1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2012 Fusion-io All rights reserved. 4 * Copyright (C) 2012 Intel Corp. All rights reserved. 5 */ 6 7 #include <linux/sched.h> 8 #include <linux/bio.h> 9 #include <linux/slab.h> 10 #include <linux/blkdev.h> 11 #include <linux/raid/pq.h> 12 #include <linux/hash.h> 13 #include <linux/list_sort.h> 14 #include <linux/raid/xor.h> 15 #include <linux/mm.h> 16 #include "messages.h" 17 #include "ctree.h" 18 #include "disk-io.h" 19 #include "volumes.h" 20 #include "raid56.h" 21 #include "async-thread.h" 22 #include "file-item.h" 23 #include "btrfs_inode.h" 24 25 /* set when additional merges to this rbio are not allowed */ 26 #define RBIO_RMW_LOCKED_BIT 1 27 28 /* 29 * set when this rbio is sitting in the hash, but it is just a cache 30 * of past RMW 31 */ 32 #define RBIO_CACHE_BIT 2 33 34 /* 35 * set when it is safe to trust the stripe_pages for caching 36 */ 37 #define RBIO_CACHE_READY_BIT 3 38 39 #define RBIO_CACHE_SIZE 1024 40 41 #define BTRFS_STRIPE_HASH_TABLE_BITS 11 42 43 static void dump_bioc(const struct btrfs_fs_info *fs_info, const struct btrfs_io_context *bioc) 44 { 45 if (unlikely(!bioc)) { 46 btrfs_crit(fs_info, "bioc=NULL"); 47 return; 48 } 49 btrfs_crit(fs_info, 50 "bioc logical=%llu full_stripe=%llu size=%llu map_type=0x%llx mirror=%u replace_nr_stripes=%u replace_stripe_src=%d num_stripes=%u", 51 bioc->logical, bioc->full_stripe_logical, bioc->size, 52 bioc->map_type, bioc->mirror_num, bioc->replace_nr_stripes, 53 bioc->replace_stripe_src, bioc->num_stripes); 54 for (int i = 0; i < bioc->num_stripes; i++) { 55 btrfs_crit(fs_info, " nr=%d devid=%llu physical=%llu", 56 i, bioc->stripes[i].dev->devid, 57 bioc->stripes[i].physical); 58 } 59 } 60 61 static void btrfs_dump_rbio(const struct btrfs_fs_info *fs_info, 62 const struct btrfs_raid_bio *rbio) 63 { 64 if (!IS_ENABLED(CONFIG_BTRFS_ASSERT)) 65 return; 66 67 dump_bioc(fs_info, rbio->bioc); 68 btrfs_crit(fs_info, 69 "rbio flags=0x%lx nr_sectors=%u nr_data=%u real_stripes=%u stripe_nsectors=%u scrubp=%u dbitmap=0x%lx", 70 rbio->flags, rbio->nr_sectors, rbio->nr_data, 71 rbio->real_stripes, rbio->stripe_nsectors, 72 rbio->scrubp, rbio->dbitmap); 73 } 74 75 #define ASSERT_RBIO(expr, rbio) \ 76 ({ \ 77 if (IS_ENABLED(CONFIG_BTRFS_ASSERT) && unlikely(!(expr))) { \ 78 const struct btrfs_fs_info *__fs_info = (rbio)->bioc ? \ 79 (rbio)->bioc->fs_info : NULL; \ 80 \ 81 btrfs_dump_rbio(__fs_info, (rbio)); \ 82 } \ 83 ASSERT((expr)); \ 84 }) 85 86 #define ASSERT_RBIO_STRIPE(expr, rbio, stripe_nr) \ 87 ({ \ 88 if (IS_ENABLED(CONFIG_BTRFS_ASSERT) && unlikely(!(expr))) { \ 89 const struct btrfs_fs_info *__fs_info = (rbio)->bioc ? \ 90 (rbio)->bioc->fs_info : NULL; \ 91 \ 92 btrfs_dump_rbio(__fs_info, (rbio)); \ 93 btrfs_crit(__fs_info, "stripe_nr=%d", (stripe_nr)); \ 94 } \ 95 ASSERT((expr)); \ 96 }) 97 98 #define ASSERT_RBIO_SECTOR(expr, rbio, sector_nr) \ 99 ({ \ 100 if (IS_ENABLED(CONFIG_BTRFS_ASSERT) && unlikely(!(expr))) { \ 101 const struct btrfs_fs_info *__fs_info = (rbio)->bioc ? \ 102 (rbio)->bioc->fs_info : NULL; \ 103 \ 104 btrfs_dump_rbio(__fs_info, (rbio)); \ 105 btrfs_crit(__fs_info, "sector_nr=%d", (sector_nr)); \ 106 } \ 107 ASSERT((expr)); \ 108 }) 109 110 #define ASSERT_RBIO_LOGICAL(expr, rbio, logical) \ 111 ({ \ 112 if (IS_ENABLED(CONFIG_BTRFS_ASSERT) && unlikely(!(expr))) { \ 113 const struct btrfs_fs_info *__fs_info = (rbio)->bioc ? \ 114 (rbio)->bioc->fs_info : NULL; \ 115 \ 116 btrfs_dump_rbio(__fs_info, (rbio)); \ 117 btrfs_crit(__fs_info, "logical=%llu", (logical)); \ 118 } \ 119 ASSERT((expr)); \ 120 }) 121 122 /* Used by the raid56 code to lock stripes for read/modify/write */ 123 struct btrfs_stripe_hash { 124 struct list_head hash_list; 125 spinlock_t lock; 126 }; 127 128 /* Used by the raid56 code to lock stripes for read/modify/write */ 129 struct btrfs_stripe_hash_table { 130 struct list_head stripe_cache; 131 spinlock_t cache_lock; 132 int cache_size; 133 struct btrfs_stripe_hash table[]; 134 }; 135 136 /* 137 * A structure to present a sector inside a page, the length is fixed to 138 * sectorsize; 139 */ 140 struct sector_ptr { 141 /* 142 * Blocks from the bio list can still be highmem. 143 * So here we use physical address to present a page and the offset inside it. 144 */ 145 phys_addr_t paddr; 146 bool has_paddr; 147 bool uptodate; 148 }; 149 150 static void rmw_rbio_work(struct work_struct *work); 151 static void rmw_rbio_work_locked(struct work_struct *work); 152 static void index_rbio_pages(struct btrfs_raid_bio *rbio); 153 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio); 154 155 static int finish_parity_scrub(struct btrfs_raid_bio *rbio); 156 static void scrub_rbio_work_locked(struct work_struct *work); 157 158 static void free_raid_bio_pointers(struct btrfs_raid_bio *rbio) 159 { 160 bitmap_free(rbio->error_bitmap); 161 kfree(rbio->stripe_pages); 162 kfree(rbio->bio_sectors); 163 kfree(rbio->stripe_sectors); 164 kfree(rbio->finish_pointers); 165 } 166 167 static void free_raid_bio(struct btrfs_raid_bio *rbio) 168 { 169 int i; 170 171 if (!refcount_dec_and_test(&rbio->refs)) 172 return; 173 174 WARN_ON(!list_empty(&rbio->stripe_cache)); 175 WARN_ON(!list_empty(&rbio->hash_list)); 176 WARN_ON(!bio_list_empty(&rbio->bio_list)); 177 178 for (i = 0; i < rbio->nr_pages; i++) { 179 if (rbio->stripe_pages[i]) { 180 __free_page(rbio->stripe_pages[i]); 181 rbio->stripe_pages[i] = NULL; 182 } 183 } 184 185 btrfs_put_bioc(rbio->bioc); 186 free_raid_bio_pointers(rbio); 187 kfree(rbio); 188 } 189 190 static void start_async_work(struct btrfs_raid_bio *rbio, work_func_t work_func) 191 { 192 INIT_WORK(&rbio->work, work_func); 193 queue_work(rbio->bioc->fs_info->rmw_workers, &rbio->work); 194 } 195 196 /* 197 * the stripe hash table is used for locking, and to collect 198 * bios in hopes of making a full stripe 199 */ 200 int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info) 201 { 202 struct btrfs_stripe_hash_table *table; 203 struct btrfs_stripe_hash_table *x; 204 struct btrfs_stripe_hash *cur; 205 struct btrfs_stripe_hash *h; 206 unsigned int num_entries = 1U << BTRFS_STRIPE_HASH_TABLE_BITS; 207 208 if (info->stripe_hash_table) 209 return 0; 210 211 /* 212 * The table is large, starting with order 4 and can go as high as 213 * order 7 in case lock debugging is turned on. 214 * 215 * Try harder to allocate and fallback to vmalloc to lower the chance 216 * of a failing mount. 217 */ 218 table = kvzalloc(struct_size(table, table, num_entries), GFP_KERNEL); 219 if (!table) 220 return -ENOMEM; 221 222 spin_lock_init(&table->cache_lock); 223 INIT_LIST_HEAD(&table->stripe_cache); 224 225 h = table->table; 226 227 for (unsigned int i = 0; i < num_entries; i++) { 228 cur = h + i; 229 INIT_LIST_HEAD(&cur->hash_list); 230 spin_lock_init(&cur->lock); 231 } 232 233 x = cmpxchg(&info->stripe_hash_table, NULL, table); 234 kvfree(x); 235 return 0; 236 } 237 238 static void memcpy_sectors(const struct sector_ptr *dst, 239 const struct sector_ptr *src, u32 blocksize) 240 { 241 memcpy_page(phys_to_page(dst->paddr), offset_in_page(dst->paddr), 242 phys_to_page(src->paddr), offset_in_page(src->paddr), 243 blocksize); 244 } 245 246 /* 247 * caching an rbio means to copy anything from the 248 * bio_sectors array into the stripe_pages array. We 249 * use the page uptodate bit in the stripe cache array 250 * to indicate if it has valid data 251 * 252 * once the caching is done, we set the cache ready 253 * bit. 254 */ 255 static void cache_rbio_pages(struct btrfs_raid_bio *rbio) 256 { 257 int i; 258 int ret; 259 260 ret = alloc_rbio_pages(rbio); 261 if (ret) 262 return; 263 264 for (i = 0; i < rbio->nr_sectors; i++) { 265 /* Some range not covered by bio (partial write), skip it */ 266 if (!rbio->bio_sectors[i].has_paddr) { 267 /* 268 * Even if the sector is not covered by bio, if it is 269 * a data sector it should still be uptodate as it is 270 * read from disk. 271 */ 272 if (i < rbio->nr_data * rbio->stripe_nsectors) 273 ASSERT(rbio->stripe_sectors[i].uptodate); 274 continue; 275 } 276 277 memcpy_sectors(&rbio->stripe_sectors[i], &rbio->bio_sectors[i], 278 rbio->bioc->fs_info->sectorsize); 279 rbio->stripe_sectors[i].uptodate = 1; 280 } 281 set_bit(RBIO_CACHE_READY_BIT, &rbio->flags); 282 } 283 284 /* 285 * we hash on the first logical address of the stripe 286 */ 287 static int rbio_bucket(struct btrfs_raid_bio *rbio) 288 { 289 u64 num = rbio->bioc->full_stripe_logical; 290 291 /* 292 * we shift down quite a bit. We're using byte 293 * addressing, and most of the lower bits are zeros. 294 * This tends to upset hash_64, and it consistently 295 * returns just one or two different values. 296 * 297 * shifting off the lower bits fixes things. 298 */ 299 return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS); 300 } 301 302 static bool full_page_sectors_uptodate(struct btrfs_raid_bio *rbio, 303 unsigned int page_nr) 304 { 305 const u32 sectorsize = rbio->bioc->fs_info->sectorsize; 306 const u32 sectors_per_page = PAGE_SIZE / sectorsize; 307 int i; 308 309 ASSERT(page_nr < rbio->nr_pages); 310 311 for (i = sectors_per_page * page_nr; 312 i < sectors_per_page * page_nr + sectors_per_page; 313 i++) { 314 if (!rbio->stripe_sectors[i].uptodate) 315 return false; 316 } 317 return true; 318 } 319 320 /* 321 * Update the stripe_sectors[] array to use correct page and pgoff 322 * 323 * Should be called every time any page pointer in stripes_pages[] got modified. 324 */ 325 static void index_stripe_sectors(struct btrfs_raid_bio *rbio) 326 { 327 const u32 sectorsize = rbio->bioc->fs_info->sectorsize; 328 u32 offset; 329 int i; 330 331 for (i = 0, offset = 0; i < rbio->nr_sectors; i++, offset += sectorsize) { 332 int page_index = offset >> PAGE_SHIFT; 333 334 ASSERT(page_index < rbio->nr_pages); 335 if (!rbio->stripe_pages[page_index]) 336 continue; 337 338 rbio->stripe_sectors[i].has_paddr = true; 339 rbio->stripe_sectors[i].paddr = 340 page_to_phys(rbio->stripe_pages[page_index]) + 341 offset_in_page(offset); 342 } 343 } 344 345 static void steal_rbio_page(struct btrfs_raid_bio *src, 346 struct btrfs_raid_bio *dest, int page_nr) 347 { 348 const u32 sectorsize = src->bioc->fs_info->sectorsize; 349 const u32 sectors_per_page = PAGE_SIZE / sectorsize; 350 int i; 351 352 if (dest->stripe_pages[page_nr]) 353 __free_page(dest->stripe_pages[page_nr]); 354 dest->stripe_pages[page_nr] = src->stripe_pages[page_nr]; 355 src->stripe_pages[page_nr] = NULL; 356 357 /* Also update the sector->uptodate bits. */ 358 for (i = sectors_per_page * page_nr; 359 i < sectors_per_page * page_nr + sectors_per_page; i++) 360 dest->stripe_sectors[i].uptodate = true; 361 } 362 363 static bool is_data_stripe_page(struct btrfs_raid_bio *rbio, int page_nr) 364 { 365 const int sector_nr = (page_nr << PAGE_SHIFT) >> 366 rbio->bioc->fs_info->sectorsize_bits; 367 368 /* 369 * We have ensured PAGE_SIZE is aligned with sectorsize, thus 370 * we won't have a page which is half data half parity. 