xref: /linux/fs/btrfs/ordered-data.c (revision ff9fbcafbaf13346c742c0d672a22f5ac20b9d92)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/slab.h>
7 #include <linux/blkdev.h>
8 #include <linux/writeback.h>
9 #include <linux/sched/mm.h>
10 #include "messages.h"
11 #include "misc.h"
12 #include "ctree.h"
13 #include "transaction.h"
14 #include "btrfs_inode.h"
15 #include "extent_io.h"
16 #include "disk-io.h"
17 #include "compression.h"
18 #include "delalloc-space.h"
19 #include "qgroup.h"
20 #include "subpage.h"
21 #include "file.h"
22 #include "block-group.h"
23 
24 static struct kmem_cache *btrfs_ordered_extent_cache;
25 
26 static u64 entry_end(struct btrfs_ordered_extent *entry)
27 {
28 	if (entry->file_offset + entry->num_bytes < entry->file_offset)
29 		return (u64)-1;
30 	return entry->file_offset + entry->num_bytes;
31 }
32 
33 /* returns NULL if the insertion worked, or it returns the node it did find
34  * in the tree
35  */
36 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
37 				   struct rb_node *node)
38 {
39 	struct rb_node **p = &root->rb_node;
40 	struct rb_node *parent = NULL;
41 	struct btrfs_ordered_extent *entry;
42 
43 	while (*p) {
44 		parent = *p;
45 		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
46 
47 		if (file_offset < entry->file_offset)
48 			p = &(*p)->rb_left;
49 		else if (file_offset >= entry_end(entry))
50 			p = &(*p)->rb_right;
51 		else
52 			return parent;
53 	}
54 
55 	rb_link_node(node, parent, p);
56 	rb_insert_color(node, root);
57 	return NULL;
58 }
59 
60 /*
61  * look for a given offset in the tree, and if it can't be found return the
62  * first lesser offset
63  */
64 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
65 				     struct rb_node **prev_ret)
66 {
67 	struct rb_node *n = root->rb_node;
68 	struct rb_node *prev = NULL;
69 	struct rb_node *test;
70 	struct btrfs_ordered_extent *entry;
71 	struct btrfs_ordered_extent *prev_entry = NULL;
72 
73 	while (n) {
74 		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
75 		prev = n;
76 		prev_entry = entry;
77 
78 		if (file_offset < entry->file_offset)
79 			n = n->rb_left;
80 		else if (file_offset >= entry_end(entry))
81 			n = n->rb_right;
82 		else
83 			return n;
84 	}
85 	if (!prev_ret)
86 		return NULL;
87 
88 	while (prev && file_offset >= entry_end(prev_entry)) {
89 		test = rb_next(prev);
90 		if (!test)
91 			break;
92 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
93 				      rb_node);
94 		if (file_offset < entry_end(prev_entry))
95 			break;
96 
97 		prev = test;
98 	}
99 	if (prev)
100 		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
101 				      rb_node);
102 	while (prev && file_offset < entry_end(prev_entry)) {
103 		test = rb_prev(prev);
104 		if (!test)
105 			break;
106 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
107 				      rb_node);
108 		prev = test;
109 	}
110 	*prev_ret = prev;
111 	return NULL;
112 }
113 
114 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
115 			  u64 len)
116 {
117 	if (file_offset + len <= entry->file_offset ||
118 	    entry->file_offset + entry->num_bytes <= file_offset)
119 		return 0;
120 	return 1;
121 }
122 
123 /*
124  * look find the first ordered struct that has this offset, otherwise
125  * the first one less than this offset
126  */
127 static inline struct rb_node *ordered_tree_search(struct btrfs_inode *inode,
128 						  u64 file_offset)
129 {
130 	struct rb_node *prev = NULL;
131 	struct rb_node *ret;
132 	struct btrfs_ordered_extent *entry;
133 
134 	if (inode->ordered_tree_last) {
135 		entry = rb_entry(inode->ordered_tree_last, struct btrfs_ordered_extent,
136 				 rb_node);
137 		if (in_range(file_offset, entry->file_offset, entry->num_bytes))
138 			return inode->ordered_tree_last;
139 	}
140 	ret = __tree_search(&inode->ordered_tree, file_offset, &prev);
141 	if (!ret)
142 		ret = prev;
143 	if (ret)
144 		inode->ordered_tree_last = ret;
145 	return ret;
146 }
147 
148 static struct btrfs_ordered_extent *alloc_ordered_extent(
149 			struct btrfs_inode *inode, u64 file_offset, u64 num_bytes,
150 			u64 ram_bytes, u64 disk_bytenr, u64 disk_num_bytes,
151 			u64 offset, unsigned long flags, int compress_type)
152 {
153 	struct btrfs_ordered_extent *entry;
154 	int ret;
155 	u64 qgroup_rsv = 0;
156 
157 	if (flags &
158 	    ((1 << BTRFS_ORDERED_NOCOW) | (1 << BTRFS_ORDERED_PREALLOC))) {
159 		/* For nocow write, we can release the qgroup rsv right now */
160 		ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes, &qgroup_rsv);
161 		if (ret < 0)
162 			return ERR_PTR(ret);
163 	} else {
164 		/*
165 		 * The ordered extent has reserved qgroup space, release now
166 		 * and pass the reserved number for qgroup_record to free.
167 		 */
168 		ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes, &qgroup_rsv);
169 		if (ret < 0)
170 			return ERR_PTR(ret);
171 	}
172 	entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
173 	if (!entry)
174 		return ERR_PTR(-ENOMEM);
175 
176 	entry->file_offset = file_offset;
177 	entry->num_bytes = num_bytes;
178 	entry->ram_bytes = ram_bytes;
179 	entry->disk_bytenr = disk_bytenr;
180 	entry->disk_num_bytes = disk_num_bytes;
181 	entry->offset = offset;
182 	entry->bytes_left = num_bytes;
183 	entry->inode = BTRFS_I(igrab(&inode->vfs_inode));
184 	entry->compress_type = compress_type;
185 	entry->truncated_len = (u64)-1;
186 	entry->qgroup_rsv = qgroup_rsv;
187 	entry->flags = flags;
188 	refcount_set(&entry->refs, 1);
189 	init_waitqueue_head(&entry->wait);
190 	INIT_LIST_HEAD(&entry->list);
191 	INIT_LIST_HEAD(&entry->log_list);
192 	INIT_LIST_HEAD(&entry->root_extent_list);
193 	INIT_LIST_HEAD(&entry->work_list);
194 	INIT_LIST_HEAD(&entry->bioc_list);
195 	init_completion(&entry->completion);
196 
197 	/*
198 	 * We don't need the count_max_extents here, we can assume that all of
199 	 * that work has been done at higher layers, so this is truly the
200 	 * smallest the extent is going to get.
