xref: /linux/fs/btrfs/raid56.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Copyright (C) 2012 Fusion-io  All rights reserved.
3  * Copyright (C) 2012 Intel Corp. All rights reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public
7  * License v2 as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12  * General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public
15  * License along with this program; if not, write to the
16  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17  * Boston, MA 021110-1307, USA.
18  */
19 #include <linux/sched.h>
20 #include <linux/wait.h>
21 #include <linux/bio.h>
22 #include <linux/slab.h>
23 #include <linux/buffer_head.h>
24 #include <linux/blkdev.h>
25 #include <linux/random.h>
26 #include <linux/iocontext.h>
27 #include <linux/capability.h>
28 #include <linux/ratelimit.h>
29 #include <linux/kthread.h>
30 #include <linux/raid/pq.h>
31 #include <linux/hash.h>
32 #include <linux/list_sort.h>
33 #include <linux/raid/xor.h>
34 #include <linux/vmalloc.h>
35 #include <asm/div64.h>
36 #include "ctree.h"
37 #include "extent_map.h"
38 #include "disk-io.h"
39 #include "transaction.h"
40 #include "print-tree.h"
41 #include "volumes.h"
42 #include "raid56.h"
43 #include "async-thread.h"
44 #include "check-integrity.h"
45 #include "rcu-string.h"
46 
47 /* set when additional merges to this rbio are not allowed */
48 #define RBIO_RMW_LOCKED_BIT	1
49 
50 /*
51  * set when this rbio is sitting in the hash, but it is just a cache
52  * of past RMW
53  */
54 #define RBIO_CACHE_BIT		2
55 
56 /*
57  * set when it is safe to trust the stripe_pages for caching
58  */
59 #define RBIO_CACHE_READY_BIT	3
60 
61 #define RBIO_CACHE_SIZE 1024
62 
63 enum btrfs_rbio_ops {
64 	BTRFS_RBIO_WRITE,
65 	BTRFS_RBIO_READ_REBUILD,
66 	BTRFS_RBIO_PARITY_SCRUB,
67 	BTRFS_RBIO_REBUILD_MISSING,
68 };
69 
70 struct btrfs_raid_bio {
71 	struct btrfs_fs_info *fs_info;
72 	struct btrfs_bio *bbio;
73 
74 	/* while we're doing rmw on a stripe
75 	 * we put it into a hash table so we can
76 	 * lock the stripe and merge more rbios
77 	 * into it.
78 	 */
79 	struct list_head hash_list;
80 
81 	/*
82 	 * LRU list for the stripe cache
83 	 */
84 	struct list_head stripe_cache;
85 
86 	/*
87 	 * for scheduling work in the helper threads
88 	 */
89 	struct btrfs_work work;
90 
91 	/*
92 	 * bio list and bio_list_lock are used
93 	 * to add more bios into the stripe
94 	 * in hopes of avoiding the full rmw
95 	 */
96 	struct bio_list bio_list;
97 	spinlock_t bio_list_lock;
98 
99 	/* also protected by the bio_list_lock, the
100 	 * plug list is used by the plugging code
101 	 * to collect partial bios while plugged.  The
102 	 * stripe locking code also uses it to hand off
103 	 * the stripe lock to the next pending IO
104 	 */
105 	struct list_head plug_list;
106 
107 	/*
108 	 * flags that tell us if it is safe to
109 	 * merge with this bio
110 	 */
111 	unsigned long flags;
112 
113 	/* size of each individual stripe on disk */
114 	int stripe_len;
115 
116 	/* number of data stripes (no p/q) */
117 	int nr_data;
118 
119 	int real_stripes;
120 
121 	int stripe_npages;
122 	/*
123 	 * set if we're doing a parity rebuild
124 	 * for a read from higher up, which is handled
125 	 * differently from a parity rebuild as part of
126 	 * rmw
127 	 */
128 	enum btrfs_rbio_ops operation;
129 
130 	/* first bad stripe */
131 	int faila;
132 
133 	/* second bad stripe (for raid6 use) */
134 	int failb;
135 
136 	int scrubp;
137 	/*
138 	 * number of pages needed to represent the full
139 	 * stripe
140 	 */
141 	int nr_pages;
142 
143 	/*
144 	 * size of all the bios in the bio_list.  This
145 	 * helps us decide if the rbio maps to a full
146 	 * stripe or not
147 	 */
148 	int bio_list_bytes;
149 
150 	int generic_bio_cnt;
151 
152 	atomic_t refs;
153 
154 	atomic_t stripes_pending;
155 
156 	atomic_t error;
157 	/*
158 	 * these are two arrays of pointers.  We allocate the
159 	 * rbio big enough to hold them both and setup their
160 	 * locations when the rbio is allocated
161 	 */
162 
163 	/* pointers to pages that we allocated for
164 	 * reading/writing stripes directly from the disk (including P/Q)
165 	 */
166 	struct page **stripe_pages;
167 
168 	/*
169 	 * pointers to the pages in the bio_list.  Stored
170 	 * here for faster lookup
171 	 */
172 	struct page **bio_pages;
173 
174 	/*
175 	 * bitmap to record which horizontal stripe has data
176 	 */
177 	unsigned long *dbitmap;
178 };
179 
180 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio);
181 static noinline void finish_rmw(struct btrfs_raid_bio *rbio);
182 static void rmw_work(struct btrfs_work *work);
183 static void read_rebuild_work(struct btrfs_work *work);
184 static void async_rmw_stripe(struct btrfs_raid_bio *rbio);
185 static void async_read_rebuild(struct btrfs_raid_bio *rbio);
186 static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
187 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
188 static void __free_raid_bio(struct btrfs_raid_bio *rbio);
189 static void index_rbio_pages(struct btrfs_raid_bio *rbio);
190 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
191 
192 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
193 					 int need_check);
194 static void async_scrub_parity(struct btrfs_raid_bio *rbio);
195 
196 /*
197  * the stripe hash table is used for locking, and to collect
198  * bios in hopes of making a full stripe
199  */
200 int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
201 {
202 	struct btrfs_stripe_hash_table *table;
203 	struct btrfs_stripe_hash_table *x;
204 	struct btrfs_stripe_hash *cur;
205 	struct btrfs_stripe_hash *h;
206 	int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
207 	int i;
208 	int table_size;
209 
210 	if (info->stripe_hash_table)
211 		return 0;
212 
213 	/*
214 	 * The table is large, starting with order 4 and can go as high as
215 	 * order 7 in case lock debugging is turned on.
216 	 *
217 	 * Try harder to allocate and fallback to vmalloc to lower the chance
218 	 * of a failing mount.
219 	 */
220 	table_size = sizeof(*table) + sizeof(*h) * num_entries;
221 	table = kzalloc(table_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
222 	if (!table) {
223 		table = vzalloc(table_size);
224 		if (!table)
225 			return -ENOMEM;
226 	}
227 
228 	spin_lock_init(&table->cache_lock);
229 	INIT_LIST_HEAD(&table->stripe_cache);
230 
231 	h = table->table;
232 
233 	for (i = 0; i < num_entries; i++) {
234 		cur = h + i;
235 		INIT_LIST_HEAD(&cur->hash_list);
236 		spin_lock_init(&cur->lock);
237 		init_waitqueue_head(&cur->wait);
238 	}
239 
240 	x = cmpxchg(&info->stripe_hash_table, NULL, table);
241 	if (x)
242 		kvfree(x);
243 	return 0;
244 }
245 
246 /*
247  * caching an rbio means to copy anything from the
248  * bio_pages array into the stripe_pages array.  We
249  * use the page uptodate bit in the stripe cache array
250  * to indicate if it has valid data
251  *
252  * once the caching is done, we set the cache ready
253  * bit.
254  */
255 static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
256 {
257 	int i;
258 	char *s;
259 	char *d;
260 	int ret;
261 
262 	ret = alloc_rbio_pages(rbio);
263 	if (ret)
264 		return;
265 
266 	for (i = 0; i < rbio->nr_pages; i++) {
267 		if (!rbio->bio_pages[i])
268 			continue;
269 
270 		s = kmap(rbio->bio_pages[i]);
271 		d = kmap(rbio->stripe_pages[i]);
272 
273 		memcpy(d, s, PAGE_SIZE);
274 
275 		kunmap(rbio->bio_pages[i]);
276 		kunmap(rbio->stripe_pages[i]);
277 		SetPageUptodate(rbio->stripe_pages[i]);
278 	}
279 	set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
280 }
281 
282 /*
283  * we hash on the first logical address of the stripe
284  */
285 static int rbio_bucket(struct btrfs_raid_bio *rbio)
286 {
287 	u64 num = rbio->bbio->raid_map[0];
288 
289 	/*
290 	 * we shift down quite a bit.  We're using byte
291 	 * addressing, and most of the lower bits are zeros.
292 	 * This tends to upset hash_64, and it consistently
293 	 * returns just one or two different values.
294 	 *
295 	 * shifting off the lower bits fixes things.
296 	 */
297 	return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
298 }
299 
300 /*
301  * stealing an rbio means taking all the uptodate pages from the stripe
302  * array in the source rbio and putting them into the destination rbio
303  */
304 static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
305 {
306 	int i;
307 	struct page *s;
308 	struct page *d;
309 
310 	if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
311 		return;
312 
313 	for (i = 0; i < dest->nr_pages; i++) {
314 		s = src->stripe_pages[i];
315 		if (!s || !PageUptodate(s)) {
316 			continue;
317 		}
318 
319 		d = dest->stripe_pages[i];
320 		if (d)
321 			__free_page(d);
322 
323 		dest->stripe_pages[i] = s;
324 		src->stripe_pages[i] = NULL;
325 	}
326 }
327 
328 /*
329  * merging means we take the bio_list from the victim and
330  * splice it into the destination.  The victim should
331  * be discarded afterwards.
332  *
333  * must be called with dest->rbio_list_lock held
334  */
335 static void merge_rbio(struct btrfs_raid_bio *dest,
336 		       struct btrfs_raid_bio *victim)
337 {
338 	bio_list_merge(&dest->bio_list, &victim->bio_list);
339 	dest->bio_list_bytes += victim->bio_list_bytes;
340 	dest->generic_bio_cnt += victim->generic_bio_cnt;
341 	bio_list_init(&victim->bio_list);
342 }
343 
344 /*
345  * used to prune items that are in the cache.  The caller
346  * must hold the hash table lock.
347  */
348 static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
349 {
350 	int bucket = rbio_bucket(rbio);
351 	struct btrfs_stripe_hash_table *table;
352 	struct btrfs_stripe_hash *h;
353 	int freeit = 0;
354 
355 	/*
356 	 * check the bit again under the hash table lock.
357 	 */
358 	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
359 		return;
360 
361 	table = rbio->fs_info->stripe_hash_table;
362 	h = table->table + bucket;
363 
364 	/* hold the lock for the bucket because we may be
365 	 * removing it from the hash table
366 	 */
367 	spin_lock(&h->lock);
368 
369 	/*
370 	 * hold the lock for the bio list because we need
371 	 * to make sure the bio list is empty
372 	 */
373 	spin_lock(&rbio->bio_list_lock);
374 
375 	if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
376 		list_del_init(&rbio->stripe_cache);
377 		table->cache_size -= 1;
378 		freeit = 1;
379 
380 		/* if the bio list isn't empty, this rbio is
381 		 * still involved in an IO.  We take it out
382 		 * of the cache list, and drop the ref that
383 		 * was held for the list.
