xref: /linux/fs/btrfs/ordered-data.c (revision a33f32244d8550da8b4a26e277ce07d5c6d158b5)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/slab.h>
20 #include <linux/blkdev.h>
21 #include <linux/writeback.h>
22 #include <linux/pagevec.h>
23 #include "ctree.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "extent_io.h"
27 
28 static u64 entry_end(struct btrfs_ordered_extent *entry)
29 {
30 	if (entry->file_offset + entry->len < entry->file_offset)
31 		return (u64)-1;
32 	return entry->file_offset + entry->len;
33 }
34 
35 /* returns NULL if the insertion worked, or it returns the node it did find
36  * in the tree
37  */
38 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
39 				   struct rb_node *node)
40 {
41 	struct rb_node **p = &root->rb_node;
42 	struct rb_node *parent = NULL;
43 	struct btrfs_ordered_extent *entry;
44 
45 	while (*p) {
46 		parent = *p;
47 		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
48 
49 		if (file_offset < entry->file_offset)
50 			p = &(*p)->rb_left;
51 		else if (file_offset >= entry_end(entry))
52 			p = &(*p)->rb_right;
53 		else
54 			return parent;
55 	}
56 
57 	rb_link_node(node, parent, p);
58 	rb_insert_color(node, root);
59 	return NULL;
60 }
61 
62 /*
63  * look for a given offset in the tree, and if it can't be found return the
64  * first lesser offset
65  */
66 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
67 				     struct rb_node **prev_ret)
68 {
69 	struct rb_node *n = root->rb_node;
70 	struct rb_node *prev = NULL;
71 	struct rb_node *test;
72 	struct btrfs_ordered_extent *entry;
73 	struct btrfs_ordered_extent *prev_entry = NULL;
74 
75 	while (n) {
76 		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
77 		prev = n;
78 		prev_entry = entry;
79 
80 		if (file_offset < entry->file_offset)
81 			n = n->rb_left;
82 		else if (file_offset >= entry_end(entry))
83 			n = n->rb_right;
84 		else
85 			return n;
86 	}
87 	if (!prev_ret)
88 		return NULL;
89 
90 	while (prev && file_offset >= entry_end(prev_entry)) {
91 		test = rb_next(prev);
92 		if (!test)
93 			break;
94 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
95 				      rb_node);
96 		if (file_offset < entry_end(prev_entry))
97 			break;
98 
99 		prev = test;
100 	}
101 	if (prev)
102 		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
103 				      rb_node);
104 	while (prev && file_offset < entry_end(prev_entry)) {
105 		test = rb_prev(prev);
106 		if (!test)
107 			break;
108 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
109 				      rb_node);
110 		prev = test;
111 	}
112 	*prev_ret = prev;
113 	return NULL;
114 }
115 
116 /*
117  * helper to check if a given offset is inside a given entry
118  */
119 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
120 {
121 	if (file_offset < entry->file_offset ||
122 	    entry->file_offset + entry->len <= file_offset)
123 		return 0;
124 	return 1;
125 }
126 
127 /*
128  * look find the first ordered struct that has this offset, otherwise
129  * the first one less than this offset
130  */
131 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
132 					  u64 file_offset)
133 {
134 	struct rb_root *root = &tree->tree;
135 	struct rb_node *prev;
136 	struct rb_node *ret;
137 	struct btrfs_ordered_extent *entry;
138 
139 	if (tree->last) {
140 		entry = rb_entry(tree->last, struct btrfs_ordered_extent,
141 				 rb_node);
142 		if (offset_in_entry(entry, file_offset))
143 			return tree->last;
144 	}
145 	ret = __tree_search(root, file_offset, &prev);
146 	if (!ret)
147 		ret = prev;
148 	if (ret)
149 		tree->last = ret;
150 	return ret;
151 }
152 
153 /* allocate and add a new ordered_extent into the per-inode tree.
154  * file_offset is the logical offset in the file
155  *
156  * start is the disk block number of an extent already reserved in the
157  * extent allocation tree
158  *
159  * len is the length of the extent
160  *
161  * The tree is given a single reference on the ordered extent that was
162  * inserted.