371 * 372 * Thus if the first sector of the page belongs to data stripes, then 373 * the full page belongs to data stripes. 374 */ 375 return (sector_nr < rbio->nr_data * rbio->stripe_nsectors); 376 } 377 378 /* 379 * Stealing an rbio means taking all the uptodate pages from the stripe array 380 * in the source rbio and putting them into the destination rbio. 381 * 382 * This will also update the involved stripe_sectors[] which are referring to 383 * the old pages. 384 */ 385 static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest) 386 { 387 int i; 388 389 if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags)) 390 return; 391 392 for (i = 0; i < dest->nr_pages; i++) { 393 struct page *p = src->stripe_pages[i]; 394 395 /* 396 * We don't need to steal P/Q pages as they will always be 397 * regenerated for RMW or full write anyway. 398 */ 399 if (!is_data_stripe_page(src, i)) 400 continue; 401 402 /* 403 * If @src already has RBIO_CACHE_READY_BIT, it should have 404 * all data stripe pages present and uptodate. 405 */ 406 ASSERT(p); 407 ASSERT(full_page_sectors_uptodate(src, i)); 408 steal_rbio_page(src, dest, i); 409 } 410 index_stripe_sectors(dest); 411 index_stripe_sectors(src); 412 } 413 414 /* 415 * merging means we take the bio_list from the victim and 416 * splice it into the destination. The victim should 417 * be discarded afterwards. 418 * 419 * must be called with dest->rbio_list_lock held 420 */ 421 static void merge_rbio(struct btrfs_raid_bio *dest, 422 struct btrfs_raid_bio *victim) 423 { 424 bio_list_merge_init(&dest->bio_list, &victim->bio_list); 425 dest->bio_list_bytes += victim->bio_list_bytes; 426 /* Also inherit the bitmaps from @victim. */ 427 bitmap_or(&dest->dbitmap, &victim->dbitmap, &dest->dbitmap, 428 dest->stripe_nsectors); 429 } 430 431 /* 432 * used to prune items that are in the cache. The caller 433 * must hold the hash table lock. 434 */ 435 static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio) 436 { 437 int bucket = rbio_bucket(rbio); 438 struct btrfs_stripe_hash_table *table; 439 struct btrfs_stripe_hash *h; 440 int freeit = 0; 441 442 /* 443 * check the bit again under the hash table lock. 444 */ 445 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags)) 446 return; 447 448 table = rbio->bioc->fs_info->stripe_hash_table; 449 h = table->table + bucket; 450 451 /* hold the lock for the bucket because we may be 452 * removing it from the hash table 453 */ 454 spin_lock(&h->lock); 455 456 /* 457 * hold the lock for the bio list because we need 458 * to make sure the bio list is empty 459 */ 460 spin_lock(&rbio->bio_list_lock); 461 462 if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) { 463 list_del_init(&rbio->stripe_cache); 464 table->cache_size -= 1; 465 freeit = 1; 466 467 /* if the bio list isn't empty, this rbio is 468 * still involved in an IO. We take it out 469 * of the cache list, and drop the ref that 470 * was held for the list. 471 * 472 * If the bio_list was empty, we also remove 473 * the rbio from the hash_table, and drop 474 * the corresponding ref 475 */ 476 if (bio_list_empty(&rbio->bio_list)) { 477 if (!list_empty(&rbio->hash_list)) { 478 list_del_init(&rbio->hash_list); 479 refcount_dec(&rbio->refs); 480 BUG_ON(!list_empty(&rbio->plug_list)); 481 } 482 } 483 } 484 485 spin_unlock(&rbio->bio_list_lock); 486 spin_unlock(&h->lock); 487 488 if (freeit) 489 free_raid_bio(rbio); 490 } 491 492 /* 493 * prune a given rbio from the cache 494 */ 495 static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio) 496 { 497 struct btrfs_stripe_hash_table *table; 498 499 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags)) 500 return; 501 502 table = rbio->bioc->fs_info->stripe_hash_table; 503 504 spin_lock(&table->cache_lock); 505 __remove_rbio_from_cache(rbio); 506 spin_unlock(&table->cache_lock); 507 } 508 509 /* 510 * remove everything in the cache 511 */ 512 static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info) 513 { 514 struct btrfs_stripe_hash_table *table; 515 struct btrfs_raid_bio *rbio; 516 517 table = info->stripe_hash_table; 518 519 spin_lock(&table->cache_lock); 520 while (!list_empty(&table->stripe_cache)) { 521 rbio = list_first_entry(&table->stripe_cache, 522 struct btrfs_raid_bio, stripe_cache); 523 __remove_rbio_from_cache(rbio); 524 } 525 spin_unlock(&table->cache_lock); 526 } 527 528 /* 529 * remove all cached entries and free the hash table 530 * used by unmount 531 */ 532 void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info) 533 { 534 if (!info->stripe_hash_table) 535 return; 536 btrfs_clear_rbio_cache(info); 537 kvfree(info->stripe_hash_table); 538 info->stripe_hash_table = NULL; 539 } 540 541 /* 542 * insert an rbio into the stripe cache. It 543 * must have already been prepared by calling 544 * cache_rbio_pages 545 * 546 * If this rbio was already cached, it gets 547 * moved to the front of the lru. 548 * 549 * If the size of the rbio cache is too big, we 550 * prune an item. 551 */ 552 static void cache_rbio(struct btrfs_raid_bio *rbio) 553 { 554 struct btrfs_stripe_hash_table *table; 555 556 if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags)) 557 return; 558 559 table = rbio->bioc->fs_info->stripe_hash_table; 560 561 spin_lock(&table->cache_lock); 562 spin_lock(&rbio->bio_list_lock); 563 564 /* bump our ref if we were not in the list before */ 565 if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags)) 566 refcount_inc(&rbio->refs); 567 568 if (!list_empty(&rbio->stripe_cache)){ 569 list_move(&rbio->stripe_cache, &table->stripe_cache); 570 } else { 571 list_add(&rbio->stripe_cache, &table->stripe_cache); 572 table->cache_size += 1; 573 } 574 575 spin_unlock(&rbio->bio_list_lock); 576 577 if (table->cache_size > RBIO_CACHE_SIZE) { 578 struct btrfs_raid_bio *found; 579 580 found = list_last_entry(&table->stripe_cache, 581 struct btrfs_raid_bio, 582 stripe_cache); 583 584 if (found != rbio) 585 __remove_rbio_from_cache(found); 586 } 587 588 spin_unlock(&table->cache_lock); 589 } 590 591 /* 592 * helper function to run the xor_blocks api. It is only 593 * able to do MAX_XOR_BLOCKS at a time, so we need to 594 * loop through. 595 */ 596 static void run_xor(void **pages, int src_cnt, ssize_t len) 597 { 598 int src_off = 0; 599 int xor_src_cnt = 0; 600 void *dest = pages[src_cnt]; 601 602 while(src_cnt > 0) { 603 xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS); 604 xor_blocks(xor_src_cnt, len, dest, pages + src_off); 605 606 src_cnt -= xor_src_cnt; 607 src_off += xor_src_cnt; 608 } 609 } 610 611 /* 612 * Returns true if the bio list inside this rbio covers an entire stripe (no 613 * rmw required). 614 */ 615 static int rbio_is_full(struct btrfs_raid_bio *rbio) 616 { 617 unsigned long size = rbio->bio_list_bytes; 618 int ret = 1; 619 620 spin_lock(&rbio->bio_list_lock); 621 if (size != rbio->nr_data * BTRFS_STRIPE_LEN) 622 ret = 0; 623 BUG_ON(size > rbio->nr_data * BTRFS_STRIPE_LEN); 624 spin_unlock(&rbio->bio_list_lock); 625 626 return ret; 627 } 628 629 /* 630 * returns 1 if it is safe to merge two rbios together. 631 * The merging is safe if the two rbios correspond to 632 * the same stripe and if they are both going in the same 633 * direction (read vs write), and if neither one is 634 * locked for final IO 635 * 636 * The caller is responsible for locking such that 637 * rmw_locked is safe to test 638 */ 639 static int rbio_can_merge(struct btrfs_raid_bio *last, 640 struct btrfs_raid_bio *cur) 641 { 642 if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) || 643 test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) 644 return 0; 645 646 /* 647 * we can't merge with cached rbios, since the 648 * idea is that when we merge the destination 649 * rbio is going to run our IO for us. We can 650 * steal from cached rbios though, other functions 651 * handle that. 652 */ 653 if (test_bit(RBIO_CACHE_BIT, &last->flags) || 654 test_bit(RBIO_CACHE_BIT, &cur->flags)) 655 return 0; 656 657 if (last->bioc->full_stripe_logical != cur->bioc->full_stripe_logical) 658 return 0; 659 660 /* we can't merge with different operations */ 661 if (last->operation != cur->operation) 662 return 0; 663 /* 664 * We've need read the full stripe from the drive. 665 * check and repair the parity and write the new results. 666 * 667 * We're not allowed to add any new bios to the 668 * bio list here, anyone else that wants to 669 * change this stripe needs to do their own rmw. 670 */ 671 if (last->operation == BTRFS_RBIO_PARITY_SCRUB) 672 return 0; 673 674 if (last->operation == BTRFS_RBIO_READ_REBUILD) 675 return 0; 676 677 return 1; 678 } 679 680 static unsigned int rbio_stripe_sector_index(const struct btrfs_raid_bio *rbio, 681 unsigned int stripe_nr, 682 unsigned int sector_nr) 683 { 684 ASSERT_RBIO_STRIPE(stripe_nr < rbio->real_stripes, rbio, stripe_nr); 685 ASSERT_RBIO_SECTOR(sector_nr < rbio->stripe_nsectors, rbio, sector_nr); 686 687 return stripe_nr * rbio->stripe_nsectors + sector_nr; 688 } 689 690 /* Return a sector from rbio->stripe_sectors, not from the bio list */ 691 static struct sector_ptr *rbio_stripe_sector(const struct btrfs_raid_bio *rbio, 692 unsigned int stripe_nr, 693 unsigned int sector_nr) 694 { 695 return &rbio->stripe_sectors[rbio_stripe_sector_index(rbio, stripe_nr, 696 sector_nr)]; 697 } 698 699 /* Grab a sector inside P stripe */ 700 static struct sector_ptr *rbio_pstripe_sector(const struct btrfs_raid_bio *rbio, 701 unsigned int sector_nr) 702 { 703 return rbio_stripe_sector(rbio, rbio->nr_data, sector_nr); 704 } 705 706 /* Grab a sector inside Q stripe, return NULL if not RAID6 */ 707 static struct sector_ptr *rbio_qstripe_sector(const struct btrfs_raid_bio *rbio, 708 unsigned int sector_nr) 709 { 710 if (rbio->nr_data + 1 == rbio->real_stripes) 711 return NULL; 712 return rbio_stripe_sector(rbio, rbio->nr_data + 1, sector_nr); 713 } 714 715 /* 716 * The first stripe in the table for a logical address 717 * has the lock. rbios are added in one of three ways: 718 * 719 * 1) Nobody has the stripe locked yet. The rbio is given 720 * the lock and 0 is returned. The caller must start the IO 721 * themselves. 722 * 723 * 2) Someone has the stripe locked, but we're able to merge 724 * with the lock owner. The rbio is freed and the IO will 725 * start automatically along with the existing rbio. 1 is returned. 726 * 727 * 3) Someone has the stripe locked, but we're not able to merge. 728 * The rbio is added to the lock owner's plug list, or merged into 729 * an rbio already on the plug list. When the lock owner unlocks, 730 * the next rbio on the list is run and the IO is started automatically. 731 * 1 is returned 732 * 733 * If we return 0, the caller still owns the rbio and must continue with 734 * IO submission. If we return 1, the caller must assume the rbio has 735 * already been freed. 