1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2012 Fusion-io All rights reserved. 4 * Copyright (C) 2012 Intel Corp. All rights reserved. 5 */ 6 7 #include <linux/sched.h> 8 #include <linux/bio.h> 9 #include <linux/slab.h> 10 #include <linux/blkdev.h> 11 #include <linux/raid/pq.h> 12 #include <linux/hash.h> 13 #include <linux/list_sort.h> 14 #include <linux/raid/xor.h> 15 #include <linux/mm.h> 16 #include "misc.h" 17 #include "ctree.h" 18 #include "disk-io.h" 19 #include "volumes.h" 20 #include "raid56.h" 21 #include "async-thread.h" 22 23 /* set when additional merges to this rbio are not allowed */ 24 #define RBIO_RMW_LOCKED_BIT 1 25 26 /* 27 * set when this rbio is sitting in the hash, but it is just a cache 28 * of past RMW 29 */ 30 #define RBIO_CACHE_BIT 2 31 32 /* 33 * set when it is safe to trust the stripe_pages for caching 34 */ 35 #define RBIO_CACHE_READY_BIT 3 36 37 #define RBIO_CACHE_SIZE 1024 38 39 #define BTRFS_STRIPE_HASH_TABLE_BITS 11 40 41 /* Used by the raid56 code to lock stripes for read/modify/write */ 42 struct btrfs_stripe_hash { 43 struct list_head hash_list; 44 spinlock_t lock; 45 }; 46 47 /* Used by the raid56 code to lock stripes for read/modify/write */ 48 struct btrfs_stripe_hash_table { 49 struct list_head stripe_cache; 50 spinlock_t cache_lock; 51 int cache_size; 52 struct btrfs_stripe_hash table[]; 53 }; 54 55 /* 56 * A bvec like structure to present a sector inside a page. 57 * 58 * Unlike bvec we don't need bvlen, as it's fixed to sectorsize. 59 */ 60 struct sector_ptr { 61 struct page *page; 62 unsigned int pgoff:24; 63 unsigned int uptodate:8; 64 }; 65 66 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio); 67 static noinline void finish_rmw(struct btrfs_raid_bio *rbio); 68 static void rmw_work(struct work_struct *work); 69 static void read_rebuild_work(struct work_struct *work); 70 static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio); 71 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed); 72 static void __free_raid_bio(struct btrfs_raid_bio *rbio); 73 static void index_rbio_pages(struct btrfs_raid_bio *rbio); 74 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio); 75 76 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio, 77 int need_check); 78 static void scrub_parity_work(struct work_struct *work); 79 80 static void start_async_work(struct btrfs_raid_bio *rbio, work_func_t work_func) 81 { 82 INIT_WORK(&rbio->work, work_func); 83 queue_work(rbio->bioc->fs_info->rmw_workers, &rbio->work); 84 } 85 86 /* 87 * the stripe hash table is used for locking, and to collect 88 * bios in hopes of making a full stripe 89 */ 90 int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info) 91 { 92 struct btrfs_stripe_hash_table *table; 93 struct btrfs_stripe_hash_table *x; 94 struct btrfs_stripe_hash *cur; 95 struct btrfs_stripe_hash *h; 96 int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS; 97 int i; 98 99 if (info->stripe_hash_table) 100 return 0; 101 102 /* 103 * The table is large, starting with order 4 and can go as high as 104 * order 7 in case lock debugging is turned on. 105 * 106 * Try harder to allocate and fallback to vmalloc to lower the chance 107 * of a failing mount. 108 */ 109 table = kvzalloc(struct_size(table, table, num_entries), GFP_KERNEL); 110 if (!table) 111 return -ENOMEM; 112 113 spin_lock_init(&table->cache_lock); 114 INIT_LIST_HEAD(&table->stripe_cache); 115 116 h = table->table; 117 118 for (i = 0; i < num_entries; i++) { 119 cur = h + i; 120 INIT_LIST_HEAD(&cur->hash_list); 121 spin_lock_init(&cur->lock); 122 } 123 124 x = cmpxchg(&info->stripe_hash_table, NULL, table); 125 kvfree(x); 126 return 0; 127 } 128 129 /* 130 * caching an rbio means to copy anything from the 131 * bio_sectors array into the stripe_pages array. We 132 * use the page uptodate bit in the stripe cache array 133 * to indicate if it has valid data 134 * 135 * once the caching is done, we set the cache ready 136 * bit. 137 */ 138 static void cache_rbio_pages(struct btrfs_raid_bio *rbio) 139 { 140 int i; 141 int ret; 142 143 ret = alloc_rbio_pages(rbio); 144 if (ret) 145 return; 146 147 for (i = 0; i < rbio->nr_sectors; i++) { 148 /* Some range not covered by bio (partial write), skip it */ 149 if (!rbio->bio_sectors[i].page) 150 continue; 151 152 ASSERT(rbio->stripe_sectors[i].page); 153 memcpy_page(rbio->stripe_sectors[i].page, 154 rbio->stripe_sectors[i].pgoff, 155 rbio->bio_sectors[i].page, 156 rbio->bio_sectors[i].pgoff, 157 rbio->bioc->fs_info->sectorsize); 158 rbio->stripe_sectors[i].uptodate = 1; 159 } 160 set_bit(RBIO_CACHE_READY_BIT, &rbio->flags); 161 } 162 163 /* 164 * we hash on the first logical address of the stripe 165 */ 166 static int rbio_bucket(struct btrfs_raid_bio *rbio) 167 { 168 u64 num = rbio->bioc->raid_map[0]; 169 170 /* 171 * we shift down quite a bit. We're using byte 172 * addressing, and most of the lower bits are zeros. 173 * This tends to upset hash_64, and it consistently 174 * returns just one or two different values. 175 * 176 * shifting off the lower bits fixes things. 177 */ 178 return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS); 179 } 180 181 static bool full_page_sectors_uptodate(struct btrfs_raid_bio *rbio, 182 unsigned int page_nr) 183 { 184 const u32 sectorsize = rbio->bioc->fs_info->sectorsize; 185 const u32 sectors_per_page = PAGE_SIZE / sectorsize; 186 int i; 187 188 ASSERT(page_nr < rbio->nr_pages); 189 190 for (i = sectors_per_page * page_nr; 191 i < sectors_per_page * page_nr + sectors_per_page; 192 i++) { 193 if (!rbio->stripe_sectors[i].uptodate) 194 return false; 195 } 196 return true; 197 } 198 199 /* 200 * Update the stripe_sectors[] array to use correct page and pgoff 201 * 202 * Should be called every time any page pointer in stripes_pages[] got modified. 203 */ 204 static void index_stripe_sectors(struct btrfs_raid_bio *rbio) 205 { 206 const u32 sectorsize = rbio->bioc->fs_info->sectorsize; 207 u32 offset; 208 int i; 209 210 for (i = 0, offset = 0; i < rbio->nr_sectors; i++, offset += sectorsize) { 211 int page_index = offset >> PAGE_SHIFT; 212 213 ASSERT(page_index < rbio->nr_pages); 214 rbio->stripe_sectors[i].page = rbio->stripe_pages[page_index]; 215 rbio->stripe_sectors[i].pgoff = offset_in_page(offset); 216 } 217 } 218 219 static void steal_rbio_page(struct btrfs_raid_bio *src, 220 struct btrfs_raid_bio *dest, int page_nr) 221 { 222 const u32 sectorsize = src->bioc->fs_info->sectorsize; 223 const u32 sectors_per_page = PAGE_SIZE / sectorsize; 224 int i; 225 226 if (dest->stripe_pages[page_nr]) 227 __free_page(dest->stripe_pages[page_nr]); 228 dest->stripe_pages[page_nr] = src->stripe_pages[page_nr]; 229 src->stripe_pages[page_nr] = NULL; 230 231 /* Also update the sector->uptodate bits. */ 232 for (i = sectors_per_page * page_nr; 233 i < sectors_per_page * page_nr + sectors_per_page; i++) 234 dest->stripe_sectors[i].uptodate = true; 235 } 236 237 /* 238 * Stealing an rbio means taking all the uptodate pages from the stripe array 239 * in the source rbio and putting them into the destination rbio. 240 * 241 * This will also update the involved stripe_sectors[] which are referring to 242 * the old pages. 243 */ 244 static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest) 245 { 246 int i; 247 struct page *s; 248 249 if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags)) 250 return; 251 252 for (i = 0; i < dest->nr_pages; i++) { 253 s = src->stripe_pages[i]; 254 if (!s || !full_page_sectors_uptodate(src, i)) 255 continue; 256 257 steal_rbio_page(src, dest, i); 258 } 259 index_stripe_sectors(dest); 260 index_stripe_sectors(src); 261 } 262 263 /* 264 * merging means we take the bio_list from the victim and 265 * splice it into the destination. The victim should 266 * be discarded afterwards. 267 * 268 * must be called with dest->rbio_list_lock held 269 */ 270 static void merge_rbio(struct btrfs_raid_bio *dest, 271 struct btrfs_raid_bio *victim) 272 { 273 bio_list_merge(&dest->bio_list, &victim->bio_list); 274 dest->bio_list_bytes += victim->bio_list_bytes; 275 /* Also inherit the bitmaps from @victim. */ 276 bitmap_or(&dest->dbitmap, &victim->dbitmap, &dest->dbitmap, 277 dest->stripe_nsectors); 278 dest->generic_bio_cnt += victim->generic_bio_cnt; 279 bio_list_init(&victim->bio_list); 280 } 281 282 /* 283 * used to prune items that are in the cache. The caller 284 * must hold the hash table lock. 285 */ 286 static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio) 287 { 288 int bucket = rbio_bucket(rbio); 289 struct btrfs_stripe_hash_table *table; 290 struct btrfs_stripe_hash *h; 291 int freeit = 0; 292 293 /* 294 * check the bit again under the hash table lock. 295 */ 296 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags)) 297 return; 298 299 table = rbio->bioc->fs_info->stripe_hash_table; 300 h = table->table + bucket; 301 302 /* hold the lock for the bucket because we may be 303 * removing it from the hash table 304 */ 305 spin_lock(&h->lock); 306 307 /* 308 * hold the lock for the bio list because we need 309 * to make sure the bio list is empty 310 */ 311 spin_lock(&rbio->bio_list_lock); 312 313 if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) { 314 list_del_init(&rbio->stripe_cache); 315 table->cache_size -= 1; 316 freeit = 1; 317 318 /* if the bio list isn't empty, this rbio is 319 * still involved in an IO. We take it out 320 * of the cache list, and drop the ref that 321 * was held for the list. 322 * 323 * If the bio_list was empty, we also remove 324 * the rbio from the hash_table, and drop 325 * the corresponding ref 326 */ 327 if (bio_list_empty(&rbio->bio_list)) { 328 if (!list_empty(&rbio->hash_list)) { 329 list_del_init(&rbio->hash_list); 330 refcount_dec(&rbio->refs); 331 BUG_ON(!list_empty(&rbio->plug_list)); 332 } 333 } 334 } 335 336 spin_unlock(&rbio->bio_list_lock); 337 spin_unlock(&h->lock); 338 339 if (freeit) 340 __free_raid_bio(rbio); 341 } 342 343 /* 344 * prune a given rbio from the cache 345 */ 346 static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio) 347 { 348 struct btrfs_stripe_hash_table *table; 349 unsigned long flags; 350 351 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags)) 352 return; 353 354 table = rbio->bioc->fs_info->stripe_hash_table; 355 356 spin_lock_irqsave(&table->cache_lock, flags); 357 __remove_rbio_from_cache(rbio); 358 