1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/slab.h> 7 #include <linux/blkdev.h> 8 #include <linux/writeback.h> 9 #include "ctree.h" 10 #include "transaction.h" 11 #include "btrfs_inode.h" 12 #include "extent_io.h" 13 #include "disk-io.h" 14 #include "compression.h" 15 16 static struct kmem_cache *btrfs_ordered_extent_cache; 17 18 static u64 entry_end(struct btrfs_ordered_extent *entry) 19 { 20 if (entry->file_offset + entry->len < entry->file_offset) 21 return (u64)-1; 22 return entry->file_offset + entry->len; 23 } 24 25 /* returns NULL if the insertion worked, or it returns the node it did find 26 * in the tree 27 */ 28 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset, 29 struct rb_node *node) 30 { 31 struct rb_node **p = &root->rb_node; 32 struct rb_node *parent = NULL; 33 struct btrfs_ordered_extent *entry; 34 35 while (*p) { 36 parent = *p; 37 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node); 38 39 if (file_offset < entry->file_offset) 40 p = &(*p)->rb_left; 41 else if (file_offset >= entry_end(entry)) 42 p = &(*p)->rb_right; 43 else 44 return parent; 45 } 46 47 rb_link_node(node, parent, p); 48 rb_insert_color(node, root); 49 return NULL; 50 } 51 52 static void ordered_data_tree_panic(struct inode *inode, int errno, 53 u64 offset) 54 { 55 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 56 btrfs_panic(fs_info, errno, 57 "Inconsistency in ordered tree at offset %llu", offset); 58 } 59 60 /* 61 * look for a given offset in the tree, and if it can't be found return the 62 * first lesser offset 63 */ 64 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset, 65 struct rb_node **prev_ret) 66 { 67 struct rb_node *n = root->rb_node; 68 struct rb_node *prev = NULL; 69 struct rb_node *test; 70 struct btrfs_ordered_extent *entry; 71 struct btrfs_ordered_extent *prev_entry = NULL; 72 73 while (n) { 74 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node); 75 prev = n; 76 prev_entry = entry; 77 78 if (file_offset < entry->file_offset) 79 n = n->rb_left; 80 else if (file_offset >= entry_end(entry)) 81 n = n->rb_right; 82 else 83 return n; 84 } 85 if (!prev_ret) 86 return NULL; 87 88 while (prev && file_offset >= entry_end(prev_entry)) { 89 test = rb_next(prev); 90 if (!test) 91 break; 92 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 93 rb_node); 94 if (file_offset < entry_end(prev_entry)) 95 break; 96 97 prev = test; 98 } 99 if (prev) 100 prev_entry = rb_entry(prev, struct btrfs_ordered_extent, 101 rb_node); 102 while (prev && file_offset < entry_end(prev_entry)) { 103 test = rb_prev(prev); 104 if (!test) 105 break; 106 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 107 rb_node); 108 prev = test; 109 } 110 *prev_ret = prev; 111 return NULL; 112 } 113 114 /* 115 * helper to check if a given offset is inside a given entry 116 */ 117 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset) 118 { 119 if (file_offset < entry->file_offset || 120 entry->file_offset + entry->len <= file_offset) 121 return 0; 122 return 1; 123 } 124 125 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset, 126 u64 len) 127 { 128 if (file_offset + len <= entry->file_offset || 129 entry->file_offset + entry->len <= file_offset) 130 return 0; 131 return 1; 132 } 133 134 /* 135 * look find the first ordered struct that has this offset, otherwise 136 * the first one less than this offset 137 */ 138 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree, 139 u64 file_offset) 140 { 141 struct rb_root *root = &tree->tree; 142 struct rb_node *prev = NULL; 143 struct rb_node *ret; 144 struct btrfs_ordered_extent *entry; 145 146 if (tree->last) { 147 entry = rb_entry(tree->last, struct btrfs_ordered_extent, 148 rb_node); 149 