xref: /linux/fs/btrfs/ordered-data.c (revision a292241cccb7e20e8b997a9a44177e7c98141859)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/slab.h>
20 #include <linux/blkdev.h>
21 #include <linux/writeback.h>
22 #include <linux/pagevec.h>
23 #include "ctree.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "extent_io.h"
27 #include "disk-io.h"
28 
29 static struct kmem_cache *btrfs_ordered_extent_cache;
30 
31 static u64 entry_end(struct btrfs_ordered_extent *entry)
32 {
33 	if (entry->file_offset + entry->len < entry->file_offset)
34 		return (u64)-1;
35 	return entry->file_offset + entry->len;
36 }
37 
38 /* returns NULL if the insertion worked, or it returns the node it did find
39  * in the tree
40  */
41 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
42 				   struct rb_node *node)
43 {
44 	struct rb_node **p = &root->rb_node;
45 	struct rb_node *parent = NULL;
46 	struct btrfs_ordered_extent *entry;
47 
48 	while (*p) {
49 		parent = *p;
50 		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
51 
52 		if (file_offset < entry->file_offset)
53 			p = &(*p)->rb_left;
54 		else if (file_offset >= entry_end(entry))
55 			p = &(*p)->rb_right;
56 		else
57 			return parent;
58 	}
59 
60 	rb_link_node(node, parent, p);
61 	rb_insert_color(node, root);
62 	return NULL;
63 }
64 
65 static void ordered_data_tree_panic(struct inode *inode, int errno,
66 					       u64 offset)
67 {
68 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
69 	btrfs_panic(fs_info, errno, "Inconsistency in ordered tree at offset "
70 		    "%llu\n", offset);
71 }
72 
73 /*
74  * look for a given offset in the tree, and if it can't be found return the
75  * first lesser offset
76  */
77 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
78 				     struct rb_node **prev_ret)
79 {
80 	struct rb_node *n = root->rb_node;
81 	struct rb_node *prev = NULL;
82 	struct rb_node *test;
83 	struct btrfs_ordered_extent *entry;
84 	struct btrfs_ordered_extent *prev_entry = NULL;
85 
86 	while (n) {
87 		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
88 		prev = n;
89 		prev_entry = entry;
90 
91 		if (file_offset < entry->file_offset)
92 			n = n->rb_left;
93 		else if (file_offset >= entry_end(entry))
94 			n = n->rb_right;
95 		else
96 			return n;
97 	}
98 	if (!prev_ret)
99 		return NULL;
100 
101 	while (prev && file_offset >= entry_end(prev_entry)) {
102 		test = rb_next(prev);
103 		if (!test)
104 			break;
105 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
106 				      rb_node);
107 		if (file_offset < entry_end(prev_entry))
108 			break;
109 
110 		prev = test;
111 	}
112 	if (prev)
113 		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
114 				      rb_node);
115 	while (prev && file_offset < entry_end(prev_entry)) {
116 		test = rb_prev(prev);
117 		if (!test)
118 			break;
119 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
120 				      rb_node);
121 		prev = test;
122 	}
123 	*prev_ret = prev;
124 	return NULL;
125 }
126 
127 /*
128  * helper to check if a given offset is inside a given entry
129  */
130 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
131 {
132 	if (file_offset < entry->file_offset ||
133 	    entry->file_offset + entry->len <= file_offset)
134 		return 0;
135 	return 1;
136 }
137 
138 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
139 			  u64 len)
140 {
141 	if (file_offset + len <= entry->file_offset ||
142 	    entry->file_offset + entry->len <= file_offset)
143 		return 0;
144 	return 1;
145 }
146 
147 /*
148  * look find the first ordered struct that has this offset, otherwise
149  * the first one less than this offset
150  */
151 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
152 					  u64 file_offset)
153 {
154 	struct rb_root *root = &tree->tree;
155 	struct rb_node *prev = NULL;
156 	struct rb_node *ret;
157 	struct btrfs_ordered_extent *entry;
158 
159 	if (tree->last) {
160 		entry = rb_entry(tree->last, struct btrfs_ordered_extent,
161 				 rb_node);
162 		if (offset_in_entry(entry, file_offset))
163 			return tree->last;
164 	}
165 	ret = __tree_search(root, file_offset, &prev);
166 	if (!ret)
167 		ret = prev;
168 	if (ret)
169 		tree->last = ret;
170 	return ret;
171 }
172 
173 /* allocate and add a new ordered_extent into the per-inode tree.
174  * file_offset is the logical offset in the file
175  *
176  * start is the disk block number of an extent already reserved in the
177  * extent allocation tree
178  *
179  * len is the length of the extent
180  *
181  * The tree is given a single reference on the ordered extent that was
182  * inserted.
