1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/slab.h> 20 #include <linux/blkdev.h> 21 #include <linux/writeback.h> 22 #include <linux/pagevec.h> 23 #include "ctree.h" 24 #include "transaction.h" 25 #include "btrfs_inode.h" 26 #include "extent_io.h" 27 #include "disk-io.h" 28 #include "compression.h" 29 30 static struct kmem_cache *btrfs_ordered_extent_cache; 31 32 static u64 entry_end(struct btrfs_ordered_extent *entry) 33 { 34 if (entry->file_offset + entry->len < entry->file_offset) 35 return (u64)-1; 36 return entry->file_offset + entry->len; 37 } 38 39 /* returns NULL if the insertion worked, or it returns the node it did find 40 * in the tree 41 */ 42 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset, 43 struct rb_node *node) 44 { 45 struct rb_node **p = &root->rb_node; 46 struct rb_node *parent = NULL; 47 struct btrfs_ordered_extent *entry; 48 49 while (*p) { 50 parent = *p; 51 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node); 52 53 if (file_offset < entry->file_offset) 54 p = &(*p)->rb_left; 55 else if (file_offset >= entry_end(entry)) 56 p = &(*p)->rb_right; 57 else 58 return parent; 59 } 60 61 rb_link_node(node, parent, p); 62 rb_insert_color(node, root); 63 return NULL; 64 } 65 66 static void ordered_data_tree_panic(struct inode *inode, int errno, 67 u64 offset) 68 { 69 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 70 btrfs_panic(fs_info, errno, 71 "Inconsistency in ordered tree at offset %llu", offset); 72 } 73 74 /* 75 * look for a given offset in the tree, and if it can't be found return the 76 * first lesser offset 77 */ 78 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset, 79 struct rb_node **prev_ret) 80 { 81 struct rb_node *n = root->rb_node; 82 struct rb_node *prev = NULL; 83 struct rb_node *test; 84 struct btrfs_ordered_extent *entry; 85 struct btrfs_ordered_extent *prev_entry = NULL; 86 87 while (n) { 88 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node); 89 prev = n; 90 prev_entry = entry; 91 92 if (file_offset < entry->file_offset) 93 n = n->rb_left; 94 else if (file_offset >= entry_end(entry)) 95 n = n->rb_right; 96 else 97 return n; 98 } 99 if (!prev_ret) 100 return NULL; 101 102 while (prev && file_offset >= entry_end(prev_entry)) { 103 test = rb_next(prev); 104 if (!test) 105 break; 106 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 107 rb_node); 108 if (file_offset < entry_end(prev_entry)) 109 break; 110 111 prev = test; 112 } 113 if (prev) 114 prev_entry = rb_entry(prev, struct btrfs_ordered_extent, 115 rb_node); 116 while (prev && file_offset < entry_end(prev_entry)) { 117 test = rb_prev(prev); 118 if (!test) 119 break; 120 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 121 rb_node); 122 prev = test; 123 } 124 *prev_ret = prev; 125 return NULL; 126 } 127 128 /* 129 * helper to check if a given offset is inside a given entry 130 */ 131 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset) 132 { 133 if (file_offset < entry->file_offset || 134 entry->file_offset + entry->len <= file_offset) 135 return 0; 136 return 1; 137 } 138 139 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset, 140 u64 len) 141 { 142 if (file_offset + len <= entry->file_offset || 143 entry->file_offset + entry->len <= file_offset) 144 return 0; 145 return 1; 146 } 147 148 /* 149 * look find the first ordered struct that has this offset, otherwise 150 * the first one less than this offset 151 */ 152 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree, 153 u64 file_offset) 154 { 155 struct rb_root *root = &tree->tree; 156 struct rb_node *prev = NULL; 157 struct rb_node *ret; 158 struct btrfs_ordered_extent *entry; 159 160 if (tree->last) { 161 entry = rb_entry(tree->last, struct btrfs_ordered_extent, 162 rb_node); 163 if (offset_in_entry(entry, file_offset)) 164 return tree->last; 165 } 166 ret = __tree_search(root, file_offset, &prev); 167 if (!ret) 168 ret = prev; 169 if (ret) 170 tree->last = ret; 171 return ret; 172 } 173 174 /* allocate and add a new ordered_extent into the per-inode tree. 175 * file_offset is the logical offset in the file 176 * 177 * start is the disk block number of an extent already reserved in the 178 * extent allocation tree 179 * 180 * len is the length of the extent 181 * 182 * The tree is given a single reference on the ordered extent that was 183 * inserted. 