384 		 *
385 		 * If the bio_list was empty, we also remove
386 		 * the rbio from the hash_table, and drop
387 		 * the corresponding ref
388 		 */
389 		if (bio_list_empty(&rbio->bio_list)) {
390 			if (!list_empty(&rbio->hash_list)) {
391 				list_del_init(&rbio->hash_list);
392 				atomic_dec(&rbio->refs);
393 				BUG_ON(!list_empty(&rbio->plug_list));
394 			}
395 		}
396 	}
397 
398 	spin_unlock(&rbio->bio_list_lock);
399 	spin_unlock(&h->lock);
400 
401 	if (freeit)
402 		__free_raid_bio(rbio);
403 }
404 
405 /*
406  * prune a given rbio from the cache
407  */
408 static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
409 {
410 	struct btrfs_stripe_hash_table *table;
411 	unsigned long flags;
412 
413 	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
414 		return;
415 
416 	table = rbio->fs_info->stripe_hash_table;
417 
418 	spin_lock_irqsave(&table->cache_lock, flags);
419 	__remove_rbio_from_cache(rbio);
420 	spin_unlock_irqrestore(&table->cache_lock, flags);
421 }
422 
423 /*
424  * remove everything in the cache
425  */
426 static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
427 {
428 	struct btrfs_stripe_hash_table *table;
429 	unsigned long flags;
430 	struct btrfs_raid_bio *rbio;
431 
432 	table = info->stripe_hash_table;
433 
434 	spin_lock_irqsave(&table->cache_lock, flags);
435 	while (!list_empty(&table->stripe_cache)) {
436 		rbio = list_entry(table->stripe_cache.next,
437 				  struct btrfs_raid_bio,
438 				  stripe_cache);
439 		__remove_rbio_from_cache(rbio);
440 	}
441 	spin_unlock_irqrestore(&table->cache_lock, flags);
442 }
443 
444 /*
445  * remove all cached entries and free the hash table
446  * used by unmount
447  */
448 void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
449 {
450 	if (!info->stripe_hash_table)
451 		return;
452 	btrfs_clear_rbio_cache(info);
453 	kvfree(info->stripe_hash_table);
454 	info->stripe_hash_table = NULL;
455 }
456 
457 /*
458  * insert an rbio into the stripe cache.  It
459  * must have already been prepared by calling
460  * cache_rbio_pages
461  *
462  * If this rbio was already cached, it gets
463  * moved to the front of the lru.
464  *
465  * If the size of the rbio cache is too big, we
466  * prune an item.
467  */
468 static void cache_rbio(struct btrfs_raid_bio *rbio)
469 {
470 	struct btrfs_stripe_hash_table *table;
471 	unsigned long flags;
472 
473 	if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
474 		return;
475 
476 	table = rbio->fs_info->stripe_hash_table;
477 
478 	spin_lock_irqsave(&table->cache_lock, flags);
479 	spin_lock(&rbio->bio_list_lock);
480 
481 	/* bump our ref if we were not in the list before */
482 	if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
483 		atomic_inc(&rbio->refs);
484 
485 	if (!list_empty(&rbio->stripe_cache)){
486 		list_move(&rbio->stripe_cache, &table->stripe_cache);
487 	} else {
488 		list_add(&rbio->stripe_cache, &table->stripe_cache);
489 		table->cache_size += 1;
490 	}
491 
492 	spin_unlock(&rbio->bio_list_lock);
493 
494 	if (table->cache_size > RBIO_CACHE_SIZE) {
495 		struct btrfs_raid_bio *found;
496 
497 		found = list_entry(table->stripe_cache.prev,
498 				  struct btrfs_raid_bio,
499 				  stripe_cache);
500 
501 		if (found != rbio)
502 			__remove_rbio_from_cache(found);
503 	}
504 
505 	spin_unlock_irqrestore(&table->cache_lock, flags);
506 }
507 
508 /*
509  * helper function to run the xor_blocks api.  It is only
510  * able to do MAX_XOR_BLOCKS at a time, so we need to
511  * loop through.
512  */
513 static void run_xor(void **pages, int src_cnt, ssize_t len)
514 {
515 	int src_off = 0;
516 	int xor_src_cnt = 0;
517 	void *dest = pages[src_cnt];
518 
519 	while(src_cnt > 0) {
520 		xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
521 		xor_blocks(xor_src_cnt, len, dest, pages + src_off);
522 
523 		src_cnt -= xor_src_cnt;
524 		src_off += xor_src_cnt;
525 	}
526 }
527 
528 /*
529  * returns true if the bio list inside this rbio
530  * covers an entire stripe (no rmw required).
531  * Must be called with the bio list lock held, or
532  * at a time when you know it is impossible to add
533  * new bios into the list
534  */
535 static int __rbio_is_full(struct btrfs_raid_bio *rbio)
536 {
537 	unsigned long size = rbio->bio_list_bytes;
538 	int ret = 1;
539 
540 	if (size != rbio->nr_data * rbio->stripe_len)
541 		ret = 0;
542 
543 	BUG_ON(size > rbio->nr_data * rbio->stripe_len);
544 	return ret;
545 }
546 
547 static int rbio_is_full(struct btrfs_raid_bio *rbio)
548 {
549 	unsigned long flags;
550 	int ret;
551 
552 	spin_lock_irqsave(&rbio->bio_list_lock, flags);
553 	ret = __rbio_is_full(rbio);
554 	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
555 	return ret;
556 }
557 
558 /*
559  * returns 1 if it is safe to merge two rbios together.
560  * The merging is safe if the two rbios correspond to
561  * the same stripe and if they are both going in the same
562  * direction (read vs write), and if neither one is
563  * locked for final IO
564  *
565  * The caller is responsible for locking such that
566  * rmw_locked is safe to test
567  */
568 static int rbio_can_merge(struct btrfs_raid_bio *last,
569 			  struct btrfs_raid_bio *cur)
570 {
571 	if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
572 	    test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
573 		return 0;
574 
575 	/*
576 	 * we can't merge with cached rbios, since the
577 	 * idea is that when we merge the destination
578 	 * rbio is going to run our IO for us.  We can
579 	 * steal from cached rbios though, other functions
580 	 * handle that.
581 	 */
582 	if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
583 	    test_bit(RBIO_CACHE_BIT, &cur->flags))
584 		return 0;
585 
586 	if (last->bbio->raid_map[0] !=
587 	    cur->bbio->raid_map[0])
588 		return 0;
589 
590 	/* we can't merge with different operations */
591 	if (last->operation != cur->operation)
592 		return 0;
593 	/*
594 	 * We've need read the full stripe from the drive.
595 	 * check and repair the parity and write the new results.
596 	 *
597 	 * We're not allowed to add any new bios to the
598 	 * bio list here, anyone else that wants to
599 	 * change this stripe needs to do their own rmw.
600 	 */
601 	if (last->operation == BTRFS_RBIO_PARITY_SCRUB ||
602 	    cur->operation == BTRFS_RBIO_PARITY_SCRUB)
603 		return 0;
604 
605 	if (last->operation == BTRFS_RBIO_REBUILD_MISSING ||
606 	    cur->operation == BTRFS_RBIO_REBUILD_MISSING)
607 		return 0;
608 
609 	return 1;
610 }
611 
612 static int rbio_stripe_page_index(struct btrfs_raid_bio *rbio, int stripe,
613 				  int index)
614 {
615 	return stripe * rbio->stripe_npages + index;
616 }
617 
618 /*
619  * these are just the pages from the rbio array, not from anything
620  * the FS sent down to us
621  */
622 static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe,
623 				     int index)
624 {
625 	return rbio->stripe_pages[rbio_stripe_page_index(rbio, stripe, index)];
626 }
627 
628 /*
629  * helper to index into the pstripe
630  */
631 static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index)
632 {
633 	return rbio_stripe_page(rbio, rbio->nr_data, index);
634 }
635 
636 /*
637  * helper to index into the qstripe, returns null
638  * if there is no qstripe
639  */
640 static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index)
641 {
642 	if (rbio->nr_data + 1 == rbio->real_stripes)
643 		return NULL;
644 	return rbio_stripe_page(rbio, rbio->nr_data + 1, index);
645 }
646 
647 /*
648  * The first stripe in the table for a logical address
649  * has the lock.  rbios are added in one of three ways:
650  *
651  * 1) Nobody has the stripe locked yet.  The rbio is given
652  * the lock and 0 is returned.  The caller must start the IO
653  * themselves.
654  *
655  * 2) Someone has the stripe locked, but we're able to merge
656  * with the lock owner.  The rbio is freed and the IO will
657  * start automatically along with the existing rbio.  1 is returned.
658  *
659  * 3) Someone has the stripe locked, but we're not able to merge.
660  * The rbio is added to the lock owner's plug list, or merged into
661  * an rbio already on the plug list.  When the lock owner unlocks,
662  * the next rbio on the list is run and the IO is started automatically.
663  * 1 is returned
664  *
665  * If we return 0, the caller still owns the rbio and must continue with
666  * IO submission.  If we return 1, the caller must assume the rbio has
667  * already been freed.