183  */
184 static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
185 				      u64 start, u64 len, u64 disk_len,
186 				      int type, int dio, int compress_type)
187 {
188 	struct btrfs_root *root = BTRFS_I(inode)->root;
189 	struct btrfs_ordered_inode_tree *tree;
190 	struct rb_node *node;
191 	struct btrfs_ordered_extent *entry;
192 
193 	tree = &BTRFS_I(inode)->ordered_tree;
194 	entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
195 	if (!entry)
196 		return -ENOMEM;
197 
198 	entry->file_offset = file_offset;
199 	entry->start = start;
200 	entry->len = len;
201 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) &&
202 	    !(type == BTRFS_ORDERED_NOCOW))
203 		entry->csum_bytes_left = disk_len;
204 	entry->disk_len = disk_len;
205 	entry->bytes_left = len;
206 	entry->inode = igrab(inode);
207 	entry->compress_type = compress_type;
208 	entry->truncated_len = (u64)-1;
209 	if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
210 		set_bit(type, &entry->flags);
211 
212 	if (dio)
213 		set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
214 
215 	/* one ref for the tree */
216 	atomic_set(&entry->refs, 1);
217 	init_waitqueue_head(&entry->wait);
218 	INIT_LIST_HEAD(&entry->list);
219 	INIT_LIST_HEAD(&entry->root_extent_list);
220 	INIT_LIST_HEAD(&entry->work_list);
221 	init_completion(&entry->completion);
222 	INIT_LIST_HEAD(&entry->log_list);
223 
224 	trace_btrfs_ordered_extent_add(inode, entry);
225 
226 	spin_lock_irq(&tree->lock);
227 	node = tree_insert(&tree->tree, file_offset,
228 			   &entry->rb_node);
229 	if (node)
230 		ordered_data_tree_panic(inode, -EEXIST, file_offset);
231 	spin_unlock_irq(&tree->lock);
232 
233 	spin_lock(&root->ordered_extent_lock);
234 	list_add_tail(&entry->root_extent_list,
235 		      &root->ordered_extents);
236 	root->nr_ordered_extents++;
237 	if (root->nr_ordered_extents == 1) {
238 		spin_lock(&root->fs_info->ordered_root_lock);
239 		BUG_ON(!list_empty(&root->ordered_root));
240 		list_add_tail(&root->ordered_root,
241 			      &root->fs_info->ordered_roots);
242 		spin_unlock(&root->fs_info->ordered_root_lock);
243 	}
244 	spin_unlock(&root->ordered_extent_lock);
245 
246 	return 0;
247 }
248 
249 int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
250 			     u64 start, u64 len, u64 disk_len, int type)
251 {
252 	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
253 					  disk_len, type, 0,
254 					  BTRFS_COMPRESS_NONE);
255 }
256 
257 int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
258 				 u64 start, u64 len, u64 disk_len, int type)
259 {
260 	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
261 					  disk_len, type, 1,
262 					  BTRFS_COMPRESS_NONE);
263 }
264 
265 int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
266 				      u64 start, u64 len, u64 disk_len,
267 				      int type, int compress_type)
268 {
269 	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
270 					  disk_len, type, 0,
271 					  compress_type);
272 }
273 
274 /*
275  * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
276  * when an ordered extent is finished.  If the list covers more than one
277  * ordered extent, it is split across multiples.
278  */
279 void btrfs_add_ordered_sum(struct inode *inode,
280 			   struct btrfs_ordered_extent *entry,
281 			   struct btrfs_ordered_sum *sum)
282 {
283 	struct btrfs_ordered_inode_tree *tree;
284 
285 	tree = &BTRFS_I(inode)->ordered_tree;
286 	spin_lock_irq(&tree->lock);
287 	list_add_tail(&sum->list, &entry->list);
288 	WARN_ON(entry->csum_bytes_left < sum->len);
289 	entry->csum_bytes_left -= sum->len;
290 	if (entry->csum_bytes_left == 0)
291 		wake_up(&entry->wait);
292 	spin_unlock_irq(&tree->lock);
293 }
294 
295 /*
296  * this is used to account for finished IO across a given range
297  * of the file.  The IO may span ordered extents.  If
298  * a given ordered_extent is completely done, 1 is returned, otherwise
299  * 0.
300  *
301  * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
302  * to make sure this function only returns 1 once for a given ordered extent.
303  *
304  * file_offset is updated to one byte past the range that is recorded as
305  * complete.  This allows you to walk forward in the file.
