1 /* 2 * Copyright (C) 2012 Fusion-io All rights reserved. 3 * Copyright (C) 2012 Intel Corp. All rights reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public 7 * License v2 as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 12 * General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public 15 * License along with this program; if not, write to the 16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 17 * Boston, MA 021110-1307, USA. 18 */ 19 #include <linux/sched.h> 20 #include <linux/wait.h> 21 #include <linux/bio.h> 22 #include <linux/slab.h> 23 #include <linux/buffer_head.h> 24 #include <linux/blkdev.h> 25 #include <linux/random.h> 26 #include <linux/iocontext.h> 27 #include <linux/capability.h> 28 #include <linux/ratelimit.h> 29 #include <linux/kthread.h> 30 #include <linux/raid/pq.h> 31 #include <linux/hash.h> 32 #include <linux/list_sort.h> 33 #include <linux/raid/xor.h> 34 #include <linux/mm.h> 35 #include <asm/div64.h> 36 #include "ctree.h" 37 #include "extent_map.h" 38 #include "disk-io.h" 39 #include "transaction.h" 40 #include "print-tree.h" 41 #include "volumes.h" 42 #include "raid56.h" 43 #include "async-thread.h" 44 #include "check-integrity.h" 45 #include "rcu-string.h" 46 47 /* set when additional merges to this rbio are not allowed */ 48 #define RBIO_RMW_LOCKED_BIT 1 49 50 /* 51 * set when this rbio is sitting in the hash, but it is just a cache 52 * of past RMW 53 */ 54 #define RBIO_CACHE_BIT 2 55 56 /* 57 * set when it is safe to trust the stripe_pages for caching 58 */ 59 #define RBIO_CACHE_READY_BIT 3 60 61 #define RBIO_CACHE_SIZE 1024 62 63 enum btrfs_rbio_ops { 64 BTRFS_RBIO_WRITE, 65 BTRFS_RBIO_READ_REBUILD, 66 BTRFS_RBIO_PARITY_SCRUB, 67 BTRFS_RBIO_REBUILD_MISSING, 68 }; 69 70 struct btrfs_raid_bio { 71 struct btrfs_fs_info *fs_info; 72 struct btrfs_bio *bbio; 73 74 /* while we're doing rmw on a stripe 75 * we put it into a hash table so we can 76 * lock the stripe and merge more rbios 77 * into it. 78 */ 79 struct list_head hash_list; 80 81 /* 82 * LRU list for the stripe cache 83 */ 84 struct list_head stripe_cache; 85 86 /* 87 * for scheduling work in the helper threads 88 */ 89 struct btrfs_work work; 90 91 /* 92 * bio list and bio_list_lock are used 93 * to add more bios into the stripe 94 * in hopes of avoiding the full rmw 95 */ 96 struct bio_list bio_list; 97 spinlock_t bio_list_lock; 98 99 /* also protected by the bio_list_lock, the 100 * plug list is used by the plugging code 101 * to collect partial bios while plugged. The 102 * stripe locking code also uses it to hand off 103 * the stripe lock to the next pending IO 104 */ 105 struct list_head plug_list; 106 107 /* 108 * flags that tell us if it is safe to 109 * merge with this bio 110 */ 111 unsigned long flags; 112 113 /* size of each individual stripe on disk */ 114 int stripe_len; 115 116 /* number of data stripes (no p/q) */ 117 int nr_data; 118 119 int real_stripes; 120 121 int stripe_npages; 122 /* 123 * set if we're doing a parity rebuild 124 * for a read from higher up, which is handled 125 * differently from a parity rebuild as part of 126 * rmw 127 */ 128 enum btrfs_rbio_ops operation; 129 130 /* first bad stripe */ 131 int faila; 132 133 /* second bad stripe (for raid6 use) */ 134 int failb; 135 136 int scrubp; 137 /* 138 * number of pages needed to represent the full 139 * stripe 140 */ 141 int nr_pages; 142 143 /* 144 * size of all the bios in the bio_list. This 145 * helps us decide if the rbio maps to a full 146 * stripe or not 147 */ 148 int bio_list_bytes; 149 150 int generic_bio_cnt; 151 152 refcount_t refs; 153 154 atomic_t stripes_pending; 155 156 atomic_t error; 157 /* 158 * these are two arrays of pointers. We allocate the 159 * rbio big enough to hold them both and setup their 160 * locations when the rbio is allocated 161 */ 162 163 /* pointers to pages that we allocated for 164 * reading/writing stripes directly from the disk (including P/Q) 165 */ 166 struct page **stripe_pages; 167 168 /* 169 * pointers to the pages in the bio_list. Stored 170 * here for faster lookup 171 */ 172 struct page **bio_pages; 173 174 /* 175 * bitmap to record which horizontal stripe has data 176 */ 177 unsigned long *dbitmap; 178 }; 179 180 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio); 181 static noinline void finish_rmw(struct btrfs_raid_bio *rbio); 182 static void rmw_work(struct btrfs_work *work); 183 static void read_rebuild_work(struct btrfs_work *work); 184 static void async_rmw_stripe(struct btrfs_raid_bio *rbio); 185 static void async_read_rebuild(struct btrfs_raid_bio *rbio); 186 static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio); 187 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed); 188 static void __free_raid_bio(struct btrfs_raid_bio *rbio); 189 static void index_rbio_pages(struct btrfs_raid_bio *rbio); 190 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio); 191 192 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio, 193 int need_check); 194 static void async_scrub_parity(struct btrfs_raid_bio *rbio); 195 196 /* 197 * the stripe hash table is used for locking, and to collect 198 * bios in hopes of making a full stripe 199 */ 200 int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info) 201 { 202 struct btrfs_stripe_hash_table *table; 203 struct btrfs_stripe_hash_table *x; 204 struct btrfs_stripe_hash *cur; 205 struct btrfs_stripe_hash *h; 206 int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS; 207 int i; 208 int table_size; 209 210 if (info->stripe_hash_table) 211 return 0; 212 213 /* 214 * The table is large, starting with order 4 and can go as high as 215 * order 7 in case lock debugging is turned on. 216 * 217 * Try harder to allocate and fallback to vmalloc to lower the chance 218 * of a failing mount. 219 */ 220 table_size = sizeof(*table) + sizeof(*h) * num_entries; 221 table = kvzalloc(table_size, GFP_KERNEL); 222 if (!table) 223 return -ENOMEM; 224 225 spin_lock_init(&table->cache_lock); 226 INIT_LIST_HEAD(&table->stripe_cache); 227 228 h = table->table; 229 230 for (i = 0; i < num_entries; i++) { 231 cur = h + i; 232 INIT_LIST_HEAD(&cur->hash_list); 233 spin_lock_init(&cur->lock); 234 init_waitqueue_head(&cur->wait); 235 } 236 237 x = cmpxchg(&info->stripe_hash_table, NULL, table); 238 if (x) 239 kvfree(x); 240 return 0; 241 } 242 243 /* 244 * caching an rbio means to copy anything from the 245 * bio_pages array into the stripe_pages array. We 246 * use the page uptodate bit in the stripe cache array 247 * to indicate if it has valid data 248 * 249 * once the caching is done, we set the cache ready 250 * bit. 251 */ 252 static void cache_rbio_pages(struct btrfs_raid_bio *rbio) 253 { 254 int i; 255 char *s; 256 char *d; 257 int ret; 258 259 ret = alloc_rbio_pages(rbio); 260 if (ret) 261 return; 262 263 for (i = 0; i < rbio->nr_pages; i++) { 264 if (!rbio->bio_pages[i]) 265 continue; 266 267 s = kmap(rbio->bio_pages[i]); 268 d = kmap(rbio->stripe_pages[i]); 269 270 memcpy(d, s, PAGE_SIZE); 271 272 kunmap(rbio->bio_pages[i]); 273 kunmap(rbio->stripe_pages[i]); 274 SetPageUptodate(rbio->stripe_pages[i]); 275 } 276 set_bit(RBIO_CACHE_READY_BIT, &rbio->flags); 277 } 278 279 /* 280 * we hash on the first logical address of the stripe 281 */ 282 static int rbio_bucket(struct btrfs_raid_bio *rbio) 283 { 284 u64 num = rbio->bbio->raid_map[0]; 285 286 /* 287 * we shift down quite a bit. We're using byte 288 * addressing, and most of the lower bits are zeros. 289 * This tends to upset hash_64, and it consistently 290 * returns just one or two different values. 291 * 292 * shifting off the lower bits fixes things. 293 */ 294 return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS); 295 } 296 297 /* 298 * stealing an rbio means taking all the uptodate pages from the stripe 299 * array in the source rbio and putting them into the destination rbio 300 */ 301 static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest) 302 { 303 int i; 304 struct page *s; 305 struct page *d; 306 307 if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags)) 308 return; 309 310 for (i = 0; i < dest->nr_pages; i++) { 311 s = src->stripe_pages[i]; 312 if (!s || !PageUptodate(s)) { 313 continue; 314 } 315 316 d = dest->stripe_pages[i]; 317 if (d) 318 __free_page(d); 319 320 dest->stripe_pages[i] = s; 321 src->stripe_pages[i] = NULL; 322 } 323 } 324 325 /* 326 * merging means we take the bio_list from the victim and 327 * splice it into the destination. The victim should 328 * be discarded afterwards. 