xref: /linux/fs/btrfs/raid56.c (revision 001821b0e79716c4e17c71d8e053a23599a7a508)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2012 Fusion-io  All rights reserved.
4  * Copyright (C) 2012 Intel Corp. All rights reserved.
5  */
6 
7 #include <linux/sched.h>
8 #include <linux/bio.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/raid/pq.h>
12 #include <linux/hash.h>
13 #include <linux/list_sort.h>
14 #include <linux/raid/xor.h>
15 #include <linux/mm.h>
16 #include "messages.h"
17 #include "ctree.h"
18 #include "disk-io.h"
19 #include "volumes.h"
20 #include "raid56.h"
21 #include "async-thread.h"
22 #include "file-item.h"
23 #include "btrfs_inode.h"
24 
25 /* set when additional merges to this rbio are not allowed */
26 #define RBIO_RMW_LOCKED_BIT	1
27 
28 /*
29  * set when this rbio is sitting in the hash, but it is just a cache
30  * of past RMW
31  */
32 #define RBIO_CACHE_BIT		2
33 
34 /*
35  * set when it is safe to trust the stripe_pages for caching
36  */
37 #define RBIO_CACHE_READY_BIT	3
38 
39 #define RBIO_CACHE_SIZE 1024
40 
41 #define BTRFS_STRIPE_HASH_TABLE_BITS				11
42 
43 /* Used by the raid56 code to lock stripes for read/modify/write */
44 struct btrfs_stripe_hash {
45 	struct list_head hash_list;
46 	spinlock_t lock;
47 };
48 
49 /* Used by the raid56 code to lock stripes for read/modify/write */
50 struct btrfs_stripe_hash_table {
51 	struct list_head stripe_cache;
52 	spinlock_t cache_lock;
53 	int cache_size;
54 	struct btrfs_stripe_hash table[];
55 };
56 
57 /*
58  * A bvec like structure to present a sector inside a page.
59  *
60  * Unlike bvec we don't need bvlen, as it's fixed to sectorsize.
61  */
62 struct sector_ptr {
63 	struct page *page;
64 	unsigned int pgoff:24;
65 	unsigned int uptodate:8;
66 };
67 
68 static void rmw_rbio_work(struct work_struct *work);
69 static void rmw_rbio_work_locked(struct work_struct *work);
70 static void index_rbio_pages(struct btrfs_raid_bio *rbio);
71 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
72 
73 static int finish_parity_scrub(struct btrfs_raid_bio *rbio);
74 static void scrub_rbio_work_locked(struct work_struct *work);
75 
76 static void free_raid_bio_pointers(struct btrfs_raid_bio *rbio)
77 {
78 	bitmap_free(rbio->error_bitmap);
79 	kfree(rbio->stripe_pages);
80 	kfree(rbio->bio_sectors);
81 	kfree(rbio->stripe_sectors);
82 	kfree(rbio->finish_pointers);
83 }
84 
85 static void free_raid_bio(struct btrfs_raid_bio *rbio)
86 {
87 	int i;
88 
89 	if (!refcount_dec_and_test(&rbio->refs))
90 		return;
91 
92 	WARN_ON(!list_empty(&rbio->stripe_cache));
93 	WARN_ON(!list_empty(&rbio->hash_list));
94 	WARN_ON(!bio_list_empty(&rbio->bio_list));
95 
96 	for (i = 0; i < rbio->nr_pages; i++) {
97 		if (rbio->stripe_pages[i]) {
98 			__free_page(rbio->stripe_pages[i]);
99 			rbio->stripe_pages[i] = NULL;
100 		}
101 	}
102 
103 	btrfs_put_bioc(rbio->bioc);
104 	free_raid_bio_pointers(rbio);
105 	kfree(rbio);
106 }
107 
108 static void start_async_work(struct btrfs_raid_bio *rbio, work_func_t work_func)
109 {
110 	INIT_WORK(&rbio->work, work_func);
111 	queue_work(rbio->bioc->fs_info->rmw_workers, &rbio->work);
112 }
113 
114 /*
115  * the stripe hash table is used for locking, and to collect
116  * bios in hopes of making a full stripe
117  */
118 int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
119 {
120 	struct btrfs_stripe_hash_table *table;
121 	struct btrfs_stripe_hash_table *x;
122 	struct btrfs_stripe_hash *cur;
123 	struct btrfs_stripe_hash *h;
124 	int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
125 	int i;
126 
127 	if (info->stripe_hash_table)
128 		return 0;
129 
130 	/*
131 	 * The table is large, starting with order 4 and can go as high as
132 	 * order 7 in case lock debugging is turned on.
133 	 *
134 	 * Try harder to allocate and fallback to vmalloc to lower the chance
135 	 * of a failing mount.
136 	 */
137 	table = kvzalloc(struct_size(table, table, num_entries), GFP_KERNEL);
138 	if (!table)
139 		return -ENOMEM;
140 
141 	spin_lock_init(&table->cache_lock);
142 	INIT_LIST_HEAD(&table->stripe_cache);
143 
144 	h = table->table;
145 
146 	for (i = 0; i < num_entries; i++) {
147 		cur = h + i;
148 		INIT_LIST_HEAD(&cur->hash_list);
149 		spin_lock_init(&cur->lock);
150 	}
151 
152 	x = cmpxchg(&info->stripe_hash_table, NULL, table);
153 	kvfree(x);
154 	return 0;
155 }
156 
157 /*
158  * caching an rbio means to copy anything from the
159  * bio_sectors array into the stripe_pages array.  We
160  * use the page uptodate bit in the stripe cache array
161  * to indicate if it has valid data
162  *
163  * once the caching is done, we set the cache ready
164  * bit.
165  */
166 static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
167 {
168 	int i;
169 	int ret;
170 
171 	ret = alloc_rbio_pages(rbio);
172 	if (ret)
173 		return;
174 
175 	for (i = 0; i < rbio->nr_sectors; i++) {
176 		/* Some range not covered by bio (partial write), skip it */
177 		if (!rbio->bio_sectors[i].page) {
178 			/*
179 			 * Even if the sector is not covered by bio, if it is
180 			 * a data sector it should still be uptodate as it is
181 			 * read from disk.
182 			 */
183 			if (i < rbio->nr_data * rbio->stripe_nsectors)
184 				ASSERT(rbio->stripe_sectors[i].uptodate);
185 			continue;
186 		}
187 
188 		ASSERT(rbio->stripe_sectors[i].page);
189 		memcpy_page(rbio->stripe_sectors[i].page,
190 			    rbio->stripe_sectors[i].pgoff,
191 			    rbio->bio_sectors[i].page,
192 			    rbio->bio_sectors[i].pgoff,
193 			    rbio->bioc->fs_info->sectorsize);
194 		rbio->stripe_sectors[i].uptodate = 1;
195 	}
196 	set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
197 }
198 
199 /*
200  * we hash on the first logical address of the stripe
201  */
202 static int rbio_bucket(struct btrfs_raid_bio *rbio)
203 {
204 	u64 num = rbio->bioc->full_stripe_logical;
205 
206 	/*
207 	 * we shift down quite a bit.  We're using byte
208 	 * addressing, and most of the lower bits are zeros.
209 	 * This tends to upset hash_64, and it consistently
210 	 * returns just one or two different values.
211 	 *
212 	 * shifting off the lower bits fixes things.
213 	 */
214 	return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
215 }
216 
217 static bool full_page_sectors_uptodate(struct btrfs_raid_bio *rbio,
218 				       unsigned int page_nr)
219 {
220 	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
221 	const u32 sectors_per_page = PAGE_SIZE / sectorsize;
222 	int i;
223 
224 	ASSERT(page_nr < rbio->nr_pages);
225 
226 	for (i = sectors_per_page * page_nr;
227 	     i < sectors_per_page * page_nr + sectors_per_page;
228 	     i++) {
229 		if (!rbio->stripe_sectors[i].uptodate)
230 			return false;
231 	}
232 	return true;
233 }
234 
235 /*
236  * Update the stripe_sectors[] array to use correct page and pgoff
237  *
238  * Should be called every time any page pointer in stripes_pages[] got modified.
239  */
240 static void index_stripe_sectors(struct btrfs_raid_bio *rbio)
241 {
242 	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
243 	u32 offset;
244 	int i;
245 
246 	for (i = 0, offset = 0; i < rbio->nr_sectors; i++, offset += sectorsize) {
247 		int page_index = offset >> PAGE_SHIFT;
248 
249 		ASSERT(page_index < rbio->nr_pages);
250 		rbio->stripe_sectors[i].page = rbio->stripe_pages[page_index];
251 		rbio->stripe_sectors[i].pgoff = offset_in_page(offset);
252 	}
253 }
254 
255 static void steal_rbio_page(struct btrfs_raid_bio *src,
256 			    struct btrfs_raid_bio *dest, int page_nr)
257 {
258 	const u32 sectorsize = src->bioc->fs_info->sectorsize;
259 	const u32 sectors_per_page = PAGE_SIZE / sectorsize;
260 	int i;
261 
262 	if (dest->stripe_pages[page_nr])
263 		__free_page(dest->stripe_pages[page_nr]);
264 	dest->stripe_pages[page_nr] = src->stripe_pages[page_nr];
265 	src->stripe_pages[page_nr] = NULL;
266 
267 	/* Also update the sector->uptodate bits. */
268 	for (i = sectors_per_page * page_nr;
269 	     i < sectors_per_page * page_nr + sectors_per_page; i++)
270 		dest->stripe_sectors[i].uptodate = true;
271 }
272 
273 static bool is_data_stripe_page(struct btrfs_raid_bio *rbio, int page_nr)
274 {
275 	const int sector_nr = (page_nr << PAGE_SHIFT) >>
276 			      rbio->bioc->fs_info->sectorsize_bits;
277 
278 	/*
279 	 * We have ensured PAGE_SIZE is aligned with sectorsize, thus
280 	 * we won't have a page which is half data half parity.
281 	 *
282 	 * Thus if the first sector of the page belongs to data stripes, then
283 	 * the full page belongs to data stripes.
284 	 */
285 	return (sector_nr < rbio->nr_data * rbio->stripe_nsectors);
286 }
287 
288 /*
289  * Stealing an rbio means taking all the uptodate pages from the stripe array
290  * in the source rbio and putting them into the destination rbio.
291  *
292  * This will also update the involved stripe_sectors[] which are referring to
293  * the old pages.
294  */
295 static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
296 {
297 	int i;
298 
299 	if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
300 		return;
301 
302 	for (i = 0; i < dest->nr_pages; i++) {
303 		struct page *p = src->stripe_pages[i];
304 
305 		/*
306 		 * We don't need to steal P/Q pages as they will always be
307 		 * regenerated for RMW or full write anyway.
308 		 */
309 		if (!is_data_stripe_page(src, i))
310 			continue;
311 
312 		/*
313 		 * If @src already has RBIO_CACHE_READY_BIT, it should have
314 		 * all data stripe pages present and uptodate.
315 		 */
316 		ASSERT(p);
317 		ASSERT(full_page_sectors_uptodate(src, i));
318 		steal_rbio_page(src, dest, i);
319 	}
320 	index_stripe_sectors(dest);
321 	index_stripe_sectors(src);
322 }
323 
324 /*
325  * merging means we take the bio_list from the victim and
326  * splice it into the destination.  The victim should
327  * be discarded afterwards.
328  *
329  * must be called with dest->rbio_list_lock held
330  */
331 static void merge_rbio(struct btrfs_raid_bio *dest,
332 		       struct btrfs_raid_bio *victim)
333 {
334 	bio_list_merge_init(&dest->bio_list, &victim->bio_list);
335 	dest->bio_list_bytes += victim->bio_list_bytes;
336 	/* Also inherit the bitmaps from @victim. */
337 	bitmap_or(&dest->dbitmap, &victim->dbitmap, &dest->dbitmap,
338 		  dest->stripe_nsectors);
339 }
340 
341 /*
342  * used to prune items that are in the cache.  The caller
343  * must hold the hash table lock.
344  */
345 static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
346 {
347 	int bucket = rbio_bucket(rbio);
348 	struct btrfs_stripe_hash_table *table;
349 	struct btrfs_stripe_hash *h;
350 	int freeit = 0;
351 
352 	/*
353 	 * check the bit again under the hash table lock.
354 	 */
355 	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
356 		return;
357 
358 	table = rbio->bioc->fs_info->stripe_hash_table;
359 	h = table->table + bucket;
360 
361 	/* hold the lock for the bucket because we may be
362 	 * removing it from the hash table
363 	 */
364 	spin_lock(&h->lock);
365 
366 	/*
367 	 * hold the lock for the bio list because we need
368 	 * to make sure the bio list is empty
369 	 */
370 	spin_lock(&rbio->bio_list_lock);
371 
372 	if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
373 		list_del_init(&rbio->stripe_cache);
374 		table->cache_size -= 1;
375 		freeit = 1;
376 
377 		/* if the bio list isn't empty, this rbio is
378 		 * still involved in an IO.  We take it out
379 		 * of the cache list, and drop the ref that
380 		 * was held for the list.
