1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/slab.h> 7 #include <linux/blkdev.h> 8 #include <linux/writeback.h> 9 #include <linux/sched/mm.h> 10 #include "messages.h" 11 #include "misc.h" 12 #include "ctree.h" 13 #include "transaction.h" 14 #include "btrfs_inode.h" 15 #include "extent_io.h" 16 #include "disk-io.h" 17 #include "compression.h" 18 #include "delalloc-space.h" 19 #include "qgroup.h" 20 #include "subpage.h" 21 #include "file.h" 22 #include "super.h" 23 24 static struct kmem_cache *btrfs_ordered_extent_cache; 25 26 static u64 entry_end(struct btrfs_ordered_extent *entry) 27 { 28 if (entry->file_offset + entry->num_bytes < entry->file_offset) 29 return (u64)-1; 30 return entry->file_offset + entry->num_bytes; 31 } 32 33 /* returns NULL if the insertion worked, or it returns the node it did find 34 * in the tree 35 */ 36 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset, 37 struct rb_node *node) 38 { 39 struct rb_node **p = &root->rb_node; 40 struct rb_node *parent = NULL; 41 struct btrfs_ordered_extent *entry; 42 43 while (*p) { 44 parent = *p; 45 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node); 46 47 if (file_offset < entry->file_offset) 48 p = &(*p)->rb_left; 49 else if (file_offset >= entry_end(entry)) 50 p = &(*p)->rb_right; 51 else 52 return parent; 53 } 54 55 rb_link_node(node, parent, p); 56 rb_insert_color(node, root); 57 return NULL; 58 } 59 60 /* 61 * look for a given offset in the tree, and if it can't be found return the 62 * first lesser offset 63 */ 64 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset, 65 struct rb_node **prev_ret) 66 { 67 struct rb_node *n = root->rb_node; 68 struct rb_node *prev = NULL; 69 struct rb_node *test; 70 struct btrfs_ordered_extent *entry; 71 struct btrfs_ordered_extent *prev_entry = NULL; 72 73 while (n) { 74 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node); 75 prev = n; 76 prev_entry = entry; 77 78 if (file_offset < entry->file_offset) 79 n = n->rb_left; 80 else if (file_offset >= entry_end(entry)) 81 n = n->rb_right; 82 else 83 return n; 84 } 85 if (!prev_ret) 86 return NULL; 87 88 while (prev && file_offset >= entry_end(prev_entry)) { 89 test = rb_next(prev); 90 if (!test) 91 break; 92 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 93 rb_node); 94 if (file_offset < entry_end(prev_entry)) 95 break; 96 97 prev = test; 98 } 99 if (prev) 100 prev_entry = rb_entry(prev, struct btrfs_ordered_extent, 101 rb_node); 102 while (prev && file_offset < entry_end(prev_entry)) { 103 test = rb_prev(prev); 104 if (!test) 105 break; 106 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 107 rb_node); 108 prev = test; 109 } 110 *prev_ret = prev; 111 return NULL; 112 } 113 114 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset, 115 u64 len) 116 { 117 if (file_offset + len <= entry->file_offset || 118 entry->file_offset + entry->num_bytes <= file_offset) 119 return 0; 120 return 1; 121 } 122 123 /* 124 * look find the first ordered struct that has this offset, otherwise 125 * the first one less than this offset 126 */ 127 static inline struct rb_node *ordered_tree_search(struct btrfs_inode *inode, 128 u64 file_offset) 129 { 130 struct rb_node *prev = NULL; 131 struct rb_node *ret; 132 struct btrfs_ordered_extent *entry; 133 134 if (inode->ordered_tree_last) { 135 entry = rb_entry(inode->ordered_tree_last, struct btrfs_ordered_extent, 136 rb_node); 137 if (in_range(file_offset, entry->file_offset, entry->num_bytes)) 138 return inode->ordered_tree_last; 139 } 140 ret = __tree_search(&inode->ordered_tree, file_offset, &prev); 141 if (!ret) 142 ret = prev; 143 if (ret) 144 inode->ordered_tree_last = ret; 145 return ret; 146 } 147 148 static struct btrfs_ordered_extent *alloc_ordered_extent( 149 struct btrfs_inode *inode, u64 file_offset, u64 num_bytes, 150 u64 ram_bytes, u64 disk_bytenr, u64 disk_num_bytes, 151 u64 offset, unsigned long flags, int compress_type) 152 { 153 struct btrfs_ordered_extent *entry; 154 int ret; 155 u64 qgroup_rsv = 0; 156 157 if (flags & 158 ((1 << BTRFS_ORDERED_NOCOW) | (1 << BTRFS_ORDERED_PREALLOC))) { 159 /* For nocow write, we can release the qgroup rsv right now */ 160 ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes, &qgroup_rsv); 161 if (ret < 0) 162 return ERR_PTR(ret); 163 } else { 164 /* 165 * The ordered extent has reserved qgroup space, release now 166 * and pass the reserved number for qgroup_record to free. 167 */ 168 ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes, &qgroup_rsv); 169 if (ret < 0) 170 return ERR_PTR(ret); 171 } 172 entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS); 173 if (!entry) 174 return ERR_PTR(-ENOMEM); 175 176 entry->file_offset = file_offset; 177 entry->num_bytes = num_bytes; 178 entry->ram_bytes = ram_bytes; 179 entry->disk_bytenr = disk_bytenr; 180 entry->disk_num_bytes = disk_num_bytes; 181 entry->offset = offset; 182 entry->bytes_left = num_bytes; 183 entry->inode = igrab(&inode->vfs_inode); 184 entry->compress_type = compress_type; 185 entry->truncated_len = (u64)-1; 186 entry->qgroup_rsv = qgroup_rsv; 187 entry->flags = flags; 188 refcount_set(&entry->refs, 1); 189 init_waitqueue_head(&entry->wait); 190 INIT_LIST_HEAD(&entry->list); 191 INIT_LIST_HEAD(&entry->log_list); 192 INIT_LIST_HEAD(&entry->root_extent_list); 193 INIT_LIST_HEAD(&entry->work_list); 194 INIT_LIST_HEAD(&entry->bioc_list); 195 init_completion(&entry->completion); 196 197 /* 198 * We don't need the count_max_extents here, we can assume that all of 199 * that work has been done at higher layers, so this is truly the 200 * smallest the extent is going to get. 201 */ 202 spin_lock(&inode->lock); 203 btrfs_mod_outstanding_extents(inode, 1); 204 spin_unlock(&inode->lock); 205 206 return entry; 207 } 208 209 static void insert_ordered_extent(struct btrfs_ordered_extent *entry) 210 { 211 struct btrfs_inode *inode = BTRFS_I(entry->inode); 212 struct btrfs_root *root = inode->root; 213 struct btrfs_fs_info *fs_info = root->fs_info; 214 struct rb_node *node; 215 216 trace_btrfs_ordered_extent_add(inode, entry); 217 218 percpu_counter_add_batch(&fs_info->ordered_bytes, entry->num_bytes, 219 fs_info->delalloc_batch); 220 221 /* One ref for the tree. */ 222 refcount_inc(&entry->refs); 223 224 spin_lock_irq(&inode->ordered_tree_lock); 225 node = tree_insert(&inode->ordered_tree, entry->file_offset, 226 &entry->rb_node); 227 if (node) 228 btrfs_panic(fs_info, -EEXIST, 229 "inconsistency in ordered tree at offset %llu", 230 entry->file_offset); 231 spin_unlock_irq(&inode->ordered_tree_lock); 232 233 spin_lock(&root->ordered_extent_lock); 234 list_add_tail(&entry->root_extent_list, 235 &root->ordered_extents); 236 root->nr_ordered_extents++; 237 if (root->nr_ordered_extents == 1) { 238 spin_lock(&fs_info->ordered_root_lock); 239 BUG_ON(!list_empty(&root->ordered_root)); 240 list_add_tail(&root->ordered_root, &fs_info->ordered_roots); 241 spin_unlock(&fs_info->ordered_root_lock); 242 } 243 spin_unlock(&root->ordered_extent_lock); 244 } 245 246 /* 247 * Add an ordered extent to the per-inode tree. 248 * 249 * @inode: Inode that this extent is for. 250 * @file_offset: Logical offset in file where the extent starts. 251 * @num_bytes: Logical length of extent in file. 252 * @ram_bytes: Full length of unencoded data. 253 * @disk_bytenr: Offset of extent on disk. 254 * @disk_num_bytes: Size of extent on disk. 255 * @offset: Offset into unencoded data where file data starts. 256 * @flags: Flags specifying type of extent (1 << BTRFS_ORDERED_*). 257 * @compress_type: Compression algorithm used for data. 258 * 259 * Most of these parameters correspond to &struct btrfs_file_extent_item. The 260 * tree is given a single reference on the ordered extent that was inserted, and 261 * the returned pointer is given a second reference. 262 * 263 * Return: the new ordered extent or error pointer. 264 */ 265 struct btrfs_ordered_extent *btrfs_alloc_ordered_extent( 266 struct btrfs_inode *inode, u64 file_offset, 267 u64 num_bytes, u64 ram_bytes, u64 disk_bytenr, 268 u64 disk_num_bytes, u64 offset, unsigned long flags, 269 int compress_type) 270 { 271 struct btrfs_ordered_extent *entry; 272 273 ASSERT((flags & ~BTRFS_ORDERED_TYPE_FLAGS) == 0); 274 275 entry = alloc_ordered_extent(inode, file_offset, num_bytes, ram_bytes, 276 disk_bytenr, disk_num_bytes, offset, flags, 277 compress_type); 278 if (!IS_ERR(entry)) 279 insert_ordered_extent(entry); 280 return entry; 281 } 282 283 /* 284 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted 285 * when an ordered extent is finished. If the list covers more than one 286 * ordered extent, it is split across multiples. 287 */ 288 void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry, 289 struct btrfs_ordered_sum *sum) 290 { 291 struct btrfs_inode *inode = BTRFS_I(entry->inode); 292 293 spin_lock_irq(&inode->ordered_tree_lock); 294 list_add_tail(&sum->list, &entry->list); 295 spin_unlock_irq(&inode->ordered_tree_lock); 296 } 297 298 static void finish_ordered_fn(struct btrfs_work *work) 299 { 300 struct btrfs_ordered_extent *ordered_extent; 301 302 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 303 btrfs_finish_ordered_io(ordered_extent); 304 } 305 306 static bool can_finish_ordered_extent(struct btrfs_ordered_extent *ordered, 307 struct page *page, u64 file_offset, 308 u64 len, bool uptodate) 309 { 310 struct btrfs_inode *inode = BTRFS_I(ordered->inode); 311 struct btrfs_fs_info *fs_info = inode->root->fs_info; 312 313 lockdep_assert_held(&inode->ordered_tree_lock); 314 315 if (page) { 316 ASSERT(page->mapping); 317 ASSERT(page_offset(page) <= file_offset); 318 ASSERT(file_offset + len <= page_offset(page) + PAGE_SIZE); 319 320 /* 321 * Ordered (Private2) bit indicates whether we still have 322 * pending io unfinished for the ordered extent. 