if (offset_in_entry(entry, file_offset)) 150 return tree->last; 151 } 152 ret = __tree_search(root, file_offset, &prev); 153 if (!ret) 154 ret = prev; 155 if (ret) 156 tree->last = ret; 157 return ret; 158 } 159 160 /* allocate and add a new ordered_extent into the per-inode tree. 161 * file_offset is the logical offset in the file 162 * 163 * start is the disk block number of an extent already reserved in the 164 * extent allocation tree 165 * 166 * len is the length of the extent 167 * 168 * The tree is given a single reference on the ordered extent that was 169 * inserted. 170 */ 171 static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset, 172 u64 start, u64 len, u64 disk_len, 173 int type, int dio, int compress_type) 174 { 175 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 176 struct btrfs_root *root = BTRFS_I(inode)->root; 177 struct btrfs_ordered_inode_tree *tree; 178 struct rb_node *node; 179 struct btrfs_ordered_extent *entry; 180 181 tree = &BTRFS_I(inode)->ordered_tree; 182 entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS); 183 if (!entry) 184 return -ENOMEM; 185 186 entry->file_offset = file_offset; 187 entry->start = start; 188 entry->len = len; 189 entry->disk_len = disk_len; 190 entry->bytes_left = len; 191 entry->inode = igrab(inode); 192 entry->compress_type = compress_type; 193 entry->truncated_len = (u64)-1; 194 if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE) 195 set_bit(type, &entry->flags); 196 197 if (dio) 198 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags); 199 200 /* one ref for the tree */ 201 refcount_set(&entry->refs, 1); 202 init_waitqueue_head(&entry->wait); 203 INIT_LIST_HEAD(&entry->list); 204 INIT_LIST_HEAD(&entry->root_extent_list); 205 INIT_LIST_HEAD(&entry->work_list); 206 init_completion(&entry->completion); 207 INIT_LIST_HEAD(&entry->log_list); 208 INIT_LIST_HEAD(&entry->trans_list); 209 210 trace_btrfs_ordered_extent_add(inode, entry); 211 212 spin_lock_irq(&tree->lock); 213 node = tree_insert(&tree->tree, file_offset, 214 &entry->rb_node); 215 if (node) 216 ordered_data_tree_panic(inode, -EEXIST, file_offset); 217 spin_unlock_irq(&tree->lock); 218 219 spin_lock(&root->ordered_extent_lock); 220 list_add_tail(&entry->root_extent_list, 221 &root->ordered_extents); 222 root->nr_ordered_extents++; 223 if (root->nr_ordered_extents == 1) { 224 spin_lock(&fs_info->ordered_root_lock); 225 BUG_ON(!list_empty(&root->ordered_root)); 226 list_add_tail(&root->ordered_root, &fs_info->ordered_roots); 227 spin_unlock(&fs_info->ordered_root_lock); 228 } 229 spin_unlock(&root->ordered_extent_lock); 230 231 /* 232 * We don't need the count_max_extents here, we can assume that all of 233 * that work has been done at higher layers, so this is truly the 234 * smallest the extent is going to get. 235 */ 236 spin_lock(&BTRFS_I(inode)->lock); 237 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); 238 spin_unlock(&BTRFS_I(inode)->lock); 239 240 return 0; 241 } 242 243 int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset, 244 u64 start, u64 len, u64 disk_len, int type) 245 { 246 return __btrfs_add_ordered_extent(inode, file_offset, start, len, 247 disk_len, type, 0, 248 BTRFS_COMPRESS_NONE); 249 } 250 251 int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset, 252 u64 start, u64 len, u64 disk_len, int type) 253 { 254 return __btrfs_add_ordered_extent(inode, file_offset, start, len, 255 disk_len, type, 1, 256 BTRFS_COMPRESS_NONE); 257 } 258 259 int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset, 260 u64 start, u64 len, u64 disk_len, 261 int type, int compress_type) 262 { 263 return __btrfs_add_ordered_extent(inode, file_offset, start, len, 264 disk_len, type, 0, 265 compress_type); 266 } 267 268 /* 269 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted 270 * when an ordered extent is finished. If the list covers more than one 271 * ordered extent, it is split across multiples. 