1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/slab.h> 7 #include <linux/blkdev.h> 8 #include <linux/writeback.h> 9 #include <linux/sched/mm.h> 10 #include "messages.h" 11 #include "misc.h" 12 #include "ctree.h" 13 #include "transaction.h" 14 #include "btrfs_inode.h" 15 #include "extent_io.h" 16 #include "disk-io.h" 17 #include "compression.h" 18 #include "delalloc-space.h" 19 #include "qgroup.h" 20 #include "subpage.h" 21 #include "file.h" 22 #include "block-group.h" 23 24 static struct kmem_cache *btrfs_ordered_extent_cache; 25 26 static u64 entry_end(struct btrfs_ordered_extent *entry) 27 { 28 if (entry->file_offset + entry->num_bytes < entry->file_offset) 29 return (u64)-1; 30 return entry->file_offset + entry->num_bytes; 31 } 32 33 /* returns NULL if the insertion worked, or it returns the node it did find 34 * in the tree 35 */ 36 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset, 37 struct rb_node *node) 38 { 39 struct rb_node **p = &root->rb_node; 40 struct rb_node *parent = NULL; 41 struct btrfs_ordered_extent *entry; 42 43 while (*p) { 44 parent = *p; 45 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node); 46 47 if (file_offset < entry->file_offset) 48 p = &(*p)->rb_left; 49 else if (file_offset >= entry_end(entry)) 50 p = &(*p)->rb_right; 51 else 52 return parent; 53 } 54 55 rb_link_node(node, parent, p); 56 rb_insert_color(node, root); 57 return NULL; 58 } 59 60 /* 61 * look for a given offset in the tree, and if it can't be found return the 62 * first lesser offset 63 */ 64 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset, 65 struct rb_node **prev_ret) 66 { 67 struct rb_node *n = root->rb_node; 68 struct rb_node *prev = NULL; 69 struct rb_node *test; 70 struct btrfs_ordered_extent *entry; 71 struct btrfs_ordered_extent *prev_entry = NULL; 72 73 while (n) { 74 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node); 75 prev = n; 76 prev_entry = entry; 77 78 if (file_offset < entry->file_offset) 79 n = n->rb_left; 80 else if (file_offset >= entry_end(entry)) 81 n = n->rb_right; 82 else 83 return n; 84 } 85 if (!prev_ret) 86 return NULL; 87 88 while (prev && file_offset >= entry_end(prev_entry)) { 89 test = rb_next(prev); 90 if (!test) 91 break; 92 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 93 rb_node); 94 if (file_offset < entry_end(prev_entry)) 95 break; 96 97 prev = test; 98 } 99 if (prev) 100 prev_entry = rb_entry(prev, struct btrfs_ordered_extent, 101 rb_node); 102 while (prev && file_offset < entry_end(prev_entry)) { 103 test = rb_prev(prev); 104 if (!test) 105 break; 106 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 107 rb_node); 108 prev = test; 109 } 110 *prev_ret = prev; 111 return NULL; 112 } 113 114 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset, 115 u64 len) 116 { 117 if (file_offset + len <= entry->file_offset || 118 entry->file_offset + entry->num_bytes <= file_offset) 119 return 0; 120 return 1; 121 } 122 123 /* 124 * look find the first ordered struct that has this offset, otherwise 125 * the first one less than this offset 126 */ 127 static inline struct rb_node *ordered_tree_search(struct btrfs_inode *inode, 128 u64 file_offset) 129 { 130 struct rb_node *prev = NULL; 131 struct rb_node *ret; 132 struct btrfs_ordered_extent *entry; 133 134 if (inode->ordered_tree_last) { 135 entry = rb_entry(inode->ordered_tree_last, struct btrfs_ordered_extent, 136 rb_node); 137 if (in_range(file_offset, entry->file_offset, entry->num_bytes)) 138 return inode->ordered_tree_last; 139 } 140 ret = __tree_search(&inode->ordered_tree, file_offset, &prev); 141 if (!ret) 142 ret = prev; 143 if (ret) 144 inode->ordered_tree_last = ret; 145 return ret; 146 } 147 148 static struct btrfs_ordered_extent *alloc_ordered_extent( 149 struct btrfs_inode *inode, u64 file_offset, u64 num_bytes, 150 u64 ram_bytes, u64 disk_bytenr, u64 disk_num_bytes, 151 u64 offset, unsigned long flags, int compress_type) 152 { 153 struct btrfs_ordered_extent *entry; 154 int ret; 155 u64 qgroup_rsv = 0; 156 157 if (flags & 158 ((1 << BTRFS_ORDERED_NOCOW) | (1 << BTRFS_ORDERED_PREALLOC))) { 159 /* For nocow write, we can release the qgroup rsv right now */ 160 ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes, &qgroup_rsv); 161 if (ret < 0) 162 return ERR_PTR(ret); 163 } else { 164 /* 165 * The ordered extent has reserved qgroup space, release now 166 * and pass