184 */ 185 static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset, 186 u64 start, u64 len, u64 disk_len, 187 int type, int dio, int compress_type) 188 { 189 struct btrfs_root *root = BTRFS_I(inode)->root; 190 struct btrfs_ordered_inode_tree *tree; 191 struct rb_node *node; 192 struct btrfs_ordered_extent *entry; 193 194 tree = &BTRFS_I(inode)->ordered_tree; 195 entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS); 196 if (!entry) 197 return -ENOMEM; 198 199 entry->file_offset = file_offset; 200 entry->start = start; 201 entry->len = len; 202 entry->disk_len = disk_len; 203 entry->bytes_left = len; 204 entry->inode = igrab(inode); 205 entry->compress_type = compress_type; 206 entry->truncated_len = (u64)-1; 207 if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE) 208 set_bit(type, &entry->flags); 209 210 if (dio) 211 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags); 212 213 /* one ref for the tree */ 214 atomic_set(&entry->refs, 1); 215 init_waitqueue_head(&entry->wait); 216 INIT_LIST_HEAD(&entry->list); 217 INIT_LIST_HEAD(&entry->root_extent_list); 218 INIT_LIST_HEAD(&entry->work_list); 219 init_completion(&entry->completion); 220 INIT_LIST_HEAD(&entry->log_list); 221 INIT_LIST_HEAD(&entry->trans_list); 222 223 trace_btrfs_ordered_extent_add(inode, entry); 224 225 spin_lock_irq(&tree->lock); 226 node = tree_insert(&tree->tree, file_offset, 227 &entry->rb_node); 228 if (node) 229 ordered_data_tree_panic(inode, -EEXIST, file_offset); 230 spin_unlock_irq(&tree->lock); 231 232 spin_lock(&root->ordered_extent_lock); 233 list_add_tail(&entry->root_extent_list, 234 &root->ordered_extents); 235 root->nr_ordered_extents++; 236 if (root->nr_ordered_extents == 1) { 237 spin_lock(&root->fs_info->ordered_root_lock); 238 BUG_ON(!list_empty(&root->ordered_root)); 239 list_add_tail(&root->ordered_root, 240 &root->fs_info->ordered_roots); 241 spin_unlock(&root->fs_info->ordered_root_lock); 242 } 243 spin_unlock(&root->ordered_extent_lock); 244 245 return 0; 246 } 247 248 int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset, 249 u64 start, u64 len, u64 disk_len, int type) 250 { 251 return __btrfs_add_ordered_extent(inode, file_offset, start, len, 252 disk_len, type, 0, 253 BTRFS_COMPRESS_NONE); 254 } 255 256 int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset, 257 u64 start, u64 len, u64 disk_len, int type) 258 { 259 return __btrfs_add_ordered_extent(inode, file_offset, start, len, 260 disk_len, type, 1, 261 BTRFS_COMPRESS_NONE); 262 } 263 264 int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset, 265 u64 start, u64 len, u64 disk_len, 266 int type, int compress_type) 267 { 268 return __btrfs_add_ordered_extent(inode, file_offset, start, len, 269 disk_len, type, 0, 270 compress_type); 271 } 272 273 /* 274 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted 275 * when an ordered extent is finished. If the list covers more than one 276 * ordered extent, it is split across multiples. 277 */ 278 void btrfs_add_ordered_sum(struct inode *inode, 279 struct btrfs_ordered_extent *entry, 280 struct btrfs_ordered_sum *sum) 281 { 282 struct btrfs_ordered_inode_tree *tree; 283 284 tree = &BTRFS_I(inode)->ordered_tree; 285 spin_lock_irq(&tree->lock); 286 list_add_tail(&sum->list, &entry->list); 287 spin_unlock_irq(&tree->lock); 288 } 289 290 /* 291 * this is used to account for finished IO across a given range 292 * of the file. The IO may span ordered extents. If 293 * a given ordered_extent is completely done, 1 is returned, otherwise 294 * 0. 295 * 296 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used 297 * to make sure this function only returns 1 once for a given ordered extent. 