323 * 324 * If there's no such bit, we need to skip to next range. 325 */ 326 if (!btrfs_folio_test_ordered(fs_info, page_folio(page), 327 file_offset, len)) 328 return false; 329 btrfs_folio_clear_ordered(fs_info, page_folio(page), file_offset, len); 330 } 331 332 /* Now we're fine to update the accounting. */ 333 if (WARN_ON_ONCE(len > ordered->bytes_left)) { 334 btrfs_crit(fs_info, 335 "bad ordered extent accounting, root=%llu ino=%llu OE offset=%llu OE len=%llu to_dec=%llu left=%llu", 336 inode->root->root_key.objectid, btrfs_ino(inode), 337 ordered->file_offset, ordered->num_bytes, 338 len, ordered->bytes_left); 339 ordered->bytes_left = 0; 340 } else { 341 ordered->bytes_left -= len; 342 } 343 344 if (!uptodate) 345 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 346 347 if (ordered->bytes_left) 348 return false; 349 350 /* 351 * All the IO of the ordered extent is finished, we need to queue 352 * the finish_func to be executed. 353 */ 354 set_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags); 355 cond_wake_up(&ordered->wait); 356 refcount_inc(&ordered->refs); 357 trace_btrfs_ordered_extent_mark_finished(inode, ordered); 358 return true; 359 } 360 361 static void btrfs_queue_ordered_fn(struct btrfs_ordered_extent *ordered) 362 { 363 struct btrfs_inode *inode = BTRFS_I(ordered->inode); 364 struct btrfs_fs_info *fs_info = inode->root->fs_info; 365 struct btrfs_workqueue *wq = btrfs_is_free_space_inode(inode) ? 366 fs_info->endio_freespace_worker : fs_info->endio_write_workers; 367 368 btrfs_init_work(&ordered->work, finish_ordered_fn, NULL); 369 btrfs_queue_work(wq, &ordered->work); 370 } 371 372 bool btrfs_finish_ordered_extent(struct btrfs_ordered_extent *ordered, 373 struct page *page, u64 file_offset, u64 len, 374 bool uptodate) 375 { 376 struct btrfs_inode *inode = BTRFS_I(ordered->inode); 377 unsigned long flags; 378 bool ret; 379 380 trace_btrfs_finish_ordered_extent(inode, file_offset, len, uptodate); 381 382 spin_lock_irqsave(&inode->ordered_tree_lock, flags); 383 ret = can_finish_ordered_extent(ordered, page, file_offset, len, uptodate); 384 spin_unlock_irqrestore(&inode->ordered_tree_lock, flags); 385 386 if (ret) 387 btrfs_queue_ordered_fn(ordered); 388 return ret; 389 } 390 391 /* 392 * Mark all ordered extents io inside the specified range finished. 393 * 394 * @page: The involved page for the operation. 395 * For uncompressed buffered IO, the page status also needs to be 396 * updated to indicate whether the pending ordered io is finished. 397 * Can be NULL for direct IO and compressed write. 398 * For these cases, callers are ensured they won't execute the 399 * endio function twice. 400 * 401 * This function is called for endio, thus the range must have ordered 402 * extent(s) covering it. 403 */ 404 void btrfs_mark_ordered_io_finished(struct btrfs_inode *inode, 405 struct page *page, u64 file_offset, 406 u64 num_bytes, bool uptodate) 407 { 408 struct rb_node *node; 409 struct btrfs_ordered_extent *entry = NULL; 410 unsigned long flags; 411 u64 cur = file_offset; 412 413 trace_btrfs_writepage_end_io_hook(inode, file_offset, 414 file_offset + num_bytes - 1, 415 uptodate); 416 417 spin_lock_irqsave(&inode->ordered_tree_lock, flags); 418 while (cur < file_offset + num_bytes) { 419 u64 entry_end; 420 u64 end; 421 u32 len; 422 423 node = ordered_tree_search(inode, cur); 424 /* No ordered extents at all */ 425 if (!node) 426 break; 427 428 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 429 entry_end = entry->file_offset + entry->num_bytes; 430 /* 431 * |<-- OE --->| | 432 * cur 433 * Go to next OE. 434 */ 435 if (cur >= entry_end) { 436 node = rb_next(node); 437 /* No more ordered extents, exit */ 438 if (!node) 439 break; 440 entry = rb_entry(node, struct btrfs_ordered_extent, 441 rb_node); 442 443 /* Go to next ordered extent and continue */ 444 cur = entry->file_offset; 445 continue; 446 } 447 /* 448 * | |<--- OE --->| 449 * cur 450 * Go to the start of OE. 451 */ 452 if (cur < entry->file_offset) { 453 cur = entry->file_offset; 454 continue; 455 } 456 457 /* 458 * Now we are definitely inside one ordered extent. 459 * 460 * |<--- OE --->| 461 * | 462 * cur 463 */ 464 end = min(entry->file_offset + entry->num_bytes, 465 file_offset + num_bytes) - 1; 466 ASSERT(end + 1 - cur < U32_MAX); 467 len = end + 1 - cur; 468 469 if (can_finish_ordered_extent(entry, page, cur, len, uptodate)) { 470 spin_unlock_irqrestore(&inode->ordered_tree_lock, flags); 471 btrfs_queue_ordered_fn(entry); 472 spin_lock_irqsave(&inode->ordered_tree_lock, flags); 473 } 474 cur += len; 475 } 476 spin_unlock_irqrestore(&inode->ordered_tree_lock, flags); 477 } 478 479 /* 480 * Finish IO for one ordered extent across a given range. The range can only 481 * contain one ordered extent. 