272 */ 273 void btrfs_add_ordered_sum(struct inode *inode, 274 struct btrfs_ordered_extent *entry, 275 struct btrfs_ordered_sum *sum) 276 { 277 struct btrfs_ordered_inode_tree *tree; 278 279 tree = &BTRFS_I(inode)->ordered_tree; 280 spin_lock_irq(&tree->lock); 281 list_add_tail(&sum->list, &entry->list); 282 spin_unlock_irq(&tree->lock); 283 } 284 285 /* 286 * this is used to account for finished IO across a given range 287 * of the file. The IO may span ordered extents. If 288 * a given ordered_extent is completely done, 1 is returned, otherwise 289 * 0. 290 * 291 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used 292 * to make sure this function only returns 1 once for a given ordered extent. 293 * 294 * file_offset is updated to one byte past the range that is recorded as 295 * complete. This allows you to walk forward in the file. 296 */ 297 int btrfs_dec_test_first_ordered_pending(struct inode *inode, 298 struct btrfs_ordered_extent **cached, 299 u64 *file_offset, u64 io_size, int uptodate) 300 { 301 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 302 struct btrfs_ordered_inode_tree *tree; 303 struct rb_node *node; 304 struct btrfs_ordered_extent *entry = NULL; 305 int ret; 306 unsigned long flags; 307 u64 dec_end; 308 u64 dec_start; 309 u64 to_dec; 310 311 tree = &BTRFS_I(inode)->ordered_tree; 312 spin_lock_irqsave(&tree->lock, flags); 313 node = tree_search(tree, *file_offset); 314 if (!node) { 315 ret = 1; 316 goto out; 317 } 318 319 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 320 if (!offset_in_entry(entry, *file_offset)) { 321 ret = 1; 322 goto out; 323 } 324 325 dec_start = max(*file_offset, entry->file_offset); 326 dec_end = min(*file_offset + io_size, entry->file_offset + 327 entry->len); 328 *file_offset = dec_end; 329 if (dec_start > dec_end) { 330 btrfs_crit(fs_info, "bad ordering dec_start %llu end %llu", 331 dec_start, dec_end); 332 } 333 to_dec = dec_end - dec_start; 334 if (to_dec > entry->bytes_left) { 335 btrfs_crit(fs_info, 336 "bad ordered accounting left %llu size %llu", 337 entry->bytes_left, to_dec); 338 } 339 entry->bytes_left -= to_dec; 340 if (!uptodate) 341 set_bit(BTRFS_ORDERED_IOERR, &entry->flags); 342 343 if (entry->bytes_left == 0) { 344 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); 345 /* test_and_set_bit implies a barrier */ 346 cond_wake_up_nomb(&entry->wait); 347 } else { 348 ret = 1; 349 } 350 out: 351 if (!ret && cached && entry) { 352 *cached = entry; 353 refcount_inc(&entry->refs); 354 } 355 spin_unlock_irqrestore(&tree->lock, flags); 356 return ret == 0; 357 } 358 359 /* 360 * this is used to account for finished IO across a given range 361 * of the file. The IO should not span ordered extents. If 362 * a given ordered_extent is completely done, 1 is returned, otherwise 363 * 0. 364 * 365 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used 366 * to make sure this function only returns 1 once for a given ordered extent. 