298 * 299 * file_offset is updated to one byte past the range that is recorded as 300 * complete. This allows you to walk forward in the file. 301 */ 302 int btrfs_dec_test_first_ordered_pending(struct inode *inode, 303 struct btrfs_ordered_extent **cached, 304 u64 *file_offset, u64 io_size, int uptodate) 305 { 306 struct btrfs_ordered_inode_tree *tree; 307 struct rb_node *node; 308 struct btrfs_ordered_extent *entry = NULL; 309 int ret; 310 unsigned long flags; 311 u64 dec_end; 312 u64 dec_start; 313 u64 to_dec; 314 315 tree = &BTRFS_I(inode)->ordered_tree; 316 spin_lock_irqsave(&tree->lock, flags); 317 node = tree_search(tree, *file_offset); 318 if (!node) { 319 ret = 1; 320 goto out; 321 } 322 323 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 324 if (!offset_in_entry(entry, *file_offset)) { 325 ret = 1; 326 goto out; 327 } 328 329 dec_start = max(*file_offset, entry->file_offset); 330 dec_end = min(*file_offset + io_size, entry->file_offset + 331 entry->len); 332 *file_offset = dec_end; 333 if (dec_start > dec_end) { 334 btrfs_crit(BTRFS_I(inode)->root->fs_info, 335 "bad ordering dec_start %llu end %llu", dec_start, dec_end); 336 } 337 to_dec = dec_end - dec_start; 338 if (to_dec > entry->bytes_left) { 339 btrfs_crit(BTRFS_I(inode)->root->fs_info, 340 "bad ordered accounting left %llu size %llu", 341 entry->bytes_left, to_dec); 342 } 343 entry->bytes_left -= to_dec; 344 if (!uptodate) 345 set_bit(BTRFS_ORDERED_IOERR, &entry->flags); 346 347 if (entry->bytes_left == 0) { 348 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); 349 /* 350 * Implicit memory barrier after test_and_set_bit 351 */ 352 if (waitqueue_active(&entry->wait)) 353 wake_up(&entry->wait); 354 } else { 355 ret = 1; 356 } 357 out: 358 if (!ret && cached && entry) { 359 *cached = entry; 360 atomic_inc(&entry->refs); 361 } 362 spin_unlock_irqrestore(&tree->lock, flags); 363 return ret == 0; 364 } 365 366 /* 367 * this is used to account for finished IO across a given range 368 * of the file. The IO should not span ordered extents. If 369 * a given ordered_extent is completely done, 1 is returned, otherwise 370 * 0. 371 * 372 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used 373 * to make sure this function only returns 1 once for a given ordered extent. 374 */ 375 int btrfs_dec_test_ordered_pending(struct inode *inode, 376 struct btrfs_ordered_extent **cached, 377 u64 file_offset, u64 io_size, int uptodate) 378 { 379 struct btrfs_ordered_inode_tree *tree; 380 struct rb_node *node; 381 struct btrfs_ordered_extent *entry = NULL; 382 unsigned long flags; 383 int ret; 384 385 tree = &BTRFS_I(inode)->ordered_tree; 386 spin_lock_irqsave(&tree->lock, flags); 387 if (cached && *cached) { 388 entry = *cached; 389 goto have_entry; 390 } 391 392 node = tree_search(tree, file_offset); 393 if (!node) { 394 ret = 1; 395 goto out; 396 } 397 398 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 399 have_entry: 400 if (!offset_in_entry(entry, file_offset)) { 401 ret = 1; 402 goto out; 403 } 404 405 if (io_size > entry->bytes_left) { 406 btrfs_crit(BTRFS_I(inode)->root->fs_info, 407 "bad ordered accounting left %llu size %llu", 408 entry->bytes_left, io_size); 409 } 410 entry->bytes_left -= io_size; 411 if (!uptodate) 412 set_bit(BTRFS_ORDERED_IOERR, &entry->flags); 413 414 if (entry->bytes_left == 0) { 415 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); 416 /* 417 * Implicit memory barrier after test_and_set_bit 418 */ 419 if (waitqueue_active(&entry->wait)) 420 wake_up(&entry->wait); 421 } else { 422 ret = 1; 423 } 424 out: 425 if (!ret && cached && entry) { 426 *cached = entry; 427 atomic_inc(&entry->refs); 428 } 429 spin_unlock_irqrestore(&tree->lock, flags); 430 return ret == 0; 431 } 432 433 /* Needs to either be called under a log transaction or the log_mutex */ 434 void btrfs_get_logged_extents(struct inode *inode, 435 struct list_head *logged_list, 436 const loff_t start, 437 const loff_t end) 438 { 439 struct btrfs_ordered_inode_tree *tree; 440 struct btrfs_ordered_extent *ordered; 441 struct rb_node *n; 442 struct rb_node *prev; 443 444 tree = &BTRFS_I(inode)->ordered_tree; 445 spin_lock_irq(&tree->lock); 446 n = __tree_search(&tree->tree, end, &prev); 447 if (!n) 448 n = prev; 449 for (; n; n = rb_prev(n)) { 450 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node); 451 if (ordered->file_offset > end) 452 continue; 453 if (entry_end(ordered) <= start) 454 