the reserved number for qgroup_record to free. 167 */ 168 ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes, &qgroup_rsv); 169 if (ret < 0) 170 return ERR_PTR(ret); 171 } 172 entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS); 173 if (!entry) 174 return ERR_PTR(-ENOMEM); 175 176 entry->file_offset = file_offset; 177 entry->num_bytes = num_bytes; 178 entry->ram_bytes = ram_bytes; 179 entry->disk_bytenr = disk_bytenr; 180 entry->disk_num_bytes = disk_num_bytes; 181 entry->offset = offset; 182 entry->bytes_left = num_bytes; 183 entry->inode = BTRFS_I(igrab(&inode->vfs_inode)); 184 entry->compress_type = compress_type; 185 entry->truncated_len = (u64)-1; 186 entry->qgroup_rsv = qgroup_rsv; 187 entry->flags = flags; 188 refcount_set(&entry->refs, 1); 189 init_waitqueue_head(&entry->wait); 190 INIT_LIST_HEAD(&entry->list); 191 INIT_LIST_HEAD(&entry->log_list); 192 INIT_LIST_HEAD(&entry->root_extent_list); 193 INIT_LIST_HEAD(&entry->work_list); 194 INIT_LIST_HEAD(&entry->bioc_list); 195 init_completion(&entry->completion); 196 197 /* 198 * We don't need the count_max_extents here, we can assume that all of 199 * that work has been done at higher layers, so this is truly the 200 * smallest the extent is going to get. 201 */ 202 spin_lock(&inode->lock); 203 btrfs_mod_outstanding_extents(inode, 1); 204 spin_unlock(&inode->lock); 205 206 return entry; 207 } 208 209 static void insert_ordered_extent(struct btrfs_ordered_extent *entry) 210 { 211 struct btrfs_inode *inode = entry->inode; 212 struct btrfs_root *root = inode->root; 213 struct btrfs_fs_info *fs_info = root->fs_info; 214 struct rb_node *node; 215 216 trace_btrfs_ordered_extent_add(inode, entry); 217 218 percpu_counter_add_batch(&fs_info->ordered_bytes, entry->num_bytes, 219 fs_info->delalloc_batch); 220 221 /* One ref for the tree. */ 222 refcount_inc(&entry->refs); 223 224 spin_lock_irq(&inode->ordered_tree_lock); 225 node = tree_insert(&inode->ordered_tree, entry->file_offset, 226 &entry->rb_node); 227 if (unlikely(node)) 228 btrfs_panic(fs_info, -EEXIST, 229 "inconsistency in ordered tree at offset %llu", 230 entry->file_offset); 231 spin_unlock_irq(&inode->ordered_tree_lock); 232 233 spin_lock(&root->ordered_extent_lock); 234 list_add_tail(&entry->root_extent_list, 235 &root->ordered_extents); 236 root->nr_ordered_extents++; 237 if (root->nr_ordered_extents == 1) { 238 spin_lock(&fs_info->ordered_root_lock); 239 BUG_ON(!list_empty(&root->ordered_root)); 240 list_add_tail(&root->ordered_root, &fs_info->ordered_roots); 241 spin_unlock(&fs_info->ordered_root_lock); 242 } 243 spin_unlock(&root->ordered_extent_lock); 244 } 245 246 /* 247 * Add an ordered extent to the per-inode tree. 248 * 249 * @inode: Inode that this extent is for. 250 * @file_offset: Logical offset in file where the extent starts. 251 * @num_bytes: Logical length of extent in file. 252 * @ram_bytes: Full length of unencoded data. 253 * @disk_bytenr: Offset of extent on disk. 254 * @disk_num_bytes: Size of extent on disk. 255 * @offset: Offset into unencoded data where file data starts. 256 * @flags: Flags specifying type of extent (1 << BTRFS_ORDERED_*). 257 * @compress_type: Compression algorithm used for data. 258 * 259 * Most of these parameters correspond to &struct btrfs_file_extent_item. The 260 * tree is given a single reference on the ordered extent that was inserted, and 261 * the returned pointer is given a second reference. 262 * 263 * Return: the new ordered extent or error pointer. 264 */ 265 struct btrfs_ordered_extent *btrfs_alloc_ordered_extent( 266 struct btrfs_inode *inode, u64 file_offset, 267 const struct btrfs_file_extent *file_extent, unsigned long flags) 268 { 269 struct btrfs_ordered_extent *entry; 270 271 ASSERT((flags & ~BTRFS_ORDERED_TYPE_FLAGS) == 0); 272 273 /* 274 * For regular writes, we just use the members in @file_extent. 275 * 276 * For NOCOW, we don't really care about the numbers except @start and 277 * file_extent->num_bytes, as we won't insert a file extent item at all. 278 * 279 * For PREALLOC, we do not use ordered extent members, but 280 * btrfs_mark_extent_written() handles everything. 281 * 282 * So here we always pass 0 as offset for NOCOW/PREALLOC ordered extents, 283 * or btrfs_split_ordered_extent() cannot handle it correctly. 