201 	 */
202 	spin_lock(&inode->lock);
203 	btrfs_mod_outstanding_extents(inode, 1);
204 	spin_unlock(&inode->lock);
205 
206 	return entry;
207 }
208 
209 static void insert_ordered_extent(struct btrfs_ordered_extent *entry)
210 {
211 	struct btrfs_inode *inode = entry->inode;
212 	struct btrfs_root *root = inode->root;
213 	struct btrfs_fs_info *fs_info = root->fs_info;
214 	struct rb_node *node;
215 
216 	trace_btrfs_ordered_extent_add(inode, entry);
217 
218 	percpu_counter_add_batch(&fs_info->ordered_bytes, entry->num_bytes,
219 				 fs_info->delalloc_batch);
220 
221 	/* One ref for the tree. */
222 	refcount_inc(&entry->refs);
223 
224 	spin_lock_irq(&inode->ordered_tree_lock);
225 	node = tree_insert(&inode->ordered_tree, entry->file_offset,
226 			   &entry->rb_node);
227 	if (unlikely(node))
228 		btrfs_panic(fs_info, -EEXIST,
229 				"inconsistency in ordered tree at offset %llu",
230 				entry->file_offset);
231 	spin_unlock_irq(&inode->ordered_tree_lock);
232 
233 	spin_lock(&root->ordered_extent_lock);
234 	list_add_tail(&entry->root_extent_list,
235 		      &root->ordered_extents);
236 	root->nr_ordered_extents++;
237 	if (root->nr_ordered_extents == 1) {
238 		spin_lock(&fs_info->ordered_root_lock);
239 		BUG_ON(!list_empty(&root->ordered_root));
240 		list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
241 		spin_unlock(&fs_info->ordered_root_lock);
242 	}
243 	spin_unlock(&root->ordered_extent_lock);
244 }
245 
246 /*
247  * Add an ordered extent to the per-inode tree.
248  *
249  * @inode:           Inode that this extent is for.
250  * @file_offset:     Logical offset in file where the extent starts.
251  * @num_bytes:       Logical length of extent in file.
252  * @ram_bytes:       Full length of unencoded data.
253  * @disk_bytenr:     Offset of extent on disk.
254  * @disk_num_bytes:  Size of extent on disk.
255  * @offset:          Offset into unencoded data where file data starts.
256  * @flags:           Flags specifying type of extent (1 << BTRFS_ORDERED_*).
257  * @compress_type:   Compression algorithm used for data.
258  *
259  * Most of these parameters correspond to &struct btrfs_file_extent_item. The
260  * tree is given a single reference on the ordered extent that was inserted, and
261  * the returned pointer is given a second reference.
262  *
263  * Return: the new ordered extent or error pointer.
264  */
265 struct btrfs_ordered_extent *btrfs_alloc_ordered_extent(
266 			struct btrfs_inode *inode, u64 file_offset,
267 			const struct btrfs_file_extent *file_extent, unsigned long flags)
268 {
269 	struct btrfs_ordered_extent *entry;
270 
271 	ASSERT((flags & ~BTRFS_ORDERED_TYPE_FLAGS) == 0);
272 
273 	/*
274 	 * For regular writes, we just use the members in @file_extent.
275 	 *
276 	 * For NOCOW, we don't really care about the numbers except @start and
277 	 * file_extent->num_bytes, as we won't insert a file extent item at all.
278 	 *
279 	 * For PREALLOC, we do not use ordered extent members, but
280 	 * btrfs_mark_extent_written() handles everything.
281 	 *
282 	 * So here we always pass 0 as offset for NOCOW/PREALLOC ordered extents,
283 	 * or btrfs_split_ordered_extent() cannot handle it correctly.
284 	 */
285 	if (flags & ((1U << BTRFS_ORDERED_NOCOW) | (1U << BTRFS_ORDERED_PREALLOC)))
286 		entry = alloc_ordered_extent(inode, file_offset,
287 					     file_extent->num_bytes,
288 					     file_extent->num_bytes,
289 					     file_extent->disk_bytenr + file_extent->offset,
290 					     file_extent->num_bytes, 0, flags,
291 					     file_extent->compression);
292 	else
293 		entry = alloc_ordered_extent(inode, file_offset,
294 					     file_extent->num_bytes,
295 					     file_extent->ram_bytes,
296 					     file_extent->disk_bytenr,
297 					     file_extent->disk_num_bytes,
298 					     file_extent->offset, flags,
299 					     file_extent->compression);
300 	if (!IS_ERR(entry))
301 		insert_ordered_extent(entry);
302 	return entry;
303 }
304 
305 /*
306  * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
307  * when an ordered extent is finished.  If the list covers more than one
308  * ordered extent, it is split across multiples.
309  */
310 void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
311 			   struct btrfs_ordered_sum *sum)
312 {
313 	struct btrfs_inode *inode = entry->inode;
314 
315 	spin_lock_irq(&inode->ordered_tree_lock);
316 	list_add_tail(&sum->list, &entry->list);
317 	spin_unlock_irq(&inode->ordered_tree_lock);
318 }
319 
320 void btrfs_mark_ordered_extent_error(struct btrfs_ordered_extent *ordered)
321 {
322 	if (!test_and_set_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
323 		mapping_set_error(ordered->inode->vfs_inode.i_mapping, -EIO);
324 }
325 
326 static void finish_ordered_fn(struct btrfs_work *work)
327 {
328 	struct btrfs_ordered_extent *ordered_extent;
329 
330 	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
331 	btrfs_finish_ordered_io(ordered_extent);
332 }
333 
334 static bool can_finish_ordered_extent(struct btrfs_ordered_extent *ordered,
335 				      struct page *page, u64 file_offset,
336 				      u64 len, bool uptodate)
337 {
338 	struct btrfs_inode *inode = ordered->inode;
339 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
340 
341 	lockdep_assert_held(&inode->ordered_tree_lock);
342 
343 	if (page) {
344 		ASSERT(page->mapping);
345 		ASSERT(page_offset(page) <= file_offset);
346 		ASSERT(file_offset + len <= page_offset(page) + PAGE_SIZE);
347 
348 		/*
349 		 * Ordered (Private2) bit indicates whether we still have
350 		 * pending io unfinished for the ordered extent.
