_nsectors);
2479 	return rbio;
2480 }
2481 
2482 /*
2483  * We just scrub the parity that we have correct data on the same horizontal,
2484  * so we needn't allocate all pages for all the stripes.
2485  */
2486 static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2487 {
2488 	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
2489 	int total_sector_nr;
2490 
2491 	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
2492 	     total_sector_nr++) {
2493 		struct page *page;
2494 		int sectornr = total_sector_nr % rbio->stripe_nsectors;
2495 		int index = (total_sector_nr * sectorsize) >> PAGE_SHIFT;
2496 
2497 		if (!test_bit(sectornr, &rbio->dbitmap))
2498 			continue;
2499 		if (rbio->stripe_pages[index])
2500 			continue;
2501 		page = alloc_page(GFP_NOFS);
2502 		if (!page)
2503 			return -ENOMEM;
2504 		rbio->stripe_pages[index] = page;
2505 	}
2506 	index_stripe_sectors(rbio);
2507 	return 0;
2508 }
2509 
2510 static int finish_parity_scrub(struct btrfs_raid_bio *rbio)
2511 {
2512 	struct btrfs_io_context *bioc = rbio->bioc;
2513 	const u32 sectorsize = bioc->fs_info->sectorsize;
2514 	void **pointers = rbio->finish_pointers;
2515 	unsigned long *pbitmap = &rbio->finish_pbitmap;
2516 	int nr_data = rbio->nr_data;
2517 	int stripe;
2518 	int sectornr;
2519 	bool has_qstripe;
2520 	struct sector_ptr p_sector = { 0 };
2521 	struct sector_ptr q_sector = { 0 };
2522 	struct bio_list bio_list;
2523 	int is_replace = 0;
2524 	int ret;
2525 
2526 	bio_list_init(&bio_list);
2527 
2528 	if (rbio->real_stripes - rbio->nr_data == 1)
2529 		has_qstripe = false;
2530 	else if (rbio->real_stripes - rbio->nr_data == 2)
2531 		has_qstripe = true;
2532 	else
2533 		BUG();
2534 
2535 	/*
2536 	 * Replace is running and our P/Q stripe is being replaced, then we
2537 	 * need to duplicate the final write to replace target.
2538 	 */
2539 	if (bioc->replace_nr_stripes && bioc->replace_stripe_src == rbio->scrubp) {
2540 		is_replace = 1;
2541 		bitmap_copy(pbitmap, &rbio->dbitmap, rbio->stripe_nsectors);
2542 	}
2543 
2544 	/*
2545 	 * Because the higher layers(scrubber) are unlikely to
2546 	 * use this area of the disk again soon, so don't cache
2547 	 * it.
2548 	 */
2549 	clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2550 
2551 	p_sector.page = alloc_page(GFP_NOFS);
2552 	if (!p_sector.page)
2553 		return -ENOMEM;
2554 	p_sector.pgoff = 0;
2555 	p_sector.uptodate = 1;
2556 
2557 	if (has_qstripe) {
2558 		/* RAID6, allocate and map temp space for the Q stripe */
2559 		q_sector.page = alloc_page(GFP_NOFS);
2560 		if (!q_sector.page) {
2561 			__free_page(p_sector.page);
2562 			p_sector.page = NULL;
2563 			return -ENOMEM;
2564 		}
2565 		q_sector.pgoff = 0;
2566 		q_sector.uptodate = 1;
2567 		pointers[rbio->real_stripes - 1] = kmap_local_page(q_sector.page);
2568 	}
2569 
2570 	bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
2571 
2572 	/* Map the parity stripe just once */
2573 	pointers[nr_data] = kmap_local_page(p_sector.page);
2574 
2575 	for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) {
2576 		struct sector_ptr *sector;
2577 		void *parity;
2578 
2579 		/* first collect one page from each data stripe */
2580 		for (stripe = 0; stripe < nr_data; stripe++) {