spin_unlock_irqrestore(&table->cache_lock, flags); 359 } 360 361 /* 362 * remove everything in the cache 363 */ 364 static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info) 365 { 366 struct btrfs_stripe_hash_table *table; 367 unsigned long flags; 368 struct btrfs_raid_bio *rbio; 369 370 table = info->stripe_hash_table; 371 372 spin_lock_irqsave(&table->cache_lock, flags); 373 while (!list_empty(&table->stripe_cache)) { 374 rbio = list_entry(table->stripe_cache.next, 375 struct btrfs_raid_bio, 376 stripe_cache); 377 __remove_rbio_from_cache(rbio); 378 } 379 spin_unlock_irqrestore(&table->cache_lock, flags); 380 } 381 382 /* 383 * remove all cached entries and free the hash table 384 * used by unmount 385 */ 386 void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info) 387 { 388 if (!info->stripe_hash_table) 389 return; 390 btrfs_clear_rbio_cache(info); 391 kvfree(info->stripe_hash_table); 392 info->stripe_hash_table = NULL; 393 } 394 395 /* 396 * insert an rbio into the stripe cache. It 397 * must have already been prepared by calling 398 * cache_rbio_pages 399 * 400 * If this rbio was already cached, it gets 401 * moved to the front of the lru. 402 * 403 * If the size of the rbio cache is too big, we 404 * prune an item. 405 */ 406 static void cache_rbio(struct btrfs_raid_bio *rbio) 407 { 408 struct btrfs_stripe_hash_table *table; 409 unsigned long flags; 410 411 if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags)) 412 return; 413 414 table = rbio->bioc->fs_info->stripe_hash_table; 415 416 spin_lock_irqsave(&table->cache_lock, flags); 417 spin_lock(&rbio->bio_list_lock); 418 419 /* bump our ref if we were not in the list before */ 420 if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags)) 421 refcount_inc(&rbio->refs); 422 423 if (!list_empty(&rbio->stripe_cache)){ 424 list_move(&rbio->stripe_cache, &table->stripe_cache); 425 } else { 426 list_add(&rbio->stripe_cache, &table->stripe_cache); 427 table->cache_size += 1; 428 } 429 430 spin_unlock(&rbio->bio_list_lock); 431 432 if (table->cache_size > RBIO_CACHE_SIZE) { 433 struct btrfs_raid_bio *found; 434 435 found = list_entry(table->stripe_cache.prev, 436 struct btrfs_raid_bio, 437 stripe_cache); 438 439 if (found != rbio) 440 __remove_rbio_from_cache(found); 441 } 442 443 spin_unlock_irqrestore(&table->cache_lock, flags); 444 } 445 446 /* 447 * helper function to run the xor_blocks api. It is only 448 * able to do MAX_XOR_BLOCKS at a time, so we need to 449 * loop through. 450 */ 451 static void run_xor(void **pages, int src_cnt, ssize_t len) 452 { 453 int src_off = 0; 454 int xor_src_cnt = 0; 455 void *dest = pages[src_cnt]; 456 457 while(src_cnt > 0) { 458 xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS); 459 xor_blocks(xor_src_cnt, len, dest, pages + src_off); 460 461 src_cnt -= xor_src_cnt; 462 src_off += xor_src_cnt; 463 } 464 } 465 466 /* 467 * Returns true if the bio list inside this rbio covers an entire stripe (no 468 * rmw required). 469 */ 470 static int rbio_is_full(struct btrfs_raid_bio *rbio) 471 { 472 unsigned long flags; 473 unsigned long size = rbio->bio_list_bytes; 474 int ret = 1; 475 476 spin_lock_irqsave(&rbio->bio_list_lock, flags); 477 if (size != rbio->nr_data * BTRFS_STRIPE_LEN) 478 ret = 0; 479 BUG_ON(size > rbio->nr_data * BTRFS_STRIPE_LEN); 480 spin_unlock_irqrestore(&rbio->bio_list_lock, flags); 481 482 return ret; 483 } 484 485 /* 486 * returns 1 if it is safe to merge two rbios together. 487 * The merging is safe if the two rbios correspond to 488 * the same stripe and if they are both going in the same 489 * direction (read vs write), and if neither one is 490 * locked for final IO 491 * 492 * The caller is responsible for locking such that 493 * rmw_locked is safe to test 494 */ 495 static int rbio_can_merge(struct btrfs_raid_bio *last, 496 struct btrfs_raid_bio *cur) 497 { 498 if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) || 499 test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) 500 return 0; 501 502 /* 503 * we can't merge with cached rbios, since the 504 * idea is that when we merge the destination 505 * rbio is going to run our IO for us. We can 506 * steal from cached rbios though, other functions 507 * handle that. 508 */ 509 if (test_bit(RBIO_CACHE_BIT, &last->flags) || 510 test_bit(RBIO_CACHE_BIT, &cur->flags)) 511 return 0; 512 513 if (last->bioc->raid_map[0] != cur->bioc->raid_map[0]) 514 return 0; 515 516 /* we can't merge with different operations */ 517 if (last->operation != cur->operation) 518 return 0; 519 /* 520 * We've need read the full stripe from the drive. 521 * check and repair the parity and write the new results. 522 * 523 * We're not allowed to add any new bios to the 524 * bio list here, anyone else that wants to 525 * change this stripe needs to do their own rmw. 526 */ 527 if (last->operation == BTRFS_RBIO_PARITY_SCRUB) 528 return 0; 529 530 if (last->operation == BTRFS_RBIO_REBUILD_MISSING) 531 return 0; 532 533 if (last->operation == BTRFS_RBIO_READ_REBUILD) { 534 int fa = last->faila; 535 int fb = last->failb; 536 int cur_fa = cur->faila; 537 int cur_fb = cur->failb; 538 539 if (last->faila >= last->failb) { 540 fa = last->failb; 541 fb = last->faila; 542 } 543 544 if (cur->faila >= cur->failb) { 545 cur_fa = cur->failb; 546 cur_fb = cur->faila; 547 } 548 549 if (fa != cur_fa || fb != cur_fb) 550 return 0; 551 } 552 return 1; 553 } 554 555 static unsigned int rbio_stripe_sector_index(const struct btrfs_raid_bio *rbio, 556 unsigned int stripe_nr, 557 unsigned int sector_nr) 558 { 559 ASSERT(stripe_nr < rbio->real_stripes); 560 ASSERT(sector_nr < rbio->stripe_nsectors); 561 562 return stripe_nr * rbio->stripe_nsectors + sector_nr; 563 } 564 565 /* Return a sector from rbio->stripe_sectors, not from the bio list */ 566 static struct sector_ptr *rbio_stripe_sector(const struct btrfs_raid_bio *rbio, 567 unsigned int stripe_nr, 568 unsigned int sector_nr) 569 { 570 return &rbio->stripe_sectors[rbio_stripe_sector_index(rbio, stripe_nr, 571 sector_nr)]; 572 } 573 574 /* Grab a sector inside P stripe */ 575 static struct sector_ptr *rbio_pstripe_sector(const struct btrfs_raid_bio *rbio, 576 unsigned int sector_nr) 577 { 578 return rbio_stripe_sector(rbio, rbio->nr_data, sector_nr); 579 } 580 581 /* Grab a sector inside Q stripe, return NULL if not RAID6 */ 582 static struct sector_ptr *rbio_qstripe_sector(const struct btrfs_raid_bio *rbio, 583 unsigned int sector_nr) 584 { 585 if (rbio->nr_data + 1 == rbio->real_stripes) 586 return NULL; 587 return rbio_stripe_sector(rbio, rbio->nr_data + 1, sector_nr); 588 } 589 590 /* 591 * The first stripe in the table for a logical address 592 * has the lock. rbios are added in one of three ways: 593 * 594 * 1) Nobody has the stripe locked yet. The rbio is given 595 * the lock and 0 is returned. The caller must start the IO 596 * themselves. 597 * 598 * 2) Someone has the stripe locked, but we're able to merge 599 * with the lock owner. The rbio is freed and the IO will 600 * start automatically along with the existing rbio. 1 is returned. 601 * 602 * 3) Someone has the stripe locked, but we're not able to merge. 603 * The rbio is added to the lock owner's plug list, or merged into 604 * an rbio already on the plug list. When the lock owner unlocks, 605 * the next rbio on the list is run and the IO is started automatically. 606 * 1 is returned 607 * 608 * If we return 0, the caller still owns the rbio and must continue with 609 * IO submission. If we return 1, the caller must assume the rbio has 610 * already been freed. 611 */ 612 static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio) 613 { 614 struct btrfs_stripe_hash *h; 615 struct btrfs_raid_bio *cur; 616 struct btrfs_raid_bio *pending; 617 unsigned long flags; 618 struct btrfs_raid_bio *freeit = NULL; 619 struct btrfs_raid_bio *cache_drop = NULL; 620 int ret = 0; 621 622 h = rbio->bioc->fs_info->stripe_hash_table->table + rbio_bucket(rbio); 623 624 spin_lock_irqsave(&h->lock, flags); 625 list_for_each_entry(cur, &h->hash_list, hash_list) { 626 if (cur->bioc->raid_map[0] != rbio->bioc->raid_map[0]) 627 continue; 628 629 spin_lock(&cur->bio_list_lock); 630 631 /* Can we steal this cached rbio's pages? */ 632 if (bio_list_empty(&cur->bio_list) && 633 list_empty(&cur->plug_list) && 634 test_bit(RBIO_CACHE_BIT, &cur->flags) && 635 !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) { 636 list_del_init(&cur->hash_list); 637 refcount_dec(&cur->refs); 638 639 steal_rbio(cur, rbio); 640 cache_drop = cur; 641 spin_unlock(&cur->bio_list_lock); 642 643 goto lockit; 644 } 645 646 /* Can we merge into the lock owner? */ 647 if (rbio_can_merge(cur, rbio)) { 648 merge_rbio(cur, rbio); 649 spin_unlock(&cur->bio_list_lock); 650 freeit = rbio; 651 ret = 1; 652 goto out; 653 } 654 655 656 /* 657 * We couldn't merge with the running rbio, see if we can merge 658 * with the pending ones. We don't have to check for rmw_locked 659 * because there is no way they are inside finish_rmw right now 660 */ 661 list_for_each_entry(pending, &cur->plug_list, plug_list) { 662 if (rbio_can_merge(pending, rbio)) { 663 merge_rbio(pending, rbio); 664 spin_unlock(&cur->bio_list_lock); 665 freeit = rbio; 666 ret = 1; 667 goto out; 668 } 669 } 670 671 /* 672 * No merging, put us on the tail of the plug list, our rbio 673 * will be started with the currently running rbio unlocks 674 */ 675 list_add_tail(&rbio->plug_list, &cur->plug_list); 676 spin_unlock(&cur->bio_list_lock); 677 ret = 1; 678 goto out; 679 } 680 lockit: 681 refcount_inc(&rbio->refs); 682 list_add(&rbio->hash_list, &h->hash_list); 683 out: 684 spin_unlock_irqrestore(&h->lock, flags); 685 if (cache_drop) 686 remove_rbio_from_cache(cache_drop); 687 if (freeit) 688 __free_raid_bio(freeit); 689 return ret; 690 } 691 692 /* 693 * called as rmw or parity rebuild is completed. If the plug list has more 694 * rbios waiting for this stripe, the next one on the list will be started 695 */ 696 static noinline void unlock_stripe(struct btrfs_raid_bio *rbio) 697 { 698 int bucket; 699 struct btrfs_stripe_hash *h; 700 unsigned long flags; 701 int keep_cache = 0; 702 703 bucket = rbio_bucket(rbio); 704 h = rbio->bioc->fs_info->stripe_hash_table->table + bucket; 705 706 if (list_empty(&rbio->plug_list)) 707 cache_rbio(rbio); 708 709 spin_lock_irqsave(&h->lock, flags); 710 spin_lock(&rbio->bio_list_lock); 711 712 if (!list_empty(&rbio->hash_list)) { 713 /* 714 * if we're still cached and there is no other IO 715 * to perform, just leave this rbio here for others 716 * to steal from later 717 */ 718 if (list_empty(&rbio->plug_list) && 719 test_bit(RBIO_CACHE_BIT, &rbio->flags)) { 720 keep_cache = 1; 721 clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); 722 BUG_ON(!bio_list_empty(&rbio->bio_list)); 723 goto done; 724 } 725 726 list_del_init(&rbio->hash_list); 727 refcount_dec(&rbio->refs); 728 729 /* 730 * we use the plug list to hold all the rbios 731 * waiting for the chance to lock this stripe. 