351 		 *
352 		 * If there's no such bit, we need to skip to next range.
353 		 */
354 		if (!btrfs_folio_test_ordered(fs_info, page_folio(page),
355 					      file_offset, len))
356 			return false;
357 		btrfs_folio_clear_ordered(fs_info, page_folio(page), file_offset, len);
358 	}
359 
360 	/* Now we're fine to update the accounting. */
361 	if (WARN_ON_ONCE(len > ordered->bytes_left)) {
362 		btrfs_crit(fs_info,
363 "bad ordered extent accounting, root=%llu ino=%llu OE offset=%llu OE len=%llu to_dec=%llu left=%llu",
364 			   btrfs_root_id(inode->root), btrfs_ino(inode),
365 			   ordered->file_offset, ordered->num_bytes,
366 			   len, ordered->bytes_left);
367 		ordered->bytes_left = 0;
368 	} else {
369 		ordered->bytes_left -= len;
370 	}
371 
372 	if (!uptodate)
373 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
374 
375 	if (ordered->bytes_left)
376 		return false;
377 
378 	/*
379 	 * All the IO of the ordered extent is finished, we need to queue
380 	 * the finish_func to be executed.
381 	 */
382 	set_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags);
383 	cond_wake_up(&ordered->wait);
384 	refcount_inc(&ordered->refs);
385 	trace_btrfs_ordered_extent_mark_finished(inode, ordered);
386 	return true;
387 }
388 
389 static void btrfs_queue_ordered_fn(struct btrfs_ordered_extent *ordered)
390 {
391 	struct btrfs_inode *inode = ordered->inode;
392 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
393 	struct btrfs_workqueue *wq = btrfs_is_free_space_inode(inode) ?
394 		fs_info->endio_freespace_worker : fs_info->endio_write_workers;
395 
396 	btrfs_init_work(&ordered->work, finish_ordered_fn, NULL);
397 	btrfs_queue_work(wq, &ordered->work);
398 }
399 
400 void btrfs_finish_ordered_extent(struct btrfs_ordered_extent *ordered,
401 				 struct page *page, u64 file_offset, u64 len,
402 				 bool uptodate)
403 {
404 	struct btrfs_inode *inode = ordered->inode;
405 	unsigned long flags;
406 	bool ret;
407 
408 	trace_btrfs_finish_ordered_extent(inode, file_offset, len, uptodate);
409 
410 	spin_lock_irqsave(&inode->ordered_tree_lock, flags);
411 	ret = can_finish_ordered_extent(ordered, page, file_offset, len, uptodate);
412 	spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
413 
414 	/*
415 	 * If this is a COW write it means we created new extent maps for the
416 	 * range and they point to unwritten locations if we got an error either
417 	 * before submitting a bio or during IO.
418 	 *
419 	 * We have marked the ordered extent with BTRFS_ORDERED_IOERR, and we
420 	 * are queuing its completion below. During completion, at
421 	 * btrfs_finish_one_ordered(), we will drop the extent maps for the
422 	 * unwritten extents.
423 	 *
424 	 * However because completion runs in a work queue we can end up having
425 	 * a fast fsync running before that. In the case of direct IO, once we
426 	 * unlock the inode the fsync might start, and we queue the completion
427 	 * before unlocking the inode. In the case of buffered IO when writeback
428 	 * finishes (end_bbio_data_write()) we queue the completion, so if the
429 	 * writeback was triggered by a fast fsync, the fsync might start
430 	 * logging before ordered extent completion runs in the work queue.
431 	 *
432 	 * The fast fsync will log file extent items based on the extent maps it
433 	 * finds, so if by the time it collects extent maps the ordered extent
434 	 * completion didn't happen yet, it will log file extent items that
435 	 * point to unwritten extents, resulting in a corruption if a crash
436 	 * happens and the log tree is replayed. Note that a fast fsync does not
437 	 * wait for completion of ordered extents in order to reduce latency.
438 	 *
439 	 * Set a flag in the inode so that the next fast fsync will wait for
440 	 * ordered extents to complete before starting to log.
441 	 */
442 	if (!uptodate && !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
443 		set_bit(BTRFS_INODE_COW_WRITE_ERROR, &inode->runtime_flags);
444 
445 	if (ret)
446 		btrfs_queue_ordered_fn(ordered);
447 }
448 
449 /*
450  * Mark all ordered extents io inside the specified range finished.
451  *
452  * @page:	 The involved page for the operation.
453  *		 For uncompressed buffered IO, the page status also needs to be
454  *		 updated to indicate whether the pending ordered io is finished.
455  *		 Can be NULL for direct IO and compressed write.
456  *		 For these cases, callers are ensured they won't execute the
457  *		 endio function twice.
458  *
459  * This function is called for endio, thus the range must have ordered
460  * extent(s) covering it.
461  */
462 void btrfs_mark_ordered_io_finished(struct btrfs_inode *inode,
463 				    struct page *page, u64 file_offset,
464 				    u64 num_bytes, bool uptodate)
465 {
466 	struct rb_node *node;
467 	struct btrfs_ordered_extent *entry = NULL;
468 	unsigned long flags;
469 	u64 cur = file_offset;
470 
471 	trace_btrfs_writepage_end_io_hook(inode, file_offset,
472 					  file_offset + num_bytes - 1,
473 					  uptodate);
474 
475 	spin_lock_irqsave(&inode->ordered_tree_lock, flags);
476 	while (cur < file_offset + num_bytes) {
477 		u64 entry_end;
478 		u64 end;
479 		u32 len;
480 
481 		node = ordered_tree_search(inode, cur);
482 		/* No ordered extents at all */
483 		if (!node)
484 			break;
485 
486 		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
487 		entry_end = entry->file_offset + entry->num_bytes;
488 		/*
489 		 * |<-- OE --->|  |
490 		 *		  cur
491 		 * Go to next OE.