2581 			sector = sector_in_rbio(rbio, stripe, sectornr, 0);
2582 			pointers[stripe] = kmap_local_page(sector->page) +
2583 					   sector->pgoff;
2584 		}
2585 
2586 		if (has_qstripe) {
2587 			assert_rbio(rbio);
2588 			/* RAID6, call the library function to fill in our P/Q */
2589 			raid6_call.gen_syndrome(rbio->real_stripes, sectorsize,
2590 						pointers);
2591 		} else {
2592 			/* raid5 */
2593 			memcpy(pointers[nr_data], pointers[0], sectorsize);
2594 			run_xor(pointers + 1, nr_data - 1, sectorsize);
2595 		}
2596 
2597 		/* Check scrubbing parity and repair it */
2598 		sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
2599 		parity = kmap_local_page(sector->page) + sector->pgoff;
2600 		if (memcmp(parity, pointers[rbio->scrubp], sectorsize) != 0)
2601 			memcpy(parity, pointers[rbio->scrubp], sectorsize);
2602 		else
2603 			/* Parity is right, needn't writeback */
2604 			bitmap_clear(&rbio->dbitmap, sectornr, 1);
2605 		kunmap_local(parity);
2606 
2607 		for (stripe = nr_data - 1; stripe >= 0; stripe--)
2608 			kunmap_local(pointers[stripe]);
2609 	}
2610 
2611 	kunmap_local(pointers[nr_data]);
2612 	__free_page(p_sector.page);
2613 	p_sector.page = NULL;
2614 	if (q_sector.page) {
2615 		kunmap_local(pointers[rbio->real_stripes - 1]);
2616 		__free_page(q_sector.page);
2617 		q_sector.page = NULL;
2618 	}
2619 
2620 	/*
2621 	 * time to start writing.  Make bios for everything from the
2622 	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
2623 	 * everything else.
2624 	 */
2625 	for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) {
2626 		struct sector_ptr *sector;
2627 
2628 		sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
2629 		ret = rbio_add_io_sector(rbio, &bio_list, sector, rbio->scrubp,
2630 					 sectornr, REQ_OP_WRITE);
2631 		if (ret)
2632 			goto cleanup;
2633 	}
2634 
2635 	if (!is_replace)
2636 		goto submit_write;
2637 
2638 	/*
2639 	 * Replace is running and our parity stripe needs to be duplicated to
2640 	 * the target device.  Check we have a valid source stripe number.
2641 	 */
2642 	ASSERT_RBIO(rbio->bioc->replace_stripe_src >= 0, rbio);
2643 	for_each_set_bit(sectornr, pbitmap, rbio->stripe_nsectors) {
2644 		struct sector_ptr *sector;
2645 
2646 		sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
2647 		ret = rbio_add_io_sector(rbio, &bio_list, sector,
2648 					 rbio->real_stripes,
2649 					 sectornr, REQ_OP_WRITE);
2650 		if (ret)
2651 			goto cleanup;
2652 	}
2653 
2654 submit_write:
2655 	submit_write_bios(rbio, &bio_list);
2656 	return 0;
2657 
2658 cleanup:
2659 	bio_list_put(&bio_list);
2660 	return ret;
2661 }
2662 
2663 static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2664 {
2665 	if (stripe >= 0 && stripe < rbio->nr_data)
2666 		return 1;
2667 	return 0;
2668 }
2669 
2670 static int recover_scrub_rbio(struct btrfs_raid_bio *rbio)
2671 {
2672 	void **pointers = NULL;
2673 	void **unmap_array = NULL;
2674 	int sector_nr;
2675 	int ret = 0;
2676 
2677 	/*
2678 	 * @pointers array stores the pointer for each sector.
2679 	 *
2680 	 * @unmap_array stores copy of pointers that does not get reordered
2681 	 * during reconstruction so that kunmap_local works.
