1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/gfp.h> 20 #include <linux/slab.h> 21 #include <linux/blkdev.h> 22 #include <linux/writeback.h> 23 #include <linux/pagevec.h> 24 #include "ctree.h" 25 #include "transaction.h" 26 #include "btrfs_inode.h" 27 #include "extent_io.h" 28 29 static u64 entry_end(struct btrfs_ordered_extent *entry) 30 { 31 if (entry->file_offset + entry->len < entry->file_offset) 32 return (u64)-1; 33 return entry->file_offset + entry->len; 34 } 35 36 /* returns NULL if the insertion worked, or it returns the node it did find 37 * in the tree 38 */ 39 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset, 40 struct rb_node *node) 41 { 42 struct rb_node **p = &root->rb_node; 43 struct rb_node *parent = NULL; 44 struct btrfs_ordered_extent *entry; 45 46 while (*p) { 47 parent = *p; 48 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node); 49 50 if (file_offset < entry->file_offset) 51 p = &(*p)->rb_left; 52 else if (file_offset >= entry_end(entry)) 53 p = &(*p)->rb_right; 54 else 55 return parent; 56 } 57 58 rb_link_node(node, parent, p); 59 rb_insert_color(node, root); 60 return NULL; 61 } 62 63 /* 64 * look for a given offset in the tree, and if it can't be found return the 65 * first lesser offset 66 */ 67 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset, 68 struct rb_node **prev_ret) 69 { 70 struct rb_node *n = root->rb_node; 71 struct rb_node *prev = NULL; 72 struct rb_node *test; 73 struct btrfs_ordered_extent *entry; 74 struct btrfs_ordered_extent *prev_entry = NULL; 75 76 while (n) { 77 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node); 78 prev = n; 79 prev_entry = entry; 80 81 if (file_offset < entry->file_offset) 82 n = n->rb_left; 83 else if (file_offset >= entry_end(entry)) 84 n = n->rb_right; 85 else 86 return n; 87 } 88 if (!prev_ret) 89 return NULL; 90 91 while (prev && file_offset >= entry_end(prev_entry)) { 92 test = rb_next(prev); 93 if (!test) 94 break; 95 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 96 rb_node); 97 if (file_offset < entry_end(prev_entry)) 98 break; 99 100 prev = test; 101 } 102 if (prev) 103 prev_entry = rb_entry(prev, struct btrfs_ordered_extent, 104 rb_node); 105 while (prev && file_offset < entry_end(prev_entry)) { 106 test = rb_prev(prev); 107 if (!test) 108 break; 109 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 110 rb_node); 111 prev = test; 112 } 113 *prev_ret = prev; 114 return NULL; 115 } 116 117 /* 118 * helper to check if a given offset is inside a given entry 119 */ 120 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset) 121 { 122 if (file_offset < entry->file_offset || 123 entry->file_offset + entry->len <= file_offset) 124 return 0; 125 return 1; 126 } 127 128 /* 129 * look find the first ordered struct that has this offset, otherwise 130 * the first one less than this offset 131 */ 132 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree, 133 u64 file_offset) 134 { 135 struct rb_root *root = &tree->tree; 136 struct rb_node *prev; 137 struct rb_node *ret; 138 struct btrfs_ordered_extent *entry; 139 140 if (tree->last) { 141 entry = rb_entry(tree->last, struct btrfs_ordered_extent, 142 rb_node); 143 if (offset_in_entry(entry, file_offset)) 144 return tree->last; 145 } 146 ret = __tree_search(root, file_offset, &prev); 147 if (!ret) 148 ret = prev; 149 if (ret) 150 tree->last = ret; 151 return ret; 152 } 153 154 /* allocate and add a new ordered_extent into the per-inode tree. 155 * file_offset is the logical offset in the file 156 * 157 * start is the disk block number of an extent already reserved in the 158 * extent allocation tree 159 * 160 * len is the length of the extent 161 * 162 * This also sets the EXTENT_ORDERED bit on the range in the inode. 163 * 164 * The tree is given a single reference on the ordered extent that was 165 * inserted. 