492 		 */
493 		if (cur >= entry_end) {
494 			node = rb_next(node);
495 			/* No more ordered extents, exit */
496 			if (!node)
497 				break;
498 			entry = rb_entry(node, struct btrfs_ordered_extent,
499 					 rb_node);
500 
501 			/* Go to next ordered extent and continue */
502 			cur = entry->file_offset;
503 			continue;
504 		}
505 		/*
506 		 * |	|<--- OE --->|
507 		 * cur
508 		 * Go to the start of OE.
509 		 */
510 		if (cur < entry->file_offset) {
511 			cur = entry->file_offset;
512 			continue;
513 		}
514 
515 		/*
516 		 * Now we are definitely inside one ordered extent.
517 		 *
518 		 * |<--- OE --->|
519 		 *	|
520 		 *	cur
521 		 */
522 		end = min(entry->file_offset + entry->num_bytes,
523 			  file_offset + num_bytes) - 1;
524 		ASSERT(end + 1 - cur < U32_MAX);
525 		len = end + 1 - cur;
526 
527 		if (can_finish_ordered_extent(entry, page, cur, len, uptodate)) {
528 			spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
529 			btrfs_queue_ordered_fn(entry);
530 			spin_lock_irqsave(&inode->ordered_tree_lock, flags);
531 		}
532 		cur += len;
533 	}
534 	spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
535 }
536 
537 /*
538  * Finish IO for one ordered extent across a given range.  The range can only
539  * contain one ordered extent.
540  *
541  * @cached:	 The cached ordered extent. If not NULL, we can skip the tree
542  *               search and use the ordered extent directly.
543  * 		 Will be also used to store the finished ordered extent.
544  * @file_offset: File offset for the finished IO
545  * @io_size:	 Length of the finish IO range
546  *
547  * Return true if the ordered extent is finished in the range, and update
548  * @cached.
549  * Return false otherwise.
550  *
551  * NOTE: The range can NOT cross multiple ordered extents.
552  * Thus caller should ensure the range doesn't cross ordered extents.
553  */
554 bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode,
555 				    struct btrfs_ordered_extent **cached,
556 				    u64 file_offset, u64 io_size)
557 {
558 	struct rb_node *node;
559 	struct btrfs_ordered_extent *entry = NULL;
560 	unsigned long flags;
561 	bool finished = false;
562 
563 	spin_lock_irqsave(&inode->ordered_tree_lock, flags);
564 	if (cached && *cached) {
565 		entry = *cached;
566 		goto have_entry;
567 	}
568 
569 	node = ordered_tree_search(inode, file_offset);
570 	if (!node)
571 		goto out;
572 
573 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
574 have_entry:
575 	if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
576 		goto out;
577 
578 	if (io_size > entry->bytes_left)
579 		btrfs_crit(inode->root->fs_info,
580 			   "bad ordered accounting left %llu size %llu",
581 		       entry->bytes_left, io_size);
582 
583 	entry->bytes_left -= io_size;
584 
585 	if (entry->bytes_left == 0) {
586 		/*
587 		 * Ensure only one caller can set the flag and finished_ret
588 		 * accordingly
589 		 */
590 		finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
591 		/* test_and_set_bit implies a barrier */
592 		cond_wake_up_nomb(&entry->wait);
593 	}
594 out:
595 	if (finished && cached && entry) {
596 		*cached = entry;
597 		refcount_inc(&entry->refs);
598 		trace_btrfs_ordered_extent_dec_test_pending(inode, entry);
599 	}
600 	spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
601 	return finished;
602 }
603 
604 /*
605  * used to drop a reference on an ordered extent.  This will free
606  * the extent if the last reference is dropped
607  */
608 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
609 {
610 	struct list_head *cur;
611 	struct btrfs_ordered_sum *sum;
612 
613 	trace_btrfs_ordered_extent_put(entry->inode, entry);
614 
615 	if (refcount_dec_and_test(&entry->refs)) {
616 		ASSERT(list_empty(&entry->root_extent_list));
617 		ASSERT(list_empty(&entry->log_list));
618 		ASSERT(RB_EMPTY_NODE(&entry->rb_node));
619 		if (entry->inode)
620 			btrfs_add_delayed_iput(entry->inode);
621 		while (!list_empty(&entry->list)) {
622 			cur = entry->list.next;
623 			sum = list_entry(cur, struct btrfs_ordered_sum, list);
624 			list_del(&sum->list);
625 			kvfree(sum);
626 		}
627 		kmem_cache_free(btrfs_ordered_extent_cache, entry);
628 	}
629 }
630 
631 /*
632  * remove an ordered extent from the tree.  No references are dropped
633  * and waiters are woken up.
634  */
635 void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode,
636 				 struct btrfs_ordered_extent *entry)
637 {
638 	struct btrfs_root *root = btrfs_inode->root;
639 	struct btrfs_fs_info *fs_info = root->fs_info;
640 	struct rb_node *node;
641 	bool pending;
642 	bool freespace_inode;
643 
644 	/*
645 	 * If this is a free space inode the thread has not acquired the ordered
646 	 * extents lockdep map.
647 	 */
648 	freespace_inode = btrfs_is_free_space_inode(btrfs_inode);
649 
650 	btrfs_lockdep_acquire(fs_info, btrfs_trans_pending_ordered);
651 	/* This is paired with alloc_ordered_extent(). */
652 	spin_lock(&btrfs_inode->lock);
653 	btrfs_mod_outstanding_extents(btrfs_inode, -1);
654 	spin_unlock(&btrfs_inode->lock);
655 	if (root != fs_info->tree_root) {
656 		u64 release;
657 
658 		if (test_bit(BTRFS_ORDERED_ENCODED, &entry->flags))
659 			release = entry->disk_num_bytes;
660 		else
661 			release = entry->num_bytes;
662 		btrfs_delalloc_release_metadata(btrfs_inode, release,
663 						test_bit(BTRFS_ORDERED_IOERR,
664 							 &entry->flags));
665 	}
666 
667 	percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes,
668 				 fs_info->delalloc_batch);
669 
670 	spin_lock_irq(&btrfs_inode->ordered_tree_lock);
671 	node = &entry->rb_node;
672 	rb_erase(node, &btrfs_inode->ordered_tree);
673 	RB_CLEAR_NODE(node);
674 	if (btrfs_inode->ordered_tree_last == node)
675 		btrfs_inode->ordered_tree_last = NULL;
676 	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
677 	pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags);
678 	spin_unlock_irq(&btrfs_inode->ordered_tree_lock);
679 
680 	/*
681 	 * The current running transaction is waiting on us, we need to let it
682 	 * know that we're complete and wake it up.