381 		 *
382 		 * If the bio_list was empty, we also remove
383 		 * the rbio from the hash_table, and drop
384 		 * the corresponding ref
385 		 */
386 		if (bio_list_empty(&rbio->bio_list)) {
387 			if (!list_empty(&rbio->hash_list)) {
388 				list_del_init(&rbio->hash_list);
389 				refcount_dec(&rbio->refs);
390 				BUG_ON(!list_empty(&rbio->plug_list));
391 			}
392 		}
393 	}
394 
395 	spin_unlock(&rbio->bio_list_lock);
396 	spin_unlock(&h->lock);
397 
398 	if (freeit)
399 		free_raid_bio(rbio);
400 }
401 
402 /*
403  * prune a given rbio from the cache
404  */
405 static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
406 {
407 	struct btrfs_stripe_hash_table *table;
408 
409 	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
410 		return;
411 
412 	table = rbio->bioc->fs_info->stripe_hash_table;
413 
414 	spin_lock(&table->cache_lock);
415 	__remove_rbio_from_cache(rbio);
416 	spin_unlock(&table->cache_lock);
417 }
418 
419 /*
420  * remove everything in the cache
421  */
422 static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
423 {
424 	struct btrfs_stripe_hash_table *table;
425 	struct btrfs_raid_bio *rbio;
426 
427 	table = info->stripe_hash_table;
428 
429 	spin_lock(&table->cache_lock);
430 	while (!list_empty(&table->stripe_cache)) {
431 		rbio = list_entry(table->stripe_cache.next,
432 				  struct btrfs_raid_bio,
433 				  stripe_cache);
434 		__remove_rbio_from_cache(rbio);
435 	}
436 	spin_unlock(&table->cache_lock);
437 }
438 
439 /*
440  * remove all cached entries and free the hash table
441  * used by unmount
442  */
443 void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
444 {
445 	if (!info->stripe_hash_table)
446 		return;
447 	btrfs_clear_rbio_cache(info);
448 	kvfree(info->stripe_hash_table);
449 	info->stripe_hash_table = NULL;
450 }
451 
452 /*
453  * insert an rbio into the stripe cache.  It
454  * must have already been prepared by calling
455  * cache_rbio_pages
456  *
457  * If this rbio was already cached, it gets
458  * moved to the front of the lru.
459  *
460  * If the size of the rbio cache is too big, we
461  * prune an item.
462  */
463 static void cache_rbio(struct btrfs_raid_bio *rbio)
464 {
465 	struct btrfs_stripe_hash_table *table;
466 
467 	if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
468 		return;
469 
470 	table = rbio->bioc->fs_info->stripe_hash_table;
471 
472 	spin_lock(&table->cache_lock);
473 	spin_lock(&rbio->bio_list_lock);
474 
475 	/* bump our ref if we were not in the list before */
476 	if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
477 		refcount_inc(&rbio->refs);
478 
479 	if (!list_empty(&rbio->stripe_cache)){
480 		list_move(&rbio->stripe_cache, &table->stripe_cache);
481 	} else {
482 		list_add(&rbio->stripe_cache, &table->stripe_cache);
483 		table->cache_size += 1;
484 	}
485 
486 	spin_unlock(&rbio->bio_list_lock);
487 
488 	if (table->cache_size > RBIO_CACHE_SIZE) {
489 		struct btrfs_raid_bio *found;
490 
491 		found = list_entry(table->stripe_cache.prev,
492 				  struct btrfs_raid_bio,
493 				  stripe_cache);
494 
495 		if (found != rbio)
496 			__remove_rbio_from_cache(found);
497 	}
498 
499 	spin_unlock(&table->cache_lock);
500 }
501 
502 /*
503  * helper function to run the xor_blocks api.  It is only
504  * able to do MAX_XOR_BLOCKS at a time, so we need to
505  * loop through.
506  */
507 static void run_xor(void **pages, int src_cnt, ssize_t len)
508 {
509 	int src_off = 0;
510 	int xor_src_cnt = 0;
511 	void *dest = pages[src_cnt];
512 
513 	while(src_cnt > 0) {
514 		xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
515 		xor_blocks(xor_src_cnt, len, dest, pages + src_off);
516 
517 		src_cnt -= xor_src_cnt;
518 		src_off += xor_src_cnt;
519 	}
520 }
521 
522 /*
523  * Returns true if the bio list inside this rbio covers an entire stripe (no
524  * rmw required).
525  */
526 static int rbio_is_full(struct btrfs_raid_bio *rbio)
527 {
528 	unsigned long size = rbio->bio_list_bytes;
529 	int ret = 1;
530 
531 	spin_lock(&rbio->bio_list_lock);
532 	if (size != rbio->nr_data * BTRFS_STRIPE_LEN)
533 		ret = 0;
534 	BUG_ON(size > rbio->nr_data * BTRFS_STRIPE_LEN);
535 	spin_unlock(&rbio->bio_list_lock);
536 
537 	return ret;
538 }
539 
540 /*
541  * returns 1 if it is safe to merge two rbios together.
542  * The merging is safe if the two rbios correspond to
543  * the same stripe and if they are both going in the same
544  * direction (read vs write), and if neither one is
545  * locked for final IO
546  *
547  * The caller is responsible for locking such that
548  * rmw_locked is safe to test
549  */
550 static int rbio_can_merge(struct btrfs_raid_bio *last,
551 			  struct btrfs_raid_bio *cur)
552 {
553 	if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
554 	    test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
555 		return 0;
556 
557 	/*
558 	 * we can't merge with cached rbios, since the
559 	 * idea is that when we merge the destination
560 	 * rbio is going to run our IO for us.  We can
561 	 * steal from cached rbios though, other functions
562 	 * handle that.
563 	 */
564 	if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
565 	    test_bit(RBIO_CACHE_BIT, &cur->flags))
566 		return 0;
567 
568 	if (last->bioc->full_stripe_logical != cur->bioc->full_stripe_logical)
569 		return 0;
570 
571 	/* we can't merge with different operations */
572 	if (last->operation != cur->operation)
573 		return 0;
574 	/*
575 	 * We've need read the full stripe from the drive.
576 	 * check and repair the parity and write the new results.
577 	 *
578 	 * We're not allowed to add any new bios to the
579 	 * bio list here, anyone else that wants to
580 	 * change this stripe needs to do their own rmw.
581 	 */
582 	if (last->operation == BTRFS_RBIO_PARITY_SCRUB)
583 		return 0;
584 
585 	if (last->operation == BTRFS_RBIO_READ_REBUILD)
586 		return 0;
587 
588 	return 1;
589 }
590 
591 static unsigned int rbio_stripe_sector_index(const struct btrfs_raid_bio *rbio,
592 					     unsigned int stripe_nr,
593 					     unsigned int sector_nr)
594 {
595 	ASSERT(stripe_nr < rbio->real_stripes);
596 	ASSERT(sector_nr < rbio->stripe_nsectors);
597 
598 	return stripe_nr * rbio->stripe_nsectors + sector_nr;
599 }
600 
601 /* Return a sector from rbio->stripe_sectors, not from the bio list */
602 static struct sector_ptr *rbio_stripe_sector(const struct btrfs_raid_bio *rbio,
603 					     unsigned int stripe_nr,
604 					     unsigned int sector_nr)
605 {
606 	return &rbio->stripe_sectors[rbio_stripe_sector_index(rbio, stripe_nr,
607 							      sector_nr)];
608 }
609 
610 /* Grab a sector inside P stripe */
611 static struct sector_ptr *rbio_pstripe_sector(const struct btrfs_raid_bio *rbio,
612 					      unsigned int sector_nr)
613 {
614 	return rbio_stripe_sector(rbio, rbio->nr_data, sector_nr);
615 }
616 
617 /* Grab a sector inside Q stripe, return NULL if not RAID6 */
618 static struct sector_ptr *rbio_qstripe_sector(const struct btrfs_raid_bio *rbio,
619 					      unsigned int sector_nr)
620 {
621 	if (rbio->nr_data + 1 == rbio->real_stripes)
622 		return NULL;
623 	return rbio_stripe_sector(rbio, rbio->nr_data + 1, sector_nr);
624 }
625 
626 /*
627  * The first stripe in the table for a logical address
628  * has the lock.  rbios are added in one of three ways:
629  *
630  * 1) Nobody has the stripe locked yet.  The rbio is given
631  * the lock and 0 is returned.  The caller must start the IO
632  * themselves.
633  *
634  * 2) Someone has the stripe locked, but we're able to merge
635  * with the lock owner.  The rbio is freed and the IO will
636  * start automatically along with the existing rbio.  1 is returned.
637  *
638  * 3) Someone has the stripe locked, but we're not able to merge.
639  * The rbio is added to the lock owner's plug list, or merged into
640  * an rbio already on the plug list.  When the lock owner unlocks,
641  * the next rbio on the list is run and the IO is started automatically.
642  * 1 is returned
643  *
644  * If we return 0, the caller still owns the rbio and must continue with
645  * IO submission.  If we return 1, the caller must assume the rbio has
646  * already been freed.
647  */
648 static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
649 {
650 	struct btrfs_stripe_hash *h;
651 	struct btrfs_raid_bio *cur;
652 	struct btrfs_raid_bio *pending;
653 	struct btrfs_raid_bio *freeit = NULL;
654 	struct btrfs_raid_bio *cache_drop = NULL;
655 	int ret = 0;
656 
657 	h = rbio->bioc->fs_info->stripe_hash_table->table + rbio_bucket(rbio);
658 
659 	spin_lock(&h->lock);
660 	list_for_each_entry(cur, &h->hash_list, hash_list) {
661 		if (cur->bioc->full_stripe_logical != rbio->bioc->full_stripe_logical)
662 			continue;
663 
664 		spin_lock(&cur->bio_list_lock);
665 
666 		/* Can we steal this cached rbio's pages? */
667 		if (bio_list_empty(&cur->bio_list) &&
668 		    list_empty(&cur->plug_list) &&
669 		    test_bit(RBIO_CACHE_BIT, &cur->flags) &&
670 		    !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
671 			list_del_init(&cur->hash_list);
672 			refcount_dec(&cur->refs);
673 
674 			steal_rbio(cur, rbio);
675 			cache_drop = cur;
676 			spin_unlock(&cur->bio_list_lock);
677 
678 			goto lockit;
679 		}
680 
681 		/* Can we merge into the lock owner? */
682 		if (rbio_can_merge(cur, rbio)) {
683 			merge_rbio(cur, rbio);
684 			spin_unlock(&cur->bio_list_lock);
685 			freeit = rbio;
686 			ret = 1;
687 			goto out;
688 		}
689 
690 
691 		/*
692 		 * We couldn't merge with the running rbio, see if we can merge
693 		 * with the pending ones.  We don't have to check for rmw_locked
694 		 * because there is no way they are inside finish_rmw right now
695 		 */
696 		list_for_each_entry(pending, &cur->plug_list, plug_list) {
697 			if (rbio_can_merge(pending, rbio)) {
698 				merge_rbio(pending, rbio);
699 				spin_unlock(&cur->bio_list_lock);
700 				freeit = rbio;
701 				ret = 1;
702 				goto out;
703 			}
704 		}
705 
706 		/*
707 		 * No merging, put us on the tail of the plug list, our rbio
708 		 * will be started with the currently running rbio unlocks
709 		 */
710 		list_add_tail(&rbio->plug_list, &cur->plug_list);
711 		spin_unlock(&cur->bio_list_lock);
712 		ret = 1;
713 		goto out;
714 	}
715 lockit:
716 	refcount_inc(&rbio->refs);
717 	list_add(&rbio->hash_list, &h->hash_list);
718 out:
719 	spin_unlock(&h->lock);
720 	if (cache_drop)
721 		remove_rbio_from_cache(cache_drop);
722 	if (freeit)
723 		free_raid_bio(freeit);
724 	return ret;
725 }
726 
727 static void recover_rbio_work_locked(struct work_struct *work);
728 
729 /*
730  * called as rmw or parity rebuild is completed.  If the plug list has more
731  * rbios waiting for this stripe, the next one on the list will be started
732  */
733 static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
734 {
735 	int bucket;
736 	struct btrfs_stripe_hash *h;
737 	int keep_cache = 0;
738 
739 	bucket = rbio_bucket(rbio);
740 	h = rbio->bioc->fs_info->stripe_hash_table->table + bucket;
741 
742 	if (list_empty(&rbio->plug_list))
743 		cache_rbio(rbio);
744 
745 	spin_lock(&h->lock);
746 	spin_lock(&rbio->bio_list_lock);
747 
748 	if (!list_empty(&rbio->hash_list)) {
749 		/*
750 		 * if we're still cached and there is no other IO
751 		 * to perform, just leave this rbio here for others
752 		 * to steal from later
753 		 */
754 		if (list_empty(&rbio->plug_list) &&
755 		    test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
756 			keep_cache = 1;
757 			clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
758 			BUG_ON(!bio_list_empty(&rbio->bio_list));
759 			goto done;
760 		}
761 
762 		list_del_init(&rbio->hash_list);
763 		refcount_dec(&rbio->refs);
764 
765 		/*
766 		 * we use the plug list to hold all the rbios
767 		 * waiting for the chance to lock this stripe.
