xref: /linux/fs/btrfs/ordered-data.c (revision c4101e55974cc7d835fbd2d8e01553a3f61e9e75)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/slab.h>
7 #include <linux/blkdev.h>
8 #include <linux/writeback.h>
9 #include <linux/sched/mm.h>
10 #include "messages.h"
11 #include "misc.h"
12 #include "ctree.h"
13 #include "transaction.h"
14 #include "btrfs_inode.h"
15 #include "extent_io.h"
16 #include "disk-io.h"
17 #include "compression.h"
18 #include "delalloc-space.h"
19 #include "qgroup.h"
20 #include "subpage.h"
21 #include "file.h"
22 #include "super.h"
23 
24 static struct kmem_cache *btrfs_ordered_extent_cache;
25 
26 static u64 entry_end(struct btrfs_ordered_extent *entry)
27 {
28 	if (entry->file_offset + entry->num_bytes < entry->file_offset)
29 		return (u64)-1;
30 	return entry->file_offset + entry->num_bytes;
31 }
32 
33 /* returns NULL if the insertion worked, or it returns the node it did find
34  * in the tree
35  */
36 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
37 				   struct rb_node *node)
38 {
39 	struct rb_node **p = &root->rb_node;
40 	struct rb_node *parent = NULL;
41 	struct btrfs_ordered_extent *entry;
42 
43 	while (*p) {
44 		parent = *p;
45 		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
46 
47 		if (file_offset < entry->file_offset)
48 			p = &(*p)->rb_left;
49 		else if (file_offset >= entry_end(entry))
50 			p = &(*p)->rb_right;
51 		else
52 			return parent;
53 	}
54 
55 	rb_link_node(node, parent, p);
56 	rb_insert_color(node, root);
57 	return NULL;
58 }
59 
60 /*
61  * look for a given offset in the tree, and if it can't be found return the
62  * first lesser offset
63  */
64 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
65 				     struct rb_node **prev_ret)
66 {
67 	struct rb_node *n = root->rb_node;
68 	struct rb_node *prev = NULL;
69 	struct rb_node *test;
70 	struct btrfs_ordered_extent *entry;
71 	struct btrfs_ordered_extent *prev_entry = NULL;
72 
73 	while (n) {
74 		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
75 		prev = n;
76 		prev_entry = entry;
77 
78 		if (file_offset < entry->file_offset)
79 			n = n->rb_left;
80 		else if (file_offset >= entry_end(entry))
81 			n = n->rb_right;
82 		else
83 			return n;
84 	}
85 	if (!prev_ret)
86 		return NULL;
87 
88 	while (prev && file_offset >= entry_end(prev_entry)) {
89 		test = rb_next(prev);
90 		if (!test)
91 			break;
92 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
93 				      rb_node);
94 		if (file_offset < entry_end(prev_entry))
95 			break;
96 
97 		prev = test;
98 	}
99 	if (prev)
100 		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
101 				      rb_node);
102 	while (prev && file_offset < entry_end(prev_entry)) {
103 		test = rb_prev(prev);
104 		if (!test)
105 			break;
106 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
107 				      rb_node);
108 		prev = test;
109 	}
110 	*prev_ret = prev;
111 	return NULL;
112 }
113 
114 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
115 			  u64 len)
116 {
117 	if (file_offset + len <= entry->file_offset ||
118 	    entry->file_offset + entry->num_bytes <= file_offset)
119 		return 0;
120 	return 1;
121 }
122 
123 /*
124  * look find the first ordered struct that has this offset, otherwise
125  * the first one less than this offset
126  */
127 static inline struct rb_node *ordered_tree_search(struct btrfs_inode *inode,
128 						  u64 file_offset)
129 {
130 	struct rb_node *prev = NULL;
131 	struct rb_node *ret;
132 	struct btrfs_ordered_extent *entry;
133 
134 	if (inode->ordered_tree_last) {
135 		entry = rb_entry(inode->ordered_tree_last, struct btrfs_ordered_extent,
136 				 rb_node);
137 		if (in_range(file_offset, entry->file_offset, entry->num_bytes))
138 			return inode->ordered_tree_last;
139 	}
140 	ret = __tree_search(&inode->ordered_tree, file_offset, &prev);
141 	if (!ret)
142 		ret = prev;
143 	if (ret)
144 		inode->ordered_tree_last = ret;
145 	return ret;
146 }
147 
148 static struct btrfs_ordered_extent *alloc_ordered_extent(
149 			struct btrfs_inode *inode, u64 file_offset, u64 num_bytes,
150 			u64 ram_bytes, u64 disk_bytenr, u64 disk_num_bytes,
151 			u64 offset, unsigned long flags, int compress_type)
152 {
153 	struct btrfs_ordered_extent *entry;
154 	int ret;
155 	u64 qgroup_rsv = 0;
156 
157 	if (flags &
158 	    ((1 << BTRFS_ORDERED_NOCOW) | (1 << BTRFS_ORDERED_PREALLOC))) {
159 		/* For nocow write, we can release the qgroup rsv right now */
160 		ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes, &qgroup_rsv);
161 		if (ret < 0)
162 			return ERR_PTR(ret);
163 	} else {
164 		/*
165 		 * The ordered extent has reserved qgroup space, release now
166 		 * and pass the reserved number for qgroup_record to free.