367 */ 368 int btrfs_dec_test_ordered_pending(struct inode *inode, 369 struct btrfs_ordered_extent **cached, 370 u64 file_offset, u64 io_size, int uptodate) 371 { 372 struct btrfs_ordered_inode_tree *tree; 373 struct rb_node *node; 374 struct btrfs_ordered_extent *entry = NULL; 375 unsigned long flags; 376 int ret; 377 378 tree = &BTRFS_I(inode)->ordered_tree; 379 spin_lock_irqsave(&tree->lock, flags); 380 if (cached && *cached) { 381 entry = *cached; 382 goto have_entry; 383 } 384 385 node = tree_search(tree, file_offset); 386 if (!node) { 387 ret = 1; 388 goto out; 389 } 390 391 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 392 have_entry: 393 if (!offset_in_entry(entry, file_offset)) { 394 ret = 1; 395 goto out; 396 } 397 398 if (io_size > entry->bytes_left) { 399 btrfs_crit(BTRFS_I(inode)->root->fs_info, 400 "bad ordered accounting left %llu size %llu", 401 entry->bytes_left, io_size); 402 } 403 entry->bytes_left -= io_size; 404 if (!uptodate) 405 set_bit(BTRFS_ORDERED_IOERR, &entry->flags); 406 407 if (entry->bytes_left == 0) { 408 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); 409 /* test_and_set_bit implies a barrier */ 410 cond_wake_up_nomb(&entry->wait); 411 } else { 412 ret = 1; 413 } 414 out: 415 if (!ret && cached && entry) { 416 *cached = entry; 417 refcount_inc(&entry->refs); 418 } 419 spin_unlock_irqrestore(&tree->lock, flags); 420 return ret == 0; 421 } 422 423 /* 424 * used to drop a reference on an ordered extent. This will free 425 * the extent if the last reference is dropped 426 */ 427 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry) 428 { 429 struct list_head *cur; 430 struct btrfs_ordered_sum *sum; 431 432 trace_btrfs_ordered_extent_put(entry->inode, entry); 433 434 if (refcount_dec_and_test(&entry->refs)) { 435 ASSERT(list_empty(&entry->log_list)); 436 ASSERT(list_empty(&entry->trans_list)); 437 ASSERT(list_empty(&entry->root_extent_list)); 438 ASSERT(RB_EMPTY_NODE(&entry->rb_node)); 439 if (entry->inode) 440 btrfs_add_delayed_iput(entry->inode); 441 while (!list_empty(&entry->list)) { 442 cur = entry->list.next; 443 sum = list_entry(cur, struct btrfs_ordered_sum, list); 444 list_del(&sum->list); 445 kfree(sum); 446 } 447 kmem_cache_free(btrfs_ordered_extent_cache, entry); 448 } 449 } 450 451 /* 452 * remove an ordered extent from the tree. No references are dropped 453 * and waiters are woken up. 454 */ 455 void btrfs_remove_ordered_extent(struct inode *inode, 456 struct btrfs_ordered_extent *entry) 457 { 458 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 459 struct btrfs_ordered_inode_tree *tree; 460 struct btrfs_inode *btrfs_inode = BTRFS_I(inode); 461 struct btrfs_root *root = btrfs_inode->root; 462 struct rb_node *node; 463 bool dec_pending_ordered = false; 464 465 /* This is paired with btrfs_add_ordered_extent. */ 466 spin_lock(&btrfs_inode->lock); 467 btrfs_mod_outstanding_extents(btrfs_inode, -1); 468 spin_unlock(&btrfs_inode->lock); 469 if (root != fs_info->tree_root) 470 btrfs_delalloc_release_metadata(btrfs_inode, entry->len, false); 471 472 tree = &btrfs_inode->ordered_tree; 473 spin_lock_irq(&tree->lock); 474 node = &entry->rb_node; 475 rb_erase(node, &tree->tree); 476 RB_CLEAR_NODE(node); 477 if (tree->last == node) 478 tree->last = NULL; 479 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags); 480 if (test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags)) 481 dec_pending_ordered = true; 482 spin_unlock_irq(&tree->lock); 483 484 /* 485 * The current running transaction is waiting on us, we need to let it 486 * know that we're complete and wake it up. 487 */ 488 if (dec_pending_ordered) { 489 struct btrfs_transaction *trans; 490 491 /* 492 * The checks for trans are just a formality, it should be set, 493 * but if it isn't we don't want to deref/assert under the spin 494 * lock, so be nice and check if trans is set, but ASSERT() so 495 * if it isn't set a developer will notice. 