736 */ 737 static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio) 738 { 739 struct btrfs_stripe_hash *h; 740 struct btrfs_raid_bio *cur; 741 struct btrfs_raid_bio *pending; 742 struct btrfs_raid_bio *freeit = NULL; 743 struct btrfs_raid_bio *cache_drop = NULL; 744 int ret = 0; 745 746 h = rbio->bioc->fs_info->stripe_hash_table->table + rbio_bucket(rbio); 747 748 spin_lock(&h->lock); 749 list_for_each_entry(cur, &h->hash_list, hash_list) { 750 if (cur->bioc->full_stripe_logical != rbio->bioc->full_stripe_logical) 751 continue; 752 753 spin_lock(&cur->bio_list_lock); 754 755 /* Can we steal this cached rbio's pages? */ 756 if (bio_list_empty(&cur->bio_list) && 757 list_empty(&cur->plug_list) && 758 test_bit(RBIO_CACHE_BIT, &cur->flags) && 759 !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) { 760 list_del_init(&cur->hash_list); 761 refcount_dec(&cur->refs); 762 763 steal_rbio(cur, rbio); 764 cache_drop = cur; 765 spin_unlock(&cur->bio_list_lock); 766 767 goto lockit; 768 } 769 770 /* Can we merge into the lock owner? */ 771 if (rbio_can_merge(cur, rbio)) { 772 merge_rbio(cur, rbio); 773 spin_unlock(&cur->bio_list_lock); 774 freeit = rbio; 775 ret = 1; 776 goto out; 777 } 778 779 780 /* 781 * We couldn't merge with the running rbio, see if we can merge 782 * with the pending ones. We don't have to check for rmw_locked 783 * because there is no way they are inside finish_rmw right now 784 */ 785 list_for_each_entry(pending, &cur->plug_list, plug_list) { 786 if (rbio_can_merge(pending, rbio)) { 787 merge_rbio(pending, rbio); 788 spin_unlock(&cur->bio_list_lock); 789 freeit = rbio; 790 ret = 1; 791 goto out; 792 } 793 } 794 795 /* 796 * No merging, put us on the tail of the plug list, our rbio 797 * will be started with the currently running rbio unlocks 798 */ 799 list_add_tail(&rbio->plug_list, &cur->plug_list); 800 spin_unlock(&cur->bio_list_lock); 801 ret = 1; 802 goto out; 803 } 804 lockit: 805 refcount_inc(&rbio->refs); 806 list_add(&rbio->hash_list, &h->hash_list); 807 out: 808 spin_unlock(&h->lock); 809 if (cache_drop) 810 remove_rbio_from_cache(cache_drop); 811 if (freeit) 812 free_raid_bio(freeit); 813 return ret; 814 } 815 816 static void recover_rbio_work_locked(struct work_struct *work); 817 818 /* 819 * called as rmw or parity rebuild is completed. If the plug list has more 820 * rbios waiting for this stripe, the next one on the list will be started 821 */ 822 static noinline void unlock_stripe(struct btrfs_raid_bio *rbio) 823 { 824 int bucket; 825 struct btrfs_stripe_hash *h; 826 int keep_cache = 0; 827 828 bucket = rbio_bucket(rbio); 829 h = rbio->bioc->fs_info->stripe_hash_table->table + bucket; 830 831 if (list_empty(&rbio->plug_list)) 832 cache_rbio(rbio); 833 834 spin_lock(&h->lock); 835 spin_lock(&rbio->bio_list_lock); 836 837 if (!list_empty(&rbio->hash_list)) { 838 /* 839 * if we're still cached and there is no other IO 840 * to perform, just leave this rbio here for others 841 * to steal from later 842 */ 843 if (list_empty(&rbio->plug_list) && 844 test_bit(RBIO_CACHE_BIT, &rbio->flags)) { 845 keep_cache = 1; 846 clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); 847 BUG_ON(!bio_list_empty(&rbio->bio_list)); 848 goto done; 849 } 850 851 list_del_init(&rbio->hash_list); 852 refcount_dec(&rbio->refs); 853 854 /* 855 * we use the plug list to hold all the rbios 856 * waiting for the chance to lock this stripe. 857 * hand the lock over to one of them. 858 */ 859 if (!list_empty(&rbio->plug_list)) { 860 struct btrfs_raid_bio *next; 861 struct list_head *head = rbio->plug_list.next; 862 863 next = list_entry(head, struct btrfs_raid_bio, 864 plug_list); 865 866 list_del_init(&rbio->plug_list); 867 868 list_add(&next->hash_list, &h->hash_list); 869 refcount_inc(&next->refs); 870 spin_unlock(&rbio->bio_list_lock); 871 spin_unlock(&h->lock); 872 873 if (next->operation == BTRFS_RBIO_READ_REBUILD) { 874 start_async_work(next, recover_rbio_work_locked); 875 } else if (next->operation == BTRFS_RBIO_WRITE) { 876 steal_rbio(rbio, next); 877 start_async_work(next, rmw_rbio_work_locked); 878 } else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) { 879 steal_rbio(rbio, next); 880 start_async_work(next, scrub_rbio_work_locked); 881 } 882 883 goto done_nolock; 884 } 885 } 886 done: 887 spin_unlock(&rbio->bio_list_lock); 888 spin_unlock(&h->lock); 889 890 done_nolock: 891 if (!keep_cache) 892 remove_rbio_from_cache(rbio); 893 } 894 895 static void rbio_endio_bio_list(struct bio *cur, blk_status_t status) 896 { 897 struct bio *next; 898 899 while (cur) { 900 next = cur->bi_next; 901 cur->bi_next = NULL; 902 cur->bi_status = status; 903 bio_endio(cur); 904 cur = next; 905 } 906 } 907 908 /* 909 * this frees the rbio and runs through all the bios in the 910 * bio_list and calls end_io on them 911 */ 912 static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t status) 913 { 914 struct bio *cur = bio_list_get(&rbio->bio_list); 915 struct bio *extra; 916 917 kfree(rbio->csum_buf); 918 bitmap_free(rbio->csum_bitmap); 919 rbio->csum_buf = NULL; 920 rbio->csum_bitmap = NULL; 921 922 /* 923 * Clear the data bitmap, as the rbio may be cached for later usage. 924 * do this before before unlock_stripe() so there will be no new bio 925 * for this bio. 926 */ 927 bitmap_clear(&rbio->dbitmap, 0, rbio->stripe_nsectors); 928 929 /* 930 * At this moment, rbio->bio_list is empty, however since rbio does not 931 * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the 932 * hash list, rbio may be merged with others so that rbio->bio_list 933 * becomes non-empty. 934 * Once unlock_stripe() is done, rbio->bio_list will not be updated any 935 * more and we can call bio_endio() on all queued bios. 936 */ 937 unlock_stripe(rbio); 938 extra = bio_list_get(&rbio->bio_list); 939 free_raid_bio(rbio); 940 941 rbio_endio_bio_list(cur, status); 942 if (extra) 943 rbio_endio_bio_list(extra, status); 944 } 945 946 /* 947 * Get a sector pointer specified by its @stripe_nr and @sector_nr. 948 * 949 * @rbio: The raid bio 950 * @stripe_nr: Stripe number, valid range [0, real_stripe) 951 * @sector_nr: Sector number inside the stripe, 952 * valid range [0, stripe_nsectors) 953 * @bio_list_only: Whether to use sectors inside the bio list only. 954 * 955 * The read/modify/write code wants to reuse the original bio page as much 956 * as possible, and only use stripe_sectors as fallback. 957 */ 958 static struct sector_ptr *sector_in_rbio(struct btrfs_raid_bio *rbio, 959 int stripe_nr, int sector_nr, 960 bool bio_list_only) 961 { 962 struct sector_ptr *sector; 963 int index; 964 965 ASSERT_RBIO_STRIPE(stripe_nr >= 0 && stripe_nr < rbio->real_stripes, 966 rbio, stripe_nr); 967 ASSERT_RBIO_SECTOR(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors, 968 rbio, sector_nr); 969 970 index = stripe_nr * rbio->stripe_nsectors + sector_nr; 971 ASSERT(index >= 0 && index < rbio->nr_sectors); 972 973 spin_lock(&rbio->bio_list_lock); 974 sector = &rbio->bio_sectors[index]; 975 if (sector->has_paddr || bio_list_only) { 976 /* Don't return sector without a valid page pointer */ 977 if (!sector->has_paddr) 978 sector = NULL; 979 spin_unlock(&rbio->bio_list_lock); 980 return sector; 981 } 982 spin_unlock(&rbio->bio_list_lock); 983 984 return &rbio->stripe_sectors[index]; 985 } 986 987 /* 988 * allocation and initial setup for the btrfs_raid_bio. Not 989 * this does not allocate any pages for rbio->pages. 990 */ 991 static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info, 992 struct btrfs_io_context *bioc) 993 { 994 const unsigned int real_stripes = bioc->num_stripes - bioc->replace_nr_stripes; 995 const unsigned int stripe_npages = BTRFS_STRIPE_LEN >> PAGE_SHIFT; 996 const unsigned int num_pages = stripe_npages * real_stripes; 997 const unsigned int stripe_nsectors = 998 BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits; 999 const unsigned int num_sectors = stripe_nsectors * real_stripes; 1000 struct btrfs_raid_bio *rbio; 1001 1002 /* PAGE_SIZE must also be aligned to sectorsize for subpage support */ 1003 ASSERT(IS_ALIGNED(PAGE_SIZE, fs_info->sectorsize)); 1004 /* 1005 * Our current stripe len should be fixed to 64k thus stripe_nsectors 1006 * (at most 16) should be no larger than BITS_PER_LONG. 1007 */ 1008 ASSERT(stripe_nsectors <= BITS_PER_LONG); 1009 1010 /* 1011 * Real stripes must be between 2 (2 disks RAID5, aka RAID1) and 256 1012 * (limited by u8). 1013 */ 1014 ASSERT(real_stripes >= 2); 1015 ASSERT(real_stripes <= U8_MAX); 1016 1017 rbio = kzalloc(sizeof(*rbio), GFP_NOFS); 1018 if (!rbio) 1019 return ERR_PTR(-ENOMEM); 1020 rbio->stripe_pages = kcalloc(num_pages, sizeof(struct page *), 1021 GFP_NOFS); 1022 rbio->bio_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr), 1023 GFP_NOFS); 1024 rbio->stripe_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr), 1025 GFP_NOFS); 1026 rbio->finish_pointers = kcalloc(real_stripes, sizeof(void *), GFP_NOFS); 1027 rbio->error_bitmap = bitmap_zalloc(num_sectors, GFP_NOFS); 1028 1029 if (!rbio->stripe_pages || !rbio->bio_sectors || !rbio->stripe_sectors || 1030 !rbio->finish_pointers || !rbio->error_bitmap) { 1031 free_raid_bio_pointers(rbio); 1032 kfree(rbio); 1033 return ERR_PTR(-ENOMEM); 1034 } 1035 1036 bio_list_init(&rbio->bio_list); 1037 init_waitqueue_head(&rbio->io_wait); 1038 INIT_LIST_HEAD(&rbio->plug_list); 1039 spin_lock_init(&rbio->bio_list_lock); 1040 INIT_LIST_HEAD(&rbio->stripe_cache); 1041 INIT_LIST_HEAD(&rbio->hash_list); 1042 btrfs_get_bioc(bioc); 1043 rbio->bioc = bioc; 1044 rbio->nr_pages = num_pages; 1045 rbio->nr_sectors = num_sectors; 1046 rbio->real_stripes = real_stripes; 1047 rbio->stripe_npages = stripe_npages; 1048 rbio->stripe_nsectors = stripe_nsectors; 1049 refcount_set(&rbio->refs, 1); 1050 atomic_set(&rbio->stripes_pending, 0); 1051 1052 ASSERT(btrfs_nr_parity_stripes(bioc->map_type)); 1053 rbio->nr_data = real_stripes - btrfs_nr_parity_stripes(bioc->map_type); 1054 ASSERT(rbio->nr_data > 0); 1055 1056 return rbio; 1057 } 1058 1059 /* allocate pages for all the stripes in the bio, including parity */ 1060 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio) 1061 { 1062 int ret; 1063 1064 ret = btrfs_alloc_page_array(rbio->nr_pages, rbio->stripe_pages, false); 1065 if (ret < 0) 1066 return ret; 1067 /* Mapping all sectors */ 1068 index_stripe_sectors(rbio); 1069 return 0; 1070 } 1071 1072 /* only allocate pages for p/q stripes */ 1073 static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio) 1074 { 1075 const int data_pages = rbio->nr_data * rbio->stripe_npages; 1076 int ret; 1077 1078 ret = btrfs_alloc_page_array(rbio->nr_pages - data_pages, 1079 rbio->stripe_pages + data_pages, false); 1080 if (ret < 0) 1081 return ret; 1082 1083 index_stripe_sectors(rbio); 1084 return 0; 1085 } 1086 1087 /* 1088 * Return the total number of errors found in the vertical stripe of @sector_nr. 1089 * 1090 * @faila and @failb will also be updated to the first and second stripe 1091 * number of the errors. 1092 */ 1093 static int get_rbio_veritical_errors(struct btrfs_raid_bio *rbio, int sector_nr, 1094 int *faila, int *failb) 1095 { 1096 int stripe_nr; 1097 int found_errors = 0; 1098 1099 if (faila || failb) { 1100 /* 1101 * Both @faila and @failb should be valid pointers if any of 1102 * them is specified. 