768 		 * hand the lock over to one of them.
769 		 */
770 		if (!list_empty(&rbio->plug_list)) {
771 			struct btrfs_raid_bio *next;
772 			struct list_head *head = rbio->plug_list.next;
773 
774 			next = list_entry(head, struct btrfs_raid_bio,
775 					  plug_list);
776 
777 			list_del_init(&rbio->plug_list);
778 
779 			list_add(&next->hash_list, &h->hash_list);
780 			refcount_inc(&next->refs);
781 			spin_unlock(&rbio->bio_list_lock);
782 			spin_unlock(&h->lock);
783 
784 			if (next->operation == BTRFS_RBIO_READ_REBUILD) {
785 				start_async_work(next, recover_rbio_work_locked);
786 			} else if (next->operation == BTRFS_RBIO_WRITE) {
787 				steal_rbio(rbio, next);
788 				start_async_work(next, rmw_rbio_work_locked);
789 			} else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
790 				steal_rbio(rbio, next);
791 				start_async_work(next, scrub_rbio_work_locked);
792 			}
793 
794 			goto done_nolock;
795 		}
796 	}
797 done:
798 	spin_unlock(&rbio->bio_list_lock);
799 	spin_unlock(&h->lock);
800 
801 done_nolock:
802 	if (!keep_cache)
803 		remove_rbio_from_cache(rbio);
804 }
805 
806 static void rbio_endio_bio_list(struct bio *cur, blk_status_t err)
807 {
808 	struct bio *next;
809 
810 	while (cur) {
811 		next = cur->bi_next;
812 		cur->bi_next = NULL;
813 		cur->bi_status = err;
814 		bio_endio(cur);
815 		cur = next;
816 	}
817 }
818 
819 /*
820  * this frees the rbio and runs through all the bios in the
821  * bio_list and calls end_io on them
822  */
823 static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err)
824 {
825 	struct bio *cur = bio_list_get(&rbio->bio_list);
826 	struct bio *extra;
827 
828 	kfree(rbio->csum_buf);
829 	bitmap_free(rbio->csum_bitmap);
830 	rbio->csum_buf = NULL;
831 	rbio->csum_bitmap = NULL;
832 
833 	/*
834 	 * Clear the data bitmap, as the rbio may be cached for later usage.
835 	 * do this before before unlock_stripe() so there will be no new bio
836 	 * for this bio.
837 	 */
838 	bitmap_clear(&rbio->dbitmap, 0, rbio->stripe_nsectors);
839 
840 	/*
841 	 * At this moment, rbio->bio_list is empty, however since rbio does not
842 	 * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the
843 	 * hash list, rbio may be merged with others so that rbio->bio_list
844 	 * becomes non-empty.
845 	 * Once unlock_stripe() is done, rbio->bio_list will not be updated any
846 	 * more and we can call bio_endio() on all queued bios.
847 	 */
848 	unlock_stripe(rbio);
849 	extra = bio_list_get(&rbio->bio_list);
850 	free_raid_bio(rbio);
851 
852 	rbio_endio_bio_list(cur, err);
853 	if (extra)
854 		rbio_endio_bio_list(extra, err);
855 }
856 
857 /*
858  * Get a sector pointer specified by its @stripe_nr and @sector_nr.
859  *
860  * @rbio:               The raid bio
861  * @stripe_nr:          Stripe number, valid range [0, real_stripe)
862  * @sector_nr:		Sector number inside the stripe,
863  *			valid range [0, stripe_nsectors)
864  * @bio_list_only:      Whether to use sectors inside the bio list only.
865  *
866  * The read/modify/write code wants to reuse the original bio page as much
867  * as possible, and only use stripe_sectors as fallback.
868  */
869 static struct sector_ptr *sector_in_rbio(struct btrfs_raid_bio *rbio,
870 					 int stripe_nr, int sector_nr,
871 					 bool bio_list_only)
872 {
873 	struct sector_ptr *sector;
874 	int index;
875 
876 	ASSERT(stripe_nr >= 0 && stripe_nr < rbio->real_stripes);
877 	ASSERT(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors);
878 
879 	index = stripe_nr * rbio->stripe_nsectors + sector_nr;
880 	ASSERT(index >= 0 && index < rbio->nr_sectors);
881 
882 	spin_lock(&rbio->bio_list_lock);
883 	sector = &rbio->bio_sectors[index];
884 	if (sector->page || bio_list_only) {
885 		/* Don't return sector without a valid page pointer */
886 		if (!sector->page)
887 			sector = NULL;
888 		spin_unlock(&rbio->bio_list_lock);
889 		return sector;
890 	}
891 	spin_unlock(&rbio->bio_list_lock);
892 
893 	return &rbio->stripe_sectors[index];
894 }
895 
896 /*
897  * allocation and initial setup for the btrfs_raid_bio.  Not
898  * this does not allocate any pages for rbio->pages.
899  */
900 static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info,
901 					 struct btrfs_io_context *bioc)
902 {
903 	const unsigned int real_stripes = bioc->num_stripes - bioc->replace_nr_stripes;
904 	const unsigned int stripe_npages = BTRFS_STRIPE_LEN >> PAGE_SHIFT;
905 	const unsigned int num_pages = stripe_npages * real_stripes;
906 	const unsigned int stripe_nsectors =
907 		BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits;
908 	const unsigned int num_sectors = stripe_nsectors * real_stripes;
909 	struct btrfs_raid_bio *rbio;
910 
911 	/* PAGE_SIZE must also be aligned to sectorsize for subpage support */
912 	ASSERT(IS_ALIGNED(PAGE_SIZE, fs_info->sectorsize));
913 	/*
914 	 * Our current stripe len should be fixed to 64k thus stripe_nsectors
915 	 * (at most 16) should be no larger than BITS_PER_LONG.
916 	 */
917 	ASSERT(stripe_nsectors <= BITS_PER_LONG);
918 
919 	/*
920 	 * Real stripes must be between 2 (2 disks RAID5, aka RAID1) and 256
921 	 * (limited by u8).
922 	 */
923 	ASSERT(real_stripes >= 2);
924 	ASSERT(real_stripes <= U8_MAX);
925 
926 	rbio = kzalloc(sizeof(*rbio), GFP_NOFS);
927 	if (!rbio)
928 		return ERR_PTR(-ENOMEM);
929 	rbio->stripe_pages = kcalloc(num_pages, sizeof(struct page *),
930 				     GFP_NOFS);
931 	rbio->bio_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr),
932 				    GFP_NOFS);
933 	rbio->stripe_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr),
934 				       GFP_NOFS);
935 	rbio->finish_pointers = kcalloc(real_stripes, sizeof(void *), GFP_NOFS);
936 	rbio->error_bitmap = bitmap_zalloc(num_sectors, GFP_NOFS);
937 
938 	if (!rbio->stripe_pages || !rbio->bio_sectors || !rbio->stripe_sectors ||
939 	    !rbio->finish_pointers || !rbio->error_bitmap) {
940 		free_raid_bio_pointers(rbio);
941 		kfree(rbio);
942 		return ERR_PTR(-ENOMEM);
943 	}
944 
945 	bio_list_init(&rbio->bio_list);
946 	init_waitqueue_head(&rbio->io_wait);
947 	INIT_LIST_HEAD(&rbio->plug_list);
948 	spin_lock_init(&rbio->bio_list_lock);
949 	INIT_LIST_HEAD(&rbio->stripe_cache);
950 	INIT_LIST_HEAD(&rbio->hash_list);
951 	btrfs_get_bioc(bioc);
952 	rbio->bioc = bioc;
953 	rbio->nr_pages = num_pages;
954 	rbio->nr_sectors = num_sectors;
955 	rbio->real_stripes = real_stripes;
956 	rbio->stripe_npages = stripe_npages;
957 	rbio->stripe_nsectors = stripe_nsectors;
958 	refcount_set(&rbio->refs, 1);
959 	atomic_set(&rbio->stripes_pending, 0);
960 
961 	ASSERT(btrfs_nr_parity_stripes(bioc->map_type));
962 	rbio->nr_data = real_stripes - btrfs_nr_parity_stripes(bioc->map_type);
963 	ASSERT(rbio->nr_data > 0);
964 
965 	return rbio;
966 }
967 
968 /* allocate pages for all the stripes in the bio, including parity */
969 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
970 {
971 	int ret;
972 
973 	ret = btrfs_alloc_page_array(rbio->nr_pages, rbio->stripe_pages, 0);
974 	if (ret < 0)
975 		return ret;
976 	/* Mapping all sectors */
977 	index_stripe_sectors(rbio);
978 	return 0;
979 }
980 
981 /* only allocate pages for p/q stripes */
982 static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
983 {
984 	const int data_pages = rbio->nr_data * rbio->stripe_npages;
985 	int ret;
986 
987 	ret = btrfs_alloc_page_array(rbio->nr_pages - data_pages,
988 				     rbio->stripe_pages + data_pages, 0);
989 	if (ret < 0)
990 		return ret;
991 
992 	index_stripe_sectors(rbio);
993 	return 0;
994 }
995 
996 /*
997  * Return the total number of errors found in the vertical stripe of @sector_nr.
998  *
999  * @faila and @failb will also be updated to the first and second stripe
1000  * number of the errors.
1001  */
1002 static int get_rbio_veritical_errors(struct btrfs_raid_bio *rbio, int sector_nr,
1003 				     int *faila, int *failb)
1004 {
1005 	int stripe_nr;
1006 	int found_errors = 0;
1007 
1008 	if (faila || failb) {
1009 		/*
1010 		 * Both @faila and @failb should be valid pointers if any of
1011 		 * them is specified.
1012 		 */
1013 		ASSERT(faila && failb);
1014 		*faila = -1;
1015 		*failb = -1;
1016 	}
1017 
1018 	for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
1019 		int total_sector_nr = stripe_nr * rbio->stripe_nsectors + sector_nr;
1020 
1021 		if (test_bit(total_sector_nr, rbio->error_bitmap)) {
1022 			found_errors++;
1023 			if (faila) {
1024 				/* Update faila and failb. */
1025 				if (*faila < 0)
1026 					*faila = stripe_nr;
1027 				else if (*failb < 0)
1028 					*failb = stripe_nr;
1029 			}
1030 		}
1031 	}
1032 	return found_errors;
1033 }
1034 
1035 /*
1036  * Add a single sector @sector into our list of bios for IO.
1037  *
1038  * Return 0 if everything went well.
1039  * Return <0 for error.
1040  */
1041 static int rbio_add_io_sector(struct btrfs_raid_bio *rbio,
1042 			      struct bio_list *bio_list,
1043 			      struct sector_ptr *sector,
1044 			      unsigned int stripe_nr,
1045 			      unsigned int sector_nr,
1046 			      enum req_op op)
1047 {
1048 	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1049 	struct bio *last = bio_list->tail;
1050 	int ret;
1051 	struct bio *bio;
1052 	struct btrfs_io_stripe *stripe;
1053 	u64 disk_start;
1054 
1055 	/*
1056 	 * Note: here stripe_nr has taken device replace into consideration,
1057 	 * thus it can be larger than rbio->real_stripe.
1058 	 * So here we check against bioc->num_stripes, not rbio->real_stripes.
1059 	 */
1060 	ASSERT(stripe_nr >= 0 && stripe_nr < rbio->bioc->num_stripes);
1061 	ASSERT(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors);
1062 	ASSERT(sector->page);
1063 
1064 	stripe = &rbio->bioc->stripes[stripe_nr];
1065 	disk_start = stripe->physical + sector_nr * sectorsize;
1066 
1067 	/* if the device is missing, just fail this stripe */
1068 	if (!stripe->dev->bdev) {
1069 		int found_errors;
1070 
1071 		set_bit(stripe_nr * rbio->stripe_nsectors + sector_nr,
1072 			rbio->error_bitmap);
1073 
1074 		/* Check if we have reached tolerance early. */
1075 		found_errors = get_rbio_veritical_errors(rbio, sector_nr,
1076 							 NULL, NULL);
1077 		if (found_errors > rbio->bioc->max_errors)
1078 			return -EIO;
1079 		return 0;
1080 	}
1081 
1082 	/* see if we can add this page onto our existing bio */
1083 	if (last) {
1084 		u64 last_end = last->bi_iter.bi_sector << SECTOR_SHIFT;
1085 		last_end += last->bi_iter.bi_size;
1086 
1087 		/*
1088 		 * we can't merge these if they are from different
1089 		 * devices or if they are not contiguous
1090 		 */
1091 		if (last_end == disk_start && !last->bi_status &&
1092 		    last->bi_bdev == stripe->dev->bdev) {
1093 			ret = bio_add_page(last, sector->page, sectorsize,
1094 					   sector->pgoff);
1095 			if (ret == sectorsize)
1096 				return 0;
1097 		}
1098 	}
1099 
1100 	/* put a new bio on the list */
1101 	bio = bio_alloc(stripe->dev->bdev,
1102 			max(BTRFS_STRIPE_LEN >> PAGE_SHIFT, 1),
1103 			op, GFP_NOFS);
1104 	bio->bi_iter.bi_sector = disk_start >> SECTOR_SHIFT;
1105 	bio->bi_private = rbio;
1106 
1107 	__bio_add_page(bio, sector->page, sectorsize, sector->pgoff);
1108 	bio_list_add(bio_list, bio);
1109 	return 0;
1110 }
1111 
1112 static void index_one_bio(struct btrfs_raid_bio *rbio, struct bio *bio)
1113 {
1114 	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1115 	struct bio_vec bvec;
1116 	struct bvec_iter iter;
1117 	u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
1118 		     rbio->bioc->full_stripe_logical;
1119 
1120 	bio_for_each_segment(bvec, bio, iter) {
1121 		u32 bvec_offset;
1122 
1123 		for (bvec_offset = 0; bvec_offset < bvec.bv_len;
1124 		     bvec_offset += sectorsize, offset += sectorsize) {
1125 			int index = offset / sectorsize;
1126 			struct sector_ptr *sector = &rbio->bio_sectors[index];
1127 
1128 			sector->page = bvec.bv_page;
1129 			sector->pgoff = bvec.bv_offset + bvec_offset;
1130 			ASSERT(sector->pgoff < PAGE_SIZE);
1131 		}
1132 	}
1133 }
1134 
1135 /*
1136  * helper function to walk our bio list and populate the bio_pages array with
1137  * the result.  This seems expensive, but it is faster than constantly
1138  * searching through the bio list as we setup the IO in finish_rmw or stripe
1139  * reconstruction.