668  */
669 static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
670 {
671 	int bucket = rbio_bucket(rbio);
672 	struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket;
673 	struct btrfs_raid_bio *cur;
674 	struct btrfs_raid_bio *pending;
675 	unsigned long flags;
676 	DEFINE_WAIT(wait);
677 	struct btrfs_raid_bio *freeit = NULL;
678 	struct btrfs_raid_bio *cache_drop = NULL;
679 	int ret = 0;
680 	int walk = 0;
681 
682 	spin_lock_irqsave(&h->lock, flags);
683 	list_for_each_entry(cur, &h->hash_list, hash_list) {
684 		walk++;
685 		if (cur->bbio->raid_map[0] == rbio->bbio->raid_map[0]) {
686 			spin_lock(&cur->bio_list_lock);
687 
688 			/* can we steal this cached rbio's pages? */
689 			if (bio_list_empty(&cur->bio_list) &&
690 			    list_empty(&cur->plug_list) &&
691 			    test_bit(RBIO_CACHE_BIT, &cur->flags) &&
692 			    !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
693 				list_del_init(&cur->hash_list);
694 				atomic_dec(&cur->refs);
695 
696 				steal_rbio(cur, rbio);
697 				cache_drop = cur;
698 				spin_unlock(&cur->bio_list_lock);
699 
700 				goto lockit;
701 			}
702 
703 			/* can we merge into the lock owner? */
704 			if (rbio_can_merge(cur, rbio)) {
705 				merge_rbio(cur, rbio);
706 				spin_unlock(&cur->bio_list_lock);
707 				freeit = rbio;
708 				ret = 1;
709 				goto out;
710 			}
711 
712 
713 			/*
714 			 * we couldn't merge with the running
715 			 * rbio, see if we can merge with the
716 			 * pending ones.  We don't have to
717 			 * check for rmw_locked because there
718 			 * is no way they are inside finish_rmw
719 			 * right now
720 			 */
721 			list_for_each_entry(pending, &cur->plug_list,
722 					    plug_list) {
723 				if (rbio_can_merge(pending, rbio)) {
724 					merge_rbio(pending, rbio);
725 					spin_unlock(&cur->bio_list_lock);
726 					freeit = rbio;
727 					ret = 1;
728 					goto out;
729 				}
730 			}
731 
732 			/* no merging, put us on the tail of the plug list,
733 			 * our rbio will be started with the currently
734 			 * running rbio unlocks
735 			 */
736 			list_add_tail(&rbio->plug_list, &cur->plug_list);
737 			spin_unlock(&cur->bio_list_lock);
738 			ret = 1;
739 			goto out;
740 		}
741 	}
742 lockit:
743 	atomic_inc(&rbio->refs);
744 	list_add(&rbio->hash_list, &h->hash_list);
745 out:
746 	spin_unlock_irqrestore(&h->lock, flags);
747 	if (cache_drop)
748 		remove_rbio_from_cache(cache_drop);
749 	if (freeit)
750 		__free_raid_bio(freeit);
751 	return ret;
752 }
753 
754 /*
755  * called as rmw or parity rebuild is completed.  If the plug list has more
756  * rbios waiting for this stripe, the next one on the list will be started
757  */
758 static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
759 {
760 	int bucket;
761 	struct btrfs_stripe_hash *h;
762 	unsigned long flags;
763 	int keep_cache = 0;
764 
765 	bucket = rbio_bucket(rbio);
766 	h = rbio->fs_info->stripe_hash_table->table + bucket;
767 
768 	if (list_empty(&rbio->plug_list))
769 		cache_rbio(rbio);
770 
771 	spin_lock_irqsave(&h->lock, flags);
772 	spin_lock(&rbio->bio_list_lock);
773 
774 	if (!list_empty(&rbio->hash_list)) {
775 		/*
776 		 * if we're still cached and there is no other IO
777 		 * to perform, just leave this rbio here for others
778 		 * to steal from later
779 		 */
780 		if (list_empty(&rbio->plug_list) &&
781 		    test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
782 			keep_cache = 1;
783 			clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
784 			BUG_ON(!bio_list_empty(&rbio->bio_list));
785 			goto done;
786 		}
787 
788 		list_del_init(&rbio->hash_list);
789 		atomic_dec(&rbio->refs);
790 
791 		/*
792 		 * we use the plug list to hold all the rbios
793 		 * waiting for the chance to lock this stripe.
794 		 * hand the lock over to one of them.
795 		 */
796 		if (!list_empty(&rbio->plug_list)) {
797 			struct btrfs_raid_bio *next;
798 			struct list_head *head = rbio->plug_list.next;
799 
800 			next = list_entry(head, struct btrfs_raid_bio,
801 					  plug_list);
802 
803 			list_del_init(&rbio->plug_list);
804 
805 			list_add(&next->hash_list, &h->hash_list);
806 			atomic_inc(&next->refs);
807 			spin_unlock(&rbio->bio_list_lock);
808 			spin_unlock_irqrestore(&h->lock, flags);
809 
810 			if (next->operation == BTRFS_RBIO_READ_REBUILD)
811 				async_read_rebuild(next);
812 			else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) {
813 				steal_rbio(rbio, next);
814 				async_read_rebuild(next);
815 			} else if (next->operation == BTRFS_RBIO_WRITE) {
816 				steal_rbio(rbio, next);
817 				async_rmw_stripe(next);
818 			} else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
819 				steal_rbio(rbio, next);
820 				async_scrub_parity(next);
821 			}
822 
823 			goto done_nolock;
824 			/*
825 			 * The barrier for this waitqueue_active is not needed,
826 			 * we're protected by h->lock and can't miss a wakeup.
827 			 */
828 		} else if (waitqueue_active(&h->wait)) {
829 			spin_unlock(&rbio->bio_list_lock);
830 			spin_unlock_irqrestore(&h->lock, flags);
831 			wake_up(&h->wait);
832 			goto done_nolock;
833 		}
834 	}
835 done:
836 	spin_unlock(&rbio->bio_list_lock);
837 	spin_unlock_irqrestore(&h->lock, flags);
838 
839 done_nolock:
840 	if (!keep_cache)
841 		remove_rbio_from_cache(rbio);
842 }
843 
844 static void __free_raid_bio(struct btrfs_raid_bio *rbio)
845 {
846 	int i;
847 
848 	WARN_ON(atomic_read(&rbio->refs) < 0);
849 	if (!atomic_dec_and_test(&rbio->refs))
850 		return;
851 
852 	WARN_ON(!list_empty(&rbio->stripe_cache));
853 	WARN_ON(!list_empty(&rbio->hash_list));
854 	WARN_ON(!bio_list_empty(&rbio->bio_list));
855 
856 	for (i = 0; i < rbio->nr_pages; i++) {
857 		if (rbio->stripe_pages[i]) {
858 			__free_page(rbio->stripe_pages[i]);
859 			rbio->stripe_pages[i] = NULL;
860 		}
861 	}
862 
863 	btrfs_put_bbio(rbio->bbio);
864 	kfree(rbio);
865 }
866 
867 static void free_raid_bio(struct btrfs_raid_bio *rbio)
868 {
869 	unlock_stripe(rbio);
870 	__free_raid_bio(rbio);
871 }
872 
873 /*
874  * this frees the rbio and runs through all the bios in the
875  * bio_list and calls end_io on them
876  */
877 static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, int err)
878 {
879 	struct bio *cur = bio_list_get(&rbio->bio_list);
880 	struct bio *next;
881 
882 	if (rbio->generic_bio_cnt)
883 		btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt);
884 
885 	free_raid_bio(rbio);
886 
887 	while (cur) {
888 		next = cur->bi_next;
889 		cur->bi_next = NULL;
890 		cur->bi_error = err;
891 		bio_endio(cur);
892 		cur = next;
893 	}
894 }
895 
896 /*
897  * end io function used by finish_rmw.  When we finally
898  * get here, we've written a full stripe
899  */
900 static void raid_write_end_io(struct bio *bio)
901 {
902 	struct btrfs_raid_bio *rbio = bio->bi_private;
903 	int err = bio->bi_error;
904 	int max_errors;
905 
906 	if (err)
907 		fail_bio_stripe(rbio, bio);
908 
909 	bio_put(bio);
910 
911 	if (!atomic_dec_and_test(&rbio->stripes_pending))
912 		return;
913 
914 	err = 0;
915 
916 	/* OK, we have read all the stripes we need to. */
917 	max_errors = (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) ?
918 		     0 : rbio->bbio->max_errors;
919 	if (atomic_read(&rbio->error) > max_errors)
920 		err = -EIO;
921 
922 	rbio_orig_end_io(rbio, err);
923 }
924 
925 /*
926  * the read/modify/write code wants to use the original bio for
927  * any pages it included, and then use the rbio for everything
928  * else.  This function decides if a given index (stripe number)
929  * and page number in that stripe fall inside the original bio
930  * or the rbio.
931  *
932  * if you set bio_list_only, you'll get a NULL back for any ranges
933  * that are outside the bio_list
934  *
935  * This doesn't take any refs on anything, you get a bare page pointer
936  * and the caller must bump refs as required.
937  *
938  * You must call index_rbio_pages once before you can trust
939  * the answers from this function.
940  */
941 static struct page *page_in_rbio(struct btrfs_raid_bio *rbio,
942 				 int index, int pagenr, int bio_list_only)
943 {
944 	int chunk_page;
945 	struct page *p = NULL;
946 
947 	chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr;
948 
949 	spin_lock_irq(&rbio->bio_list_lock);
950 	p = rbio->bio_pages[chunk_page];
951 	spin_unlock_irq(&rbio->bio_list_lock);
952 
953 	if (p || bio_list_only)
954 		return p;
955 
956 	return rbio->stripe_pages[chunk_page];
957 }
958 
959 /*
960  * number of pages we need for the entire stripe across all the
961  * drives
962  */
963 static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes)
964 {
965 	return DIV_ROUND_UP(stripe_len, PAGE_SIZE) * nr_stripes;
966 }
967 
968 /*
969  * allocation and initial setup for the btrfs_raid_bio.  Not
970  * this does not allocate any pages for rbio->pages.
971  */
972 static struct btrfs_raid_bio *alloc_rbio(struct btrfs_root *root,
973 			  struct btrfs_bio *bbio, u64 stripe_len)
974 {
975 	struct btrfs_raid_bio *rbio;
976 	int nr_data = 0;
977 	int real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
978 	int num_pages = rbio_nr_pages(stripe_len, real_stripes);
979 	int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE);
980 	void *p;
981 
982 	rbio = kzalloc(sizeof(*rbio) + num_pages * sizeof(struct page *) * 2 +
983 		       DIV_ROUND_UP(stripe_npages, BITS_PER_LONG) *
984 		       sizeof(long), GFP_NOFS);
985 	if (!rbio)
986 		return ERR_PTR(-ENOMEM);
987 
988 	bio_list_init(&rbio->bio_list);
989 	INIT_LIST_HEAD(&rbio->plug_list);
990 	spin_lock_init(&rbio->bio_list_lock);
991 	INIT_LIST_HEAD(&rbio->stripe_cache);
992 	INIT_LIST_HEAD(&rbio->hash_list);
993 	rbio->bbio = bbio;
994 	rbio->fs_info = root->fs_info;
995 	rbio->stripe_len = stripe_len;
996 	rbio->nr_pages = num_pages;
997 	rbio->real_stripes = real_stripes;
998 	rbio->stripe_npages = stripe_npages;
999 	rbio->faila = -1;
1000 	rbio->failb = -1;
1001 	atomic_set(&rbio->refs, 1);
1002 	atomic_set(&rbio->error, 0);
1003 	atomic_set(&rbio->stripes_pending, 0);
1004 
1005 	/*
1006 	 * the stripe_pages and bio_pages array point to the extra
1007 	 * memory we allocated past the end of the rbio
1008 	 */
1009 	p = rbio + 1;
1010 	rbio->stripe_pages = p;
1011 	rbio->bio_pages = p + sizeof(struct page *) * num_pages;
1012 	rbio->dbitmap = p + sizeof(struct page *) * num_pages * 2;
1013 
1014 	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1015 		nr_data = real_stripes - 1;
1016 	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1017 		nr_data = real_stripes - 2;
1018 	else
1019 		BUG();
1020 
1021 	rbio->nr_data = nr_data;
1022 	return rbio;
1023 }
1024 
1025 /* allocate pages for all the stripes in the bio, including parity */
1026 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
1027 {
1028 	int i;
1029 	struct page *page;
1030 
1031 	for (i = 0; i < rbio->nr_pages; i++) {
1032 		if (rbio->stripe_pages[i])
1033 			continue;
1034 		page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1035 		if (!page)
1036 			return -ENOMEM;
1037 		rbio->stripe_pages[i] = page;
1038 	}
1039 	return 0;
1040 }
1041 
1042 /* only allocate pages for p/q stripes */
1043 static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
1044 {
1045 	int i;
1046 	struct page *page;
1047 
1048 	i = rbio_stripe_page_index(rbio, rbio->nr_data, 0);
1049 
1050 	for (; i < rbio->nr_pages; i++) {
1051 		if (rbio->stripe_pages[i])
1052 			continue;
1053 		page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1054 		if (!page)
1055 			return -ENOMEM;
1056 		rbio->stripe_pages[i] = page;
1057 	}
1058 	return 0;
1059 }
1060 
1061 /*
1062  * add a single page from a specific stripe into our list of bios for IO
1063  * this will try to merge into existing bios if possible, and returns
1064  * zero if all went well.