306  */
307 int btrfs_dec_test_first_ordered_pending(struct inode *inode,
308 				   struct btrfs_ordered_extent **cached,
309 				   u64 *file_offset, u64 io_size, int uptodate)
310 {
311 	struct btrfs_ordered_inode_tree *tree;
312 	struct rb_node *node;
313 	struct btrfs_ordered_extent *entry = NULL;
314 	int ret;
315 	unsigned long flags;
316 	u64 dec_end;
317 	u64 dec_start;
318 	u64 to_dec;
319 
320 	tree = &BTRFS_I(inode)->ordered_tree;
321 	spin_lock_irqsave(&tree->lock, flags);
322 	node = tree_search(tree, *file_offset);
323 	if (!node) {
324 		ret = 1;
325 		goto out;
326 	}
327 
328 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
329 	if (!offset_in_entry(entry, *file_offset)) {
330 		ret = 1;
331 		goto out;
332 	}
333 
334 	dec_start = max(*file_offset, entry->file_offset);
335 	dec_end = min(*file_offset + io_size, entry->file_offset +
336 		      entry->len);
337 	*file_offset = dec_end;
338 	if (dec_start > dec_end) {
339 		btrfs_crit(BTRFS_I(inode)->root->fs_info,
340 			"bad ordering dec_start %llu end %llu", dec_start, dec_end);
341 	}
342 	to_dec = dec_end - dec_start;
343 	if (to_dec > entry->bytes_left) {
344 		btrfs_crit(BTRFS_I(inode)->root->fs_info,
345 			"bad ordered accounting left %llu size %llu",
346 			entry->bytes_left, to_dec);
347 	}
348 	entry->bytes_left -= to_dec;
349 	if (!uptodate)
350 		set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
351 
352 	if (entry->bytes_left == 0) {
353 		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
354 		if (waitqueue_active(&entry->wait))
355 			wake_up(&entry->wait);
356 	} else {
357 		ret = 1;
358 	}
359 out:
360 	if (!ret && cached && entry) {
361 		*cached = entry;
362 		atomic_inc(&entry->refs);
363 	}
364 	spin_unlock_irqrestore(&tree->lock, flags);
365 	return ret == 0;
366 }
367 
368 /*
369  * this is used to account for finished IO across a given range
370  * of the file.  The IO should not span ordered extents.  If
371  * a given ordered_extent is completely done, 1 is returned, otherwise
372  * 0.
373  *
374  * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
375  * to make sure this function only returns 1 once for a given ordered extent.
376  */
377 int btrfs_dec_test_ordered_pending(struct inode *inode,
378 				   struct btrfs_ordered_extent **cached,
379 				   u64 file_offset, u64 io_size, int uptodate)
380 {
381 	struct btrfs_ordered_inode_tree *tree;
382 	struct rb_node *node;
383 	struct btrfs_ordered_extent *entry = NULL;
384 	unsigned long flags;
385 	int ret;
386 
387 	tree = &BTRFS_I(inode)->ordered_tree;
388 	spin_lock_irqsave(&tree->lock, flags);
389 	if (cached && *cached) {
390 		entry = *cached;
391 		goto have_entry;
392 	}
393 
394 	node = tree_search(tree, file_offset);
395 	if (!node) {
396 		ret = 1;
397 		goto out;
398 	}
399 
400 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
401 have_entry:
402 	if (!offset_in_entry(entry, file_offset)) {
403 		ret = 1;
404 		goto out;
405 	}
406 
407 	if (io_size > entry->bytes_left) {
408 		btrfs_crit(BTRFS_I(inode)->root->fs_info,
409 			   "bad ordered accounting left %llu size %llu",
410 		       entry->bytes_left, io_size);
411 	}
412 	entry->bytes_left -= io_size;
413 	if (!uptodate)
414 		set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
415 
416 	if (entry->bytes_left == 0) {
417 		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
418 		if (waitqueue_active(&entry->wait))
419 			wake_up(&entry->wait);
420 	} else {
421 		ret = 1;
422 	}
423 out:
424 	if (!ret && cached && entry) {
425 		*cached = entry;
426 		atomic_inc(&entry->refs);
427 	}
428 	spin_unlock_irqrestore(&tree->lock, flags);
429 	return ret == 0;
430 }
431 
432 /* Needs to either be called under a log transaction or the log_mutex */
433 void btrfs_get_logged_extents(struct inode *inode,
434 			      struct list_head *logged_list)
435 {
436 	struct btrfs_ordered_inode_tree *tree;
437 	struct btrfs_ordered_extent *ordered;
438 	struct rb_node *n;
439 
440 	tree = &BTRFS_I(inode)->ordered_tree;
441 	spin_lock_irq(&tree->lock);
442 	for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
443 		ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
444 		if (!list_empty(&ordered->log_list))
445 			continue;
446 		list_add_tail(&ordered->log_list, logged_list);
447 		atomic_inc(&ordered->refs);
448 	}
449 	spin_unlock_irq(&tree->lock);
450 }
451 
452 void btrfs_put_logged_extents(struct list_head *logged_list)
453 {
454 	struct btrfs_ordered_extent *ordered;
455 
456 	while (!list_empty(logged_list)) {
457 		ordered = list_first_entry(logged_list,