1140  *
1141  * This must be called before you trust the answers from page_in_rbio
1142  */
1143 static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1144 {
1145 	struct bio *bio;
1146 
1147 	spin_lock(&rbio->bio_list_lock);
1148 	bio_list_for_each(bio, &rbio->bio_list)
1149 		index_one_bio(rbio, bio);
1150 
1151 	spin_unlock(&rbio->bio_list_lock);
1152 }
1153 
1154 static void bio_get_trace_info(struct btrfs_raid_bio *rbio, struct bio *bio,
1155 			       struct raid56_bio_trace_info *trace_info)
1156 {
1157 	const struct btrfs_io_context *bioc = rbio->bioc;
1158 	int i;
1159 
1160 	ASSERT(bioc);
1161 
1162 	/* We rely on bio->bi_bdev to find the stripe number. */
1163 	if (!bio->bi_bdev)
1164 		goto not_found;
1165 
1166 	for (i = 0; i < bioc->num_stripes; i++) {
1167 		if (bio->bi_bdev != bioc->stripes[i].dev->bdev)
1168 			continue;
1169 		trace_info->stripe_nr = i;
1170 		trace_info->devid = bioc->stripes[i].dev->devid;
1171 		trace_info->offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
1172 				     bioc->stripes[i].physical;
1173 		return;
1174 	}
1175 
1176 not_found:
1177 	trace_info->devid = -1;
1178 	trace_info->offset = -1;
1179 	trace_info->stripe_nr = -1;
1180 }
1181 
1182 static inline void bio_list_put(struct bio_list *bio_list)
1183 {
1184 	struct bio *bio;
1185 
1186 	while ((bio = bio_list_pop(bio_list)))
1187 		bio_put(bio);
1188 }
1189 
1190 static void assert_rbio(struct btrfs_raid_bio *rbio)
1191 {
1192 	if (!IS_ENABLED(CONFIG_BTRFS_DEBUG) ||
1193 	    !IS_ENABLED(CONFIG_BTRFS_ASSERT))
1194 		return;
1195 
1196 	/*
1197 	 * At least two stripes (2 disks RAID5), and since real_stripes is U8,
1198 	 * we won't go beyond 256 disks anyway.
1199 	 */
1200 	ASSERT(rbio->real_stripes >= 2);
1201 	ASSERT(rbio->nr_data > 0);
1202 
1203 	/*
1204 	 * This is another check to make sure nr data stripes is smaller
1205 	 * than total stripes.
1206 	 */
1207 	ASSERT(rbio->nr_data < rbio->real_stripes);
1208 }
1209 
1210 /* Generate PQ for one vertical stripe. */
1211 static void generate_pq_vertical(struct btrfs_raid_bio *rbio, int sectornr)
1212 {
1213 	void **pointers = rbio->finish_pointers;
1214 	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1215 	struct sector_ptr *sector;
1216 	int stripe;
1217 	const bool has_qstripe = rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6;
1218 
1219 	/* First collect one sector from each data stripe */
1220 	for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1221 		sector = sector_in_rbio(rbio, stripe, sectornr, 0);
1222 		pointers[stripe] = kmap_local_page(sector->page) +
1223 				   sector->pgoff;
1224 	}
1225 
1226 	/* Then add the parity stripe */
1227 	sector = rbio_pstripe_sector(rbio, sectornr);
1228 	sector->uptodate = 1;
1229 	pointers[stripe++] = kmap_local_page(sector->page) + sector->pgoff;
1230 
1231 	if (has_qstripe) {
1232 		/*
1233 		 * RAID6, add the qstripe and call the library function
1234 		 * to fill in our p/q
1235 		 */
1236 		sector = rbio_qstripe_sector(rbio, sectornr);
1237 		sector->uptodate = 1;
1238 		pointers[stripe++] = kmap_local_page(sector->page) +
1239 				     sector->pgoff;
1240 
1241 		assert_rbio(rbio);
1242 		raid6_call.gen_syndrome(rbio->real_stripes, sectorsize,
1243 					pointers);
1244 	} else {
1245 		/* raid5 */
1246 		memcpy(pointers[rbio->nr_data], pointers[0], sectorsize);
1247 		run_xor(pointers + 1, rbio->nr_data - 1, sectorsize);
1248 	}
1249 	for (stripe = stripe - 1; stripe >= 0; stripe--)
1250 		kunmap_local(pointers[stripe]);
1251 }
1252 
1253 static int rmw_assemble_write_bios(struct btrfs_raid_bio *rbio,
1254 				   struct bio_list *bio_list)
1255 {
1256 	/* The total sector number inside the full stripe. */
1257 	int total_sector_nr;
1258 	int sectornr;
1259 	int stripe;
1260 	int ret;
1261 
1262 	ASSERT(bio_list_size(bio_list) == 0);
1263 
1264 	/* We should have at least one data sector. */
1265 	ASSERT(bitmap_weight(&rbio->dbitmap, rbio->stripe_nsectors));
1266 
1267 	/*
1268 	 * Reset errors, as we may have errors inherited from from degraded
1269 	 * write.
1270 	 */
1271 	bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
1272 
1273 	/*
1274 	 * Start assembly.  Make bios for everything from the higher layers (the
1275 	 * bio_list in our rbio) and our P/Q.  Ignore everything else.
1276 	 */
1277 	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
1278 	     total_sector_nr++) {
1279 		struct sector_ptr *sector;
1280 
1281 		stripe = total_sector_nr / rbio->stripe_nsectors;
1282 		sectornr = total_sector_nr % rbio->stripe_nsectors;
1283 
1284 		/* This vertical stripe has no data, skip it. */
1285 		if (!test_bit(sectornr, &rbio->dbitmap))
1286 			continue;
1287 
1288 		if (stripe < rbio->nr_data) {
1289 			sector = sector_in_rbio(rbio, stripe, sectornr, 1);
1290 			if (!sector)
1291 				continue;
1292 		} else {
1293 			sector = rbio_stripe_sector(rbio, stripe, sectornr);
1294 		}
1295 
1296 		ret = rbio_add_io_sector(rbio, bio_list, sector, stripe,
1297 					 sectornr, REQ_OP_WRITE);
1298 		if (ret)
1299 			goto error;
1300 	}
1301 
1302 	if (likely(!rbio->bioc->replace_nr_stripes))
1303 		return 0;
1304 
1305 	/*
1306 	 * Make a copy for the replace target device.
1307 	 *
1308 	 * Thus the source stripe number (in replace_stripe_src) should be valid.
1309 	 */
1310 	ASSERT(rbio->bioc->replace_stripe_src >= 0);
1311 
1312 	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
1313 	     total_sector_nr++) {
1314 		struct sector_ptr *sector;
1315 
1316 		stripe = total_sector_nr / rbio->stripe_nsectors;
1317 		sectornr = total_sector_nr % rbio->stripe_nsectors;
1318 
1319 		/*
1320 		 * For RAID56, there is only one device that can be replaced,
1321 		 * and replace_stripe_src[0] indicates the stripe number we
1322 		 * need to copy from.
1323 		 */
1324 		if (stripe != rbio->bioc->replace_stripe_src) {
1325 			/*
1326 			 * We can skip the whole stripe completely, note
1327 			 * total_sector_nr will be increased by one anyway.
1328 			 */
1329 			ASSERT(sectornr == 0);
1330 			total_sector_nr += rbio->stripe_nsectors - 1;
1331 			continue;
1332 		}
1333 
1334 		/* This vertical stripe has no data, skip it. */
1335 		if (!test_bit(sectornr, &rbio->dbitmap))
1336 			continue;
1337 
1338 		if (stripe < rbio->nr_data) {
1339 			sector = sector_in_rbio(rbio, stripe, sectornr, 1);
1340 			if (!sector)
1341 				continue;
1342 		} else {
1343 			sector = rbio_stripe_sector(rbio, stripe, sectornr);
1344 		}
1345 
1346 		ret = rbio_add_io_sector(rbio, bio_list, sector,
1347 					 rbio->real_stripes,
1348 					 sectornr, REQ_OP_WRITE);
1349 		if (ret)
1350 			goto error;
1351 	}
1352 
1353 	return 0;
1354 error:
1355 	bio_list_put(bio_list);
1356 	return -EIO;
1357 }
1358 
1359 static void set_rbio_range_error(struct btrfs_raid_bio *rbio, struct bio *bio)
1360 {
1361 	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1362 	u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
1363 		     rbio->bioc->full_stripe_logical;
1364 	int total_nr_sector = offset >> fs_info->sectorsize_bits;
1365 
1366 	ASSERT(total_nr_sector < rbio->nr_data * rbio->stripe_nsectors);
1367 
1368 	bitmap_set(rbio->error_bitmap, total_nr_sector,
1369 		   bio->bi_iter.bi_size >> fs_info->sectorsize_bits);
1370 
1371 	/*
1372 	 * Special handling for raid56_alloc_missing_rbio() used by
1373 	 * scrub/replace.  Unlike call path in raid56_parity_recover(), they
1374 	 * pass an empty bio here.  Thus we have to find out the missing device
1375 	 * and mark the stripe error instead.
1376 	 */
1377 	if (bio->bi_iter.bi_size == 0) {
1378 		bool found_missing = false;
1379 		int stripe_nr;
1380 
1381 		for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
1382 			if (!rbio->bioc->stripes[stripe_nr].dev->bdev) {
1383 				found_missing = true;
1384 				bitmap_set(rbio->error_bitmap,
1385 					   stripe_nr * rbio->stripe_nsectors,
1386 					   rbio->stripe_nsectors);
1387 			}
1388 		}
1389 		ASSERT(found_missing);
1390 	}
1391 }
1392 
1393 /*
1394  * For subpage case, we can no longer set page Up-to-date directly for
1395  * stripe_pages[], thus we need to locate the sector.
1396  */
1397 static struct sector_ptr *find_stripe_sector(struct btrfs_raid_bio *rbio,
1398 					     struct page *page,
1399 					     unsigned int pgoff)
1400 {
1401 	int i;
1402 
1403 	for (i = 0; i < rbio->nr_sectors; i++) {
1404 		struct sector_ptr *sector = &rbio->stripe_sectors[i];
1405 
1406 		if (sector->page == page && sector->pgoff == pgoff)
1407 			return sector;
1408 	}
1409 	return NULL;
1410 }
1411 
1412 /*
1413  * this sets each page in the bio uptodate.  It should only be used on private
1414  * rbio pages, nothing that comes in from the higher layers
1415  */
1416 static void set_bio_pages_uptodate(struct btrfs_raid_bio *rbio, struct bio *bio)
1417 {
1418 	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1419 	struct bio_vec *bvec;
1420 	struct bvec_iter_all iter_all;
1421 
1422 	ASSERT(!bio_flagged(bio, BIO_CLONED));
1423 
1424 	bio_for_each_segment_all(bvec, bio, iter_all) {
1425 		struct sector_ptr *sector;
1426 		int pgoff;
1427 
1428 		for (pgoff = bvec->bv_offset; pgoff - bvec->bv_offset < bvec->bv_len;
1429 		     pgoff += sectorsize) {
1430 			sector = find_stripe_sector(rbio, bvec->bv_page, pgoff);
1431 			ASSERT(sector);
1432 			if (sector)
1433 				sector->uptodate = 1;
1434 		}
1435 	}
1436 }
1437 
1438 static int get_bio_sector_nr(struct btrfs_raid_bio *rbio, struct bio *bio)
1439 {
1440 	struct bio_vec *bv = bio_first_bvec_all(bio);
1441 	int i;
1442 
1443 	for (i = 0; i < rbio->nr_sectors; i++) {
1444 		struct sector_ptr *sector;
1445 
1446 		sector = &rbio->stripe_sectors[i];
1447 		if (sector->page == bv->bv_page && sector->pgoff == bv->bv_offset)
1448 			break;
1449 		sector = &rbio->bio_sectors[i];
1450 		if (sector->page == bv->bv_page && sector->pgoff == bv->bv_offset)
1451 			break;
1452 	}
1453 	ASSERT(i < rbio->nr_sectors);
1454 	return i;
1455 }
1456 
1457 static void rbio_update_error_bitmap(struct btrfs_raid_bio *rbio, struct bio *bio)
1458 {
1459 	int total_sector_nr = get_bio_sector_nr(rbio, bio);
1460 	u32 bio_size = 0;
1461 	struct bio_vec *bvec;
1462 	int i;
1463 
1464 	bio_for_each_bvec_all(bvec, bio, i)
1465 		bio_size += bvec->bv_len;
1466 
1467 	/*
1468 	 * Since we can have multiple bios touching the error_bitmap, we cannot
1469 	 * call bitmap_set() without protection.