167 		 */
168 		ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes, &qgroup_rsv);
169 		if (ret < 0)
170 			return ERR_PTR(ret);
171 	}
172 	entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
173 	if (!entry)
174 		return ERR_PTR(-ENOMEM);
175 
176 	entry->file_offset = file_offset;
177 	entry->num_bytes = num_bytes;
178 	entry->ram_bytes = ram_bytes;
179 	entry->disk_bytenr = disk_bytenr;
180 	entry->disk_num_bytes = disk_num_bytes;
181 	entry->offset = offset;
182 	entry->bytes_left = num_bytes;
183 	entry->inode = igrab(&inode->vfs_inode);
184 	entry->compress_type = compress_type;
185 	entry->truncated_len = (u64)-1;
186 	entry->qgroup_rsv = qgroup_rsv;
187 	entry->flags = flags;
188 	refcount_set(&entry->refs, 1);
189 	init_waitqueue_head(&entry->wait);
190 	INIT_LIST_HEAD(&entry->list);
191 	INIT_LIST_HEAD(&entry->log_list);
192 	INIT_LIST_HEAD(&entry->root_extent_list);
193 	INIT_LIST_HEAD(&entry->work_list);
194 	INIT_LIST_HEAD(&entry->bioc_list);
195 	init_completion(&entry->completion);
196 
197 	/*
198 	 * We don't need the count_max_extents here, we can assume that all of
199 	 * that work has been done at higher layers, so this is truly the
200 	 * smallest the extent is going to get.
201 	 */
202 	spin_lock(&inode->lock);
203 	btrfs_mod_outstanding_extents(inode, 1);
204 	spin_unlock(&inode->lock);
205 
206 	return entry;
207 }
208 
209 static void insert_ordered_extent(struct btrfs_ordered_extent *entry)
210 {
211 	struct btrfs_inode *inode = BTRFS_I(entry->inode);
212 	struct btrfs_root *root = inode->root;
213 	struct btrfs_fs_info *fs_info = root->fs_info;
214 	struct rb_node *node;
215 
216 	trace_btrfs_ordered_extent_add(inode, entry);
217 
218 	percpu_counter_add_batch(&fs_info->ordered_bytes, entry->num_bytes,
219 				 fs_info->delalloc_batch);
220 
221 	/* One ref for the tree. */
222 	refcount_inc(&entry->refs);
223 
224 	spin_lock_irq(&inode->ordered_tree_lock);
225 	node = tree_insert(&inode->ordered_tree, entry->file_offset,
226 			   &entry->rb_node);
227 	if (node)
228 		btrfs_panic(fs_info, -EEXIST,
229 				"inconsistency in ordered tree at offset %llu",
230 				entry->file_offset);
231 	spin_unlock_irq(&inode->ordered_tree_lock);
232 
233 	spin_lock(&root->ordered_extent_lock);
234 	list_add_tail(&entry->root_extent_list,
235 		      &root->ordered_extents);
236 	root->nr_ordered_extents++;
237 	if (root->nr_ordered_extents == 1) {
238 		spin_lock(&fs_info->ordered_root_lock);
239 		BUG_ON(!list_empty(&root->ordered_root));
240 		list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
241 		spin_unlock(&fs_info->ordered_root_lock);
242 	}
243 	spin_unlock(&root->ordered_extent_lock);
244 }
245 
246 /*
247  * Add an ordered extent to the per-inode tree.
248  *
249  * @inode:           Inode that this extent is for.
250  * @file_offset:     Logical offset in file where the extent starts.
251  * @num_bytes:       Logical length of extent in file.
252  * @ram_bytes:       Full length of unencoded data.
253  * @disk_bytenr:     Offset of extent on disk.
254  * @disk_num_bytes:  Size of extent on disk.
255  * @offset:          Offset into unencoded data where file data starts.
256  * @flags:           Flags specifying type of extent (1 << BTRFS_ORDERED_*).
257  * @compress_type:   Compression algorithm used for data.
258  *
259  * Most of these parameters correspond to &struct btrfs_file_extent_item. The
260  * tree is given a single reference on the ordered extent that was inserted, and
261  * the returned pointer is given a second reference.
262  *
263  * Return: the new ordered extent or error pointer.
264  */
265 struct btrfs_ordered_extent *btrfs_alloc_ordered_extent(
266 			struct btrfs_inode *inode, u64 file_offset,
267 			u64 num_bytes, u64 ram_bytes, u64 disk_bytenr,
268 			u64 disk_num_bytes, u64 offset, unsigned long flags,
269 			int compress_type)
270 {
271 	struct btrfs_ordered_extent *entry;
272 
273 	ASSERT((flags & ~BTRFS_ORDERED_TYPE_FLAGS) == 0);
274 
275 	entry = alloc_ordered_extent(inode, file_offset, num_bytes, ram_bytes,
276 				     disk_bytenr, disk_num_bytes, offset, flags,
277 				     compress_type);
278 	if (!IS_ERR(entry))
279 		insert_ordered_extent(entry);
280 	return entry;
281 }
282 
283 /*
284  * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
285  * when an ordered extent is finished.  If the list covers more than one
286  * ordered extent, it is split across multiples.
287  */
288 void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
289 			   struct btrfs_ordered_sum *sum)
290 {
291 	struct btrfs_inode *inode = BTRFS_I(entry->inode);
292 
293 	spin_lock_irq(&inode->ordered_tree_lock);
294 	list_add_tail(&sum->list, &entry->list);
295 	spin_unlock_irq(&inode->ordered_tree_lock);
296 }
297 
298 static void finish_ordered_fn(struct btrfs_work *work)
299 {
300 	struct btrfs_ordered_extent *ordered_extent;
301 
302 	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
303 	btrfs_finish_ordered_io(ordered_extent);
304 }
305 
306 static bool can_finish_ordered_extent(struct btrfs_ordered_extent *ordered,
307 				      struct page *page, u64 file_offset,
308 				      u64 len, bool uptodate)
309 {
310 	struct btrfs_inode *inode = BTRFS_I(ordered->inode);
311 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
312 
313 	lockdep_assert_held(&inode->ordered_tree_lock);
314 
315 	if (page) {
316 		ASSERT(page->mapping);
317 		ASSERT(page_offset(page) <= file_offset);
318 		ASSERT(file_offset + len <= page_offset(page) + PAGE_SIZE);
319 
320 		/*
321 		 * Ordered (Private2) bit indicates whether we still have
322 		 * pending io unfinished for the ordered extent.