496 */ 497 spin_lock(&fs_info->trans_lock); 498 trans = fs_info->running_transaction; 499 if (trans) 500 refcount_inc(&trans->use_count); 501 spin_unlock(&fs_info->trans_lock); 502 503 ASSERT(trans); 504 if (trans) { 505 if (atomic_dec_and_test(&trans->pending_ordered)) 506 wake_up(&trans->pending_wait); 507 btrfs_put_transaction(trans); 508 } 509 } 510 511 spin_lock(&root->ordered_extent_lock); 512 list_del_init(&entry->root_extent_list); 513 root->nr_ordered_extents--; 514 515 trace_btrfs_ordered_extent_remove(inode, entry); 516 517 if (!root->nr_ordered_extents) { 518 spin_lock(&fs_info->ordered_root_lock); 519 BUG_ON(list_empty(&root->ordered_root)); 520 list_del_init(&root->ordered_root); 521 spin_unlock(&fs_info->ordered_root_lock); 522 } 523 spin_unlock(&root->ordered_extent_lock); 524 wake_up(&entry->wait); 525 } 526 527 static void btrfs_run_ordered_extent_work(struct btrfs_work *work) 528 { 529 struct btrfs_ordered_extent *ordered; 530 531 ordered = container_of(work, struct btrfs_ordered_extent, flush_work); 532 btrfs_start_ordered_extent(ordered->inode, ordered, 1); 533 complete(&ordered->completion); 534 } 535 536 /* 537 * wait for all the ordered extents in a root. This is done when balancing 538 * space between drives. 539 */ 540 u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr, 541 const u64 range_start, const u64 range_len) 542 { 543 struct btrfs_fs_info *fs_info = root->fs_info; 544 LIST_HEAD(splice); 545 LIST_HEAD(skipped); 546 LIST_HEAD(works); 547 struct btrfs_ordered_extent *ordered, *next; 548 u64 count = 0; 549 const u64 range_end = range_start + range_len; 550 551 mutex_lock(&root->ordered_extent_mutex); 552 spin_lock(&root->ordered_extent_lock); 553 list_splice_init(&root->ordered_extents, &splice); 554 while (!list_empty(&splice) && nr) { 555 ordered = list_first_entry(&splice, struct btrfs_ordered_extent, 556 root_extent_list); 557 558 if (range_end <= ordered->start || 559 ordered->start + ordered->disk_len <= range_start) { 560 list_move_tail(&ordered->root_extent_list, &skipped); 561 cond_resched_lock(&root->ordered_extent_lock); 562 continue; 563 } 564 565 list_move_tail(&ordered->root_extent_list, 566 &root->ordered_extents); 567 refcount_inc(&ordered->refs); 568 spin_unlock(&root->ordered_extent_lock); 569 570 btrfs_init_work(&ordered->flush_work, 571 btrfs_flush_delalloc_helper, 572 btrfs_run_ordered_extent_work, NULL, NULL); 573 list_add_tail(&ordered->work_list, &works); 574 btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work); 575 576 cond_resched(); 577 spin_lock(&root->ordered_extent_lock); 578 if (nr != U64_MAX) 579 nr--; 580 count++; 581 } 582 list_splice_tail(&skipped, &root->ordered_extents); 583 list_splice_tail(&splice, &root->ordered_extents); 584 spin_unlock(&root->ordered_extent_lock); 585 586 list_for_each_entry_safe(ordered, next, &works, work_list) { 587 list_del_init(&ordered->work_list); 588 wait_for_completion(&ordered->completion); 589 btrfs_put_ordered_extent(ordered); 590 cond_resched(); 591 } 592 mutex_unlock(&root->ordered_extent_mutex); 593 594 return count; 595 } 596 597 u64 btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr, 598 const u64 range_start, const u64 range_len) 599 { 600 struct btrfs_root *root; 601 struct list_head splice; 602 u64 total_done = 0; 603 u64 done; 604 605 INIT_LIST_HEAD(&splice); 606 607 mutex_lock(&fs_info->ordered_operations_mutex); 608 spin_lock(&fs_info->ordered_root_lock); 609 list_splice_init(&fs_info->ordered_roots, &splice); 610 while (!list_empty(&splice) && nr) { 611 root = list_first_entry(&splice, struct btrfs_root, 612 ordered_root); 613 root = btrfs_grab_fs_root(root); 614 BUG_ON(!root); 615 list_move_tail(&root->ordered_root, 616 &fs_info->ordered_roots); 617 spin_unlock(&fs_info->ordered_root_lock); 618 619 done = btrfs_wait_ordered_extents(root, nr, 620 range_start, range_len); 621 btrfs_put_fs_root(root); 622 total_done += done; 623 624 spin_lock(&fs_info->ordered_root_lock); 625 if (nr != U64_MAX) { 626 nr -= done; 627 } 628 } 629 list_splice_tail(&splice, &fs_info->ordered_roots); 630 spin_unlock(&fs_info->ordered_root_lock); 631 mutex_unlock(&fs_info->ordered_operations_mutex); 632 633 return total_done; 634 } 635 636 /* 637 * Used to start IO or wait for a given ordered extent to finish. 