xref: /linux/fs/btrfs/ordered-data.c (revision e96ce8ebfd7427c7ce335028f6619fb549f366b2)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/slab.h>
20 #include <linux/blkdev.h>
21 #include <linux/writeback.h>
22 #include <linux/pagevec.h>
23 #include "ctree.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "extent_io.h"
27 
28 static u64 entry_end(struct btrfs_ordered_extent *entry)
29 {
30 	if (entry->file_offset + entry->len < entry->file_offset)
31 		return (u64)-1;
32 	return entry->file_offset + entry->len;
33 }
34 
35 /* returns NULL if the insertion worked, or it returns the node it did find
36  * in the tree
37  */
38 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
39 				   struct rb_node *node)
40 {
41 	struct rb_node **p = &root->rb_node;
42 	struct rb_node *parent = NULL;
43 	struct btrfs_ordered_extent *entry;
44 
45 	while (*p) {
46 		parent = *p;
47 		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
48 
49 		if (file_offset < entry->file_offset)
50 			p = &(*p)->rb_left;
51 		else if (file_offset >= entry_end(entry))
52 			p = &(*p)->rb_right;
53 		else
54 			return parent;
55 	}
56 
57 	rb_link_node(node, parent, p);
58 	rb_insert_color(node, root);
59 	return NULL;
60 }
61 
62 /*
63  * look for a given offset in the tree, and if it can't be found return the
64  * first lesser offset
65  */
66 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
67 				     struct rb_node **prev_ret)
68 {
69 	struct rb_node *n = root->rb_node;
70 	struct rb_node *prev = NULL;
71 	struct rb_node *test;
72 	struct btrfs_ordered_extent *entry;
73 	struct btrfs_ordered_extent *prev_entry = NULL;
74 
75 	while (n) {
76 		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
77 		prev = n;
78 		prev_entry = entry;
79 
80 		if (file_offset < entry->file_offset)
81 			n = n->rb_left;
82 		else if (file_offset >= entry_end(entry))
83 			n = n->rb_right;
84 		else
85 			return n;
86 	}
87 	if (!prev_ret)
88 		return NULL;
89 
90 	while (prev && file_offset >= entry_end(prev_entry)) {
91 		test = rb_next(prev);
92 		if (!test)
93 			break;
94 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
95 				      rb_node);
96 		if (file_offset < entry_end(prev_entry))
97 			break;
98 
99 		prev = test;
100 	}
101 	if (prev)
102 		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
103 				      rb_node);
104 	while (prev && file_offset < entry_end(prev_entry)) {
105 		test = rb_prev(prev);
106 		if (!test)
107 			break;
108 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
109 				      rb_node);
110 		prev = test;
111 	}
112 	*prev_ret = prev;
113 	return NULL;
114 }
115 
116 /*
117  * helper to check if a given offset is inside a given entry
118  */
119 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
120 {
121 	if (file_offset < entry->file_offset ||
122 	    entry->file_offset + entry->len <= file_offset)
123 		return 0;
124 	return 1;
125 }
126 
127 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
128 			  u64 len)
129 {
130 	if (file_offset + len <= entry->file_offset ||
131 	    entry->file_offset + entry->len <= file_offset)
132 		return 0;
133 	return 1;
134 }
135 
136 /*
137  * look find the first ordered struct that has this offset, otherwise
138  * the first one less than this offset
139  */
140 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
141 					  u64 file_offset)
142 {
143 	struct rb_root *root = &tree->tree;
144 	struct rb_node *prev;
145 	struct rb_node *ret;
146 	struct btrfs_ordered_extent *entry;
147 
148 	if (tree->last) {
149 		entry = rb_entry(tree->last, struct btrfs_ordered_extent,
150 				 rb_node);
151 		if (offset_in_entry(entry, file_offset))
152 			return tree->last;
153 	}
154 	ret = __tree_search(root, file_offset, &prev);
155 	if (!ret)
156 		ret = prev;
157 	if (ret)
158 		tree->last = ret;
159 	return ret;
160 }
161 
162 /* allocate and add a new ordered_extent into the per-inode tree.