1065  */
1066 static int rbio_add_io_page(struct btrfs_raid_bio *rbio,
1067 			    struct bio_list *bio_list,
1068 			    struct page *page,
1069 			    int stripe_nr,
1070 			    unsigned long page_index,
1071 			    unsigned long bio_max_len)
1072 {
1073 	struct bio *last = bio_list->tail;
1074 	u64 last_end = 0;
1075 	int ret;
1076 	struct bio *bio;
1077 	struct btrfs_bio_stripe *stripe;
1078 	u64 disk_start;
1079 
1080 	stripe = &rbio->bbio->stripes[stripe_nr];
1081 	disk_start = stripe->physical + (page_index << PAGE_SHIFT);
1082 
1083 	/* if the device is missing, just fail this stripe */
1084 	if (!stripe->dev->bdev)
1085 		return fail_rbio_index(rbio, stripe_nr);
1086 
1087 	/* see if we can add this page onto our existing bio */
1088 	if (last) {
1089 		last_end = (u64)last->bi_iter.bi_sector << 9;
1090 		last_end += last->bi_iter.bi_size;
1091 
1092 		/*
1093 		 * we can't merge these if they are from different
1094 		 * devices or if they are not contiguous
1095 		 */
1096 		if (last_end == disk_start && stripe->dev->bdev &&
1097 		    !last->bi_error &&
1098 		    last->bi_bdev == stripe->dev->bdev) {
1099 			ret = bio_add_page(last, page, PAGE_SIZE, 0);
1100 			if (ret == PAGE_SIZE)
1101 				return 0;
1102 		}
1103 	}
1104 
1105 	/* put a new bio on the list */
1106 	bio = btrfs_io_bio_alloc(GFP_NOFS, bio_max_len >> PAGE_SHIFT?:1);
1107 	if (!bio)
1108 		return -ENOMEM;
1109 
1110 	bio->bi_iter.bi_size = 0;
1111 	bio->bi_bdev = stripe->dev->bdev;
1112 	bio->bi_iter.bi_sector = disk_start >> 9;
1113 
1114 	bio_add_page(bio, page, PAGE_SIZE, 0);
1115 	bio_list_add(bio_list, bio);
1116 	return 0;
1117 }
1118 
1119 /*
1120  * while we're doing the read/modify/write cycle, we could
1121  * have errors in reading pages off the disk.  This checks
1122  * for errors and if we're not able to read the page it'll
1123  * trigger parity reconstruction.  The rmw will be finished
1124  * after we've reconstructed the failed stripes
1125  */
1126 static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio)
1127 {
1128 	if (rbio->faila >= 0 || rbio->failb >= 0) {
1129 		BUG_ON(rbio->faila == rbio->real_stripes - 1);
1130 		__raid56_parity_recover(rbio);
1131 	} else {
1132 		finish_rmw(rbio);
1133 	}
1134 }
1135 
1136 /*
1137  * helper function to walk our bio list and populate the bio_pages array with
1138  * the result.  This seems expensive, but it is faster than constantly
1139  * searching through the bio list as we setup the IO in finish_rmw or stripe
1140  * reconstruction.
1141  *
1142  * This must be called before you trust the answers from page_in_rbio
1143  */
1144 static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1145 {
1146 	struct bio *bio;
1147 	u64 start;
1148 	unsigned long stripe_offset;
1149 	unsigned long page_index;
1150 	struct page *p;
1151 	int i;
1152 
1153 	spin_lock_irq(&rbio->bio_list_lock);
1154 	bio_list_for_each(bio, &rbio->bio_list) {
1155 		start = (u64)bio->bi_iter.bi_sector << 9;
1156 		stripe_offset = start - rbio->bbio->raid_map[0];
1157 		page_index = stripe_offset >> PAGE_SHIFT;
1158 
1159 		for (i = 0; i < bio->bi_vcnt; i++) {
1160 			p = bio->bi_io_vec[i].bv_page;
1161 			rbio->bio_pages[page_index + i] = p;
1162 		}
1163 	}
1164 	spin_unlock_irq(&rbio->bio_list_lock);
1165 }
1166 
1167 /*
1168  * this is called from one of two situations.  We either
1169  * have a full stripe from the higher layers, or we've read all
1170  * the missing bits off disk.
1171  *
1172  * This will calculate the parity and then send down any
1173  * changed blocks.
1174  */
1175 static noinline void finish_rmw(struct btrfs_raid_bio *rbio)
1176 {
1177 	struct btrfs_bio *bbio = rbio->bbio;
1178 	void *pointers[rbio->real_stripes];
1179 	int nr_data = rbio->nr_data;
1180 	int stripe;
1181 	int pagenr;
1182 	int p_stripe = -1;
1183 	int q_stripe = -1;
1184 	struct bio_list bio_list;
1185 	struct bio *bio;
1186 	int ret;
1187 
1188 	bio_list_init(&bio_list);
1189 
1190 	if (rbio->real_stripes - rbio->nr_data == 1) {
1191 		p_stripe = rbio->real_stripes - 1;
1192 	} else if (rbio->real_stripes - rbio->nr_data == 2) {
1193 		p_stripe = rbio->real_stripes - 2;
1194 		q_stripe = rbio->real_stripes - 1;
1195 	} else {
1196 		BUG();
1197 	}
1198 
1199 	/* at this point we either have a full stripe,
1200 	 * or we've read the full stripe from the drive.
1201 	 * recalculate the parity and write the new results.
1202 	 *
1203 	 * We're not allowed to add any new bios to the
1204 	 * bio list here, anyone else that wants to
1205 	 * change this stripe needs to do their own rmw.
1206 	 */
1207 	spin_lock_irq(&rbio->bio_list_lock);
1208 	set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1209 	spin_unlock_irq(&rbio->bio_list_lock);
1210 
1211 	atomic_set(&rbio->error, 0);
1212 
1213 	/*
1214 	 * now that we've set rmw_locked, run through the
1215 	 * bio list one last time and map the page pointers
1216 	 *
1217 	 * We don't cache full rbios because we're assuming
1218 	 * the higher layers are unlikely to use this area of
1219 	 * the disk again soon.  If they do use it again,
1220 	 * hopefully they will send another full bio.
1221 	 */
1222 	index_rbio_pages(rbio);
1223 	if (!rbio_is_full(rbio))
1224 		cache_rbio_pages(rbio);
1225 	else
1226 		clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1227 
1228 	for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1229 		struct page *p;
1230 		/* first collect one page from each data stripe */
1231 		for (stripe = 0; stripe < nr_data; stripe++) {
1232 			p = page_in_rbio(rbio, stripe, pagenr, 0);
1233 			pointers[stripe] = kmap(p);
1234 		}
1235 
1236 		/* then add the parity stripe */
1237 		p = rbio_pstripe_page(rbio, pagenr);
1238 		SetPageUptodate(p);
1239 		pointers[stripe++] = kmap(p);
1240 
1241 		if (q_stripe != -1) {
1242 
1243 			/*
1244 			 * raid6, add the qstripe and call the
1245 			 * library function to fill in our p/q
1246 			 */
1247 			p = rbio_qstripe_page(rbio, pagenr);
1248 			SetPageUptodate(p);
1249 			pointers[stripe++] = kmap(p);
1250 
1251 			raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
1252 						pointers);
1253 		} else {
1254 			/* raid5 */
1255 			memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
1256 			run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
1257 		}
1258 
1259 
1260 		for (stripe = 0; stripe < rbio->real_stripes; stripe++)
1261 			kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
1262 	}
1263 
1264 	/*
1265 	 * time to start writing.  Make bios for everything from the
1266 	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
1267 	 * everything else.
1268 	 */
1269 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1270 		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1271 			struct page *page;
1272 			if (stripe < rbio->nr_data) {
1273 				page = page_in_rbio(rbio, stripe, pagenr, 1);
1274 				if (!page)
1275 					continue;
1276 			} else {
1277 			       page = rbio_stripe_page(rbio, stripe, pagenr);
1278 			}
1279 
1280 			ret = rbio_add_io_page(rbio, &bio_list,
1281 				       page, stripe, pagenr, rbio->stripe_len);
1282 			if (ret)
1283 				goto cleanup;
1284 		}
1285 	}
1286 
1287 	if (likely(!bbio->num_tgtdevs))
1288 		goto write_data;
1289 
1290 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1291 		if (!bbio->tgtdev_map[stripe])
1292 			continue;
1293 
1294 		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1295 			struct page *page;
1296 			if (stripe < rbio->nr_data) {
1297 				page = page_in_rbio(rbio, stripe, pagenr, 1);
1298 				if (!page)
1299 					continue;
1300 			} else {
1301 			       page = rbio_stripe_page(rbio, stripe, pagenr);
1302 			}
1303 
1304 			ret = rbio_add_io_page(rbio, &bio_list, page,
1305 					       rbio->bbio->tgtdev_map[stripe],
1306 					       pagenr, rbio->stripe_len);
1307 			if (ret)
1308 				goto cleanup;
1309 		}
1310 	}
1311 
1312 write_data:
1313 	atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list));
1314 	BUG_ON(atomic_read(&rbio->stripes_pending) == 0);
1315 
1316 	while (1) {
1317 		bio = bio_list_pop(&bio_list);
1318 		if (!bio)
1319 			break;
1320 
1321 		bio->bi_private = rbio;
1322 		bio->bi_end_io = raid_write_end_io;
1323 		submit_bio(WRITE, bio);
1324 	}
1325 	return;
1326 
1327 cleanup:
1328 	rbio_orig_end_io(rbio, -EIO);
1329 }
1330 
1331 /*
1332  * helper to find the stripe number for a given bio.  Used to figure out which
1333  * stripe has failed.  This expects the bio to correspond to a physical disk,
1334  * so it looks up based on physical sector numbers.
1335  */
1336 static int find_bio_stripe(struct btrfs_raid_bio *rbio,
1337 			   struct bio *bio)
1338 {
1339 	u64 physical = bio->bi_iter.bi_sector;
1340 	u64 stripe_start;
1341 	int i;
1342 	struct btrfs_bio_stripe *stripe;
1343 
1344 	physical <<= 9;
1345 
1346 	for (i = 0; i < rbio->bbio->num_stripes; i++) {
1347 		stripe = &rbio->bbio->stripes[i];
1348 		stripe_start = stripe->physical;
1349 		if (physical >= stripe_start &&
1350 		    physical < stripe_start + rbio->stripe_len &&
1351 		    bio->bi_bdev == stripe->dev->bdev) {
1352 			return i;
1353 		}
1354 	}
1355 	return -1;
1356 }
1357 
1358 /*
1359  * helper to find the stripe number for a given
1360  * bio (before mapping).  Used to figure out which stripe has
1361  * failed.  This looks up based on logical block numbers.