458 					   struct btrfs_ordered_extent,
459 					   log_list);
460 		list_del_init(&ordered->log_list);
461 		btrfs_put_ordered_extent(ordered);
462 	}
463 }
464 
465 void btrfs_submit_logged_extents(struct list_head *logged_list,
466 				 struct btrfs_root *log)
467 {
468 	int index = log->log_transid % 2;
469 
470 	spin_lock_irq(&log->log_extents_lock[index]);
471 	list_splice_tail(logged_list, &log->logged_list[index]);
472 	spin_unlock_irq(&log->log_extents_lock[index]);
473 }
474 
475 void btrfs_wait_logged_extents(struct btrfs_root *log, u64 transid)
476 {
477 	struct btrfs_ordered_extent *ordered;
478 	int index = transid % 2;
479 
480 	spin_lock_irq(&log->log_extents_lock[index]);
481 	while (!list_empty(&log->logged_list[index])) {
482 		ordered = list_first_entry(&log->logged_list[index],
483 					   struct btrfs_ordered_extent,
484 					   log_list);
485 		list_del_init(&ordered->log_list);
486 		spin_unlock_irq(&log->log_extents_lock[index]);
487 		wait_event(ordered->wait, test_bit(BTRFS_ORDERED_IO_DONE,
488 						   &ordered->flags));
489 		btrfs_put_ordered_extent(ordered);
490 		spin_lock_irq(&log->log_extents_lock[index]);
491 	}
492 	spin_unlock_irq(&log->log_extents_lock[index]);
493 }
494 
495 void btrfs_free_logged_extents(struct btrfs_root *log, u64 transid)
496 {
497 	struct btrfs_ordered_extent *ordered;
498 	int index = transid % 2;
499 
500 	spin_lock_irq(&log->log_extents_lock[index]);
501 	while (!list_empty(&log->logged_list[index])) {
502 		ordered = list_first_entry(&log->logged_list[index],
503 					   struct btrfs_ordered_extent,
504 					   log_list);
505 		list_del_init(&ordered->log_list);
506 		spin_unlock_irq(&log->log_extents_lock[index]);
507 		btrfs_put_ordered_extent(ordered);
508 		spin_lock_irq(&log->log_extents_lock[index]);
509 	}
510 	spin_unlock_irq(&log->log_extents_lock[index]);
511 }
512 
513 /*
514  * used to drop a reference on an ordered extent.  This will free
515  * the extent if the last reference is dropped
516  */
517 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
518 {
519 	struct list_head *cur;
520 	struct btrfs_ordered_sum *sum;
521 
522 	trace_btrfs_ordered_extent_put(entry->inode, entry);
523 
524 	if (atomic_dec_and_test(&entry->refs)) {
525 		if (entry->inode)
526 			btrfs_add_delayed_iput(entry->inode);
527 		while (!list_empty(&entry->list)) {
528 			cur = entry->list.next;
529 			sum = list_entry(cur, struct btrfs_ordered_sum, list);
530 			list_del(&sum->list);
531 			kfree(sum);
532 		}
533 		kmem_cache_free(btrfs_ordered_extent_cache, entry);
534 	}
535 }
536 
537 /*
538  * remove an ordered extent from the tree.  No references are dropped
539  * and waiters are woken up.
540  */
541 void btrfs_remove_ordered_extent(struct inode *inode,
542 				 struct btrfs_ordered_extent *entry)
543 {
544 	struct btrfs_ordered_inode_tree *tree;
545 	struct btrfs_root *root = BTRFS_I(inode)->root;
546 	struct rb_node *node;
547 
548 	tree = &BTRFS_I(inode)->ordered_tree;
549 	spin_lock_irq(&tree->lock);
550 	node = &entry->rb_node;
551 	rb_erase(node, &tree->tree);
552 	if (tree->last == node)
553 		tree->last = NULL;
554 	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
555 	spin_unlock_irq(&tree->lock);
556 
557 	spin_lock(&root->ordered_extent_lock);
558 	list_del_init(&entry->root_extent_list);
559 	root->nr_ordered_extents--;
560 
561 	trace_btrfs_ordered_extent_remove(inode, entry);
562 
563 	/*
564 	 * we have no more ordered extents for this inode and
565 	 * no dirty pages.  We can safely remove it from the
566 	 * list of ordered extents
567 	 */
568 	if (RB_EMPTY_ROOT(&tree->tree) &&
569 	    !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
570 		spin_lock(&root->fs_info->ordered_root_lock);
571 		list_del_init(&BTRFS_I(inode)->ordered_operations);
572 		spin_unlock(&root->fs_info->ordered_root_lock);
573 	}
574 
575 	if (!root->nr_ordered_extents) {
576 		spin_lock(&root->fs_info->ordered_root_lock);
577 		BUG_ON(list_empty(&root->ordered_root));
578 		list_del_init(&root->ordered_root);
579 		spin_unlock(&root->fs_info->ordered_root_lock);
580 	}
581 	spin_unlock(&root->ordered_extent_lock);
582 	wake_up(&entry->wait);
583 }
584 
585 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
586 {
587 	struct btrfs_ordered_extent *ordered;
588 
589 	ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
590 	btrfs_start_ordered_extent(ordered->inode, ordered, 1);
591 	complete(&ordered->completion);
592 }
593 
594 /*
595  * wait for all the ordered extents in a root.  This is done when balancing
596  * space between drives.