163  * file_offset is the logical offset in the file
164  *
165  * start is the disk block number of an extent already reserved in the
166  * extent allocation tree
167  *
168  * len is the length of the extent
169  *
170  * The tree is given a single reference on the ordered extent that was
171  * inserted.
172  */
173 static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
174 				      u64 start, u64 len, u64 disk_len,
175 				      int type, int dio)
176 {
177 	struct btrfs_ordered_inode_tree *tree;
178 	struct rb_node *node;
179 	struct btrfs_ordered_extent *entry;
180 
181 	tree = &BTRFS_I(inode)->ordered_tree;
182 	entry = kzalloc(sizeof(*entry), GFP_NOFS);
183 	if (!entry)
184 		return -ENOMEM;
185 
186 	entry->file_offset = file_offset;
187 	entry->start = start;
188 	entry->len = len;
189 	entry->disk_len = disk_len;
190 	entry->bytes_left = len;
191 	entry->inode = inode;
192 	if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
193 		set_bit(type, &entry->flags);
194 
195 	if (dio)
196 		set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
197 
198 	/* one ref for the tree */
199 	atomic_set(&entry->refs, 1);
200 	init_waitqueue_head(&entry->wait);
201 	INIT_LIST_HEAD(&entry->list);
202 	INIT_LIST_HEAD(&entry->root_extent_list);
203 
204 	spin_lock(&tree->lock);
205 	node = tree_insert(&tree->tree, file_offset,
206 			   &entry->rb_node);
207 	BUG_ON(node);
208 	spin_unlock(&tree->lock);
209 
210 	spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
211 	list_add_tail(&entry->root_extent_list,
212 		      &BTRFS_I(inode)->root->fs_info->ordered_extents);
213 	spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
214 
215 	BUG_ON(node);
216 	return 0;
217 }
218 
219 int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
220 			     u64 start, u64 len, u64 disk_len, int type)
221 {
222 	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
223 					  disk_len, type, 0);
224 }
225 
226 int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
227 				 u64 start, u64 len, u64 disk_len, int type)
228 {
229 	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
230 					  disk_len, type, 1);
231 }
232 
233 /*
234  * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
235  * when an ordered extent is finished.  If the list covers more than one
236  * ordered extent, it is split across multiples.
237  */
238 int btrfs_add_ordered_sum(struct inode *inode,
239 			  struct btrfs_ordered_extent *entry,
240 			  struct btrfs_ordered_sum *sum)
241 {
242 	struct btrfs_ordered_inode_tree *tree;
243 
244 	tree = &BTRFS_I(inode)->ordered_tree;
245 	spin_lock(&tree->lock);
246 	list_add_tail(&sum->list, &entry->list);
247 	spin_unlock(&tree->lock);
248 	return 0;
249 }
250 
251 /*
252  * this is used to account for finished IO across a given range
253  * of the file.  The IO should not span ordered extents.  If
254  * a given ordered_extent is completely done, 1 is returned, otherwise
255  * 0.
256  *
257  * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
258  * to make sure this function only returns 1 once for a given ordered extent.