1362  */
1363 static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio,
1364 				   struct bio *bio)
1365 {
1366 	u64 logical = bio->bi_iter.bi_sector;
1367 	u64 stripe_start;
1368 	int i;
1369 
1370 	logical <<= 9;
1371 
1372 	for (i = 0; i < rbio->nr_data; i++) {
1373 		stripe_start = rbio->bbio->raid_map[i];
1374 		if (logical >= stripe_start &&
1375 		    logical < stripe_start + rbio->stripe_len) {
1376 			return i;
1377 		}
1378 	}
1379 	return -1;
1380 }
1381 
1382 /*
1383  * returns -EIO if we had too many failures
1384  */
1385 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed)
1386 {
1387 	unsigned long flags;
1388 	int ret = 0;
1389 
1390 	spin_lock_irqsave(&rbio->bio_list_lock, flags);
1391 
1392 	/* we already know this stripe is bad, move on */
1393 	if (rbio->faila == failed || rbio->failb == failed)
1394 		goto out;
1395 
1396 	if (rbio->faila == -1) {
1397 		/* first failure on this rbio */
1398 		rbio->faila = failed;
1399 		atomic_inc(&rbio->error);
1400 	} else if (rbio->failb == -1) {
1401 		/* second failure on this rbio */
1402 		rbio->failb = failed;
1403 		atomic_inc(&rbio->error);
1404 	} else {
1405 		ret = -EIO;
1406 	}
1407 out:
1408 	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
1409 
1410 	return ret;
1411 }
1412 
1413 /*
1414  * helper to fail a stripe based on a physical disk
1415  * bio.
1416  */
1417 static int fail_bio_stripe(struct btrfs_raid_bio *rbio,
1418 			   struct bio *bio)
1419 {
1420 	int failed = find_bio_stripe(rbio, bio);
1421 
1422 	if (failed < 0)
1423 		return -EIO;
1424 
1425 	return fail_rbio_index(rbio, failed);
1426 }
1427 
1428 /*
1429  * this sets each page in the bio uptodate.  It should only be used on private
1430  * rbio pages, nothing that comes in from the higher layers
1431  */
1432 static void set_bio_pages_uptodate(struct bio *bio)
1433 {
1434 	int i;
1435 	struct page *p;
1436 
1437 	for (i = 0; i < bio->bi_vcnt; i++) {
1438 		p = bio->bi_io_vec[i].bv_page;
1439 		SetPageUptodate(p);
1440 	}
1441 }
1442 
1443 /*
1444  * end io for the read phase of the rmw cycle.  All the bios here are physical
1445  * stripe bios we've read from the disk so we can recalculate the parity of the
1446  * stripe.
1447  *
1448  * This will usually kick off finish_rmw once all the bios are read in, but it
1449  * may trigger parity reconstruction if we had any errors along the way
1450  */
1451 static void raid_rmw_end_io(struct bio *bio)
1452 {
1453 	struct btrfs_raid_bio *rbio = bio->bi_private;
1454 
1455 	if (bio->bi_error)
1456 		fail_bio_stripe(rbio, bio);
1457 	else
1458 		set_bio_pages_uptodate(bio);
1459 
1460 	bio_put(bio);
1461 
1462 	if (!atomic_dec_and_test(&rbio->stripes_pending))
1463 		return;
1464 
1465 	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
1466 		goto cleanup;
1467 
1468 	/*
1469 	 * this will normally call finish_rmw to start our write
1470 	 * but if there are any failed stripes we'll reconstruct
1471 	 * from parity first
1472 	 */
1473 	validate_rbio_for_rmw(rbio);
1474 	return;
1475 
1476 cleanup:
1477 
1478 	rbio_orig_end_io(rbio, -EIO);
1479 }
1480 
1481 static void async_rmw_stripe(struct btrfs_raid_bio *rbio)
1482 {
1483 	btrfs_init_work(&rbio->work, btrfs_rmw_helper,
1484 			rmw_work, NULL, NULL);
1485 
1486 	btrfs_queue_work(rbio->fs_info->rmw_workers,
1487 			 &rbio->work);
1488 }
1489 
1490 static void async_read_rebuild(struct btrfs_raid_bio *rbio)
1491 {
1492 	btrfs_init_work(&rbio->work, btrfs_rmw_helper,
1493 			read_rebuild_work, NULL, NULL);
1494 
1495 	btrfs_queue_work(rbio->fs_info->rmw_workers,
1496 			 &rbio->work);
1497 }
1498 
1499 /*
1500  * the stripe must be locked by the caller.  It will
1501  * unlock after all the writes are done
1502  */
1503 static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio)
1504 {
1505 	int bios_to_read = 0;
1506 	struct bio_list bio_list;
1507 	int ret;
1508 	int pagenr;
1509 	int stripe;
1510 	struct bio *bio;
1511 
1512 	bio_list_init(&bio_list);
1513 
1514 	ret = alloc_rbio_pages(rbio);
1515 	if (ret)
1516 		goto cleanup;
1517 
1518 	index_rbio_pages(rbio);
1519 
1520 	atomic_set(&rbio->error, 0);
1521 	/*
1522 	 * build a list of bios to read all the missing parts of this
1523 	 * stripe
1524 	 */
1525 	for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1526 		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1527 			struct page *page;
1528 			/*
1529 			 * we want to find all the pages missing from
1530 			 * the rbio and read them from the disk.  If
1531 			 * page_in_rbio finds a page in the bio list
1532 			 * we don't need to read it off the stripe.
1533 			 */
1534 			page = page_in_rbio(rbio, stripe, pagenr, 1);
1535 			if (page)
1536 				continue;
1537 
1538 			page = rbio_stripe_page(rbio, stripe, pagenr);
1539 			/*
1540 			 * the bio cache may have handed us an uptodate
1541 			 * page.  If so, be happy and use it
1542 			 */
1543 			if (PageUptodate(page))
1544 				continue;
1545 
1546 			ret = rbio_add_io_page(rbio, &bio_list, page,
1547 				       stripe, pagenr, rbio->stripe_len);
1548 			if (ret)
1549 				goto cleanup;
1550 		}
1551 	}
1552 
1553 	bios_to_read = bio_list_size(&bio_list);
1554 	if (!bios_to_read) {
1555 		/*
1556 		 * this can happen if others have merged with
1557 		 * us, it means there is nothing left to read.
1558 		 * But if there are missing devices it may not be
1559 		 * safe to do the full stripe write yet.
1560 		 */
1561 		goto finish;
1562 	}
1563 
1564 	/*
1565 	 * the bbio may be freed once we submit the last bio.  Make sure
1566 	 * not to touch it after that
1567 	 */
1568 	atomic_set(&rbio->stripes_pending, bios_to_read);
1569 	while (1) {
1570 		bio = bio_list_pop(&bio_list);
1571 		if (!bio)
1572 			break;
1573 
1574 		bio->bi_private = rbio;
1575 		bio->bi_end_io = raid_rmw_end_io;
1576 
1577 		btrfs_bio_wq_end_io(rbio->fs_info, bio,
1578 				    BTRFS_WQ_ENDIO_RAID56);
1579 
1580 		submit_bio(READ, bio);
1581 	}
1582 	/* the actual write will happen once the reads are done */
1583 	return 0;
1584 
1585 cleanup:
1586 	rbio_orig_end_io(rbio, -EIO);
1587 	return -EIO;
1588 
1589 finish:
1590 	validate_rbio_for_rmw(rbio);
1591 	return 0;
1592 }
1593 
1594 /*
1595  * if the upper layers pass in a full stripe, we thank them by only allocating
1596  * enough pages to hold the parity, and sending it all down quickly.
1597  */
1598 static int full_stripe_write(struct btrfs_raid_bio *rbio)
1599 {
1600 	int ret;
1601 
1602 	ret = alloc_rbio_parity_pages(rbio);
1603 	if (ret) {
1604 		__free_raid_bio(rbio);
1605 		return ret;
1606 	}
1607 
1608 	ret = lock_stripe_add(rbio);
1609 	if (ret == 0)
1610 		finish_rmw(rbio);
1611 	return 0;
1612 }
1613 
1614 /*
1615  * partial stripe writes get handed over to async helpers.
1616  * We're really hoping to merge a few more writes into this
1617  * rbio before calculating new parity
1618  */
1619 static int partial_stripe_write(struct btrfs_raid_bio *rbio)
1620 {
1621 	int ret;
1622 
1623 	ret = lock_stripe_add(rbio);
1624 	if (ret == 0)
1625 		async_rmw_stripe(rbio);
1626 	return 0;
1627 }
1628 
1629 /*
1630  * sometimes while we were reading from the drive to
1631  * recalculate parity, enough new bios come into create
1632  * a full stripe.  So we do a check here to see if we can
1633  * go directly to finish_rmw
1634  */
1635 static int __raid56_parity_write(struct btrfs_raid_bio *rbio)
1636 {
1637 	/* head off into rmw land if we don't have a full stripe */
1638 	if (!rbio_is_full(rbio))
1639 		return partial_stripe_write(rbio);
1640 	return full_stripe_write(rbio);
1641 }
1642 
1643 /*
1644  * We use plugging call backs to collect full stripes.
1645  * Any time we get a partial stripe write while plugged
1646  * we collect it into a list.  When the unplug comes down,
1647  * we sort the list by logical block number and merge
1648  * everything we can into the same rbios
1649  */
1650 struct btrfs_plug_cb {
1651 	struct blk_plug_cb cb;
1652 	struct btrfs_fs_info *info;
1653 	struct list_head rbio_list;
1654 	struct btrfs_work work;
1655 };
1656 
1657 /*
1658  * rbios on the plug list are sorted for easier merging.
1659  */
1660 static int plug_cmp(void *priv, struct list_head *a, struct list_head *b)
1661 {
1662 	struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1663 						 plug_list);
1664 	struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1665 						 plug_list);
1666 	u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1667 	u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1668 
1669 	if (a_sector < b_sector)
1670 		return -1;
1671 	if (a_sector > b_sector)
1672 		return 1;
1673 	return 0;
1674 }
1675 
1676 static void run_plug(struct btrfs_plug_cb *plug)
1677 {
1678 	struct btrfs_raid_bio *cur;
1679 	struct btrfs_raid_bio *last = NULL;
1680 
1681 	/*
1682 	 * sort our plug list then try to merge
1683 	 * everything we can in hopes of creating full
1684 	 * stripes.