329 * 330 * must be called with dest->rbio_list_lock held 331 */ 332 static void merge_rbio(struct btrfs_raid_bio *dest, 333 struct btrfs_raid_bio *victim) 334 { 335 bio_list_merge(&dest->bio_list, &victim->bio_list); 336 dest->bio_list_bytes += victim->bio_list_bytes; 337 dest->generic_bio_cnt += victim->generic_bio_cnt; 338 bio_list_init(&victim->bio_list); 339 } 340 341 /* 342 * used to prune items that are in the cache. The caller 343 * must hold the hash table lock. 344 */ 345 static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio) 346 { 347 int bucket = rbio_bucket(rbio); 348 struct btrfs_stripe_hash_table *table; 349 struct btrfs_stripe_hash *h; 350 int freeit = 0; 351 352 /* 353 * check the bit again under the hash table lock. 354 */ 355 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags)) 356 return; 357 358 table = rbio->fs_info->stripe_hash_table; 359 h = table->table + bucket; 360 361 /* hold the lock for the bucket because we may be 362 * removing it from the hash table 363 */ 364 spin_lock(&h->lock); 365 366 /* 367 * hold the lock for the bio list because we need 368 * to make sure the bio list is empty 369 */ 370 spin_lock(&rbio->bio_list_lock); 371 372 if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) { 373 list_del_init(&rbio->stripe_cache); 374 table->cache_size -= 1; 375 freeit = 1; 376 377 /* if the bio list isn't empty, this rbio is 378 * still involved in an IO. We take it out 379 * of the cache list, and drop the ref that 380 * was held for the list. 381 * 382 * If the bio_list was empty, we also remove 383 * the rbio from the hash_table, and drop 384 * the corresponding ref 385 */ 386 if (bio_list_empty(&rbio->bio_list)) { 387 if (!list_empty(&rbio->hash_list)) { 388 list_del_init(&rbio->hash_list); 389 refcount_dec(&rbio->refs); 390 BUG_ON(!list_empty(&rbio->plug_list)); 391 } 392 } 393 } 394 395 spin_unlock(&rbio->bio_list_lock); 396 spin_unlock(&h->lock); 397 398 if (freeit) 399 __free_raid_bio(rbio); 400 } 401 402 /* 403 * prune a given rbio from the cache 404 */ 405 static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio) 406 { 407 struct btrfs_stripe_hash_table *table; 408 unsigned long flags; 409 410 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags)) 411 return; 412 413 table = rbio->fs_info->stripe_hash_table; 414 415 spin_lock_irqsave(&table->cache_lock, flags); 416 __remove_rbio_from_cache(rbio); 417 spin_unlock_irqrestore(&table->cache_lock, flags); 418 } 419 420 /* 421 * remove everything in the cache 422 */ 423 static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info) 424 { 425 struct btrfs_stripe_hash_table *table; 426 unsigned long flags; 427 struct btrfs_raid_bio *rbio; 428 429 table = info->stripe_hash_table; 430 431 spin_lock_irqsave(&table->cache_lock, flags); 432 while (!list_empty(&table->stripe_cache)) { 433 rbio = list_entry(table->stripe_cache.next, 434 struct btrfs_raid_bio, 435 stripe_cache); 436 __remove_rbio_from_cache(rbio); 437 } 438 spin_unlock_irqrestore(&table->cache_lock, flags); 439 } 440 441 /* 442 * remove all cached entries and free the hash table 443 * used by unmount 444 */ 445 void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info) 446 { 447 if (!info->stripe_hash_table) 448 return; 449 btrfs_clear_rbio_cache(info); 450 kvfree(info->stripe_hash_table); 451 info->stripe_hash_table = NULL; 452 } 453 454 /* 455 * insert an rbio into the stripe cache. It 456 * must have already been prepared by calling 457 * cache_rbio_pages 458 * 459 * If this rbio was already cached, it gets 460 * moved to the front of the lru. 461 * 462 * If the size of the rbio cache is too big, we 463 * prune an item. 464 */ 465 static void cache_rbio(struct btrfs_raid_bio *rbio) 466 { 467 struct btrfs_stripe_hash_table *table; 468 unsigned long flags; 469 470 if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags)) 471 return; 472 473 table = rbio->fs_info->stripe_hash_table; 474 475 spin_lock_irqsave(&table->cache_lock, flags); 476 spin_lock(&rbio->bio_list_lock); 477 478 /* bump our ref if we were not in the list before */ 479 if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags)) 480 refcount_inc(&rbio->refs); 481 482 if (!list_empty(&rbio->stripe_cache)){ 483 list_move(&rbio->stripe_cache, &table->stripe_cache); 484 } else { 485 list_add(&rbio->stripe_cache, &table->stripe_cache); 486 table->cache_size += 1; 487 } 488 489 spin_unlock(&rbio->bio_list_lock); 490 491 if (table->cache_size > RBIO_CACHE_SIZE) { 492 struct btrfs_raid_bio *found; 493 494 found = list_entry(table->stripe_cache.prev, 495 struct btrfs_raid_bio, 496 stripe_cache); 497 498 if (found != rbio) 499 __remove_rbio_from_cache(found); 500 } 501 502 spin_unlock_irqrestore(&table->cache_lock, flags); 503 } 504 505 /* 506 * helper function to run the xor_blocks api. It is only 507 * able to do MAX_XOR_BLOCKS at a time, so we need to 508 * loop through. 509 */ 510 static void run_xor(void **pages, int src_cnt, ssize_t len) 511 { 512 int src_off = 0; 513 int xor_src_cnt = 0; 514 void *dest = pages[src_cnt]; 515 516 while(src_cnt > 0) { 517 xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS); 518 xor_blocks(xor_src_cnt, len, dest, pages + src_off); 519 520 src_cnt -= xor_src_cnt; 521 src_off += xor_src_cnt; 522 } 523 } 524 525 /* 526 * returns true if the bio list inside this rbio 527 * covers an entire stripe (no rmw required). 528 * Must be called with the bio list lock held, or 529 * at a time when you know it is impossible to add 530 * new bios into the list 531 */ 532 static int __rbio_is_full(struct btrfs_raid_bio *rbio) 533 { 534 unsigned long size = rbio->bio_list_bytes; 535 int ret = 1; 536 537 if (size != rbio->nr_data * rbio->stripe_len) 538 ret = 0; 539 540 BUG_ON(size > rbio->nr_data * rbio->stripe_len); 541 return ret; 542 } 543 544 static int rbio_is_full(struct btrfs_raid_bio *rbio) 545 { 546 unsigned long flags; 547 int ret; 548 549 spin_lock_irqsave(&rbio->bio_list_lock, flags); 550 ret = __rbio_is_full(rbio); 551 spin_unlock_irqrestore(&rbio->bio_list_lock, flags); 552 return ret; 553 } 554 555 /* 556 * returns 1 if it is safe to merge two rbios together. 557 * The merging is safe if the two rbios correspond to 558 * the same stripe and if they are both going in the same 559 * direction (read vs write), and if neither one is 560 * locked for final IO 561 * 562 * The caller is responsible for locking such that 563 * rmw_locked is safe to test 564 */ 565 static int rbio_can_merge(struct btrfs_raid_bio *last, 566 struct btrfs_raid_bio *cur) 567 { 568 if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) || 569 test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) 570 return 0; 571 572 /* 573 * we can't merge with cached rbios, since the 574 * idea is that when we merge the destination 575 * rbio is going to run our IO for us. We can 576 * steal from cached rbios though, other functions 577 * handle that. 578 */ 579 if (test_bit(RBIO_CACHE_BIT, &last->flags) || 580 test_bit(RBIO_CACHE_BIT, &cur->flags)) 581 return 0; 582 583 if (last->bbio->raid_map[0] != 584 cur->bbio->raid_map[0]) 585 return 0; 586 587 /* we can't merge with different operations */ 588 if (last->operation != cur->operation) 589 return 0; 590 /* 591 * We've need read the full stripe from the drive. 592 * check and repair the parity and write the new results. 593 * 594 * We're not allowed to add any new bios to the 595 * bio list here, anyone else that wants to 596 * change this stripe needs to do their own rmw. 597 */ 598 if (last->operation == BTRFS_RBIO_PARITY_SCRUB || 599 cur->operation == BTRFS_RBIO_PARITY_SCRUB) 600 return 0; 601 602 if (last->operation == BTRFS_RBIO_REBUILD_MISSING || 603 cur->operation == BTRFS_RBIO_REBUILD_MISSING) 604 return 0; 605 606 return 1; 607 } 608 609 static int rbio_stripe_page_index(struct btrfs_raid_bio *rbio, int stripe, 610 int index) 611 { 612 return stripe * rbio->stripe_npages + index; 613 } 614 615 /* 616 * these are just the pages from the rbio array, not from anything 617 * the FS sent down to us 618 */ 619 static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe, 620 int index) 621 { 622 return rbio->stripe_pages[rbio_stripe_page_index(rbio, stripe, index)]; 623 } 624 625 /* 626 * helper to index into the pstripe 627 */ 628 static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index) 629 { 630 return rbio_stripe_page(rbio, rbio->nr_data, index); 631 } 632 633 /* 634 * helper to index into the qstripe, returns null 635 * if there is no qstripe 636 */ 637 static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index) 638 { 639 if (rbio->nr_data + 1 == rbio->real_stripes) 640 return NULL; 641 return rbio_stripe_page(rbio, rbio->nr_data + 1, index); 642 } 643 644 /* 645 * The first stripe in the table for a logical address 646 * has the lock. rbios are added in one of three ways: 647 * 648 * 1) Nobody has the stripe locked yet. The rbio is given 649 * the lock and 0 is returned. The caller must start the IO 650 * themselves. 651 * 652 * 2) Someone has the stripe locked, but we're able to merge 653 * with the lock owner. The rbio is freed and the IO will 654 * start automatically along with the existing rbio. 1 is returned. 655 * 656 * 3) Someone has the stripe locked, but we're not able to merge. 657 * The rbio is added to the lock owner's plug list, or merged into 658 * an rbio already on the plug list. When the lock owner unlocks, 659 * the next rbio on the list is run and the IO is started automatically. 660 * 1 is returned 661 * 662 * If we return 0, the caller still owns the rbio and must continue with 663 * IO submission. If we return 1, the caller must assume the rbio has 664 * already been freed. 665 */ 666 static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio) 667 { 668 int bucket = rbio_bucket(rbio); 669 struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket; 670 struct btrfs_raid_bio *cur; 671 struct btrfs_raid_bio *pending; 672 unsigned long flags; 673 DEFINE_WAIT(wait); 674 struct btrfs_raid_bio *freeit = NULL; 675 struct btrfs_raid_bio *cache_drop = NULL; 676 int ret = 0; 677 678 spin_lock_irqsave(&h->lock, flags); 679 list_for_each_entry(cur, &h->hash_list, hash_list) { 680 if (cur->bbio->raid_map[0] == rbio->bbio->raid_map[0]) { 681 spin_lock(&cur->bio_list_lock); 682 683 /* can we steal this cached rbio's pages? */ 684 if (bio_list_empty(&cur->bio_list) && 685 list_empty(&cur->plug_list) && 686 test_bit(RBIO_CACHE_BIT, &cur->flags) && 687 !