166 */ 167 int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset, 168 u64 start, u64 len, u64 disk_len, int type) 169 { 170 struct btrfs_ordered_inode_tree *tree; 171 struct rb_node *node; 172 struct btrfs_ordered_extent *entry; 173 174 tree = &BTRFS_I(inode)->ordered_tree; 175 entry = kzalloc(sizeof(*entry), GFP_NOFS); 176 if (!entry) 177 return -ENOMEM; 178 179 mutex_lock(&tree->mutex); 180 entry->file_offset = file_offset; 181 entry->start = start; 182 entry->len = len; 183 entry->disk_len = disk_len; 184 entry->inode = inode; 185 if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE) 186 set_bit(type, &entry->flags); 187 188 /* one ref for the tree */ 189 atomic_set(&entry->refs, 1); 190 init_waitqueue_head(&entry->wait); 191 INIT_LIST_HEAD(&entry->list); 192 INIT_LIST_HEAD(&entry->root_extent_list); 193 194 node = tree_insert(&tree->tree, file_offset, 195 &entry->rb_node); 196 BUG_ON(node); 197 198 set_extent_ordered(&BTRFS_I(inode)->io_tree, file_offset, 199 entry_end(entry) - 1, GFP_NOFS); 200 201 spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock); 202 list_add_tail(&entry->root_extent_list, 203 &BTRFS_I(inode)->root->fs_info->ordered_extents); 204 spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock); 205 206 mutex_unlock(&tree->mutex); 207 BUG_ON(node); 208 return 0; 209 } 210 211 /* 212 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted 213 * when an ordered extent is finished. If the list covers more than one 214 * ordered extent, it is split across multiples. 215 */ 216 int btrfs_add_ordered_sum(struct inode *inode, 217 struct btrfs_ordered_extent *entry, 218 struct btrfs_ordered_sum *sum) 219 { 220 struct btrfs_ordered_inode_tree *tree; 221 222 tree = &BTRFS_I(inode)->ordered_tree; 223 mutex_lock(&tree->mutex); 224 list_add_tail(&sum->list, &entry->list); 225 mutex_unlock(&tree->mutex); 226 return 0; 227 } 228 229 /* 230 * this is used to account for finished IO across a given range 231 * of the file. The IO should not span ordered extents. If 232 * a given ordered_extent is completely done, 1 is returned, otherwise 233 * 0. 234 * 235 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used 236 * to make sure this function only returns 1 once for a given ordered extent. 237 */ 238 int btrfs_dec_test_ordered_pending(struct inode *inode, 239 u64 file_offset, u64 io_size) 240 { 241 struct btrfs_ordered_inode_tree *tree; 242 struct rb_node *node; 243 struct btrfs_ordered_extent *entry; 244 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 245 int ret; 246 247 tree = &BTRFS_I(inode)->ordered_tree; 248 mutex_lock(&tree->mutex); 249 clear_extent_ordered(io_tree, file_offset, file_offset + io_size - 1, 250 GFP_NOFS); 251 node = tree_search(tree, file_offset); 252 if (!node) { 253 ret = 1; 254 goto out; 255 } 256 257 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 258 if (!offset_in_entry(entry, file_offset)) { 259 ret = 1; 260 goto out; 261 } 262 263 ret = test_range_bit(io_tree, entry->file_offset, 264 entry->file_offset + entry->len - 1, 265 EXTENT_ORDERED, 0); 266 if (ret == 0) 267 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); 268 out: 269 mutex_unlock(&tree->mutex); 270 return ret == 0; 271 } 272 273 /* 274 * used to drop a reference on an ordered extent. This will free 275 * the extent if the last reference is dropped 276 */ 277 int btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry) 278 { 279 struct list_head *cur; 280 struct btrfs_ordered_sum *sum; 281 282 if (atomic_dec_and_test(&entry->refs)) { 283 while (!list_empty(&entry->list)) { 284 cur = entry->list.next; 285 sum = list_entry(cur, struct btrfs_ordered_sum, list); 286 list_del(&sum->list); 287 kfree(sum); 288 } 289 kfree(entry); 290 } 291 return 0; 292 } 293 294 /* 295 * remove an ordered extent from the tree. No references are dropped 296 * but, anyone waiting on this extent is woken up. 297 */ 298 int btrfs_remove_ordered_extent(struct inode *inode, 299 struct btrfs_ordered_extent *entry) 300 { 301 struct btrfs_ordered_inode_tree *tree; 302 struct rb_node *node; 303 304 tree = &BTRFS_I(inode)->ordered_tree; 305 mutex_lock(&tree->mutex); 306 node = &entry->rb_node; 307 rb_erase(node, &tree->tree); 308 tree->last = NULL; 309 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags); 310 311 spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock); 312 list_del_init(&entry->root_extent_list); 313 spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock); 314 315 mutex_unlock(&tree->mutex); 316 wake_up(&entry->wait); 317 return 0; 318 } 319 320 /* 321 * wait for all the ordered extents in a root. This is done when balancing 322 * space between drives. 