259  */
260 int btrfs_dec_test_ordered_pending(struct inode *inode,
261 				   struct btrfs_ordered_extent **cached,
262 				   u64 file_offset, u64 io_size)
263 {
264 	struct btrfs_ordered_inode_tree *tree;
265 	struct rb_node *node;
266 	struct btrfs_ordered_extent *entry = NULL;
267 	int ret;
268 
269 	tree = &BTRFS_I(inode)->ordered_tree;
270 	spin_lock(&tree->lock);
271 	node = tree_search(tree, file_offset);
272 	if (!node) {
273 		ret = 1;
274 		goto out;
275 	}
276 
277 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
278 	if (!offset_in_entry(entry, file_offset)) {
279 		ret = 1;
280 		goto out;
281 	}
282 
283 	if (io_size > entry->bytes_left) {
284 		printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
285 		       (unsigned long long)entry->bytes_left,
286 		       (unsigned long long)io_size);
287 	}
288 	entry->bytes_left -= io_size;
289 	if (entry->bytes_left == 0)
290 		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
291 	else
292 		ret = 1;
293 out:
294 	if (!ret && cached && entry) {
295 		*cached = entry;
296 		atomic_inc(&entry->refs);
297 	}
298 	spin_unlock(&tree->lock);
299 	return ret == 0;
300 }
301 
302 /*
303  * used to drop a reference on an ordered extent.  This will free
304  * the extent if the last reference is dropped
305  */
306 int btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
307 {
308 	struct list_head *cur;
309 	struct btrfs_ordered_sum *sum;
310 
311 	if (atomic_dec_and_test(&entry->refs)) {
312 		while (!list_empty(&entry->list)) {
313 			cur = entry->list.next;
314 			sum = list_entry(cur, struct btrfs_ordered_sum, list);
315 			list_del(&sum->list);
316 			kfree(sum);
317 		}
318 		kfree(entry);
319 	}
320 	return 0;
321 }
322 
323 /*
324  * remove an ordered extent from the tree.  No references are dropped
325  * and you must wake_up entry->wait.  You must hold the tree lock
326  * while you call this function.
327  */
328 static int __btrfs_remove_ordered_extent(struct inode *inode,
329 				struct btrfs_ordered_extent *entry)
330 {
331 	struct btrfs_ordered_inode_tree *tree;
332 	struct btrfs_root *root = BTRFS_I(inode)->root;
333 	struct rb_node *node;
334 
335 	tree = &BTRFS_I(inode)->ordered_tree;
336 	node = &entry->rb_node;
337 	rb_erase(node, &tree->tree);
338 	tree->last = NULL;
339 	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
340 
341 	spin_lock(&root->fs_info->ordered_extent_lock);
342 	list_del_init(&entry->root_extent_list);
343 
344 	/*
345 	 * we have no more ordered extents for this inode and
346 	 * no dirty pages.  We can safely remove it from the
347 	 * list of ordered extents
348 	 */
349 	if (RB_EMPTY_ROOT(&tree->tree) &&
350 	    !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
351 		list_del_init(&BTRFS_I(inode)->ordered_operations);
352 	}
353 	spin_unlock(&root->fs_info->ordered_extent_lock);
354 
355 	return 0;
356 }
357 
358 /*
359  * remove an ordered extent from the tree.  No references are dropped
360  * but any waiters are woken.
361  */
362 int btrfs_remove_ordered_extent(struct inode *inode,
363 				struct btrfs_ordered_extent *entry)
364 {
365 	struct btrfs_ordered_inode_tree *tree;
366 	int ret;
367 
368 	tree = &BTRFS_I(inode)->ordered_tree;
369 	spin_lock(&tree->lock);
370 	ret = __btrfs_remove_ordered_extent(inode, entry);
371 	spin_unlock(&tree->lock);
372 	wake_up(&entry->wait);
373 
374 	return ret;
375 }
376 
377 /*
378  * wait for all the ordered extents in a root.  This is done when balancing
379  * space between drives.
380  */
381 int btrfs_wait_ordered_extents(struct btrfs_root *root,
382 			       int nocow_only, int delay_iput)
383 {
384 	struct list_head splice;
385 	struct list_head *cur;
386 	struct btrfs_ordered_extent *ordered;
387 	struct inode *inode;
388 
389 	INIT_LIST_HEAD(&splice);
390 
391 	spin_lock(&root->fs_info->ordered_extent_lock);
392 	list_splice_init(&root->fs_info->ordered_extents, &splice);
393 	while (!list_empty(&splice)) {
394 		cur = splice.next;
395 		ordered = list_entry(cur, struct btrfs_ordered_extent,
396 				     root_extent_list);
397 		if (nocow_only &&
398 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) &&
399 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
400 			list_move(&ordered->root_extent_list,
401 				  &root->fs_info->ordered_extents);
402 			cond_resched_lock(&root->fs_info->ordered_extent_lock);
403 			continue;
404 		}
405 
406 		list_del_init(&ordered->root_extent_list);
407 		atomic_inc(&ordered->refs);
408 
409 		/*
410 		 * the inode may be getting freed (in sys_unlink path).