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) { 688 list_del_init(&cur->hash_list); 689 refcount_dec(&cur->refs); 690 691 steal_rbio(cur, rbio); 692 cache_drop = cur; 693 spin_unlock(&cur->bio_list_lock); 694 695 goto lockit; 696 } 697 698 /* can we merge into the lock owner? */ 699 if (rbio_can_merge(cur, rbio)) { 700 merge_rbio(cur, rbio); 701 spin_unlock(&cur->bio_list_lock); 702 freeit = rbio; 703 ret = 1; 704 goto out; 705 } 706 707 708 /* 709 * we couldn't merge with the running 710 * rbio, see if we can merge with the 711 * pending ones. We don't have to 712 * check for rmw_locked because there 713 * is no way they are inside finish_rmw 714 * right now 715 */ 716 list_for_each_entry(pending, &cur->plug_list, 717 plug_list) { 718 if (rbio_can_merge(pending, rbio)) { 719 merge_rbio(pending, rbio); 720 spin_unlock(&cur->bio_list_lock); 721 freeit = rbio; 722 ret = 1; 723 goto out; 724 } 725 } 726 727 /* no merging, put us on the tail of the plug list, 728 * our rbio will be started with the currently 729 * running rbio unlocks 730 */ 731 list_add_tail(&rbio->plug_list, &cur->plug_list); 732 spin_unlock(&cur->bio_list_lock); 733 ret = 1; 734 goto out; 735 } 736 } 737 lockit: 738 refcount_inc(&rbio->refs); 739 list_add(&rbio->hash_list, &h->hash_list); 740 out: 741 spin_unlock_irqrestore(&h->lock, flags); 742 if (cache_drop) 743 remove_rbio_from_cache(cache_drop); 744 if (freeit) 745 __free_raid_bio(freeit); 746 return ret; 747 } 748 749 /* 750 * called as rmw or parity rebuild is completed. If the plug list has more 751 * rbios waiting for this stripe, the next one on the list will be started 752 */ 753 static noinline void unlock_stripe(struct btrfs_raid_bio *rbio) 754 { 755 int bucket; 756 struct btrfs_stripe_hash *h; 757 unsigned long flags; 758 int keep_cache = 0; 759 760 bucket = rbio_bucket(rbio); 761 h = rbio->fs_info->stripe_hash_table->table + bucket; 762 763 if (list_empty(&rbio->plug_list)) 764 cache_rbio(rbio); 765 766 spin_lock_irqsave(&h->lock, flags); 767 spin_lock(&rbio->bio_list_lock); 768 769 if (!list_empty(&rbio->hash_list)) { 770 /* 771 * if we're still cached and there is no other IO 772 * to perform, just leave this rbio here for others 773 * to steal from later 774 */ 775 if (list_empty(&rbio->plug_list) && 776 test_bit(RBIO_CACHE_BIT, &rbio->flags)) { 777 keep_cache = 1; 778 clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); 779 BUG_ON(!bio_list_empty(&rbio->bio_list)); 780 goto done; 781 } 782 783 list_del_init(&rbio->hash_list); 784 refcount_dec(&rbio->refs); 785 786 /* 787 * we use the plug list to hold all the rbios 788 * waiting for the chance to lock this stripe. 789 * hand the lock over to one of them. 790 */ 791 if (!list_empty(&rbio->plug_list)) { 792 struct btrfs_raid_bio *next; 793 struct list_head *head = rbio->plug_list.next; 794 795 next = list_entry(head, struct btrfs_raid_bio, 796 plug_list); 797 798 list_del_init(&rbio->plug_list); 799 800 list_add(&next->hash_list, &h->hash_list); 801 refcount_inc(&next->refs); 802 spin_unlock(&rbio->bio_list_lock); 803 spin_unlock_irqrestore(&h->lock, flags); 804 805 if (next->operation == BTRFS_RBIO_READ_REBUILD) 806 async_read_rebuild(next); 807 else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) { 808 steal_rbio(rbio, next); 809 async_read_rebuild(next); 810 } else if (next->operation == BTRFS_RBIO_WRITE) { 811 steal_rbio(rbio, next); 812 async_rmw_stripe(next); 813 } else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) { 814 steal_rbio(rbio, next); 815 async_scrub_parity(next); 816 } 817 818 goto done_nolock; 819 /* 820 * The barrier for this waitqueue_active is not needed, 821 * we're protected by h->lock and can't miss a wakeup. 822 */ 823 } else if (waitqueue_active(&h->wait)) { 824 spin_unlock(&rbio->bio_list_lock); 825 spin_unlock_irqrestore(&h->lock, flags); 826 wake_up(&h->wait); 827 goto done_nolock; 828 } 829 } 830 done: 831 spin_unlock(&rbio->bio_list_lock); 832 spin_unlock_irqrestore(&h->lock, flags); 833 834 done_nolock: 835 if (!keep_cache) 836 remove_rbio_from_cache(rbio); 837 } 838 839 static void __free_raid_bio(struct btrfs_raid_bio *rbio) 840 { 841 int i; 842 843 if (!refcount_dec_and_test(&rbio->refs)) 844 return; 845 846 WARN_ON(!list_empty(&rbio->stripe_cache)); 847 WARN_ON(!list_empty(&rbio->hash_list)); 848 WARN_ON(!bio_list_empty(&rbio->bio_list)); 849 850 for (i = 0; i < rbio->nr_pages; i++) { 851 if (rbio->stripe_pages[i]) { 852 __free_page(rbio->stripe_pages[i]); 853 rbio->stripe_pages[i] = NULL; 854 } 855 } 856 857 btrfs_put_bbio(rbio->bbio); 858 kfree(rbio); 859 } 860 861 static void free_raid_bio(struct btrfs_raid_bio *rbio) 862 { 863 unlock_stripe(rbio); 864 __free_raid_bio(rbio); 865 } 866 867 /* 868 * this frees the rbio and runs through all the bios in the 869 * bio_list and calls end_io on them 870 */ 871 static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err) 872 { 873 struct bio *cur = bio_list_get(&rbio->bio_list); 874 struct bio *next; 875 876 if (rbio->generic_bio_cnt) 877 btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt); 878 879 free_raid_bio(rbio); 880 881 while (cur) { 882 next = cur->bi_next; 883 cur->bi_next = NULL; 884 cur->bi_status = err; 885 bio_endio(cur); 886 cur = next; 887 } 888 } 889 890 /* 891 * end io function used by finish_rmw. When we finally 892 * get here, we've written a full stripe 893 */ 894 static void raid_write_end_io(struct bio *bio) 895 { 896 struct btrfs_raid_bio *rbio = bio->bi_private; 897 blk_status_t err = bio->bi_status; 898 int max_errors; 899 900 if (err) 901 fail_bio_stripe(rbio, bio); 902 903 bio_put(bio); 904 905 if (!atomic_dec_and_test(&rbio->stripes_pending)) 906 return; 907 908 err = 0; 909 910 /* OK, we have read all the stripes we need to. */ 911 max_errors = (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) ? 912 0 : rbio->bbio->max_errors; 913 if (atomic_read(&rbio->error) > max_errors) 914 err = BLK_STS_IOERR; 915 916 rbio_orig_end_io(rbio, err); 917 } 918 919 /* 920 * the read/modify/write code wants to use the original bio for 921 * any pages it included, and then use the rbio for everything 922 * else. This function decides if a given index (stripe number) 923 * and page number in that stripe fall inside the original bio 924 * or the rbio. 925 * 926 * if you set bio_list_only, you'll get a NULL back for any ranges 927 * that are outside the bio_list 928 * 929 * This doesn't take any refs on anything, you get a bare page pointer 930 * and the caller must bump refs as required. 931 * 932 * You must call index_rbio_pages once before you can trust 933 * the answers from this function. 934 */ 935 static struct page *page_in_rbio(struct btrfs_raid_bio *rbio, 936 int index, int pagenr, int bio_list_only) 937 { 938 int chunk_page; 939 struct page *p = NULL; 940 941 chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr; 942 943 spin_lock_irq(&rbio->bio_list_lock); 944 p = rbio->bio_pages[chunk_page]; 945 spin_unlock_irq(&rbio->bio_list_lock); 946 947 if (p || bio_list_only) 948 return p; 949 950 return rbio->stripe_pages[chunk_page]; 951 } 952 953 /* 954 * number of pages we need for the entire stripe across all the 955 * drives 956 */ 957 static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes) 958 { 959 return DIV_ROUND_UP(stripe_len, PAGE_SIZE) * nr_stripes; 960 } 961 962 /* 963 * allocation and initial setup for the btrfs_raid_bio. Not 964 * this does not allocate any pages for rbio->pages. 965 */ 966 static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info, 967 struct btrfs_bio *bbio, 968 u64 stripe_len) 969 { 970 struct btrfs_raid_bio *rbio; 971 int nr_data = 0; 972 int real_stripes = bbio->num_stripes - bbio->num_tgtdevs; 973 int num_pages = rbio_nr_pages(stripe_len, real_stripes); 974 int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE); 975 void *p; 976 977 rbio = kzalloc(sizeof(*rbio) + num_pages * sizeof(struct page *) * 2 + 978 DIV_ROUND_UP(stripe_npages, BITS_PER_LONG) * 979 sizeof(long), GFP_NOFS); 980 if (!rbio) 981 return ERR_PTR(-ENOMEM); 982 983 bio_list_init(&rbio->bio_list); 984 INIT_LIST_HEAD(&rbio->plug_list); 985 spin_lock_init(&rbio->bio_list_lock); 986 INIT_LIST_HEAD(&rbio->stripe_cache); 987 INIT_LIST_HEAD(&rbio->hash_list); 988 rbio->bbio = bbio; 989 rbio->fs_info = fs_info; 990 rbio->stripe_len = stripe_len; 991 rbio->nr_pages = num_pages; 992 rbio->real_stripes = real_stripes; 993 rbio->stripe_npages = stripe_npages; 994 rbio->faila = -1; 995 rbio->failb = -1; 996 refcount_set(&rbio->refs, 1); 997 atomic_set(&rbio->error, 0); 998 atomic_set(&rbio->stripes_pending, 0); 999 1000 /* 1001 * the stripe_pages and bio_pages array point to the extra 1002 * memory we allocated past the end of the rbio 1003 */ 1004 p = rbio + 1; 1005 rbio->stripe_pages = p; 1006 rbio->bio_pages = p + sizeof(struct page *) * num_pages; 1007 rbio->dbitmap = p + sizeof(struct page *) * num_pages * 2; 1008 1009 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5) 1010 nr_data = real_stripes - 1; 1011 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) 1012 nr_data = real_stripes - 2; 1013 else 1014 BUG(); 1015 1016 rbio->nr_data = nr_data; 1017 return rbio; 1018 } 1019 1020 /* allocate pages for all the stripes in the bio, including parity */ 1021 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio) 1022 { 1023 int i; 1024 struct