1103 */ 1104 ASSERT(faila && failb); 1105 *faila = -1; 1106 *failb = -1; 1107 } 1108 1109 for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) { 1110 int total_sector_nr = stripe_nr * rbio->stripe_nsectors + sector_nr; 1111 1112 if (test_bit(total_sector_nr, rbio->error_bitmap)) { 1113 found_errors++; 1114 if (faila) { 1115 /* Update faila and failb. */ 1116 if (*faila < 0) 1117 *faila = stripe_nr; 1118 else if (*failb < 0) 1119 *failb = stripe_nr; 1120 } 1121 } 1122 } 1123 return found_errors; 1124 } 1125 1126 /* 1127 * Add a single sector @sector into our list of bios for IO. 1128 * 1129 * Return 0 if everything went well. 1130 * Return <0 for error. 1131 */ 1132 static int rbio_add_io_sector(struct btrfs_raid_bio *rbio, 1133 struct bio_list *bio_list, 1134 struct sector_ptr *sector, 1135 unsigned int stripe_nr, 1136 unsigned int sector_nr, 1137 enum req_op op) 1138 { 1139 const u32 sectorsize = rbio->bioc->fs_info->sectorsize; 1140 struct bio *last = bio_list->tail; 1141 int ret; 1142 struct bio *bio; 1143 struct btrfs_io_stripe *stripe; 1144 u64 disk_start; 1145 1146 /* 1147 * Note: here stripe_nr has taken device replace into consideration, 1148 * thus it can be larger than rbio->real_stripe. 1149 * So here we check against bioc->num_stripes, not rbio->real_stripes. 1150 */ 1151 ASSERT_RBIO_STRIPE(stripe_nr >= 0 && stripe_nr < rbio->bioc->num_stripes, 1152 rbio, stripe_nr); 1153 ASSERT_RBIO_SECTOR(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors, 1154 rbio, sector_nr); 1155 ASSERT(sector->has_paddr); 1156 1157 stripe = &rbio->bioc->stripes[stripe_nr]; 1158 disk_start = stripe->physical + sector_nr * sectorsize; 1159 1160 /* if the device is missing, just fail this stripe */ 1161 if (!stripe->dev->bdev) { 1162 int found_errors; 1163 1164 set_bit(stripe_nr * rbio->stripe_nsectors + sector_nr, 1165 rbio->error_bitmap); 1166 1167 /* Check if we have reached tolerance early. */ 1168 found_errors = get_rbio_veritical_errors(rbio, sector_nr, 1169 NULL, NULL); 1170 if (unlikely(found_errors > rbio->bioc->max_errors)) 1171 return -EIO; 1172 return 0; 1173 } 1174 1175 /* see if we can add this page onto our existing bio */ 1176 if (last) { 1177 u64 last_end = last->bi_iter.bi_sector << SECTOR_SHIFT; 1178 last_end += last->bi_iter.bi_size; 1179 1180 /* 1181 * we can't merge these if they are from different 1182 * devices or if they are not contiguous 1183 */ 1184 if (last_end == disk_start && !last->bi_status && 1185 last->bi_bdev == stripe->dev->bdev) { 1186 ret = bio_add_page(last, phys_to_page(sector->paddr), 1187 sectorsize, offset_in_page(sector->paddr)); 1188 if (ret == sectorsize) 1189 return 0; 1190 } 1191 } 1192 1193 /* put a new bio on the list */ 1194 bio = bio_alloc(stripe->dev->bdev, 1195 max(BTRFS_STRIPE_LEN >> PAGE_SHIFT, 1), 1196 op, GFP_NOFS); 1197 bio->bi_iter.bi_sector = disk_start >> SECTOR_SHIFT; 1198 bio->bi_private = rbio; 1199 1200 __bio_add_page(bio, phys_to_page(sector->paddr), sectorsize, 1201 offset_in_page(sector->paddr)); 1202 bio_list_add(bio_list, bio); 1203 return 0; 1204 } 1205 1206 static void index_one_bio(struct btrfs_raid_bio *rbio, struct bio *bio) 1207 { 1208 const u32 sectorsize = rbio->bioc->fs_info->sectorsize; 1209 const u32 sectorsize_bits = rbio->bioc->fs_info->sectorsize_bits; 1210 struct bvec_iter iter = bio->bi_iter; 1211 phys_addr_t paddr; 1212 u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) - 1213 rbio->bioc->full_stripe_logical; 1214 1215 btrfs_bio_for_each_block(paddr, bio, &iter, sectorsize) { 1216 unsigned int index = (offset >> sectorsize_bits); 1217 struct sector_ptr *sector = &rbio->bio_sectors[index]; 1218 1219 sector->has_paddr = true; 1220 sector->paddr = paddr; 1221 offset += sectorsize; 1222 } 1223 } 1224 1225 /* 1226 * helper function to walk our bio list and populate the bio_pages array with 1227 * the result. This seems expensive, but it is faster than constantly 1228 * searching through the bio list as we setup the IO in finish_rmw or stripe 1229 * reconstruction. 1230 * 1231 * This must be called before you trust the answers from page_in_rbio 1232 */ 1233 static void index_rbio_pages(struct btrfs_raid_bio *rbio) 1234 { 1235 struct bio *bio; 1236 1237 spin_lock(&rbio->bio_list_lock); 1238 bio_list_for_each(bio, &rbio->bio_list) 1239 index_one_bio(rbio, bio); 1240 1241 spin_unlock(&rbio->bio_list_lock); 1242 } 1243 1244 static void bio_get_trace_info(struct btrfs_raid_bio *rbio, struct bio *bio, 1245 struct raid56_bio_trace_info *trace_info) 1246 { 1247 const struct btrfs_io_context *bioc = rbio->bioc; 1248 int i; 1249 1250 ASSERT(bioc); 1251 1252 /* We rely on bio->bi_bdev to find the stripe number. */ 1253 if (!bio->bi_bdev) 1254 goto not_found; 1255 1256 for (i = 0; i < bioc->num_stripes; i++) { 1257 if (bio->bi_bdev != bioc->stripes[i].dev->bdev) 1258 continue; 1259 trace_info->stripe_nr = i; 1260 trace_info->devid = bioc->stripes[i].dev->devid; 1261 trace_info->offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) - 1262 bioc->stripes[i].physical; 1263 return; 1264 } 1265 1266 not_found: 1267 trace_info->devid = -1; 1268 trace_info->offset = -1; 1269 trace_info->stripe_nr = -1; 1270 } 1271 1272 static inline void bio_list_put(struct bio_list *bio_list) 1273 { 1274 struct bio *bio; 1275 1276 while ((bio = bio_list_pop(bio_list))) 1277 bio_put(bio); 1278 } 1279 1280 static void assert_rbio(struct btrfs_raid_bio *rbio) 1281 { 1282 if (!IS_ENABLED(CONFIG_BTRFS_ASSERT)) 1283 return; 1284 1285 /* 1286 * At least two stripes (2 disks RAID5), and since real_stripes is U8, 1287 * we won't go beyond 256 disks anyway. 1288 */ 1289 ASSERT_RBIO(rbio->real_stripes >= 2, rbio); 1290 ASSERT_RBIO(rbio->nr_data > 0, rbio); 1291 1292 /* 1293 * This is another check to make sure nr data stripes is smaller 1294 * than total stripes. 1295 */ 1296 ASSERT_RBIO(rbio->nr_data < rbio->real_stripes, rbio); 1297 } 1298 1299 static inline void *kmap_local_sector(const struct sector_ptr *sector) 1300 { 1301 /* The sector pointer must have a page mapped to it. */ 1302 ASSERT(sector->has_paddr); 1303 1304 return kmap_local_page(phys_to_page(sector->paddr)) + 1305 offset_in_page(sector->paddr); 1306 } 1307 1308 /* Generate PQ for one vertical stripe. */ 1309 static void generate_pq_vertical(struct btrfs_raid_bio *rbio, int sectornr) 1310 { 1311 void **pointers = rbio->finish_pointers; 1312 const u32 sectorsize = rbio->bioc->fs_info->sectorsize; 1313 struct sector_ptr *sector; 1314 int stripe; 1315 const bool has_qstripe = rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6; 1316 1317 /* First collect one sector from each data stripe */ 1318 for (stripe = 0; stripe < rbio->nr_data; stripe++) { 1319 sector = sector_in_rbio(rbio, stripe, sectornr, 0); 1320 pointers[stripe] = kmap_local_sector(sector); 1321 } 1322 1323 /* Then add the parity stripe */ 1324 sector = rbio_pstripe_sector(rbio, sectornr); 1325 sector->uptodate = 1; 1326 pointers[stripe++] = kmap_local_sector(sector); 1327 1328 if (has_qstripe) { 1329 /* 1330 * RAID6, add the qstripe and call the library function 1331 * to fill in our p/q 1332 */ 1333 sector = rbio_qstripe_sector(rbio, sectornr); 1334 sector->uptodate = 1; 1335 pointers[stripe++] = kmap_local_sector(sector); 1336 1337 assert_rbio(rbio); 1338 raid6_call.gen_syndrome(rbio->real_stripes, sectorsize, 1339 pointers); 1340 } else { 1341 /* raid5 */ 1342 memcpy(pointers[rbio->nr_data], pointers[0], sectorsize); 1343 run_xor(pointers + 1, rbio->nr_data - 1, sectorsize); 1344 } 1345 for (stripe = stripe - 1; stripe >= 0; stripe--) 1346 kunmap_local(pointers[stripe]); 1347 } 1348 1349 static int rmw_assemble_write_bios(struct btrfs_raid_bio *rbio, 1350 struct bio_list *bio_list) 1351 { 1352 /* The total sector number inside the full stripe. */ 1353 int total_sector_nr; 1354 int sectornr; 1355 int stripe; 1356 int ret; 1357 1358 ASSERT(bio_list_size(bio_list) == 0); 1359 1360 /* We should have at least one data sector. */ 1361 ASSERT(bitmap_weight(&rbio->dbitmap, rbio->stripe_nsectors)); 1362 1363 /* 1364 * Reset errors, as we may have errors inherited from from degraded 1365 * write. 1366 */ 1367 bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors); 1368 1369 /* 1370 * Start assembly. Make bios for everything from the higher layers (the 1371 * bio_list in our rbio) and our P/Q. Ignore everything else. 1372 */ 1373 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors; 1374 total_sector_nr++) { 1375 struct sector_ptr *sector; 1376 1377 stripe = total_sector_nr / rbio->stripe_nsectors; 1378 sectornr = total_sector_nr % rbio->stripe_nsectors; 1379 1380 /* This vertical stripe has no data, skip it. */ 1381 if (!test_bit(sectornr, &rbio->dbitmap)) 1382 continue; 1383 1384 if (stripe < rbio->nr_data) { 1385 sector = sector_in_rbio(rbio, stripe, sectornr, 1); 1386 if (!sector) 1387 continue; 1388 } else { 1389 sector = rbio_stripe_sector(rbio, stripe, sectornr); 1390 } 1391 1392 ret = rbio_add_io_sector(rbio, bio_list, sector, stripe, 1393 sectornr, REQ_OP_WRITE); 1394 if (ret) 1395 goto error; 1396 } 1397 1398 if (likely(!rbio->bioc->replace_nr_stripes)) 1399 return 0; 1400 1401 /* 1402 * Make a copy for the replace target device. 1403 * 1404 * Thus the source stripe number (in replace_stripe_src) should be valid. 1405 */ 1406 ASSERT(rbio->bioc->replace_stripe_src >= 0); 1407 1408 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors; 1409 total_sector_nr++) { 1410 struct sector_ptr *sector; 1411 1412 stripe = total_sector_nr / rbio->stripe_nsectors; 1413 sectornr = total_sector_nr % rbio->stripe_nsectors; 1414 1415 /* 1416 * For RAID56, there is only one device that can be replaced, 1417 * and replace_stripe_src[0] indicates the stripe number we 1418 * need to copy from. 1419 */ 1420 if (stripe != rbio->bioc->replace_stripe_src) { 1421 /* 1422 * We can skip the whole stripe completely, note 1423 * total_sector_nr will be increased by one anyway. 1424 */ 1425 ASSERT(sectornr == 0); 1426 total_sector_nr += rbio->stripe_nsectors - 1; 1427 continue; 1428 } 1429 1430 /* This vertical stripe has no data, skip it. */ 1431 if (!test_bit(sectornr, &rbio->dbitmap)) 1432 continue; 1433 1434 if (stripe < rbio->nr_data) { 1435 sector = sector_in_rbio(rbio, stripe, sectornr, 1); 1436 if (!sector) 1437 continue; 1438 } else { 1439 sector = rbio_stripe_sector(rbio, stripe, sectornr); 1440 } 1441 1442 ret = rbio_add_io_sector(rbio, bio_list, sector, 1443 rbio->real_stripes, 1444 sectornr, REQ_OP_WRITE); 1445 if (ret) 1446 goto error; 1447 } 1448 1449 return 0; 1450 error: 1451 bio_list_put(bio_list); 1452 return -EIO; 1453 } 1454 1455 static void set_rbio_range_error(struct btrfs_raid_bio *rbio, struct bio *bio) 1456 { 1457 struct btrfs_fs_info *fs_info = rbio->bioc->fs_info; 1458 u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) - 1459 rbio->bioc->full_stripe_logical; 1460 int total_nr_sector = offset >> fs_info->sectorsize_bits; 1461 1462 ASSERT(total_nr_sector < rbio->nr_data * rbio->stripe_nsectors); 1463 1464 bitmap_set(rbio->error_bitmap, total_nr_sector, 1465 bio->bi_iter.bi_size >> fs_info->sectorsize_bits); 1466 1467 /* 1468 * Special handling for raid56_alloc_missing_rbio() used by 1469 * scrub/replace. Unlike call path in raid56_parity_recover(), they 1470 * pass an empty bio here. Thus we have to find out the missing device 1471 * and mark the stripe error instead. 