323 		 *
324 		 * If there's no such bit, we need to skip to next range.
325 		 */
326 		if (!btrfs_folio_test_ordered(fs_info, page_folio(page),
327 					      file_offset, len))
328 			return false;
329 		btrfs_folio_clear_ordered(fs_info, page_folio(page), file_offset, len);
330 	}
331 
332 	/* Now we're fine to update the accounting. */
333 	if (WARN_ON_ONCE(len > ordered->bytes_left)) {
334 		btrfs_crit(fs_info,
335 "bad ordered extent accounting, root=%llu ino=%llu OE offset=%llu OE len=%llu to_dec=%llu left=%llu",
336 			   inode->root->root_key.objectid, btrfs_ino(inode),
337 			   ordered->file_offset, ordered->num_bytes,
338 			   len, ordered->bytes_left);
339 		ordered->bytes_left = 0;
340 	} else {
341 		ordered->bytes_left -= len;
342 	}
343 
344 	if (!uptodate)
345 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
346 
347 	if (ordered->bytes_left)
348 		return false;
349 
350 	/*
351 	 * All the IO of the ordered extent is finished, we need to queue
352 	 * the finish_func to be executed.
353 	 */
354 	set_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags);
355 	cond_wake_up(&ordered->wait);
356 	refcount_inc(&ordered->refs);
357 	trace_btrfs_ordered_extent_mark_finished(inode, ordered);
358 	return true;
359 }
360 
361 static void btrfs_queue_ordered_fn(struct btrfs_ordered_extent *ordered)
362 {
363 	struct btrfs_inode *inode = BTRFS_I(ordered->inode);
364 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
365 	struct btrfs_workqueue *wq = btrfs_is_free_space_inode(inode) ?
366 		fs_info->endio_freespace_worker : fs_info->endio_write_workers;
367 
368 	btrfs_init_work(&ordered->work, finish_ordered_fn, NULL);
369 	btrfs_queue_work(wq, &ordered->work);
370 }
371 
372 bool btrfs_finish_ordered_extent(struct btrfs_ordered_extent *ordered,
373 				 struct page *page, u64 file_offset, u64 len,
374 				 bool uptodate)
375 {
376 	struct btrfs_inode *inode = BTRFS_I(ordered->inode);
377 	unsigned long flags;
378 	bool ret;
379 
380 	trace_btrfs_finish_ordered_extent(inode, file_offset, len, uptodate);
381 
382 	spin_lock_irqsave(&inode->ordered_tree_lock, flags);
383 	ret = can_finish_ordered_extent(ordered, page, file_offset, len, uptodate);
384 	spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
385 
386 	if (ret)
387 		btrfs_queue_ordered_fn(ordered);
388 	return ret;
389 }
390 
391 /*
392  * Mark all ordered extents io inside the specified range finished.
393  *
394  * @page:	 The involved page for the operation.
395  *		 For uncompressed buffered IO, the page status also needs to be
396  *		 updated to indicate whether the pending ordered io is finished.
397  *		 Can be NULL for direct IO and compressed write.
398  *		 For these cases, callers are ensured they won't execute the
399  *		 endio function twice.
400  *
401  * This function is called for endio, thus the range must have ordered
402  * extent(s) covering it.
403  */
404 void btrfs_mark_ordered_io_finished(struct btrfs_inode *inode,
405 				    struct page *page, u64 file_offset,
406 				    u64 num_bytes, bool uptodate)
407 {
408 	struct rb_node *node;
409 	struct btrfs_ordered_extent *entry = NULL;
410 	unsigned long flags;
411 	u64 cur = file_offset;
412 
413 	trace_btrfs_writepage_end_io_hook(inode, file_offset,
414 					  file_offset + num_bytes - 1,
415 					  uptodate);
416 
417 	spin_lock_irqsave(&inode->ordered_tree_lock, flags);
418 	while (cur < file_offset + num_bytes) {
419 		u64 entry_end;
420 		u64 end;
421 		u32 len;
422 
423 		node = ordered_tree_search(inode, cur);
424 		/* No ordered extents at all */
425 		if (!node)
426 			break;
427 
428 		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
429 		entry_end = entry->file_offset + entry->num_bytes;
430 		/*
431 		 * |<-- OE --->|  |
432 		 *		  cur
433 		 * Go to next OE.
434 		 */
435 		if (cur >= entry_end) {
436 			node = rb_next(node);
437 			/* No more ordered extents, exit */
438 			if (!node)
439 				break;
440 			entry = rb_entry(node, struct btrfs_ordered_extent,
441 					 rb_node);
442 
443 			/* Go to next ordered extent and continue */
444 			cur = entry->file_offset;
445 			continue;
446 		}
447 		/*
448 		 * |	|<--- OE --->|
449 		 * cur
450 		 * Go to the start of OE.
451 		 */
452 		if (cur < entry->file_offset) {
453 			cur = entry->file_offset;
454 			continue;
455 		}
456 
457 		/*
458 		 * Now we are definitely inside one ordered extent.