1685 	 */
1686 	list_sort(NULL, &plug->rbio_list, plug_cmp);
1687 	while (!list_empty(&plug->rbio_list)) {
1688 		cur = list_entry(plug->rbio_list.next,
1689 				 struct btrfs_raid_bio, plug_list);
1690 		list_del_init(&cur->plug_list);
1691 
1692 		if (rbio_is_full(cur)) {
1693 			/* we have a full stripe, send it down */
1694 			full_stripe_write(cur);
1695 			continue;
1696 		}
1697 		if (last) {
1698 			if (rbio_can_merge(last, cur)) {
1699 				merge_rbio(last, cur);
1700 				__free_raid_bio(cur);
1701 				continue;
1702 
1703 			}
1704 			__raid56_parity_write(last);
1705 		}
1706 		last = cur;
1707 	}
1708 	if (last) {
1709 		__raid56_parity_write(last);
1710 	}
1711 	kfree(plug);
1712 }
1713 
1714 /*
1715  * if the unplug comes from schedule, we have to push the
1716  * work off to a helper thread
1717  */
1718 static void unplug_work(struct btrfs_work *work)
1719 {
1720 	struct btrfs_plug_cb *plug;
1721 	plug = container_of(work, struct btrfs_plug_cb, work);
1722 	run_plug(plug);
1723 }
1724 
1725 static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1726 {
1727 	struct btrfs_plug_cb *plug;
1728 	plug = container_of(cb, struct btrfs_plug_cb, cb);
1729 
1730 	if (from_schedule) {
1731 		btrfs_init_work(&plug->work, btrfs_rmw_helper,
1732 				unplug_work, NULL, NULL);
1733 		btrfs_queue_work(plug->info->rmw_workers,
1734 				 &plug->work);
1735 		return;
1736 	}
1737 	run_plug(plug);
1738 }
1739 
1740 /*
1741  * our main entry point for writes from the rest of the FS.
1742  */
1743 int raid56_parity_write(struct btrfs_root *root, struct bio *bio,
1744 			struct btrfs_bio *bbio, u64 stripe_len)
1745 {
1746 	struct btrfs_raid_bio *rbio;
1747 	struct btrfs_plug_cb *plug = NULL;
1748 	struct blk_plug_cb *cb;
1749 	int ret;
1750 
1751 	rbio = alloc_rbio(root, bbio, stripe_len);
1752 	if (IS_ERR(rbio)) {
1753 		btrfs_put_bbio(bbio);
1754 		return PTR_ERR(rbio);
1755 	}
1756 	bio_list_add(&rbio->bio_list, bio);
1757 	rbio->bio_list_bytes = bio->bi_iter.bi_size;
1758 	rbio->operation = BTRFS_RBIO_WRITE;
1759 
1760 	btrfs_bio_counter_inc_noblocked(root->fs_info);
1761 	rbio->generic_bio_cnt = 1;
1762 
1763 	/*
1764 	 * don't plug on full rbios, just get them out the door
1765 	 * as quickly as we can
1766 	 */
1767 	if (rbio_is_full(rbio)) {
1768 		ret = full_stripe_write(rbio);
1769 		if (ret)
1770 			btrfs_bio_counter_dec(root->fs_info);
1771 		return ret;
1772 	}
1773 
1774 	cb = blk_check_plugged(btrfs_raid_unplug, root->fs_info,
1775 			       sizeof(*plug));
1776 	if (cb) {
1777 		plug = container_of(cb, struct btrfs_plug_cb, cb);
1778 		if (!plug->info) {
1779 			plug->info = root->fs_info;
1780 			INIT_LIST_HEAD(&plug->rbio_list);
1781 		}
1782 		list_add_tail(&rbio->plug_list, &plug->rbio_list);
1783 		ret = 0;
1784 	} else {
1785 		ret = __raid56_parity_write(rbio);
1786 		if (ret)
1787 			btrfs_bio_counter_dec(root->fs_info);
1788 	}
1789 	return ret;
1790 }
1791 
1792 /*
1793  * all parity reconstruction happens here.  We've read in everything
1794  * we can find from the drives and this does the heavy lifting of
1795  * sorting the good from the bad.
1796  */
1797 static void __raid_recover_end_io(struct btrfs_raid_bio *rbio)
1798 {
1799 	int pagenr, stripe;
1800 	void **pointers;
1801 	int faila = -1, failb = -1;
1802 	struct page *page;
1803 	int err;
1804 	int i;
1805 
1806 	pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1807 	if (!pointers) {
1808 		err = -ENOMEM;
1809 		goto cleanup_io;
1810 	}
1811 
1812 	faila = rbio->faila;
1813 	failb = rbio->failb;
1814 
1815 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1816 	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1817 		spin_lock_irq(&rbio->bio_list_lock);
1818 		set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1819 		spin_unlock_irq(&rbio->bio_list_lock);
1820 	}
1821 
1822 	index_rbio_pages(rbio);
1823 
1824 	for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1825 		/*
1826 		 * Now we just use bitmap to mark the horizontal stripes in
1827 		 * which we have data when doing parity scrub.
1828 		 */
1829 		if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1830 		    !test_bit(pagenr, rbio->dbitmap))
1831 			continue;
1832 
1833 		/* setup our array of pointers with pages
1834 		 * from each stripe
1835 		 */
1836 		for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1837 			/*
1838 			 * if we're rebuilding a read, we have to use
1839 			 * pages from the bio list
1840 			 */
1841 			if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1842 			     rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1843 			    (stripe == faila || stripe == failb)) {
1844 				page = page_in_rbio(rbio, stripe, pagenr, 0);
1845 			} else {
1846 				page = rbio_stripe_page(rbio, stripe, pagenr);
1847 			}
1848 			pointers[stripe] = kmap(page);
1849 		}
1850 
1851 		/* all raid6 handling here */
1852 		if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) {
1853 			/*
1854 			 * single failure, rebuild from parity raid5
1855 			 * style
1856 			 */
1857 			if (failb < 0) {
1858 				if (faila == rbio->nr_data) {
1859 					/*
1860 					 * Just the P stripe has failed, without
1861 					 * a bad data or Q stripe.
1862 					 * TODO, we should redo the xor here.
1863 					 */
1864 					err = -EIO;
1865 					goto cleanup;
1866 				}
1867 				/*
1868 				 * a single failure in raid6 is rebuilt
1869 				 * in the pstripe code below
1870 				 */
1871 				goto pstripe;
1872 			}
1873 
1874 			/* make sure our ps and qs are in order */
1875 			if (faila > failb) {
1876 				int tmp = failb;
1877 				failb = faila;
1878 				faila = tmp;
1879 			}
1880 
1881 			/* if the q stripe is failed, do a pstripe reconstruction
1882 			 * from the xors.
1883 			 * If both the q stripe and the P stripe are failed, we're
1884 			 * here due to a crc mismatch and we can't give them the
1885 			 * data they want
1886 			 */
1887 			if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) {
1888 				if (rbio->bbio->raid_map[faila] ==
1889 				    RAID5_P_STRIPE) {
1890 					err = -EIO;
1891 					goto cleanup;
1892 				}
1893 				/*
1894 				 * otherwise we have one bad data stripe and
1895 				 * a good P stripe.  raid5!
1896 				 */
1897 				goto pstripe;
1898 			}
1899 
1900 			if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) {
1901 				raid6_datap_recov(rbio->real_stripes,
1902 						  PAGE_SIZE, faila, pointers);
1903 			} else {
1904 				raid6_2data_recov(rbio->real_stripes,
1905 						  PAGE_SIZE, faila, failb,
1906 						  pointers);
1907 			}
1908 		} else {
1909 			void *p;
1910 
1911 			/* rebuild from P stripe here (raid5 or raid6) */
1912 			BUG_ON(failb != -1);
1913 pstripe:
1914 			/* Copy parity block into failed block to start with */
1915 			memcpy(pointers[faila],
1916 			       pointers[rbio->nr_data],
1917 			       PAGE_SIZE);
1918 
1919 			/* rearrange the pointer array */
1920 			p = pointers[faila];
1921 			for (stripe = faila; stripe < rbio->nr_data - 1; stripe++)
1922 				pointers[stripe] = pointers[stripe + 1];
1923 			pointers[rbio->nr_data - 1] = p;
1924 
1925 			/* xor in the rest */
1926 			run_xor(pointers, rbio->nr_data - 1, PAGE_SIZE);
1927 		}
1928 		/* if we're doing this rebuild as part of an rmw, go through
1929 		 * and set all of our private rbio pages in the
1930 		 * failed stripes as uptodate.  This way finish_rmw will
1931 		 * know they can be trusted.  If this was a read reconstruction,
1932 		 * other endio functions will fiddle the uptodate bits
1933 		 */
1934 		if (rbio->operation == BTRFS_RBIO_WRITE) {
1935 			for (i = 0;  i < rbio->stripe_npages; i++) {
1936 				if (faila != -1) {
1937 					page = rbio_stripe_page(rbio, faila, i);
1938 					SetPageUptodate(page);
1939 				}
1940 				if (failb != -1) {
1941 					page = rbio_stripe_page(rbio, failb, i);
1942 					SetPageUptodate(page);
1943 				}
1944 			}
1945 		}
1946 		for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1947 			/*
1948 			 * if we're rebuilding a read, we have to use
1949 			 * pages from the bio list
1950 			 */
1951 			if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1952 			     rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1953 			    (stripe == faila || stripe == failb)) {
1954 				page = page_in_rbio(rbio, stripe, pagenr, 0);
1955 			} else {
1956 				page = rbio_stripe_page(rbio, stripe, pagenr);
1957 			}
1958 			kunmap(page);
1959 		}
1960 	}
1961 
1962 	err = 0;
1963 cleanup:
1964 	kfree(pointers);
1965 
1966 cleanup_io:
1967 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
1968 		if (err == 0)
1969 			cache_rbio_pages(rbio);
1970 		else
1971 			clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1972 
1973 		rbio_orig_end_io(rbio, err);
1974 	} else if (rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1975 		rbio_orig_end_io(rbio, err);
1976 	} else if (err == 0) {
1977 		rbio->faila = -1;
1978 		rbio->failb = -1;
1979 
1980 		if (rbio->operation == BTRFS_RBIO_WRITE)
1981 			finish_rmw(rbio);
1982 		else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB)
1983 			finish_parity_scrub(rbio, 0);
1984 		else
1985 			BUG();
1986 	} else {
1987 		rbio_orig_end_io(rbio, err);
1988 	}
1989 }
1990 
1991 /*
1992  * This is called only for stripes we've read from disk to
1993  * reconstruct the parity.
1994  */
1995 static void raid_recover_end_io(struct bio *bio)
1996 {
1997 	struct btrfs_raid_bio *rbio = bio->bi_private;
1998 
1999 	/*
2000 	 * we only read stripe pages off the disk, set them
2001 	 * up to date if there were no errors
2002 	 */
2003 	if (bio->bi_error)
2004 		fail_bio_stripe(rbio, bio);
2005 	else
2006 		set_bio_pages_uptodate(bio);
2007 	bio_put(bio);
2008 
2009 	if (!atomic_dec_and_test(&rbio->stripes_pending))
2010 		return;
2011 
2012 	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2013 		rbio_orig_end_io(rbio, -EIO);
2014 	else
2015 		__raid_recover_end_io(rbio);
2016 }
2017 
2018 /*
2019  * reads everything we need off the disk to reconstruct
2020  * the parity. endio handlers trigger final reconstruction
2021  * when the IO is done.
2022  *
2023  * This is used both for reads from the higher layers and for
2024  * parity construction required to finish a rmw cycle.