2682 	 */
2683 	pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
2684 	unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
2685 	if (!pointers || !unmap_array) {
2686 		ret = -ENOMEM;
2687 		goto out;
2688 	}
2689 
2690 	for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
2691 		int dfail = 0, failp = -1;
2692 		int faila;
2693 		int failb;
2694 		int found_errors;
2695 
2696 		found_errors = get_rbio_veritical_errors(rbio, sector_nr,
2697 							 &faila, &failb);
2698 		if (found_errors > rbio->bioc->max_errors) {
2699 			ret = -EIO;
2700 			goto out;
2701 		}
2702 		if (found_errors == 0)
2703 			continue;
2704 
2705 		/* We should have at least one error here. */
2706 		ASSERT(faila >= 0 || failb >= 0);
2707 
2708 		if (is_data_stripe(rbio, faila))
2709 			dfail++;
2710 		else if (is_parity_stripe(faila))
2711 			failp = faila;
2712 
2713 		if (is_data_stripe(rbio, failb))
2714 			dfail++;
2715 		else if (is_parity_stripe(failb))
2716 			failp = failb;
2717 		/*
2718 		 * Because we can not use a scrubbing parity to repair the
2719 		 * data, so the capability of the repair is declined.  (In the
2720 		 * case of RAID5, we can not repair anything.)
2721 		 */
2722 		if (dfail > rbio->bioc->max_errors - 1) {
2723 			ret = -EIO;
2724 			goto out;
2725 		}
2726 		/*
2727 		 * If all data is good, only parity is correctly, just repair
2728 		 * the parity, no need to recover data stripes.
2729 		 */
2730 		if (dfail == 0)
2731 			continue;
2732 
2733 		/*
2734 		 * Here means we got one corrupted data stripe and one
2735 		 * corrupted parity on RAID6, if the corrupted parity is
2736 		 * scrubbing parity, luckily, use the other one to repair the
2737 		 * data, or we can not repair the data stripe.
2738 		 */
2739 		if (failp != rbio->scrubp) {
2740 			ret = -EIO;
2741 			goto out;
2742 		}
2743 
2744 		ret = recover_vertical(rbio, sector_nr, pointers, unmap_array);
2745 		if (ret < 0)
2746 			goto out;
2747 	}
2748 out:
2749 	kfree(pointers);
2750 	kfree(unmap_array);
2751 	return ret;
2752 }
2753 
2754 static int scrub_assemble_read_bios(struct btrfs_raid_bio *rbio)
2755 {
2756 	struct bio_list bio_list = BIO_EMPTY_LIST;
2757 	int total_sector_nr;
2758 	int ret = 0;
2759 
2760 	/* Build a list of bios to read all the missing parts. */
2761 	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
2762 	     total_sector_nr++) {
2763 		int sectornr = total_sector_nr % rbio->stripe_nsectors;
2764 		int stripe = total_sector_nr / rbio->stripe_nsectors;
2765 		struct sector_ptr *sector;
2766 
2767 		/* No data in the vertical stripe, no need to read. */
2768 		if (!test_bit(sectornr, &rbio->dbitmap))
2769 			continue;
2770 
2771 		/*
2772 		 * We want to find all the sectors missing from the rbio and
2773 		 * read them from the disk. If sector_in_rbio() finds a sector
2774 		 * in the bio list we don't need to read it off the stripe.
2775 		 */
2776 		sector = sector_in_rbio(rbio, stripe, sectornr, 1);
2777 		if (sector)
2778 			continue;
2779 
2780 		sector = rbio_stripe_sector(rbio, stripe, sectornr);
2781 		/*
2782 		 * The bio cache may have handed us an uptodate sector.  If so,
2783 		 * use it.