683 	 */
684 	if (pending) {
685 		struct btrfs_transaction *trans;
686 
687 		/*
688 		 * The checks for trans are just a formality, it should be set,
689 		 * but if it isn't we don't want to deref/assert under the spin
690 		 * lock, so be nice and check if trans is set, but ASSERT() so
691 		 * if it isn't set a developer will notice.
692 		 */
693 		spin_lock(&fs_info->trans_lock);
694 		trans = fs_info->running_transaction;
695 		if (trans)
696 			refcount_inc(&trans->use_count);
697 		spin_unlock(&fs_info->trans_lock);
698 
699 		ASSERT(trans || BTRFS_FS_ERROR(fs_info));
700 		if (trans) {
701 			if (atomic_dec_and_test(&trans->pending_ordered))
702 				wake_up(&trans->pending_wait);
703 			btrfs_put_transaction(trans);
704 		}
705 	}
706 
707 	btrfs_lockdep_release(fs_info, btrfs_trans_pending_ordered);
708 
709 	spin_lock(&root->ordered_extent_lock);
710 	list_del_init(&entry->root_extent_list);
711 	root->nr_ordered_extents--;
712 
713 	trace_btrfs_ordered_extent_remove(btrfs_inode, entry);
714 
715 	if (!root->nr_ordered_extents) {
716 		spin_lock(&fs_info->ordered_root_lock);
717 		BUG_ON(list_empty(&root->ordered_root));
718 		list_del_init(&root->ordered_root);
719 		spin_unlock(&fs_info->ordered_root_lock);
720 	}
721 	spin_unlock(&root->ordered_extent_lock);
722 	wake_up(&entry->wait);
723 	if (!freespace_inode)
724 		btrfs_lockdep_release(fs_info, btrfs_ordered_extent);
725 }
726 
727 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
728 {
729 	struct btrfs_ordered_extent *ordered;
730 
731 	ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
732 	btrfs_start_ordered_extent(ordered);
733 	complete(&ordered->completion);
734 }
735 
736 /*
737  * Wait for all the ordered extents in a root. Use @bg as range or do whole
738  * range if it's NULL.
739  */
740 u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
741 			       const struct btrfs_block_group *bg)
742 {
743 	struct btrfs_fs_info *fs_info = root->fs_info;
744 	LIST_HEAD(splice);
745 	LIST_HEAD(skipped);
746 	LIST_HEAD(works);
747 	struct btrfs_ordered_extent *ordered, *next;
748 	u64 count = 0;
749 	u64 range_start, range_len;
750 	u64 range_end;
751 
752 	if (bg) {
753 		range_start = bg->start;
754 		range_len = bg->length;
755 	} else {
756 		range_start = 0;
757 		range_len = U64_MAX;
758 	}
759 	range_end = range_start + range_len;
760 
761 	mutex_lock(&root->ordered_extent_mutex);
762 	spin_lock(&root->ordered_extent_lock);
763 	list_splice_init(&root->ordered_extents, &splice);
764 	while (!list_empty(&splice) && nr) {
765 		ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
766 					   root_extent_list);
767 
768 		if (range_end <= ordered->disk_bytenr ||
769 		    ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
770 			list_move_tail(&ordered->root_extent_list, &skipped);
771 			cond_resched_lock(&root->ordered_extent_lock);
772 			continue;
773 		}
774 
775 		list_move_tail(&ordered->root_extent_list,
776 			       &root->ordered_extents);
777 		refcount_inc(&ordered->refs);
778 		spin_unlock(&root->ordered_extent_lock);
779 
780 		btrfs_init_work(&ordered->flush_work,
781 				btrfs_run_ordered_extent_work, NULL);
782 		list_add_tail(&ordered->work_list, &works);
783 		btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
784 
785 		cond_resched();
786 		if (nr != U64_MAX)
787 			nr--;
788 		count++;
789 		spin_lock(&root->ordered_extent_lock);
790 	}
791 	list_splice_tail(&skipped, &root->ordered_extents);
792 	list_splice_tail(&splice, &root->ordered_extents);
793 	spin_unlock(&root->ordered_extent_lock);
794 
795 	list_for_each_entry_safe(ordered, next, &works, work_list) {
796 		list_del_init(&ordered->work_list);
797 		wait_for_completion(&ordered->completion);
798 		btrfs_put_ordered_extent(ordered);
799 		cond_resched();
800 	}
801 	mutex_unlock(&root->ordered_extent_mutex);
802 
803 	return count;
804 }
805 
806 /*
807  * Wait for @nr ordered extents that intersect the @bg, or the whole range of
808  * the filesystem if @bg is NULL.
809  */
810 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
811 			      const struct btrfs_block_group *bg)
812 {
813 	struct btrfs_root *root;
814 	LIST_HEAD(splice);
815 	u64 done;
816 
817 	mutex_lock(&fs_info->ordered_operations_mutex);
818 	spin_lock(&fs_info->ordered_root_lock);
819 	list_splice_init(&fs_info->ordered_roots, &splice);
820 	while (!list_empty(&splice) && nr) {
821 		root = list_first_entry(&splice, struct btrfs_root,
822 					ordered_root);
823 		root = btrfs_grab_root(root);
824 		BUG_ON(!root);
825 		list_move_tail(&root->ordered_root,
826 			       &fs_info->ordered_roots);
827 		spin_unlock(&fs_info->ordered_root_lock);
828 
829 		done = btrfs_wait_ordered_extents(root, nr, bg);
830 		btrfs_put_root(root);
831 
832 		if (nr != U64_MAX)
833 			nr -= done;
834 
835 		spin_lock(&fs_info->ordered_root_lock);
836 	}
837 	list_splice_tail(&splice, &fs_info->ordered_roots);
838 	spin_unlock(&fs_info->ordered_root_lock);
839 	mutex_unlock(&fs_info->ordered_operations_mutex);
840 }
841 
842 /*
843  * Start IO and wait for a given ordered extent to finish.