732 * hand the lock over to one of them. 733 */ 734 if (!list_empty(&rbio->plug_list)) { 735 struct btrfs_raid_bio *next; 736 struct list_head *head = rbio->plug_list.next; 737 738 next = list_entry(head, struct btrfs_raid_bio, 739 plug_list); 740 741 list_del_init(&rbio->plug_list); 742 743 list_add(&next->hash_list, &h->hash_list); 744 refcount_inc(&next->refs); 745 spin_unlock(&rbio->bio_list_lock); 746 spin_unlock_irqrestore(&h->lock, flags); 747 748 if (next->operation == BTRFS_RBIO_READ_REBUILD) 749 start_async_work(next, read_rebuild_work); 750 else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) { 751 steal_rbio(rbio, next); 752 start_async_work(next, read_rebuild_work); 753 } else if (next->operation == BTRFS_RBIO_WRITE) { 754 steal_rbio(rbio, next); 755 start_async_work(next, rmw_work); 756 } else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) { 757 steal_rbio(rbio, next); 758 start_async_work(next, scrub_parity_work); 759 } 760 761 goto done_nolock; 762 } 763 } 764 done: 765 spin_unlock(&rbio->bio_list_lock); 766 spin_unlock_irqrestore(&h->lock, flags); 767 768 done_nolock: 769 if (!keep_cache) 770 remove_rbio_from_cache(rbio); 771 } 772 773 static void __free_raid_bio(struct btrfs_raid_bio *rbio) 774 { 775 int i; 776 777 if (!refcount_dec_and_test(&rbio->refs)) 778 return; 779 780 WARN_ON(!list_empty(&rbio->stripe_cache)); 781 WARN_ON(!list_empty(&rbio->hash_list)); 782 WARN_ON(!bio_list_empty(&rbio->bio_list)); 783 784 for (i = 0; i < rbio->nr_pages; i++) { 785 if (rbio->stripe_pages[i]) { 786 __free_page(rbio->stripe_pages[i]); 787 rbio->stripe_pages[i] = NULL; 788 } 789 } 790 791 btrfs_put_bioc(rbio->bioc); 792 kfree(rbio); 793 } 794 795 static void rbio_endio_bio_list(struct bio *cur, blk_status_t err) 796 { 797 struct bio *next; 798 799 while (cur) { 800 next = cur->bi_next; 801 cur->bi_next = NULL; 802 cur->bi_status = err; 803 bio_endio(cur); 804 cur = next; 805 } 806 } 807 808 /* 809 * this frees the rbio and runs through all the bios in the 810 * bio_list and calls end_io on them 811 */ 812 static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err) 813 { 814 struct bio *cur = bio_list_get(&rbio->bio_list); 815 struct bio *extra; 816 817 if (rbio->generic_bio_cnt) 818 btrfs_bio_counter_sub(rbio->bioc->fs_info, rbio->generic_bio_cnt); 819 /* 820 * Clear the data bitmap, as the rbio may be cached for later usage. 821 * do this before before unlock_stripe() so there will be no new bio 822 * for this bio. 823 */ 824 bitmap_clear(&rbio->dbitmap, 0, rbio->stripe_nsectors); 825 826 /* 827 * At this moment, rbio->bio_list is empty, however since rbio does not 828 * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the 829 * hash list, rbio may be merged with others so that rbio->bio_list 830 * becomes non-empty. 831 * Once unlock_stripe() is done, rbio->bio_list will not be updated any 832 * more and we can call bio_endio() on all queued bios. 833 */ 834 unlock_stripe(rbio); 835 extra = bio_list_get(&rbio->bio_list); 836 __free_raid_bio(rbio); 837 838 rbio_endio_bio_list(cur, err); 839 if (extra) 840 rbio_endio_bio_list(extra, err); 841 } 842 843 /* 844 * end io function used by finish_rmw. When we finally 845 * get here, we've written a full stripe 846 */ 847 static void raid_write_end_io(struct bio *bio) 848 { 849 struct btrfs_raid_bio *rbio = bio->bi_private; 850 blk_status_t err = bio->bi_status; 851 int max_errors; 852 853 if (err) 854 fail_bio_stripe(rbio, bio); 855 856 bio_put(bio); 857 858 if (!atomic_dec_and_test(&rbio->stripes_pending)) 859 return; 860 861 err = BLK_STS_OK; 862 863 /* OK, we have read all the stripes we need to. */ 864 max_errors = (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) ? 865 0 : rbio->bioc->max_errors; 866 if (atomic_read(&rbio->error) > max_errors) 867 err = BLK_STS_IOERR; 868 869 rbio_orig_end_io(rbio, err); 870 } 871 872 /** 873 * Get a sector pointer specified by its @stripe_nr and @sector_nr 874 * 875 * @rbio: The raid bio 876 * @stripe_nr: Stripe number, valid range [0, real_stripe) 877 * @sector_nr: Sector number inside the stripe, 878 * valid range [0, stripe_nsectors) 879 * @bio_list_only: Whether to use sectors inside the bio list only. 880 * 881 * The read/modify/write code wants to reuse the original bio page as much 882 * as possible, and only use stripe_sectors as fallback. 883 */ 884 static struct sector_ptr *sector_in_rbio(struct btrfs_raid_bio *rbio, 885 int stripe_nr, int sector_nr, 886 bool bio_list_only) 887 { 888 struct sector_ptr *sector; 889 int index; 890 891 ASSERT(stripe_nr >= 0 && stripe_nr < rbio->real_stripes); 892 ASSERT(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors); 893 894 index = stripe_nr * rbio->stripe_nsectors + sector_nr; 895 ASSERT(index >= 0 && index < rbio->nr_sectors); 896 897 spin_lock_irq(&rbio->bio_list_lock); 898 sector = &rbio->bio_sectors[index]; 899 if (sector->page || bio_list_only) { 900 /* Don't return sector without a valid page pointer */ 901 if (!sector->page) 902 sector = NULL; 903 spin_unlock_irq(&rbio->bio_list_lock); 904 return sector; 905 } 906 spin_unlock_irq(&rbio->bio_list_lock); 907 908 return &rbio->stripe_sectors[index]; 909 } 910 911 /* 912 * allocation and initial setup for the btrfs_raid_bio. Not 913 * this does not allocate any pages for rbio->pages. 914 */ 915 static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info, 916 struct btrfs_io_context *bioc) 917 { 918 const unsigned int real_stripes = bioc->num_stripes - bioc->num_tgtdevs; 919 const unsigned int stripe_npages = BTRFS_STRIPE_LEN >> PAGE_SHIFT; 920 const unsigned int num_pages = stripe_npages * real_stripes; 921 const unsigned int stripe_nsectors = 922 BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits; 923 const unsigned int num_sectors = stripe_nsectors * real_stripes; 924 struct btrfs_raid_bio *rbio; 925 void *p; 926 927 /* PAGE_SIZE must also be aligned to sectorsize for subpage support */ 928 ASSERT(IS_ALIGNED(PAGE_SIZE, fs_info->sectorsize)); 929 /* 930 * Our current stripe len should be fixed to 64k thus stripe_nsectors 931 * (at most 16) should be no larger than BITS_PER_LONG. 932 */ 933 ASSERT(stripe_nsectors <= BITS_PER_LONG); 934 935 rbio = kzalloc(sizeof(*rbio) + 936 sizeof(*rbio->stripe_pages) * num_pages + 937 sizeof(*rbio->bio_sectors) * num_sectors + 938 sizeof(*rbio->stripe_sectors) * num_sectors + 939 sizeof(*rbio->finish_pointers) * real_stripes, 940 GFP_NOFS); 941 if (!rbio) 942 return ERR_PTR(-ENOMEM); 943 944 bio_list_init(&rbio->bio_list); 945 INIT_LIST_HEAD(&rbio->plug_list); 946 spin_lock_init(&rbio->bio_list_lock); 947 INIT_LIST_HEAD(&rbio->stripe_cache); 948 INIT_LIST_HEAD(&rbio->hash_list); 949 rbio->bioc = bioc; 950 rbio->nr_pages = num_pages; 951 rbio->nr_sectors = num_sectors; 952 rbio->real_stripes = real_stripes; 953 rbio->stripe_npages = stripe_npages; 954 rbio->stripe_nsectors = stripe_nsectors; 955 rbio->faila = -1; 956 rbio->failb = -1; 957 refcount_set(&rbio->refs, 1); 958 atomic_set(&rbio->error, 0); 959 atomic_set(&rbio->stripes_pending, 0); 960 961 /* 962 * The stripe_pages, bio_sectors, etc arrays point to the extra memory 963 * we allocated past the end of the rbio. 964 */ 965 p = rbio + 1; 966 #define CONSUME_ALLOC(ptr, count) do { \ 967 ptr = p; \ 968 p = (unsigned char *)p + sizeof(*(ptr)) * (count); \ 969 } while (0) 970 CONSUME_ALLOC(rbio->stripe_pages, num_pages); 971 CONSUME_ALLOC(rbio->bio_sectors, num_sectors); 972 CONSUME_ALLOC(rbio->stripe_sectors, num_sectors); 973 CONSUME_ALLOC(rbio->finish_pointers, real_stripes); 974 #undef CONSUME_ALLOC 975 976 ASSERT(btrfs_nr_parity_stripes(bioc->map_type)); 977 rbio->nr_data = real_stripes - btrfs_nr_parity_stripes(bioc->map_type); 978 979 return rbio; 980 } 981 982 /* allocate pages for all the stripes in the bio, including parity */ 983 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio) 984 { 985 int ret; 986 987 ret = btrfs_alloc_page_array(rbio->nr_pages, rbio->stripe_pages); 988 if (ret < 0) 989 return ret; 990 /* Mapping all sectors */ 991 index_stripe_sectors(rbio); 992 return 0; 993 } 994 995 /* only allocate pages for p/q stripes */ 996 static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio) 997 { 998 const int data_pages = rbio->nr_data * rbio->stripe_npages; 999 int ret; 1000 1001 ret = btrfs_alloc_page_array(rbio->nr_pages - data_pages, 1002 rbio->stripe_pages + data_pages); 1003 if (ret < 0) 1004 return ret; 1005 1006 index_stripe_sectors(rbio); 1007 return 0; 1008 } 1009 1010 /* 1011 * Add a single sector @sector into our list of bios for IO. 1012 * 1013 * Return 0 if everything went well. 1014 * Return <0 for error. 1015 */ 1016 static int rbio_add_io_sector(struct btrfs_raid_bio *rbio, 1017 struct bio_list *bio_list, 1018 struct sector_ptr *sector, 1019 unsigned int stripe_nr, 1020 unsigned int sector_nr, 1021 enum req_op op) 1022 { 1023 const u32 sectorsize = rbio->bioc->fs_info->sectorsize; 1024 struct bio *last = bio_list->tail; 1025 int ret; 1026 struct bio *bio; 1027 struct btrfs_io_stripe *stripe; 1028 u64 disk_start; 1029 1030 /* 1031 * Note: here stripe_nr has taken device replace into consideration, 1032 * thus it can be larger than rbio->real_stripe. 1033 * So here we check against bioc->num_stripes, not rbio->real_stripes. 