163  */
164 int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
165 			     u64 start, u64 len, u64 disk_len, int type)
166 {
167 	struct btrfs_ordered_inode_tree *tree;
168 	struct rb_node *node;
169 	struct btrfs_ordered_extent *entry;
170 
171 	tree = &BTRFS_I(inode)->ordered_tree;
172 	entry = kzalloc(sizeof(*entry), GFP_NOFS);
173 	if (!entry)
174 		return -ENOMEM;
175 
176 	entry->file_offset = file_offset;
177 	entry->start = start;
178 	entry->len = len;
179 	entry->disk_len = disk_len;
180 	entry->bytes_left = len;
181 	entry->inode = inode;
182 	if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
183 		set_bit(type, &entry->flags);
184 
185 	/* one ref for the tree */
186 	atomic_set(&entry->refs, 1);
187 	init_waitqueue_head(&entry->wait);
188 	INIT_LIST_HEAD(&entry->list);
189 	INIT_LIST_HEAD(&entry->root_extent_list);
190 
191 	spin_lock(&tree->lock);
192 	node = tree_insert(&tree->tree, file_offset,
193 			   &entry->rb_node);
194 	BUG_ON(node);
195 	spin_unlock(&tree->lock);
196 
197 	spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
198 	list_add_tail(&entry->root_extent_list,
199 		      &BTRFS_I(inode)->root->fs_info->ordered_extents);
200 	spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
201 
202 	BUG_ON(node);
203 	return 0;
204 }
205 
206 /*
207  * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
208  * when an ordered extent is finished.  If the list covers more than one
209  * ordered extent, it is split across multiples.
210  */
211 int btrfs_add_ordered_sum(struct inode *inode,
212 			  struct btrfs_ordered_extent *entry,
213 			  struct btrfs_ordered_sum *sum)
214 {
215 	struct btrfs_ordered_inode_tree *tree;
216 
217 	tree = &BTRFS_I(inode)->ordered_tree;
218 	spin_lock(&tree->lock);
219 	list_add_tail(&sum->list, &entry->list);
220 	spin_unlock(&tree->lock);
221 	return 0;
222 }
223 
224 /*
225  * this is used to account for finished IO across a given range
226  * of the file.  The IO should not span ordered extents.  If
227  * a given ordered_extent is completely done, 1 is returned, otherwise
228  * 0.
229  *
230  * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
231  * to make sure this function only returns 1 once for a given ordered extent.
232  */
233 int btrfs_dec_test_ordered_pending(struct inode *inode,
234 				   struct btrfs_ordered_extent **cached,
235 				   u64 file_offset, u64 io_size)
236 {
237 	struct btrfs_ordered_inode_tree *tree;
238 	struct rb_node *node;
239 	struct btrfs_ordered_extent *entry = NULL;
240 	int ret;
241 
242 	tree = &BTRFS_I(inode)->ordered_tree;
243 	spin_lock(&tree->lock);
244 	node = tree_search(tree, file_offset);
245 	if (!node) {
246 		ret = 1;
247 		goto out;
248 	}
249 
250 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
251 	if (!offset_in_entry(entry, file_offset)) {
252 		ret = 1;
253 		goto out;
254 	}
255 
256 	if (io_size > entry->bytes_left) {
257 		printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
258 		       (unsigned long long)entry->bytes_left,
259 		       (unsigned long long)io_size);
260 	}
261 	entry->bytes_left -= io_size;
262 	if (entry->bytes_left == 0)
263 		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
264 	else
265 		ret = 1;
266 out:
267 	if (!ret && cached && entry) {
268 		*cached = entry;
269 		atomic_inc(&entry->refs);
270 	}
271 	spin_unlock(&tree->lock);
272 	return ret == 0;
273 }
274 
275 /*
276  * used to drop a reference on an ordered extent.  This will free
277  * the extent if the last reference is dropped
278  */
279 int btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
280 {
281 	struct list_head *cur;
282 	struct btrfs_ordered_sum *sum;
283 
284 	if (atomic_dec_and_test(&entry->refs)) {
285 		while (!list_empty(&entry->list)) {
286 			cur = entry->list.next;
287 			sum = list_entry(cur, struct btrfs_ordered_sum, list);
288 			list_del(&sum->list);
289 			kfree(sum);
290 		}
291 		kfree(entry);
292 	}
293 	return 0;
294 }
295 
296 /*
297  * remove an ordered extent from the tree.  No references are dropped
298  * and you must wake_up entry->wait.  You must hold the tree lock
299  * while you call this function.