482 * 483 * @cached: The cached ordered extent. If not NULL, we can skip the tree 484 * search and use the ordered extent directly. 485 * Will be also used to store the finished ordered extent. 486 * @file_offset: File offset for the finished IO 487 * @io_size: Length of the finish IO range 488 * 489 * Return true if the ordered extent is finished in the range, and update 490 * @cached. 491 * Return false otherwise. 492 * 493 * NOTE: The range can NOT cross multiple ordered extents. 494 * Thus caller should ensure the range doesn't cross ordered extents. 495 */ 496 bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode, 497 struct btrfs_ordered_extent **cached, 498 u64 file_offset, u64 io_size) 499 { 500 struct rb_node *node; 501 struct btrfs_ordered_extent *entry = NULL; 502 unsigned long flags; 503 bool finished = false; 504 505 spin_lock_irqsave(&inode->ordered_tree_lock, flags); 506 if (cached && *cached) { 507 entry = *cached; 508 goto have_entry; 509 } 510 511 node = ordered_tree_search(inode, file_offset); 512 if (!node) 513 goto out; 514 515 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 516 have_entry: 517 if (!in_range(file_offset, entry->file_offset, entry->num_bytes)) 518 goto out; 519 520 if (io_size > entry->bytes_left) 521 btrfs_crit(inode->root->fs_info, 522 "bad ordered accounting left %llu size %llu", 523 entry->bytes_left, io_size); 524 525 entry->bytes_left -= io_size; 526 527 if (entry->bytes_left == 0) { 528 /* 529 * Ensure only one caller can set the flag and finished_ret 530 * accordingly 531 */ 532 finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); 533 /* test_and_set_bit implies a barrier */ 534 cond_wake_up_nomb(&entry->wait); 535 } 536 out: 537 if (finished && cached && entry) { 538 *cached = entry; 539 refcount_inc(&entry->refs); 540 trace_btrfs_ordered_extent_dec_test_pending(inode, entry); 541 } 542 spin_unlock_irqrestore(&inode->ordered_tree_lock, flags); 543 return finished; 544 } 545 546 /* 547 * used to drop a reference on an ordered extent. This will free 548 * the extent if the last reference is dropped 549 */ 550 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry) 551 { 552 struct list_head *cur; 553 struct btrfs_ordered_sum *sum; 554 555 trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry); 556 557 if (refcount_dec_and_test(&entry->refs)) { 558 ASSERT(list_empty(&entry->root_extent_list)); 559 ASSERT(list_empty(&entry->log_list)); 560 ASSERT(RB_EMPTY_NODE(&entry->rb_node)); 561 if (entry->inode) 562 btrfs_add_delayed_iput(BTRFS_I(entry->inode)); 563 while (!list_empty(&entry->list)) { 564 cur = entry->list.next; 565 sum = list_entry(cur, struct btrfs_ordered_sum, list); 566 list_del(&sum->list); 567 kvfree(sum); 568 } 569 kmem_cache_free(btrfs_ordered_extent_cache, entry); 570 } 571 } 572 573 /* 574 * remove an ordered extent from the tree. No references are dropped 575 * and waiters are woken up. 576 */ 577 void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode, 578 struct btrfs_ordered_extent *entry) 579 { 580 struct btrfs_root *root = btrfs_inode->root; 581 struct btrfs_fs_info *fs_info = root->fs_info; 582 struct rb_node *node; 583 bool pending; 584 bool freespace_inode; 585 586 /* 587 * If this is a free space inode the thread has not acquired the ordered 588 * extents lockdep map. 589 */ 590 freespace_inode = btrfs_is_free_space_inode(btrfs_inode); 591 592 btrfs_lockdep_acquire(fs_info, btrfs_trans_pending_ordered); 593 /* This is paired with btrfs_alloc_ordered_extent. */ 594 spin_lock(&btrfs_inode->lock); 595 btrfs_mod_outstanding_extents(btrfs_inode, -1); 596 spin_unlock(&btrfs_inode->lock); 597 if (root != fs_info->tree_root) { 598 u64 release; 599 600 if (test_bit(BTRFS_ORDERED_ENCODED, &entry->flags)) 601 release = entry->disk_num_bytes; 602 else 603 release = entry->num_bytes; 604 btrfs_delalloc_release_metadata(btrfs_inode, release, 605 test_bit(BTRFS_ORDERED_IOERR, 606 &entry->flags)); 607 } 608 609 percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes, 610 fs_info->delalloc_batch); 611 612 spin_lock_irq(&btrfs_inode->ordered_tree_lock); 613 node = &entry->rb_node; 614 rb_erase(node, &btrfs_inode->ordered_tree); 615 RB_CLEAR_NODE(node); 616 if (btrfs_inode->ordered_tree_last == node) 617 btrfs_inode->ordered_tree_last = NULL; 618 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags); 619 pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags); 620 spin_unlock_irq(&btrfs_inode->ordered_tree_lock); 621 622 /* 623 * The current running transaction is waiting on us, we need to let it 624 * know that we're complete and wake it up. 625 */ 626 if (pending) { 627 struct btrfs_transaction *trans; 628 629 /* 630 * The checks for trans are just a formality, it should be set, 631 * but if it isn't we don't want to deref/assert under the spin 632 * lock, so be nice and check if trans is set, but ASSERT() so 633 * if it isn't set a developer will notice. 