1470 	 *
1471 	 * Instead use set_bit() for each bit, as set_bit() itself is atomic.
1472 	 */
1473 	for (i = total_sector_nr; i < total_sector_nr +
1474 	     (bio_size >> rbio->bioc->fs_info->sectorsize_bits); i++)
1475 		set_bit(i, rbio->error_bitmap);
1476 }
1477 
1478 /* Verify the data sectors at read time. */
1479 static void verify_bio_data_sectors(struct btrfs_raid_bio *rbio,
1480 				    struct bio *bio)
1481 {
1482 	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1483 	int total_sector_nr = get_bio_sector_nr(rbio, bio);
1484 	struct bio_vec *bvec;
1485 	struct bvec_iter_all iter_all;
1486 
1487 	/* No data csum for the whole stripe, no need to verify. */
1488 	if (!rbio->csum_bitmap || !rbio->csum_buf)
1489 		return;
1490 
1491 	/* P/Q stripes, they have no data csum to verify against. */
1492 	if (total_sector_nr >= rbio->nr_data * rbio->stripe_nsectors)
1493 		return;
1494 
1495 	bio_for_each_segment_all(bvec, bio, iter_all) {
1496 		int bv_offset;
1497 
1498 		for (bv_offset = bvec->bv_offset;
1499 		     bv_offset < bvec->bv_offset + bvec->bv_len;
1500 		     bv_offset += fs_info->sectorsize, total_sector_nr++) {
1501 			u8 csum_buf[BTRFS_CSUM_SIZE];
1502 			u8 *expected_csum = rbio->csum_buf +
1503 					    total_sector_nr * fs_info->csum_size;
1504 			int ret;
1505 
1506 			/* No csum for this sector, skip to the next sector. */
1507 			if (!test_bit(total_sector_nr, rbio->csum_bitmap))
1508 				continue;
1509 
1510 			ret = btrfs_check_sector_csum(fs_info, bvec->bv_page,
1511 				bv_offset, csum_buf, expected_csum);
1512 			if (ret < 0)
1513 				set_bit(total_sector_nr, rbio->error_bitmap);
1514 		}
1515 	}
1516 }
1517 
1518 static void raid_wait_read_end_io(struct bio *bio)
1519 {
1520 	struct btrfs_raid_bio *rbio = bio->bi_private;
1521 
1522 	if (bio->bi_status) {
1523 		rbio_update_error_bitmap(rbio, bio);
1524 	} else {
1525 		set_bio_pages_uptodate(rbio, bio);
1526 		verify_bio_data_sectors(rbio, bio);
1527 	}
1528 
1529 	bio_put(bio);
1530 	if (atomic_dec_and_test(&rbio->stripes_pending))
1531 		wake_up(&rbio->io_wait);
1532 }
1533 
1534 static void submit_read_wait_bio_list(struct btrfs_raid_bio *rbio,
1535 			     struct bio_list *bio_list)
1536 {
1537 	struct bio *bio;
1538 
1539 	atomic_set(&rbio->stripes_pending, bio_list_size(bio_list));
1540 	while ((bio = bio_list_pop(bio_list))) {
1541 		bio->bi_end_io = raid_wait_read_end_io;
1542 
1543 		if (trace_raid56_read_enabled()) {
1544 			struct raid56_bio_trace_info trace_info = { 0 };
1545 
1546 			bio_get_trace_info(rbio, bio, &trace_info);
1547 			trace_raid56_read(rbio, bio, &trace_info);
1548 		}
1549 		submit_bio(bio);
1550 	}
1551 
1552 	wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
1553 }
1554 
1555 static int alloc_rbio_data_pages(struct btrfs_raid_bio *rbio)
1556 {
1557 	const int data_pages = rbio->nr_data * rbio->stripe_npages;
1558 	int ret;
1559 
1560 	ret = btrfs_alloc_page_array(data_pages, rbio->stripe_pages, 0);
1561 	if (ret < 0)
1562 		return ret;
1563 
1564 	index_stripe_sectors(rbio);
1565 	return 0;
1566 }
1567 
1568 /*
1569  * We use plugging call backs to collect full stripes.
1570  * Any time we get a partial stripe write while plugged
1571  * we collect it into a list.  When the unplug comes down,
1572  * we sort the list by logical block number and merge
1573  * everything we can into the same rbios
1574  */
1575 struct btrfs_plug_cb {
1576 	struct blk_plug_cb cb;
1577 	struct btrfs_fs_info *info;
1578 	struct list_head rbio_list;
1579 };
1580 
1581 /*
1582  * rbios on the plug list are sorted for easier merging.
1583  */
1584 static int plug_cmp(void *priv, const struct list_head *a,
1585 		    const struct list_head *b)
1586 {
1587 	const struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1588 						       plug_list);
1589 	const struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1590 						       plug_list);
1591 	u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1592 	u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1593 
1594 	if (a_sector < b_sector)
1595 		return -1;
1596 	if (a_sector > b_sector)
1597 		return 1;
1598 	return 0;
1599 }
1600 
1601 static void raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1602 {
1603 	struct btrfs_plug_cb *plug = container_of(cb, struct btrfs_plug_cb, cb);
1604 	struct btrfs_raid_bio *cur;
1605 	struct btrfs_raid_bio *last = NULL;
1606 
1607 	list_sort(NULL, &plug->rbio_list, plug_cmp);
1608 
1609 	while (!list_empty(&plug->rbio_list)) {
1610 		cur = list_entry(plug->rbio_list.next,
1611 				 struct btrfs_raid_bio, plug_list);
1612 		list_del_init(&cur->plug_list);
1613 
1614 		if (rbio_is_full(cur)) {
1615 			/* We have a full stripe, queue it down. */
1616 			start_async_work(cur, rmw_rbio_work);
1617 			continue;
1618 		}
1619 		if (last) {
1620 			if (rbio_can_merge(last, cur)) {
1621 				merge_rbio(last, cur);
1622 				free_raid_bio(cur);
1623 				continue;
1624 			}
1625 			start_async_work(last, rmw_rbio_work);
1626 		}
1627 		last = cur;
1628 	}
1629 	if (last)
1630 		start_async_work(last, rmw_rbio_work);
1631 	kfree(plug);
1632 }
1633 
1634 /* Add the original bio into rbio->bio_list, and update rbio::dbitmap. */
1635 static void rbio_add_bio(struct btrfs_raid_bio *rbio, struct bio *orig_bio)
1636 {
1637 	const struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1638 	const u64 orig_logical = orig_bio->bi_iter.bi_sector << SECTOR_SHIFT;
1639 	const u64 full_stripe_start = rbio->bioc->full_stripe_logical;
1640 	const u32 orig_len = orig_bio->bi_iter.bi_size;
1641 	const u32 sectorsize = fs_info->sectorsize;
1642 	u64 cur_logical;
1643 
1644 	ASSERT(orig_logical >= full_stripe_start &&
1645 	       orig_logical + orig_len <= full_stripe_start +
1646 	       rbio->nr_data * BTRFS_STRIPE_LEN);
1647 
1648 	bio_list_add(&rbio->bio_list, orig_bio);
1649 	rbio->bio_list_bytes += orig_bio->bi_iter.bi_size;
1650 
1651 	/* Update the dbitmap. */
1652 	for (cur_logical = orig_logical; cur_logical < orig_logical + orig_len;
1653 	     cur_logical += sectorsize) {
1654 		int bit = ((u32)(cur_logical - full_stripe_start) >>
1655 			   fs_info->sectorsize_bits) % rbio->stripe_nsectors;
1656 
1657 		set_bit(bit, &rbio->dbitmap);
1658 	}
1659 }
1660 
1661 /*
1662  * our main entry point for writes from the rest of the FS.
1663  */
1664 void raid56_parity_write(struct bio *bio, struct btrfs_io_context *bioc)
1665 {
1666 	struct btrfs_fs_info *fs_info = bioc->fs_info;
1667 	struct btrfs_raid_bio *rbio;
1668 	struct btrfs_plug_cb *plug = NULL;
1669 	struct blk_plug_cb *cb;
1670 
1671 	rbio = alloc_rbio(fs_info, bioc);
1672 	if (IS_ERR(rbio)) {
1673 		bio->bi_status = errno_to_blk_status(PTR_ERR(rbio));
1674 		bio_endio(bio);
1675 		return;
1676 	}
1677 	rbio->operation = BTRFS_RBIO_WRITE;
1678 	rbio_add_bio(rbio, bio);
1679 
1680 	/*
1681 	 * Don't plug on full rbios, just get them out the door
1682 	 * as quickly as we can
1683 	 */
1684 	if (!rbio_is_full(rbio)) {
1685 		cb = blk_check_plugged(raid_unplug, fs_info, sizeof(*plug));
1686 		if (cb) {
1687 			plug = container_of(cb, struct btrfs_plug_cb, cb);
1688 			if (!plug->info) {
1689 				plug->info = fs_info;
1690 				INIT_LIST_HEAD(&plug->rbio_list);
1691 			}
1692 			list_add_tail(&rbio->plug_list, &plug->rbio_list);
1693 			return;
1694 		}
1695 	}
1696 
1697 	/*
1698 	 * Either we don't have any existing plug, or we're doing a full stripe,
1699 	 * queue the rmw work now.
1700 	 */
1701 	start_async_work(rbio, rmw_rbio_work);
1702 }
1703 
1704 static int verify_one_sector(struct btrfs_raid_bio *rbio,
1705 			     int stripe_nr, int sector_nr)
1706 {
1707 	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1708 	struct sector_ptr *sector;
1709 	u8 csum_buf[BTRFS_CSUM_SIZE];
1710 	u8 *csum_expected;
1711 	int ret;
1712 
1713 	if (!rbio->csum_bitmap || !rbio->csum_buf)
1714 		return 0;
1715 
1716 	/* No way to verify P/Q as they are not covered by data csum. */
1717 	if (stripe_nr >= rbio->nr_data)
1718 		return 0;
1719 	/*
1720 	 * If we're rebuilding a read, we have to use pages from the
1721 	 * bio list if possible.
1722 	 */
1723 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
1724 		sector = sector_in_rbio(rbio, stripe_nr, sector_nr, 0);
1725 	} else {
1726 		sector = rbio_stripe_sector(rbio, stripe_nr, sector_nr);
1727 	}
1728 
1729 	ASSERT(sector->page);
1730 
1731 	csum_expected = rbio->csum_buf +
1732 			(stripe_nr * rbio->stripe_nsectors + sector_nr) *
1733 			fs_info->csum_size;
1734 	ret = btrfs_check_sector_csum(fs_info, sector->page, sector->pgoff,
1735 				      csum_buf, csum_expected);
1736 	return ret;
1737 }
1738 
1739 /*
1740  * Recover a vertical stripe specified by @sector_nr.
1741  * @*pointers are the pre-allocated pointers by the caller, so we don't
1742  * need to allocate/free the pointers again and again.
1743  */
1744 static int recover_vertical(struct btrfs_raid_bio *rbio, int sector_nr,
1745 			    void **pointers, void **unmap_array)
1746 {
1747 	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1748 	struct sector_ptr *sector;
1749 	const u32 sectorsize = fs_info->sectorsize;
1750 	int found_errors;
1751 	int faila;
1752 	int failb;
1753 	int stripe_nr;
1754 	int ret = 0;
1755 
1756 	/*
1757 	 * Now we just use bitmap to mark the horizontal stripes in
1758 	 * which we have data when doing parity scrub.
1759 	 */
1760 	if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1761 	    !test_bit(sector_nr, &rbio->dbitmap))
1762 		return 0;
1763 
1764 	found_errors = get_rbio_veritical_errors(rbio, sector_nr, &faila,
1765 						 &failb);
1766 	/*
1767 	 * No errors in the vertical stripe, skip it.  Can happen for recovery
1768 	 * which only part of a stripe failed csum check.