459 		 *
460 		 * |<--- OE --->|
461 		 *	|
462 		 *	cur
463 		 */
464 		end = min(entry->file_offset + entry->num_bytes,
465 			  file_offset + num_bytes) - 1;
466 		ASSERT(end + 1 - cur < U32_MAX);
467 		len = end + 1 - cur;
468 
469 		if (can_finish_ordered_extent(entry, page, cur, len, uptodate)) {
470 			spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
471 			btrfs_queue_ordered_fn(entry);
472 			spin_lock_irqsave(&inode->ordered_tree_lock, flags);
473 		}
474 		cur += len;
475 	}
476 	spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
477 }
478 
479 /*
480  * Finish IO for one ordered extent across a given range.  The range can only
481  * contain one ordered extent.
482  *
483  * @cached:	 The cached ordered extent. If not NULL, we can skip the tree
484  *               search and use the ordered extent directly.
485  * 		 Will be also used to store the finished ordered extent.
486  * @file_offset: File offset for the finished IO
487  * @io_size:	 Length of the finish IO range
488  *
489  * Return true if the ordered extent is finished in the range, and update
490  * @cached.
491  * Return false otherwise.
492  *
493  * NOTE: The range can NOT cross multiple ordered extents.
494  * Thus caller should ensure the range doesn't cross ordered extents.
495  */
496 bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode,
497 				    struct btrfs_ordered_extent **cached,
498 				    u64 file_offset, u64 io_size)
499 {
500 	struct rb_node *node;
501 	struct btrfs_ordered_extent *entry = NULL;
502 	unsigned long flags;
503 	bool finished = false;
504 
505 	spin_lock_irqsave(&inode->ordered_tree_lock, flags);
506 	if (cached && *cached) {
507 		entry = *cached;
508 		goto have_entry;
509 	}
510 
511 	node = ordered_tree_search(inode, file_offset);
512 	if (!node)
513 		goto out;
514 
515 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
516 have_entry:
517 	if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
518 		goto out;
519 
520 	if (io_size > entry->bytes_left)
521 		btrfs_crit(inode->root->fs_info,
522 			   "bad ordered accounting left %llu size %llu",
523 		       entry->bytes_left, io_size);
524 
525 	entry->bytes_left -= io_size;
526 
527 	if (entry->bytes_left == 0) {
528 		/*
529 		 * Ensure only one caller can set the flag and finished_ret
530 		 * accordingly
531 		 */
532 		finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
533 		/* test_and_set_bit implies a barrier */
534 		cond_wake_up_nomb(&entry->wait);
535 	}
536 out:
537 	if (finished && cached && entry) {
538 		*cached = entry;
539 		refcount_inc(&entry->refs);
540 		trace_btrfs_ordered_extent_dec_test_pending(inode, entry);
541 	}
542 	spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
543 	return finished;
544 }
545 
546 /*
547  * used to drop a reference on an ordered extent.  This will free
548  * the extent if the last reference is dropped
549  */
550 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
551 {
552 	struct list_head *cur;
553 	struct btrfs_ordered_sum *sum;
554 
555 	trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry);
556 
557 	if (refcount_dec_and_test(&entry->refs)) {
558 		ASSERT(list_empty(&entry->root_extent_list));
559 		ASSERT(list_empty(&entry->log_list));
560 		ASSERT(RB_EMPTY_NODE(&entry->rb_node));
561 		if (entry->inode)
562 			btrfs_add_delayed_iput(BTRFS_I(entry->inode));
563 		while (!list_empty(&entry->list)) {
564 			cur = entry->list.next;
565 			sum = list_entry(cur, struct btrfs_ordered_sum, list);
566 			list_del(&sum->list);
567 			kvfree(sum);
568 		}
569 		kmem_cache_free(btrfs_ordered_extent_cache, entry);
570 	}
571 }
572 
573 /*
574  * remove an ordered extent from the tree.  No references are dropped
575  * and waiters are woken up.
576  */
577 void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode,
578 				 struct btrfs_ordered_extent *entry)
579 {
580 	struct btrfs_root *root = btrfs_inode->root;
581 	struct btrfs_fs_info *fs_info = root->fs_info;
582 	struct rb_node *node;
583 	bool pending;
584 	bool freespace_inode;
585 
586 	/*
587 	 * If this is a free space inode the thread has not acquired the ordered
588 	 * extents lockdep map.
589 	 */
590 	freespace_inode = btrfs_is_free_space_inode(btrfs_inode);
591 
592 	btrfs_lockdep_acquire(fs_info, btrfs_trans_pending_ordered);
593 	/* This is paired with btrfs_alloc_ordered_extent. */
594 	spin_lock(&btrfs_inode->lock);
595 	btrfs_mod_outstanding_extents(btrfs_inode, -1);
596 	spin_unlock(&btrfs_inode->lock);
597 	if (root != fs_info->tree_root) {
598 		u64 release;
599 
600 		if (test_bit(BTRFS_ORDERED_ENCODED, &entry->flags))
601 			release = entry->disk_num_bytes;
602 		else
603 			release = entry->num_bytes;
604 		btrfs_delalloc_release_metadata(btrfs_inode, release,
605 						test_bit(BTRFS_ORDERED_IOERR,
606 							 &entry->flags));
607 	}
608 
609 	percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes,
610 				 fs_info->delalloc_batch);
611 
612 	spin_lock_irq(&btrfs_inode->ordered_tree_lock);
613 	node = &entry->rb_node;
614 	rb_erase(node, &btrfs_inode->ordered_tree);
615 	RB_CLEAR_NODE(node);
616 	if (btrfs_inode->ordered_tree_last == node)
617 		btrfs_inode->ordered_tree_last = NULL;
618 	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
619 	pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags);
620 	spin_unlock_irq(&btrfs_inode->ordered_tree_lock);
621 
622 	/*
623 	 * The current running transaction is waiting on us, we need to let it
624 	 * know that we're complete and wake it up.