2784 		 */
2785 		if (sector->uptodate)
2786 			continue;
2787 
2788 		ret = rbio_add_io_sector(rbio, &bio_list, sector, stripe,
2789 					 sectornr, REQ_OP_READ);
2790 		if (ret) {
2791 			bio_list_put(&bio_list);
2792 			return ret;
2793 		}
2794 	}
2795 
2796 	submit_read_wait_bio_list(rbio, &bio_list);
2797 	return 0;
2798 }
2799 
2800 static void scrub_rbio(struct btrfs_raid_bio *rbio)
2801 {
2802 	int sector_nr;
2803 	int ret;
2804 
2805 	ret = alloc_rbio_essential_pages(rbio);
2806 	if (ret)
2807 		goto out;
2808 
2809 	bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
2810 
2811 	ret = scrub_assemble_read_bios(rbio);
2812 	if (ret < 0)
2813 		goto out;
2814 
2815 	/* We may have some failures, recover the failed sectors first. */
2816 	ret = recover_scrub_rbio(rbio);
2817 	if (ret < 0)
2818 		goto out;
2819 
2820 	/*
2821 	 * We have every sector properly prepared. Can finish the scrub
2822 	 * and writeback the good content.
2823 	 */
2824 	ret = finish_parity_scrub(rbio);
2825 	wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
2826 	for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
2827 		int found_errors;
2828 
2829 		found_errors = get_rbio_veritical_errors(rbio, sector_nr, NULL, NULL);
2830 		if (found_errors > rbio->bioc->max_errors) {
2831 			ret = -EIO;
2832 			break;
2833 		}
2834 	}
2835 out:
2836 	rbio_orig_end_io(rbio, errno_to_blk_status(ret));
2837 }
2838 
2839 static void scrub_rbio_work_locked(struct work_struct *work)
2840 {
2841 	scrub_rbio(container_of(work, struct btrfs_raid_bio, work));
2842 }
2843 
2844 void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2845 {
2846 	if (!lock_stripe_add(rbio))
2847 		start_async_work(rbio, scrub_rbio_work_locked);
2848 }
2849 
2850 /*
2851  * This is for scrub call sites where we already have correct data contents.
2852  * This allows us to avoid reading data stripes again.
2853  *
2854  * Unfortunately here we have to do page copy, other than reusing the pages.
2855  * This is due to the fact rbio has its own page management for its cache.
2856  */
2857 void raid56_parity_cache_data_pages(struct btrfs_raid_bio *rbio,
2858 				    struct page **data_pages, u64 data_logical)
2859 {
2860 	const u64 offset_in_full_stripe = data_logical -
2861 					  rbio->bioc->full_stripe_logical;
2862 	const int page_index = offset_in_full_stripe >> PAGE_SHIFT;
2863 	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
2864 	const u32 sectors_per_page = PAGE_SIZE / sectorsize;
2865 	int ret;
2866 
2867 	/*
2868 	 * If we hit ENOMEM temporarily, but later at
2869 	 * raid56_parity_submit_scrub_rbio() time it succeeded, we just do
2870 	 * the extra read, not a big deal.
2871 	 *
2872 	 * If we hit ENOMEM later at raid56_parity_submit_scrub_rbio() time,
2873 	 * the bio would got proper error number set.
2874 	 */
2875 	ret = alloc_rbio_data_pages(rbio);
2876 	if (ret < 0)
2877 		return;
2878 
2879 	/* data_logical must be at stripe boundary and inside the full stripe. */
2880 	ASSERT(IS_ALIGNED(offset_in_full_stripe, BTRFS_STRIPE_LEN));
2881 	ASSERT(offset_in_full_stripe < (rbio->nr_data << BTRFS_STRIPE_LEN_SHIFT));
2882 
2883 	for (int page_nr = 0; page_nr < (BTRFS_STRIPE_LEN >> PAGE_SHIFT); page_nr++) {
2884 		struct page *dst = rbio->stripe_pages[page_nr + page_index];
2885 		struct page *src = data_pages[page_nr];
2886 
2887 		memcpy_page(dst, 0, src, 0, PAGE_SIZE);
2888 		for (int sector_nr = sectors_per_page * page_index;
2889 		     sector_nr < sectors_per_page * (page_index + 1);
2890 		     sector_nr++)
2891 			rbio->stripe_sectors[sector_nr].uptodate = true;
2892 	}
2893 }
2894