1472 */ 1473 if (bio->bi_iter.bi_size == 0) { 1474 bool found_missing = false; 1475 int stripe_nr; 1476 1477 for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) { 1478 if (!rbio->bioc->stripes[stripe_nr].dev->bdev) { 1479 found_missing = true; 1480 bitmap_set(rbio->error_bitmap, 1481 stripe_nr * rbio->stripe_nsectors, 1482 rbio->stripe_nsectors); 1483 } 1484 } 1485 ASSERT(found_missing); 1486 } 1487 } 1488 1489 /* 1490 * For subpage case, we can no longer set page Up-to-date directly for 1491 * stripe_pages[], thus we need to locate the sector. 1492 */ 1493 static struct sector_ptr *find_stripe_sector(struct btrfs_raid_bio *rbio, 1494 phys_addr_t paddr) 1495 { 1496 int i; 1497 1498 for (i = 0; i < rbio->nr_sectors; i++) { 1499 struct sector_ptr *sector = &rbio->stripe_sectors[i]; 1500 1501 if (sector->has_paddr && sector->paddr == paddr) 1502 return sector; 1503 } 1504 return NULL; 1505 } 1506 1507 /* 1508 * this sets each page in the bio uptodate. It should only be used on private 1509 * rbio pages, nothing that comes in from the higher layers 1510 */ 1511 static void set_bio_pages_uptodate(struct btrfs_raid_bio *rbio, struct bio *bio) 1512 { 1513 const u32 blocksize = rbio->bioc->fs_info->sectorsize; 1514 phys_addr_t paddr; 1515 1516 ASSERT(!bio_flagged(bio, BIO_CLONED)); 1517 1518 btrfs_bio_for_each_block_all(paddr, bio, blocksize) { 1519 struct sector_ptr *sector = find_stripe_sector(rbio, paddr); 1520 1521 ASSERT(sector); 1522 if (sector) 1523 sector->uptodate = 1; 1524 } 1525 } 1526 1527 static int get_bio_sector_nr(struct btrfs_raid_bio *rbio, struct bio *bio) 1528 { 1529 phys_addr_t bvec_paddr = bvec_phys(bio_first_bvec_all(bio)); 1530 int i; 1531 1532 for (i = 0; i < rbio->nr_sectors; i++) { 1533 if (rbio->stripe_sectors[i].paddr == bvec_paddr) 1534 break; 1535 if (rbio->bio_sectors[i].has_paddr && 1536 rbio->bio_sectors[i].paddr == bvec_paddr) 1537 break; 1538 } 1539 ASSERT(i < rbio->nr_sectors); 1540 return i; 1541 } 1542 1543 static void rbio_update_error_bitmap(struct btrfs_raid_bio *rbio, struct bio *bio) 1544 { 1545 int total_sector_nr = get_bio_sector_nr(rbio, bio); 1546 u32 bio_size = 0; 1547 struct bio_vec *bvec; 1548 int i; 1549 1550 bio_for_each_bvec_all(bvec, bio, i) 1551 bio_size += bvec->bv_len; 1552 1553 /* 1554 * Since we can have multiple bios touching the error_bitmap, we cannot 1555 * call bitmap_set() without protection. 1556 * 1557 * Instead use set_bit() for each bit, as set_bit() itself is atomic. 1558 */ 1559 for (i = total_sector_nr; i < total_sector_nr + 1560 (bio_size >> rbio->bioc->fs_info->sectorsize_bits); i++) 1561 set_bit(i, rbio->error_bitmap); 1562 } 1563 1564 /* Verify the data sectors at read time. */ 1565 static void verify_bio_data_sectors(struct btrfs_raid_bio *rbio, 1566 struct bio *bio) 1567 { 1568 struct btrfs_fs_info *fs_info = rbio->bioc->fs_info; 1569 int total_sector_nr = get_bio_sector_nr(rbio, bio); 1570 phys_addr_t paddr; 1571 1572 /* No data csum for the whole stripe, no need to verify. */ 1573 if (!rbio->csum_bitmap || !rbio->csum_buf) 1574 return; 1575 1576 /* P/Q stripes, they have no data csum to verify against. */ 1577 if (total_sector_nr >= rbio->nr_data * rbio->stripe_nsectors) 1578 return; 1579 1580 btrfs_bio_for_each_block_all(paddr, bio, fs_info->sectorsize) { 1581 u8 csum_buf[BTRFS_CSUM_SIZE]; 1582 u8 *expected_csum = rbio->csum_buf + total_sector_nr * fs_info->csum_size; 1583 int ret; 1584 1585 /* No csum for this sector, skip to the next sector. */ 1586 if (!test_bit(total_sector_nr, rbio->csum_bitmap)) 1587 continue; 1588 1589 ret = btrfs_check_block_csum(fs_info, paddr, 1590 csum_buf, expected_csum); 1591 if (ret < 0) 1592 set_bit(total_sector_nr, rbio->error_bitmap); 1593 total_sector_nr++; 1594 } 1595 } 1596 1597 static void raid_wait_read_end_io(struct bio *bio) 1598 { 1599 struct btrfs_raid_bio *rbio = bio->bi_private; 1600 1601 if (bio->bi_status) { 1602 rbio_update_error_bitmap(rbio, bio); 1603 } else { 1604 set_bio_pages_uptodate(rbio, bio); 1605 verify_bio_data_sectors(rbio, bio); 1606 } 1607 1608 bio_put(bio); 1609 if (atomic_dec_and_test(&rbio->stripes_pending)) 1610 wake_up(&rbio->io_wait); 1611 } 1612 1613 static void submit_read_wait_bio_list(struct btrfs_raid_bio *rbio, 1614 struct bio_list *bio_list) 1615 { 1616 struct bio *bio; 1617 1618 atomic_set(&rbio->stripes_pending, bio_list_size(bio_list)); 1619 while ((bio = bio_list_pop(bio_list))) { 1620 bio->bi_end_io = raid_wait_read_end_io; 1621 1622 if (trace_raid56_read_enabled()) { 1623 struct raid56_bio_trace_info trace_info = { 0 }; 1624 1625 bio_get_trace_info(rbio, bio, &trace_info); 1626 trace_raid56_read(rbio, bio, &trace_info); 1627 } 1628 submit_bio(bio); 1629 } 1630 1631 wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0); 1632 } 1633 1634 static int alloc_rbio_data_pages(struct btrfs_raid_bio *rbio) 1635 { 1636 const int data_pages = rbio->nr_data * rbio->stripe_npages; 1637 int ret; 1638 1639 ret = btrfs_alloc_page_array(data_pages, rbio->stripe_pages, false); 1640 if (ret < 0) 1641 return ret; 1642 1643 index_stripe_sectors(rbio); 1644 return 0; 1645 } 1646 1647 /* 1648 * We use plugging call backs to collect full stripes. 1649 * Any time we get a partial stripe write while plugged 1650 * we collect it into a list. When the unplug comes down, 1651 * we sort the list by logical block number and merge 1652 * everything we can into the same rbios 1653 */ 1654 struct btrfs_plug_cb { 1655 struct blk_plug_cb cb; 1656 struct btrfs_fs_info *info; 1657 struct list_head rbio_list; 1658 }; 1659 1660 /* 1661 * rbios on the plug list are sorted for easier merging. 1662 */ 1663 static int plug_cmp(void *priv, const struct list_head *a, 1664 const struct list_head *b) 1665 { 1666 const struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio, 1667 plug_list); 1668 const struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio, 1669 plug_list); 1670 u64 a_sector = ra->bio_list.head->bi_iter.bi_sector; 1671 u64 b_sector = rb->bio_list.head->bi_iter.bi_sector; 1672 1673 if (a_sector < b_sector) 1674 return -1; 1675 if (a_sector > b_sector) 1676 return 1; 1677 return 0; 1678 } 1679 1680 static void raid_unplug(struct blk_plug_cb *cb, bool from_schedule) 1681 { 1682 struct btrfs_plug_cb *plug = container_of(cb, struct btrfs_plug_cb, cb); 1683 struct btrfs_raid_bio *cur; 1684 struct btrfs_raid_bio *last = NULL; 1685 1686 list_sort(NULL, &plug->rbio_list, plug_cmp); 1687 1688 while (!list_empty(&plug->rbio_list)) { 1689 cur = list_first_entry(&plug->rbio_list, 1690 struct btrfs_raid_bio, plug_list); 1691 list_del_init(&cur->plug_list); 1692 1693 if (rbio_is_full(cur)) { 1694 /* We have a full stripe, queue it down. */ 1695 start_async_work(cur, rmw_rbio_work); 1696 continue; 1697 } 1698 if (last) { 1699 if (rbio_can_merge(last, cur)) { 1700 merge_rbio(last, cur); 1701 free_raid_bio(cur); 1702 continue; 1703 } 1704 start_async_work(last, rmw_rbio_work); 1705 } 1706 last = cur; 1707 } 1708 if (last) 1709 start_async_work(last, rmw_rbio_work); 1710 kfree(plug); 1711 } 1712 1713 /* Add the original bio into rbio->bio_list, and update rbio::dbitmap. */ 1714 static void rbio_add_bio(struct btrfs_raid_bio *rbio, struct bio *orig_bio) 1715 { 1716 const struct btrfs_fs_info *fs_info = rbio->bioc->fs_info; 1717 const u64 orig_logical = orig_bio->bi_iter.bi_sector << SECTOR_SHIFT; 1718 const u64 full_stripe_start = rbio->bioc->full_stripe_logical; 1719 const u32 orig_len = orig_bio->bi_iter.bi_size; 1720 const u32 sectorsize = fs_info->sectorsize; 1721 u64 cur_logical; 1722 1723 ASSERT_RBIO_LOGICAL(orig_logical >= full_stripe_start && 1724 orig_logical + orig_len <= full_stripe_start + 1725 rbio->nr_data * BTRFS_STRIPE_LEN, 1726 rbio, orig_logical); 1727 1728 bio_list_add(&rbio->bio_list, orig_bio); 1729 rbio->bio_list_bytes += orig_bio->bi_iter.bi_size; 1730 1731 /* Update the dbitmap. */ 1732 for (cur_logical = orig_logical; cur_logical < orig_logical + orig_len; 1733 cur_logical += sectorsize) { 1734 int bit = ((u32)(cur_logical - full_stripe_start) >> 1735 fs_info->sectorsize_bits) % rbio->stripe_nsectors; 1736 1737 set_bit(bit, &rbio->dbitmap); 1738 } 1739 } 1740 1741 /* 1742 * our main entry point for writes from the rest of the FS. 1743 */ 1744 void raid56_parity_write(struct bio *bio, struct btrfs_io_context *bioc) 1745 { 1746 struct btrfs_fs_info *fs_info = bioc->fs_info; 1747 struct btrfs_raid_bio *rbio; 1748 struct btrfs_plug_cb *plug = NULL; 1749 struct blk_plug_cb *cb; 1750 1751 rbio = alloc_rbio(fs_info, bioc); 1752 if (IS_ERR(rbio)) { 1753 bio->bi_status = errno_to_blk_status(PTR_ERR(rbio)); 1754 bio_endio(bio); 1755 return; 1756 } 1757 rbio->operation = BTRFS_RBIO_WRITE; 1758 rbio_add_bio(rbio, bio); 1759 1760 /* 1761 * Don't plug on full rbios, just get them out the door 1762 * as quickly as we can 1763 */ 1764 if (!rbio_is_full(rbio)) { 1765 cb = blk_check_plugged(raid_unplug, fs_info, sizeof(*plug)); 1766 if (cb) { 1767 plug = container_of(cb, struct btrfs_plug_cb, cb); 1768 if (!plug->info) { 1769 plug->info = fs_info; 1770 INIT_LIST_HEAD(&plug->rbio_list); 1771 } 1772 list_add_tail(&rbio->plug_list, &plug->rbio_list); 1773 return; 1774 } 1775 } 1776 1777 /* 1778 * Either we don't have any existing plug, or we're doing a full stripe, 1779 * queue the rmw work now. 1780 */ 1781 start_async_work(rbio, rmw_rbio_work); 1782 } 1783 1784 static int verify_one_sector(struct btrfs_raid_bio *rbio, 1785 int stripe_nr, int sector_nr) 1786 { 1787 struct btrfs_fs_info *fs_info = rbio->bioc->fs_info; 1788 struct sector_ptr *sector; 1789 u8 csum_buf[BTRFS_CSUM_SIZE]; 1790 u8 *csum_expected; 1791 int ret; 1792 1793 if (!rbio->csum_bitmap || !rbio->csum_buf) 1794 return 0; 1795 1796 /* No way to verify P/Q as they are not covered by data csum. */ 1797 if (stripe_nr >= rbio->nr_data) 1798 return 0; 1799 /* 1800 * If we're rebuilding a read, we have to use pages from the 1801 * bio list if possible. 1802 */ 1803 if (rbio->operation == BTRFS_RBIO_READ_REBUILD) { 1804 sector = sector_in_rbio(rbio, stripe_nr, sector_nr, 0); 1805 } else { 1806 sector = rbio_stripe_sector(rbio, stripe_nr, sector_nr); 1807 } 1808 1809 csum_expected = rbio->csum_buf + 1810 (stripe_nr * rbio->stripe_nsectors + sector_nr) * 1811 fs_info->csum_size; 1812 ret = btrfs_check_block_csum(fs_info, sector->paddr, csum_buf, csum_expected); 1813 return ret; 1814 } 1815 1816 /* 1817 * Recover a vertical stripe specified by @sector_nr. 1818 * @*pointers are the pre-allocated pointers by the caller, so we don't 1819 * need to allocate/free the pointers again and again. 