597  */
598 int btrfs_wait_ordered_extents(struct btrfs_root *root, int nr)
599 {
600 	struct list_head splice, works;
601 	struct btrfs_ordered_extent *ordered, *next;
602 	int count = 0;
603 
604 	INIT_LIST_HEAD(&splice);
605 	INIT_LIST_HEAD(&works);
606 
607 	mutex_lock(&root->ordered_extent_mutex);
608 	spin_lock(&root->ordered_extent_lock);
609 	list_splice_init(&root->ordered_extents, &splice);
610 	while (!list_empty(&splice) && nr) {
611 		ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
612 					   root_extent_list);
613 		list_move_tail(&ordered->root_extent_list,
614 			       &root->ordered_extents);
615 		atomic_inc(&ordered->refs);
616 		spin_unlock(&root->ordered_extent_lock);
617 
618 		btrfs_init_work(&ordered->flush_work,
619 				btrfs_run_ordered_extent_work, NULL, NULL);
620 		list_add_tail(&ordered->work_list, &works);
621 		btrfs_queue_work(root->fs_info->flush_workers,
622 				 &ordered->flush_work);
623 
624 		cond_resched();
625 		spin_lock(&root->ordered_extent_lock);
626 		if (nr != -1)
627 			nr--;
628 		count++;
629 	}
630 	list_splice_tail(&splice, &root->ordered_extents);
631 	spin_unlock(&root->ordered_extent_lock);
632 
633 	list_for_each_entry_safe(ordered, next, &works, work_list) {
634 		list_del_init(&ordered->work_list);
635 		wait_for_completion(&ordered->completion);
636 		btrfs_put_ordered_extent(ordered);
637 		cond_resched();
638 	}
639 	mutex_unlock(&root->ordered_extent_mutex);
640 
641 	return count;
642 }
643 
644 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, int nr)
645 {
646 	struct btrfs_root *root;
647 	struct list_head splice;
648 	int done;
649 
650 	INIT_LIST_HEAD(&splice);
651 
652 	mutex_lock(&fs_info->ordered_operations_mutex);
653 	spin_lock(&fs_info->ordered_root_lock);
654 	list_splice_init(&fs_info->ordered_roots, &splice);
655 	while (!list_empty(&splice) && nr) {
656 		root = list_first_entry(&splice, struct btrfs_root,
657 					ordered_root);
658 		root = btrfs_grab_fs_root(root);
659 		BUG_ON(!root);
660 		list_move_tail(&root->ordered_root,
661 			       &fs_info->ordered_roots);
662 		spin_unlock(&fs_info->ordered_root_lock);
663 
664 		done = btrfs_wait_ordered_extents(root, nr);
665 		btrfs_put_fs_root(root);
666 
667 		spin_lock(&fs_info->ordered_root_lock);
668 		if (nr != -1) {
669 			nr -= done;
670 			WARN_ON(nr < 0);
671 		}
672 	}
673 	list_splice_tail(&splice, &fs_info->ordered_roots);
674 	spin_unlock(&fs_info->ordered_root_lock);
675 	mutex_unlock(&fs_info->ordered_operations_mutex);
676 }
677 
678 /*
679  * this is used during transaction commit to write all the inodes
680  * added to the ordered operation list.  These files must be fully on
681  * disk before the transaction commits.
682  *
683  * we have two modes here, one is to just start the IO via filemap_flush
684  * and the other is to wait for all the io.  When we wait, we have an
685  * extra check to make sure the ordered operation list really is empty
686  * before we return
687  */
688 int btrfs_run_ordered_operations(struct btrfs_trans_handle *trans,
689 				 struct btrfs_root *root, int wait)
690 {
691 	struct btrfs_inode *btrfs_inode;
692 	struct inode *inode;
693 	struct btrfs_transaction *cur_trans = trans->transaction;
694 	struct list_head splice;
695 	struct list_head works;
696 	struct btrfs_delalloc_work *work, *next;
697 	int ret = 0;
698 
699 	INIT_LIST_HEAD(&splice);
700 	INIT_LIST_HEAD(&works);
701 
702 	mutex_lock(&root->fs_info->ordered_extent_flush_mutex);
703 	spin_lock(&root->fs_info->ordered_root_lock);
704 	list_splice_init(&cur_trans->ordered_operations, &splice);
705 	while (!list_empty(&splice)) {
706 		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
707 				   ordered_operations);
708 		inode = &btrfs_inode->vfs_inode;
709 
710 		list_del_init(&btrfs_inode->ordered_operations);
711 
712 		/*
713 		 * the inode may be getting freed (in sys_unlink path).