300  */
301 static int __btrfs_remove_ordered_extent(struct inode *inode,
302 				struct btrfs_ordered_extent *entry)
303 {
304 	struct btrfs_ordered_inode_tree *tree;
305 	struct btrfs_root *root = BTRFS_I(inode)->root;
306 	struct rb_node *node;
307 
308 	tree = &BTRFS_I(inode)->ordered_tree;
309 	node = &entry->rb_node;
310 	rb_erase(node, &tree->tree);
311 	tree->last = NULL;
312 	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
313 
314 	spin_lock(&BTRFS_I(inode)->accounting_lock);
315 	WARN_ON(!BTRFS_I(inode)->outstanding_extents);
316 	BTRFS_I(inode)->outstanding_extents--;
317 	spin_unlock(&BTRFS_I(inode)->accounting_lock);
318 	btrfs_unreserve_metadata_for_delalloc(BTRFS_I(inode)->root,
319 					      inode, 1);
320 
321 	spin_lock(&root->fs_info->ordered_extent_lock);
322 	list_del_init(&entry->root_extent_list);
323 
324 	/*
325 	 * we have no more ordered extents for this inode and
326 	 * no dirty pages.  We can safely remove it from the
327 	 * list of ordered extents
328 	 */
329 	if (RB_EMPTY_ROOT(&tree->tree) &&
330 	    !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
331 		list_del_init(&BTRFS_I(inode)->ordered_operations);
332 	}
333 	spin_unlock(&root->fs_info->ordered_extent_lock);
334 
335 	return 0;
336 }
337 
338 /*
339  * remove an ordered extent from the tree.  No references are dropped
340  * but any waiters are woken.
341  */
342 int btrfs_remove_ordered_extent(struct inode *inode,
343 				struct btrfs_ordered_extent *entry)
344 {
345 	struct btrfs_ordered_inode_tree *tree;
346 	int ret;
347 
348 	tree = &BTRFS_I(inode)->ordered_tree;
349 	spin_lock(&tree->lock);
350 	ret = __btrfs_remove_ordered_extent(inode, entry);
351 	spin_unlock(&tree->lock);
352 	wake_up(&entry->wait);
353 
354 	return ret;
355 }
356 
357 /*
358  * wait for all the ordered extents in a root.  This is done when balancing
359  * space between drives.
360  */
361 int btrfs_wait_ordered_extents(struct btrfs_root *root,
362 			       int nocow_only, int delay_iput)
363 {
364 	struct list_head splice;
365 	struct list_head *cur;
366 	struct btrfs_ordered_extent *ordered;
367 	struct inode *inode;
368 
369 	INIT_LIST_HEAD(&splice);
370 
371 	spin_lock(&root->fs_info->ordered_extent_lock);
372 	list_splice_init(&root->fs_info->ordered_extents, &splice);
373 	while (!list_empty(&splice)) {
374 		cur = splice.next;
375 		ordered = list_entry(cur, struct btrfs_ordered_extent,
376 				     root_extent_list);
377 		if (nocow_only &&
378 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) &&
379 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
380 			list_move(&ordered->root_extent_list,
381 				  &root->fs_info->ordered_extents);
382 			cond_resched_lock(&root->fs_info->ordered_extent_lock);
383 			continue;
384 		}
385 
386 		list_del_init(&ordered->root_extent_list);
387 		atomic_inc(&ordered->refs);
388 
389 		/*
390 		 * the inode may be getting freed (in sys_unlink path).
391 		 */
392 		inode = igrab(ordered->inode);
393 
394 		spin_unlock(&root->fs_info->ordered_extent_lock);
395 
396 		if (inode) {
397 			btrfs_start_ordered_extent(inode, ordered, 1);
398 			btrfs_put_ordered_extent(ordered);
399 			if (delay_iput)
400 				btrfs_add_delayed_iput(inode);
401 			else
402 				iput(inode);
403 		} else {
404 			btrfs_put_ordered_extent(ordered);
405 		}
406 
407 		spin_lock(&root->fs_info->ordered_extent_lock);
408 	}
409 	spin_unlock(&root->fs_info->ordered_extent_lock);
410 	return 0;
411 }
412 
413 /*
414  * this is used during transaction commit to write all the inodes
415  * added to the ordered operation list.  These files must be fully on
416  * disk before the transaction commits.