638 * 639 * If wait is one, this effectively waits on page writeback for all the pages 640 * in the extent, and it waits on the io completion code to insert 641 * metadata into the btree corresponding to the extent 642 */ 643 void btrfs_start_ordered_extent(struct inode *inode, 644 struct btrfs_ordered_extent *entry, 645 int wait) 646 { 647 u64 start = entry->file_offset; 648 u64 end = start + entry->len - 1; 649 650 trace_btrfs_ordered_extent_start(inode, entry); 651 652 /* 653 * pages in the range can be dirty, clean or writeback. We 654 * start IO on any dirty ones so the wait doesn't stall waiting 655 * for the flusher thread to find them 656 */ 657 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags)) 658 filemap_fdatawrite_range(inode->i_mapping, start, end); 659 if (wait) { 660 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, 661 &entry->flags)); 662 } 663 } 664 665 /* 666 * Used to wait on ordered extents across a large range of bytes. 667 */ 668 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len) 669 { 670 int ret = 0; 671 int ret_wb = 0; 672 u64 end; 673 u64 orig_end; 674 struct btrfs_ordered_extent *ordered; 675 676 if (start + len < start) { 677 orig_end = INT_LIMIT(loff_t); 678 } else { 679 orig_end = start + len - 1; 680 if (orig_end > INT_LIMIT(loff_t)) 681 orig_end = INT_LIMIT(loff_t); 682 } 683 684 /* start IO across the range first to instantiate any delalloc 685 * extents 686 */ 687 ret = btrfs_fdatawrite_range(inode, start, orig_end); 688 if (ret) 689 return ret; 690 691 /* 692 * If we have a writeback error don't return immediately. Wait first 693 * for any ordered extents that haven't completed yet. This is to make 694 * sure no one can dirty the same page ranges and call writepages() 695 * before the ordered extents complete - to avoid failures (-EEXIST) 696 * when adding the new ordered extents to the ordered tree. 697 */ 698 ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end); 699 700 end = orig_end; 701 while (1) { 702 ordered = btrfs_lookup_first_ordered_extent(inode, end); 703 if (!ordered) 704 break; 705 if (ordered->file_offset > orig_end) { 706 btrfs_put_ordered_extent(ordered); 707 break; 708 } 709 if (ordered->file_offset + ordered->len <= start) { 710 btrfs_put_ordered_extent(ordered); 711 break; 712 } 713 btrfs_start_ordered_extent(inode, ordered, 1); 714 end = ordered->file_offset; 715 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) 716 ret = -EIO; 717 btrfs_put_ordered_extent(ordered); 718 if (ret || end == 0 || end == start) 719 break; 720 end--; 721 } 722 return ret_wb ? ret_wb : ret; 723 } 724 725 /* 726 * find an ordered extent corresponding to file_offset. return NULL if 727 * nothing is found, otherwise take a reference on the extent and return it 728 */ 729 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode, 730 u64 file_offset) 731 { 732 struct btrfs_ordered_inode_tree *tree; 733 struct rb_node *node; 734 struct btrfs_ordered_extent *entry = NULL; 735 736 tree = &BTRFS_I(inode)->ordered_tree; 737 spin_lock_irq(&tree->lock); 738 node = tree_search(tree, file_offset); 739 if (!node) 740 goto out; 741 742 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 743 if (!offset_in_entry(entry, file_offset)) 744 entry = NULL; 745 if (entry) 746 refcount_inc(&entry->refs); 747 out: 748 spin_unlock_irq(&tree->lock); 749 return entry; 750 } 751 752 /* Since the DIO code tries to lock a wide area we need to look for any ordered 753 * extents that exist in the range, rather than just the start of the range. 