625 	 */
626 	if (pending) {
627 		struct btrfs_transaction *trans;
628 
629 		/*
630 		 * The checks for trans are just a formality, it should be set,
631 		 * but if it isn't we don't want to deref/assert under the spin
632 		 * lock, so be nice and check if trans is set, but ASSERT() so
633 		 * if it isn't set a developer will notice.
634 		 */
635 		spin_lock(&fs_info->trans_lock);
636 		trans = fs_info->running_transaction;
637 		if (trans)
638 			refcount_inc(&trans->use_count);
639 		spin_unlock(&fs_info->trans_lock);
640 
641 		ASSERT(trans || BTRFS_FS_ERROR(fs_info));
642 		if (trans) {
643 			if (atomic_dec_and_test(&trans->pending_ordered))
644 				wake_up(&trans->pending_wait);
645 			btrfs_put_transaction(trans);
646 		}
647 	}
648 
649 	btrfs_lockdep_release(fs_info, btrfs_trans_pending_ordered);
650 
651 	spin_lock(&root->ordered_extent_lock);
652 	list_del_init(&entry->root_extent_list);
653 	root->nr_ordered_extents--;
654 
655 	trace_btrfs_ordered_extent_remove(btrfs_inode, entry);
656 
657 	if (!root->nr_ordered_extents) {
658 		spin_lock(&fs_info->ordered_root_lock);
659 		BUG_ON(list_empty(&root->ordered_root));
660 		list_del_init(&root->ordered_root);
661 		spin_unlock(&fs_info->ordered_root_lock);
662 	}
663 	spin_unlock(&root->ordered_extent_lock);
664 	wake_up(&entry->wait);
665 	if (!freespace_inode)
666 		btrfs_lockdep_release(fs_info, btrfs_ordered_extent);
667 }
668 
669 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
670 {
671 	struct btrfs_ordered_extent *ordered;
672 
673 	ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
674 	btrfs_start_ordered_extent(ordered);
675 	complete(&ordered->completion);
676 }
677 
678 /*
679  * wait for all the ordered extents in a root.  This is done when balancing
680  * space between drives.
681  */
682 u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
683 			       const u64 range_start, const u64 range_len)
684 {
685 	struct btrfs_fs_info *fs_info = root->fs_info;
686 	LIST_HEAD(splice);
687 	LIST_HEAD(skipped);
688 	LIST_HEAD(works);
689 	struct btrfs_ordered_extent *ordered, *next;
690 	u64 count = 0;
691 	const u64 range_end = range_start + range_len;
692 
693 	mutex_lock(&root->ordered_extent_mutex);
694 	spin_lock(&root->ordered_extent_lock);
695 	list_splice_init(&root->ordered_extents, &splice);
696 	while (!list_empty(&splice) && nr) {
697 		ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
698 					   root_extent_list);
699 
700 		if (range_end <= ordered->disk_bytenr ||
701 		    ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
702 			list_move_tail(&ordered->root_extent_list, &skipped);
703 			cond_resched_lock(&root->ordered_extent_lock);
704 			continue;
705 		}
706 
707 		list_move_tail(&ordered->root_extent_list,
708 			       &root->ordered_extents);
709 		refcount_inc(&ordered->refs);
710 		spin_unlock(&root->ordered_extent_lock);
711 
712 		btrfs_init_work(&ordered->flush_work,
713 				btrfs_run_ordered_extent_work, NULL);
714 		list_add_tail(&ordered->work_list, &works);
715 		btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
716 
717 		cond_resched();
718 		spin_lock(&root->ordered_extent_lock);
719 		if (nr != U64_MAX)
720 			nr--;
721 		count++;
722 	}
723 	list_splice_tail(&skipped, &root->ordered_extents);
724 	list_splice_tail(&splice, &root->ordered_extents);
725 	spin_unlock(&root->ordered_extent_lock);
726 
727 	list_for_each_entry_safe(ordered, next, &works, work_list) {
728 		list_del_init(&ordered->work_list);
729 		wait_for_completion(&ordered->completion);
730 		btrfs_put_ordered_extent(ordered);
731 		cond_resched();
732 	}
733 	mutex_unlock(&root->ordered_extent_mutex);
734 
735 	return count;
736 }
737 
738 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
739 			     const u64 range_start, const u64 range_len)
740 {
741 	struct btrfs_root *root;
742 	LIST_HEAD(splice);
743 	u64 done;
744 
745 	mutex_lock(&fs_info->ordered_operations_mutex);
746 	spin_lock(&fs_info->ordered_root_lock);
747 	list_splice_init(&fs_info->ordered_roots, &splice);
748 	while (!list_empty(&splice) && nr) {
749 		root = list_first_entry(&splice, struct btrfs_root,
750 					ordered_root);
751 		root = btrfs_grab_root(root);
752 		BUG_ON(!root);
753 		list_move_tail(&root->ordered_root,
754 			       &fs_info->ordered_roots);
755 		spin_unlock(&fs_info->ordered_root_lock);
756 
757 		done = btrfs_wait_ordered_extents(root, nr,
758 						  range_start, range_len);
759 		btrfs_put_root(root);
760 
761 		spin_lock(&fs_info->ordered_root_lock);
762 		if (nr != U64_MAX) {
763 			nr -= done;
764 		}
765 	}
766 	list_splice_tail(&splice, &fs_info->ordered_roots);
767 	spin_unlock(&fs_info->ordered_root_lock);
768 	mutex_unlock(&fs_info->ordered_operations_mutex);
769 }
770 
771 /*
772  * Start IO and wait for a given ordered extent to finish.
773  *
774  * Wait on page writeback for all the pages in the extent and the IO completion
775  * code to insert metadata into the btree corresponding to the extent.