1034 */ 1035 ASSERT(stripe_nr >= 0 && stripe_nr < rbio->bioc->num_stripes); 1036 ASSERT(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors); 1037 ASSERT(sector->page); 1038 1039 stripe = &rbio->bioc->stripes[stripe_nr]; 1040 disk_start = stripe->physical + sector_nr * sectorsize; 1041 1042 /* if the device is missing, just fail this stripe */ 1043 if (!stripe->dev->bdev) 1044 return fail_rbio_index(rbio, stripe_nr); 1045 1046 /* see if we can add this page onto our existing bio */ 1047 if (last) { 1048 u64 last_end = last->bi_iter.bi_sector << 9; 1049 last_end += last->bi_iter.bi_size; 1050 1051 /* 1052 * we can't merge these if they are from different 1053 * devices or if they are not contiguous 1054 */ 1055 if (last_end == disk_start && !last->bi_status && 1056 last->bi_bdev == stripe->dev->bdev) { 1057 ret = bio_add_page(last, sector->page, sectorsize, 1058 sector->pgoff); 1059 if (ret == sectorsize) 1060 return 0; 1061 } 1062 } 1063 1064 /* put a new bio on the list */ 1065 bio = bio_alloc(stripe->dev->bdev, 1066 max(BTRFS_STRIPE_LEN >> PAGE_SHIFT, 1), 1067 op, GFP_NOFS); 1068 bio->bi_iter.bi_sector = disk_start >> 9; 1069 bio->bi_private = rbio; 1070 1071 bio_add_page(bio, sector->page, sectorsize, sector->pgoff); 1072 bio_list_add(bio_list, bio); 1073 return 0; 1074 } 1075 1076 /* 1077 * while we're doing the read/modify/write cycle, we could 1078 * have errors in reading pages off the disk. This checks 1079 * for errors and if we're not able to read the page it'll 1080 * trigger parity reconstruction. The rmw will be finished 1081 * after we've reconstructed the failed stripes 1082 */ 1083 static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio) 1084 { 1085 if (rbio->faila >= 0 || rbio->failb >= 0) { 1086 BUG_ON(rbio->faila == rbio->real_stripes - 1); 1087 __raid56_parity_recover(rbio); 1088 } else { 1089 finish_rmw(rbio); 1090 } 1091 } 1092 1093 static void index_one_bio(struct btrfs_raid_bio *rbio, struct bio *bio) 1094 { 1095 const u32 sectorsize = rbio->bioc->fs_info->sectorsize; 1096 struct bio_vec bvec; 1097 struct bvec_iter iter; 1098 u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) - 1099 rbio->bioc->raid_map[0]; 1100 1101 bio_for_each_segment(bvec, bio, iter) { 1102 u32 bvec_offset; 1103 1104 for (bvec_offset = 0; bvec_offset < bvec.bv_len; 1105 bvec_offset += sectorsize, offset += sectorsize) { 1106 int index = offset / sectorsize; 1107 struct sector_ptr *sector = &rbio->bio_sectors[index]; 1108 1109 sector->page = bvec.bv_page; 1110 sector->pgoff = bvec.bv_offset + bvec_offset; 1111 ASSERT(sector->pgoff < PAGE_SIZE); 1112 } 1113 } 1114 } 1115 1116 /* 1117 * helper function to walk our bio list and populate the bio_pages array with 1118 * the result. This seems expensive, but it is faster than constantly 1119 * searching through the bio list as we setup the IO in finish_rmw or stripe 1120 * reconstruction. 1121 * 1122 * This must be called before you trust the answers from page_in_rbio 1123 */ 1124 static void index_rbio_pages(struct btrfs_raid_bio *rbio) 1125 { 1126 struct bio *bio; 1127 1128 spin_lock_irq(&rbio->bio_list_lock); 1129 bio_list_for_each(bio, &rbio->bio_list) 1130 index_one_bio(rbio, bio); 1131 1132 spin_unlock_irq(&rbio->bio_list_lock); 1133 } 1134 1135 static void bio_get_trace_info(struct btrfs_raid_bio *rbio, struct bio *bio, 1136 struct raid56_bio_trace_info *trace_info) 1137 { 1138 const struct btrfs_io_context *bioc = rbio->bioc; 1139 int i; 1140 1141 ASSERT(bioc); 1142 1143 /* We rely on bio->bi_bdev to find the stripe number. */ 1144 if (!bio->bi_bdev) 1145 goto not_found; 1146 1147 for (i = 0; i < bioc->num_stripes; i++) { 1148 if (bio->bi_bdev != bioc->stripes[i].dev->bdev) 1149 continue; 1150 trace_info->stripe_nr = i; 1151 trace_info->devid = bioc->stripes[i].dev->devid; 1152 trace_info->offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) - 1153 bioc->stripes[i].physical; 1154 return; 1155 } 1156 1157 not_found: 1158 trace_info->devid = -1; 1159 trace_info->offset = -1; 1160 trace_info->stripe_nr = -1; 1161 } 1162 1163 /* 1164 * this is called from one of two situations. We either 1165 * have a full stripe from the higher layers, or we've read all 1166 * the missing bits off disk. 1167 * 1168 * This will calculate the parity and then send down any 1169 * changed blocks. 1170 */ 1171 static noinline void finish_rmw(struct btrfs_raid_bio *rbio) 1172 { 1173 struct btrfs_io_context *bioc = rbio->bioc; 1174 const u32 sectorsize = bioc->fs_info->sectorsize; 1175 void **pointers = rbio->finish_pointers; 1176 int nr_data = rbio->nr_data; 1177 /* The total sector number inside the full stripe. */ 1178 int total_sector_nr; 1179 int stripe; 1180 /* Sector number inside a stripe. */ 1181 int sectornr; 1182 bool has_qstripe; 1183 struct bio_list bio_list; 1184 struct bio *bio; 1185 int ret; 1186 1187 bio_list_init(&bio_list); 1188 1189 if (rbio->real_stripes - rbio->nr_data == 1) 1190 has_qstripe = false; 1191 else if (rbio->real_stripes - rbio->nr_data == 2) 1192 has_qstripe = true; 1193 else 1194 BUG(); 1195 1196 /* We should have at least one data sector. */ 1197 ASSERT(bitmap_weight(&rbio->dbitmap, rbio->stripe_nsectors)); 1198 1199 /* at this point we either have a full stripe, 1200 * or we've read the full stripe from the drive. 1201 * recalculate the parity and write the new results. 1202 * 1203 * We're not allowed to add any new bios to the 1204 * bio list here, anyone else that wants to 1205 * change this stripe needs to do their own rmw. 1206 */ 1207 spin_lock_irq(&rbio->bio_list_lock); 1208 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); 1209 spin_unlock_irq(&rbio->bio_list_lock); 1210 1211 atomic_set(&rbio->error, 0); 1212 1213 /* 1214 * now that we've set rmw_locked, run through the 1215 * bio list one last time and map the page pointers 1216 * 1217 * We don't cache full rbios because we're assuming 1218 * the higher layers are unlikely to use this area of 1219 * the disk again soon. If they do use it again, 1220 * hopefully they will send another full bio. 1221 */ 1222 index_rbio_pages(rbio); 1223 if (!rbio_is_full(rbio)) 1224 cache_rbio_pages(rbio); 1225 else 1226 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); 1227 1228 for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) { 1229 struct sector_ptr *sector; 1230 1231 /* First collect one sector from each data stripe */ 1232 for (stripe = 0; stripe < nr_data; stripe++) { 1233 sector = sector_in_rbio(rbio, stripe, sectornr, 0); 1234 pointers[stripe] = kmap_local_page(sector->page) + 1235 sector->pgoff; 1236 } 1237 1238 /* Then add the parity stripe */ 1239 sector = rbio_pstripe_sector(rbio, sectornr); 1240 sector->uptodate = 1; 1241 pointers[stripe++] = kmap_local_page(sector->page) + sector->pgoff; 1242 1243 if (has_qstripe) { 1244 /* 1245 * RAID6, add the qstripe and call the library function 1246 * to fill in our p/q 1247 */ 1248 sector = rbio_qstripe_sector(rbio, sectornr); 1249 sector->uptodate = 1; 1250 pointers[stripe++] = kmap_local_page(sector->page) + 1251 sector->pgoff; 1252 1253 raid6_call.gen_syndrome(rbio->real_stripes, sectorsize, 1254 pointers); 1255 } else { 1256 /* raid5 */ 1257 memcpy(pointers[nr_data], pointers[0], sectorsize); 1258 run_xor(pointers + 1, nr_data - 1, sectorsize); 1259 } 1260 for (stripe = stripe - 1; stripe >= 0; stripe--) 1261 kunmap_local(pointers[stripe]); 1262 } 1263 1264 /* 1265 * Start writing. Make bios for everything from the higher layers (the 1266 * bio_list in our rbio) and our P/Q. Ignore everything else. 1267 */ 1268 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors; 1269 total_sector_nr++) { 1270 struct sector_ptr *sector; 1271 1272 stripe = total_sector_nr / rbio->stripe_nsectors; 1273 sectornr = total_sector_nr % rbio->stripe_nsectors; 1274 1275 /* This vertical stripe has no data, skip it. */ 1276 if (!test_bit(sectornr, &rbio->dbitmap)) 1277 continue; 1278 1279 if (stripe < rbio->nr_data) { 1280 sector = sector_in_rbio(rbio, stripe, sectornr, 1); 1281 if (!sector) 1282 continue; 1283 } else { 1284 sector = rbio_stripe_sector(rbio, stripe, sectornr); 1285 } 1286 1287 ret = rbio_add_io_sector(rbio, &bio_list, sector, stripe, 1288 sectornr, REQ_OP_WRITE); 1289 if (ret) 1290 goto cleanup; 1291 } 1292 1293 if (likely(!bioc->num_tgtdevs)) 1294 goto write_data; 1295 1296 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors; 1297 total_sector_nr++) { 1298 struct sector_ptr *sector; 1299 1300 stripe = total_sector_nr / rbio->stripe_nsectors; 1301 sectornr = total_sector_nr % rbio->stripe_nsectors; 1302 1303 if (!bioc->tgtdev_map[stripe]) { 1304 /* 1305 * We can skip the whole stripe completely, note 1306 * total_sector_nr will be increased by one anyway. 1307 */ 1308 ASSERT(sectornr == 0); 1309 total_sector_nr += rbio->stripe_nsectors - 1; 1310 continue; 1311 } 1312 1313 /* This vertical stripe has no data, skip it. */ 1314 if (!test_bit(sectornr, &rbio->dbitmap)) 1315 continue; 1316 1317 if (stripe < rbio->nr_data) { 1318 sector = sector_in_rbio(rbio, stripe, sectornr, 1); 1319 if (!sector) 1320 continue; 1321 } else { 1322 sector = rbio_stripe_sector(rbio, stripe, sectornr); 1323 } 1324 1325 ret = rbio_add_io_sector(rbio, &bio_list, sector, 1326 rbio->bioc->tgtdev_map[stripe], 1327 sectornr, REQ_OP_WRITE); 1328 if (ret) 1329 goto cleanup; 1330 } 1331 1332 write_data: 1333 atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list)); 1334 BUG_ON(atomic_read(&rbio->stripes_pending) == 0); 1335 1336 while ((bio = bio_list_pop(&bio_list))) { 1337 bio->bi_end_io = raid_write_end_io; 1338 1339 if (trace_raid56_write_stripe_enabled()) { 1340 struct raid56_bio_trace_info trace_info = { 0 }; 1341 1342 bio_get_trace_info(rbio, bio, &trace_info); 1343 trace_raid56_write_stripe(rbio, bio, &trace_info); 1344 } 1345 submit_bio(bio); 1346 } 1347 return; 1348 1349 cleanup: 1350 rbio_orig_end_io(rbio, BLK_STS_IOERR); 1351 1352 while ((bio = bio_list_pop(&bio_list))) 1353 bio_put(bio); 1354 } 1355 1356 /* 1357 * helper to find the stripe number for a given bio. Used to figure out which 1358 * stripe has failed. This expects the bio to correspond to a physical disk, 1359 * so it looks up based on physical sector numbers. 1360 */ 1361 static int find_bio_stripe(struct btrfs_raid_bio *rbio, 1362 struct bio *bio) 1363 { 1364 u64 physical = bio->bi_iter.bi_sector; 1365 int i; 1366 struct btrfs_io_stripe *stripe; 1367 1368 physical <<= 9; 1369 1370 for (i = 0; i < rbio->bioc->num_stripes; i++) { 1371 stripe = &rbio->bioc->stripes[i]; 1372 if (in_range(physical, stripe->physical, BTRFS_STRIPE_LEN) && 1373 stripe->dev->bdev && bio->bi_bdev == stripe->dev->bdev) { 1374 return i; 1375 } 1376 } 1377 return -1; 1378 } 1379 1380 /* 1381 * helper to find the stripe number for a given 1382 * bio (before mapping). Used to figure out which stripe has 1383 * failed. This looks up based on logical block numbers. 