634 */ 635 spin_lock(&fs_info->trans_lock); 636 trans = fs_info->running_transaction; 637 if (trans) 638 refcount_inc(&trans->use_count); 639 spin_unlock(&fs_info->trans_lock); 640 641 ASSERT(trans || BTRFS_FS_ERROR(fs_info)); 642 if (trans) { 643 if (atomic_dec_and_test(&trans->pending_ordered)) 644 wake_up(&trans->pending_wait); 645 btrfs_put_transaction(trans); 646 } 647 } 648 649 btrfs_lockdep_release(fs_info, btrfs_trans_pending_ordered); 650 651 spin_lock(&root->ordered_extent_lock); 652 list_del_init(&entry->root_extent_list); 653 root->nr_ordered_extents--; 654 655 trace_btrfs_ordered_extent_remove(btrfs_inode, entry); 656 657 if (!root->nr_ordered_extents) { 658 spin_lock(&fs_info->ordered_root_lock); 659 BUG_ON(list_empty(&root->ordered_root)); 660 list_del_init(&root->ordered_root); 661 spin_unlock(&fs_info->ordered_root_lock); 662 } 663 spin_unlock(&root->ordered_extent_lock); 664 wake_up(&entry->wait); 665 if (!freespace_inode) 666 btrfs_lockdep_release(fs_info, btrfs_ordered_extent); 667 } 668 669 static void btrfs_run_ordered_extent_work(struct btrfs_work *work) 670 { 671 struct btrfs_ordered_extent *ordered; 672 673 ordered = container_of(work, struct btrfs_ordered_extent, flush_work); 674 btrfs_start_ordered_extent(ordered); 675 complete(&ordered->completion); 676 } 677 678 /* 679 * wait for all the ordered extents in a root. This is done when balancing 680 * space between drives. 681 */ 682 u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr, 683 const u64 range_start, const u64 range_len) 684 { 685 struct btrfs_fs_info *fs_info = root->fs_info; 686 LIST_HEAD(splice); 687 LIST_HEAD(skipped); 688 LIST_HEAD(works); 689 struct btrfs_ordered_extent *ordered, *next; 690 u64 count = 0; 691 const u64 range_end = range_start + range_len; 692 693 mutex_lock(&root->ordered_extent_mutex); 694 spin_lock(&root->ordered_extent_lock); 695 list_splice_init(&root->ordered_extents, &splice); 696 while (!list_empty(&splice) && nr) { 697 ordered = list_first_entry(&splice, struct btrfs_ordered_extent, 698 root_extent_list); 699 700 if (range_end <= ordered->disk_bytenr || 701 ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) { 702 list_move_tail(&ordered->root_extent_list, &skipped); 703 cond_resched_lock(&root->ordered_extent_lock); 704 continue; 705 } 706 707 list_move_tail(&ordered->root_extent_list, 708 &root->ordered_extents); 709 refcount_inc(&ordered->refs); 710 spin_unlock(&root->ordered_extent_lock); 711 712 btrfs_init_work(&ordered->flush_work, 713 btrfs_run_ordered_extent_work, NULL); 714 list_add_tail(&ordered->work_list, &works); 715 btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work); 716 717 cond_resched(); 718 spin_lock(&root->ordered_extent_lock); 719 if (nr != U64_MAX) 720 nr--; 721 count++; 722 } 723 list_splice_tail(&skipped, &root->ordered_extents); 724 list_splice_tail(&splice, &root->ordered_extents); 725 spin_unlock(&root->ordered_extent_lock); 726 727 list_for_each_entry_safe(ordered, next, &works, work_list) { 728 list_del_init(&ordered->work_list); 729 wait_for_completion(&ordered->completion); 730 btrfs_put_ordered_extent(ordered); 731 cond_resched(); 732 } 733 mutex_unlock(&root->ordered_extent_mutex); 734 735 return count; 736 } 737 738 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr, 739 const u64 range_start, const u64 range_len) 740 { 741 struct btrfs_root *root; 742 LIST_HEAD(splice); 743 u64 done; 744 745 mutex_lock(&fs_info->ordered_operations_mutex); 746 spin_lock(&fs_info->ordered_root_lock); 747 list_splice_init(&fs_info->ordered_roots, &splice); 748 while (!list_empty(&splice) && nr) { 749 root = list_first_entry(&splice, struct btrfs_root, 750 ordered_root); 751 root = btrfs_grab_root(root); 752 BUG_ON(!root); 753 list_move_tail(&root->ordered_root, 754 &fs_info->ordered_roots); 755 spin_unlock(&fs_info->ordered_root_lock); 756 757 done = btrfs_wait_ordered_extents(root, nr, 758 range_start, range_len); 759 btrfs_put_root(root); 760 761 spin_lock(&fs_info->ordered_root_lock); 762 if (nr != U64_MAX) { 763 nr -= done; 764 } 765 } 766 list_splice_tail(&splice, &fs_info->ordered_roots); 767 spin_unlock(&fs_info->ordered_root_lock); 768 mutex_unlock(&fs_info->ordered_operations_mutex); 769 } 770 771 /* 772 * Start IO and wait for a given ordered extent to finish. 773 * 774 * Wait on page writeback for all the pages in the extent and the IO completion 775 * code to insert metadata into the btree corresponding to the extent. 