2025  */
2026 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio)
2027 {
2028 	int bios_to_read = 0;
2029 	struct bio_list bio_list;
2030 	int ret;
2031 	int pagenr;
2032 	int stripe;
2033 	struct bio *bio;
2034 
2035 	bio_list_init(&bio_list);
2036 
2037 	ret = alloc_rbio_pages(rbio);
2038 	if (ret)
2039 		goto cleanup;
2040 
2041 	atomic_set(&rbio->error, 0);
2042 
2043 	/*
2044 	 * read everything that hasn't failed.  Thanks to the
2045 	 * stripe cache, it is possible that some or all of these
2046 	 * pages are going to be uptodate.
2047 	 */
2048 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2049 		if (rbio->faila == stripe || rbio->failb == stripe) {
2050 			atomic_inc(&rbio->error);
2051 			continue;
2052 		}
2053 
2054 		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
2055 			struct page *p;
2056 
2057 			/*
2058 			 * the rmw code may have already read this
2059 			 * page in
2060 			 */
2061 			p = rbio_stripe_page(rbio, stripe, pagenr);
2062 			if (PageUptodate(p))
2063 				continue;
2064 
2065 			ret = rbio_add_io_page(rbio, &bio_list,
2066 				       rbio_stripe_page(rbio, stripe, pagenr),
2067 				       stripe, pagenr, rbio->stripe_len);
2068 			if (ret < 0)
2069 				goto cleanup;
2070 		}
2071 	}
2072 
2073 	bios_to_read = bio_list_size(&bio_list);
2074 	if (!bios_to_read) {
2075 		/*
2076 		 * we might have no bios to read just because the pages
2077 		 * were up to date, or we might have no bios to read because
2078 		 * the devices were gone.
2079 		 */
2080 		if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) {
2081 			__raid_recover_end_io(rbio);
2082 			goto out;
2083 		} else {
2084 			goto cleanup;
2085 		}
2086 	}
2087 
2088 	/*
2089 	 * the bbio may be freed once we submit the last bio.  Make sure
2090 	 * not to touch it after that
2091 	 */
2092 	atomic_set(&rbio->stripes_pending, bios_to_read);
2093 	while (1) {
2094 		bio = bio_list_pop(&bio_list);
2095 		if (!bio)
2096 			break;
2097 
2098 		bio->bi_private = rbio;
2099 		bio->bi_end_io = raid_recover_end_io;
2100 
2101 		btrfs_bio_wq_end_io(rbio->fs_info, bio,
2102 				    BTRFS_WQ_ENDIO_RAID56);
2103 
2104 		submit_bio(READ, bio);
2105 	}
2106 out:
2107 	return 0;
2108 
2109 cleanup:
2110 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
2111 	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING)
2112 		rbio_orig_end_io(rbio, -EIO);
2113 	return -EIO;
2114 }
2115 
2116 /*
2117  * the main entry point for reads from the higher layers.  This
2118  * is really only called when the normal read path had a failure,
2119  * so we assume the bio they send down corresponds to a failed part
2120  * of the drive.
2121  */
2122 int raid56_parity_recover(struct btrfs_root *root, struct bio *bio,
2123 			  struct btrfs_bio *bbio, u64 stripe_len,
2124 			  int mirror_num, int generic_io)
2125 {
2126 	struct btrfs_raid_bio *rbio;
2127 	int ret;
2128 
2129 	rbio = alloc_rbio(root, bbio, stripe_len);
2130 	if (IS_ERR(rbio)) {
2131 		if (generic_io)
2132 			btrfs_put_bbio(bbio);
2133 		return PTR_ERR(rbio);
2134 	}
2135 
2136 	rbio->operation = BTRFS_RBIO_READ_REBUILD;
2137 	bio_list_add(&rbio->bio_list, bio);
2138 	rbio->bio_list_bytes = bio->bi_iter.bi_size;
2139 
2140 	rbio->faila = find_logical_bio_stripe(rbio, bio);
2141 	if (rbio->faila == -1) {
2142 		BUG();
2143 		if (generic_io)
2144 			btrfs_put_bbio(bbio);
2145 		kfree(rbio);
2146 		return -EIO;
2147 	}
2148 
2149 	if (generic_io) {
2150 		btrfs_bio_counter_inc_noblocked(root->fs_info);
2151 		rbio->generic_bio_cnt = 1;
2152 	} else {
2153 		btrfs_get_bbio(bbio);
2154 	}
2155 
2156 	/*
2157 	 * reconstruct from the q stripe if they are
2158 	 * asking for mirror 3
2159 	 */
2160 	if (mirror_num == 3)
2161 		rbio->failb = rbio->real_stripes - 2;
2162 
2163 	ret = lock_stripe_add(rbio);
2164 
2165 	/*
2166 	 * __raid56_parity_recover will end the bio with
2167 	 * any errors it hits.  We don't want to return
2168 	 * its error value up the stack because our caller
2169 	 * will end up calling bio_endio with any nonzero
2170 	 * return
2171 	 */
2172 	if (ret == 0)
2173 		__raid56_parity_recover(rbio);
2174 	/*
2175 	 * our rbio has been added to the list of
2176 	 * rbios that will be handled after the
2177 	 * currently lock owner is done
2178 	 */
2179 	return 0;
2180 
2181 }
2182 
2183 static void rmw_work(struct btrfs_work *work)
2184 {
2185 	struct btrfs_raid_bio *rbio;
2186 
2187 	rbio = container_of(work, struct btrfs_raid_bio, work);
2188 	raid56_rmw_stripe(rbio);
2189 }
2190 
2191 static void read_rebuild_work(struct btrfs_work *work)
2192 {
2193 	struct btrfs_raid_bio *rbio;
2194 
2195 	rbio = container_of(work, struct btrfs_raid_bio, work);
2196 	__raid56_parity_recover(rbio);
2197 }
2198 
2199 /*
2200  * The following code is used to scrub/replace the parity stripe
2201  *
2202  * Note: We need make sure all the pages that add into the scrub/replace
2203  * raid bio are correct and not be changed during the scrub/replace. That
2204  * is those pages just hold metadata or file data with checksum.
2205  */
2206 
2207 struct btrfs_raid_bio *
2208 raid56_parity_alloc_scrub_rbio(struct btrfs_root *root, struct bio *bio,
2209 			       struct btrfs_bio *bbio, u64 stripe_len,
2210 			       struct btrfs_device *scrub_dev,
2211 			       unsigned long *dbitmap, int stripe_nsectors)
2212 {
2213 	struct btrfs_raid_bio *rbio;
2214 	int i;
2215 
2216 	rbio = alloc_rbio(root, bbio, stripe_len);
2217 	if (IS_ERR(rbio))
2218 		return NULL;
2219 	bio_list_add(&rbio->bio_list, bio);
2220 	/*
2221 	 * This is a special bio which is used to hold the completion handler
2222 	 * and make the scrub rbio is similar to the other types
2223 	 */
2224 	ASSERT(!bio->bi_iter.bi_size);
2225 	rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2226 
2227 	for (i = 0; i < rbio->real_stripes; i++) {
2228 		if (bbio->stripes[i].dev == scrub_dev) {
2229 			rbio->scrubp = i;
2230 			break;
2231 		}
2232 	}
2233 
2234 	/* Now we just support the sectorsize equals to page size */
2235 	ASSERT(root->sectorsize == PAGE_SIZE);
2236 	ASSERT(rbio->stripe_npages == stripe_nsectors);
2237 	bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors);
2238 
2239 	return rbio;
2240 }
2241 
2242 /* Used for both parity scrub and missing. */
2243 void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page,
2244 			    u64 logical)
2245 {
2246 	int stripe_offset;
2247 	int index;
2248 
2249 	ASSERT(logical >= rbio->bbio->raid_map[0]);
2250 	ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] +
2251 				rbio->stripe_len * rbio->nr_data);
2252 	stripe_offset = (int)(logical - rbio->bbio->raid_map[0]);
2253 	index = stripe_offset >> PAGE_SHIFT;
2254 	rbio->bio_pages[index] = page;
2255 }
2256 
2257 /*
2258  * We just scrub the parity that we have correct data on the same horizontal,
2259  * so we needn't allocate all pages for all the stripes.
2260  */
2261 static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2262 {
2263 	int i;
2264 	int bit;
2265 	int index;
2266 	struct page *page;
2267 
2268 	for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) {
2269 		for (i = 0; i < rbio->real_stripes; i++) {
2270 			index = i * rbio->stripe_npages + bit;
2271 			if (rbio->stripe_pages[index])
2272 				continue;
2273 
2274 			page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2275 			if (!page)
2276 				return -ENOMEM;
2277 			rbio->stripe_pages[index] = page;
2278 		}
2279 	}
2280 	return 0;
2281 }
2282 
2283 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
2284 					 int need_check)
2285 {
2286 	struct btrfs_bio *bbio = rbio->bbio;
2287 	void *pointers[rbio->real_stripes];
2288 	DECLARE_BITMAP(pbitmap, rbio->stripe_npages);
2289 	int nr_data = rbio->nr_data;
2290 	int stripe;
2291 	int pagenr;
2292 	int p_stripe = -1;
2293 	int q_stripe = -1;
2294 	struct page *p_page = NULL;
2295 	struct page *q_page = NULL;
2296 	struct bio_list bio_list;
2297 	struct bio *bio;
2298 	int is_replace = 0;
2299 	int ret;
2300 
2301 	bio_list_init(&bio_list);
2302 
2303 	if (rbio->real_stripes - rbio->nr_data == 1) {
2304 		p_stripe = rbio->real_stripes - 1;
2305 	} else if (rbio->real_stripes - rbio->nr_data == 2) {
2306 		p_stripe = rbio->real_stripes - 2;
2307 		q_stripe = rbio->real_stripes - 1;
2308 	} else {
2309 		BUG();
2310 	}
2311 
2312 	if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) {
2313 		is_replace = 1;
2314 		bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages);
2315 	}
2316 
2317 	/*
2318 	 * Because the higher layers(scrubber) are unlikely to
2319 	 * use this area of the disk again soon, so don't cache
2320 	 * it.
2321 	 */
2322 	clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2323 
2324 	if (!need_check)
2325 		goto writeback;
2326 
2327 	p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2328 	if (!p_page)
2329 		goto cleanup;
2330 	SetPageUptodate(p_page);
2331 
2332 	if (q_stripe != -1) {
2333 		q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2334 		if (!q_page) {
2335 			__free_page(p_page);
2336 			goto cleanup;
2337 		}
2338 		SetPageUptodate(q_page);
2339 	}
2340 
2341 	atomic_set(&rbio->error, 0);
2342 
2343 	for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2344 		struct page *p;
2345 		void *parity;
2346 		/* first collect one page from each data stripe */
2347 		for (stripe = 0; stripe < nr_data; stripe++) {
2348 			p = page_in_rbio(rbio, stripe, pagenr, 0);
2349 			pointers[stripe] = kmap(p);
2350 		}
2351 
2352 		/* then add the parity stripe */
2353 		pointers[stripe++] = kmap(p_page);
2354 
2355 		if (q_stripe != -1) {
2356 
2357 			/*
2358 			 * raid6, add the qstripe and call the
2359 			 * library function to fill in our p/q
2360 			 */
2361 			pointers[stripe++] = kmap(q_page);
2362 
2363 			raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
2364 						pointers);
2365 		} else {
2366 			/* raid5 */
2367 			memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
2368 			run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
2369 		}
2370 
2371 		/* Check scrubbing parity and repair it */
2372 		p = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2373 		parity = kmap(p);
2374 		if (memcmp(parity, pointers[rbio->scrubp], PAGE_SIZE))
2375 			memcpy(parity, pointers[rbio->scrubp], PAGE_SIZE);
2376 		else
2377 			/* Parity is right, needn't writeback */
2378 			bitmap_clear(rbio->dbitmap, pagenr, 1);
2379 		kunmap(p);
2380 
2381 		for (stripe = 0; stripe < rbio->real_stripes; stripe++)
2382 			kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
2383 	}
2384 
2385 	__free_page(p_page);
2386 	if (q_page)
2387 		__free_page(q_page);
2388 
2389 writeback:
2390 	/*
2391 	 * time to start writing.  Make bios for everything from the
2392 	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
2393 	 * everything else.