714 		 */
715 		inode = igrab(inode);
716 		if (!inode)
717 			continue;
718 
719 		if (!wait)
720 			list_add_tail(&BTRFS_I(inode)->ordered_operations,
721 				      &cur_trans->ordered_operations);
722 		spin_unlock(&root->fs_info->ordered_root_lock);
723 
724 		work = btrfs_alloc_delalloc_work(inode, wait, 1);
725 		if (!work) {
726 			spin_lock(&root->fs_info->ordered_root_lock);
727 			if (list_empty(&BTRFS_I(inode)->ordered_operations))
728 				list_add_tail(&btrfs_inode->ordered_operations,
729 					      &splice);
730 			list_splice_tail(&splice,
731 					 &cur_trans->ordered_operations);
732 			spin_unlock(&root->fs_info->ordered_root_lock);
733 			ret = -ENOMEM;
734 			goto out;
735 		}
736 		list_add_tail(&work->list, &works);
737 		btrfs_queue_work(root->fs_info->flush_workers,
738 				 &work->work);
739 
740 		cond_resched();
741 		spin_lock(&root->fs_info->ordered_root_lock);
742 	}
743 	spin_unlock(&root->fs_info->ordered_root_lock);
744 out:
745 	list_for_each_entry_safe(work, next, &works, list) {
746 		list_del_init(&work->list);
747 		btrfs_wait_and_free_delalloc_work(work);
748 	}
749 	mutex_unlock(&root->fs_info->ordered_extent_flush_mutex);
750 	return ret;
751 }
752 
753 /*
754  * Used to start IO or wait for a given ordered extent to finish.
755  *
756  * If wait is one, this effectively waits on page writeback for all the pages
757  * in the extent, and it waits on the io completion code to insert
758  * metadata into the btree corresponding to the extent
759  */
760 void btrfs_start_ordered_extent(struct inode *inode,
761 				       struct btrfs_ordered_extent *entry,
762 				       int wait)
763 {
764 	u64 start = entry->file_offset;
765 	u64 end = start + entry->len - 1;
766 
767 	trace_btrfs_ordered_extent_start(inode, entry);
768 
769 	/*
770 	 * pages in the range can be dirty, clean or writeback.  We
771 	 * start IO on any dirty ones so the wait doesn't stall waiting
772 	 * for the flusher thread to find them
773 	 */
774 	if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
775 		filemap_fdatawrite_range(inode->i_mapping, start, end);
776 	if (wait) {
777 		wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
778 						 &entry->flags));
779 	}
780 }
781 
782 /*
783  * Used to wait on ordered extents across a large range of bytes.
784  */
785 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
786 {
787 	int ret = 0;
788 	u64 end;
789 	u64 orig_end;
790 	struct btrfs_ordered_extent *ordered;
791 
792 	if (start + len < start) {
793 		orig_end = INT_LIMIT(loff_t);
794 	} else {
795 		orig_end = start + len - 1;
796 		if (orig_end > INT_LIMIT(loff_t))
797 			orig_end = INT_LIMIT(loff_t);
798 	}
799 
800 	/* start IO across the range first to instantiate any delalloc
801 	 * extents
802 	 */
803 	ret = filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
804 	if (ret)
805 		return ret;
806 	/*
807 	 * So with compression we will find and lock a dirty page and clear the
808 	 * first one as dirty, setup an async extent, and immediately return
809 	 * with the entire range locked but with nobody actually marked with
810 	 * writeback.  So we can't just filemap_write_and_wait_range() and
811 	 * expect it to work since it will just kick off a thread to do the
812 	 * actual work.  So we need to call filemap_fdatawrite_range _again_
813 	 * since it will wait on the page lock, which won't be unlocked until
814 	 * after the pages have been marked as writeback and so we're good to go
815 	 * from there.  We have to do this otherwise we'll miss the ordered
816 	 * extents and that results in badness.  Please Josef, do not think you
817 	 * know better and pull this out at some point in the future, it is
818 	 * right and you are wrong.
819 	 */
820 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
821 		     &BTRFS_I(inode)->runtime_flags)) {
822 		ret = filemap_fdatawrite_range(inode->i_mapping, start,
823 					       orig_end);
824 		if (ret)
825 			return ret;
826 	}
827 	ret = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
828 	if (ret)
829 		return ret;
830 
831 	end = orig_end;
832 	while (1) {
833 		ordered = btrfs_lookup_first_ordered_extent(inode, end);
834 		if (!ordered)
835 			break;
836 		if (ordered->file_offset > orig_end) {
837 			btrfs_put_ordered_extent(ordered);
838 			break;
839 		}
840 		if (ordered->file_offset + ordered->len <= start) {
841 			btrfs_put_ordered_extent(ordered);
842 			break;
843 		}
844 		btrfs_start_ordered_extent(inode, ordered, 1);
845 		end = ordered->file_offset;
846 		if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
847 			ret = -EIO;
848 		btrfs_put_ordered_extent(ordered);
849 		if (ret || end == 0 || end == start)
850 			break;
851 		end--;
852 	}
853 	return ret;
854 }
855 
856 /*
857  * find an ordered extent corresponding to file_offset.  return NULL if
858  * nothing is found, otherwise take a reference on the extent and return it
859  */
860 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
861 							 u64 file_offset)
862 {
863 	struct btrfs_ordered_inode_tree *tree;
864 	struct rb_node *node;
865 	struct btrfs_ordered_extent *entry = NULL;
866 
867 	tree = &BTRFS_I(inode)->ordered_tree;
868 	spin_lock_irq(&tree->lock);
869 	node = tree_search(tree, file_offset);
870 	if (!node)
871 		goto out;
872 
873 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
874 	if (!offset_in_entry(entry, file_offset))
875 		entry = NULL;
876 	if (entry)
877 		atomic_inc(&entry->refs);
878 out:
879 	spin_unlock_irq(&tree->lock);
880 	return entry;
881 }
882 
883 /* Since the DIO code tries to lock a wide area we need to look for any ordered
884  * extents that exist in the range, rather than just the start of the range.