776 */ 777 void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry) 778 { 779 u64 start = entry->file_offset; 780 u64 end = start + entry->num_bytes - 1; 781 struct btrfs_inode *inode = BTRFS_I(entry->inode); 782 bool freespace_inode; 783 784 trace_btrfs_ordered_extent_start(inode, entry); 785 786 /* 787 * If this is a free space inode do not take the ordered extents lockdep 788 * map. 789 */ 790 freespace_inode = btrfs_is_free_space_inode(inode); 791 792 /* 793 * pages in the range can be dirty, clean or writeback. We 794 * start IO on any dirty ones so the wait doesn't stall waiting 795 * for the flusher thread to find them 796 */ 797 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags)) 798 filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end); 799 800 if (!freespace_inode) 801 btrfs_might_wait_for_event(inode->root->fs_info, btrfs_ordered_extent); 802 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, &entry->flags)); 803 } 804 805 /* 806 * Used to wait on ordered extents across a large range of bytes. 807 */ 808 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len) 809 { 810 int ret = 0; 811 int ret_wb = 0; 812 u64 end; 813 u64 orig_end; 814 struct btrfs_ordered_extent *ordered; 815 816 if (start + len < start) { 817 orig_end = OFFSET_MAX; 818 } else { 819 orig_end = start + len - 1; 820 if (orig_end > OFFSET_MAX) 821 orig_end = OFFSET_MAX; 822 } 823 824 /* start IO across the range first to instantiate any delalloc 825 * extents 826 */ 827 ret = btrfs_fdatawrite_range(inode, start, orig_end); 828 if (ret) 829 return ret; 830 831 /* 832 * If we have a writeback error don't return immediately. Wait first 833 * for any ordered extents that haven't completed yet. This is to make 834 * sure no one can dirty the same page ranges and call writepages() 835 * before the ordered extents complete - to avoid failures (-EEXIST) 836 * when adding the new ordered extents to the ordered tree. 837 */ 838 ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end); 839 840 end = orig_end; 841 while (1) { 842 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end); 843 if (!ordered) 844 break; 845 if (ordered->file_offset > orig_end) { 846 btrfs_put_ordered_extent(ordered); 847 break; 848 } 849 if (ordered->file_offset + ordered->num_bytes <= start) { 850 btrfs_put_ordered_extent(ordered); 851 break; 852 } 853 btrfs_start_ordered_extent(ordered); 854 end = ordered->file_offset; 855 /* 856 * If the ordered extent had an error save the error but don't 857 * exit without waiting first for all other ordered extents in 858 * the range to complete. 859 */ 860 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) 861 ret = -EIO; 862 btrfs_put_ordered_extent(ordered); 863 if (end == 0 || end == start) 864 break; 865 end--; 866 } 867 return ret_wb ? ret_wb : ret; 868 } 869 870 /* 871 * find an ordered extent corresponding to file_offset. return NULL if 872 * nothing is found, otherwise take a reference on the extent and return it 873 */ 874 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode, 875 u64 file_offset) 876 { 877 struct rb_node *node; 878 struct btrfs_ordered_extent *entry = NULL; 879 unsigned long flags; 880 881 spin_lock_irqsave(&inode->ordered_tree_lock, flags); 882 node = ordered_tree_search(inode, file_offset); 883 if (!node) 884 goto out; 885 886 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 887 if (!in_range(file_offset, entry->file_offset, entry->num_bytes)) 888 entry = NULL; 889 if (entry) { 890 refcount_inc(&entry->refs); 891 trace_btrfs_ordered_extent_lookup(inode, entry); 892 } 893 out: 894 spin_unlock_irqrestore(&inode->ordered_tree_lock, flags); 895 return entry; 896 } 897 898 /* Since the DIO code tries to lock a wide area we need to look for any ordered 899 * extents that exist in the range, rather than just the start of the range. 900 */ 901 struct btrfs_ordered_extent *btrfs_lookup_ordered_range( 902 struct btrfs_inode *inode, u64 file_offset, u64 len) 903 { 904 struct rb_node *node; 905 struct btrfs_ordered_extent *entry = NULL; 906 907 spin_lock_irq(&inode->ordered_tree_lock); 908 node = ordered_tree_search(inode, file_offset); 909 if (!node) { 910 node = ordered_tree_search(inode, file_offset + len); 911 if (!node) 912 goto out; 913 } 914 915 while (1) { 916 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 917 if (range_overlaps(entry, file_offset, len)) 918 break; 919 920 if (entry->file_offset >= file_offset + len) { 921 entry = NULL; 922 break; 923 } 924 entry = NULL; 925 node = rb_next(node); 926 if (!node) 927 break; 928 } 929 out: 930 if (entry) { 931 refcount_inc(&entry->refs); 932 trace_btrfs_ordered_extent_lookup_range(inode, entry); 933 } 934 spin_unlock_irq(&inode->ordered_tree_lock); 935 return entry; 936 } 937 938 /* 939 * Adds all ordered extents to the given list. The list ends up sorted by the 940 * file_offset of the ordered extents. 