page *page; 1025 1026 for (i = 0; i < rbio->nr_pages; i++) { 1027 if (rbio->stripe_pages[i]) 1028 continue; 1029 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 1030 if (!page) 1031 return -ENOMEM; 1032 rbio->stripe_pages[i] = page; 1033 } 1034 return 0; 1035 } 1036 1037 /* only allocate pages for p/q stripes */ 1038 static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio) 1039 { 1040 int i; 1041 struct page *page; 1042 1043 i = rbio_stripe_page_index(rbio, rbio->nr_data, 0); 1044 1045 for (; i < rbio->nr_pages; i++) { 1046 if (rbio->stripe_pages[i]) 1047 continue; 1048 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 1049 if (!page) 1050 return -ENOMEM; 1051 rbio->stripe_pages[i] = page; 1052 } 1053 return 0; 1054 } 1055 1056 /* 1057 * add a single page from a specific stripe into our list of bios for IO 1058 * this will try to merge into existing bios if possible, and returns 1059 * zero if all went well. 1060 */ 1061 static int rbio_add_io_page(struct btrfs_raid_bio *rbio, 1062 struct bio_list *bio_list, 1063 struct page *page, 1064 int stripe_nr, 1065 unsigned long page_index, 1066 unsigned long bio_max_len) 1067 { 1068 struct bio *last = bio_list->tail; 1069 u64 last_end = 0; 1070 int ret; 1071 struct bio *bio; 1072 struct btrfs_bio_stripe *stripe; 1073 u64 disk_start; 1074 1075 stripe = &rbio->bbio->stripes[stripe_nr]; 1076 disk_start = stripe->physical + (page_index << PAGE_SHIFT); 1077 1078 /* if the device is missing, just fail this stripe */ 1079 if (!stripe->dev->bdev) 1080 return fail_rbio_index(rbio, stripe_nr); 1081 1082 /* see if we can add this page onto our existing bio */ 1083 if (last) { 1084 last_end = (u64)last->bi_iter.bi_sector << 9; 1085 last_end += last->bi_iter.bi_size; 1086 1087 /* 1088 * we can't merge these if they are from different 1089 * devices or if they are not contiguous 1090 */ 1091 if (last_end == disk_start && stripe->dev->bdev && 1092 !last->bi_status && 1093 last->bi_bdev == stripe->dev->bdev) { 1094 ret = bio_add_page(last, page, PAGE_SIZE, 0); 1095 if (ret == PAGE_SIZE) 1096 return 0; 1097 } 1098 } 1099 1100 /* put a new bio on the list */ 1101 bio = btrfs_io_bio_alloc(bio_max_len >> PAGE_SHIFT ?: 1); 1102 bio->bi_iter.bi_size = 0; 1103 bio->bi_bdev = stripe->dev->bdev; 1104 bio->bi_iter.bi_sector = disk_start >> 9; 1105 1106 bio_add_page(bio, page, PAGE_SIZE, 0); 1107 bio_list_add(bio_list, bio); 1108 return 0; 1109 } 1110 1111 /* 1112 * while we're doing the read/modify/write cycle, we could 1113 * have errors in reading pages off the disk. This checks 1114 * for errors and if we're not able to read the page it'll 1115 * trigger parity reconstruction. The rmw will be finished 1116 * after we've reconstructed the failed stripes 1117 */ 1118 static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio) 1119 { 1120 if (rbio->faila >= 0 || rbio->failb >= 0) { 1121 BUG_ON(rbio->faila == rbio->real_stripes - 1); 1122 __raid56_parity_recover(rbio); 1123 } else { 1124 finish_rmw(rbio); 1125 } 1126 } 1127 1128 /* 1129 * helper function to walk our bio list and populate the bio_pages array with 1130 * the result. This seems expensive, but it is faster than constantly 1131 * searching through the bio list as we setup the IO in finish_rmw or stripe 1132 * reconstruction. 1133 * 1134 * This must be called before you trust the answers from page_in_rbio 1135 */ 1136 static void index_rbio_pages(struct btrfs_raid_bio *rbio) 1137 { 1138 struct bio *bio; 1139 u64 start; 1140 unsigned long stripe_offset; 1141 unsigned long page_index; 1142 1143 spin_lock_irq(&rbio->bio_list_lock); 1144 bio_list_for_each(bio, &rbio->bio_list) { 1145 struct bio_vec bvec; 1146 struct bvec_iter iter; 1147 int i = 0; 1148 1149 start = (u64)bio->bi_iter.bi_sector << 9; 1150 stripe_offset = start - rbio->bbio->raid_map[0]; 1151 page_index = stripe_offset >> PAGE_SHIFT; 1152 1153 if (bio_flagged(bio, BIO_CLONED)) 1154 bio->bi_iter = btrfs_io_bio(bio)->iter; 1155 1156 bio_for_each_segment(bvec, bio, iter) { 1157 rbio->bio_pages[page_index + i] = bvec.bv_page; 1158 i++; 1159 } 1160 } 1161 spin_unlock_irq(&rbio->bio_list_lock); 1162 } 1163 1164 /* 1165 * this is called from one of two situations. We either 1166 * have a full stripe from the higher layers, or we've read all 1167 * the missing bits off disk. 1168 * 1169 * This will calculate the parity and then send down any 1170 * changed blocks. 1171 */ 1172 static noinline void finish_rmw(struct btrfs_raid_bio *rbio) 1173 { 1174 struct btrfs_bio *bbio = rbio->bbio; 1175 void *pointers[rbio->real_stripes]; 1176 int nr_data = rbio->nr_data; 1177 int stripe; 1178 int pagenr; 1179 int p_stripe = -1; 1180 int q_stripe = -1; 1181 struct bio_list bio_list; 1182 struct bio *bio; 1183 int ret; 1184 1185 bio_list_init(&bio_list); 1186 1187 if (rbio->real_stripes - rbio->nr_data == 1) { 1188 p_stripe = rbio->real_stripes - 1; 1189 } else if (rbio->real_stripes - rbio->nr_data == 2) { 1190 p_stripe = rbio->real_stripes - 2; 1191 q_stripe = rbio->real_stripes - 1; 1192 } else { 1193 BUG(); 1194 } 1195 1196 /* at this point we either have a full stripe, 1197 * or we've read the full stripe from the drive. 1198 * recalculate the parity and write the new results. 1199 * 1200 * We're not allowed to add any new bios to the 1201 * bio list here, anyone else that wants to 1202 * change this stripe needs to do their own rmw. 1203 */ 1204 spin_lock_irq(&rbio->bio_list_lock); 1205 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); 1206 spin_unlock_irq(&rbio->bio_list_lock); 1207 1208 atomic_set(&rbio->error, 0); 1209 1210 /* 1211 * now that we've set rmw_locked, run through the 1212 * bio list one last time and map the page pointers 1213 * 1214 * We don't cache full rbios because we're assuming 1215 * the higher layers are unlikely to use this area of 1216 * the disk again soon. If they do use it again, 1217 * hopefully they will send another full bio. 1218 */ 1219 index_rbio_pages(rbio); 1220 if (!rbio_is_full(rbio)) 1221 cache_rbio_pages(rbio); 1222 else 1223 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); 1224 1225 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { 1226 struct page *p; 1227 /* first collect one page from each data stripe */ 1228 for (stripe = 0; stripe < nr_data; stripe++) { 1229 p = page_in_rbio(rbio, stripe, pagenr, 0); 1230 pointers[stripe] = kmap(p); 1231 } 1232 1233 /* then add the parity stripe */ 1234 p = rbio_pstripe_page(rbio, pagenr); 1235 SetPageUptodate(p); 1236 pointers[stripe++] = kmap(p); 1237 1238 if (q_stripe != -1) { 1239 1240 /* 1241 * raid6, add the qstripe and call the 1242 * library function to fill in our p/q 1243 */ 1244 p = rbio_qstripe_page(rbio, pagenr); 1245 SetPageUptodate(p); 1246 pointers[stripe++] = kmap(p); 1247 1248 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE, 1249 pointers); 1250 } else { 1251 /* raid5 */ 1252 memcpy(pointers[nr_data], pointers[0], PAGE_SIZE); 1253 run_xor(pointers + 1, nr_data - 1, PAGE_SIZE); 1254 } 1255 1256 1257 for (stripe = 0; stripe < rbio->real_stripes; stripe++) 1258 kunmap(page_in_rbio(rbio, stripe, pagenr, 0)); 1259 } 1260 1261 /* 1262 * time to start writing. Make bios for everything from the 1263 * higher layers (the bio_list in our rbio) and our p/q. Ignore 1264 * everything else. 1265 */ 1266 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 1267 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { 1268 struct page *page; 1269 if (stripe < rbio->nr_data) { 1270 page = page_in_rbio(rbio, stripe, pagenr, 1); 1271 if (!page) 1272 continue; 1273 } else { 1274 page = rbio_stripe_page(rbio, stripe, pagenr); 1275 } 1276 1277 ret = rbio_add_io_page(rbio, &bio_list, 1278 page, stripe, pagenr, rbio->stripe_len); 1279 if (ret) 1280 goto cleanup; 1281 } 1282 } 1283 1284 if (likely(!bbio->num_tgtdevs)) 1285 goto write_data; 1286 1287 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 1288 if (!bbio->tgtdev_map[stripe]) 1289 continue; 1290 1291 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { 1292 struct page *page; 1293 if (stripe < rbio->nr_data) { 1294 page = page_in_rbio(rbio, stripe, pagenr, 1); 1295 if (!page) 1296 continue; 1297 } else { 1298 page = rbio_stripe_page(rbio, stripe, pagenr); 1299 } 1300 1301 ret = rbio_add_io_page(rbio, &bio_list, page, 1302 rbio->bbio->tgtdev_map[stripe], 1303 pagenr, rbio->stripe_len); 1304 if (ret) 1305 goto cleanup; 1306 } 1307 } 1308 1309 write_data: 1310 atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list)); 1311 BUG_ON(atomic_read(&rbio->stripes_pending) == 0); 1312 1313 while (1) { 1314 bio = bio_list_pop(&bio_list); 1315 if (!bio) 1316 break; 1317 1318 bio->bi_private = rbio; 1319 bio->bi_end_io = raid_write_end_io; 1320 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 1321 1322 submit_bio(bio); 1323 } 1324 return; 1325 1326 cleanup: 1327 rbio_orig_end_io(rbio, -EIO); 1328 } 1329 1330 /* 1331 * helper to find the stripe number for a given bio. Used to figure out which 1332 * stripe has failed. This expects the bio to correspond to a physical disk, 1333 * so it looks up based on physical sector numbers. 