1769 	 */
1770 	if (!found_errors)
1771 		return 0;
1772 
1773 	if (found_errors > rbio->bioc->max_errors)
1774 		return -EIO;
1775 
1776 	/*
1777 	 * Setup our array of pointers with sectors from each stripe
1778 	 *
1779 	 * NOTE: store a duplicate array of pointers to preserve the
1780 	 * pointer order.
1781 	 */
1782 	for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
1783 		/*
1784 		 * If we're rebuilding a read, we have to use pages from the
1785 		 * bio list if possible.
1786 		 */
1787 		if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
1788 			sector = sector_in_rbio(rbio, stripe_nr, sector_nr, 0);
1789 		} else {
1790 			sector = rbio_stripe_sector(rbio, stripe_nr, sector_nr);
1791 		}
1792 		ASSERT(sector->page);
1793 		pointers[stripe_nr] = kmap_local_page(sector->page) +
1794 				   sector->pgoff;
1795 		unmap_array[stripe_nr] = pointers[stripe_nr];
1796 	}
1797 
1798 	/* All raid6 handling here */
1799 	if (rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6) {
1800 		/* Single failure, rebuild from parity raid5 style */
1801 		if (failb < 0) {
1802 			if (faila == rbio->nr_data)
1803 				/*
1804 				 * Just the P stripe has failed, without
1805 				 * a bad data or Q stripe.
1806 				 * We have nothing to do, just skip the
1807 				 * recovery for this stripe.
1808 				 */
1809 				goto cleanup;
1810 			/*
1811 			 * a single failure in raid6 is rebuilt
1812 			 * in the pstripe code below
1813 			 */
1814 			goto pstripe;
1815 		}
1816 
1817 		/*
1818 		 * If the q stripe is failed, do a pstripe reconstruction from
1819 		 * the xors.
1820 		 * If both the q stripe and the P stripe are failed, we're
1821 		 * here due to a crc mismatch and we can't give them the
1822 		 * data they want.
1823 		 */
1824 		if (failb == rbio->real_stripes - 1) {
1825 			if (faila == rbio->real_stripes - 2)
1826 				/*
1827 				 * Only P and Q are corrupted.
1828 				 * We only care about data stripes recovery,
1829 				 * can skip this vertical stripe.
1830 				 */
1831 				goto cleanup;
1832 			/*
1833 			 * Otherwise we have one bad data stripe and
1834 			 * a good P stripe.  raid5!
1835 			 */
1836 			goto pstripe;
1837 		}
1838 
1839 		if (failb == rbio->real_stripes - 2) {
1840 			raid6_datap_recov(rbio->real_stripes, sectorsize,
1841 					  faila, pointers);
1842 		} else {
1843 			raid6_2data_recov(rbio->real_stripes, sectorsize,
1844 					  faila, failb, pointers);
1845 		}
1846 	} else {
1847 		void *p;
1848 
1849 		/* Rebuild from P stripe here (raid5 or raid6). */
1850 		ASSERT(failb == -1);
1851 pstripe:
1852 		/* Copy parity block into failed block to start with */
1853 		memcpy(pointers[faila], pointers[rbio->nr_data], sectorsize);
1854 
1855 		/* Rearrange the pointer array */
1856 		p = pointers[faila];
1857 		for (stripe_nr = faila; stripe_nr < rbio->nr_data - 1;
1858 		     stripe_nr++)
1859 			pointers[stripe_nr] = pointers[stripe_nr + 1];
1860 		pointers[rbio->nr_data - 1] = p;
1861 
1862 		/* Xor in the rest */
1863 		run_xor(pointers, rbio->nr_data - 1, sectorsize);
1864 
1865 	}
1866 
1867 	/*
1868 	 * No matter if this is a RMW or recovery, we should have all
1869 	 * failed sectors repaired in the vertical stripe, thus they are now
1870 	 * uptodate.
1871 	 * Especially if we determine to cache the rbio, we need to
1872 	 * have at least all data sectors uptodate.
1873 	 *
1874 	 * If possible, also check if the repaired sector matches its data
1875 	 * checksum.
1876 	 */
1877 	if (faila >= 0) {
1878 		ret = verify_one_sector(rbio, faila, sector_nr);
1879 		if (ret < 0)
1880 			goto cleanup;
1881 
1882 		sector = rbio_stripe_sector(rbio, faila, sector_nr);
1883 		sector->uptodate = 1;
1884 	}
1885 	if (failb >= 0) {
1886 		ret = verify_one_sector(rbio, failb, sector_nr);
1887 		if (ret < 0)
1888 			goto cleanup;
1889 
1890 		sector = rbio_stripe_sector(rbio, failb, sector_nr);
1891 		sector->uptodate = 1;
1892 	}
1893 
1894 cleanup:
1895 	for (stripe_nr = rbio->real_stripes - 1; stripe_nr >= 0; stripe_nr--)
1896 		kunmap_local(unmap_array[stripe_nr]);
1897 	return ret;
1898 }
1899 
1900 static int recover_sectors(struct btrfs_raid_bio *rbio)
1901 {
1902 	void **pointers = NULL;
1903 	void **unmap_array = NULL;
1904 	int sectornr;
1905 	int ret = 0;
1906 
1907 	/*
1908 	 * @pointers array stores the pointer for each sector.
1909 	 *
1910 	 * @unmap_array stores copy of pointers that does not get reordered
1911 	 * during reconstruction so that kunmap_local works.
1912 	 */
1913 	pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1914 	unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1915 	if (!pointers || !unmap_array) {
1916 		ret = -ENOMEM;
1917 		goto out;
1918 	}
1919 
1920 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
1921 		spin_lock(&rbio->bio_list_lock);
1922 		set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1923 		spin_unlock(&rbio->bio_list_lock);
1924 	}
1925 
1926 	index_rbio_pages(rbio);
1927 
1928 	for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) {
1929 		ret = recover_vertical(rbio, sectornr, pointers, unmap_array);
1930 		if (ret < 0)
1931 			break;
1932 	}
1933 
1934 out:
1935 	kfree(pointers);
1936 	kfree(unmap_array);
1937 	return ret;
1938 }
1939 
1940 static void recover_rbio(struct btrfs_raid_bio *rbio)
1941 {
1942 	struct bio_list bio_list = BIO_EMPTY_LIST;
1943 	int total_sector_nr;
1944 	int ret = 0;
1945 
1946 	/*
1947 	 * Either we're doing recover for a read failure or degraded write,
1948 	 * caller should have set error bitmap correctly.
1949 	 */
1950 	ASSERT(bitmap_weight(rbio->error_bitmap, rbio->nr_sectors));
1951 
1952 	/* For recovery, we need to read all sectors including P/Q. */
1953 	ret = alloc_rbio_pages(rbio);
1954 	if (ret < 0)
1955 		goto out;
1956 
1957 	index_rbio_pages(rbio);
1958 
1959 	/*
1960 	 * Read everything that hasn't failed. However this time we will
1961 	 * not trust any cached sector.
1962 	 * As we may read out some stale data but higher layer is not reading
1963 	 * that stale part.
1964 	 *
1965 	 * So here we always re-read everything in recovery path.
1966 	 */
1967 	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
1968 	     total_sector_nr++) {
1969 		int stripe = total_sector_nr / rbio->stripe_nsectors;
1970 		int sectornr = total_sector_nr % rbio->stripe_nsectors;
1971 		struct sector_ptr *sector;
1972 
1973 		/*
1974 		 * Skip the range which has error.  It can be a range which is
1975 		 * marked error (for csum mismatch), or it can be a missing
1976 		 * device.
1977 		 */
1978 		if (!rbio->bioc->stripes[stripe].dev->bdev ||
1979 		    test_bit(total_sector_nr, rbio->error_bitmap)) {
1980 			/*
1981 			 * Also set the error bit for missing device, which
1982 			 * may not yet have its error bit set.
1983 			 */
1984 			set_bit(total_sector_nr, rbio->error_bitmap);
1985 			continue;
1986 		}
1987 
1988 		sector = rbio_stripe_sector(rbio, stripe, sectornr);
1989 		ret = rbio_add_io_sector(rbio, &bio_list, sector, stripe,
1990 					 sectornr, REQ_OP_READ);
1991 		if (ret < 0) {
1992 			bio_list_put(&bio_list);
1993 			goto out;
1994 		}
1995 	}
1996 
1997 	submit_read_wait_bio_list(rbio, &bio_list);
1998 	ret = recover_sectors(rbio);
1999 out:
2000 	rbio_orig_end_io(rbio, errno_to_blk_status(ret));
2001 }
2002 
2003 static void recover_rbio_work(struct work_struct *work)
2004 {
2005 	struct btrfs_raid_bio *rbio;
2006 
2007 	rbio = container_of(work, struct btrfs_raid_bio, work);
2008 	if (!lock_stripe_add(rbio))
2009 		recover_rbio(rbio);
2010 }
2011 
2012 static void recover_rbio_work_locked(struct work_struct *work)
2013 {
2014 	recover_rbio(container_of(work, struct btrfs_raid_bio, work));
2015 }
2016 
2017 static void set_rbio_raid6_extra_error(struct btrfs_raid_bio *rbio, int mirror_num)
2018 {
2019 	bool found = false;
2020 	int sector_nr;
2021 
2022 	/*
2023 	 * This is for RAID6 extra recovery tries, thus mirror number should
2024 	 * be large than 2.
2025 	 * Mirror 1 means read from data stripes. Mirror 2 means rebuild using
2026 	 * RAID5 methods.
2027 	 */
2028 	ASSERT(mirror_num > 2);
2029 	for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
2030 		int found_errors;
2031 		int faila;
2032 		int failb;
2033 
2034 		found_errors = get_rbio_veritical_errors(rbio, sector_nr,
2035 							 &faila, &failb);
2036 		/* This vertical stripe doesn't have errors. */
2037 		if (!found_errors)
2038 			continue;
2039 
2040 		/*
2041 		 * If we found errors, there should be only one error marked
2042 		 * by previous set_rbio_range_error().
2043 		 */
2044 		ASSERT(found_errors == 1);
2045 		found = true;
2046 
2047 		/* Now select another stripe to mark as error. */
2048 		failb = rbio->real_stripes - (mirror_num - 1);
2049 		if (failb <= faila)
2050 			failb--;
2051 
2052 		/* Set the extra bit in error bitmap. */
2053 		if (failb >= 0)
2054 			set_bit(failb * rbio->stripe_nsectors + sector_nr,
2055 				rbio->error_bitmap);
2056 	}
2057 
2058 	/* We should found at least one vertical stripe with error.*/
2059 	ASSERT(found);
2060 }
2061 
2062 /*
2063  * the main entry point for reads from the higher layers.  This
2064  * is really only called when the normal read path had a failure,
2065  * so we assume the bio they send down corresponds to a failed part
2066  * of the drive.
2067  */
2068 void raid56_parity_recover(struct bio *bio, struct btrfs_io_context *bioc,
2069 			   int mirror_num)
2070 {
2071 	struct btrfs_fs_info *fs_info = bioc->fs_info;
2072 	struct btrfs_raid_bio *rbio;
2073 
2074 	rbio = alloc_rbio(fs_info, bioc);
2075 	if (IS_ERR(rbio)) {
2076 		bio->bi_status = errno_to_blk_status(PTR_ERR(rbio));
2077 		bio_endio(bio);
2078 		return;
2079 	}
2080 
2081 	rbio->operation = BTRFS_RBIO_READ_REBUILD;
2082 	rbio_add_bio(rbio, bio);
2083 
2084 	set_rbio_range_error(rbio, bio);
2085 
2086 	/*
2087 	 * Loop retry:
2088 	 * for 'mirror == 2', reconstruct from all other stripes.
2089 	 * for 'mirror_num > 2', select a stripe to fail on every retry.
2090 	 */
2091 	if (mirror_num > 2)
2092 		set_rbio_raid6_extra_error(rbio, mirror_num);
2093 
2094 	start_async_work(rbio, recover_rbio_work);
2095 }
2096 
2097 static void fill_data_csums(struct btrfs_raid_bio *rbio)
2098 {
2099 	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
2100 	struct btrfs_root *csum_root = btrfs_csum_root(fs_info,
2101 						       rbio->bioc->full_stripe_logical);
2102 	const u64 start = rbio->bioc->full_stripe_logical;
2103 	const u32 len = (rbio->nr_data * rbio->stripe_nsectors) <<
2104 			fs_info->sectorsize_bits;
2105 	int ret;
2106 
2107 	/* The rbio should not have its csum buffer initialized. */
2108 	ASSERT(!rbio->csum_buf && !rbio->csum_bitmap);
2109 
2110 	/*
2111 	 * Skip the csum search if:
2112 	 *
2113 	 * - The rbio doesn't belong to data block groups
2114 	 *   Then we are doing IO for tree blocks, no need to search csums.
2115 	 *
2116 	 * - The rbio belongs to mixed block groups
2117 	 *   This is to avoid deadlock, as we're already holding the full
2118 	 *   stripe lock, if we trigger a metadata read, and it needs to do
2119 	 *   raid56 recovery, we will deadlock.