2394 	 */
2395 	for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2396 		struct page *page;
2397 
2398 		page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2399 		ret = rbio_add_io_page(rbio, &bio_list,
2400 			       page, rbio->scrubp, pagenr, rbio->stripe_len);
2401 		if (ret)
2402 			goto cleanup;
2403 	}
2404 
2405 	if (!is_replace)
2406 		goto submit_write;
2407 
2408 	for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) {
2409 		struct page *page;
2410 
2411 		page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2412 		ret = rbio_add_io_page(rbio, &bio_list, page,
2413 				       bbio->tgtdev_map[rbio->scrubp],
2414 				       pagenr, rbio->stripe_len);
2415 		if (ret)
2416 			goto cleanup;
2417 	}
2418 
2419 submit_write:
2420 	nr_data = bio_list_size(&bio_list);
2421 	if (!nr_data) {
2422 		/* Every parity is right */
2423 		rbio_orig_end_io(rbio, 0);
2424 		return;
2425 	}
2426 
2427 	atomic_set(&rbio->stripes_pending, nr_data);
2428 
2429 	while (1) {
2430 		bio = bio_list_pop(&bio_list);
2431 		if (!bio)
2432 			break;
2433 
2434 		bio->bi_private = rbio;
2435 		bio->bi_end_io = raid_write_end_io;
2436 		submit_bio(WRITE, bio);
2437 	}
2438 	return;
2439 
2440 cleanup:
2441 	rbio_orig_end_io(rbio, -EIO);
2442 }
2443 
2444 static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2445 {
2446 	if (stripe >= 0 && stripe < rbio->nr_data)
2447 		return 1;
2448 	return 0;
2449 }
2450 
2451 /*
2452  * While we're doing the parity check and repair, we could have errors
2453  * in reading pages off the disk.  This checks for errors and if we're
2454  * not able to read the page it'll trigger parity reconstruction.  The
2455  * parity scrub will be finished after we've reconstructed the failed
2456  * stripes
2457  */
2458 static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio)
2459 {
2460 	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2461 		goto cleanup;
2462 
2463 	if (rbio->faila >= 0 || rbio->failb >= 0) {
2464 		int dfail = 0, failp = -1;
2465 
2466 		if (is_data_stripe(rbio, rbio->faila))
2467 			dfail++;
2468 		else if (is_parity_stripe(rbio->faila))
2469 			failp = rbio->faila;
2470 
2471 		if (is_data_stripe(rbio, rbio->failb))
2472 			dfail++;
2473 		else if (is_parity_stripe(rbio->failb))
2474 			failp = rbio->failb;
2475 
2476 		/*
2477 		 * Because we can not use a scrubbing parity to repair
2478 		 * the data, so the capability of the repair is declined.
2479 		 * (In the case of RAID5, we can not repair anything)
2480 		 */
2481 		if (dfail > rbio->bbio->max_errors - 1)
2482 			goto cleanup;
2483 
2484 		/*
2485 		 * If all data is good, only parity is correctly, just
2486 		 * repair the parity.
2487 		 */
2488 		if (dfail == 0) {
2489 			finish_parity_scrub(rbio, 0);
2490 			return;
2491 		}
2492 
2493 		/*
2494 		 * Here means we got one corrupted data stripe and one
2495 		 * corrupted parity on RAID6, if the corrupted parity
2496 		 * is scrubbing parity, luckily, use the other one to repair
2497 		 * the data, or we can not repair the data stripe.
2498 		 */
2499 		if (failp != rbio->scrubp)
2500 			goto cleanup;
2501 
2502 		__raid_recover_end_io(rbio);
2503 	} else {
2504 		finish_parity_scrub(rbio, 1);
2505 	}
2506 	return;
2507 
2508 cleanup:
2509 	rbio_orig_end_io(rbio, -EIO);
2510 }
2511 
2512 /*
2513  * end io for the read phase of the rmw cycle.  All the bios here are physical
2514  * stripe bios we've read from the disk so we can recalculate the parity of the
2515  * stripe.
2516  *
2517  * This will usually kick off finish_rmw once all the bios are read in, but it
2518  * may trigger parity reconstruction if we had any errors along the way
2519  */
2520 static void raid56_parity_scrub_end_io(struct bio *bio)
2521 {
2522 	struct btrfs_raid_bio *rbio = bio->bi_private;
2523 
2524 	if (bio->bi_error)
2525 		fail_bio_stripe(rbio, bio);
2526 	else
2527 		set_bio_pages_uptodate(bio);
2528 
2529 	bio_put(bio);
2530 
2531 	if (!atomic_dec_and_test(&rbio->stripes_pending))
2532 		return;
2533 
2534 	/*
2535 	 * this will normally call finish_rmw to start our write
2536 	 * but if there are any failed stripes we'll reconstruct
2537 	 * from parity first
2538 	 */
2539 	validate_rbio_for_parity_scrub(rbio);
2540 }
2541 
2542 static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio)
2543 {
2544 	int bios_to_read = 0;
2545 	struct bio_list bio_list;
2546 	int ret;
2547 	int pagenr;
2548 	int stripe;
2549 	struct bio *bio;
2550 
2551 	ret = alloc_rbio_essential_pages(rbio);
2552 	if (ret)
2553 		goto cleanup;
2554 
2555 	bio_list_init(&bio_list);
2556 
2557 	atomic_set(&rbio->error, 0);
2558 	/*
2559 	 * build a list of bios to read all the missing parts of this
2560 	 * stripe
2561 	 */
2562 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2563 		for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2564 			struct page *page;
2565 			/*
2566 			 * we want to find all the pages missing from
2567 			 * the rbio and read them from the disk.  If
2568 			 * page_in_rbio finds a page in the bio list
2569 			 * we don't need to read it off the stripe.
2570 			 */
2571 			page = page_in_rbio(rbio, stripe, pagenr, 1);
2572 			if (page)
2573 				continue;
2574 
2575 			page = rbio_stripe_page(rbio, stripe, pagenr);
2576 			/*
2577 			 * the bio cache may have handed us an uptodate
2578 			 * page.  If so, be happy and use it
2579 			 */
2580 			if (PageUptodate(page))
2581 				continue;
2582 
2583 			ret = rbio_add_io_page(rbio, &bio_list, page,
2584 				       stripe, pagenr, rbio->stripe_len);
2585 			if (ret)
2586 				goto cleanup;
2587 		}
2588 	}
2589 
2590 	bios_to_read = bio_list_size(&bio_list);
2591 	if (!bios_to_read) {
2592 		/*
2593 		 * this can happen if others have merged with
2594 		 * us, it means there is nothing left to read.
2595 		 * But if there are missing devices it may not be
2596 		 * safe to do the full stripe write yet.
2597 		 */
2598 		goto finish;
2599 	}
2600 
2601 	/*
2602 	 * the bbio may be freed once we submit the last bio.  Make sure
2603 	 * not to touch it after that
2604 	 */
2605 	atomic_set(&rbio->stripes_pending, bios_to_read);
2606 	while (1) {
2607 		bio = bio_list_pop(&bio_list);
2608 		if (!bio)
2609 			break;
2610 
2611 		bio->bi_private = rbio;
2612 		bio->bi_end_io = raid56_parity_scrub_end_io;
2613 
2614 		btrfs_bio_wq_end_io(rbio->fs_info, bio,
2615 				    BTRFS_WQ_ENDIO_RAID56);
2616 
2617 		submit_bio(READ, bio);
2618 	}
2619 	/* the actual write will happen once the reads are done */
2620 	return;
2621 
2622 cleanup:
2623 	rbio_orig_end_io(rbio, -EIO);
2624 	return;
2625 
2626 finish:
2627 	validate_rbio_for_parity_scrub(rbio);
2628 }
2629 
2630 static void scrub_parity_work(struct btrfs_work *work)
2631 {
2632 	struct btrfs_raid_bio *rbio;
2633 
2634 	rbio = container_of(work, struct btrfs_raid_bio, work);
2635 	raid56_parity_scrub_stripe(rbio);
2636 }
2637 
2638 static void async_scrub_parity(struct btrfs_raid_bio *rbio)
2639 {
2640 	btrfs_init_work(&rbio->work, btrfs_rmw_helper,
2641 			scrub_parity_work, NULL, NULL);
2642 
2643 	btrfs_queue_work(rbio->fs_info->rmw_workers,
2644 			 &rbio->work);
2645 }
2646 
2647 void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2648 {
2649 	if (!lock_stripe_add(rbio))
2650 		async_scrub_parity(rbio);
2651 }
2652 
2653 /* The following code is used for dev replace of a missing RAID 5/6 device. */
2654 
2655 struct btrfs_raid_bio *
2656 raid56_alloc_missing_rbio(struct btrfs_root *root, struct bio *bio,
2657 			  struct btrfs_bio *bbio, u64 length)
2658 {
2659 	struct btrfs_raid_bio *rbio;
2660 
2661 	rbio = alloc_rbio(root, bbio, length);
2662 	if (IS_ERR(rbio))
2663 		return NULL;
2664 
2665 	rbio->operation = BTRFS_RBIO_REBUILD_MISSING;
2666 	bio_list_add(&rbio->bio_list, bio);
2667 	/*
2668 	 * This is a special bio which is used to hold the completion handler
2669 	 * and make the scrub rbio is similar to the other types
2670 	 */
2671 	ASSERT(!bio->bi_iter.bi_size);
2672 
2673 	rbio->faila = find_logical_bio_stripe(rbio, bio);
2674 	if (rbio->faila == -1) {
2675 		BUG();
2676 		kfree(rbio);
2677 		return NULL;
2678 	}
2679 
2680 	return rbio;
2681 }
2682 
2683 static void missing_raid56_work(struct btrfs_work *work)
2684 {
2685 	struct btrfs_raid_bio *rbio;
2686 
2687 	rbio = container_of(work, struct btrfs_raid_bio, work);
2688 	__raid56_parity_recover(rbio);
2689 }
2690 
2691 static void async_missing_raid56(struct btrfs_raid_bio *rbio)
2692 {
2693 	btrfs_init_work(&rbio->work, btrfs_rmw_helper,
2694 			missing_raid56_work, NULL, NULL);
2695 
2696 	btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
2697 }
2698 
2699 void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio)
2700 {
2701 	if (!lock_stripe_add(rbio))
2702 		async_missing_raid56(rbio);
2703 }
2704