844  *
845  * Wait on page writeback for all the pages in the extent and the IO completion
846  * code to insert metadata into the btree corresponding to the extent.
847  */
848 void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry)
849 {
850 	u64 start = entry->file_offset;
851 	u64 end = start + entry->num_bytes - 1;
852 	struct btrfs_inode *inode = entry->inode;
853 	bool freespace_inode;
854 
855 	trace_btrfs_ordered_extent_start(inode, entry);
856 
857 	/*
858 	 * If this is a free space inode do not take the ordered extents lockdep
859 	 * map.
860 	 */
861 	freespace_inode = btrfs_is_free_space_inode(inode);
862 
863 	/*
864 	 * pages in the range can be dirty, clean or writeback.  We
865 	 * start IO on any dirty ones so the wait doesn't stall waiting
866 	 * for the flusher thread to find them
867 	 */
868 	if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
869 		filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end);
870 
871 	if (!freespace_inode)
872 		btrfs_might_wait_for_event(inode->root->fs_info, btrfs_ordered_extent);
873 	wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, &entry->flags));
874 }
875 
876 /*
877  * Used to wait on ordered extents across a large range of bytes.
878  */
879 int btrfs_wait_ordered_range(struct btrfs_inode *inode, u64 start, u64 len)
880 {
881 	int ret = 0;
882 	int ret_wb = 0;
883 	u64 end;
884 	u64 orig_end;
885 	struct btrfs_ordered_extent *ordered;
886 
887 	if (start + len < start) {
888 		orig_end = OFFSET_MAX;
889 	} else {
890 		orig_end = start + len - 1;
891 		if (orig_end > OFFSET_MAX)
892 			orig_end = OFFSET_MAX;
893 	}
894 
895 	/* start IO across the range first to instantiate any delalloc
896 	 * extents
897 	 */
898 	ret = btrfs_fdatawrite_range(inode, start, orig_end);
899 	if (ret)
900 		return ret;
901 
902 	/*
903 	 * If we have a writeback error don't return immediately. Wait first
904 	 * for any ordered extents that haven't completed yet. This is to make
905 	 * sure no one can dirty the same page ranges and call writepages()
906 	 * before the ordered extents complete - to avoid failures (-EEXIST)
907 	 * when adding the new ordered extents to the ordered tree.
908 	 */
909 	ret_wb = filemap_fdatawait_range(inode->vfs_inode.i_mapping, start, orig_end);
910 
911 	end = orig_end;
912 	while (1) {
913 		ordered = btrfs_lookup_first_ordered_extent(inode, end);
914 		if (!ordered)
915 			break;
916 		if (ordered->file_offset > orig_end) {
917 			btrfs_put_ordered_extent(ordered);
918 			break;
919 		}
920 		if (ordered->file_offset + ordered->num_bytes <= start) {
921 			btrfs_put_ordered_extent(ordered);
922 			break;
923 		}
924 		btrfs_start_ordered_extent(ordered);
925 		end = ordered->file_offset;
926 		/*
927 		 * If the ordered extent had an error save the error but don't
928 		 * exit without waiting first for all other ordered extents in
929 		 * the range to complete.
930 		 */
931 		if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
932 			ret = -EIO;
933 		btrfs_put_ordered_extent(ordered);
934 		if (end == 0 || end == start)
935 			break;
936 		end--;
937 	}
938 	return ret_wb ? ret_wb : ret;
939 }
940 
941 /*
942  * find an ordered extent corresponding to file_offset.  return NULL if
943  * nothing is found, otherwise take a reference on the extent and return it
944  */
945 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode,
946 							 u64 file_offset)
947 {
948 	struct rb_node *node;
949 	struct btrfs_ordered_extent *entry = NULL;
950 	unsigned long flags;
951 
952 	spin_lock_irqsave(&inode->ordered_tree_lock, flags);
953 	node = ordered_tree_search(inode, file_offset);
954 	if (!node)
955 		goto out;
956 
957 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
958 	if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
959 		entry = NULL;
960 	if (entry) {
961 		refcount_inc(&entry->refs);
962 		trace_btrfs_ordered_extent_lookup(inode, entry);
963 	}
964 out:
965 	spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
966 	return entry;
967 }
968 
969 /* Since the DIO code tries to lock a wide area we need to look for any ordered
970  * extents that exist in the range, rather than just the start of the range.
971  */
972 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
973 		struct btrfs_inode *inode, u64 file_offset, u64 len)
974 {
975 	struct rb_node *node;
976 	struct btrfs_ordered_extent *entry = NULL;
977 
978 	spin_lock_irq(&inode->ordered_tree_lock);
979 	node = ordered_tree_search(inode, file_offset);
980 	if (!node) {
981 		node = ordered_tree_search(inode, file_offset + len);
982 		if (!node)
983 			goto out;
984 	}
985 
986 	while (1) {
987 		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
988 		if (range_overlaps(entry, file_offset, len))
989 			break;
990 
991 		if (entry->file_offset >= file_offset + len) {
992 			entry = NULL;
993 			break;
994 		}
995 		entry = NULL;
996 		node = rb_next(node);
997 		if (!node)
998 			break;
999 	}
1000 out:
1001 	if (entry) {
1002 		refcount_inc(&entry->refs);
1003 		trace_btrfs_ordered_extent_lookup_range(inode, entry);
1004 	}
1005 	spin_unlock_irq(&inode->ordered_tree_lock);
1006 	return entry;
1007 }
1008 
1009 /*
1010  * Adds all ordered extents to the given list. The list ends up sorted by the
1011  * file_offset of the ordered extents.