776  */
777 void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry)
778 {
779 	u64 start = entry->file_offset;
780 	u64 end = start + entry->num_bytes - 1;
781 	struct btrfs_inode *inode = BTRFS_I(entry->inode);
782 	bool freespace_inode;
783 
784 	trace_btrfs_ordered_extent_start(inode, entry);
785 
786 	/*
787 	 * If this is a free space inode do not take the ordered extents lockdep
788 	 * map.
789 	 */
790 	freespace_inode = btrfs_is_free_space_inode(inode);
791 
792 	/*
793 	 * pages in the range can be dirty, clean or writeback.  We
794 	 * start IO on any dirty ones so the wait doesn't stall waiting
795 	 * for the flusher thread to find them
796 	 */
797 	if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
798 		filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end);
799 
800 	if (!freespace_inode)
801 		btrfs_might_wait_for_event(inode->root->fs_info, btrfs_ordered_extent);
802 	wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, &entry->flags));
803 }
804 
805 /*
806  * Used to wait on ordered extents across a large range of bytes.
807  */
808 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
809 {
810 	int ret = 0;
811 	int ret_wb = 0;
812 	u64 end;
813 	u64 orig_end;
814 	struct btrfs_ordered_extent *ordered;
815 
816 	if (start + len < start) {
817 		orig_end = OFFSET_MAX;
818 	} else {
819 		orig_end = start + len - 1;
820 		if (orig_end > OFFSET_MAX)
821 			orig_end = OFFSET_MAX;
822 	}
823 
824 	/* start IO across the range first to instantiate any delalloc
825 	 * extents
826 	 */
827 	ret = btrfs_fdatawrite_range(inode, start, orig_end);
828 	if (ret)
829 		return ret;
830 
831 	/*
832 	 * If we have a writeback error don't return immediately. Wait first
833 	 * for any ordered extents that haven't completed yet. This is to make
834 	 * sure no one can dirty the same page ranges and call writepages()
835 	 * before the ordered extents complete - to avoid failures (-EEXIST)
836 	 * when adding the new ordered extents to the ordered tree.
837 	 */
838 	ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
839 
840 	end = orig_end;
841 	while (1) {
842 		ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end);
843 		if (!ordered)
844 			break;
845 		if (ordered->file_offset > orig_end) {
846 			btrfs_put_ordered_extent(ordered);
847 			break;
848 		}
849 		if (ordered->file_offset + ordered->num_bytes <= start) {
850 			btrfs_put_ordered_extent(ordered);
851 			break;
852 		}
853 		btrfs_start_ordered_extent(ordered);
854 		end = ordered->file_offset;
855 		/*
856 		 * If the ordered extent had an error save the error but don't
857 		 * exit without waiting first for all other ordered extents in
858 		 * the range to complete.
859 		 */
860 		if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
861 			ret = -EIO;
862 		btrfs_put_ordered_extent(ordered);
863 		if (end == 0 || end == start)
864 			break;
865 		end--;
866 	}
867 	return ret_wb ? ret_wb : ret;
868 }
869 
870 /*
871  * find an ordered extent corresponding to file_offset.  return NULL if
872  * nothing is found, otherwise take a reference on the extent and return it
873  */
874 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode,
875 							 u64 file_offset)
876 {
877 	struct rb_node *node;
878 	struct btrfs_ordered_extent *entry = NULL;
879 	unsigned long flags;
880 
881 	spin_lock_irqsave(&inode->ordered_tree_lock, flags);
882 	node = ordered_tree_search(inode, file_offset);
883 	if (!node)
884 		goto out;
885 
886 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
887 	if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
888 		entry = NULL;
889 	if (entry) {
890 		refcount_inc(&entry->refs);
891 		trace_btrfs_ordered_extent_lookup(inode, entry);
892 	}
893 out:
894 	spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
895 	return entry;
896 }
897 
898 /* Since the DIO code tries to lock a wide area we need to look for any ordered
899  * extents that exist in the range, rather than just the start of the range.
900  */
901 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
902 		struct btrfs_inode *inode, u64 file_offset, u64 len)
903 {
904 	struct rb_node *node;
905 	struct btrfs_ordered_extent *entry = NULL;
906 
907 	spin_lock_irq(&inode->ordered_tree_lock);
908 	node = ordered_tree_search(inode, file_offset);
909 	if (!node) {
910 		node = ordered_tree_search(inode, file_offset + len);
911 		if (!node)
912 			goto out;
913 	}
914 
915 	while (1) {
916 		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
917 		if (range_overlaps(entry, file_offset, len))
918 			break;
919 
920 		if (entry->file_offset >= file_offset + len) {
921 			entry = NULL;
922 			break;
923 		}
924 		entry = NULL;
925 		node = rb_next(node);
926 		if (!node)
927 			break;
928 	}
929 out:
930 	if (entry) {
931 		refcount_inc(&entry->refs);
932 		trace_btrfs_ordered_extent_lookup_range(inode, entry);
933 	}
934 	spin_unlock_irq(&inode->ordered_tree_lock);
935 	return entry;
936 }
937 
938 /*
939  * Adds all ordered extents to the given list. The list ends up sorted by the
940  * file_offset of the ordered extents.