1334 */ 1335 static int find_bio_stripe(struct btrfs_raid_bio *rbio, 1336 struct bio *bio) 1337 { 1338 u64 physical = bio->bi_iter.bi_sector; 1339 u64 stripe_start; 1340 int i; 1341 struct btrfs_bio_stripe *stripe; 1342 1343 physical <<= 9; 1344 1345 for (i = 0; i < rbio->bbio->num_stripes; i++) { 1346 stripe = &rbio->bbio->stripes[i]; 1347 stripe_start = stripe->physical; 1348 if (physical >= stripe_start && 1349 physical < stripe_start + rbio->stripe_len && 1350 bio->bi_bdev == stripe->dev->bdev) { 1351 return i; 1352 } 1353 } 1354 return -1; 1355 } 1356 1357 /* 1358 * helper to find the stripe number for a given 1359 * bio (before mapping). Used to figure out which stripe has 1360 * failed. This looks up based on logical block numbers. 1361 */ 1362 static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio, 1363 struct bio *bio) 1364 { 1365 u64 logical = bio->bi_iter.bi_sector; 1366 u64 stripe_start; 1367 int i; 1368 1369 logical <<= 9; 1370 1371 for (i = 0; i < rbio->nr_data; i++) { 1372 stripe_start = rbio->bbio->raid_map[i]; 1373 if (logical >= stripe_start && 1374 logical < stripe_start + rbio->stripe_len) { 1375 return i; 1376 } 1377 } 1378 return -1; 1379 } 1380 1381 /* 1382 * returns -EIO if we had too many failures 1383 */ 1384 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed) 1385 { 1386 unsigned long flags; 1387 int ret = 0; 1388 1389 spin_lock_irqsave(&rbio->bio_list_lock, flags); 1390 1391 /* we already know this stripe is bad, move on */ 1392 if (rbio->faila == failed || rbio->failb == failed) 1393 goto out; 1394 1395 if (rbio->faila == -1) { 1396 /* first failure on this rbio */ 1397 rbio->faila = failed; 1398 atomic_inc(&rbio->error); 1399 } else if (rbio->failb == -1) { 1400 /* second failure on this rbio */ 1401 rbio->failb = failed; 1402 atomic_inc(&rbio->error); 1403 } else { 1404 ret = -EIO; 1405 } 1406 out: 1407 spin_unlock_irqrestore(&rbio->bio_list_lock, flags); 1408 1409 return ret; 1410 } 1411 1412 /* 1413 * helper to fail a stripe based on a physical disk 1414 * bio. 1415 */ 1416 static int fail_bio_stripe(struct btrfs_raid_bio *rbio, 1417 struct bio *bio) 1418 { 1419 int failed = find_bio_stripe(rbio, bio); 1420 1421 if (failed < 0) 1422 return -EIO; 1423 1424 return fail_rbio_index(rbio, failed); 1425 } 1426 1427 /* 1428 * this sets each page in the bio uptodate. It should only be used on private 1429 * rbio pages, nothing that comes in from the higher layers 1430 */ 1431 static void set_bio_pages_uptodate(struct bio *bio) 1432 { 1433 struct bio_vec bvec; 1434 struct bvec_iter iter; 1435 1436 if (bio_flagged(bio, BIO_CLONED)) 1437 bio->bi_iter = btrfs_io_bio(bio)->iter; 1438 1439 bio_for_each_segment(bvec, bio, iter) 1440 SetPageUptodate(bvec.bv_page); 1441 } 1442 1443 /* 1444 * end io for the read phase of the rmw cycle. All the bios here are physical 1445 * stripe bios we've read from the disk so we can recalculate the parity of the 1446 * stripe. 1447 * 1448 * This will usually kick off finish_rmw once all the bios are read in, but it 1449 * may trigger parity reconstruction if we had any errors along the way 1450 */ 1451 static void raid_rmw_end_io(struct bio *bio) 1452 { 1453 struct btrfs_raid_bio *rbio = bio->bi_private; 1454 1455 if (bio->bi_status) 1456 fail_bio_stripe(rbio, bio); 1457 else 1458 set_bio_pages_uptodate(bio); 1459 1460 bio_put(bio); 1461 1462 if (!atomic_dec_and_test(&rbio->stripes_pending)) 1463 return; 1464 1465 if (atomic_read(&rbio->error) > rbio->bbio->max_errors) 1466 goto cleanup; 1467 1468 /* 1469 * this will normally call finish_rmw to start our write 1470 * but if there are any failed stripes we'll reconstruct 1471 * from parity first 1472 */ 1473 validate_rbio_for_rmw(rbio); 1474 return; 1475 1476 cleanup: 1477 1478 rbio_orig_end_io(rbio, -EIO); 1479 } 1480 1481 static void async_rmw_stripe(struct btrfs_raid_bio *rbio) 1482 { 1483 btrfs_init_work(&rbio->work, btrfs_rmw_helper, rmw_work, NULL, NULL); 1484 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work); 1485 } 1486 1487 static void async_read_rebuild(struct btrfs_raid_bio *rbio) 1488 { 1489 btrfs_init_work(&rbio->work, btrfs_rmw_helper, 1490 read_rebuild_work, NULL, NULL); 1491 1492 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work); 1493 } 1494 1495 /* 1496 * the stripe must be locked by the caller. It will 1497 * unlock after all the writes are done 1498 */ 1499 static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio) 1500 { 1501 int bios_to_read = 0; 1502 struct bio_list bio_list; 1503 int ret; 1504 int pagenr; 1505 int stripe; 1506 struct bio *bio; 1507 1508 bio_list_init(&bio_list); 1509 1510 ret = alloc_rbio_pages(rbio); 1511 if (ret) 1512 goto cleanup; 1513 1514 index_rbio_pages(rbio); 1515 1516 atomic_set(&rbio->error, 0); 1517 /* 1518 * build a list of bios to read all the missing parts of this 1519 * stripe 1520 */ 1521 for (stripe = 0; stripe < rbio->nr_data; stripe++) { 1522 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { 1523 struct page *page; 1524 /* 1525 * we want to find all the pages missing from 1526 * the rbio and read them from the disk. If 1527 * page_in_rbio finds a page in the bio list 1528 * we don't need to read it off the stripe. 1529 */ 1530 page = page_in_rbio(rbio, stripe, pagenr, 1); 1531 if (page) 1532 continue; 1533 1534 page = rbio_stripe_page(rbio, stripe, pagenr); 1535 /* 1536 * the bio cache may have handed us an uptodate 1537 * page. If so, be happy and use it 1538 */ 1539 if (PageUptodate(page)) 1540 continue; 1541 1542 ret = rbio_add_io_page(rbio, &bio_list, page, 1543 stripe, pagenr, rbio->stripe_len); 1544 if (ret) 1545 goto cleanup; 1546 } 1547 } 1548 1549 bios_to_read = bio_list_size(&bio_list); 1550 if (!bios_to_read) { 1551 /* 1552 * this can happen if others have merged with 1553 * us, it means there is nothing left to read. 1554 * But if there are missing devices it may not be 1555 * safe to do the full stripe write yet. 1556 */ 1557 goto finish; 1558 } 1559 1560 /* 1561 * the bbio may be freed once we submit the last bio. Make sure 1562 * not to touch it after that 1563 */ 1564 atomic_set(&rbio->stripes_pending, bios_to_read); 1565 while (1) { 1566 bio = bio_list_pop(&bio_list); 1567 if (!bio) 1568 break; 1569 1570 bio->bi_private = rbio; 1571 bio->bi_end_io = raid_rmw_end_io; 1572 bio_set_op_attrs(bio, REQ_OP_READ, 0); 1573 1574 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56); 1575 1576 submit_bio(bio); 1577 } 1578 /* the actual write will happen once the reads are done */ 1579 return 0; 1580 1581 cleanup: 1582 rbio_orig_end_io(rbio, -EIO); 1583 return -EIO; 1584 1585 finish: 1586 validate_rbio_for_rmw(rbio); 1587 return 0; 1588 } 1589 1590 /* 1591 * if the upper layers pass in a full stripe, we thank them by only allocating 1592 * enough pages to hold the parity, and sending it all down quickly. 1593 */ 1594 static int full_stripe_write(struct btrfs_raid_bio *rbio) 1595 { 1596 int ret; 1597 1598 ret = alloc_rbio_parity_pages(rbio); 1599 if (ret) { 1600 __free_raid_bio(rbio); 1601 return ret; 1602 } 1603 1604 ret = lock_stripe_add(rbio); 1605 if (ret == 0) 1606 finish_rmw(rbio); 1607 return 0; 1608 } 1609 1610 /* 1611 * partial stripe writes get handed over to async helpers. 1612 * We're really hoping to merge a few more writes into this 1613 * rbio before calculating new parity 1614 */ 1615 static int partial_stripe_write(struct btrfs_raid_bio *rbio) 1616 { 1617 int ret; 1618 1619 ret = lock_stripe_add(rbio); 1620 if (ret == 0) 1621 async_rmw_stripe(rbio); 1622 return 0; 1623 } 1624 1625 /* 1626 * sometimes while we were reading from the drive to 1627 * recalculate parity, enough new bios come into create 1628 * a full stripe. So we do a check here to see if we can 1629 * go directly to finish_rmw 1630 */ 1631 static int __raid56_parity_write(struct btrfs_raid_bio *rbio) 1632 { 1633 /* head off into rmw land if we don't have a full stripe */ 1634 if (!rbio_is_full(rbio)) 1635 return partial_stripe_write(rbio); 1636 return full_stripe_write(rbio); 1637 } 1638 1639 /* 1640 * We use plugging call backs to collect full stripes. 1641 * Any time we get a partial stripe write while plugged 1642 * we collect it into a list. When the unplug comes down, 1643 * we sort the list by logical block number and merge 1644 * everything we can into the same rbios 1645 */ 1646 struct btrfs_plug_cb { 1647 struct blk_plug_cb cb; 1648 struct btrfs_fs_info *info; 1649 struct list_head rbio_list; 1650 struct btrfs_work work; 1651 }; 1652 1653 /* 1654 * rbios on the plug list are sorted for easier merging. 1655 */ 1656 static int plug_cmp(void *priv, struct list_head *a, struct list_head *b) 1657 { 1658 struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio, 1659 plug_list); 1660 struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio, 1661 plug_list); 1662 u64 a_sector = ra->bio_list.head->bi_iter.bi_sector; 1663 u64 b_sector = rb->bio_list.head->bi_iter.bi_sector; 1664 1665 if (a_sector < b_sector) 1666 return -1; 1667 if (a_sector > b_sector) 1668 return 1; 1669 return 0; 1670 } 1671 1672 static void run_plug(struct btrfs_plug_cb *plug) 1673 { 1674 struct btrfs_raid_bio *cur; 1675 struct btrfs_raid_bio *last = NULL; 1676 1677 /* 1678 * sort our plug list then try to merge 1679 * everything we can in hopes of creating full 1680 * stripes. 