754 */ 755 struct btrfs_ordered_extent *btrfs_lookup_ordered_range( 756 struct btrfs_inode *inode, u64 file_offset, u64 len) 757 { 758 struct btrfs_ordered_inode_tree *tree; 759 struct rb_node *node; 760 struct btrfs_ordered_extent *entry = NULL; 761 762 tree = &inode->ordered_tree; 763 spin_lock_irq(&tree->lock); 764 node = tree_search(tree, file_offset); 765 if (!node) { 766 node = tree_search(tree, file_offset + len); 767 if (!node) 768 goto out; 769 } 770 771 while (1) { 772 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 773 if (range_overlaps(entry, file_offset, len)) 774 break; 775 776 if (entry->file_offset >= file_offset + len) { 777 entry = NULL; 778 break; 779 } 780 entry = NULL; 781 node = rb_next(node); 782 if (!node) 783 break; 784 } 785 out: 786 if (entry) 787 refcount_inc(&entry->refs); 788 spin_unlock_irq(&tree->lock); 789 return entry; 790 } 791 792 /* 793 * lookup and return any extent before 'file_offset'. NULL is returned 794 * if none is found 795 */ 796 struct btrfs_ordered_extent * 797 btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset) 798 { 799 struct btrfs_ordered_inode_tree *tree; 800 struct rb_node *node; 801 struct btrfs_ordered_extent *entry = NULL; 802 803 tree = &BTRFS_I(inode)->ordered_tree; 804 spin_lock_irq(&tree->lock); 805 node = tree_search(tree, file_offset); 806 if (!node) 807 goto out; 808 809 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 810 refcount_inc(&entry->refs); 811 out: 812 spin_unlock_irq(&tree->lock); 813 return entry; 814 } 815 816 /* 817 * After an extent is done, call this to conditionally update the on disk 818 * i_size. i_size is updated to cover any fully written part of the file. 819 */ 820 int btrfs_ordered_update_i_size(struct inode *inode, u64 offset, 821 struct btrfs_ordered_extent *ordered) 822 { 823 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; 824 u64 disk_i_size; 825 u64 new_i_size; 826 u64 i_size = i_size_read(inode); 827 struct rb_node *node; 828 struct rb_node *prev = NULL; 829 struct btrfs_ordered_extent *test; 830 int ret = 1; 831 u64 orig_offset = offset; 832 833 spin_lock_irq(&tree->lock); 834 if (ordered) { 835 offset = entry_end(ordered); 836 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags)) 837 offset = min(offset, 838 ordered->file_offset + 839 ordered->truncated_len); 840 } else { 841 offset = ALIGN(offset, btrfs_inode_sectorsize(inode)); 842 } 843 disk_i_size = BTRFS_I(inode)->disk_i_size; 844 845 /* 846 * truncate file. 847 * If ordered is not NULL, then this is called from endio and 848 * disk_i_size will be updated by either truncate itself or any 849 * in-flight IOs which are inside the disk_i_size. 850 * 851 * Because btrfs_setsize() may set i_size with disk_i_size if truncate 852 * fails somehow, we need to make sure we have a precise disk_i_size by 853 * updating it as usual. 854 * 855 */ 856 if (!ordered && disk_i_size > i_size) { 857 BTRFS_I(inode)->disk_i_size = orig_offset; 858 ret = 0; 859 goto out; 860 } 861 862 /* 863 * if the disk i_size is already at the inode->i_size, or 864 * this ordered extent is inside the disk i_size, we're done 865 */ 866 if (disk_i_size == i_size) 867 goto out; 868 869 /* 870 * We still need to update disk_i_size if outstanding_isize is greater 871 * than disk_i_size. 872 */ 873 if (offset <= disk_i_size && 874 (!ordered || ordered->outstanding_isize <= disk_i_size)) 875 goto out; 876 877 /* 878 * walk backward from this ordered extent to disk_i_size. 879 * if we find an ordered extent then we can't update disk i_size 880 * yet 881 */ 882 if (ordered) { 883 node = rb_prev(&ordered->rb_node); 884 } else { 885 prev = tree_search(tree, offset); 886 /* 887 * we insert file extents without involving ordered struct, 888 * so there should be no ordered struct cover this offset 889 */ 890 if (prev) { 891 test = rb_entry(prev, struct btrfs_ordered_extent, 892 rb_node); 893 BUG_ON(offset_in_entry(test, offset)); 894 } 895 node = prev; 896 } 897 for (; node; node = rb_prev(node)) { 898 test = rb_entry(node, struct btrfs_ordered_extent, rb_node); 899 900 /* We treat this entry as if it doesn't exist */ 901 if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags)) 902 continue; 903 904 if (entry_end(test) <= disk_i_size) 905 break; 906 if (test->file_offset >= i_size) 907 break; 908 909 /* 910 * We don't update disk_i_size now, so record this undealt 911 * i_size. Or we will not know the real i_size. 912 */ 913 if (test->outstanding_isize < offset) 914 test->outstanding_isize = offset; 915 if (ordered && 916 ordered->outstanding_isize > test->outstanding_isize) 917 test->outstanding_isize = ordered->outstanding_isize; 918 goto out; 919 } 920 new_i_size = min_t(u64, offset, i_size); 921 922 /* 923 * Some ordered extents may completed before the current one, and 924 * we hold the real i_size in ->outstanding_isize. 925 */ 926 if (ordered && ordered->outstanding_isize > new_i_size) 927 new_i_size = min_t(u64, ordered->outstanding_isize, i_size); 928 BTRFS_I(inode)->disk_i_size = new_i_size; 929 ret = 0; 930 out: 931 /* 932 * We need to do this because we can't remove ordered extents until 933 * after the i_disk_size has been updated and then the inode has been 934 * updated to reflect the change, so we need to tell anybody who finds 935 * this ordered extent that we've already done all the real work, we 936 * just haven't completed all the other work. 937 */ 938 if (ordered) 939 set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags); 940 spin_unlock_irq(&tree->lock); 941 return ret; 942 } 943 944 /* 945 * search the ordered extents for one corresponding to 'offset' and 946 * try to find a checksum. This is used because we allow pages to 947 * be reclaimed before their checksum is actually put into the btree 948 */ 949 int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr, 950 u32 *sum, int len) 951 { 952 struct btrfs_ordered_sum *ordered_sum; 953 struct btrfs_ordered_extent *ordered; 954 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; 955 unsigned long num_sectors; 956 unsigned long i; 957 u32 sectorsize = btrfs_inode_sectorsize(inode); 958 int index = 0; 959 960 ordered = btrfs_lookup_ordered_extent(inode, offset); 961 if (!ordered) 962 return 0; 963 964 spin_lock_irq(&tree->lock); 965 list_for_each_entry_reverse(ordered_sum, &ordered->list, list) { 966 if (disk_bytenr >= ordered_sum->bytenr && 967 disk_bytenr < ordered_sum->bytenr + ordered_sum->len) { 968 i = (disk_bytenr - ordered_sum->bytenr) >> 969 inode->i_sb->s_blocksize_bits; 970 num_sectors = ordered_sum->len >> 971 inode->i_sb->s_blocksize_bits; 972 num_sectors = min_t(int, len - index, num_sectors - i); 973 memcpy(sum + index, ordered_sum->sums + i, 974 num_sectors); 975 976 index += (int)num_sectors; 977 if (index == len) 978 goto out; 979 disk_bytenr += num_sectors * sectorsize; 980 } 981 } 982 out: 983 spin_unlock_irq(&tree->lock); 984 btrfs_put_ordered_extent(ordered); 985 return index; 986 } 987 988 int __init ordered_data_init(void) 989 { 990 btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent", 991 sizeof(struct btrfs_ordered_extent), 0, 992 SLAB_MEM_SPREAD, 993 NULL); 994 if (!btrfs_ordered_extent_cache) 995 return -ENOMEM; 996 997 return 0; 998 } 999 1000 void __cold ordered_data_exit(void) 1001 { 1002 kmem_cache_destroy(btrfs_ordered_extent_cache); 1003 } 1004