941 */ 942 void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode, 943 struct list_head *list) 944 { 945 struct rb_node *n; 946 947 ASSERT(inode_is_locked(&inode->vfs_inode)); 948 949 spin_lock_irq(&inode->ordered_tree_lock); 950 for (n = rb_first(&inode->ordered_tree); n; n = rb_next(n)) { 951 struct btrfs_ordered_extent *ordered; 952 953 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node); 954 955 if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags)) 956 continue; 957 958 ASSERT(list_empty(&ordered->log_list)); 959 list_add_tail(&ordered->log_list, list); 960 refcount_inc(&ordered->refs); 961 trace_btrfs_ordered_extent_lookup_for_logging(inode, ordered); 962 } 963 spin_unlock_irq(&inode->ordered_tree_lock); 964 } 965 966 /* 967 * lookup and return any extent before 'file_offset'. NULL is returned 968 * if none is found 969 */ 970 struct btrfs_ordered_extent * 971 btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset) 972 { 973 struct rb_node *node; 974 struct btrfs_ordered_extent *entry = NULL; 975 976 spin_lock_irq(&inode->ordered_tree_lock); 977 node = ordered_tree_search(inode, file_offset); 978 if (!node) 979 goto out; 980 981 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 982 refcount_inc(&entry->refs); 983 trace_btrfs_ordered_extent_lookup_first(inode, entry); 984 out: 985 spin_unlock_irq(&inode->ordered_tree_lock); 986 return entry; 987 } 988 989 /* 990 * Lookup the first ordered extent that overlaps the range 991 * [@file_offset, @file_offset + @len). 992 * 993 * The difference between this and btrfs_lookup_first_ordered_extent() is 994 * that this one won't return any ordered extent that does not overlap the range. 995 * And the difference against btrfs_lookup_ordered_extent() is, this function 996 * ensures the first ordered extent gets returned. 997 */ 998 struct btrfs_ordered_extent *btrfs_lookup_first_ordered_range( 999 struct btrfs_inode *inode, u64 file_offset, u64 len) 1000 { 1001 struct rb_node *node; 1002 struct rb_node *cur; 1003 struct rb_node *prev; 1004 struct rb_node *next; 1005 struct btrfs_ordered_extent *entry = NULL; 1006 1007 spin_lock_irq(&inode->ordered_tree_lock); 1008 node = inode->ordered_tree.rb_node; 1009 /* 1010 * Here we don't want to use tree_search() which will use tree->last 1011 * and screw up the search order. 1012 * And __tree_search() can't return the adjacent ordered extents 1013 * either, thus here we do our own search. 1014 */ 1015 while (node) { 1016 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 1017 1018 if (file_offset < entry->file_offset) { 1019 node = node->rb_left; 1020 } else if (file_offset >= entry_end(entry)) { 1021 node = node->rb_right; 1022 } else { 1023 /* 1024 * Direct hit, got an ordered extent that starts at 1025 * @file_offset 1026 */ 1027 goto out; 1028 } 1029 } 1030 if (!entry) { 1031 /* Empty tree */ 1032 goto out; 1033 } 1034 1035 cur = &entry->rb_node; 1036 /* We got an entry around @file_offset, check adjacent entries */ 1037 if (entry->file_offset < file_offset) { 1038 prev = cur; 1039 next = rb_next(cur); 1040 } else { 1041 prev = rb_prev(cur); 1042 next = cur; 1043 } 1044 if (prev) { 1045 entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node); 1046 if (range_overlaps(entry, file_offset, len)) 1047 goto out; 1048 } 1049 if (next) { 1050 entry = rb_entry(next, struct btrfs_ordered_extent, rb_node); 1051 if (range_overlaps(entry, file_offset, len)) 1052 goto out; 1053 } 1054 /* No ordered extent in the range */ 1055 entry = NULL; 1056 out: 1057 if (entry) { 1058 refcount_inc(&entry->refs); 1059 trace_btrfs_ordered_extent_lookup_first_range(inode, entry); 1060 } 1061 1062 spin_unlock_irq(&inode->ordered_tree_lock); 1063 return entry; 1064 } 1065 1066 /* 1067 * Lock the passed range and ensures all pending ordered extents in it are run 1068 * to completion. 1069 * 1070 * @inode: Inode whose ordered tree is to be searched 1071 * @start: Beginning of range to flush 1072 * @end: Last byte of range to lock 1073 * @cached_state: If passed, will return the extent state responsible for the 1074 * locked range. It's the caller's responsibility to free the 1075 * cached state. 1076 * 1077 * Always return with the given range locked, ensuring after it's called no 1078 * order extent can be pending. 1079 */ 1080 void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start, 1081 u64 end, 1082 struct extent_state **cached_state) 1083 { 1084 struct btrfs_ordered_extent *ordered; 1085 struct extent_state *cache = NULL; 1086 struct extent_state **cachedp = &cache; 1087 1088 if (cached_state) 1089 cachedp = cached_state; 1090 1091 while (1) { 1092 lock_extent(&inode->io_tree, start, end, cachedp); 1093 ordered = btrfs_lookup_ordered_range(inode, start, 1094 end - start + 1); 1095 if (!ordered) { 1096 /* 1097 * If no external cached_state has been passed then 1098 * decrement the extra ref taken for cachedp since we 1099 * aren't exposing it outside of this function 1100 */ 1101 if (!cached_state) 1102 refcount_dec(&cache->refs); 1103 break; 1104 } 1105 unlock_extent(&inode->io_tree, start, end, cachedp); 1106 btrfs_start_ordered_extent(ordered); 1107 btrfs_put_ordered_extent(ordered); 1108 } 1109 } 1110 1111 /* 1112 * Lock the passed range and ensure all pending ordered extents in it are run 1113 * to completion in nowait mode. 1114 * 1115 * Return true if btrfs_lock_ordered_range does not return any extents, 1116 * otherwise false. 