break; 455 if (test_and_set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags)) 456 continue; 457 list_add(&ordered->log_list, logged_list); 458 atomic_inc(&ordered->refs); 459 } 460 spin_unlock_irq(&tree->lock); 461 } 462 463 void btrfs_put_logged_extents(struct list_head *logged_list) 464 { 465 struct btrfs_ordered_extent *ordered; 466 467 while (!list_empty(logged_list)) { 468 ordered = list_first_entry(logged_list, 469 struct btrfs_ordered_extent, 470 log_list); 471 list_del_init(&ordered->log_list); 472 btrfs_put_ordered_extent(ordered); 473 } 474 } 475 476 void btrfs_submit_logged_extents(struct list_head *logged_list, 477 struct btrfs_root *log) 478 { 479 int index = log->log_transid % 2; 480 481 spin_lock_irq(&log->log_extents_lock[index]); 482 list_splice_tail(logged_list, &log->logged_list[index]); 483 spin_unlock_irq(&log->log_extents_lock[index]); 484 } 485 486 void btrfs_wait_logged_extents(struct btrfs_trans_handle *trans, 487 struct btrfs_root *log, u64 transid) 488 { 489 struct btrfs_ordered_extent *ordered; 490 int index = transid % 2; 491 492 spin_lock_irq(&log->log_extents_lock[index]); 493 while (!list_empty(&log->logged_list[index])) { 494 struct inode *inode; 495 ordered = list_first_entry(&log->logged_list[index], 496 struct btrfs_ordered_extent, 497 log_list); 498 list_del_init(&ordered->log_list); 499 inode = ordered->inode; 500 spin_unlock_irq(&log->log_extents_lock[index]); 501 502 if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) && 503 !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) { 504 u64 start = ordered->file_offset; 505 u64 end = ordered->file_offset + ordered->len - 1; 506 507 WARN_ON(!inode); 508 filemap_fdatawrite_range(inode->i_mapping, start, end); 509 } 510 wait_event(ordered->wait, test_bit(BTRFS_ORDERED_IO_DONE, 511 &ordered->flags)); 512 513 /* 514 * In order to keep us from losing our ordered extent 515 * information when committing the transaction we have to make 516 * sure that any logged extents are completed when we go to 517 * commit the transaction. To do this we simply increase the 518 * current transactions pending_ordered counter and decrement it 519 * when the ordered extent completes. 520 */ 521 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) { 522 struct btrfs_ordered_inode_tree *tree; 523 524 tree = &BTRFS_I(inode)->ordered_tree; 525 spin_lock_irq(&tree->lock); 526 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) { 527 set_bit(BTRFS_ORDERED_PENDING, &ordered->flags); 528 atomic_inc(&trans->transaction->pending_ordered); 529 } 530 spin_unlock_irq(&tree->lock); 531 } 532 btrfs_put_ordered_extent(ordered); 533 spin_lock_irq(&log->log_extents_lock[index]); 534 } 535 spin_unlock_irq(&log->log_extents_lock[index]); 536 } 537 538 void btrfs_free_logged_extents(struct btrfs_root *log, u64 transid) 539 { 540 struct btrfs_ordered_extent *ordered; 541 int index = transid % 2; 542 543 spin_lock_irq(&log->log_extents_lock[index]); 544 while (!list_empty(&log->logged_list[index])) { 545 ordered = list_first_entry(&log->logged_list[index], 546 struct btrfs_ordered_extent, 547 log_list); 548 list_del_init(&ordered->log_list); 549 spin_unlock_irq(&log->log_extents_lock[index]); 550 btrfs_put_ordered_extent(ordered); 551 spin_lock_irq(&log->log_extents_lock[index]); 552 } 553 spin_unlock_irq(&log->log_extents_lock[index]); 554 } 555 556 /* 557 * used to drop a reference on an ordered extent. This will free 558 * the extent if the last reference is dropped 559 */ 560 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry) 561 { 562 struct list_head *cur; 563 struct btrfs_ordered_sum *sum; 564 565 trace_btrfs_ordered_extent_put(entry->inode, entry); 566 567 if (atomic_dec_and_test(&entry->refs)) { 568 ASSERT(list_empty(&entry->log_list)); 569 ASSERT(list_empty(&entry->trans_list)); 570 ASSERT(list_empty(&entry->root_extent_list)); 571 ASSERT(RB_EMPTY_NODE(&entry->rb_node)); 572 if (entry->inode) 573 btrfs_add_delayed_iput(entry->inode); 574 while (!list_empty(&entry->list)) { 575 cur = entry->list.next; 576 sum = list_entry(cur, struct btrfs_ordered_sum, list); 577 list_del(&sum->list); 578 kfree(sum); 579 } 