1820 */ 1821 static int recover_vertical(struct btrfs_raid_bio *rbio, int sector_nr, 1822 void **pointers, void **unmap_array) 1823 { 1824 struct btrfs_fs_info *fs_info = rbio->bioc->fs_info; 1825 struct sector_ptr *sector; 1826 const u32 sectorsize = fs_info->sectorsize; 1827 int found_errors; 1828 int faila; 1829 int failb; 1830 int stripe_nr; 1831 int ret = 0; 1832 1833 /* 1834 * Now we just use bitmap to mark the horizontal stripes in 1835 * which we have data when doing parity scrub. 1836 */ 1837 if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB && 1838 !test_bit(sector_nr, &rbio->dbitmap)) 1839 return 0; 1840 1841 found_errors = get_rbio_veritical_errors(rbio, sector_nr, &faila, 1842 &failb); 1843 /* 1844 * No errors in the vertical stripe, skip it. Can happen for recovery 1845 * which only part of a stripe failed csum check. 1846 */ 1847 if (!found_errors) 1848 return 0; 1849 1850 if (unlikely(found_errors > rbio->bioc->max_errors)) 1851 return -EIO; 1852 1853 /* 1854 * Setup our array of pointers with sectors from each stripe 1855 * 1856 * NOTE: store a duplicate array of pointers to preserve the 1857 * pointer order. 1858 */ 1859 for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) { 1860 /* 1861 * If we're rebuilding a read, we have to use pages from the 1862 * bio list if possible. 1863 */ 1864 if (rbio->operation == BTRFS_RBIO_READ_REBUILD) { 1865 sector = sector_in_rbio(rbio, stripe_nr, sector_nr, 0); 1866 } else { 1867 sector = rbio_stripe_sector(rbio, stripe_nr, sector_nr); 1868 } 1869 pointers[stripe_nr] = kmap_local_sector(sector); 1870 unmap_array[stripe_nr] = pointers[stripe_nr]; 1871 } 1872 1873 /* All raid6 handling here */ 1874 if (rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6) { 1875 /* Single failure, rebuild from parity raid5 style */ 1876 if (failb < 0) { 1877 if (faila == rbio->nr_data) 1878 /* 1879 * Just the P stripe has failed, without 1880 * a bad data or Q stripe. 1881 * We have nothing to do, just skip the 1882 * recovery for this stripe. 1883 */ 1884 goto cleanup; 1885 /* 1886 * a single failure in raid6 is rebuilt 1887 * in the pstripe code below 1888 */ 1889 goto pstripe; 1890 } 1891 1892 /* 1893 * If the q stripe is failed, do a pstripe reconstruction from 1894 * the xors. 1895 * If both the q stripe and the P stripe are failed, we're 1896 * here due to a crc mismatch and we can't give them the 1897 * data they want. 1898 */ 1899 if (failb == rbio->real_stripes - 1) { 1900 if (faila == rbio->real_stripes - 2) 1901 /* 1902 * Only P and Q are corrupted. 1903 * We only care about data stripes recovery, 1904 * can skip this vertical stripe. 1905 */ 1906 goto cleanup; 1907 /* 1908 * Otherwise we have one bad data stripe and 1909 * a good P stripe. raid5! 1910 */ 1911 goto pstripe; 1912 } 1913 1914 if (failb == rbio->real_stripes - 2) { 1915 raid6_datap_recov(rbio->real_stripes, sectorsize, 1916 faila, pointers); 1917 } else { 1918 raid6_2data_recov(rbio->real_stripes, sectorsize, 1919 faila, failb, pointers); 1920 } 1921 } else { 1922 void *p; 1923 1924 /* Rebuild from P stripe here (raid5 or raid6). */ 1925 ASSERT(failb == -1); 1926 pstripe: 1927 /* Copy parity block into failed block to start with */ 1928 memcpy(pointers[faila], pointers[rbio->nr_data], sectorsize); 1929 1930 /* Rearrange the pointer array */ 1931 p = pointers[faila]; 1932 for (stripe_nr = faila; stripe_nr < rbio->nr_data - 1; 1933 stripe_nr++) 1934 pointers[stripe_nr] = pointers[stripe_nr + 1]; 1935 pointers[rbio->nr_data - 1] = p; 1936 1937 /* Xor in the rest */ 1938 run_xor(pointers, rbio->nr_data - 1, sectorsize); 1939 1940 } 1941 1942 /* 1943 * No matter if this is a RMW or recovery, we should have all 1944 * failed sectors repaired in the vertical stripe, thus they are now 1945 * uptodate. 1946 * Especially if we determine to cache the rbio, we need to 1947 * have at least all data sectors uptodate. 1948 * 1949 * If possible, also check if the repaired sector matches its data 1950 * checksum. 1951 */ 1952 if (faila >= 0) { 1953 ret = verify_one_sector(rbio, faila, sector_nr); 1954 if (ret < 0) 1955 goto cleanup; 1956 1957 sector = rbio_stripe_sector(rbio, faila, sector_nr); 1958 sector->uptodate = 1; 1959 } 1960 if (failb >= 0) { 1961 ret = verify_one_sector(rbio, failb, sector_nr); 1962 if (ret < 0) 1963 goto cleanup; 1964 1965 sector = rbio_stripe_sector(rbio, failb, sector_nr); 1966 sector->uptodate = 1; 1967 } 1968 1969 cleanup: 1970 for (stripe_nr = rbio->real_stripes - 1; stripe_nr >= 0; stripe_nr--) 1971 kunmap_local(unmap_array[stripe_nr]); 1972 return ret; 1973 } 1974 1975 static int recover_sectors(struct btrfs_raid_bio *rbio) 1976 { 1977 void **pointers = NULL; 1978 void **unmap_array = NULL; 1979 int sectornr; 1980 int ret = 0; 1981 1982 /* 1983 * @pointers array stores the pointer for each sector. 1984 * 1985 * @unmap_array stores copy of pointers that does not get reordered 1986 * during reconstruction so that kunmap_local works. 1987 */ 1988 pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS); 1989 unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS); 1990 if (!pointers || !unmap_array) { 1991 ret = -ENOMEM; 1992 goto out; 1993 } 1994 1995 if (rbio->operation == BTRFS_RBIO_READ_REBUILD) { 1996 spin_lock(&rbio->bio_list_lock); 1997 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); 1998 spin_unlock(&rbio->bio_list_lock); 1999 } 2000 2001 index_rbio_pages(rbio); 2002 2003 for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) { 2004 ret = recover_vertical(rbio, sectornr, pointers, unmap_array); 2005 if (ret < 0) 2006 break; 2007 } 2008 2009 out: 2010 kfree(pointers); 2011 kfree(unmap_array); 2012 return ret; 2013 } 2014 2015 static void recover_rbio(struct btrfs_raid_bio *rbio) 2016 { 2017 struct bio_list bio_list = BIO_EMPTY_LIST; 2018 int total_sector_nr; 2019 int ret = 0; 2020 2021 /* 2022 * Either we're doing recover for a read failure or degraded write, 2023 * caller should have set error bitmap correctly. 2024 */ 2025 ASSERT(bitmap_weight(rbio->error_bitmap, rbio->nr_sectors)); 2026 2027 /* For recovery, we need to read all sectors including P/Q. */ 2028 ret = alloc_rbio_pages(rbio); 2029 if (ret < 0) 2030 goto out; 2031 2032 index_rbio_pages(rbio); 2033 2034 /* 2035 * Read everything that hasn't failed. However this time we will 2036 * not trust any cached sector. 2037 * As we may read out some stale data but higher layer is not reading 2038 * that stale part. 2039 * 2040 * So here we always re-read everything in recovery path. 2041 */ 2042 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors; 2043 total_sector_nr++) { 2044 int stripe = total_sector_nr / rbio->stripe_nsectors; 2045 int sectornr = total_sector_nr % rbio->stripe_nsectors; 2046 struct sector_ptr *sector; 2047 2048 /* 2049 * Skip the range which has error. It can be a range which is 2050 * marked error (for csum mismatch), or it can be a missing 2051 * device. 2052 */ 2053 if (!rbio->bioc->stripes[stripe].dev->bdev || 2054 test_bit(total_sector_nr, rbio->error_bitmap)) { 2055 /* 2056 * Also set the error bit for missing device, which 2057 * may not yet have its error bit set. 2058 */ 2059 set_bit(total_sector_nr, rbio->error_bitmap); 2060 continue; 2061 } 2062 2063 sector = rbio_stripe_sector(rbio, stripe, sectornr); 2064 ret = rbio_add_io_sector(rbio, &bio_list, sector, stripe, 2065 sectornr, REQ_OP_READ); 2066 if (ret < 0) { 2067 bio_list_put(&bio_list); 2068 goto out; 2069 } 2070 } 2071 2072 submit_read_wait_bio_list(rbio, &bio_list); 2073 ret = recover_sectors(rbio); 2074 out: 2075 rbio_orig_end_io(rbio, errno_to_blk_status(ret)); 2076 } 2077 2078 static void recover_rbio_work(struct work_struct *work) 2079 { 2080 struct btrfs_raid_bio *rbio; 2081 2082 rbio = container_of(work, struct btrfs_raid_bio, work); 2083 if (!lock_stripe_add(rbio)) 2084 recover_rbio(rbio); 2085 } 2086 2087 static void recover_rbio_work_locked(struct work_struct *work) 2088 { 2089 recover_rbio(container_of(work, struct btrfs_raid_bio, work)); 2090 } 2091 2092 static void set_rbio_raid6_extra_error(struct btrfs_raid_bio *rbio, int mirror_num) 2093 { 2094 bool found = false; 2095 int sector_nr; 2096 2097 /* 2098 * This is for RAID6 extra recovery tries, thus mirror number should 2099 * be large than 2. 2100 * Mirror 1 means read from data stripes. Mirror 2 means rebuild using 2101 * RAID5 methods. 2102 */ 2103 ASSERT(mirror_num > 2); 2104 for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) { 2105 int found_errors; 2106 int faila; 2107 int failb; 2108 2109 found_errors = get_rbio_veritical_errors(rbio, sector_nr, 2110 &faila, &failb); 2111 /* This vertical stripe doesn't have errors. */ 2112 if (!found_errors) 2113 continue; 2114 2115 /* 2116 * If we found errors, there should be only one error marked 2117 * by previous set_rbio_range_error(). 2118 */ 2119 ASSERT(found_errors == 1); 2120 found = true; 2121 2122 /* Now select another stripe to mark as error. */ 2123 failb = rbio->real_stripes - (mirror_num - 1); 2124 if (failb <= faila) 2125 failb--; 2126 2127 /* Set the extra bit in error bitmap. */ 2128 if (failb >= 0) 2129 set_bit(failb * rbio->stripe_nsectors + sector_nr, 2130 rbio->error_bitmap); 2131 } 2132 2133 /* We should found at least one vertical stripe with error.*/ 2134 ASSERT(found); 2135 } 2136 2137 /* 2138 * the main entry point for reads from the higher layers. This 2139 * is really only called when the normal read path had a failure, 2140 * so we assume the bio they send down corresponds to a failed part 2141 * of the drive. 2142 */ 2143 void raid56_parity_recover(struct bio *bio, struct btrfs_io_context *bioc, 2144 int mirror_num) 2145 { 2146 struct btrfs_fs_info *fs_info = bioc->fs_info; 2147 struct btrfs_raid_bio *rbio; 2148 2149 rbio = alloc_rbio(fs_info, bioc); 2150 if (IS_ERR(rbio)) { 2151 bio->bi_status = errno_to_blk_status(PTR_ERR(rbio)); 2152 bio_endio(bio); 2153 return; 2154 } 2155 2156 rbio->operation = BTRFS_RBIO_READ_REBUILD; 2157 rbio_add_bio(rbio, bio); 2158 2159 set_rbio_range_error(rbio, bio); 2160 2161 /* 2162 * Loop retry: 2163 * for 'mirror == 2', reconstruct from all other stripes. 2164 * for 'mirror_num > 2', select a stripe to fail on every retry. 2165 */ 2166 if (mirror_num > 2) 2167 set_rbio_raid6_extra_error(rbio, mirror_num); 2168 2169 start_async_work(rbio, recover_rbio_work); 2170 } 2171 2172 static void fill_data_csums(struct btrfs_raid_bio *rbio) 2173 { 2174 struct btrfs_fs_info *fs_info = rbio->bioc->fs_info; 2175 struct btrfs_root *csum_root = btrfs_csum_root(fs_info, 2176 rbio->bioc->full_stripe_logical); 2177 const u64 start = rbio->bioc->full_stripe_logical; 2178 const u32 len = (rbio->nr_data * rbio->stripe_nsectors) << 2179 fs_info->sectorsize_bits; 2180 int ret; 2181 2182 /* The rbio should not have its csum buffer initialized. */ 2183 ASSERT(!rbio->csum_buf && !rbio->csum_bitmap); 2184 2185 /* 2186 * Skip the csum search if: 2187 * 2188 * - The rbio doesn't belong to data block groups 2189 * Then we are doing IO for tree blocks, no need to search csums. 