411 		 */
412 		inode = igrab(ordered->inode);
413 
414 		spin_unlock(&root->fs_info->ordered_extent_lock);
415 
416 		if (inode) {
417 			btrfs_start_ordered_extent(inode, ordered, 1);
418 			btrfs_put_ordered_extent(ordered);
419 			if (delay_iput)
420 				btrfs_add_delayed_iput(inode);
421 			else
422 				iput(inode);
423 		} else {
424 			btrfs_put_ordered_extent(ordered);
425 		}
426 
427 		spin_lock(&root->fs_info->ordered_extent_lock);
428 	}
429 	spin_unlock(&root->fs_info->ordered_extent_lock);
430 	return 0;
431 }
432 
433 /*
434  * this is used during transaction commit to write all the inodes
435  * added to the ordered operation list.  These files must be fully on
436  * disk before the transaction commits.
437  *
438  * we have two modes here, one is to just start the IO via filemap_flush
439  * and the other is to wait for all the io.  When we wait, we have an
440  * extra check to make sure the ordered operation list really is empty
441  * before we return
442  */
443 int btrfs_run_ordered_operations(struct btrfs_root *root, int wait)
444 {
445 	struct btrfs_inode *btrfs_inode;
446 	struct inode *inode;
447 	struct list_head splice;
448 
449 	INIT_LIST_HEAD(&splice);
450 
451 	mutex_lock(&root->fs_info->ordered_operations_mutex);
452 	spin_lock(&root->fs_info->ordered_extent_lock);
453 again:
454 	list_splice_init(&root->fs_info->ordered_operations, &splice);
455 
456 	while (!list_empty(&splice)) {
457 		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
458 				   ordered_operations);
459 
460 		inode = &btrfs_inode->vfs_inode;
461 
462 		list_del_init(&btrfs_inode->ordered_operations);
463 
464 		/*
465 		 * the inode may be getting freed (in sys_unlink path).
466 		 */
467 		inode = igrab(inode);
468 
469 		if (!wait && inode) {
470 			list_add_tail(&BTRFS_I(inode)->ordered_operations,
471 			      &root->fs_info->ordered_operations);
472 		}
473 		spin_unlock(&root->fs_info->ordered_extent_lock);
474 
475 		if (inode) {
476 			if (wait)
477 				btrfs_wait_ordered_range(inode, 0, (u64)-1);
478 			else
479 				filemap_flush(inode->i_mapping);
480 			btrfs_add_delayed_iput(inode);
481 		}
482 
483 		cond_resched();
484 		spin_lock(&root->fs_info->ordered_extent_lock);
485 	}
486 	if (wait && !list_empty(&root->fs_info->ordered_operations))
487 		goto again;
488 
489 	spin_unlock(&root->fs_info->ordered_extent_lock);
490 	mutex_unlock(&root->fs_info->ordered_operations_mutex);
491 
492 	return 0;
493 }
494 
495 /*
496  * Used to start IO or wait for a given ordered extent to finish.
497  *
498  * If wait is one, this effectively waits on page writeback for all the pages
499  * in the extent, and it waits on the io completion code to insert
500  * metadata into the btree corresponding to the extent
501  */
502 void btrfs_start_ordered_extent(struct inode *inode,
503 				       struct btrfs_ordered_extent *entry,
504 				       int wait)
505 {
506 	u64 start = entry->file_offset;
507 	u64 end = start + entry->len - 1;
508 
509 	/*
510 	 * pages in the range can be dirty, clean or writeback.  We
511 	 * start IO on any dirty ones so the wait doesn't stall waiting
512 	 * for pdflush to find them
513 	 */
514 	if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
515 		filemap_fdatawrite_range(inode->i_mapping, start, end);
516 	if (wait) {
517 		wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
518 						 &entry->flags));
519 	}
520 }
521 
522 /*
523  * Used to wait on ordered extents across a large range of bytes.