323 */ 324 int btrfs_wait_ordered_extents(struct btrfs_root *root, int nocow_only) 325 { 326 struct list_head splice; 327 struct list_head *cur; 328 struct btrfs_ordered_extent *ordered; 329 struct inode *inode; 330 331 INIT_LIST_HEAD(&splice); 332 333 spin_lock(&root->fs_info->ordered_extent_lock); 334 list_splice_init(&root->fs_info->ordered_extents, &splice); 335 while (!list_empty(&splice)) { 336 cur = splice.next; 337 ordered = list_entry(cur, struct btrfs_ordered_extent, 338 root_extent_list); 339 if (nocow_only && 340 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) && 341 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) { 342 list_move(&ordered->root_extent_list, 343 &root->fs_info->ordered_extents); 344 cond_resched_lock(&root->fs_info->ordered_extent_lock); 345 continue; 346 } 347 348 list_del_init(&ordered->root_extent_list); 349 atomic_inc(&ordered->refs); 350 351 /* 352 * the inode may be getting freed (in sys_unlink path). 353 */ 354 inode = igrab(ordered->inode); 355 356 spin_unlock(&root->fs_info->ordered_extent_lock); 357 358 if (inode) { 359 btrfs_start_ordered_extent(inode, ordered, 1); 360 btrfs_put_ordered_extent(ordered); 361 iput(inode); 362 } else { 363 btrfs_put_ordered_extent(ordered); 364 } 365 366 spin_lock(&root->fs_info->ordered_extent_lock); 367 } 368 spin_unlock(&root->fs_info->ordered_extent_lock); 369 return 0; 370 } 371 372 /* 373 * Used to start IO or wait for a given ordered extent to finish. 374 * 375 * If wait is one, this effectively waits on page writeback for all the pages 376 * in the extent, and it waits on the io completion code to insert 377 * metadata into the btree corresponding to the extent 378 */ 379 void btrfs_start_ordered_extent(struct inode *inode, 380 struct btrfs_ordered_extent *entry, 381 int wait) 382 { 383 u64 start = entry->file_offset; 384 u64 end = start + entry->len - 1; 385 386 /* 387 * pages in the range can be dirty, clean or writeback. We 388 * start IO on any dirty ones so the wait doesn't stall waiting 389 * for pdflush to find them 390 */ 391 btrfs_fdatawrite_range(inode->i_mapping, start, end, WB_SYNC_ALL); 392 if (wait) { 393 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, 394 &entry->flags)); 395 } 396 } 397 398 /* 399 * Used to wait on ordered extents across a large range of bytes. 400 */ 401 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len) 402 { 403 u64 end; 404 u64 orig_end; 405 u64 wait_end; 406 struct btrfs_ordered_extent *ordered; 407 408 if (start + len < start) { 409 orig_end = INT_LIMIT(loff_t); 410 } else { 411 orig_end = start + len - 1; 412 if (orig_end > INT_LIMIT(loff_t)) 413 orig_end = INT_LIMIT(loff_t); 414 } 415 wait_end = orig_end; 416 again: 417 /* start IO across the range first to instantiate any delalloc 418 * extents 419 */ 420 btrfs_fdatawrite_range(inode->i_mapping, start, orig_end, WB_SYNC_NONE); 421 422 /* The compression code will leave pages locked but return from 423 * writepage without setting the page writeback. Starting again 424 * with WB_SYNC_ALL will end up waiting for the IO to actually start. 425 */ 426 btrfs_fdatawrite_range(inode->i_mapping, start, orig_end, WB_SYNC_ALL); 427 428 btrfs_wait_on_page_writeback_range(inode->i_mapping, 429 start >> PAGE_CACHE_SHIFT, 430 orig_end >> PAGE_CACHE_SHIFT); 431 432 end = orig_end; 433 while (1) { 434 ordered = btrfs_lookup_first_ordered_extent(inode, end); 435 if (!ordered) 436 break; 437 if (ordered->file_offset > orig_end) { 438 btrfs_put_ordered_extent(ordered); 439 break; 440 } 441 if (ordered->file_offset + ordered->len < start) { 442 btrfs_put_ordered_extent(ordered); 443 break; 444 } 445 btrfs_start_ordered_extent(inode, ordered, 1); 446 end = ordered->file_offset; 447 btrfs_put_ordered_extent(ordered); 448 if (end == 0 || end == start) 449 break; 450 end--; 451 } 452 if (test_range_bit(&BTRFS_I(inode)->io_tree, start, orig_end, 453 EXTENT_ORDERED | EXTENT_DELALLOC, 0)) { 454 schedule_timeout(1); 455 goto again; 456 } 457 return 0; 458 } 459 460 /* 461 * find an ordered extent corresponding to file_offset. return NULL if 462 * nothing is found, otherwise take a reference on the extent and return it 463 */ 464 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode, 465 u64 file_offset) 466 { 467 struct btrfs_ordered_inode_tree *tree; 468 struct rb_node *node; 469 struct btrfs_ordered_extent *entry = NULL; 470 471 tree = &BTRFS_I(inode)->ordered_tree; 472 mutex_lock(&tree->mutex); 473 node = tree_search(tree, file_offset); 474 if (!node) 475 goto out; 476 477 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 478 if (!offset_in_entry(entry, file_offset)) 479 entry = NULL; 480 if (entry) 481 atomic_inc(&entry->refs); 482 out: 483 mutex_unlock(&tree->mutex); 484 return entry; 485 } 486 487 /* 488 * lookup and return any extent before 'file_offset'. NULL is returned 489 * if none is found 490 */ 491 struct btrfs_ordered_extent * 492 btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset) 493 { 494 struct btrfs_ordered_inode_tree *tree; 495 struct rb_node *node; 496 struct btrfs_ordered_extent *entry = NULL; 497 498 tree = &BTRFS_I(inode)->ordered_tree; 499 mutex_lock(&tree->mutex); 500 node = tree_search(tree, file_offset); 501 if (!node) 502 goto out; 503 504 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 505 atomic_inc(&entry->refs); 506 out: 507 mutex_unlock(&tree->mutex); 508 return entry; 509 } 510 511 /* 512 * After an extent is done, call this to conditionally update the on disk 513 * i_size. i_size is updated to cover any fully written part of the file. 514 */ 515 int btrfs_ordered_update_i_size(struct inode *inode, 516 struct btrfs_ordered_extent *ordered) 517 { 518 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; 519 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 520 u64 disk_i_size; 521 u64 new_i_size; 522 u64 i_size_test; 523 struct rb_node *node; 524 struct btrfs_ordered_extent *test; 525 526 mutex_lock(&tree->mutex); 527 disk_i_size = BTRFS_I(inode)->disk_i_size; 528 529 /* 530 * if the disk i_size is already at the inode->i_size, or 531 * this ordered extent is inside the disk i_size, we're done 532 */ 533 if (disk_i_size >= inode->i_size || 534 ordered->file_offset + ordered->len <= disk_i_size) { 535 goto out; 536 } 537 538 /* 539 * we can't update the disk_isize if there are delalloc bytes 540 * between disk_i_size and this ordered extent 541 */ 542 if (test_range_bit(io_tree, disk_i_size, 543 ordered->file_offset + ordered->len - 1, 544 EXTENT_DELALLOC, 0)) { 545 goto out; 546 } 547 /* 548 * walk backward from this ordered extent to disk_i_size. 549 * if we find an ordered extent then we can't update disk i_size 550 * yet 551 */ 552 node = &ordered->rb_node; 553 while (1) { 554 node = rb_prev(node); 555 if (!node) 556 break; 557 test = rb_entry(node, struct btrfs_ordered_extent, rb_node); 558 if (test->file_offset + test->len <= disk_i_size) 559 break; 560 if (test->file_offset >= inode->i_size) 561 break; 562 if (test->file_offset >= disk_i_size) 563 goto out; 564 } 565 new_i_size = min_t(u64, entry_end(ordered), i_size_read(inode)); 566 567 /* 568 * at this point, we know we can safely update i_size to at least 569 * the offset from this ordered extent. But, we need to 570 * walk forward and see if ios from higher up in the file have 571 * finished. 572 */ 573 node = rb_next(&ordered->rb_node); 574 i_size_test = 0; 575 if (node) { 576 /* 577 * do we have an area where IO might have finished 578 * between our ordered extent and the next one. 579 */ 580 test = rb_entry(node, struct btrfs_ordered_extent, rb_node); 581 if (test->file_offset > entry_end(ordered)) 582 i_size_test = test->file_offset; 583 } else { 584 i_size_test = i_size_read(inode); 585 } 586 587 /* 588 * i_size_test is the end of a region after this ordered 589 * extent where there are no ordered extents. As long as there 590 * are no delalloc bytes in this area, it is safe to update 591 * disk_i_size to the end of the region. 