885  */
886 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
887 							u64 file_offset,
888 							u64 len)
889 {
890 	struct btrfs_ordered_inode_tree *tree;
891 	struct rb_node *node;
892 	struct btrfs_ordered_extent *entry = NULL;
893 
894 	tree = &BTRFS_I(inode)->ordered_tree;
895 	spin_lock_irq(&tree->lock);
896 	node = tree_search(tree, file_offset);
897 	if (!node) {
898 		node = tree_search(tree, file_offset + len);
899 		if (!node)
900 			goto out;
901 	}
902 
903 	while (1) {
904 		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
905 		if (range_overlaps(entry, file_offset, len))
906 			break;
907 
908 		if (entry->file_offset >= file_offset + len) {
909 			entry = NULL;
910 			break;
911 		}
912 		entry = NULL;
913 		node = rb_next(node);
914 		if (!node)
915 			break;
916 	}
917 out:
918 	if (entry)
919 		atomic_inc(&entry->refs);
920 	spin_unlock_irq(&tree->lock);
921 	return entry;
922 }
923 
924 /*
925  * lookup and return any extent before 'file_offset'.  NULL is returned
926  * if none is found
927  */
928 struct btrfs_ordered_extent *
929 btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
930 {
931 	struct btrfs_ordered_inode_tree *tree;
932 	struct rb_node *node;
933 	struct btrfs_ordered_extent *entry = NULL;
934 
935 	tree = &BTRFS_I(inode)->ordered_tree;
936 	spin_lock_irq(&tree->lock);
937 	node = tree_search(tree, file_offset);
938 	if (!node)
939 		goto out;
940 
941 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
942 	atomic_inc(&entry->refs);
943 out:
944 	spin_unlock_irq(&tree->lock);
945 	return entry;
946 }
947 
948 /*
949  * After an extent is done, call this to conditionally update the on disk
950  * i_size.  i_size is updated to cover any fully written part of the file.
951  */
952 int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
953 				struct btrfs_ordered_extent *ordered)
954 {
955 	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
956 	u64 disk_i_size;
957 	u64 new_i_size;
958 	u64 i_size = i_size_read(inode);
959 	struct rb_node *node;
960 	struct rb_node *prev = NULL;
961 	struct btrfs_ordered_extent *test;
962 	int ret = 1;
963 
964 	spin_lock_irq(&tree->lock);
965 	if (ordered) {
966 		offset = entry_end(ordered);
967 		if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags))
968 			offset = min(offset,
969 				     ordered->file_offset +
970 				     ordered->truncated_len);
971 	} else {
972 		offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
973 	}
974 	disk_i_size = BTRFS_I(inode)->disk_i_size;
975 
976 	/* truncate file */
977 	if (disk_i_size > i_size) {
978 		BTRFS_I(inode)->disk_i_size = i_size;
979 		ret = 0;
980 		goto out;
981 	}
982 
983 	/*
984 	 * if the disk i_size is already at the inode->i_size, or
985 	 * this ordered extent is inside the disk i_size, we're done
986 	 */
987 	if (disk_i_size == i_size)
988 		goto out;
989 
990 	/*
991 	 * We still need to update disk_i_size if outstanding_isize is greater
992 	 * than disk_i_size.
993 	 */
994 	if (offset <= disk_i_size &&
995 	    (!ordered || ordered->outstanding_isize <= disk_i_size))
996 		goto out;
997 
998 	/*
999 	 * walk backward from this ordered extent to disk_i_size.
1000 	 * if we find an ordered extent then we can't update disk i_size
1001 	 * yet
1002 	 */
1003 	if (ordered) {
1004 		node = rb_prev(&ordered->rb_node);
1005 	} else {
1006 		prev = tree_search(tree, offset);
1007 		/*
1008 		 * we insert file extents without involving ordered struct,
1009 		 * so there should be no ordered struct cover this offset
1010 		 */
1011 		if (prev) {
1012 			test = rb_entry(prev, struct btrfs_ordered_extent,
1013 					rb_node);
1014 			BUG_ON(offset_in_entry(test, offset));
1015 		}
1016 		node = prev;
1017 	}
1018 	for (; node; node = rb_prev(node)) {
1019 		test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
1020 
1021 		/* We treat this entry as if it doesnt exist */
1022 		if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
1023 			continue;
1024 		if (test->file_offset + test->len <= disk_i_size)
1025 			break;
1026 		if (test->file_offset >= i_size)
1027 			break;
1028 		if (entry_end(test) > disk_i_size) {
1029 			/*
1030 			 * we don't update disk_i_size now, so record this
1031 			 * undealt i_size. Or we will not know the real
1032 			 * i_size.