1681 */ 1682 list_sort(NULL, &plug->rbio_list, plug_cmp); 1683 while (!list_empty(&plug->rbio_list)) { 1684 cur = list_entry(plug->rbio_list.next, 1685 struct btrfs_raid_bio, plug_list); 1686 list_del_init(&cur->plug_list); 1687 1688 if (rbio_is_full(cur)) { 1689 /* we have a full stripe, send it down */ 1690 full_stripe_write(cur); 1691 continue; 1692 } 1693 if (last) { 1694 if (rbio_can_merge(last, cur)) { 1695 merge_rbio(last, cur); 1696 __free_raid_bio(cur); 1697 continue; 1698 1699 } 1700 __raid56_parity_write(last); 1701 } 1702 last = cur; 1703 } 1704 if (last) { 1705 __raid56_parity_write(last); 1706 } 1707 kfree(plug); 1708 } 1709 1710 /* 1711 * if the unplug comes from schedule, we have to push the 1712 * work off to a helper thread 1713 */ 1714 static void unplug_work(struct btrfs_work *work) 1715 { 1716 struct btrfs_plug_cb *plug; 1717 plug = container_of(work, struct btrfs_plug_cb, work); 1718 run_plug(plug); 1719 } 1720 1721 static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule) 1722 { 1723 struct btrfs_plug_cb *plug; 1724 plug = container_of(cb, struct btrfs_plug_cb, cb); 1725 1726 if (from_schedule) { 1727 btrfs_init_work(&plug->work, btrfs_rmw_helper, 1728 unplug_work, NULL, NULL); 1729 btrfs_queue_work(plug->info->rmw_workers, 1730 &plug->work); 1731 return; 1732 } 1733 run_plug(plug); 1734 } 1735 1736 /* 1737 * our main entry point for writes from the rest of the FS. 1738 */ 1739 int raid56_parity_write(struct btrfs_fs_info *fs_info, struct bio *bio, 1740 struct btrfs_bio *bbio, u64 stripe_len) 1741 { 1742 struct btrfs_raid_bio *rbio; 1743 struct btrfs_plug_cb *plug = NULL; 1744 struct blk_plug_cb *cb; 1745 int ret; 1746 1747 rbio = alloc_rbio(fs_info, bbio, stripe_len); 1748 if (IS_ERR(rbio)) { 1749 btrfs_put_bbio(bbio); 1750 return PTR_ERR(rbio); 1751 } 1752 bio_list_add(&rbio->bio_list, bio); 1753 rbio->bio_list_bytes = bio->bi_iter.bi_size; 1754 rbio->operation = BTRFS_RBIO_WRITE; 1755 1756 btrfs_bio_counter_inc_noblocked(fs_info); 1757 rbio->generic_bio_cnt = 1; 1758 1759 /* 1760 * don't plug on full rbios, just get them out the door 1761 * as quickly as we can 1762 */ 1763 if (rbio_is_full(rbio)) { 1764 ret = full_stripe_write(rbio); 1765 if (ret) 1766 btrfs_bio_counter_dec(fs_info); 1767 return ret; 1768 } 1769 1770 cb = blk_check_plugged(btrfs_raid_unplug, fs_info, sizeof(*plug)); 1771 if (cb) { 1772 plug = container_of(cb, struct btrfs_plug_cb, cb); 1773 if (!plug->info) { 1774 plug->info = fs_info; 1775 INIT_LIST_HEAD(&plug->rbio_list); 1776 } 1777 list_add_tail(&rbio->plug_list, &plug->rbio_list); 1778 ret = 0; 1779 } else { 1780 ret = __raid56_parity_write(rbio); 1781 if (ret) 1782 btrfs_bio_counter_dec(fs_info); 1783 } 1784 return ret; 1785 } 1786 1787 /* 1788 * all parity reconstruction happens here. We've read in everything 1789 * we can find from the drives and this does the heavy lifting of 1790 * sorting the good from the bad. 1791 */ 1792 static void __raid_recover_end_io(struct btrfs_raid_bio *rbio) 1793 { 1794 int pagenr, stripe; 1795 void **pointers; 1796 int faila = -1, failb = -1; 1797 struct page *page; 1798 int err; 1799 int i; 1800 1801 pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS); 1802 if (!pointers) { 1803 err = -ENOMEM; 1804 goto cleanup_io; 1805 } 1806 1807 faila = rbio->faila; 1808 failb = rbio->failb; 1809 1810 if (rbio->operation == BTRFS_RBIO_READ_REBUILD || 1811 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) { 1812 spin_lock_irq(&rbio->bio_list_lock); 1813 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); 1814 spin_unlock_irq(&rbio->bio_list_lock); 1815 } 1816 1817 index_rbio_pages(rbio); 1818 1819 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { 1820 /* 1821 * Now we just use bitmap to mark the horizontal stripes in 1822 * which we have data when doing parity scrub. 1823 */ 1824 if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB && 1825 !test_bit(pagenr, rbio->dbitmap)) 1826 continue; 1827 1828 /* setup our array of pointers with pages 1829 * from each stripe 1830 */ 1831 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 1832 /* 1833 * if we're rebuilding a read, we have to use 1834 * pages from the bio list 1835 */ 1836 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD || 1837 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) && 1838 (stripe == faila || stripe == failb)) { 1839 page = page_in_rbio(rbio, stripe, pagenr, 0); 1840 } else { 1841 page = rbio_stripe_page(rbio, stripe, pagenr); 1842 } 1843 pointers[stripe] = kmap(page); 1844 } 1845 1846 /* all raid6 handling here */ 1847 if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) { 1848 /* 1849 * single failure, rebuild from parity raid5 1850 * style 1851 */ 1852 if (failb < 0) { 1853 if (faila == rbio->nr_data) { 1854 /* 1855 * Just the P stripe has failed, without 1856 * a bad data or Q stripe. 1857 * TODO, we should redo the xor here. 1858 */ 1859 err = -EIO; 1860 goto cleanup; 1861 } 1862 /* 1863 * a single failure in raid6 is rebuilt 1864 * in the pstripe code below 1865 */ 1866 goto pstripe; 1867 } 1868 1869 /* make sure our ps and qs are in order */ 1870 if (faila > failb) { 1871 int tmp = failb; 1872 failb = faila; 1873 faila = tmp; 1874 } 1875 1876 /* if the q stripe is failed, do a pstripe reconstruction 1877 * from the xors. 1878 * If both the q stripe and the P stripe are failed, we're 1879 * here due to a crc mismatch and we can't give them the 1880 * data they want 1881 */ 1882 if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) { 1883 if (rbio->bbio->raid_map[faila] == 1884 RAID5_P_STRIPE) { 1885 err = -EIO; 1886 goto cleanup; 1887 } 1888 /* 1889 * otherwise we have one bad data stripe and 1890 * a good P stripe. raid5! 1891 */ 1892 goto pstripe; 1893 } 1894 1895 if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) { 1896 raid6_datap_recov(rbio->real_stripes, 1897 PAGE_SIZE, faila, pointers); 1898 } else { 1899 raid6_2data_recov(rbio->real_stripes, 1900 PAGE_SIZE, faila, failb, 1901 pointers); 1902 } 1903 } else { 1904 void *p; 1905 1906 /* rebuild from P stripe here (raid5 or raid6) */ 1907 BUG_ON(failb != -1); 1908 pstripe: 1909 /* Copy parity block into failed block to start with */ 1910 memcpy(pointers[faila], 1911 pointers[rbio->nr_data], 1912 PAGE_SIZE); 1913 1914 /* rearrange the pointer array */ 1915 p = pointers[faila]; 1916 for (stripe = faila; stripe < rbio->nr_data - 1; stripe++) 1917 pointers[stripe] = pointers[stripe + 1]; 1918 pointers[rbio->nr_data - 1] = p; 1919 1920 /* xor in the rest */ 1921 run_xor(pointers, rbio->nr_data - 1, PAGE_SIZE); 1922 } 1923 /* if we're doing this rebuild as part of an rmw, go through 1924 * and set all of our private rbio pages in the 1925 * failed stripes as uptodate. This way finish_rmw will 1926 * know they can be trusted. If this was a read reconstruction, 1927 * other endio functions will fiddle the uptodate bits 1928 */ 1929 if (rbio->operation == BTRFS_RBIO_WRITE) { 1930 for (i = 0; i < rbio->stripe_npages; i++) { 1931 if (faila != -1) { 1932 page = rbio_stripe_page(rbio, faila, i); 1933 SetPageUptodate(page); 1934 } 1935 if (failb != -1) { 1936 page = rbio_stripe_page(rbio, failb, i); 1937 SetPageUptodate(page); 1938 } 1939 } 1940 } 1941 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 1942 /* 1943 * if we're rebuilding a read, we have to use 1944 * pages from the bio list 1945 */ 1946 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD || 1947 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) && 1948 (stripe == faila || stripe == failb)) { 1949 page = page_in_rbio(rbio, stripe, pagenr, 0); 1950 } else { 1951 page = rbio_stripe_page(rbio, stripe, pagenr); 1952 } 1953 kunmap(page); 1954 } 1955 } 1956 1957 err = 0; 1958 cleanup: 1959 kfree(pointers); 1960 1961 cleanup_io: 1962 if (rbio->operation == BTRFS_RBIO_READ_REBUILD) { 1963 if (err == 0) 1964 cache_rbio_pages(rbio); 1965 else 1966 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); 1967 1968 rbio_orig_end_io(rbio, err); 1969 } else if (rbio->operation == BTRFS_RBIO_REBUILD_MISSING) { 1970 rbio_orig_end_io(rbio, err); 1971 } else if (err == 0) { 1972 rbio->faila = -1; 1973 rbio->failb = -1; 1974 1975 if (rbio->operation == BTRFS_RBIO_WRITE) 1976 finish_rmw(rbio); 1977 else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) 1978 finish_parity_scrub(rbio, 0); 1979 else 1980 BUG(); 1981 } else { 1982 rbio_orig_end_io(rbio, err); 1983 } 1984 } 1985 1986 /* 1987 * This is called only for stripes we've read from disk to 1988 * reconstruct the parity. 1989 */ 1990 static void raid_recover_end_io(struct bio *bio) 1991 { 1992 struct btrfs_raid_bio *rbio = bio->bi_private; 1993 1994 /* 1995 * we only read stripe pages off the disk, set them 1996 * up to date if there were no errors 1997 */ 1998 if (bio->bi_status) 1999 fail_bio_stripe(rbio, bio); 2000 else 2001 set_bio_pages_uptodate(bio); 2002 bio_put(bio); 2003 2004 if (!atomic_dec_and_test(&rbio->stripes_pending)) 2005 return; 2006 2007 if (atomic_read(&rbio->error) > rbio->bbio->max_errors) 2008 rbio_orig_end_io(rbio, -EIO); 2009 else 2010 __raid_recover_end_io(rbio); 2011 } 2012 2013 /* 2014 * reads everything we need off the disk to reconstruct 2015 * the parity. endio handlers trigger final reconstruction 2016 * when the IO is done. 2017 * 2018 * This is used both for reads from the higher layers and for 2019 * parity construction required to finish a rmw cycle. 2020 */ 2021 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio) 2022 { 2023 int bios_to_read = 0; 2024 struct bio_list bio_list; 2025 int ret; 2026 int pagenr; 2027 int stripe; 2028 struct bio *bio; 2029 2030 bio_list_init(&bio_list); 2031 2032 ret = alloc_rbio_pages(rbio); 2033 if (ret) 2034 goto cleanup; 2035 2036 atomic_set(&rbio->error, 0); 2037 2038 /* 2039 * read everything that hasn't failed. Thanks to the 2040 * stripe cache, it is possible that some or all of these 2041 * pages are going to be uptodate. 