1012  */
1013 void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode,
1014 					   struct list_head *list)
1015 {
1016 	struct rb_node *n;
1017 
1018 	ASSERT(inode_is_locked(&inode->vfs_inode));
1019 
1020 	spin_lock_irq(&inode->ordered_tree_lock);
1021 	for (n = rb_first(&inode->ordered_tree); n; n = rb_next(n)) {
1022 		struct btrfs_ordered_extent *ordered;
1023 
1024 		ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
1025 
1026 		if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
1027 			continue;
1028 
1029 		ASSERT(list_empty(&ordered->log_list));
1030 		list_add_tail(&ordered->log_list, list);
1031 		refcount_inc(&ordered->refs);
1032 		trace_btrfs_ordered_extent_lookup_for_logging(inode, ordered);
1033 	}
1034 	spin_unlock_irq(&inode->ordered_tree_lock);
1035 }
1036 
1037 /*
1038  * lookup and return any extent before 'file_offset'.  NULL is returned
1039  * if none is found
1040  */
1041 struct btrfs_ordered_extent *
1042 btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset)
1043 {
1044 	struct rb_node *node;
1045 	struct btrfs_ordered_extent *entry = NULL;
1046 
1047 	spin_lock_irq(&inode->ordered_tree_lock);
1048 	node = ordered_tree_search(inode, file_offset);
1049 	if (!node)
1050 		goto out;
1051 
1052 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
1053 	refcount_inc(&entry->refs);
1054 	trace_btrfs_ordered_extent_lookup_first(inode, entry);
1055 out:
1056 	spin_unlock_irq(&inode->ordered_tree_lock);
1057 	return entry;
1058 }
1059 
1060 /*
1061  * Lookup the first ordered extent that overlaps the range
1062  * [@file_offset, @file_offset + @len).
1063  *
1064  * The difference between this and btrfs_lookup_first_ordered_extent() is
1065  * that this one won't return any ordered extent that does not overlap the range.
1066  * And the difference against btrfs_lookup_ordered_extent() is, this function
1067  * ensures the first ordered extent gets returned.
1068  */
1069 struct btrfs_ordered_extent *btrfs_lookup_first_ordered_range(
1070 			struct btrfs_inode *inode, u64 file_offset, u64 len)
1071 {
1072 	struct rb_node *node;
1073 	struct rb_node *cur;
1074 	struct rb_node *prev;
1075 	struct rb_node *next;
1076 	struct btrfs_ordered_extent *entry = NULL;
1077 
1078 	spin_lock_irq(&inode->ordered_tree_lock);
1079 	node = inode->ordered_tree.rb_node;
1080 	/*
1081 	 * Here we don't want to use tree_search() which will use tree->last
1082 	 * and screw up the search order.
1083 	 * And __tree_search() can't return the adjacent ordered extents
1084 	 * either, thus here we do our own search.
1085 	 */
1086 	while (node) {
1087 		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
1088 
1089 		if (file_offset < entry->file_offset) {
1090 			node = node->rb_left;
1091 		} else if (file_offset >= entry_end(entry)) {
1092 			node = node->rb_right;
1093 		} else {
1094 			/*
1095 			 * Direct hit, got an ordered extent that starts at
1096 			 * @file_offset
1097 			 */
1098 			goto out;
1099 		}
1100 	}
1101 	if (!entry) {
1102 		/* Empty tree */
1103 		goto out;
1104 	}
1105 
1106 	cur = &entry->rb_node;
1107 	/* We got an entry around @file_offset, check adjacent entries */
1108 	if (entry->file_offset < file_offset) {
1109 		prev = cur;
1110 		next = rb_next(cur);
1111 	} else {
1112 		prev = rb_prev(cur);
1113 		next = cur;
1114 	}
1115 	if (prev) {
1116 		entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node);
1117 		if (range_overlaps(entry, file_offset, len))
1118 			goto out;
1119 	}
1120 	if (next) {
1121 		entry = rb_entry(next, struct btrfs_ordered_extent, rb_node);
1122 		if (range_overlaps(entry, file_offset, len))
1123 			goto out;
1124 	}
1125 	/* No ordered extent in the range */
1126 	entry = NULL;
1127 out:
1128 	if (entry) {
1129 		refcount_inc(&entry->refs);
1130 		trace_btrfs_ordered_extent_lookup_first_range(inode, entry);
1131 	}
1132 
1133 	spin_unlock_irq(&inode->ordered_tree_lock);
1134 	return entry;
1135 }
1136 
1137 /*
1138  * Lock the passed range and ensures all pending ordered extents in it are run
1139  * to completion.
1140  *
1141  * @inode:        Inode whose ordered tree is to be searched
1142  * @start:        Beginning of range to flush
1143  * @end:          Last byte of range to lock
1144  * @cached_state: If passed, will return the extent state responsible for the
1145  *                locked range. It's the caller's responsibility to free the
1146  *                cached state.
1147  *
1148  * Always return with the given range locked, ensuring after it's called no
1149  * order extent can be pending.
1150  */
1151 void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
1152 					u64 end,
1153 					struct extent_state **cached_state)
1154 {
1155 	struct btrfs_ordered_extent *ordered;
1156 	struct extent_state *cache = NULL;
1157 	struct extent_state **cachedp = &cache;
1158 
1159 	if (cached_state)
1160 		cachedp = cached_state;
1161 
1162 	while (1) {
1163 		lock_extent(&inode->io_tree, start, end, cachedp);
1164 		ordered = btrfs_lookup_ordered_range(inode, start,
1165 						     end - start + 1);
1166 		if (!ordered) {
1167 			/*
1168 			 * If no external cached_state has been passed then
1169 			 * decrement the extra ref taken for cachedp since we
1170 			 * aren't exposing it outside of this function
1171 			 */
1172 			if (!cached_state)
1173 				refcount_dec(&cache->refs);
1174 			break;
1175 		}
1176 		unlock_extent(&inode->io_tree, start, end, cachedp);
1177 		btrfs_start_ordered_extent(ordered);
1178 		btrfs_put_ordered_extent(ordered);
1179 	}
1180 }
1181 
1182 /*
1183  * Lock the passed range and ensure all pending ordered extents in it are run
1184  * to completion in nowait mode.
1185  *
1186  * Return true if btrfs_lock_ordered_range does not return any extents,
1187  * otherwise false.