2190 * 2191 * - The rbio belongs to mixed block groups 2192 * This is to avoid deadlock, as we're already holding the full 2193 * stripe lock, if we trigger a metadata read, and it needs to do 2194 * raid56 recovery, we will deadlock. 2195 */ 2196 if (!(rbio->bioc->map_type & BTRFS_BLOCK_GROUP_DATA) || 2197 rbio->bioc->map_type & BTRFS_BLOCK_GROUP_METADATA) 2198 return; 2199 2200 rbio->csum_buf = kzalloc(rbio->nr_data * rbio->stripe_nsectors * 2201 fs_info->csum_size, GFP_NOFS); 2202 rbio->csum_bitmap = bitmap_zalloc(rbio->nr_data * rbio->stripe_nsectors, 2203 GFP_NOFS); 2204 if (!rbio->csum_buf || !rbio->csum_bitmap) { 2205 ret = -ENOMEM; 2206 goto error; 2207 } 2208 2209 ret = btrfs_lookup_csums_bitmap(csum_root, NULL, start, start + len - 1, 2210 rbio->csum_buf, rbio->csum_bitmap); 2211 if (ret < 0) 2212 goto error; 2213 if (bitmap_empty(rbio->csum_bitmap, len >> fs_info->sectorsize_bits)) 2214 goto no_csum; 2215 return; 2216 2217 error: 2218 /* 2219 * We failed to allocate memory or grab the csum, but it's not fatal, 2220 * we can still continue. But better to warn users that RMW is no 2221 * longer safe for this particular sub-stripe write. 2222 */ 2223 btrfs_warn_rl(fs_info, 2224 "sub-stripe write for full stripe %llu is not safe, failed to get csum: %d", 2225 rbio->bioc->full_stripe_logical, ret); 2226 no_csum: 2227 kfree(rbio->csum_buf); 2228 bitmap_free(rbio->csum_bitmap); 2229 rbio->csum_buf = NULL; 2230 rbio->csum_bitmap = NULL; 2231 } 2232 2233 static int rmw_read_wait_recover(struct btrfs_raid_bio *rbio) 2234 { 2235 struct bio_list bio_list = BIO_EMPTY_LIST; 2236 int total_sector_nr; 2237 int ret = 0; 2238 2239 /* 2240 * Fill the data csums we need for data verification. We need to fill 2241 * the csum_bitmap/csum_buf first, as our endio function will try to 2242 * verify the data sectors. 2243 */ 2244 fill_data_csums(rbio); 2245 2246 /* 2247 * Build a list of bios to read all sectors (including data and P/Q). 2248 * 2249 * This behavior is to compensate the later csum verification and recovery. 2250 */ 2251 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors; 2252 total_sector_nr++) { 2253 struct sector_ptr *sector; 2254 int stripe = total_sector_nr / rbio->stripe_nsectors; 2255 int sectornr = total_sector_nr % rbio->stripe_nsectors; 2256 2257 sector = rbio_stripe_sector(rbio, stripe, sectornr); 2258 ret = rbio_add_io_sector(rbio, &bio_list, sector, 2259 stripe, sectornr, REQ_OP_READ); 2260 if (ret) { 2261 bio_list_put(&bio_list); 2262 return ret; 2263 } 2264 } 2265 2266 /* 2267 * We may or may not have any corrupted sectors (including missing dev 2268 * and csum mismatch), just let recover_sectors() to handle them all. 2269 */ 2270 submit_read_wait_bio_list(rbio, &bio_list); 2271 return recover_sectors(rbio); 2272 } 2273 2274 static void raid_wait_write_end_io(struct bio *bio) 2275 { 2276 struct btrfs_raid_bio *rbio = bio->bi_private; 2277 2278 if (bio->bi_status) 2279 rbio_update_error_bitmap(rbio, bio); 2280 bio_put(bio); 2281 if (atomic_dec_and_test(&rbio->stripes_pending)) 2282 wake_up(&rbio->io_wait); 2283 } 2284 2285 static void submit_write_bios(struct btrfs_raid_bio *rbio, 2286 struct bio_list *bio_list) 2287 { 2288 struct bio *bio; 2289 2290 atomic_set(&rbio->stripes_pending, bio_list_size(bio_list)); 2291 while ((bio = bio_list_pop(bio_list))) { 2292 bio->bi_end_io = raid_wait_write_end_io; 2293 2294 if (trace_raid56_write_enabled()) { 2295 struct raid56_bio_trace_info trace_info = { 0 }; 2296 2297 bio_get_trace_info(rbio, bio, &trace_info); 2298 trace_raid56_write(rbio, bio, &trace_info); 2299 } 2300 submit_bio(bio); 2301 } 2302 } 2303 2304 /* 2305 * To determine if we need to read any sector from the disk. 2306 * Should only be utilized in RMW path, to skip cached rbio. 2307 */ 2308 static bool need_read_stripe_sectors(struct btrfs_raid_bio *rbio) 2309 { 2310 int i; 2311 2312 for (i = 0; i < rbio->nr_data * rbio->stripe_nsectors; i++) { 2313 struct sector_ptr *sector = &rbio->stripe_sectors[i]; 2314 2315 /* 2316 * We have a sector which doesn't have page nor uptodate, 2317 * thus this rbio can not be cached one, as cached one must 2318 * have all its data sectors present and uptodate. 2319 */ 2320 if (!sector->has_paddr || !sector->uptodate) 2321 return true; 2322 } 2323 return false; 2324 } 2325 2326 static void rmw_rbio(struct btrfs_raid_bio *rbio) 2327 { 2328 struct bio_list bio_list; 2329 int sectornr; 2330 int ret = 0; 2331 2332 /* 2333 * Allocate the pages for parity first, as P/Q pages will always be 2334 * needed for both full-stripe and sub-stripe writes. 2335 */ 2336 ret = alloc_rbio_parity_pages(rbio); 2337 if (ret < 0) 2338 goto out; 2339 2340 /* 2341 * Either full stripe write, or we have every data sector already 2342 * cached, can go to write path immediately. 2343 */ 2344 if (!rbio_is_full(rbio) && need_read_stripe_sectors(rbio)) { 2345 /* 2346 * Now we're doing sub-stripe write, also need all data stripes 2347 * to do the full RMW. 2348 */ 2349 ret = alloc_rbio_data_pages(rbio); 2350 if (ret < 0) 2351 goto out; 2352 2353 index_rbio_pages(rbio); 2354 2355 ret = rmw_read_wait_recover(rbio); 2356 if (ret < 0) 2357 goto out; 2358 } 2359 2360 /* 2361 * At this stage we're not allowed to add any new bios to the 2362 * bio list any more, anyone else that wants to change this stripe 2363 * needs to do their own rmw. 2364 */ 2365 spin_lock(&rbio->bio_list_lock); 2366 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); 2367 spin_unlock(&rbio->bio_list_lock); 2368 2369 bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors); 2370 2371 index_rbio_pages(rbio); 2372 2373 /* 2374 * We don't cache full rbios because we're assuming 2375 * the higher layers are unlikely to use this area of 2376 * the disk again soon. If they do use it again, 2377 * hopefully they will send another full bio. 2378 */ 2379 if (!rbio_is_full(rbio)) 2380 cache_rbio_pages(rbio); 2381 else 2382 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); 2383 2384 for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) 2385 generate_pq_vertical(rbio, sectornr); 2386 2387 bio_list_init(&bio_list); 2388 ret = rmw_assemble_write_bios(rbio, &bio_list); 2389 if (ret < 0) 2390 goto out; 2391 2392 /* We should have at least one bio assembled. */ 2393 ASSERT(bio_list_size(&bio_list)); 2394 submit_write_bios(rbio, &bio_list); 2395 wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0); 2396 2397 /* We may have more errors than our tolerance during the read. */ 2398 for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) { 2399 int found_errors; 2400 2401 found_errors = get_rbio_veritical_errors(rbio, sectornr, NULL, NULL); 2402 if (unlikely(found_errors > rbio->bioc->max_errors)) { 2403 ret = -EIO; 2404 break; 2405 } 2406 } 2407 out: 2408 rbio_orig_end_io(rbio, errno_to_blk_status(ret)); 2409 } 2410 2411 static void rmw_rbio_work(struct work_struct *work) 2412 { 2413 struct btrfs_raid_bio *rbio; 2414 2415 rbio = container_of(work, struct btrfs_raid_bio, work); 2416 if (lock_stripe_add(rbio) == 0) 2417 rmw_rbio(rbio); 2418 } 2419 2420 static void rmw_rbio_work_locked(struct work_struct *work) 2421 { 2422 rmw_rbio(container_of(work, struct btrfs_raid_bio, work)); 2423 } 2424 2425 /* 2426 * The following code is used to scrub/replace the parity stripe 2427 * 2428 * Caller must have already increased bio_counter for getting @bioc. 2429 * 2430 * Note: We need make sure all the pages that add into the scrub/replace 2431 * raid bio are correct and not be changed during the scrub/replace. That 2432 * is those pages just hold metadata or file data with checksum. 2433 */ 2434 2435 struct btrfs_raid_bio *raid56_parity_alloc_scrub_rbio(struct bio *bio, 2436 struct btrfs_io_context *bioc, 2437 struct btrfs_device *scrub_dev, 2438 unsigned long *dbitmap, int stripe_nsectors) 2439 { 2440 struct btrfs_fs_info *fs_info = bioc->fs_info; 2441 struct btrfs_raid_bio *rbio; 2442 int i; 2443 2444 rbio = alloc_rbio(fs_info, bioc); 2445 if (IS_ERR(rbio)) 2446 return NULL; 2447 bio_list_add(&rbio->bio_list, bio); 2448 /* 2449 * This is a special bio which is used to hold the completion handler 2450 * and make the scrub rbio is similar to the other types 2451 */ 2452 ASSERT(!bio->bi_iter.bi_size); 2453 rbio->operation = BTRFS_RBIO_PARITY_SCRUB; 2454 2455 /* 2456 * After mapping bioc with BTRFS_MAP_WRITE, parities have been sorted 2457 * to the end position, so this search can start from the first parity 2458 * stripe. 2459 */ 2460 for (i = rbio->nr_data; i < rbio->real_stripes; i++) { 2461 if (bioc->stripes[i].dev == scrub_dev) { 2462 rbio->scrubp = i; 2463 break; 2464 } 2465 } 2466 ASSERT_RBIO_STRIPE(i < rbio->real_stripes, rbio, i); 2467 2468 bitmap_copy(&rbio->dbitmap, dbitmap, stripe_nsectors); 2469 return rbio; 2470 } 2471 2472 /* 2473 * We just scrub the parity that we have correct data on the same horizontal, 2474 * so we needn't allocate all pages for all the stripes. 2475 */ 2476 static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio) 2477 { 2478 const u32 sectorsize = rbio->bioc->fs_info->sectorsize; 2479 int total_sector_nr; 2480 2481 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors; 2482 total_sector_nr++) { 2483 struct page *page; 2484 int sectornr = total_sector_nr % rbio->stripe_nsectors; 2485 int index = (total_sector_nr * sectorsize) >> PAGE_SHIFT; 2486 2487 if (!test_bit(sectornr, &rbio->dbitmap)) 2488 continue; 2489 if (rbio->stripe_pages[index]) 2490 continue; 2491 page = alloc_page(GFP_NOFS); 2492 if (!page) 2493 return -ENOMEM; 2494 rbio->stripe_pages[index] = page; 2495 } 2496 index_stripe_sectors(rbio); 2497 return 0; 2498 } 2499 2500 static int finish_parity_scrub(struct btrfs_raid_bio *rbio) 2501 { 2502 struct btrfs_io_context *bioc = rbio->bioc; 2503 const u32 sectorsize = bioc->fs_info->sectorsize; 2504 void **pointers = rbio->finish_pointers; 2505 unsigned long *pbitmap = &rbio->finish_pbitmap; 2506 int nr_data = rbio->nr_data; 2507 int stripe; 2508 int sectornr; 2509 bool has_qstripe; 2510 struct page *page; 2511 struct sector_ptr p_sector = { 0 }; 2512 struct sector_ptr q_sector = { 0 }; 2513 struct bio_list bio_list; 2514 int is_replace = 0; 2515 int ret; 2516 2517 bio_list_init(&bio_list); 2518 2519 if (rbio->real_stripes - rbio->nr_data == 1) 2520 has_qstripe = false; 2521 else if (rbio->real_stripes - rbio->nr_data == 2) 2522 has_qstripe = true; 2523 else 2524 BUG(); 2525 2526 /* 2527 * Replace is running and our P/Q stripe is being replaced, then we 2528 * need to duplicate the final write to replace target. 