1384 */ 1385 static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio, 1386 struct bio *bio) 1387 { 1388 u64 logical = bio->bi_iter.bi_sector << 9; 1389 int i; 1390 1391 for (i = 0; i < rbio->nr_data; i++) { 1392 u64 stripe_start = rbio->bioc->raid_map[i]; 1393 1394 if (in_range(logical, stripe_start, BTRFS_STRIPE_LEN)) 1395 return i; 1396 } 1397 return -1; 1398 } 1399 1400 /* 1401 * returns -EIO if we had too many failures 1402 */ 1403 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed) 1404 { 1405 unsigned long flags; 1406 int ret = 0; 1407 1408 spin_lock_irqsave(&rbio->bio_list_lock, flags); 1409 1410 /* we already know this stripe is bad, move on */ 1411 if (rbio->faila == failed || rbio->failb == failed) 1412 goto out; 1413 1414 if (rbio->faila == -1) { 1415 /* first failure on this rbio */ 1416 rbio->faila = failed; 1417 atomic_inc(&rbio->error); 1418 } else if (rbio->failb == -1) { 1419 /* second failure on this rbio */ 1420 rbio->failb = failed; 1421 atomic_inc(&rbio->error); 1422 } else { 1423 ret = -EIO; 1424 } 1425 out: 1426 spin_unlock_irqrestore(&rbio->bio_list_lock, flags); 1427 1428 return ret; 1429 } 1430 1431 /* 1432 * helper to fail a stripe based on a physical disk 1433 * bio. 1434 */ 1435 static int fail_bio_stripe(struct btrfs_raid_bio *rbio, 1436 struct bio *bio) 1437 { 1438 int failed = find_bio_stripe(rbio, bio); 1439 1440 if (failed < 0) 1441 return -EIO; 1442 1443 return fail_rbio_index(rbio, failed); 1444 } 1445 1446 /* 1447 * For subpage case, we can no longer set page Uptodate directly for 1448 * stripe_pages[], thus we need to locate the sector. 1449 */ 1450 static struct sector_ptr *find_stripe_sector(struct btrfs_raid_bio *rbio, 1451 struct page *page, 1452 unsigned int pgoff) 1453 { 1454 int i; 1455 1456 for (i = 0; i < rbio->nr_sectors; i++) { 1457 struct sector_ptr *sector = &rbio->stripe_sectors[i]; 1458 1459 if (sector->page == page && sector->pgoff == pgoff) 1460 return sector; 1461 } 1462 return NULL; 1463 } 1464 1465 /* 1466 * this sets each page in the bio uptodate. It should only be used on private 1467 * rbio pages, nothing that comes in from the higher layers 1468 */ 1469 static void set_bio_pages_uptodate(struct btrfs_raid_bio *rbio, struct bio *bio) 1470 { 1471 const u32 sectorsize = rbio->bioc->fs_info->sectorsize; 1472 struct bio_vec *bvec; 1473 struct bvec_iter_all iter_all; 1474 1475 ASSERT(!bio_flagged(bio, BIO_CLONED)); 1476 1477 bio_for_each_segment_all(bvec, bio, iter_all) { 1478 struct sector_ptr *sector; 1479 int pgoff; 1480 1481 for (pgoff = bvec->bv_offset; pgoff - bvec->bv_offset < bvec->bv_len; 1482 pgoff += sectorsize) { 1483 sector = find_stripe_sector(rbio, bvec->bv_page, pgoff); 1484 ASSERT(sector); 1485 if (sector) 1486 sector->uptodate = 1; 1487 } 1488 } 1489 } 1490 1491 static void raid56_bio_end_io(struct bio *bio) 1492 { 1493 struct btrfs_raid_bio *rbio = bio->bi_private; 1494 1495 if (bio->bi_status) 1496 fail_bio_stripe(rbio, bio); 1497 else 1498 set_bio_pages_uptodate(rbio, bio); 1499 1500 bio_put(bio); 1501 1502 if (atomic_dec_and_test(&rbio->stripes_pending)) 1503 queue_work(rbio->bioc->fs_info->endio_raid56_workers, 1504 &rbio->end_io_work); 1505 } 1506 1507 /* 1508 * End io handler for the read phase of the RMW cycle. All the bios here are 1509 * physical stripe bios we've read from the disk so we can recalculate the 1510 * parity of the stripe. 1511 * 1512 * This will usually kick off finish_rmw once all the bios are read in, but it 1513 * may trigger parity reconstruction if we had any errors along the way 1514 */ 1515 static void raid56_rmw_end_io_work(struct work_struct *work) 1516 { 1517 struct btrfs_raid_bio *rbio = 1518 container_of(work, struct btrfs_raid_bio, end_io_work); 1519 1520 if (atomic_read(&rbio->error) > rbio->bioc->max_errors) { 1521 rbio_orig_end_io(rbio, BLK_STS_IOERR); 1522 return; 1523 } 1524 1525 /* 1526 * This will normally call finish_rmw to start our write but if there 1527 * are any failed stripes we'll reconstruct from parity first. 1528 */ 1529 validate_rbio_for_rmw(rbio); 1530 } 1531 1532 /* 1533 * the stripe must be locked by the caller. It will 1534 * unlock after all the writes are done 1535 */ 1536 static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio) 1537 { 1538 int bios_to_read = 0; 1539 struct bio_list bio_list; 1540 const int nr_data_sectors = rbio->stripe_nsectors * rbio->nr_data; 1541 int ret; 1542 int total_sector_nr; 1543 struct bio *bio; 1544 1545 bio_list_init(&bio_list); 1546 1547 ret = alloc_rbio_pages(rbio); 1548 if (ret) 1549 goto cleanup; 1550 1551 index_rbio_pages(rbio); 1552 1553 atomic_set(&rbio->error, 0); 1554 /* Build a list of bios to read all the missing data sectors. */ 1555 for (total_sector_nr = 0; total_sector_nr < nr_data_sectors; 1556 total_sector_nr++) { 1557 struct sector_ptr *sector; 1558 int stripe = total_sector_nr / rbio->stripe_nsectors; 1559 int sectornr = total_sector_nr % rbio->stripe_nsectors; 1560 1561 /* 1562 * We want to find all the sectors missing from the rbio and 1563 * read them from the disk. If sector_in_rbio() finds a page 1564 * in the bio list we don't need to read it off the stripe. 1565 */ 1566 sector = sector_in_rbio(rbio, stripe, sectornr, 1); 1567 if (sector) 1568 continue; 1569 1570 sector = rbio_stripe_sector(rbio, stripe, sectornr); 1571 /* 1572 * The bio cache may have handed us an uptodate page. If so, 1573 * use it. 1574 */ 1575 if (sector->uptodate) 1576 continue; 1577 1578 ret = rbio_add_io_sector(rbio, &bio_list, sector, 1579 stripe, sectornr, REQ_OP_READ); 1580 if (ret) 1581 goto cleanup; 1582 } 1583 1584 bios_to_read = bio_list_size(&bio_list); 1585 if (!bios_to_read) { 1586 /* 1587 * this can happen if others have merged with 1588 * us, it means there is nothing left to read. 1589 * But if there are missing devices it may not be 1590 * safe to do the full stripe write yet. 1591 */ 1592 goto finish; 1593 } 1594 1595 /* 1596 * The bioc may be freed once we submit the last bio. Make sure not to 1597 * touch it after that. 1598 */ 1599 atomic_set(&rbio->stripes_pending, bios_to_read); 1600 INIT_WORK(&rbio->end_io_work, raid56_rmw_end_io_work); 1601 while ((bio = bio_list_pop(&bio_list))) { 1602 bio->bi_end_io = raid56_bio_end_io; 1603 1604 if (trace_raid56_read_partial_enabled()) { 1605 struct raid56_bio_trace_info trace_info = { 0 }; 1606 1607 bio_get_trace_info(rbio, bio, &trace_info); 1608 trace_raid56_read_partial(rbio, bio, &trace_info); 1609 } 1610 submit_bio(bio); 1611 } 1612 /* the actual write will happen once the reads are done */ 1613 return 0; 1614 1615 cleanup: 1616 rbio_orig_end_io(rbio, BLK_STS_IOERR); 1617 1618 while ((bio = bio_list_pop(&bio_list))) 1619 bio_put(bio); 1620 1621 return -EIO; 1622 1623 finish: 1624 validate_rbio_for_rmw(rbio); 1625 return 0; 1626 } 1627 1628 /* 1629 * if the upper layers pass in a full stripe, we thank them by only allocating 1630 * enough pages to hold the parity, and sending it all down quickly. 1631 */ 1632 static int full_stripe_write(struct btrfs_raid_bio *rbio) 1633 { 1634 int ret; 1635 1636 ret = alloc_rbio_parity_pages(rbio); 1637 if (ret) { 1638 __free_raid_bio(rbio); 1639 return ret; 1640 } 1641 1642 ret = lock_stripe_add(rbio); 1643 if (ret == 0) 1644 finish_rmw(rbio); 1645 return 0; 1646 } 1647 1648 /* 1649 * partial stripe writes get handed over to async helpers. 1650 * We're really hoping to merge a few more writes into this 1651 * rbio before calculating new parity 1652 */ 1653 static int partial_stripe_write(struct btrfs_raid_bio *rbio) 1654 { 1655 int ret; 1656 1657 ret = lock_stripe_add(rbio); 1658 if (ret == 0) 1659 start_async_work(rbio, rmw_work); 1660 return 0; 1661 } 1662 1663 /* 1664 * sometimes while we were reading from the drive to 1665 * recalculate parity, enough new bios come into create 1666 * a full stripe. So we do a check here to see if we can 1667 * go directly to finish_rmw 1668 */ 1669 static int __raid56_parity_write(struct btrfs_raid_bio *rbio) 1670 { 1671 /* head off into rmw land if we don't have a full stripe */ 1672 if (!rbio_is_full(rbio)) 1673 return partial_stripe_write(rbio); 1674 return full_stripe_write(rbio); 1675 } 1676 1677 /* 1678 * We use plugging call backs to collect full stripes. 1679 * Any time we get a partial stripe write while plugged 1680 * we collect it into a list. When the unplug comes down, 1681 * we sort the list by logical block number and merge 1682 * everything we can into the same rbios 1683 */ 1684 struct btrfs_plug_cb { 1685 struct blk_plug_cb cb; 1686 struct btrfs_fs_info *info; 1687 struct list_head rbio_list; 1688 struct work_struct work; 1689 }; 1690 1691 /* 1692 * rbios on the plug list are sorted for easier merging. 1693 */ 1694 static int plug_cmp(void *priv, const struct list_head *a, 1695 const struct list_head *b) 1696 { 1697 const struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio, 1698 plug_list); 1699 const struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio, 1700 plug_list); 1701 u64 a_sector = ra->bio_list.head->bi_iter.bi_sector; 1702 u64 b_sector = rb->bio_list.head->bi_iter.bi_sector; 1703 1704 if (a_sector < b_sector) 1705 return -1; 1706 if (a_sector > b_sector) 1707 return 1; 1708 return 0; 1709 } 1710 1711 static void run_plug(struct btrfs_plug_cb *plug) 1712 { 1713 struct btrfs_raid_bio *cur; 1714 struct btrfs_raid_bio *last = NULL; 1715 1716 /* 1717 * sort our plug list then try to merge 1718 * everything we can in hopes of creating full 1719 * stripes. 