1188  */
1189 bool btrfs_try_lock_ordered_range(struct btrfs_inode *inode, u64 start, u64 end,
1190 				  struct extent_state **cached_state)
1191 {
1192 	struct btrfs_ordered_extent *ordered;
1193 
1194 	if (!try_lock_extent(&inode->io_tree, start, end, cached_state))
1195 		return false;
1196 
1197 	ordered = btrfs_lookup_ordered_range(inode, start, end - start + 1);
1198 	if (!ordered)
1199 		return true;
1200 
1201 	btrfs_put_ordered_extent(ordered);
1202 	unlock_extent(&inode->io_tree, start, end, cached_state);
1203 
1204 	return false;
1205 }
1206 
1207 /* Split out a new ordered extent for this first @len bytes of @ordered. */
1208 struct btrfs_ordered_extent *btrfs_split_ordered_extent(
1209 			struct btrfs_ordered_extent *ordered, u64 len)
1210 {
1211 	struct btrfs_inode *inode = ordered->inode;
1212 	struct btrfs_root *root = inode->root;
1213 	struct btrfs_fs_info *fs_info = root->fs_info;
1214 	u64 file_offset = ordered->file_offset;
1215 	u64 disk_bytenr = ordered->disk_bytenr;
1216 	unsigned long flags = ordered->flags;
1217 	struct btrfs_ordered_sum *sum, *tmpsum;
1218 	struct btrfs_ordered_extent *new;
1219 	struct rb_node *node;
1220 	u64 offset = 0;
1221 
1222 	trace_btrfs_ordered_extent_split(inode, ordered);
1223 
1224 	ASSERT(!(flags & (1U << BTRFS_ORDERED_COMPRESSED)));
1225 
1226 	/*
1227 	 * The entire bio must be covered by the ordered extent, but we can't
1228 	 * reduce the original extent to a zero length either.
1229 	 */
1230 	if (WARN_ON_ONCE(len >= ordered->num_bytes))
1231 		return ERR_PTR(-EINVAL);
1232 	/* We cannot split partially completed ordered extents. */
1233 	if (ordered->bytes_left) {
1234 		ASSERT(!(flags & ~BTRFS_ORDERED_TYPE_FLAGS));
1235 		if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes))
1236 			return ERR_PTR(-EINVAL);
1237 	}
1238 	/* We cannot split a compressed ordered extent. */
1239 	if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes))
1240 		return ERR_PTR(-EINVAL);
1241 
1242 	new = alloc_ordered_extent(inode, file_offset, len, len, disk_bytenr,
1243 				   len, 0, flags, ordered->compress_type);
1244 	if (IS_ERR(new))
1245 		return new;
1246 
1247 	/* One ref for the tree. */
1248 	refcount_inc(&new->refs);
1249 
1250 	/*
1251 	 * Take the root's ordered_extent_lock to avoid a race with
1252 	 * btrfs_wait_ordered_extents() when updating the disk_bytenr and
1253 	 * disk_num_bytes fields of the ordered extent below. And we disable
1254 	 * IRQs because the inode's ordered_tree_lock is used in IRQ context
1255 	 * elsewhere.
1256 	 *
1257 	 * There's no concern about a previous caller of
1258 	 * btrfs_wait_ordered_extents() getting the trimmed ordered extent
1259 	 * before we insert the new one, because even if it gets the ordered
1260 	 * extent before it's trimmed and the new one inserted, right before it
1261 	 * uses it or during its use, the ordered extent might have been
1262 	 * trimmed in the meanwhile, and it missed the new ordered extent.
1263 	 * There's no way around this and it's harmless for current use cases,
1264 	 * so we take the root's ordered_extent_lock to fix that race during
1265 	 * trimming and silence tools like KCSAN.
1266 	 */
1267 	spin_lock_irq(&root->ordered_extent_lock);
1268 	spin_lock(&inode->ordered_tree_lock);
1269 
1270 	/*
1271 	 * We don't have overlapping ordered extents (that would imply double
1272 	 * allocation of extents) and we checked above that the split length
1273 	 * does not cross the ordered extent's num_bytes field, so there's
1274 	 * no need to remove it and re-insert it in the tree.
1275 	 */
1276 	ordered->file_offset += len;
1277 	ordered->disk_bytenr += len;
1278 	ordered->num_bytes -= len;
1279 	ordered->disk_num_bytes -= len;
1280 	ordered->ram_bytes -= len;
1281 
1282 	if (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags)) {
1283 		ASSERT(ordered->bytes_left == 0);
1284 		new->bytes_left = 0;
1285 	} else {
1286 		ordered->bytes_left -= len;
1287 	}
1288 
1289 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags)) {
1290 		if (ordered->truncated_len > len) {
1291 			ordered->truncated_len -= len;
1292 		} else {
1293 			new->truncated_len = ordered->truncated_len;
1294 			ordered->truncated_len = 0;
1295 		}
1296 	}
1297 
1298 	list_for_each_entry_safe(sum, tmpsum, &ordered->list, list) {
1299 		if (offset == len)
1300 			break;
1301 		list_move_tail(&sum->list, &new->list);
1302 		offset += sum->len;
1303 	}
1304 
1305 	node = tree_insert(&inode->ordered_tree, new->file_offset, &new->rb_node);
1306 	if (unlikely(node))
1307 		btrfs_panic(fs_info, -EEXIST,
1308 			"inconsistency in ordered tree at offset %llu after split",
1309 			new->file_offset);
1310 	spin_unlock(&inode->ordered_tree_lock);
1311 
1312 	list_add_tail(&new->root_extent_list, &root->ordered_extents);
1313 	root->nr_ordered_extents++;
1314 	spin_unlock_irq(&root->ordered_extent_lock);
1315 	return new;
1316 }
1317 
1318 int __init ordered_data_init(void)
1319 {
1320 	btrfs_ordered_extent_cache = KMEM_CACHE(btrfs_ordered_extent, 0);
1321 	if (!btrfs_ordered_extent_cache)
1322 		return -ENOMEM;
1323 
1324 	return 0;
1325 }
1326 
1327 void __cold ordered_data_exit(void)
1328 {
1329 	kmem_cache_destroy(btrfs_ordered_extent_cache);
1330 }
1331