417  *
418  * we have two modes here, one is to just start the IO via filemap_flush
419  * and the other is to wait for all the io.  When we wait, we have an
420  * extra check to make sure the ordered operation list really is empty
421  * before we return
422  */
423 int btrfs_run_ordered_operations(struct btrfs_root *root, int wait)
424 {
425 	struct btrfs_inode *btrfs_inode;
426 	struct inode *inode;
427 	struct list_head splice;
428 
429 	INIT_LIST_HEAD(&splice);
430 
431 	mutex_lock(&root->fs_info->ordered_operations_mutex);
432 	spin_lock(&root->fs_info->ordered_extent_lock);
433 again:
434 	list_splice_init(&root->fs_info->ordered_operations, &splice);
435 
436 	while (!list_empty(&splice)) {
437 		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
438 				   ordered_operations);
439 
440 		inode = &btrfs_inode->vfs_inode;
441 
442 		list_del_init(&btrfs_inode->ordered_operations);
443 
444 		/*
445 		 * the inode may be getting freed (in sys_unlink path).
446 		 */
447 		inode = igrab(inode);
448 
449 		if (!wait && inode) {
450 			list_add_tail(&BTRFS_I(inode)->ordered_operations,
451 			      &root->fs_info->ordered_operations);
452 		}
453 		spin_unlock(&root->fs_info->ordered_extent_lock);
454 
455 		if (inode) {
456 			if (wait)
457 				btrfs_wait_ordered_range(inode, 0, (u64)-1);
458 			else
459 				filemap_flush(inode->i_mapping);
460 			btrfs_add_delayed_iput(inode);
461 		}
462 
463 		cond_resched();
464 		spin_lock(&root->fs_info->ordered_extent_lock);
465 	}
466 	if (wait && !list_empty(&root->fs_info->ordered_operations))
467 		goto again;
468 
469 	spin_unlock(&root->fs_info->ordered_extent_lock);
470 	mutex_unlock(&root->fs_info->ordered_operations_mutex);
471 
472 	return 0;
473 }
474 
475 /*
476  * Used to start IO or wait for a given ordered extent to finish.
477  *
478  * If wait is one, this effectively waits on page writeback for all the pages
479  * in the extent, and it waits on the io completion code to insert
480  * metadata into the btree corresponding to the extent
481  */
482 void btrfs_start_ordered_extent(struct inode *inode,
483 				       struct btrfs_ordered_extent *entry,
484 				       int wait)
485 {
486 	u64 start = entry->file_offset;
487 	u64 end = start + entry->len - 1;
488 
489 	/*
490 	 * pages in the range can be dirty, clean or writeback.  We
491 	 * start IO on any dirty ones so the wait doesn't stall waiting
492 	 * for pdflush to find them
493 	 */
494 	filemap_fdatawrite_range(inode->i_mapping, start, end);
495 	if (wait) {
496 		wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
497 						 &entry->flags));
498 	}
499 }
500 
501 /*
502  * Used to wait on ordered extents across a large range of bytes.
503  */
504 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
505 {
506 	u64 end;
507 	u64 orig_end;
508 	u64 wait_end;
509 	struct btrfs_ordered_extent *ordered;
510 	int found;
511 
512 	if (start + len < start) {
513 		orig_end = INT_LIMIT(loff_t);
514 	} else {
515 		orig_end = start + len - 1;
516 		if (orig_end > INT_LIMIT(loff_t))
517 			orig_end = INT_LIMIT(loff_t);
518 	}
519 	wait_end = orig_end;
520 again:
521 	/* start IO across the range first to instantiate any delalloc
522 	 * extents
523 	 */
524 	filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
525 
526 	/* The compression code will leave pages locked but return from
527 	 * writepage without setting the page writeback.  Starting again
528 	 * with WB_SYNC_ALL will end up waiting for the IO to actually start.