2120 	 */
2121 	if (!(rbio->bioc->map_type & BTRFS_BLOCK_GROUP_DATA) ||
2122 	    rbio->bioc->map_type & BTRFS_BLOCK_GROUP_METADATA)
2123 		return;
2124 
2125 	rbio->csum_buf = kzalloc(rbio->nr_data * rbio->stripe_nsectors *
2126 				 fs_info->csum_size, GFP_NOFS);
2127 	rbio->csum_bitmap = bitmap_zalloc(rbio->nr_data * rbio->stripe_nsectors,
2128 					  GFP_NOFS);
2129 	if (!rbio->csum_buf || !rbio->csum_bitmap) {
2130 		ret = -ENOMEM;
2131 		goto error;
2132 	}
2133 
2134 	ret = btrfs_lookup_csums_bitmap(csum_root, NULL, start, start + len - 1,
2135 					rbio->csum_buf, rbio->csum_bitmap);
2136 	if (ret < 0)
2137 		goto error;
2138 	if (bitmap_empty(rbio->csum_bitmap, len >> fs_info->sectorsize_bits))
2139 		goto no_csum;
2140 	return;
2141 
2142 error:
2143 	/*
2144 	 * We failed to allocate memory or grab the csum, but it's not fatal,
2145 	 * we can still continue.  But better to warn users that RMW is no
2146 	 * longer safe for this particular sub-stripe write.
2147 	 */
2148 	btrfs_warn_rl(fs_info,
2149 "sub-stripe write for full stripe %llu is not safe, failed to get csum: %d",
2150 			rbio->bioc->full_stripe_logical, ret);
2151 no_csum:
2152 	kfree(rbio->csum_buf);
2153 	bitmap_free(rbio->csum_bitmap);
2154 	rbio->csum_buf = NULL;
2155 	rbio->csum_bitmap = NULL;
2156 }
2157 
2158 static int rmw_read_wait_recover(struct btrfs_raid_bio *rbio)
2159 {
2160 	struct bio_list bio_list = BIO_EMPTY_LIST;
2161 	int total_sector_nr;
2162 	int ret = 0;
2163 
2164 	/*
2165 	 * Fill the data csums we need for data verification.  We need to fill
2166 	 * the csum_bitmap/csum_buf first, as our endio function will try to
2167 	 * verify the data sectors.
2168 	 */
2169 	fill_data_csums(rbio);
2170 
2171 	/*
2172 	 * Build a list of bios to read all sectors (including data and P/Q).
2173 	 *
2174 	 * This behavior is to compensate the later csum verification and recovery.
2175 	 */
2176 	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
2177 	     total_sector_nr++) {
2178 		struct sector_ptr *sector;
2179 		int stripe = total_sector_nr / rbio->stripe_nsectors;
2180 		int sectornr = total_sector_nr % rbio->stripe_nsectors;
2181 
2182 		sector = rbio_stripe_sector(rbio, stripe, sectornr);
2183 		ret = rbio_add_io_sector(rbio, &bio_list, sector,
2184 			       stripe, sectornr, REQ_OP_READ);
2185 		if (ret) {
2186 			bio_list_put(&bio_list);
2187 			return ret;
2188 		}
2189 	}
2190 
2191 	/*
2192 	 * We may or may not have any corrupted sectors (including missing dev
2193 	 * and csum mismatch), just let recover_sectors() to handle them all.
2194 	 */
2195 	submit_read_wait_bio_list(rbio, &bio_list);
2196 	return recover_sectors(rbio);
2197 }
2198 
2199 static void raid_wait_write_end_io(struct bio *bio)
2200 {
2201 	struct btrfs_raid_bio *rbio = bio->bi_private;
2202 	blk_status_t err = bio->bi_status;
2203 
2204 	if (err)
2205 		rbio_update_error_bitmap(rbio, bio);
2206 	bio_put(bio);
2207 	if (atomic_dec_and_test(&rbio->stripes_pending))
2208 		wake_up(&rbio->io_wait);
2209 }
2210 
2211 static void submit_write_bios(struct btrfs_raid_bio *rbio,
2212 			      struct bio_list *bio_list)
2213 {
2214 	struct bio *bio;
2215 
2216 	atomic_set(&rbio->stripes_pending, bio_list_size(bio_list));
2217 	while ((bio = bio_list_pop(bio_list))) {
2218 		bio->bi_end_io = raid_wait_write_end_io;
2219 
2220 		if (trace_raid56_write_enabled()) {
2221 			struct raid56_bio_trace_info trace_info = { 0 };
2222 
2223 			bio_get_trace_info(rbio, bio, &trace_info);
2224 			trace_raid56_write(rbio, bio, &trace_info);
2225 		}
2226 		submit_bio(bio);
2227 	}
2228 }
2229 
2230 /*
2231  * To determine if we need to read any sector from the disk.
2232  * Should only be utilized in RMW path, to skip cached rbio.
2233  */
2234 static bool need_read_stripe_sectors(struct btrfs_raid_bio *rbio)
2235 {
2236 	int i;
2237 
2238 	for (i = 0; i < rbio->nr_data * rbio->stripe_nsectors; i++) {
2239 		struct sector_ptr *sector = &rbio->stripe_sectors[i];
2240 
2241 		/*
2242 		 * We have a sector which doesn't have page nor uptodate,
2243 		 * thus this rbio can not be cached one, as cached one must
2244 		 * have all its data sectors present and uptodate.
2245 		 */
2246 		if (!sector->page || !sector->uptodate)
2247 			return true;
2248 	}
2249 	return false;
2250 }
2251 
2252 static void rmw_rbio(struct btrfs_raid_bio *rbio)
2253 {
2254 	struct bio_list bio_list;
2255 	int sectornr;
2256 	int ret = 0;
2257 
2258 	/*
2259 	 * Allocate the pages for parity first, as P/Q pages will always be
2260 	 * needed for both full-stripe and sub-stripe writes.
2261 	 */
2262 	ret = alloc_rbio_parity_pages(rbio);
2263 	if (ret < 0)
2264 		goto out;
2265 
2266 	/*
2267 	 * Either full stripe write, or we have every data sector already
2268 	 * cached, can go to write path immediately.
2269 	 */
2270 	if (!rbio_is_full(rbio) && need_read_stripe_sectors(rbio)) {
2271 		/*
2272 		 * Now we're doing sub-stripe write, also need all data stripes
2273 		 * to do the full RMW.
2274 		 */
2275 		ret = alloc_rbio_data_pages(rbio);
2276 		if (ret < 0)
2277 			goto out;
2278 
2279 		index_rbio_pages(rbio);
2280 
2281 		ret = rmw_read_wait_recover(rbio);
2282 		if (ret < 0)
2283 			goto out;
2284 	}
2285 
2286 	/*
2287 	 * At this stage we're not allowed to add any new bios to the
2288 	 * bio list any more, anyone else that wants to change this stripe
2289 	 * needs to do their own rmw.
2290 	 */
2291 	spin_lock(&rbio->bio_list_lock);
2292 	set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
2293 	spin_unlock(&rbio->bio_list_lock);
2294 
2295 	bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
2296 
2297 	index_rbio_pages(rbio);
2298 
2299 	/*
2300 	 * We don't cache full rbios because we're assuming
2301 	 * the higher layers are unlikely to use this area of
2302 	 * the disk again soon.  If they do use it again,
2303 	 * hopefully they will send another full bio.
2304 	 */
2305 	if (!rbio_is_full(rbio))
2306 		cache_rbio_pages(rbio);
2307 	else
2308 		clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2309 
2310 	for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++)
2311 		generate_pq_vertical(rbio, sectornr);
2312 
2313 	bio_list_init(&bio_list);
2314 	ret = rmw_assemble_write_bios(rbio, &bio_list);
2315 	if (ret < 0)
2316 		goto out;
2317 
2318 	/* We should have at least one bio assembled. */
2319 	ASSERT(bio_list_size(&bio_list));
2320 	submit_write_bios(rbio, &bio_list);
2321 	wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
2322 
2323 	/* We may have more errors than our tolerance during the read. */
2324 	for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) {
2325 		int found_errors;
2326 
2327 		found_errors = get_rbio_veritical_errors(rbio, sectornr, NULL, NULL);
2328 		if (found_errors > rbio->bioc->max_errors) {
2329 			ret = -EIO;
2330 			break;
2331 		}
2332 	}
2333 out:
2334 	rbio_orig_end_io(rbio, errno_to_blk_status(ret));
2335 }
2336 
2337 static void rmw_rbio_work(struct work_struct *work)
2338 {
2339 	struct btrfs_raid_bio *rbio;
2340 
2341 	rbio = container_of(work, struct btrfs_raid_bio, work);
2342 	if (lock_stripe_add(rbio) == 0)
2343 		rmw_rbio(rbio);
2344 }
2345 
2346 static void rmw_rbio_work_locked(struct work_struct *work)
2347 {
2348 	rmw_rbio(container_of(work, struct btrfs_raid_bio, work));
2349 }
2350 
2351 /*
2352  * The following code is used to scrub/replace the parity stripe
2353  *
2354  * Caller must have already increased bio_counter for getting @bioc.
2355  *
2356  * Note: We need make sure all the pages that add into the scrub/replace
2357  * raid bio are correct and not be changed during the scrub/replace. That
2358  * is those pages just hold metadata or file data with checksum.
2359  */
2360 
2361 struct btrfs_raid_bio *raid56_parity_alloc_scrub_rbio(struct bio *bio,
2362 				struct btrfs_io_context *bioc,
2363 				struct btrfs_device *scrub_dev,
2364 				unsigned long *dbitmap, int stripe_nsectors)
2365 {
2366 	struct btrfs_fs_info *fs_info = bioc->fs_info;
2367 	struct btrfs_raid_bio *rbio;
2368 	int i;
2369 
2370 	rbio = alloc_rbio(fs_info, bioc);
2371 	if (IS_ERR(rbio))
2372 		return NULL;
2373 	bio_list_add(&rbio->bio_list, bio);
2374 	/*
2375 	 * This is a special bio which is used to hold the completion handler
2376 	 * and make the scrub rbio is similar to the other types
2377 	 */
2378 	ASSERT(!bio->bi_iter.bi_size);
2379 	rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2380 
2381 	/*
2382 	 * After mapping bioc with BTRFS_MAP_WRITE, parities have been sorted
2383 	 * to the end position, so this search can start from the first parity
2384 	 * stripe.
2385 	 */
2386 	for (i = rbio->nr_data; i < rbio->real_stripes; i++) {
2387 		if (bioc->stripes[i].dev == scrub_dev) {
2388 			rbio->scrubp = i;
2389 			break;
2390 		}
2391 	}
2392 	ASSERT(i < rbio->real_stripes);
2393 
2394 	bitmap_copy(&rbio->dbitmap, dbitmap, stripe_nsectors);
2395 	return rbio;
2396 }
2397 
2398 /*
2399  * We just scrub the parity that we have correct data on the same horizontal,
2400  * so we needn't allocate all pages for all the stripes.
2401  */
2402 static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2403 {
2404 	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
2405 	int total_sector_nr;
2406 
2407 	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
2408 	     total_sector_nr++) {
2409 		struct page *page;
2410 		int sectornr = total_sector_nr % rbio->stripe_nsectors;
2411 		int index = (total_sector_nr * sectorsize) >> PAGE_SHIFT;
2412 
2413 		if (!test_bit(sectornr, &rbio->dbitmap))
2414 			continue;
2415 		if (rbio->stripe_pages[index])
2416 			continue;
2417 		page = alloc_page(GFP_NOFS);
2418 		if (!page)
2419 			return -ENOMEM;
2420 		rbio->stripe_pages[index] = page;
2421 	}
2422 	index_stripe_sectors(rbio);
2423 	return 0;
2424 }
2425 
2426 static int finish_parity_scrub(struct btrfs_raid_bio *rbio)
2427 {
2428 	struct btrfs_io_context *bioc = rbio->bioc;
2429 	const u32 sectorsize = bioc->fs_info->sectorsize;
2430 	void **pointers = rbio->finish_pointers;
2431 	unsigned long *pbitmap = &rbio->finish_pbitmap;
2432 	int nr_data = rbio->nr_data;
2433 	int stripe;
2434 	int sectornr;
2435 	bool has_qstripe;
2436 	struct sector_ptr p_sector = { 0 };
2437 	struct sector_ptr q_sector = { 0 };
2438 	struct bio_list bio_list;
2439 	int is_replace = 0;
2440 	int ret;
2441 
2442 	bio_list_init(&bio_list);
2443 
2444 	if (rbio->real_stripes - rbio->nr_data == 1)
2445 		has_qstripe = false;
2446 	else if (rbio->real_stripes - rbio->nr_data == 2)
2447 		has_qstripe = true;
2448 	else
2449 		BUG();
2450 
2451 	/*
2452 	 * Replace is running and our P/Q stripe is being replaced, then we
2453 	 * need to duplicate the final write to replace target.