524  */
525 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
526 {
527 	u64 end;
528 	u64 orig_end;
529 	struct btrfs_ordered_extent *ordered;
530 	int found;
531 
532 	if (start + len < start) {
533 		orig_end = INT_LIMIT(loff_t);
534 	} else {
535 		orig_end = start + len - 1;
536 		if (orig_end > INT_LIMIT(loff_t))
537 			orig_end = INT_LIMIT(loff_t);
538 	}
539 again:
540 	/* start IO across the range first to instantiate any delalloc
541 	 * extents
542 	 */
543 	filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
544 
545 	/* The compression code will leave pages locked but return from
546 	 * writepage without setting the page writeback.  Starting again
547 	 * with WB_SYNC_ALL will end up waiting for the IO to actually start.
548 	 */
549 	filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
550 
551 	filemap_fdatawait_range(inode->i_mapping, start, orig_end);
552 
553 	end = orig_end;
554 	found = 0;
555 	while (1) {
556 		ordered = btrfs_lookup_first_ordered_extent(inode, end);
557 		if (!ordered)
558 			break;
559 		if (ordered->file_offset > orig_end) {
560 			btrfs_put_ordered_extent(ordered);
561 			break;
562 		}
563 		if (ordered->file_offset + ordered->len < start) {
564 			btrfs_put_ordered_extent(ordered);
565 			break;
566 		}
567 		found++;
568 		btrfs_start_ordered_extent(inode, ordered, 1);
569 		end = ordered->file_offset;
570 		btrfs_put_ordered_extent(ordered);
571 		if (end == 0 || end == start)
572 			break;
573 		end--;
574 	}
575 	if (found || test_range_bit(&BTRFS_I(inode)->io_tree, start, orig_end,
576 			   EXTENT_DELALLOC, 0, NULL)) {
577 		schedule_timeout(1);
578 		goto again;
579 	}
580 	return 0;
581 }
582 
583 /*
584  * find an ordered extent corresponding to file_offset.  return NULL if
585  * nothing is found, otherwise take a reference on the extent and return it
586  */
587 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
588 							 u64 file_offset)
589 {
590 	struct btrfs_ordered_inode_tree *tree;
591 	struct rb_node *node;
592 	struct btrfs_ordered_extent *entry = NULL;
593 
594 	tree = &BTRFS_I(inode)->ordered_tree;
595 	spin_lock(&tree->lock);
596 	node = tree_search(tree, file_offset);
597 	if (!node)
598 		goto out;
599 
600 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
601 	if (!offset_in_entry(entry, file_offset))
602 		entry = NULL;
603 	if (entry)
604 		atomic_inc(&entry->refs);
605 out:
606 	spin_unlock(&tree->lock);
607 	return entry;
608 }
609 
610 /* Since the DIO code tries to lock a wide area we need to look for any ordered
611  * extents that exist in the range, rather than just the start of the range.
612  */
613 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
614 							u64 file_offset,
615 							u64 len)
616 {
617 	struct btrfs_ordered_inode_tree *tree;
618 	struct rb_node *node;
619 	struct btrfs_ordered_extent *entry = NULL;
620 
621 	tree = &BTRFS_I(inode)->ordered_tree;
622 	spin_lock(&tree->lock);
623 	node = tree_search(tree, file_offset);
624 	if (!node) {
625 		node = tree_search(tree, file_offset + len);
626 		if (!node)
627 			goto out;
628 	}
629 
630 	while (1) {
631 		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
632 		if (range_overlaps(entry, file_offset, len))
633 			break;
634 
635 		if (entry->file_offset >= file_offset + len) {
636 			entry = NULL;
637 			break;
638 		}
639 		entry = NULL;
640 		node = rb_next(node);
641 		if (!node)
642 			break;
643 	}
644 out:
645 	if (entry)
646 		atomic_inc(&entry->refs);
647 	spin_unlock(&tree->lock);
648 	return entry;
649 }
650 
651 /*
652  * lookup and return any extent before 'file_offset'.  NULL is returned
653  * if none is found
654  */
655 struct btrfs_ordered_extent *
656 btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
657 {
658 	struct btrfs_ordered_inode_tree *tree;
659 	struct rb_node *node;
660 	struct btrfs_ordered_extent *entry = NULL;
661 
662 	tree = &BTRFS_I(inode)->ordered_tree;
663 	spin_lock(&tree->lock);
664 	node = tree_search(tree, file_offset);
665 	if (!node)
666 		goto out;
667 
668 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
669 	atomic_inc(&entry->refs);
670 out:
671 	spin_unlock(&tree->lock);
672 	return entry;
673 }
674 
675 /*
676  * After an extent is done, call this to conditionally update the on disk
677  * i_size.  i_size is updated to cover any fully written part of the file.