2042 */ 2043 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 2044 if (rbio->faila == stripe || rbio->failb == stripe) { 2045 atomic_inc(&rbio->error); 2046 continue; 2047 } 2048 2049 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { 2050 struct page *p; 2051 2052 /* 2053 * the rmw code may have already read this 2054 * page in 2055 */ 2056 p = rbio_stripe_page(rbio, stripe, pagenr); 2057 if (PageUptodate(p)) 2058 continue; 2059 2060 ret = rbio_add_io_page(rbio, &bio_list, 2061 rbio_stripe_page(rbio, stripe, pagenr), 2062 stripe, pagenr, rbio->stripe_len); 2063 if (ret < 0) 2064 goto cleanup; 2065 } 2066 } 2067 2068 bios_to_read = bio_list_size(&bio_list); 2069 if (!bios_to_read) { 2070 /* 2071 * we might have no bios to read just because the pages 2072 * were up to date, or we might have no bios to read because 2073 * the devices were gone. 2074 */ 2075 if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) { 2076 __raid_recover_end_io(rbio); 2077 goto out; 2078 } else { 2079 goto cleanup; 2080 } 2081 } 2082 2083 /* 2084 * the bbio may be freed once we submit the last bio. Make sure 2085 * not to touch it after that 2086 */ 2087 atomic_set(&rbio->stripes_pending, bios_to_read); 2088 while (1) { 2089 bio = bio_list_pop(&bio_list); 2090 if (!bio) 2091 break; 2092 2093 bio->bi_private = rbio; 2094 bio->bi_end_io = raid_recover_end_io; 2095 bio_set_op_attrs(bio, REQ_OP_READ, 0); 2096 2097 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56); 2098 2099 submit_bio(bio); 2100 } 2101 out: 2102 return 0; 2103 2104 cleanup: 2105 if (rbio->operation == BTRFS_RBIO_READ_REBUILD || 2106 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) 2107 rbio_orig_end_io(rbio, -EIO); 2108 return -EIO; 2109 } 2110 2111 /* 2112 * the main entry point for reads from the higher layers. This 2113 * is really only called when the normal read path had a failure, 2114 * so we assume the bio they send down corresponds to a failed part 2115 * of the drive. 2116 */ 2117 int raid56_parity_recover(struct btrfs_fs_info *fs_info, struct bio *bio, 2118 struct btrfs_bio *bbio, u64 stripe_len, 2119 int mirror_num, int generic_io) 2120 { 2121 struct btrfs_raid_bio *rbio; 2122 int ret; 2123 2124 if (generic_io) { 2125 ASSERT(bbio->mirror_num == mirror_num); 2126 btrfs_io_bio(bio)->mirror_num = mirror_num; 2127 } 2128 2129 rbio = alloc_rbio(fs_info, bbio, stripe_len); 2130 if (IS_ERR(rbio)) { 2131 if (generic_io) 2132 btrfs_put_bbio(bbio); 2133 return PTR_ERR(rbio); 2134 } 2135 2136 rbio->operation = BTRFS_RBIO_READ_REBUILD; 2137 bio_list_add(&rbio->bio_list, bio); 2138 rbio->bio_list_bytes = bio->bi_iter.bi_size; 2139 2140 rbio->faila = find_logical_bio_stripe(rbio, bio); 2141 if (rbio->faila == -1) { 2142 btrfs_warn(fs_info, 2143 "%s could not find the bad stripe in raid56 so that we cannot recover any more (bio has logical %llu len %llu, bbio has map_type %llu)", 2144 __func__, (u64)bio->bi_iter.bi_sector << 9, 2145 (u64)bio->bi_iter.bi_size, bbio->map_type); 2146 if (generic_io) 2147 btrfs_put_bbio(bbio); 2148 kfree(rbio); 2149 return -EIO; 2150 } 2151 2152 if (generic_io) { 2153 btrfs_bio_counter_inc_noblocked(fs_info); 2154 rbio->generic_bio_cnt = 1; 2155 } else { 2156 btrfs_get_bbio(bbio); 2157 } 2158 2159 /* 2160 * reconstruct from the q stripe if they are 2161 * asking for mirror 3 2162 */ 2163 if (mirror_num == 3) 2164 rbio->failb = rbio->real_stripes - 2; 2165 2166 ret = lock_stripe_add(rbio); 2167 2168 /* 2169 * __raid56_parity_recover will end the bio with 2170 * any errors it hits. We don't want to return 2171 * its error value up the stack because our caller 2172 * will end up calling bio_endio with any nonzero 2173 * return 2174 */ 2175 if (ret == 0) 2176 __raid56_parity_recover(rbio); 2177 /* 2178 * our rbio has been added to the list of 2179 * rbios that will be handled after the 2180 * currently lock owner is done 2181 */ 2182 return 0; 2183 2184 } 2185 2186 static void rmw_work(struct btrfs_work *work) 2187 { 2188 struct btrfs_raid_bio *rbio; 2189 2190 rbio = container_of(work, struct btrfs_raid_bio, work); 2191 raid56_rmw_stripe(rbio); 2192 } 2193 2194 static void read_rebuild_work(struct btrfs_work *work) 2195 { 2196 struct btrfs_raid_bio *rbio; 2197 2198 rbio = container_of(work, struct btrfs_raid_bio, work); 2199 __raid56_parity_recover(rbio); 2200 } 2201 2202 /* 2203 * The following code is used to scrub/replace the parity stripe 2204 * 2205 * Caller must have already increased bio_counter for getting @bbio. 2206 * 2207 * Note: We need make sure all the pages that add into the scrub/replace 2208 * raid bio are correct and not be changed during the scrub/replace. That 2209 * is those pages just hold metadata or file data with checksum. 2210 */ 2211 2212 struct btrfs_raid_bio * 2213 raid56_parity_alloc_scrub_rbio(struct btrfs_fs_info *fs_info, struct bio *bio, 2214 struct btrfs_bio *bbio, u64 stripe_len, 2215 struct btrfs_device *scrub_dev, 2216 unsigned long *dbitmap, int stripe_nsectors) 2217 { 2218 struct btrfs_raid_bio *rbio; 2219 int i; 2220 2221 rbio = alloc_rbio(fs_info, bbio, stripe_len); 2222 if (IS_ERR(rbio)) 2223 return NULL; 2224 bio_list_add(&rbio->bio_list, bio); 2225 /* 2226 * This is a special bio which is used to hold the completion handler 2227 * and make the scrub rbio is similar to the other types 2228 */ 2229 ASSERT(!bio->bi_iter.bi_size); 2230 rbio->operation = BTRFS_RBIO_PARITY_SCRUB; 2231 2232 for (i = 0; i < rbio->real_stripes; i++) { 2233 if (bbio->stripes[i].dev == scrub_dev) { 2234 rbio->scrubp = i; 2235 break; 2236 } 2237 } 2238 2239 /* Now we just support the sectorsize equals to page size */ 2240 ASSERT(fs_info->sectorsize == PAGE_SIZE); 2241 ASSERT(rbio->stripe_npages == stripe_nsectors); 2242 bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors); 2243 2244 /* 2245 * We have already increased bio_counter when getting bbio, record it 2246 * so we can free it at rbio_orig_end_io(). 2247 */ 2248 rbio->generic_bio_cnt = 1; 2249 2250 return rbio; 2251 } 2252 2253 /* Used for both parity scrub and missing. */ 2254 void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page, 2255 u64 logical) 2256 { 2257 int stripe_offset; 2258 int index; 2259 2260 ASSERT(logical >= rbio->bbio->raid_map[0]); 2261 ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] + 2262 rbio->stripe_len * rbio->nr_data); 2263 stripe_offset = (int)(logical - rbio->bbio->raid_map[0]); 2264 index = stripe_offset >> PAGE_SHIFT; 2265 rbio->bio_pages[index] = page; 2266 } 2267 2268 /* 2269 * We just scrub the parity that we have correct data on the same horizontal, 2270 * so we needn't allocate all pages for all the stripes. 2271 */ 2272 static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio) 2273 { 2274 int i; 2275 int bit; 2276 int index; 2277 struct page *page; 2278 2279 for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) { 2280 for (i = 0; i < rbio->real_stripes; i++) { 2281 index = i * rbio->stripe_npages + bit; 2282 if (rbio->stripe_pages[index]) 2283 continue; 2284 2285 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 2286 if (!page) 2287 return -ENOMEM; 2288 rbio->stripe_pages[index] = page; 2289 } 2290 } 2291 return 0; 2292 } 2293 2294 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio, 2295 int need_check) 2296 { 2297 struct btrfs_bio *bbio = rbio->bbio; 2298 void *pointers[rbio->real_stripes]; 2299 DECLARE_BITMAP(pbitmap, rbio->stripe_npages); 2300 int nr_data = rbio->nr_data; 2301 int stripe; 2302 int pagenr; 2303 int p_stripe = -1; 2304 int q_stripe = -1; 2305 struct page *p_page = NULL; 2306 struct page *q_page = NULL; 2307 struct bio_list bio_list; 2308 struct bio *bio; 2309 int is_replace = 0; 2310 int ret; 2311 2312 bio_list_init(&bio_list); 2313 2314 if (rbio->real_stripes - rbio->nr_data == 1) { 2315 p_stripe = rbio->real_stripes - 1; 2316 } else if (rbio->real_stripes - rbio->nr_data == 2) { 2317 p_stripe = rbio->real_stripes - 2; 2318 q_stripe = rbio->real_stripes - 1; 2319 } else { 2320 BUG(); 2321 } 2322 2323 if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) { 2324 is_replace = 1; 2325 bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages); 2326 } 2327 2328 /* 2329 * Because the higher layers(scrubber) are unlikely to 2330 * use this area of the disk again soon, so don't cache 2331 * it. 2332 */ 2333 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); 2334 2335 if (!need_check) 2336 goto writeback; 2337 2338 p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 2339 if (!p_page) 2340 goto cleanup; 2341 SetPageUptodate(p_page); 2342 2343 if (q_stripe != -1) { 2344 q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 2345 if (!q_page) { 2346 __free_page(p_page); 2347 goto cleanup; 2348 } 2349 SetPageUptodate(q_page); 2350 } 2351 2352 atomic_set(&rbio->error, 0); 2353 2354 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) { 2355 struct page *p; 2356 void *parity; 2357 /* first collect one page from each data stripe */ 2358 for (stripe = 0; stripe < nr_data; stripe++) { 2359 p = page_in_rbio(rbio, stripe, pagenr, 0); 2360 pointers[stripe] = kmap(p); 2361 } 2362 2363 /* then add the parity stripe */ 2364 pointers[stripe++] = kmap(p_page); 2365 2366 if (q_stripe != -1) { 2367 2368 /* 2369 * raid6, add the qstripe and call the 2370 * library function to fill in our p/q 2371 */ 2372 pointers[stripe++] = kmap(q_page); 2373 2374 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE, 2375 pointers); 2376 } else { 2377 /* raid5 */ 2378 memcpy(pointers[nr_data], pointers[0], PAGE_SIZE); 2379 run_xor(pointers + 1, nr_data - 1, PAGE_SIZE); 2380 } 2381 2382 /* Check scrubbing parity and repair it */ 2383 p = rbio_stripe_page(rbio, rbio->scrubp, pagenr); 2384 parity = kmap(p); 2385 if (memcmp(parity, pointers[rbio->scrubp], PAGE_SIZE)) 2386 memcpy(parity, pointers[rbio->scrubp], PAGE_SIZE); 2387 else 2388 /* Parity is right, needn't writeback */ 2389 bitmap_clear(rbio->dbitmap, pagenr, 1); 2390 kunmap(p); 2391 2392 for (stripe = 0; stripe < rbio->real_stripes; stripe++) 2393 kunmap(page_in_rbio(rbio, stripe, pagenr, 0)); 2394 } 2395 2396 __free_page(p_page); 2397 if (q_page) 2398 __free_page(q_page); 2399 2400 writeback: 2401 /* 2402 * time to start writing. Make bios for everything from the 2403 * higher layers (the bio_list in our rbio) and our p/q. Ignore 2404 * everything else. 2405 */ 2406 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) { 2407 struct page *page; 2408 2409 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr); 2410 ret = rbio_add_io_page(rbio, &bio_list, 2411 page, rbio->scrubp, pagenr, rbio->stripe_len); 2412 if (ret) 2413 goto cleanup; 2414 } 2415 2416 if (!is_replace) 2417 goto submit_write; 2418 2419 for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) { 2420 struct page *page; 2421 2422 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr); 2423 ret = rbio_add_io_page(rbio, &bio_list, page, 2424 bbio->tgtdev_map[rbio->scrubp], 2425 pagenr, rbio->stripe_len); 2426 if (ret) 2427 goto cleanup; 2428 } 2429 2430 submit_write: 2431 nr_data = bio_list_size(&bio_list); 2432 if (!nr_data) { 2433 /* Every parity is right */ 2434 rbio_orig_end_io(rbio, 0); 2435 return; 2436 } 2437 2438 atomic_set(&rbio->stripes_pending, nr_data); 2439 2440 while (1) { 2441 bio = bio_list_pop(&bio_list); 2442 if (!bio) 2443 break; 2444 2445 bio->bi_private = rbio; 2446 bio->bi_end_io = raid_write_end_io; 2447 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 2448 2449 submit_bio(bio); 2450 } 2451 return; 2452 2453 cleanup: 2454 rbio_orig_end_io(rbio, -EIO); 2455 } 2456 2457 static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe) 2458 { 2459 if (stripe >= 0 && stripe < rbio->nr_data) 2460 return 1; 2461 return 0; 2462 } 2463 2464 /* 2465 * While we're doing the parity check and repair, we could have errors 2466 * in reading pages off the disk. This checks for errors and if we're 2467 * not able to read the page it'll trigger parity reconstruction. The 2468 * parity scrub will be finished after we've reconstructed the failed 2469 * stripes 2470 */ 2471 static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio) 2472 { 2473 if (atomic_read(&rbio->error) > rbio->bbio->max_errors) 2474 goto cleanup; 2475 2476 if (rbio->faila >= 0 || rbio->failb >= 0) { 2477 int dfail = 0, failp = -1; 2478 2479 if (is_data_stripe(rbio, rbio->faila)) 2480 dfail++; 2481 else if (is_parity_stripe(rbio->faila)) 2482 failp = rbio->faila; 2483 2484 if (is_data_stripe(rbio, rbio->failb)) 2485 dfail++; 2486 else if (is_parity_stripe(rbio->failb)) 2487 failp = rbio->failb; 2488 2489 /* 2490 * Because we can not use a scrubbing parity to repair 2491 * the data, so the capability of the repair is declined. 2492 * (In the case of RAID5, we can not repair anything) 2493 */ 2494 if (dfail > rbio->bbio->max_errors - 1) 2495 goto cleanup; 2496 2497 /* 2498 * If all data is good, only parity is correctly, just 2499 * repair the parity. 2500 */ 2501 if (dfail == 0) { 2502 finish_parity_scrub(rbio, 0); 2503 return; 2504 } 2505 2506 /* 2507 * Here means we got one corrupted data stripe and one 2508 * corrupted parity on RAID6, if the corrupted parity 2509 * is scrubbing parity, luckily, use the other one to repair 2510 * the data, or we can not repair the data stripe. 2511 */ 2512 if (failp != rbio->scrubp) 2513 goto cleanup; 2514 2515 __raid_recover_end_io(rbio); 2516 } else { 2517 finish_parity_scrub(rbio, 1); 2518 } 2519 return; 2520 2521 cleanup: 2522 rbio_orig_end_io(rbio, -EIO); 2523 } 2524 2525 /* 2526 * end io for the read phase of the rmw cycle. All the bios here are physical 2527 * stripe bios we've read from the disk so we can recalculate the parity of the 2528 * stripe. 2529 * 2530 * This will usually kick off finish_rmw once all the bios are read in, but it 2531 * may trigger parity reconstruction if we had any errors along the way 2532 */ 2533 static void raid56_parity_scrub_end_io(struct bio *bio) 2534 { 2535 struct btrfs_raid_bio *rbio = bio->bi_private; 2536 2537 if (bio->bi_status) 2538 fail_bio_stripe(rbio, bio); 2539 else 2540 set_bio_pages_uptodate(bio); 2541 2542 bio_put(bio); 2543 2544 if (!atomic_dec_and_test(&rbio->stripes_pending)) 2545 return; 2546 2547 /* 2548 * this will normally call finish_rmw to start our write 2549 * but if there are any failed stripes we'll reconstruct 2550 * from parity first 2551 */ 2552 validate_rbio_for_parity_scrub(rbio); 2553 } 2554 2555 static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio) 2556 { 2557 int bios_to_read = 0; 2558 struct bio_list bio_list; 2559 int ret; 2560 int pagenr; 2561 int stripe; 2562 struct bio *bio; 2563 2564 ret = alloc_rbio_essential_pages(rbio); 2565 if (ret) 2566 goto cleanup; 2567 2568 bio_list_init(&bio_list); 2569 2570 atomic_set(&rbio->error, 0); 2571 /* 2572 * build a list of bios to read all the missing parts of this 2573 * stripe 2574 */ 2575 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 2576 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) { 2577 struct page *page; 2578 /* 2579 * we want to find all the pages missing from 2580 * the rbio and read them from the disk. If 2581 * page_in_rbio finds a page in the bio list 2582 * we don't need to read it off the stripe. 2583 */ 2584 page = page_in_rbio(rbio, stripe, pagenr, 1); 2585 if (page) 2586 continue; 2587 2588 page = rbio_stripe_page(rbio, stripe, pagenr); 2589 /* 2590 * the bio cache may have handed us an uptodate 2591 * page. If so, be happy and use it 2592 */ 2593 if (PageUptodate(page)) 2594 continue; 2595 2596 ret = rbio_add_io_page(rbio, &bio_list, page, 2597 stripe, pagenr, rbio->stripe_len); 2598 if (ret) 2599 goto cleanup; 2600 } 2601 } 2602 2603 bios_to_read = bio_list_size(&bio_list); 2604 if (!bios_to_read) { 2605 /* 2606 * this can happen if others have merged with 2607 * us, it means there is nothing left to read. 2608 * But if there are missing devices it may not be 2609 * safe to do the full stripe write yet. 2610 */ 2611 goto finish; 2612 } 2613 2614 /* 2615 * the bbio may be freed once we submit the last bio. Make sure 2616 * not to touch it after that 2617 */ 2618 atomic_set(&rbio->stripes_pending, bios_to_read); 2619 while (1) { 2620 bio = bio_list_pop(&bio_list); 2621 if (!bio) 2622 break; 2623 2624 bio->bi_private = rbio; 2625 bio->bi_end_io = raid56_parity_scrub_end_io; 2626 bio_set_op_attrs(bio, REQ_OP_READ, 0); 2627 2628 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56); 2629 2630 submit_bio(bio); 2631 } 2632 /* the actual write will happen once the reads are done */ 2633 return; 2634 2635 cleanup: 2636 rbio_orig_end_io(rbio, -EIO); 2637 return; 2638 2639 finish: 2640 validate_rbio_for_parity_scrub(rbio); 2641 } 2642 2643 static void scrub_parity_work(struct btrfs_work *work) 2644 { 2645 struct btrfs_raid_bio *rbio; 2646 2647 rbio = container_of(work, struct btrfs_raid_bio, work); 2648 raid56_parity_scrub_stripe(rbio); 2649 } 2650 2651 static void async_scrub_parity(struct btrfs_raid_bio *rbio) 2652 { 2653 btrfs_init_work(&rbio->work, btrfs_rmw_helper, 2654 scrub_parity_work, NULL, NULL); 2655 2656 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work); 2657 } 2658 2659 void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio) 2660 { 2661 if (!lock_stripe_add(rbio)) 2662 async_scrub_parity(rbio); 2663 } 2664 2665 /* The following code is used for dev replace of a missing RAID 5/6 device. */ 2666 2667 struct btrfs_raid_bio * 2668 raid56_alloc_missing_rbio(struct btrfs_fs_info *fs_info, struct bio *bio, 2669 struct btrfs_bio *bbio, u64 length) 2670 { 2671 struct btrfs_raid_bio *rbio; 2672 2673 rbio = alloc_rbio(fs_info, bbio, length); 2674 if (IS_ERR(rbio)) 2675 return NULL; 2676 2677 rbio->operation = BTRFS_RBIO_REBUILD_MISSING; 2678 bio_list_add(&rbio->bio_list, bio); 2679 /* 2680 * This is a special bio which is used to hold the completion handler 2681 * and make the scrub rbio is similar to the other types 2682 */ 2683 ASSERT(!bio->bi_iter.bi_size); 2684 2685 rbio->faila = find_logical_bio_stripe(rbio, bio); 2686 if (rbio->faila == -1) { 2687 BUG(); 2688 kfree(rbio); 2689 return NULL; 2690 } 2691 2692 /* 2693 * When we get bbio, we have already increased bio_counter, record it 2694 * so we can free it at rbio_orig_end_io() 2695 */ 2696 rbio->generic_bio_cnt = 1; 2697 2698 return rbio; 2699 } 2700 2701 static void missing_raid56_work(struct btrfs_work *work) 2702 { 2703 struct btrfs_raid_bio *rbio; 2704 2705 rbio = container_of(work, struct btrfs_raid_bio, work); 2706 __raid56_parity_recover(rbio); 2707 } 2708 2709 static void async_missing_raid56(struct btrfs_raid_bio *rbio) 2710 { 2711 btrfs_init_work(&rbio->work, btrfs_rmw_helper, 2712 missing_raid56_work, NULL, NULL); 2713 2714 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work); 2715 } 2716 2717 void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio) 2718 { 2719 if (!lock_stripe_add(rbio)) 2720 async_missing_raid56(rbio); 2721 } 2722