580 kmem_cache_free(btrfs_ordered_extent_cache, entry); 581 } 582 } 583 584 /* 585 * remove an ordered extent from the tree. No references are dropped 586 * and waiters are woken up. 587 */ 588 void btrfs_remove_ordered_extent(struct inode *inode, 589 struct btrfs_ordered_extent *entry) 590 { 591 struct btrfs_ordered_inode_tree *tree; 592 struct btrfs_root *root = BTRFS_I(inode)->root; 593 struct rb_node *node; 594 bool dec_pending_ordered = false; 595 596 tree = &BTRFS_I(inode)->ordered_tree; 597 spin_lock_irq(&tree->lock); 598 node = &entry->rb_node; 599 rb_erase(node, &tree->tree); 600 RB_CLEAR_NODE(node); 601 if (tree->last == node) 602 tree->last = NULL; 603 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags); 604 if (test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags)) 605 dec_pending_ordered = true; 606 spin_unlock_irq(&tree->lock); 607 608 /* 609 * The current running transaction is waiting on us, we need to let it 610 * know that we're complete and wake it up. 611 */ 612 if (dec_pending_ordered) { 613 struct btrfs_transaction *trans; 614 615 /* 616 * The checks for trans are just a formality, it should be set, 617 * but if it isn't we don't want to deref/assert under the spin 618 * lock, so be nice and check if trans is set, but ASSERT() so 619 * if it isn't set a developer will notice. 620 */ 621 spin_lock(&root->fs_info->trans_lock); 622 trans = root->fs_info->running_transaction; 623 if (trans) 624 atomic_inc(&trans->use_count); 625 spin_unlock(&root->fs_info->trans_lock); 626 627 ASSERT(trans); 628 if (trans) { 629 if (atomic_dec_and_test(&trans->pending_ordered)) 630 wake_up(&trans->pending_wait); 631 btrfs_put_transaction(trans); 632 } 633 } 634 635 spin_lock(&root->ordered_extent_lock); 636 list_del_init(&entry->root_extent_list); 637 root->nr_ordered_extents--; 638 639 trace_btrfs_ordered_extent_remove(inode, entry); 640 641 if (!root->nr_ordered_extents) { 642 spin_lock(&root->fs_info->ordered_root_lock); 643 BUG_ON(list_empty(&root->ordered_root)); 644 list_del_init(&root->ordered_root); 645 spin_unlock(&root->fs_info->ordered_root_lock); 646 } 647 spin_unlock(&root->ordered_extent_lock); 648 wake_up(&entry->wait); 649 } 650 651 static void btrfs_run_ordered_extent_work(struct btrfs_work *work) 652 { 653 struct btrfs_ordered_extent *ordered; 654 655 ordered = container_of(work, struct btrfs_ordered_extent, flush_work); 656 btrfs_start_ordered_extent(ordered->inode, ordered, 1); 657 complete(&ordered->completion); 658 } 659 660 /* 661 * wait for all the ordered extents in a root. This is done when balancing 662 * space between drives. 663 */ 664 int btrfs_wait_ordered_extents(struct btrfs_root *root, int nr, 665 const u64 range_start, const u64 range_len) 666 { 667 LIST_HEAD(splice); 668 LIST_HEAD(skipped); 669 LIST_HEAD(works); 670 struct btrfs_ordered_extent *ordered, *next; 671 int count = 0; 672 const u64 range_end = range_start + range_len; 673 674 mutex_lock(&root->ordered_extent_mutex); 675 spin_lock(&root->ordered_extent_lock); 676 list_splice_init(&root->ordered_extents, &splice); 677 while (!list_empty(&splice) && nr) { 678 ordered = list_first_entry(&splice, struct btrfs_ordered_extent, 679 root_extent_list); 680 681 if (range_end <= ordered->start || 682 ordered->start + ordered->disk_len <= range_start) { 683 list_move_tail(&ordered->root_extent_list, &skipped); 684 cond_resched_lock(&root->ordered_extent_lock); 685 continue; 686 } 687 688 list_move_tail(&ordered->root_extent_list, 689 &root->ordered_extents); 690 atomic_inc(&ordered->refs); 691 spin_unlock(&root->ordered_extent_lock); 692 693 btrfs_init_work(&ordered->flush_work, 694 btrfs_flush_delalloc_helper, 695 btrfs_run_ordered_extent_work, NULL, NULL); 696 list_add_tail(&ordered->work_list, &works); 697 btrfs_queue_work(root->fs_info->flush_workers, 698 &ordered->flush_work); 699 700 cond_resched(); 701 spin_lock(&root->ordered_extent_lock); 702 if (nr != -1) 703 nr--; 704 count++; 705 } 706 list_splice_tail(&skipped, &root->ordered_extents); 707 list_splice_tail(&splice, &root->ordered_extents); 708 spin_unlock(&root->ordered_extent_lock); 709 710 