678  */
679 int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
680 				struct btrfs_ordered_extent *ordered)
681 {
682 	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
683 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
684 	u64 disk_i_size;
685 	u64 new_i_size;
686 	u64 i_size_test;
687 	u64 i_size = i_size_read(inode);
688 	struct rb_node *node;
689 	struct rb_node *prev = NULL;
690 	struct btrfs_ordered_extent *test;
691 	int ret = 1;
692 
693 	if (ordered)
694 		offset = entry_end(ordered);
695 	else
696 		offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
697 
698 	spin_lock(&tree->lock);
699 	disk_i_size = BTRFS_I(inode)->disk_i_size;
700 
701 	/* truncate file */
702 	if (disk_i_size > i_size) {
703 		BTRFS_I(inode)->disk_i_size = i_size;
704 		ret = 0;
705 		goto out;
706 	}
707 
708 	/*
709 	 * if the disk i_size is already at the inode->i_size, or
710 	 * this ordered extent is inside the disk i_size, we're done
711 	 */
712 	if (disk_i_size == i_size || offset <= disk_i_size) {
713 		goto out;
714 	}
715 
716 	/*
717 	 * we can't update the disk_isize if there are delalloc bytes
718 	 * between disk_i_size and  this ordered extent
719 	 */
720 	if (test_range_bit(io_tree, disk_i_size, offset - 1,
721 			   EXTENT_DELALLOC, 0, NULL)) {
722 		goto out;
723 	}
724 	/*
725 	 * walk backward from this ordered extent to disk_i_size.
726 	 * if we find an ordered extent then we can't update disk i_size
727 	 * yet
728 	 */
729 	if (ordered) {
730 		node = rb_prev(&ordered->rb_node);
731 	} else {
732 		prev = tree_search(tree, offset);
733 		/*
734 		 * we insert file extents without involving ordered struct,
735 		 * so there should be no ordered struct cover this offset
736 		 */
737 		if (prev) {
738 			test = rb_entry(prev, struct btrfs_ordered_extent,
739 					rb_node);
740 			BUG_ON(offset_in_entry(test, offset));
741 		}
742 		node = prev;
743 	}
744 	while (node) {
745 		test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
746 		if (test->file_offset + test->len <= disk_i_size)
747 			break;
748 		if (test->file_offset >= i_size)
749 			break;
750 		if (test->file_offset >= disk_i_size)
751 			goto out;
752 		node = rb_prev(node);
753 	}
754 	new_i_size = min_t(u64, offset, i_size);
755 
756 	/*
757 	 * at this point, we know we can safely update i_size to at least
758 	 * the offset from this ordered extent.  But, we need to
759 	 * walk forward and see if ios from higher up in the file have
760 	 * finished.
761 	 */
762 	if (ordered) {
763 		node = rb_next(&ordered->rb_node);
764 	} else {
765 		if (prev)
766 			node = rb_next(prev);
767 		else
768 			node = rb_first(&tree->tree);
769 	}
770 	i_size_test = 0;
771 	if (node) {
772 		/*
773 		 * do we have an area where IO might have finished
774 		 * between our ordered extent and the next one.