941  */
942 void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode,
943 					   struct list_head *list)
944 {
945 	struct rb_node *n;
946 
947 	ASSERT(inode_is_locked(&inode->vfs_inode));
948 
949 	spin_lock_irq(&inode->ordered_tree_lock);
950 	for (n = rb_first(&inode->ordered_tree); n; n = rb_next(n)) {
951 		struct btrfs_ordered_extent *ordered;
952 
953 		ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
954 
955 		if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
956 			continue;
957 
958 		ASSERT(list_empty(&ordered->log_list));
959 		list_add_tail(&ordered->log_list, list);
960 		refcount_inc(&ordered->refs);
961 		trace_btrfs_ordered_extent_lookup_for_logging(inode, ordered);
962 	}
963 	spin_unlock_irq(&inode->ordered_tree_lock);
964 }
965 
966 /*
967  * lookup and return any extent before 'file_offset'.  NULL is returned
968  * if none is found
969  */
970 struct btrfs_ordered_extent *
971 btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset)
972 {
973 	struct rb_node *node;
974 	struct btrfs_ordered_extent *entry = NULL;
975 
976 	spin_lock_irq(&inode->ordered_tree_lock);
977 	node = ordered_tree_search(inode, file_offset);
978 	if (!node)
979 		goto out;
980 
981 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
982 	refcount_inc(&entry->refs);
983 	trace_btrfs_ordered_extent_lookup_first(inode, entry);
984 out:
985 	spin_unlock_irq(&inode->ordered_tree_lock);
986 	return entry;
987 }
988 
989 /*
990  * Lookup the first ordered extent that overlaps the range
991  * [@file_offset, @file_offset + @len).
992  *
993  * The difference between this and btrfs_lookup_first_ordered_extent() is
994  * that this one won't return any ordered extent that does not overlap the range.
995  * And the difference against btrfs_lookup_ordered_extent() is, this function
996  * ensures the first ordered extent gets returned.
997  */
998 struct btrfs_ordered_extent *btrfs_lookup_first_ordered_range(
999 			struct btrfs_inode *inode, u64 file_offset, u64 len)
1000 {
1001 	struct rb_node *node;
1002 	struct rb_node *cur;
1003 	struct rb_node *prev;
1004 	struct rb_node *next;
1005 	struct btrfs_ordered_extent *entry = NULL;
1006 
1007 	spin_lock_irq(&inode->ordered_tree_lock);
1008 	node = inode->ordered_tree.rb_node;
1009 	/*
1010 	 * Here we don't want to use tree_search() which will use tree->last
1011 	 * and screw up the search order.
1012 	 * And __tree_search() can't return the adjacent ordered extents
1013 	 * either, thus here we do our own search.
1014 	 */
1015 	while (node) {
1016 		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
1017 
1018 		if (file_offset < entry->file_offset) {
1019 			node = node->rb_left;
1020 		} else if (file_offset >= entry_end(entry)) {
1021 			node = node->rb_right;
1022 		} else {
1023 			/*
1024 			 * Direct hit, got an ordered extent that starts at
1025 			 * @file_offset
1026 			 */
1027 			goto out;
1028 		}
1029 	}
1030 	if (!entry) {
1031 		/* Empty tree */
1032 		goto out;
1033 	}
1034 
1035 	cur = &entry->rb_node;
1036 	/* We got an entry around @file_offset, check adjacent entries */
1037 	if (entry->file_offset < file_offset) {
1038 		prev = cur;
1039 		next = rb_next(cur);
1040 	} else {
1041 		prev = rb_prev(cur);
1042 		next = cur;
1043 	}
1044 	if (prev) {
1045 		entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node);
1046 		if (range_overlaps(entry, file_offset, len))
1047 			goto out;
1048 	}
1049 	if (next) {
1050 		entry = rb_entry(next, struct btrfs_ordered_extent, rb_node);
1051 		if (range_overlaps(entry, file_offset, len))
1052 			goto out;
1053 	}
1054 	/* No ordered extent in the range */
1055 	entry = NULL;
1056 out:
1057 	if (entry) {
1058 		refcount_inc(&entry->refs);
1059 		trace_btrfs_ordered_extent_lookup_first_range(inode, entry);
1060 	}
1061 
1062 	spin_unlock_irq(&inode->ordered_tree_lock);
1063 	return entry;
1064 }
1065 
1066 /*
1067  * Lock the passed range and ensures all pending ordered extents in it are run
1068  * to completion.
1069  *
1070  * @inode:        Inode whose ordered tree is to be searched
1071  * @start:        Beginning of range to flush
1072  * @end:          Last byte of range to lock
1073  * @cached_state: If passed, will return the extent state responsible for the
1074  *                locked range. It's the caller's responsibility to free the
1075  *                cached state.
1076  *
1077  * Always return with the given range locked, ensuring after it's called no
1078  * order extent can be pending.
1079  */
1080 void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
1081 					u64 end,
1082 					struct extent_state **cached_state)
1083 {
1084 	struct btrfs_ordered_extent *ordered;
1085 	struct extent_state *cache = NULL;
1086 	struct extent_state **cachedp = &cache;
1087 
1088 	if (cached_state)
1089 		cachedp = cached_state;
1090 
1091 	while (1) {
1092 		lock_extent(&inode->io_tree, start, end, cachedp);
1093 		ordered = btrfs_lookup_ordered_range(inode, start,
1094 						     end - start + 1);
1095 		if (!ordered) {
1096 			/*
1097 			 * If no external cached_state has been passed then
1098 			 * decrement the extra ref taken for cachedp since we
1099 			 * aren't exposing it outside of this function
1100 			 */
1101 			if (!cached_state)
1102 				refcount_dec(&cache->refs);
1103 			break;
1104 		}
1105 		unlock_extent(&inode->io_tree, start, end, cachedp);
1106 		btrfs_start_ordered_extent(ordered);
1107 		btrfs_put_ordered_extent(ordered);
1108 	}
1109 }
1110 
1111 /*
1112  * Lock the passed range and ensure all pending ordered extents in it are run
1113  * to completion in nowait mode.
1114  *
1115  * Return true if btrfs_lock_ordered_range does not return any extents,
1116  * otherwise false.