2529 */ 2530 if (bioc->replace_nr_stripes && bioc->replace_stripe_src == rbio->scrubp) { 2531 is_replace = 1; 2532 bitmap_copy(pbitmap, &rbio->dbitmap, rbio->stripe_nsectors); 2533 } 2534 2535 /* 2536 * Because the higher layers(scrubber) are unlikely to 2537 * use this area of the disk again soon, so don't cache 2538 * it. 2539 */ 2540 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); 2541 2542 page = alloc_page(GFP_NOFS); 2543 if (!page) 2544 return -ENOMEM; 2545 p_sector.has_paddr = true; 2546 p_sector.paddr = page_to_phys(page); 2547 p_sector.uptodate = 1; 2548 page = NULL; 2549 2550 if (has_qstripe) { 2551 /* RAID6, allocate and map temp space for the Q stripe */ 2552 page = alloc_page(GFP_NOFS); 2553 if (!page) { 2554 __free_page(phys_to_page(p_sector.paddr)); 2555 p_sector.has_paddr = false; 2556 return -ENOMEM; 2557 } 2558 q_sector.has_paddr = true; 2559 q_sector.paddr = page_to_phys(page); 2560 q_sector.uptodate = 1; 2561 page = NULL; 2562 pointers[rbio->real_stripes - 1] = kmap_local_sector(&q_sector); 2563 } 2564 2565 bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors); 2566 2567 /* Map the parity stripe just once */ 2568 pointers[nr_data] = kmap_local_sector(&p_sector); 2569 2570 for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) { 2571 struct sector_ptr *sector; 2572 void *parity; 2573 2574 /* first collect one page from each data stripe */ 2575 for (stripe = 0; stripe < nr_data; stripe++) { 2576 sector = sector_in_rbio(rbio, stripe, sectornr, 0); 2577 pointers[stripe] = kmap_local_sector(sector); 2578 } 2579 2580 if (has_qstripe) { 2581 assert_rbio(rbio); 2582 /* RAID6, call the library function to fill in our P/Q */ 2583 raid6_call.gen_syndrome(rbio->real_stripes, sectorsize, 2584 pointers); 2585 } else { 2586 /* raid5 */ 2587 memcpy(pointers[nr_data], pointers[0], sectorsize); 2588 run_xor(pointers + 1, nr_data - 1, sectorsize); 2589 } 2590 2591 /* Check scrubbing parity and repair it */ 2592 sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr); 2593 parity = kmap_local_sector(sector); 2594 if (memcmp(parity, pointers[rbio->scrubp], sectorsize) != 0) 2595 memcpy(parity, pointers[rbio->scrubp], sectorsize); 2596 else 2597 /* Parity is right, needn't writeback */ 2598 bitmap_clear(&rbio->dbitmap, sectornr, 1); 2599 kunmap_local(parity); 2600 2601 for (stripe = nr_data - 1; stripe >= 0; stripe--) 2602 kunmap_local(pointers[stripe]); 2603 } 2604 2605 kunmap_local(pointers[nr_data]); 2606 __free_page(phys_to_page(p_sector.paddr)); 2607 p_sector.has_paddr = false; 2608 if (q_sector.has_paddr) { 2609 __free_page(phys_to_page(q_sector.paddr)); 2610 q_sector.has_paddr = false; 2611 } 2612 2613 /* 2614 * time to start writing. Make bios for everything from the 2615 * higher layers (the bio_list in our rbio) and our p/q. Ignore 2616 * everything else. 2617 */ 2618 for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) { 2619 struct sector_ptr *sector; 2620 2621 sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr); 2622 ret = rbio_add_io_sector(rbio, &bio_list, sector, rbio->scrubp, 2623 sectornr, REQ_OP_WRITE); 2624 if (ret) 2625 goto cleanup; 2626 } 2627 2628 if (!is_replace) 2629 goto submit_write; 2630 2631 /* 2632 * Replace is running and our parity stripe needs to be duplicated to 2633 * the target device. Check we have a valid source stripe number. 2634 */ 2635 ASSERT_RBIO(rbio->bioc->replace_stripe_src >= 0, rbio); 2636 for_each_set_bit(sectornr, pbitmap, rbio->stripe_nsectors) { 2637 struct sector_ptr *sector; 2638 2639 sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr); 2640 ret = rbio_add_io_sector(rbio, &bio_list, sector, 2641 rbio->real_stripes, 2642 sectornr, REQ_OP_WRITE); 2643 if (ret) 2644 goto cleanup; 2645 } 2646 2647 submit_write: 2648 submit_write_bios(rbio, &bio_list); 2649 return 0; 2650 2651 cleanup: 2652 bio_list_put(&bio_list); 2653 return ret; 2654 } 2655 2656 static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe) 2657 { 2658 if (stripe >= 0 && stripe < rbio->nr_data) 2659 return 1; 2660 return 0; 2661 } 2662 2663 static int recover_scrub_rbio(struct btrfs_raid_bio *rbio) 2664 { 2665 void **pointers = NULL; 2666 void **unmap_array = NULL; 2667 int sector_nr; 2668 int ret = 0; 2669 2670 /* 2671 * @pointers array stores the pointer for each sector. 2672 * 2673 * @unmap_array stores copy of pointers that does not get reordered 2674 * during reconstruction so that kunmap_local works. 2675 */ 2676 pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS); 2677 unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS); 2678 if (!pointers || !unmap_array) { 2679 ret = -ENOMEM; 2680 goto out; 2681 } 2682 2683 for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) { 2684 int dfail = 0, failp = -1; 2685 int faila; 2686 int failb; 2687 int found_errors; 2688 2689 found_errors = get_rbio_veritical_errors(rbio, sector_nr, 2690 &faila, &failb); 2691 if (unlikely(found_errors > rbio->bioc->max_errors)) { 2692 ret = -EIO; 2693 goto out; 2694 } 2695 if (found_errors == 0) 2696 continue; 2697 2698 /* We should have at least one error here. */ 2699 ASSERT(faila >= 0 || failb >= 0); 2700 2701 if (is_data_stripe(rbio, faila)) 2702 dfail++; 2703 else if (is_parity_stripe(faila)) 2704 failp = faila; 2705 2706 if (is_data_stripe(rbio, failb)) 2707 dfail++; 2708 else if (is_parity_stripe(failb)) 2709 failp = failb; 2710 /* 2711 * Because we can not use a scrubbing parity to repair the 2712 * data, so the capability of the repair is declined. (In the 2713 * case of RAID5, we can not repair anything.) 2714 */ 2715 if (unlikely(dfail > rbio->bioc->max_errors - 1)) { 2716 ret = -EIO; 2717 goto out; 2718 } 2719 /* 2720 * If all data is good, only parity is correctly, just repair 2721 * the parity, no need to recover data stripes. 2722 */ 2723 if (dfail == 0) 2724 continue; 2725 2726 /* 2727 * Here means we got one corrupted data stripe and one 2728 * corrupted parity on RAID6, if the corrupted parity is 2729 * scrubbing parity, luckily, use the other one to repair the 2730 * data, or we can not repair the data stripe. 2731 */ 2732 if (unlikely(failp != rbio->scrubp)) { 2733 ret = -EIO; 2734 goto out; 2735 } 2736 2737 ret = recover_vertical(rbio, sector_nr, pointers, unmap_array); 2738 if (ret < 0) 2739 goto out; 2740 } 2741 out: 2742 kfree(pointers); 2743 kfree(unmap_array); 2744 return ret; 2745 } 2746 2747 static int scrub_assemble_read_bios(struct btrfs_raid_bio *rbio) 2748 { 2749 struct bio_list bio_list = BIO_EMPTY_LIST; 2750 int total_sector_nr; 2751 int ret = 0; 2752 2753 /* Build a list of bios to read all the missing parts. */ 2754 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors; 2755 total_sector_nr++) { 2756 int sectornr = total_sector_nr % rbio->stripe_nsectors; 2757 int stripe = total_sector_nr / rbio->stripe_nsectors; 2758 struct sector_ptr *sector; 2759 2760 /* No data in the vertical stripe, no need to read. */ 2761 if (!test_bit(sectornr, &rbio->dbitmap)) 2762 continue; 2763 2764 /* 2765 * We want to find all the sectors missing from the rbio and 2766 * read them from the disk. If sector_in_rbio() finds a sector 2767 * in the bio list we don't need to read it off the stripe. 2768 */ 2769 sector = sector_in_rbio(rbio, stripe, sectornr, 1); 2770 if (sector) 2771 continue; 2772 2773 sector = rbio_stripe_sector(rbio, stripe, sectornr); 2774 /* 2775 * The bio cache may have handed us an uptodate sector. If so, 2776 * use it. 2777 */ 2778 if (sector->uptodate) 2779 continue; 2780 2781 ret = rbio_add_io_sector(rbio, &bio_list, sector, stripe, 2782 sectornr, REQ_OP_READ); 2783 if (ret) { 2784 bio_list_put(&bio_list); 2785 return ret; 2786 } 2787 } 2788 2789 submit_read_wait_bio_list(rbio, &bio_list); 2790 return 0; 2791 } 2792 2793 static void scrub_rbio(struct btrfs_raid_bio *rbio) 2794 { 2795 int sector_nr; 2796 int ret; 2797 2798 ret = alloc_rbio_essential_pages(rbio); 2799 if (ret) 2800 goto out; 2801 2802 bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors); 2803 2804 ret = scrub_assemble_read_bios(rbio); 2805 if (ret < 0) 2806 goto out; 2807 2808 /* We may have some failures, recover the failed sectors first. */ 2809 ret = recover_scrub_rbio(rbio); 2810 if (ret < 0) 2811 goto out; 2812 2813 /* 2814 * We have every sector properly prepared. Can finish the scrub 2815 * and writeback the good content. 2816 */ 2817 ret = finish_parity_scrub(rbio); 2818 wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0); 2819 for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) { 2820 int found_errors; 2821 2822 found_errors = get_rbio_veritical_errors(rbio, sector_nr, NULL, NULL); 2823 if (unlikely(found_errors > rbio->bioc->max_errors)) { 2824 ret = -EIO; 2825 break; 2826 } 2827 } 2828 out: 2829 rbio_orig_end_io(rbio, errno_to_blk_status(ret)); 2830 } 2831 2832 static void scrub_rbio_work_locked(struct work_struct *work) 2833 { 2834 scrub_rbio(container_of(work, struct btrfs_raid_bio, work)); 2835 } 2836 2837 void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio) 2838 { 2839 if (!lock_stripe_add(rbio)) 2840 start_async_work(rbio, scrub_rbio_work_locked); 2841 } 2842 2843 /* 2844 * This is for scrub call sites where we already have correct data contents. 2845 * This allows us to avoid reading data stripes again. 2846 * 2847 * Unfortunately here we have to do folio copy, other than reusing the pages. 2848 * This is due to the fact rbio has its own page management for its cache. 2849 */ 2850 void raid56_parity_cache_data_folios(struct btrfs_raid_bio *rbio, 2851 struct folio **data_folios, u64 data_logical) 2852 { 2853 struct btrfs_fs_info *fs_info = rbio->bioc->fs_info; 2854 const u64 offset_in_full_stripe = data_logical - 2855 rbio->bioc->full_stripe_logical; 2856 unsigned int findex = 0; 2857 unsigned int foffset = 0; 2858 int ret; 2859 2860 /* We shouldn't hit RAID56 for bs > ps cases for now. */ 2861 ASSERT(fs_info->sectorsize <= PAGE_SIZE); 2862 2863 /* 2864 * If we hit ENOMEM temporarily, but later at 2865 * raid56_parity_submit_scrub_rbio() time it succeeded, we just do 2866 * the extra read, not a big deal. 2867 * 2868 * If we hit ENOMEM later at raid56_parity_submit_scrub_rbio() time, 2869 * the bio would got proper error number set. 2870 */ 2871 ret = alloc_rbio_data_pages(rbio); 2872 if (ret < 0) 2873 return; 2874 2875 /* data_logical must be at stripe boundary and inside the full stripe. */ 2876 ASSERT(IS_ALIGNED(offset_in_full_stripe, BTRFS_STRIPE_LEN)); 2877 ASSERT(offset_in_full_stripe < (rbio->nr_data << BTRFS_STRIPE_LEN_SHIFT)); 2878 2879 for (unsigned int cur_off = offset_in_full_stripe; 2880 cur_off < offset_in_full_stripe + BTRFS_STRIPE_LEN; 2881 cur_off += PAGE_SIZE) { 2882 const unsigned int pindex = cur_off >> PAGE_SHIFT; 2883 void *kaddr; 2884 2885 kaddr = kmap_local_page(rbio->stripe_pages[pindex]); 2886 memcpy_from_folio(kaddr, data_folios[findex], foffset, PAGE_SIZE); 2887 kunmap_local(kaddr); 2888 2889 foffset += PAGE_SIZE; 2890 ASSERT(foffset <= folio_size(data_folios[findex])); 2891 if (foffset == folio_size(data_folios[findex])) { 2892 findex++; 2893 foffset = 0; 2894 } 2895 } 2896 for (unsigned int sector_nr = offset_in_full_stripe >> fs_info->sectorsize_bits; 2897 sector_nr < (offset_in_full_stripe + BTRFS_STRIPE_LEN) >> fs_info->sectorsize_bits; 2898 sector_nr++) 2899 rbio->stripe_sectors[sector_nr].uptodate = true; 2900 } 2901