529 	 */
530 	filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
531 
532 	filemap_fdatawait_range(inode->i_mapping, start, orig_end);
533 
534 	end = orig_end;
535 	found = 0;
536 	while (1) {
537 		ordered = btrfs_lookup_first_ordered_extent(inode, end);
538 		if (!ordered)
539 			break;
540 		if (ordered->file_offset > orig_end) {
541 			btrfs_put_ordered_extent(ordered);
542 			break;
543 		}
544 		if (ordered->file_offset + ordered->len < start) {
545 			btrfs_put_ordered_extent(ordered);
546 			break;
547 		}
548 		found++;
549 		btrfs_start_ordered_extent(inode, ordered, 1);
550 		end = ordered->file_offset;
551 		btrfs_put_ordered_extent(ordered);
552 		if (end == 0 || end == start)
553 			break;
554 		end--;
555 	}
556 	if (found || test_range_bit(&BTRFS_I(inode)->io_tree, start, orig_end,
557 			   EXTENT_DELALLOC, 0, NULL)) {
558 		schedule_timeout(1);
559 		goto again;
560 	}
561 	return 0;
562 }
563 
564 /*
565  * find an ordered extent corresponding to file_offset.  return NULL if
566  * nothing is found, otherwise take a reference on the extent and return it
567  */
568 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
569 							 u64 file_offset)
570 {
571 	struct btrfs_ordered_inode_tree *tree;
572 	struct rb_node *node;
573 	struct btrfs_ordered_extent *entry = NULL;
574 
575 	tree = &BTRFS_I(inode)->ordered_tree;
576 	spin_lock(&tree->lock);
577 	node = tree_search(tree, file_offset);
578 	if (!node)
579 		goto out;
580 
581 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
582 	if (!offset_in_entry(entry, file_offset))
583 		entry = NULL;
584 	if (entry)
585 		atomic_inc(&entry->refs);
586 out:
587 	spin_unlock(&tree->lock);
588 	return entry;
589 }
590 
591 /*
592  * lookup and return any extent before 'file_offset'.  NULL is returned
593  * if none is found
594  */
595 struct btrfs_ordered_extent *
596 btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
597 {
598 	struct btrfs_ordered_inode_tree *tree;
599 	struct rb_node *node;
600 	struct btrfs_ordered_extent *entry = NULL;
601 
602 	tree = &BTRFS_I(inode)->ordered_tree;
603 	spin_lock(&tree->lock);
604 	node = tree_search(tree, file_offset);
605 	if (!node)
606 		goto out;
607 
608 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
609 	atomic_inc(&entry->refs);
610 out:
611 	spin_unlock(&tree->lock);
612 	return entry;
613 }
614 
615 /*
616  * After an extent is done, call this to conditionally update the on disk
617  * i_size.  i_size is updated to cover any fully written part of the file.
618  */
619 int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
620 				struct btrfs_ordered_extent *ordered)
621 {
622 	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
623 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
624 	u64 disk_i_size;
625 	u64 new_i_size;
626 	u64 i_size_test;
627 	u64 i_size = i_size_read(inode);
628 	struct rb_node *node;
629 	struct rb_node *prev = NULL;
630 	struct btrfs_ordered_extent *test;
631 	int ret = 1;
632 
633 	if (ordered)
634 		offset = entry_end(ordered);
635 	else
636 		offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
637 
638 	spin_lock(&tree->lock);
639 	disk_i_size = BTRFS_I(inode)->disk_i_size;
640 
641 	/* truncate file */
642 	if (disk_i_size > i_size) {
643 		BTRFS_I(inode)->disk_i_size = i_size;
644 		ret = 0;
645 		goto out;
646 	}
647 
648 	/*
649 	 * if the disk i_size is already at the inode->i_size, or
650 	 * this ordered extent is inside the disk i_size, we're done
651 	 */
652 	if (disk_i_size == i_size || offset <= disk_i_size) {
653 		goto out;
654 	}
655 
656 	/*
657 	 * we can't update the disk_isize if there are delalloc bytes
658 	 * between disk_i_size and  this ordered extent
659 	 */
660 	if (test_range_bit(io_tree, disk_i_size, offset - 1,
661 			   EXTENT_DELALLOC, 0, NULL)) {
662 		goto out;
663 	}
664 	/*
665 	 * walk backward from this ordered extent to disk_i_size.
666 	 * if we find an ordered extent then we can't update disk i_size
667 	 * yet
668 	 */
669 	if (ordered) {
670 		node = rb_prev(&ordered->rb_node);
671 	} else {
672 		prev = tree_search(tree, offset);
673 		/*
674 		 * we insert file extents without involving ordered struct,
675 		 * so there should be no ordered struct cover this offset
676 		 */
677 		if (prev) {
678 			test = rb_entry(prev, struct btrfs_ordered_extent,
679 					rb_node);
680 			BUG_ON(offset_in_entry(test, offset));
681 		}
682 		node = prev;
683 	}
684 	while (node) {
685 		test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
686 		if (test->file_offset + test->len <= disk_i_size)
687 			break;
688 		if (test->file_offset >= i_size)
689 			break;
690 		if (test->file_offset >= disk_i_size)
691 			goto out;
692 		node = rb_prev(node);
693 	}
694 	new_i_size = min_t(u64, offset, i_size);
695 
696 	/*
697 	 * at this point, we know we can safely update i_size to at least
698 	 * the offset from this ordered extent.  But, we need to
699 	 * walk forward and see if ios from higher up in the file have
700 	 * finished.