1720 */ 1721 list_sort(NULL, &plug->rbio_list, plug_cmp); 1722 while (!list_empty(&plug->rbio_list)) { 1723 cur = list_entry(plug->rbio_list.next, 1724 struct btrfs_raid_bio, plug_list); 1725 list_del_init(&cur->plug_list); 1726 1727 if (rbio_is_full(cur)) { 1728 int ret; 1729 1730 /* we have a full stripe, send it down */ 1731 ret = full_stripe_write(cur); 1732 BUG_ON(ret); 1733 continue; 1734 } 1735 if (last) { 1736 if (rbio_can_merge(last, cur)) { 1737 merge_rbio(last, cur); 1738 __free_raid_bio(cur); 1739 continue; 1740 1741 } 1742 __raid56_parity_write(last); 1743 } 1744 last = cur; 1745 } 1746 if (last) { 1747 __raid56_parity_write(last); 1748 } 1749 kfree(plug); 1750 } 1751 1752 /* 1753 * if the unplug comes from schedule, we have to push the 1754 * work off to a helper thread 1755 */ 1756 static void unplug_work(struct work_struct *work) 1757 { 1758 struct btrfs_plug_cb *plug; 1759 plug = container_of(work, struct btrfs_plug_cb, work); 1760 run_plug(plug); 1761 } 1762 1763 static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule) 1764 { 1765 struct btrfs_plug_cb *plug; 1766 plug = container_of(cb, struct btrfs_plug_cb, cb); 1767 1768 if (from_schedule) { 1769 INIT_WORK(&plug->work, unplug_work); 1770 queue_work(plug->info->rmw_workers, &plug->work); 1771 return; 1772 } 1773 run_plug(plug); 1774 } 1775 1776 /* Add the original bio into rbio->bio_list, and update rbio::dbitmap. */ 1777 static void rbio_add_bio(struct btrfs_raid_bio *rbio, struct bio *orig_bio) 1778 { 1779 const struct btrfs_fs_info *fs_info = rbio->bioc->fs_info; 1780 const u64 orig_logical = orig_bio->bi_iter.bi_sector << SECTOR_SHIFT; 1781 const u64 full_stripe_start = rbio->bioc->raid_map[0]; 1782 const u32 orig_len = orig_bio->bi_iter.bi_size; 1783 const u32 sectorsize = fs_info->sectorsize; 1784 u64 cur_logical; 1785 1786 ASSERT(orig_logical >= full_stripe_start && 1787 orig_logical + orig_len <= full_stripe_start + 1788 rbio->nr_data * BTRFS_STRIPE_LEN); 1789 1790 bio_list_add(&rbio->bio_list, orig_bio); 1791 rbio->bio_list_bytes += orig_bio->bi_iter.bi_size; 1792 1793 /* Update the dbitmap. */ 1794 for (cur_logical = orig_logical; cur_logical < orig_logical + orig_len; 1795 cur_logical += sectorsize) { 1796 int bit = ((u32)(cur_logical - full_stripe_start) >> 1797 fs_info->sectorsize_bits) % rbio->stripe_nsectors; 1798 1799 set_bit(bit, &rbio->dbitmap); 1800 } 1801 } 1802 1803 /* 1804 * our main entry point for writes from the rest of the FS. 1805 */ 1806 void raid56_parity_write(struct bio *bio, struct btrfs_io_context *bioc) 1807 { 1808 struct btrfs_fs_info *fs_info = bioc->fs_info; 1809 struct btrfs_raid_bio *rbio; 1810 struct btrfs_plug_cb *plug = NULL; 1811 struct blk_plug_cb *cb; 1812 int ret = 0; 1813 1814 rbio = alloc_rbio(fs_info, bioc); 1815 if (IS_ERR(rbio)) { 1816 btrfs_put_bioc(bioc); 1817 ret = PTR_ERR(rbio); 1818 goto out_dec_counter; 1819 } 1820 rbio->operation = BTRFS_RBIO_WRITE; 1821 rbio_add_bio(rbio, bio); 1822 1823 rbio->generic_bio_cnt = 1; 1824 1825 /* 1826 * don't plug on full rbios, just get them out the door 1827 * as quickly as we can 1828 */ 1829 if (rbio_is_full(rbio)) { 1830 ret = full_stripe_write(rbio); 1831 if (ret) 1832 goto out_dec_counter; 1833 return; 1834 } 1835 1836 cb = blk_check_plugged(btrfs_raid_unplug, fs_info, sizeof(*plug)); 1837 if (cb) { 1838 plug = container_of(cb, struct btrfs_plug_cb, cb); 1839 if (!plug->info) { 1840 plug->info = fs_info; 1841 INIT_LIST_HEAD(&plug->rbio_list); 1842 } 1843 list_add_tail(&rbio->plug_list, &plug->rbio_list); 1844 } else { 1845 ret = __raid56_parity_write(rbio); 1846 if (ret) 1847 goto out_dec_counter; 1848 } 1849 1850 return; 1851 1852 out_dec_counter: 1853 btrfs_bio_counter_dec(fs_info); 1854 bio->bi_status = errno_to_blk_status(ret); 1855 bio_endio(bio); 1856 } 1857 1858 /* 1859 * all parity reconstruction happens here. We've read in everything 1860 * we can find from the drives and this does the heavy lifting of 1861 * sorting the good from the bad. 1862 */ 1863 static void __raid_recover_end_io(struct btrfs_raid_bio *rbio) 1864 { 1865 const u32 sectorsize = rbio->bioc->fs_info->sectorsize; 1866 int sectornr, stripe; 1867 void **pointers; 1868 void **unmap_array; 1869 int faila = -1, failb = -1; 1870 blk_status_t err; 1871 int i; 1872 1873 /* 1874 * This array stores the pointer for each sector, thus it has the extra 1875 * pgoff value added from each sector 1876 */ 1877 pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS); 1878 if (!pointers) { 1879 err = BLK_STS_RESOURCE; 1880 goto cleanup_io; 1881 } 1882 1883 /* 1884 * Store copy of pointers that does not get reordered during 1885 * reconstruction so that kunmap_local works. 1886 */ 1887 unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS); 1888 if (!unmap_array) { 1889 err = BLK_STS_RESOURCE; 1890 goto cleanup_pointers; 1891 } 1892 1893 faila = rbio->faila; 1894 failb = rbio->failb; 1895 1896 if (rbio->operation == BTRFS_RBIO_READ_REBUILD || 1897 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) { 1898 spin_lock_irq(&rbio->bio_list_lock); 1899 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); 1900 spin_unlock_irq(&rbio->bio_list_lock); 1901 } 1902 1903 index_rbio_pages(rbio); 1904 1905 for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) { 1906 struct sector_ptr *sector; 1907 1908 /* 1909 * Now we just use bitmap to mark the horizontal stripes in 1910 * which we have data when doing parity scrub. 1911 */ 1912 if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB && 1913 !test_bit(sectornr, &rbio->dbitmap)) 1914 continue; 1915 1916 /* 1917 * Setup our array of pointers with sectors from each stripe 1918 * 1919 * NOTE: store a duplicate array of pointers to preserve the 1920 * pointer order 1921 */ 1922 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 1923 /* 1924 * If we're rebuilding a read, we have to use 1925 * pages from the bio list 1926 */ 1927 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD || 1928 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) && 1929 (stripe == faila || stripe == failb)) { 1930 sector = sector_in_rbio(rbio, stripe, sectornr, 0); 1931 } else { 1932 sector = rbio_stripe_sector(rbio, stripe, sectornr); 1933 } 1934 ASSERT(sector->page); 1935 pointers[stripe] = kmap_local_page(sector->page) + 1936 sector->pgoff; 1937 unmap_array[stripe] = pointers[stripe]; 1938 } 1939 1940 /* All raid6 handling here */ 1941 if (rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6) { 1942 /* Single failure, rebuild from parity raid5 style */ 1943 if (failb < 0) { 1944 if (faila == rbio->nr_data) { 1945 /* 1946 * Just the P stripe has failed, without 1947 * a bad data or Q stripe. 1948 * TODO, we should redo the xor here. 1949 */ 1950 err = BLK_STS_IOERR; 1951 goto cleanup; 1952 } 1953 /* 1954 * a single failure in raid6 is rebuilt 1955 * in the pstripe code below 1956 */ 1957 goto pstripe; 1958 } 1959 1960 /* make sure our ps and qs are in order */ 1961 if (faila > failb) 1962 swap(faila, failb); 1963 1964 /* if the q stripe is failed, do a pstripe reconstruction 1965 * from the xors. 1966 * If both the q stripe and the P stripe are failed, we're 1967 * here due to a crc mismatch and we can't give them the 1968 * data they want 1969 */ 1970 if (rbio->bioc->raid_map[failb] == RAID6_Q_STRIPE) { 1971 if (rbio->bioc->raid_map[faila] == 1972 RAID5_P_STRIPE) { 1973 err = BLK_STS_IOERR; 1974 goto cleanup; 1975 } 1976 /* 1977 * otherwise we have one bad data stripe and 1978 * a good P stripe. raid5! 1979 */ 1980 goto pstripe; 1981 } 1982 1983 if (rbio->bioc->raid_map[failb] == RAID5_P_STRIPE) { 1984 raid6_datap_recov(rbio->real_stripes, 1985 sectorsize, faila, pointers); 1986 } else { 1987 raid6_2data_recov(rbio->real_stripes, 1988 sectorsize, faila, failb, 1989 pointers); 1990 } 1991 } else { 1992 void *p; 1993 1994 /* rebuild from P stripe here (raid5 or raid6) */ 1995 BUG_ON(failb != -1); 1996 pstripe: 1997 /* Copy parity block into failed block to start with */ 1998 memcpy(pointers[faila], pointers[rbio->nr_data], sectorsize); 1999 2000 /* rearrange the pointer array */ 2001 p = pointers[faila]; 2002 for (stripe = faila; stripe < rbio->nr_data - 1; stripe++) 2003 pointers[stripe] = pointers[stripe + 1]; 2004 pointers[rbio->nr_data - 1] = p; 2005 2006 /* xor in the rest */ 2007 run_xor(pointers, rbio->nr_data - 1, sectorsize); 2008 } 2009 /* if we're doing this rebuild as part of an rmw, go through 2010 * and set all of our private rbio pages in the 2011 * failed stripes as uptodate. This way finish_rmw will 2012 * know they can be trusted. If this was a read reconstruction, 2013 * other endio functions will fiddle the uptodate bits 2014 */ 2015 if (rbio->operation == BTRFS_RBIO_WRITE) { 2016 for (i = 0; i < rbio->stripe_nsectors; i++) { 2017 if (faila != -1) { 2018 sector = rbio_stripe_sector(rbio, faila, i); 2019 sector->uptodate = 1; 2020 } 2021 if (failb != -1) { 2022 sector = rbio_stripe_sector(rbio, failb, i); 2023 sector->uptodate = 1; 2024 } 2025 } 2026 } 2027 for (stripe = rbio->real_stripes - 1; stripe >= 0; stripe--) 2028 kunmap_local(unmap_array[stripe]); 2029 } 2030 2031 err = BLK_STS_OK; 2032 cleanup: 2033 kfree(unmap_array); 2034 cleanup_pointers: 2035 kfree(pointers); 2036 2037 cleanup_io: 2038 /* 2039 * Similar to READ_REBUILD, REBUILD_MISSING at this point also has a 2040 * valid rbio which is consistent with ondisk content, thus such a 2041 * valid rbio can be cached to avoid further disk reads. 2042 */ 2043 if (rbio->operation == BTRFS_RBIO_READ_REBUILD || 2044 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) { 2045 /* 2046 * - In case of two failures, where rbio->failb != -1: 2047 * 2048 * Do not cache this rbio since the above read reconstruction 2049 * (raid6_datap_recov() or raid6_2data_recov()) may have 2050 * changed some content of stripes which are not identical to 2051 * on-disk content any more, otherwise, a later write/recover 2052 * may steal stripe_pages from this rbio and end up with 2053 * corruptions or rebuild failures. 2054 * 2055 * - In case of single failure, where rbio->failb == -1: 2056 * 2057 * Cache this rbio iff the above read reconstruction is 2058 * executed without problems. 2059 */ 2060 if (err == BLK_STS_OK && rbio->failb < 0) 2061 cache_rbio_pages(rbio); 2062 else 2063 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); 2064 2065 rbio_orig_end_io(rbio, err); 2066 } else if (err == BLK_STS_OK) { 2067 rbio->faila = -1; 2068 rbio->failb = -1; 2069 2070 if (rbio->operation == BTRFS_RBIO_WRITE) 2071 finish_rmw(rbio); 2072 else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) 2073 finish_parity_scrub(rbio, 0); 2074 else 2075 BUG(); 2076 } else { 2077 rbio_orig_end_io(rbio, err); 2078 } 2079 } 2080 2081 /* 2082 * This is called only for stripes we've read from disk to reconstruct the 2083 * parity. 