1033 			 */
1034 			if (test->outstanding_isize < offset)
1035 				test->outstanding_isize = offset;
1036 			if (ordered &&
1037 			    ordered->outstanding_isize >
1038 			    test->outstanding_isize)
1039 				test->outstanding_isize =
1040 						ordered->outstanding_isize;
1041 			goto out;
1042 		}
1043 	}
1044 	new_i_size = min_t(u64, offset, i_size);
1045 
1046 	/*
1047 	 * Some ordered extents may completed before the current one, and
1048 	 * we hold the real i_size in ->outstanding_isize.
1049 	 */
1050 	if (ordered && ordered->outstanding_isize > new_i_size)
1051 		new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
1052 	BTRFS_I(inode)->disk_i_size = new_i_size;
1053 	ret = 0;
1054 out:
1055 	/*
1056 	 * We need to do this because we can't remove ordered extents until
1057 	 * after the i_disk_size has been updated and then the inode has been
1058 	 * updated to reflect the change, so we need to tell anybody who finds
1059 	 * this ordered extent that we've already done all the real work, we
1060 	 * just haven't completed all the other work.
1061 	 */
1062 	if (ordered)
1063 		set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
1064 	spin_unlock_irq(&tree->lock);
1065 	return ret;
1066 }
1067 
1068 /*
1069  * search the ordered extents for one corresponding to 'offset' and
1070  * try to find a checksum.  This is used because we allow pages to
1071  * be reclaimed before their checksum is actually put into the btree
1072  */
1073 int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
1074 			   u32 *sum, int len)
1075 {
1076 	struct btrfs_ordered_sum *ordered_sum;
1077 	struct btrfs_ordered_extent *ordered;
1078 	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
1079 	unsigned long num_sectors;
1080 	unsigned long i;
1081 	u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
1082 	int index = 0;
1083 
1084 	ordered = btrfs_lookup_ordered_extent(inode, offset);
1085 	if (!ordered)
1086 		return 0;
1087 
1088 	spin_lock_irq(&tree->lock);
1089 	list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
1090 		if (disk_bytenr >= ordered_sum->bytenr &&
1091 		    disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
1092 			i = (disk_bytenr - ordered_sum->bytenr) >>
1093 			    inode->i_sb->s_blocksize_bits;
1094 			num_sectors = ordered_sum->len >>
1095 				      inode->i_sb->s_blocksize_bits;
1096 			num_sectors = min_t(int, len - index, num_sectors - i);
1097 			memcpy(sum + index, ordered_sum->sums + i,
1098 			       num_sectors);
1099 
1100 			index += (int)num_sectors;
1101 			if (index == len)
1102 				goto out;
1103 			disk_bytenr += num_sectors * sectorsize;
1104 		}
1105 	}
1106 out:
1107 	spin_unlock_irq(&tree->lock);
1108 	btrfs_put_ordered_extent(ordered);
1109 	return index;
1110 }
1111 
1112 
1113 /*
1114  * add a given inode to the list of inodes that must be fully on
1115  * disk before a transaction commit finishes.
1116  *
1117  * This basically gives us the ext3 style data=ordered mode, and it is mostly
1118  * used to make sure renamed files are fully on disk.
1119  *
1120  * It is a noop if the inode is already fully on disk.
1121  *
1122  * If trans is not null, we'll do a friendly check for a transaction that
1123  * is already flushing things and force the IO down ourselves.
1124  */
1125 void btrfs_add_ordered_operation(struct btrfs_trans_handle *trans,
1126 				 struct btrfs_root *root, struct inode *inode)
1127 {
1128 	struct btrfs_transaction *cur_trans = trans->transaction;
1129 	u64 last_mod;
1130 
1131 	last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans);
1132 
1133 	/*
1134 	 * if this file hasn't been changed since the last transaction
1135 	 * commit, we can safely return without doing anything
1136 	 */
1137 	if (last_mod <= root->fs_info->last_trans_committed)
1138 		return;
1139 
1140 	spin_lock(&root->fs_info->ordered_root_lock);
1141 	if (list_empty(&BTRFS_I(inode)->ordered_operations)) {
1142 		list_add_tail(&BTRFS_I(inode)->ordered_operations,
1143 			      &cur_trans->ordered_operations);
1144 	}
1145 	spin_unlock(&root->fs_info->ordered_root_lock);
1146 }
1147 
1148 int __init ordered_data_init(void)
1149 {
1150 	btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1151 				     sizeof(struct btrfs_ordered_extent), 0,
1152 				     SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
1153 				     NULL);
1154 	if (!btrfs_ordered_extent_cache)
1155 		return -ENOMEM;
1156 
1157 	return 0;
1158 }
1159 
1160 void ordered_data_exit(void)
1161 {
1162 	if (btrfs_ordered_extent_cache)
1163 		kmem_cache_destroy(btrfs_ordered_extent_cache);
1164 }
1165