701 	 */
702 	if (ordered) {
703 		node = rb_next(&ordered->rb_node);
704 	} else {
705 		if (prev)
706 			node = rb_next(prev);
707 		else
708 			node = rb_first(&tree->tree);
709 	}
710 	i_size_test = 0;
711 	if (node) {
712 		/*
713 		 * do we have an area where IO might have finished
714 		 * between our ordered extent and the next one.
715 		 */
716 		test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
717 		if (test->file_offset > offset)
718 			i_size_test = test->file_offset;
719 	} else {
720 		i_size_test = i_size;
721 	}
722 
723 	/*
724 	 * i_size_test is the end of a region after this ordered
725 	 * extent where there are no ordered extents.  As long as there
726 	 * are no delalloc bytes in this area, it is safe to update
727 	 * disk_i_size to the end of the region.
728 	 */
729 	if (i_size_test > offset &&
730 	    !test_range_bit(io_tree, offset, i_size_test - 1,
731 			    EXTENT_DELALLOC, 0, NULL)) {
732 		new_i_size = min_t(u64, i_size_test, i_size);
733 	}
734 	BTRFS_I(inode)->disk_i_size = new_i_size;
735 	ret = 0;
736 out:
737 	/*
738 	 * we need to remove the ordered extent with the tree lock held
739 	 * so that other people calling this function don't find our fully
740 	 * processed ordered entry and skip updating the i_size
741 	 */
742 	if (ordered)
743 		__btrfs_remove_ordered_extent(inode, ordered);
744 	spin_unlock(&tree->lock);
745 	if (ordered)
746 		wake_up(&ordered->wait);
747 	return ret;
748 }
749 
750 /*
751  * search the ordered extents for one corresponding to 'offset' and
752  * try to find a checksum.  This is used because we allow pages to
753  * be reclaimed before their checksum is actually put into the btree
754  */
755 int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
756 			   u32 *sum)
757 {
758 	struct btrfs_ordered_sum *ordered_sum;
759 	struct btrfs_sector_sum *sector_sums;
760 	struct btrfs_ordered_extent *ordered;
761 	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
762 	unsigned long num_sectors;
763 	unsigned long i;
764 	u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
765 	int ret = 1;
766 
767 	ordered = btrfs_lookup_ordered_extent(inode, offset);
768 	if (!ordered)
769 		return 1;
770 
771 	spin_lock(&tree->lock);
772 	list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
773 		if (disk_bytenr >= ordered_sum->bytenr) {
774 			num_sectors = ordered_sum->len / sectorsize;
775 			sector_sums = ordered_sum->sums;
776 			for (i = 0; i < num_sectors; i++) {
777 				if (sector_sums[i].bytenr == disk_bytenr) {
778 					*sum = sector_sums[i].sum;
779 					ret = 0;
780 					goto out;
781 				}
782 			}
783 		}
784 	}
785 out:
786 	spin_unlock(&tree->lock);
787 	btrfs_put_ordered_extent(ordered);
788 	return ret;
789 }
790 
791 
792 /*
793  * add a given inode to the list of inodes that must be fully on
794  * disk before a transaction commit finishes.
795  *
796  * This basically gives us the ext3 style data=ordered mode, and it is mostly
797  * used to make sure renamed files are fully on disk.
798  *
799  * It is a noop if the inode is already fully on disk.
800  *
801  * If trans is not null, we'll do a friendly check for a transaction that
802  * is already flushing things and force the IO down ourselves.
803  */
804 int btrfs_add_ordered_operation(struct btrfs_trans_handle *trans,
805 				struct btrfs_root *root,
806 				struct inode *inode)
807 {
808 	u64 last_mod;
809 
810 	last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans);
811 
812 	/*
813 	 * if this file hasn't been changed since the last transaction
814 	 * commit, we can safely return without doing anything
815 	 */
816 	if (last_mod < root->fs_info->last_trans_committed)
817 		return 0;
818 
819 	/*
820 	 * the transaction is already committing.  Just start the IO and
821 	 * don't bother with all of this list nonsense
822 	 */
823 	if (trans && root->fs_info->running_transaction->blocked) {
824 		btrfs_wait_ordered_range(inode, 0, (u64)-1);
825 		return 0;
826 	}
827 
828 	spin_lock(&root->fs_info->ordered_extent_lock);
829 	if (list_empty(&BTRFS_I(inode)->ordered_operations)) {
830 		list_add_tail(&BTRFS_I(inode)->ordered_operations,
831 			      &root->fs_info->ordered_operations);
832 	}
833 	spin_unlock(&root->fs_info->ordered_extent_lock);
834 
835 	return 0;
836 }
837