list_for_each_entry_safe(ordered, next, &works, work_list) { 711 list_del_init(&ordered->work_list); 712 wait_for_completion(&ordered->completion); 713 btrfs_put_ordered_extent(ordered); 714 cond_resched(); 715 } 716 mutex_unlock(&root->ordered_extent_mutex); 717 718 return count; 719 } 720 721 int btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, int nr, 722 const u64 range_start, const u64 range_len) 723 { 724 struct btrfs_root *root; 725 struct list_head splice; 726 int done; 727 int total_done = 0; 728 729 INIT_LIST_HEAD(&splice); 730 731 mutex_lock(&fs_info->ordered_operations_mutex); 732 spin_lock(&fs_info->ordered_root_lock); 733 list_splice_init(&fs_info->ordered_roots, &splice); 734 while (!list_empty(&splice) && nr) { 735 root = list_first_entry(&splice, struct btrfs_root, 736 ordered_root); 737 root = btrfs_grab_fs_root(root); 738 BUG_ON(!root); 739 list_move_tail(&root->ordered_root, 740 &fs_info->ordered_roots); 741 spin_unlock(&fs_info->ordered_root_lock); 742 743 done = btrfs_wait_ordered_extents(root, nr, 744 range_start, range_len); 745 btrfs_put_fs_root(root); 746 total_done += done; 747 748 spin_lock(&fs_info->ordered_root_lock); 749 if (nr != -1) { 750 nr -= done; 751 WARN_ON(nr < 0); 752 } 753 } 754 list_splice_tail(&splice, &fs_info->ordered_roots); 755 spin_unlock(&fs_info->ordered_root_lock); 756 mutex_unlock(&fs_info->ordered_operations_mutex); 757 758 return total_done; 759 } 760 761 /* 762 * Used to start IO or wait for a given ordered extent to finish. 763 * 764 * If wait is one, this effectively waits on page writeback for all the pages 765 * in the extent, and it waits on the io completion code to insert 766 * metadata into the btree corresponding to the extent 767 */ 768 void btrfs_start_ordered_extent(struct inode *inode, 769 struct btrfs_ordered_extent *entry, 770 int wait) 771 { 772 u64 start = entry->file_offset; 773 u64 end = start + entry->len - 1; 774 775 trace_btrfs_ordered_extent_start(inode, entry); 776 777 /* 778 * pages in the range can be dirty, clean or writeback. We 779 * start IO on any dirty ones so the wait doesn't stall waiting 780 * for the flusher thread to find them 781 */ 782 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags)) 783 filemap_fdatawrite_range(inode->i_mapping, start, end); 784 if (wait) { 785 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, 786 &entry->flags)); 787 } 788 } 789 790 /* 791 * Used to wait on ordered extents across a large range of bytes. 792 */ 793 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len) 794 { 795 int ret = 0; 796 int ret_wb = 0; 797 u64 end; 798 u64 orig_end; 799 struct btrfs_ordered_extent *ordered; 800 801 if (start + len < start) { 802 orig_end = INT_LIMIT(loff_t); 803 } else { 804 orig_end = start + len - 1; 805 if (orig_end > INT_LIMIT(loff_t)) 806 orig_end = INT_LIMIT(loff_t); 807 } 808 809 /* start IO across the range first to instantiate any delalloc 810 * extents 811 */ 812 ret = btrfs_fdatawrite_range(inode, start, orig_end); 813 if (ret) 814 return ret; 815 816 /* 817 * If we have a writeback error don't return immediately. Wait first 818 * for any ordered extents that haven't completed yet. This is to make 819 * sure no one can dirty the same page ranges and call writepages() 820 * before the ordered extents complete - to avoid failures (-EEXIST) 821 * when adding the new ordered extents to the ordered tree. 822 */ 823 ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end); 824 825 end = orig_end; 826 while (1) { 827 ordered = btrfs_lookup_first_ordered_extent(inode, end); 828 if (!ordered) 829 break; 830 if (ordered->file_offset > orig_end) { 831 btrfs_put_ordered_extent(ordered); 832 break; 833 } 834 if (ordered->file_offset + ordered->len <= start) { 835 btrfs_put_ordered_extent(ordered); 836 break; 837 } 838 btrfs_start_ordered_extent(inode, ordered, 1); 839 end = ordered->file_offset; 840 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) 841 ret = -EIO; 842 btrfs_put_ordered_extent(ordered); 843 if (ret || end == 0 || end == start) 844 break; 845 end--; 846 } 847 return ret_wb ? ret_wb : ret; 848 } 849 850 /* 851 * find an ordered extent corresponding to