775 		 */
776 		test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
777 		if (test->file_offset > offset)
778 			i_size_test = test->file_offset;
779 	} else {
780 		i_size_test = i_size;
781 	}
782 
783 	/*
784 	 * i_size_test is the end of a region after this ordered
785 	 * extent where there are no ordered extents.  As long as there
786 	 * are no delalloc bytes in this area, it is safe to update
787 	 * disk_i_size to the end of the region.
788 	 */
789 	if (i_size_test > offset &&
790 	    !test_range_bit(io_tree, offset, i_size_test - 1,
791 			    EXTENT_DELALLOC, 0, NULL)) {
792 		new_i_size = min_t(u64, i_size_test, i_size);
793 	}
794 	BTRFS_I(inode)->disk_i_size = new_i_size;
795 	ret = 0;
796 out:
797 	/*
798 	 * we need to remove the ordered extent with the tree lock held
799 	 * so that other people calling this function don't find our fully
800 	 * processed ordered entry and skip updating the i_size
801 	 */
802 	if (ordered)
803 		__btrfs_remove_ordered_extent(inode, ordered);
804 	spin_unlock(&tree->lock);
805 	if (ordered)
806 		wake_up(&ordered->wait);
807 	return ret;
808 }
809 
810 /*
811  * search the ordered extents for one corresponding to 'offset' and
812  * try to find a checksum.  This is used because we allow pages to
813  * be reclaimed before their checksum is actually put into the btree
814  */
815 int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
816 			   u32 *sum)
817 {
818 	struct btrfs_ordered_sum *ordered_sum;
819 	struct btrfs_sector_sum *sector_sums;
820 	struct btrfs_ordered_extent *ordered;
821 	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
822 	unsigned long num_sectors;
823 	unsigned long i;
824 	u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
825 	int ret = 1;
826 
827 	ordered = btrfs_lookup_ordered_extent(inode, offset);
828 	if (!ordered)
829 		return 1;
830 
831 	spin_lock(&tree->lock);
832 	list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
833 		if (disk_bytenr >= ordered_sum->bytenr) {
834 			num_sectors = ordered_sum->len / sectorsize;
835 			sector_sums = ordered_sum->sums;
836 			for (i = 0; i < num_sectors; i++) {
837 				if (sector_sums[i].bytenr == disk_bytenr) {
838 					*sum = sector_sums[i].sum;
839 					ret = 0;
840 					goto out;
841 				}
842 			}
843 		}
844 	}
845 out:
846 	spin_unlock(&tree->lock);
847 	btrfs_put_ordered_extent(ordered);
848 	return ret;
849 }
850 
851 
852 /*
853  * add a given inode to the list of inodes that must be fully on
854  * disk before a transaction commit finishes.
855  *
856  * This basically gives us the ext3 style data=ordered mode, and it is mostly
857  * used to make sure renamed files are fully on disk.
858  *
859  * It is a noop if the inode is already fully on disk.
860  *
861  * If trans is not null, we'll do a friendly check for a transaction that
862  * is already flushing things and force the IO down ourselves.
863  */
864 int btrfs_add_ordered_operation(struct btrfs_trans_handle *trans,
865 				struct btrfs_root *root,
866 				struct inode *inode)
867 {
868 	u64 last_mod;
869 
870 	last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans);
871 
872 	/*
873 	 * if this file hasn't been changed since the last transaction
874 	 * commit, we can safely return without doing anything
875 	 */
876 	if (last_mod < root->fs_info->last_trans_committed)
877 		return 0;
878 
879 	/*
880 	 * the transaction is already committing.  Just start the IO and
881 	 * don't bother with all of this list nonsense
882 	 */
883 	if (trans && root->fs_info->running_transaction->blocked) {
884 		btrfs_wait_ordered_range(inode, 0, (u64)-1);
885 		return 0;
886 	}
887 
888 	spin_lock(&root->fs_info->ordered_extent_lock);
889 	if (list_empty(&BTRFS_I(inode)->ordered_operations)) {
890 		list_add_tail(&BTRFS_I(inode)->ordered_operations,
891 			      &root->fs_info->ordered_operations);
892 	}
893 	spin_unlock(&root->fs_info->ordered_extent_lock);
894 
895 	return 0;
896 }
897