592 */ 593 if (i_size_test > entry_end(ordered) && 594 !test_range_bit(io_tree, entry_end(ordered), i_size_test - 1, 595 EXTENT_DELALLOC, 0)) { 596 new_i_size = min_t(u64, i_size_test, i_size_read(inode)); 597 } 598 BTRFS_I(inode)->disk_i_size = new_i_size; 599 out: 600 mutex_unlock(&tree->mutex); 601 return 0; 602 } 603 604 /* 605 * search the ordered extents for one corresponding to 'offset' and 606 * try to find a checksum. This is used because we allow pages to 607 * be reclaimed before their checksum is actually put into the btree 608 */ 609 int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr, 610 u32 *sum) 611 { 612 struct btrfs_ordered_sum *ordered_sum; 613 struct btrfs_sector_sum *sector_sums; 614 struct btrfs_ordered_extent *ordered; 615 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; 616 unsigned long num_sectors; 617 unsigned long i; 618 u32 sectorsize = BTRFS_I(inode)->root->sectorsize; 619 int ret = 1; 620 621 ordered = btrfs_lookup_ordered_extent(inode, offset); 622 if (!ordered) 623 return 1; 624 625 mutex_lock(&tree->mutex); 626 list_for_each_entry_reverse(ordered_sum, &ordered->list, list) { 627 if (disk_bytenr >= ordered_sum->bytenr) { 628 num_sectors = ordered_sum->len / sectorsize; 629 sector_sums = ordered_sum->sums; 630 for (i = 0; i < num_sectors; i++) { 631 if (sector_sums[i].bytenr == disk_bytenr) { 632 *sum = sector_sums[i].sum; 633 ret = 0; 634 goto out; 635 } 636 } 637 } 638 } 639 out: 640 mutex_unlock(&tree->mutex); 641 btrfs_put_ordered_extent(ordered); 642 return ret; 643 } 644 645 646 /** 647 * taken from mm/filemap.c because it isn't exported 648 * 649 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 650 * @mapping: address space structure to write 651 * @start: offset in bytes where the range starts 652 * @end: offset in bytes where the range ends (inclusive) 653 * @sync_mode: enable synchronous operation 654 * 655 * Start writeback against all of a mapping's dirty pages that lie 656 * within the byte offsets <start, end> inclusive. 657 * 658 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 659 * opposed to a regular memory cleansing writeback. The difference between 660 * these two operations is that if a dirty page/buffer is encountered, it must 661 * be waited upon, and not just skipped over. 662 */ 663 int btrfs_fdatawrite_range(struct address_space *mapping, loff_t start, 664 loff_t end, int sync_mode) 665 { 666 struct writeback_control wbc = { 667 .sync_mode = sync_mode, 668 .nr_to_write = mapping->nrpages * 2, 669 .range_start = start, 670 .range_end = end, 671 .for_writepages = 1, 672 }; 673 return btrfs_writepages(mapping, &wbc); 674 } 675 676 /** 677 * taken from mm/filemap.c because it isn't exported 678 * 679 * wait_on_page_writeback_range - wait for writeback to complete 680 * @mapping: target address_space 681 * @start: beginning page index 682 * @end: ending page index 683 * 684 * Wait for writeback to complete against pages indexed by start->end 685 * inclusive 686 */ 687 int btrfs_wait_on_page_writeback_range(struct address_space *mapping, 688 pgoff_t start, pgoff_t end) 689 { 690 struct pagevec pvec; 691 int nr_pages; 692 int ret = 0; 693 pgoff_t index; 694 695 if (end < start) 696 return 0; 697 698 pagevec_init(&pvec, 0); 699 index = start; 700 while ((index <= end) && 701 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 702 PAGECACHE_TAG_WRITEBACK, 703 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) { 704 unsigned i; 705 706 for (i = 0; i < nr_pages; i++) { 707 struct page *page = pvec.pages[i]; 708 709 /* until radix tree lookup accepts end_index */ 710 if (page->index > end) 711 continue; 712 713 wait_on_page_writeback(page); 714 if (PageError(page)) 715 ret = -EIO; 716 } 717 pagevec_release(&pvec); 718 cond_resched(); 719 } 720 721 /* Check for outstanding write errors */ 722 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 723 ret = -ENOSPC; 724 if (test_and_clear_bit(AS_EIO, &mapping->flags)) 725 ret = -EIO; 726 727 return ret; 728 } 729