file_offset. return NULL if 852 * nothing is found, otherwise take a reference on the extent and return it 853 */ 854 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode, 855 u64 file_offset) 856 { 857 struct btrfs_ordered_inode_tree *tree; 858 struct rb_node *node; 859 struct btrfs_ordered_extent *entry = NULL; 860 861 tree = &BTRFS_I(inode)->ordered_tree; 862 spin_lock_irq(&tree->lock); 863 node = tree_search(tree, file_offset); 864 if (!node) 865 goto out; 866 867 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 868 if (!offset_in_entry(entry, file_offset)) 869 entry = NULL; 870 if (entry) 871 atomic_inc(&entry->refs); 872 out: 873 spin_unlock_irq(&tree->lock); 874 return entry; 875 } 876 877 /* Since the DIO code tries to lock a wide area we need to look for any ordered 878 * extents that exist in the range, rather than just the start of the range. 879 */ 880 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode, 881 u64 file_offset, 882 u64 len) 883 { 884 struct btrfs_ordered_inode_tree *tree; 885 struct rb_node *node; 886 struct btrfs_ordered_extent *entry = NULL; 887 888 tree = &BTRFS_I(inode)->ordered_tree; 889 spin_lock_irq(&tree->lock); 890 node = tree_search(tree, file_offset); 891 if (!node) { 892 node = tree_search(tree, file_offset + len); 893 if (!node) 894 goto out; 895 } 896 897 while (1) { 898 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 899 if (range_overlaps(entry, file_offset, len)) 900 break; 901 902 if (entry->file_offset >= file_offset + len) { 903 entry = NULL; 904 break; 905 } 906 entry = NULL; 907 node = rb_next(node); 908 if (!node) 909 break; 910 } 911 out: 912 if (entry) 913 atomic_inc(&entry->refs); 914 spin_unlock_irq(&tree->lock); 915 return entry; 916 } 917 918 bool btrfs_have_ordered_extents_in_range(struct inode *inode, 919 u64 file_offset, 920 u64 len) 921 { 922 struct btrfs_ordered_extent *oe; 923 924 oe = btrfs_lookup_ordered_range(inode, file_offset, len); 925 if (oe) { 926 btrfs_put_ordered_extent(oe); 927 return true; 928 } 929 return false; 930 } 931 932 /* 933 * lookup and return any extent before 'file_offset'. NULL is returned 934 * if none is found 935 */ 936 struct btrfs_ordered_extent * 937 btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset) 938 { 939 struct btrfs_ordered_inode_tree *tree; 940 struct rb_node *node; 941 struct btrfs_ordered_extent *entry = NULL; 942 943 tree = &BTRFS_I(inode)->ordered_tree; 944 spin_lock_irq(&tree->lock); 945 node = tree_search(tree, file_offset); 946 if (!node) 947 goto out; 948 949 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 950 atomic_inc(&entry->refs); 951 out: 952 spin_unlock_irq(&tree->lock); 953 return entry; 954 } 955 956 /* 957 * After an extent is done, call this to conditionally update the on disk 958 * i_size. i_size is updated to cover any fully written part of the file. 959 */ 960 int btrfs_ordered_update_i_size(struct inode *inode, u64 offset, 961 struct btrfs_ordered_extent *ordered) 962 { 963 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; 964 u64 disk_i_size; 965 u64 new_i_size; 966 u64 i_size = i_size_read(inode); 967 struct rb_node *node; 968 struct rb_node *prev = NULL; 969 struct btrfs_ordered_extent *test; 970 int ret = 1; 971 u64 orig_offset = offset; 972 973 spin_lock_irq(&tree->lock); 974 if (ordered) { 975 offset = entry_end(ordered); 976 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags)) 977 offset = min(offset, 978 ordered->file_offset + 979 ordered->truncated_len); 980 } else { 981 offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize); 982 } 983 disk_i_size = BTRFS_I(inode)->disk_i_size; 984 985 /* truncate file */ 986 if (disk_i_size > i_size) { 987 BTRFS_I(inode)->disk_i_size = orig_offset; 988 ret = 0; 989 goto out; 990 } 991 992 /* 993 * if the disk i_size is already at the inode->i_size, or 994 * this ordered extent is inside the disk i_size, we're done 995 */ 996 if (disk_i_size == i_size) 997 goto out; 998 999 /* 1000 * We still need to update disk_i_size if outstanding_isize is greater 1001 * than disk_i_size. 1002 */ 1003 if (offset <= disk_i_size && 1004 (!ordered || ordered->outstanding_isize <= disk_i_size)) 1005 goto out; 1006 1007 /* 1008 * walk backward from this ordered extent to disk_i_size. 1009 * if we find an ordered extent then we can't update disk i_size 1010 * yet 1011 */ 1012 if (ordered) { 1013 node = rb_prev(&ordered->rb_node); 1014 } else { 1015 prev = tree_search(tree, offset); 1016 /* 1017 * we insert file extents without involving ordered struct, 1018 * so there should be no ordered struct cover this offset 1019 */ 1020 if (prev) { 1021 test = rb_entry(prev, struct btrfs_ordered_extent, 1022 rb_node); 1023 BUG_ON(offset_in_entry(test, offset)); 1024 } 1025 node = prev; 1026 } 1027 for (; node; node = rb_prev(node)) { 1028 test = rb_entry(node, struct btrfs_ordered_extent, rb_node); 1029 1030 /* We treat this entry as if it doesn't exist */ 1031 if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags)) 1032 continue; 1033 if (test->file_offset + test->len <= disk_i_size) 1034 break; 1035 if (test->file_offset >= i_size) 1036 break; 1037 if (entry_end(test) > disk_i_size) { 1038 /* 1039 * we don't update disk_i_size now, so record this 1040 * undealt i_size. Or we will not know the real 1041 * i_size. 1042 */ 1043 if (test->outstanding_isize < offset) 1044 test->outstanding_isize = offset; 1045 if (ordered && 1046 ordered->outstanding_isize > 1047 test->outstanding_isize) 1048 test->outstanding_isize = 1049 ordered->outstanding_isize; 1050 goto out; 1051 } 1052 } 1053 new_i_size = min_t(u64, offset, i_size); 1054 1055 /* 1056 * Some ordered extents may completed before the current one, and 1057 * we hold the real i_size in ->outstanding_isize. 1058 */ 1059 if (ordered && ordered->outstanding_isize > new_i_size) 1060 new_i_size = min_t(u64, ordered->outstanding_isize, i_size); 1061 BTRFS_I(inode)->disk_i_size = new_i_size; 1062 ret = 0; 1063 out: 1064 /* 1065 * We need to do this because we can't remove ordered extents until 1066 * after the i_disk_size has been updated and then the inode has been 1067 * updated to reflect the change, so we need to tell anybody who finds 1068 * this ordered extent that we've already done all the real work, we 1069 * just haven't completed all the other work. 1070 */ 1071 if (ordered) 1072 set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags); 1073 spin_unlock_irq(&tree->lock); 1074 return ret; 1075 } 1076 1077 /* 1078 * search the ordered extents for one corresponding to 'offset' and 1079 * try to find a checksum. This is used because we allow pages to 1080 * be reclaimed before their checksum is actually put into the btree 1081 */ 1082 int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr, 1083 u32 *sum, int len) 1084 { 1085 struct btrfs_ordered_sum *ordered_sum; 1086 struct btrfs_ordered_extent *ordered; 1087 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; 1088 unsigned long num_sectors; 1089 unsigned long i; 1090 u32 sectorsize = BTRFS_I(inode)->root->sectorsize; 1091 int index = 0; 1092 1093 ordered = btrfs_lookup_ordered_extent(inode, offset); 1094 if (!ordered) 1095 return 0; 1096 1097 spin_lock_irq(&tree->lock); 1098 list_for_each_entry_reverse(ordered_sum, &ordered->list, list) { 1099 if (disk_bytenr >= ordered_sum->bytenr && 1100 disk_bytenr < ordered_sum->bytenr + ordered_sum->len) { 1101 i = (disk_bytenr - ordered_sum->bytenr) >> 1102 inode->i_sb->s_blocksize_bits; 1103 num_sectors = ordered_sum->len >> 1104 inode->i_sb->s_blocksize_bits; 1105 num_sectors = min_t(int, len - index, num_sectors - i); 1106 memcpy(sum + index, ordered_sum->sums + i, 1107 num_sectors); 1108 1109 index += (int)num_sectors; 1110 if (index == len) 1111 goto out; 1112 disk_bytenr += num_sectors * sectorsize; 1113 } 1114 } 1115 out: 1116 spin_unlock_irq(&tree->lock); 1117 btrfs_put_ordered_extent(ordered); 1118 return index; 1119 } 1120 1121 int __init ordered_data_init(void) 1122 { 1123 btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent", 1124 sizeof(struct btrfs_ordered_extent), 0, 1125 SLAB_MEM_SPREAD, 1126 NULL); 1127 if (!btrfs_ordered_extent_cache) 1128 return -ENOMEM; 1129 1130 return 0; 1131 } 1132 1133 void ordered_data_exit(void) 1134 { 1135 kmem_cache_destroy(btrfs_ordered_extent_cache); 1136 } 1137