1117 */ 1118 bool btrfs_try_lock_ordered_range(struct btrfs_inode *inode, u64 start, u64 end, 1119 struct extent_state **cached_state) 1120 { 1121 struct btrfs_ordered_extent *ordered; 1122 1123 if (!try_lock_extent(&inode->io_tree, start, end, cached_state)) 1124 return false; 1125 1126 ordered = btrfs_lookup_ordered_range(inode, start, end - start + 1); 1127 if (!ordered) 1128 return true; 1129 1130 btrfs_put_ordered_extent(ordered); 1131 unlock_extent(&inode->io_tree, start, end, cached_state); 1132 1133 return false; 1134 } 1135 1136 /* Split out a new ordered extent for this first @len bytes of @ordered. */ 1137 struct btrfs_ordered_extent *btrfs_split_ordered_extent( 1138 struct btrfs_ordered_extent *ordered, u64 len) 1139 { 1140 struct btrfs_inode *inode = BTRFS_I(ordered->inode); 1141 struct btrfs_root *root = inode->root; 1142 struct btrfs_fs_info *fs_info = root->fs_info; 1143 u64 file_offset = ordered->file_offset; 1144 u64 disk_bytenr = ordered->disk_bytenr; 1145 unsigned long flags = ordered->flags; 1146 struct btrfs_ordered_sum *sum, *tmpsum; 1147 struct btrfs_ordered_extent *new; 1148 struct rb_node *node; 1149 u64 offset = 0; 1150 1151 trace_btrfs_ordered_extent_split(inode, ordered); 1152 1153 ASSERT(!(flags & (1U << BTRFS_ORDERED_COMPRESSED))); 1154 1155 /* 1156 * The entire bio must be covered by the ordered extent, but we can't 1157 * reduce the original extent to a zero length either. 1158 */ 1159 if (WARN_ON_ONCE(len >= ordered->num_bytes)) 1160 return ERR_PTR(-EINVAL); 1161 /* We cannot split partially completed ordered extents. */ 1162 if (ordered->bytes_left) { 1163 ASSERT(!(flags & ~BTRFS_ORDERED_TYPE_FLAGS)); 1164 if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes)) 1165 return ERR_PTR(-EINVAL); 1166 } 1167 /* We cannot split a compressed ordered extent. */ 1168 if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes)) 1169 return ERR_PTR(-EINVAL); 1170 1171 new = alloc_ordered_extent(inode, file_offset, len, len, disk_bytenr, 1172 len, 0, flags, ordered->compress_type); 1173 if (IS_ERR(new)) 1174 return new; 1175 1176 /* One ref for the tree. */ 1177 refcount_inc(&new->refs); 1178 1179 spin_lock_irq(&root->ordered_extent_lock); 1180 spin_lock(&inode->ordered_tree_lock); 1181 /* Remove from tree once */ 1182 node = &ordered->rb_node; 1183 rb_erase(node, &inode->ordered_tree); 1184 RB_CLEAR_NODE(node); 1185 if (inode->ordered_tree_last == node) 1186 inode->ordered_tree_last = NULL; 1187 1188 ordered->file_offset += len; 1189 ordered->disk_bytenr += len; 1190 ordered->num_bytes -= len; 1191 ordered->disk_num_bytes -= len; 1192 1193 if (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags)) { 1194 ASSERT(ordered->bytes_left == 0); 1195 new->bytes_left = 0; 1196 } else { 1197 ordered->bytes_left -= len; 1198 } 1199 1200 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags)) { 1201 if (ordered->truncated_len > len) { 1202 ordered->truncated_len -= len; 1203 } else { 1204 new->truncated_len = ordered->truncated_len; 1205 ordered->truncated_len = 0; 1206 } 1207 } 1208 1209 list_for_each_entry_safe(sum, tmpsum, &ordered->list, list) { 1210 if (offset == len) 1211 break; 1212 list_move_tail(&sum->list, &new->list); 1213 offset += sum->len; 1214 } 1215 1216 /* Re-insert the node */ 1217 node = tree_insert(&inode->ordered_tree, ordered->file_offset, 1218 &ordered->rb_node); 1219 if (node) 1220 btrfs_panic(fs_info, -EEXIST, 1221 "zoned: inconsistency in ordered tree at offset %llu", 1222 ordered->file_offset); 1223 1224 node = tree_insert(&inode->ordered_tree, new->file_offset, &new->rb_node); 1225 if (node) 1226 btrfs_panic(fs_info, -EEXIST, 1227 "zoned: inconsistency in ordered tree at offset %llu", 1228 new->file_offset); 1229 spin_unlock(&inode->ordered_tree_lock); 1230 1231 list_add_tail(&new->root_extent_list, &root->ordered_extents); 1232 root->nr_ordered_extents++; 1233 spin_unlock_irq(&root->ordered_extent_lock); 1234 return new; 1235 } 1236 1237 int __init ordered_data_init(void) 1238 { 1239 btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent", 1240 sizeof(struct btrfs_ordered_extent), 0, 1241 SLAB_MEM_SPREAD, 1242 NULL); 1243 if (!btrfs_ordered_extent_cache) 1244 return -ENOMEM; 1245 1246 return 0; 1247 } 1248 1249 void __cold ordered_data_exit(void) 1250 { 1251 kmem_cache_destroy(btrfs_ordered_extent_cache); 1252 } 1253