2454 	 */
2455 	if (bioc->replace_nr_stripes && bioc->replace_stripe_src == rbio->scrubp) {
2456 		is_replace = 1;
2457 		bitmap_copy(pbitmap, &rbio->dbitmap, rbio->stripe_nsectors);
2458 	}
2459 
2460 	/*
2461 	 * Because the higher layers(scrubber) are unlikely to
2462 	 * use this area of the disk again soon, so don't cache
2463 	 * it.
2464 	 */
2465 	clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2466 
2467 	p_sector.page = alloc_page(GFP_NOFS);
2468 	if (!p_sector.page)
2469 		return -ENOMEM;
2470 	p_sector.pgoff = 0;
2471 	p_sector.uptodate = 1;
2472 
2473 	if (has_qstripe) {
2474 		/* RAID6, allocate and map temp space for the Q stripe */
2475 		q_sector.page = alloc_page(GFP_NOFS);
2476 		if (!q_sector.page) {
2477 			__free_page(p_sector.page);
2478 			p_sector.page = NULL;
2479 			return -ENOMEM;
2480 		}
2481 		q_sector.pgoff = 0;
2482 		q_sector.uptodate = 1;
2483 		pointers[rbio->real_stripes - 1] = kmap_local_page(q_sector.page);
2484 	}
2485 
2486 	bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
2487 
2488 	/* Map the parity stripe just once */
2489 	pointers[nr_data] = kmap_local_page(p_sector.page);
2490 
2491 	for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) {
2492 		struct sector_ptr *sector;
2493 		void *parity;
2494 
2495 		/* first collect one page from each data stripe */
2496 		for (stripe = 0; stripe < nr_data; stripe++) {
2497 			sector = sector_in_rbio(rbio, stripe, sectornr, 0);
2498 			pointers[stripe] = kmap_local_page(sector->page) +
2499 					   sector->pgoff;
2500 		}
2501 
2502 		if (has_qstripe) {
2503 			assert_rbio(rbio);
2504 			/* RAID6, call the library function to fill in our P/Q */
2505 			raid6_call.gen_syndrome(rbio->real_stripes, sectorsize,
2506 						pointers);
2507 		} else {
2508 			/* raid5 */
2509 			memcpy(pointers[nr_data], pointers[0], sectorsize);
2510 			run_xor(pointers + 1, nr_data - 1, sectorsize);
2511 		}
2512 
2513 		/* Check scrubbing parity and repair it */
2514 		sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
2515 		parity = kmap_local_page(sector->page) + sector->pgoff;
2516 		if (memcmp(parity, pointers[rbio->scrubp], sectorsize) != 0)
2517 			memcpy(parity, pointers[rbio->scrubp], sectorsize);
2518 		else
2519 			/* Parity is right, needn't writeback */
2520 			bitmap_clear(&rbio->dbitmap, sectornr, 1);
2521 		kunmap_local(parity);
2522 
2523 		for (stripe = nr_data - 1; stripe >= 0; stripe--)
2524 			kunmap_local(pointers[stripe]);
2525 	}
2526 
2527 	kunmap_local(pointers[nr_data]);
2528 	__free_page(p_sector.page);
2529 	p_sector.page = NULL;
2530 	if (q_sector.page) {
2531 		kunmap_local(pointers[rbio->real_stripes - 1]);
2532 		__free_page(q_sector.page);
2533 		q_sector.page = NULL;
2534 	}
2535 
2536 	/*
2537 	 * time to start writing.  Make bios for everything from the
2538 	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
2539 	 * everything else.
2540 	 */
2541 	for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) {
2542 		struct sector_ptr *sector;
2543 
2544 		sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
2545 		ret = rbio_add_io_sector(rbio, &bio_list, sector, rbio->scrubp,
2546 					 sectornr, REQ_OP_WRITE);
2547 		if (ret)
2548 			goto cleanup;
2549 	}
2550 
2551 	if (!is_replace)
2552 		goto submit_write;
2553 
2554 	/*
2555 	 * Replace is running and our parity stripe needs to be duplicated to
2556 	 * the target device.  Check we have a valid source stripe number.
2557 	 */
2558 	ASSERT(rbio->bioc->replace_stripe_src >= 0);
2559 	for_each_set_bit(sectornr, pbitmap, rbio->stripe_nsectors) {
2560 		struct sector_ptr *sector;
2561 
2562 		sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
2563 		ret = rbio_add_io_sector(rbio, &bio_list, sector,
2564 					 rbio->real_stripes,
2565 					 sectornr, REQ_OP_WRITE);
2566 		if (ret)
2567 			goto cleanup;
2568 	}
2569 
2570 submit_write:
2571 	submit_write_bios(rbio, &bio_list);
2572 	return 0;
2573 
2574 cleanup:
2575 	bio_list_put(&bio_list);
2576 	return ret;
2577 }
2578 
2579 static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2580 {
2581 	if (stripe >= 0 && stripe < rbio->nr_data)
2582 		return 1;
2583 	return 0;
2584 }
2585 
2586 static int recover_scrub_rbio(struct btrfs_raid_bio *rbio)
2587 {
2588 	void **pointers = NULL;
2589 	void **unmap_array = NULL;
2590 	int sector_nr;
2591 	int ret = 0;
2592 
2593 	/*
2594 	 * @pointers array stores the pointer for each sector.
2595 	 *
2596 	 * @unmap_array stores copy of pointers that does not get reordered
2597 	 * during reconstruction so that kunmap_local works.
2598 	 */
2599 	pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
2600 	unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
2601 	if (!pointers || !unmap_array) {
2602 		ret = -ENOMEM;
2603 		goto out;
2604 	}
2605 
2606 	for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
2607 		int dfail = 0, failp = -1;
2608 		int faila;
2609 		int failb;
2610 		int found_errors;
2611 
2612 		found_errors = get_rbio_veritical_errors(rbio, sector_nr,
2613 							 &faila, &failb);
2614 		if (found_errors > rbio->bioc->max_errors) {
2615 			ret = -EIO;
2616 			goto out;
2617 		}
2618 		if (found_errors == 0)
2619 			continue;
2620 
2621 		/* We should have at least one error here. */
2622 		ASSERT(faila >= 0 || failb >= 0);
2623 
2624 		if (is_data_stripe(rbio, faila))
2625 			dfail++;
2626 		else if (is_parity_stripe(faila))
2627 			failp = faila;
2628 
2629 		if (is_data_stripe(rbio, failb))
2630 			dfail++;
2631 		else if (is_parity_stripe(failb))
2632 			failp = failb;
2633 		/*
2634 		 * Because we can not use a scrubbing parity to repair the
2635 		 * data, so the capability of the repair is declined.  (In the
2636 		 * case of RAID5, we can not repair anything.)
2637 		 */
2638 		if (dfail > rbio->bioc->max_errors - 1) {
2639 			ret = -EIO;
2640 			goto out;
2641 		}
2642 		/*
2643 		 * If all data is good, only parity is correctly, just repair
2644 		 * the parity, no need to recover data stripes.
2645 		 */
2646 		if (dfail == 0)
2647 			continue;
2648 
2649 		/*
2650 		 * Here means we got one corrupted data stripe and one
2651 		 * corrupted parity on RAID6, if the corrupted parity is
2652 		 * scrubbing parity, luckily, use the other one to repair the
2653 		 * data, or we can not repair the data stripe.
2654 		 */
2655 		if (failp != rbio->scrubp) {
2656 			ret = -EIO;
2657 			goto out;
2658 		}
2659 
2660 		ret = recover_vertical(rbio, sector_nr, pointers, unmap_array);
2661 		if (ret < 0)
2662 			goto out;
2663 	}
2664 out:
2665 	kfree(pointers);
2666 	kfree(unmap_array);
2667 	return ret;
2668 }
2669 
2670 static int scrub_assemble_read_bios(struct btrfs_raid_bio *rbio)
2671 {
2672 	struct bio_list bio_list = BIO_EMPTY_LIST;
2673 	int total_sector_nr;
2674 	int ret = 0;
2675 
2676 	/* Build a list of bios to read all the missing parts. */
2677 	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
2678 	     total_sector_nr++) {
2679 		int sectornr = total_sector_nr % rbio->stripe_nsectors;
2680 		int stripe = total_sector_nr / rbio->stripe_nsectors;
2681 		struct sector_ptr *sector;
2682 
2683 		/* No data in the vertical stripe, no need to read. */
2684 		if (!test_bit(sectornr, &rbio->dbitmap))
2685 			continue;
2686 
2687 		/*
2688 		 * We want to find all the sectors missing from the rbio and
2689 		 * read them from the disk. If sector_in_rbio() finds a sector
2690 		 * in the bio list we don't need to read it off the stripe.
2691 		 */
2692 		sector = sector_in_rbio(rbio, stripe, sectornr, 1);
2693 		if (sector)
2694 			continue;
2695 
2696 		sector = rbio_stripe_sector(rbio, stripe, sectornr);
2697 		/*
2698 		 * The bio cache may have handed us an uptodate sector.  If so,
2699 		 * use it.
2700 		 */
2701 		if (sector->uptodate)
2702 			continue;
2703 
2704 		ret = rbio_add_io_sector(rbio, &bio_list, sector, stripe,
2705 					 sectornr, REQ_OP_READ);
2706 		if (ret) {
2707 			bio_list_put(&bio_list);
2708 			return ret;
2709 		}
2710 	}
2711 
2712 	submit_read_wait_bio_list(rbio, &bio_list);
2713 	return 0;
2714 }
2715 
2716 static void scrub_rbio(struct btrfs_raid_bio *rbio)
2717 {
2718 	int sector_nr;
2719 	int ret;
2720 
2721 	ret = alloc_rbio_essential_pages(rbio);
2722 	if (ret)
2723 		goto out;
2724 
2725 	bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
2726 
2727 	ret = scrub_assemble_read_bios(rbio);
2728 	if (ret < 0)
2729 		goto out;
2730 
2731 	/* We may have some failures, recover the failed sectors first. */
2732 	ret = recover_scrub_rbio(rbio);
2733 	if (ret < 0)
2734 		goto out;
2735 
2736 	/*
2737 	 * We have every sector properly prepared. Can finish the scrub
2738 	 * and writeback the good content.
2739 	 */
2740 	ret = finish_parity_scrub(rbio);
2741 	wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
2742 	for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
2743 		int found_errors;
2744 
2745 		found_errors = get_rbio_veritical_errors(rbio, sector_nr, NULL, NULL);
2746 		if (found_errors > rbio->bioc->max_errors) {
2747 			ret = -EIO;
2748 			break;
2749 		}
2750 	}
2751 out:
2752 	rbio_orig_end_io(rbio, errno_to_blk_status(ret));
2753 }
2754 
2755 static void scrub_rbio_work_locked(struct work_struct *work)
2756 {
2757 	scrub_rbio(container_of(work, struct btrfs_raid_bio, work));
2758 }
2759 
2760 void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2761 {
2762 	if (!lock_stripe_add(rbio))
2763 		start_async_work(rbio, scrub_rbio_work_locked);
2764 }
2765 
2766 /*
2767  * This is for scrub call sites where we already have correct data contents.
2768  * This allows us to avoid reading data stripes again.
2769  *
2770  * Unfortunately here we have to do page copy, other than reusing the pages.
2771  * This is due to the fact rbio has its own page management for its cache.
2772  */
2773 void raid56_parity_cache_data_pages(struct btrfs_raid_bio *rbio,
2774 				    struct page **data_pages, u64 data_logical)
2775 {
2776 	const u64 offset_in_full_stripe = data_logical -
2777 					  rbio->bioc->full_stripe_logical;
2778 	const int page_index = offset_in_full_stripe >> PAGE_SHIFT;
2779 	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
2780 	const u32 sectors_per_page = PAGE_SIZE / sectorsize;
2781 	int ret;
2782 
2783 	/*
2784 	 * If we hit ENOMEM temporarily, but later at
2785 	 * raid56_parity_submit_scrub_rbio() time it succeeded, we just do
2786 	 * the extra read, not a big deal.
2787 	 *
2788 	 * If we hit ENOMEM later at raid56_parity_submit_scrub_rbio() time,
2789 	 * the bio would got proper error number set.
2790 	 */
2791 	ret = alloc_rbio_data_pages(rbio);
2792 	if (ret < 0)
2793 		return;
2794 
2795 	/* data_logical must be at stripe boundary and inside the full stripe. */
2796 	ASSERT(IS_ALIGNED(offset_in_full_stripe, BTRFS_STRIPE_LEN));
2797 	ASSERT(offset_in_full_stripe < (rbio->nr_data << BTRFS_STRIPE_LEN_SHIFT));
2798 
2799 	for (int page_nr = 0; page_nr < (BTRFS_STRIPE_LEN >> PAGE_SHIFT); page_nr++) {
2800 		struct page *dst = rbio->stripe_pages[page_nr + page_index];
2801 		struct page *src = data_pages[page_nr];
2802 
2803 		memcpy_page(dst, 0, src, 0, PAGE_SIZE);
2804 		for (int sector_nr = sectors_per_page * page_index;
2805 		     sector_nr < sectors_per_page * (page_index + 1);
2806 		     sector_nr++)
2807 			rbio->stripe_sectors[sector_nr].uptodate = true;
2808 	}
2809 }
2810