2084 */ 2085 static void raid_recover_end_io_work(struct work_struct *work) 2086 { 2087 struct btrfs_raid_bio *rbio = 2088 container_of(work, struct btrfs_raid_bio, end_io_work); 2089 2090 if (atomic_read(&rbio->error) > rbio->bioc->max_errors) 2091 rbio_orig_end_io(rbio, BLK_STS_IOERR); 2092 else 2093 __raid_recover_end_io(rbio); 2094 } 2095 2096 /* 2097 * reads everything we need off the disk to reconstruct 2098 * the parity. endio handlers trigger final reconstruction 2099 * when the IO is done. 2100 * 2101 * This is used both for reads from the higher layers and for 2102 * parity construction required to finish a rmw cycle. 2103 */ 2104 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio) 2105 { 2106 int bios_to_read = 0; 2107 struct bio_list bio_list; 2108 int ret; 2109 int total_sector_nr; 2110 struct bio *bio; 2111 2112 bio_list_init(&bio_list); 2113 2114 ret = alloc_rbio_pages(rbio); 2115 if (ret) 2116 goto cleanup; 2117 2118 atomic_set(&rbio->error, 0); 2119 2120 /* 2121 * Read everything that hasn't failed. However this time we will 2122 * not trust any cached sector. 2123 * As we may read out some stale data but higher layer is not reading 2124 * that stale part. 2125 * 2126 * So here we always re-read everything in recovery path. 2127 */ 2128 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors; 2129 total_sector_nr++) { 2130 int stripe = total_sector_nr / rbio->stripe_nsectors; 2131 int sectornr = total_sector_nr % rbio->stripe_nsectors; 2132 struct sector_ptr *sector; 2133 2134 if (rbio->faila == stripe || rbio->failb == stripe) { 2135 atomic_inc(&rbio->error); 2136 /* Skip the current stripe. */ 2137 ASSERT(sectornr == 0); 2138 total_sector_nr += rbio->stripe_nsectors - 1; 2139 continue; 2140 } 2141 sector = rbio_stripe_sector(rbio, stripe, sectornr); 2142 ret = rbio_add_io_sector(rbio, &bio_list, sector, stripe, 2143 sectornr, REQ_OP_READ); 2144 if (ret < 0) 2145 goto cleanup; 2146 } 2147 2148 bios_to_read = bio_list_size(&bio_list); 2149 if (!bios_to_read) { 2150 /* 2151 * we might have no bios to read just because the pages 2152 * were up to date, or we might have no bios to read because 2153 * the devices were gone. 2154 */ 2155 if (atomic_read(&rbio->error) <= rbio->bioc->max_errors) { 2156 __raid_recover_end_io(rbio); 2157 return 0; 2158 } else { 2159 goto cleanup; 2160 } 2161 } 2162 2163 /* 2164 * The bioc may be freed once we submit the last bio. Make sure not to 2165 * touch it after that. 2166 */ 2167 atomic_set(&rbio->stripes_pending, bios_to_read); 2168 INIT_WORK(&rbio->end_io_work, raid_recover_end_io_work); 2169 while ((bio = bio_list_pop(&bio_list))) { 2170 bio->bi_end_io = raid56_bio_end_io; 2171 2172 if (trace_raid56_scrub_read_recover_enabled()) { 2173 struct raid56_bio_trace_info trace_info = { 0 }; 2174 2175 bio_get_trace_info(rbio, bio, &trace_info); 2176 trace_raid56_scrub_read_recover(rbio, bio, &trace_info); 2177 } 2178 submit_bio(bio); 2179 } 2180 2181 return 0; 2182 2183 cleanup: 2184 if (rbio->operation == BTRFS_RBIO_READ_REBUILD || 2185 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) 2186 rbio_orig_end_io(rbio, BLK_STS_IOERR); 2187 2188 while ((bio = bio_list_pop(&bio_list))) 2189 bio_put(bio); 2190 2191 return -EIO; 2192 } 2193 2194 /* 2195 * the main entry point for reads from the higher layers. This 2196 * is really only called when the normal read path had a failure, 2197 * so we assume the bio they send down corresponds to a failed part 2198 * of the drive. 2199 */ 2200 void raid56_parity_recover(struct bio *bio, struct btrfs_io_context *bioc, 2201 int mirror_num, bool generic_io) 2202 { 2203 struct btrfs_fs_info *fs_info = bioc->fs_info; 2204 struct btrfs_raid_bio *rbio; 2205 2206 if (generic_io) { 2207 ASSERT(bioc->mirror_num == mirror_num); 2208 btrfs_bio(bio)->mirror_num = mirror_num; 2209 } else { 2210 btrfs_get_bioc(bioc); 2211 } 2212 2213 rbio = alloc_rbio(fs_info, bioc); 2214 if (IS_ERR(rbio)) { 2215 bio->bi_status = errno_to_blk_status(PTR_ERR(rbio)); 2216 goto out_end_bio; 2217 } 2218 2219 rbio->operation = BTRFS_RBIO_READ_REBUILD; 2220 rbio_add_bio(rbio, bio); 2221 2222 rbio->faila = find_logical_bio_stripe(rbio, bio); 2223 if (rbio->faila == -1) { 2224 btrfs_warn(fs_info, 2225 "%s could not find the bad stripe in raid56 so that we cannot recover any more (bio has logical %llu len %llu, bioc has map_type %llu)", 2226 __func__, bio->bi_iter.bi_sector << 9, 2227 (u64)bio->bi_iter.bi_size, bioc->map_type); 2228 kfree(rbio); 2229 bio->bi_status = BLK_STS_IOERR; 2230 goto out_end_bio; 2231 } 2232 2233 if (generic_io) 2234 rbio->generic_bio_cnt = 1; 2235 2236 /* 2237 * Loop retry: 2238 * for 'mirror == 2', reconstruct from all other stripes. 2239 * for 'mirror_num > 2', select a stripe to fail on every retry. 2240 */ 2241 if (mirror_num > 2) { 2242 /* 2243 * 'mirror == 3' is to fail the p stripe and 2244 * reconstruct from the q stripe. 'mirror > 3' is to 2245 * fail a data stripe and reconstruct from p+q stripe. 2246 */ 2247 rbio->failb = rbio->real_stripes - (mirror_num - 1); 2248 ASSERT(rbio->failb > 0); 2249 if (rbio->failb <= rbio->faila) 2250 rbio->failb--; 2251 } 2252 2253 if (lock_stripe_add(rbio)) 2254 return; 2255 2256 /* 2257 * This adds our rbio to the list of rbios that will be handled after 2258 * the current lock owner is done. 2259 */ 2260 __raid56_parity_recover(rbio); 2261 return; 2262 2263 out_end_bio: 2264 btrfs_bio_counter_dec(fs_info); 2265 btrfs_put_bioc(bioc); 2266 bio_endio(bio); 2267 } 2268 2269 static void rmw_work(struct work_struct *work) 2270 { 2271 struct btrfs_raid_bio *rbio; 2272 2273 rbio = container_of(work, struct btrfs_raid_bio, work); 2274 raid56_rmw_stripe(rbio); 2275 } 2276 2277 static void read_rebuild_work(struct work_struct *work) 2278 { 2279 struct btrfs_raid_bio *rbio; 2280 2281 rbio = container_of(work, struct btrfs_raid_bio, work); 2282 __raid56_parity_recover(rbio); 2283 } 2284 2285 /* 2286 * The following code is used to scrub/replace the parity stripe 2287 * 2288 * Caller must have already increased bio_counter for getting @bioc. 2289 * 2290 * Note: We need make sure all the pages that add into the scrub/replace 2291 * raid bio are correct and not be changed during the scrub/replace. That 2292 * is those pages just hold metadata or file data with checksum. 2293 */ 2294 2295 struct btrfs_raid_bio *raid56_parity_alloc_scrub_rbio(struct bio *bio, 2296 struct btrfs_io_context *bioc, 2297 struct btrfs_device *scrub_dev, 2298 unsigned long *dbitmap, int stripe_nsectors) 2299 { 2300 struct btrfs_fs_info *fs_info = bioc->fs_info; 2301 struct btrfs_raid_bio *rbio; 2302 int i; 2303 2304 rbio = alloc_rbio(fs_info, bioc); 2305 if (IS_ERR(rbio)) 2306 return NULL; 2307 bio_list_add(&rbio->bio_list, bio); 2308 /* 2309 * This is a special bio which is used to hold the completion handler 2310 * and make the scrub rbio is similar to the other types 2311 */ 2312 ASSERT(!bio->bi_iter.bi_size); 2313 rbio->operation = BTRFS_RBIO_PARITY_SCRUB; 2314 2315 /* 2316 * After mapping bioc with BTRFS_MAP_WRITE, parities have been sorted 2317 * to the end position, so this search can start from the first parity 2318 * stripe. 2319 */ 2320 for (i = rbio->nr_data; i < rbio->real_stripes; i++) { 2321 if (bioc->stripes[i].dev == scrub_dev) { 2322 rbio->scrubp = i; 2323 break; 2324 } 2325 } 2326 ASSERT(i < rbio->real_stripes); 2327 2328 bitmap_copy(&rbio->dbitmap, dbitmap, stripe_nsectors); 2329 2330 /* 2331 * We have already increased bio_counter when getting bioc, record it 2332 * so we can free it at rbio_orig_end_io(). 2333 */ 2334 rbio->generic_bio_cnt = 1; 2335 2336 return rbio; 2337 } 2338 2339 /* Used for both parity scrub and missing. */ 2340 void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page, 2341 unsigned int pgoff, u64 logical) 2342 { 2343 const u32 sectorsize = rbio->bioc->fs_info->sectorsize; 2344 int stripe_offset; 2345 int index; 2346 2347 ASSERT(logical >= rbio->bioc->raid_map[0]); 2348 ASSERT(logical + sectorsize <= rbio->bioc->raid_map[0] + 2349 BTRFS_STRIPE_LEN * rbio->nr_data); 2350 stripe_offset = (int)(logical - rbio->bioc->raid_map[0]); 2351 index = stripe_offset / sectorsize; 2352 rbio->bio_sectors[index].page = page; 2353 rbio->bio_sectors[index].pgoff = pgoff; 2354 } 2355 2356 /* 2357 * We just scrub the parity that we have correct data on the same horizontal, 2358 * so we needn't allocate all pages for all the stripes. 2359 */ 2360 static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio) 2361 { 2362 const u32 sectorsize = rbio->bioc->fs_info->sectorsize; 2363 int total_sector_nr; 2364 2365 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors; 2366 total_sector_nr++) { 2367 struct page *page; 2368 int sectornr = total_sector_nr % rbio->stripe_nsectors; 2369 int index = (total_sector_nr * sectorsize) >> PAGE_SHIFT; 2370 2371 if (!test_bit(sectornr, &rbio->dbitmap)) 2372 continue; 2373 if (rbio->stripe_pages[index]) 2374 continue; 2375 page = alloc_page(GFP_NOFS); 2376 if (!page) 2377 return -ENOMEM; 2378 rbio->stripe_pages[index] = page; 2379 } 2380 index_stripe_sectors(rbio); 2381 return 0; 2382 } 2383 2384 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio, 2385 int need_check) 2386 { 2387 struct btrfs_io_context *bioc = rbio->bioc; 2388 const u32 sectorsize = bioc->fs_info->sectorsize; 2389 void **pointers = rbio->finish_pointers; 2390 unsigned long *pbitmap = &rbio->finish_pbitmap; 2391 int nr_data = rbio->nr_data; 2392 int stripe; 2393 int sectornr; 2394 bool has_qstripe; 2395 struct sector_ptr p_sector = { 0 }; 2396 struct sector_ptr q_sector = { 0 }; 2397 struct bio_list bio_list; 2398 struct bio *bio; 2399 int is_replace = 0; 2400 int ret; 2401 2402 bio_list_init(&bio_list); 2403 2404 if (rbio->real_stripes - rbio->nr_data == 1) 2405 has_qstripe = false; 2406 else if (rbio->real_stripes - rbio->nr_data == 2) 2407 has_qstripe = true; 2408 else 2409 BUG(); 2410 2411 if (bioc->num_tgtdevs && bioc->tgtdev_map[rbio->scrubp]) { 2412 is_replace = 1; 2413 bitmap_copy(pbitmap, &rbio->dbitmap, rbio->stripe_nsectors); 2414 } 2415 2416 /* 2417 * Because the higher layers(scrubber) are unlikely to 2418 * use this area of the disk again soon, so don't cache 2419 * it. 2420 */ 2421 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); 2422 2423 if (!need_check) 2424 goto writeback; 2425 2426 p_sector.page = alloc_page(GFP_NOFS); 2427 if (!p_sector.page) 2428 goto cleanup; 2429 p_sector.pgoff = 0; 2430 p_sector.uptodate = 1; 2431 2432 if (has_qstripe) { 2433 /* RAID6, allocate and map temp space for the Q stripe */ 2434 q_sector.page = alloc_page(GFP_NOFS); 2435 if (!q_sector.page) { 2436 __free_page(p_sector.page); 2437 p_sector.page = NULL; 2438 goto cleanup; 2439 } 2440 q_sector.pgoff = 0; 2441 q_sector.uptodate = 1; 2442 pointers[rbio->real_stripes - 1] = kmap_local_page(q_sector.page); 2443 } 2444 2445 atomic_set(&rbio->error, 0); 2446 2447 /* Map the parity stripe just once */ 2448 pointers[nr_data] = kmap_local_page(p_sector.page); 2449 2450 for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) { 2451 struct sector_ptr *sector; 2452 void *parity; 2453 2454 /* first collect one page from each data stripe */ 2455 for (stripe = 0; stripe < nr_data; stripe++) { 2456 sector = sector_in_rbio(rbio, stripe, sectornr, 0); 2457 pointers[stripe] = kmap_local_page(sector->page) + 2458 sector->pgoff; 2459 } 2460 2461 if (has_qstripe) { 2462 /* RAID6, call the library function to fill in our P/Q */ 2463 raid6_call.gen_syndrome(rbio->real_stripes, sectorsize, 2464 pointers); 2465 } else { 2466 /* raid5 */ 2467 memcpy(pointers[nr_data], pointers[0], sectorsize); 2468 run_xor(pointers + 1, nr_data - 1, sectorsize); 2469 } 2470 2471 /* Check scrubbing parity and repair it */ 2472 sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr); 2473 parity = kmap_local_page(sector->page) + sector->pgoff; 2474 if (memcmp(parity, pointers[rbio->scrubp], sectorsize) != 0) 2475 memcpy(parity, pointers[rbio->scrubp], sectorsize); 2476 else 2477 /* Parity is right, needn't writeback */ 2478 bitmap_clear(&rbio->dbitmap, sectornr, 1); 2479 kunmap_local(parity); 2480 2481 for (stripe = nr_data - 1; stripe >= 0; stripe--) 2482 kunmap_local(pointers[stripe]); 2483 } 2484 2485 kunmap_local(pointers[nr_data]); 2486 __free_page(p_sector.page); 2487 p_sector.page = NULL; 2488 if (q_sector.page) { 2489 kunmap_local(pointers[rbio->real_stripes - 1]); 2490 __free_page(q_sector.page); 2491 q_sector.page = NULL; 2492 } 2493 2494 writeback: 2495 /* 2496 * time to start writing. Make bios for everything from the 2497 * higher layers (the bio_list in our rbio) and our p/q. Ignore 2498 * everything else. 2499 */ 2500 for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) { 2501 struct sector_ptr *sector; 2502 2503 sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr); 2504 ret = rbio_add_io_sector(rbio, &bio_list, sector, rbio->scrubp, 2505 sectornr, REQ_OP_WRITE); 2506 if (ret) 2507 goto cleanup; 2508 } 2509 2510 if (!is_replace) 2511 goto submit_write; 2512 2513 for_each_set_bit(sectornr, pbitmap, rbio->stripe_nsectors) { 2514 struct sector_ptr *sector; 2515 2516 sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr); 2517 ret = rbio_add_io_sector(rbio, &bio_list, sector, 2518 bioc->tgtdev_map[rbio->scrubp], 2519 sectornr, REQ_OP_WRITE); 2520 if (ret) 2521 goto cleanup; 2522 } 2523 2524 submit_write: 2525 nr_data = bio_list_size(&bio_list); 2526 if (!nr_data) { 2527 /* Every parity is right */ 2528 rbio_orig_end_io(rbio, BLK_STS_OK); 2529 return; 2530 } 2531 2532 atomic_set(&rbio->stripes_pending, nr_data); 2533 2534 while ((bio = bio_list_pop(&bio_list))) { 2535 bio->bi_end_io = raid_write_end_io; 2536 2537 if (trace_raid56_scrub_write_stripe_enabled()) { 2538 struct raid56_bio_trace_info trace_info = { 0 }; 2539 2540 bio_get_trace_info(rbio, bio, &trace_info); 2541 trace_raid56_scrub_write_stripe(rbio, bio, &trace_info); 2542 } 2543 submit_bio(bio); 2544 } 2545 return; 2546 2547 cleanup: 2548 rbio_orig_end_io(rbio, BLK_STS_IOERR); 2549 2550 while ((bio = bio_list_pop(&bio_list))) 2551 bio_put(bio); 2552 } 2553 2554 static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe) 2555 { 2556 if (stripe >= 0 && stripe < rbio->nr_data) 2557 return 1; 2558 return 0; 2559 } 2560 2561 /* 2562 * While we're doing the parity check and repair, we could have errors 2563 * in reading pages off the disk. This checks for errors and if we're 2564 * not able to read the page it'll trigger parity reconstruction. The 2565 * parity scrub will be finished after we've reconstructed the failed 2566 * stripes 2567 */ 2568 static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio) 2569 { 2570 if (atomic_read(&rbio->error) > rbio->bioc->max_errors) 2571 goto cleanup; 2572 2573 if (rbio->faila >= 0 || rbio->failb >= 0) { 2574 int dfail = 0, failp = -1; 2575 2576 if (is_data_stripe(rbio, rbio->faila)) 2577 dfail++; 2578 else if (is_parity_stripe(rbio->faila)) 2579 failp = rbio->faila; 2580 2581 if (is_data_stripe(rbio, rbio->failb)) 2582 dfail++; 2583 else if (is_parity_stripe(rbio->failb)) 2584 failp = rbio->failb; 2585 2586 /* 2587 * Because we can not use a scrubbing parity to repair 2588 * the data, so the capability of the repair is declined. 2589 * (In the case of RAID5, we can not repair anything) 2590 */ 2591 if (dfail > rbio->bioc->max_errors - 1) 2592 goto cleanup; 2593 2594 /* 2595 * If all data is good, only parity is correctly, just 2596 * repair the parity. 2597 */ 2598 if (dfail == 0) { 2599 finish_parity_scrub(rbio, 0); 2600 return; 2601 } 2602 2603 /* 2604 * Here means we got one corrupted data stripe and one 2605 * corrupted parity on RAID6, if the corrupted parity 2606 * is scrubbing parity, luckily, use the other one to repair 2607 * the data, or we can not repair the data stripe. 2608 */ 2609 if (failp != rbio->scrubp) 2610 goto cleanup; 2611 2612 __raid_recover_end_io(rbio); 2613 } else { 2614 finish_parity_scrub(rbio, 1); 2615 } 2616 return; 2617 2618 cleanup: 2619 rbio_orig_end_io(rbio, BLK_STS_IOERR); 2620 } 2621 2622 /* 2623 * end io for the read phase of the rmw cycle. All the bios here are physical 2624 * stripe bios we've read from the disk so we can recalculate the parity of the 2625 * stripe. 2626 * 2627 * This will usually kick off finish_rmw once all the bios are read in, but it 2628 * may trigger parity reconstruction if we had any errors along the way 2629 */ 2630 static void raid56_parity_scrub_end_io_work(struct work_struct *work) 2631 { 2632 struct btrfs_raid_bio *rbio = 2633 container_of(work, struct btrfs_raid_bio, end_io_work); 2634 2635 /* 2636 * This will normally call finish_rmw to start our write, but if there 2637 * are any failed stripes we'll reconstruct from parity first 2638 */ 2639 validate_rbio_for_parity_scrub(rbio); 2640 } 2641 2642 static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio) 2643 { 2644 int bios_to_read = 0; 2645 struct bio_list bio_list; 2646 int ret; 2647 int total_sector_nr; 2648 struct bio *bio; 2649 2650 bio_list_init(&bio_list); 2651 2652 ret = alloc_rbio_essential_pages(rbio); 2653 if (ret) 2654 goto cleanup; 2655 2656 atomic_set(&rbio->error, 0); 2657 /* Build a list of bios to read all the missing parts. */ 2658 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors; 2659 total_sector_nr++) { 2660 int sectornr = total_sector_nr % rbio->stripe_nsectors; 2661 int stripe = total_sector_nr / rbio->stripe_nsectors; 2662 struct sector_ptr *sector; 2663 2664 /* No data in the vertical stripe, no need to read. */ 2665 if (!test_bit(sectornr, &rbio->dbitmap)) 2666 continue; 2667 2668 /* 2669 * We want to find all the sectors missing from the rbio and 2670 * read them from the disk. If sector_in_rbio() finds a sector 2671 * in the bio list we don't need to read it off the stripe. 2672 */ 2673 sector = sector_in_rbio(rbio, stripe, sectornr, 1); 2674 if (sector) 2675 continue; 2676 2677 sector = rbio_stripe_sector(rbio, stripe, sectornr); 2678 /* 2679 * The bio cache may have handed us an uptodate sector. If so, 2680 * use it. 2681 */ 2682 if (sector->uptodate) 2683 continue; 2684 2685 ret = rbio_add_io_sector(rbio, &bio_list, sector, stripe, 2686 sectornr, REQ_OP_READ); 2687 if (ret) 2688 goto cleanup; 2689 } 2690 2691 bios_to_read = bio_list_size(&bio_list); 2692 if (!bios_to_read) { 2693 /* 2694 * this can happen if others have merged with 2695 * us, it means there is nothing left to read. 2696 * But if there are missing devices it may not be 2697 * safe to do the full stripe write yet. 2698 */ 2699 goto finish; 2700 } 2701 2702 /* 2703 * The bioc may be freed once we submit the last bio. Make sure not to 2704 * touch it after that. 2705 */ 2706 atomic_set(&rbio->stripes_pending, bios_to_read); 2707 INIT_WORK(&rbio->end_io_work, raid56_parity_scrub_end_io_work); 2708 while ((bio = bio_list_pop(&bio_list))) { 2709 bio->bi_end_io = raid56_bio_end_io; 2710 2711 if (trace_raid56_scrub_read_enabled()) { 2712 struct raid56_bio_trace_info trace_info = { 0 }; 2713 2714 bio_get_trace_info(rbio, bio, &trace_info); 2715 trace_raid56_scrub_read(rbio, bio, &trace_info); 2716 } 2717 submit_bio(bio); 2718 } 2719 /* the actual write will happen once the reads are done */ 2720 return; 2721 2722 cleanup: 2723 rbio_orig_end_io(rbio, BLK_STS_IOERR); 2724 2725 while ((bio = bio_list_pop(&bio_list))) 2726 bio_put(bio); 2727 2728 return; 2729 2730 finish: 2731 validate_rbio_for_parity_scrub(rbio); 2732 } 2733 2734 static void scrub_parity_work(struct work_struct *work) 2735 { 2736 struct btrfs_raid_bio *rbio; 2737 2738 rbio = container_of(work, struct btrfs_raid_bio, work); 2739 raid56_parity_scrub_stripe(rbio); 2740 } 2741 2742 void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio) 2743 { 2744 if (!lock_stripe_add(rbio)) 2745 start_async_work(rbio, scrub_parity_work); 2746 } 2747 2748 /* The following code is used for dev replace of a missing RAID 5/6 device. */ 2749 2750 struct btrfs_raid_bio * 2751 raid56_alloc_missing_rbio(struct bio *bio, struct btrfs_io_context *bioc) 2752 { 2753 struct btrfs_fs_info *fs_info = bioc->fs_info; 2754 struct btrfs_raid_bio *rbio; 2755 2756 rbio = alloc_rbio(fs_info, bioc); 2757 if (IS_ERR(rbio)) 2758 return NULL; 2759 2760 rbio->operation = BTRFS_RBIO_REBUILD_MISSING; 2761 bio_list_add(&rbio->bio_list, bio); 2762 /* 2763 * This is a special bio which is used to hold the completion handler 2764 * and make the scrub rbio is similar to the other types 2765 */ 2766 ASSERT(!bio->bi_iter.bi_size); 2767 2768 rbio->faila = find_logical_bio_stripe(rbio, bio); 2769 if (rbio->faila == -1) { 2770 BUG(); 2771 kfree(rbio); 2772 return NULL; 2773 } 2774 2775 /* 2776 * When we get bioc, we have already increased bio_counter, record it 2777 * so we can free it at rbio_orig_end_io() 2778 */ 2779 rbio->generic_bio_cnt = 1; 2780 2781 return rbio; 2782 } 2783 2784 void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio) 2785 { 2786 if (!lock_stripe_add(rbio)) 2787 start_async_work(rbio, read_rebuild_work); 2788 } 2789