1117  */
1118 bool btrfs_try_lock_ordered_range(struct btrfs_inode *inode, u64 start, u64 end,
1119 				  struct extent_state **cached_state)
1120 {
1121 	struct btrfs_ordered_extent *ordered;
1122 
1123 	if (!try_lock_extent(&inode->io_tree, start, end, cached_state))
1124 		return false;
1125 
1126 	ordered = btrfs_lookup_ordered_range(inode, start, end - start + 1);
1127 	if (!ordered)
1128 		return true;
1129 
1130 	btrfs_put_ordered_extent(ordered);
1131 	unlock_extent(&inode->io_tree, start, end, cached_state);
1132 
1133 	return false;
1134 }
1135 
1136 /* Split out a new ordered extent for this first @len bytes of @ordered. */
1137 struct btrfs_ordered_extent *btrfs_split_ordered_extent(
1138 			struct btrfs_ordered_extent *ordered, u64 len)
1139 {
1140 	struct btrfs_inode *inode = BTRFS_I(ordered->inode);
1141 	struct btrfs_root *root = inode->root;
1142 	struct btrfs_fs_info *fs_info = root->fs_info;
1143 	u64 file_offset = ordered->file_offset;
1144 	u64 disk_bytenr = ordered->disk_bytenr;
1145 	unsigned long flags = ordered->flags;
1146 	struct btrfs_ordered_sum *sum, *tmpsum;
1147 	struct btrfs_ordered_extent *new;
1148 	struct rb_node *node;
1149 	u64 offset = 0;
1150 
1151 	trace_btrfs_ordered_extent_split(inode, ordered);
1152 
1153 	ASSERT(!(flags & (1U << BTRFS_ORDERED_COMPRESSED)));
1154 
1155 	/*
1156 	 * The entire bio must be covered by the ordered extent, but we can't
1157 	 * reduce the original extent to a zero length either.
1158 	 */
1159 	if (WARN_ON_ONCE(len >= ordered->num_bytes))
1160 		return ERR_PTR(-EINVAL);
1161 	/* We cannot split partially completed ordered extents. */
1162 	if (ordered->bytes_left) {
1163 		ASSERT(!(flags & ~BTRFS_ORDERED_TYPE_FLAGS));
1164 		if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes))
1165 			return ERR_PTR(-EINVAL);
1166 	}
1167 	/* We cannot split a compressed ordered extent. */
1168 	if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes))
1169 		return ERR_PTR(-EINVAL);
1170 
1171 	new = alloc_ordered_extent(inode, file_offset, len, len, disk_bytenr,
1172 				   len, 0, flags, ordered->compress_type);
1173 	if (IS_ERR(new))
1174 		return new;
1175 
1176 	/* One ref for the tree. */
1177 	refcount_inc(&new->refs);
1178 
1179 	spin_lock_irq(&root->ordered_extent_lock);
1180 	spin_lock(&inode->ordered_tree_lock);
1181 	/* Remove from tree once */
1182 	node = &ordered->rb_node;
1183 	rb_erase(node, &inode->ordered_tree);
1184 	RB_CLEAR_NODE(node);
1185 	if (inode->ordered_tree_last == node)
1186 		inode->ordered_tree_last = NULL;
1187 
1188 	ordered->file_offset += len;
1189 	ordered->disk_bytenr += len;
1190 	ordered->num_bytes -= len;
1191 	ordered->disk_num_bytes -= len;
1192 
1193 	if (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags)) {
1194 		ASSERT(ordered->bytes_left == 0);
1195 		new->bytes_left = 0;
1196 	} else {
1197 		ordered->bytes_left -= len;
1198 	}
1199 
1200 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags)) {
1201 		if (ordered->truncated_len > len) {
1202 			ordered->truncated_len -= len;
1203 		} else {
1204 			new->truncated_len = ordered->truncated_len;
1205 			ordered->truncated_len = 0;
1206 		}
1207 	}
1208 
1209 	list_for_each_entry_safe(sum, tmpsum, &ordered->list, list) {
1210 		if (offset == len)
1211 			break;
1212 		list_move_tail(&sum->list, &new->list);
1213 		offset += sum->len;
1214 	}
1215 
1216 	/* Re-insert the node */
1217 	node = tree_insert(&inode->ordered_tree, ordered->file_offset,
1218 			   &ordered->rb_node);
1219 	if (node)
1220 		btrfs_panic(fs_info, -EEXIST,
1221 			"zoned: inconsistency in ordered tree at offset %llu",
1222 			ordered->file_offset);
1223 
1224 	node = tree_insert(&inode->ordered_tree, new->file_offset, &new->rb_node);
1225 	if (node)
1226 		btrfs_panic(fs_info, -EEXIST,
1227 			"zoned: inconsistency in ordered tree at offset %llu",
1228 			new->file_offset);
1229 	spin_unlock(&inode->ordered_tree_lock);
1230 
1231 	list_add_tail(&new->root_extent_list, &root->ordered_extents);
1232 	root->nr_ordered_extents++;
1233 	spin_unlock_irq(&root->ordered_extent_lock);
1234 	return new;
1235 }
1236 
1237 int __init ordered_data_init(void)
1238 {
1239 	btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1240 				     sizeof(struct btrfs_ordered_extent), 0,
1241 				     SLAB_MEM_SPREAD,
1242 				     NULL);
1243 	if (!btrfs_ordered_extent_cache)
1244 		return -ENOMEM;
1245 
1246 	return 0;
1247 }
1248 
1249 void __cold ordered_data_exit(void)
1250 {
1251 	kmem_cache_destroy(btrfs_ordered_extent_cache);
1252 }
1253