284 */ 285 if (flags & ((1U << BTRFS_ORDERED_NOCOW) | (1U << BTRFS_ORDERED_PREALLOC))) 286 entry = alloc_ordered_extent(inode, file_offset, 287 file_extent->num_bytes, 288 file_extent->num_bytes, 289 file_extent->disk_bytenr + file_extent->offset, 290 file_extent->num_bytes, 0, flags, 291 file_extent->compression); 292 else 293 entry = alloc_ordered_extent(inode, file_offset, 294 file_extent->num_bytes, 295 file_extent->ram_bytes, 296 file_extent->disk_bytenr, 297 file_extent->disk_num_bytes, 298 file_extent->offset, flags, 299 file_extent->compression); 300 if (!IS_ERR(entry)) 301 insert_ordered_extent(entry); 302 return entry; 303 } 304 305 /* 306 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted 307 * when an ordered extent is finished. If the list covers more than one 308 * ordered extent, it is split across multiples. 309 */ 310 void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry, 311 struct btrfs_ordered_sum *sum) 312 { 313 struct btrfs_inode *inode = entry->inode; 314 315 spin_lock_irq(&inode->ordered_tree_lock); 316 list_add_tail(&sum->list, &entry->list); 317 spin_unlock_irq(&inode->ordered_tree_lock); 318 } 319 320 void btrfs_mark_ordered_extent_error(struct btrfs_ordered_extent *ordered) 321 { 322 if (!test_and_set_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) 323 mapping_set_error(ordered->inode->vfs_inode.i_mapping, -EIO); 324 } 325 326 static void finish_ordered_fn(struct btrfs_work *work) 327 { 328 struct btrfs_ordered_extent *ordered_extent; 329 330 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 331 btrfs_finish_ordered_io(ordered_extent); 332 } 333 334 static bool can_finish_ordered_extent(struct btrfs_ordered_extent *ordered, 335 struct page *page, u64 file_offset, 336 u64 len, bool uptodate) 337 { 338 struct btrfs_inode *inode = ordered->inode; 339 struct btrfs_fs_info *fs_info = inode->root->fs_info; 340 341 lockdep_assert_held(&inode->ordered_tree_lock); 342 343 if (page) { 344 ASSERT(page->mapping); 345 ASSERT(page_offset(page) <= file_offset); 346 ASSERT(file_offset + len <= page_offset(page) + PAGE_SIZE); 347 348 /* 349 * Ordered (Private2) bit indicates whether we still have 350 * pending io unfinished for the ordered extent. 351 * 352 * If there's no such bit, we need to skip to next range. 353 */ 354 if (!btrfs_folio_test_ordered(fs_info, page_folio(page), 355 file_offset, len)) 356 return false; 357 btrfs_folio_clear_ordered(fs_info, page_folio(page), file_offset, len); 358 } 359 360 /* Now we're fine to update the accounting. */ 361 if (WARN_ON_ONCE(len > ordered->bytes_left)) { 362 btrfs_crit(fs_info, 363 "bad ordered extent accounting, root=%llu ino=%llu OE offset=%llu OE len=%llu to_dec=%llu left=%llu", 364 btrfs_root_id(inode->root), btrfs_ino(inode), 365 ordered->file_offset, ordered->num_bytes, 366 len, ordered->bytes_left); 367 ordered->bytes_left = 0; 368 } else { 369 ordered->bytes_left -= len; 370 } 371 372 if (!uptodate) 373 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 374 375 if (ordered->bytes_left) 376 return false; 377 378 /* 379 * All the IO of the ordered extent is finished, we need to queue 380 * the finish_func to be executed. 381 */ 382 set_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags); 383 cond_wake_up(&ordered->wait); 384 refcount_inc(&ordered->refs); 385 trace_btrfs_ordered_extent_mark_finished(inode, ordered); 386 return true; 387 } 388 389 static void btrfs_queue_ordered_fn(struct btrfs_ordered_extent *ordered) 390 { 391 struct btrfs_inode *inode = ordered->inode; 392 struct btrfs_fs_info *fs_info = inode->root->fs_info; 393 struct btrfs_workqueue *wq = btrfs_is_free_space_inode(inode) ? 394 fs_info->endio_freespace_worker : fs_info->endio_write_workers; 395 396 btrfs_init_work(&ordered->work, finish_ordered_fn, NULL); 397 btrfs_queue_work(wq, &ordered->work); 398 } 399 400 void btrfs_finish_ordered_extent(struct btrfs_ordered_extent *ordered, 401 struct page *page, u64 file_offset, u64 len, 402 bool uptodate) 403 { 404 struct btrfs_inode *inode = ordered->inode; 405 unsigned long flags; 406 bool ret; 407 408 trace_btrfs_finish_ordered_extent(inode, file_offset, len, uptodate); 409 410 spin_lock_irqsave(&inode->ordered_tree_lock, flags); 411 ret = can_finish_ordered_extent(ordered, page, file_offset, len, uptodate); 412 spin_unlock_irqrestore(&inode->ordered_tree_lock, flags); 413 414 /* 415 * If this is a COW write it means we created new extent maps for the 416 * range and they point to unwritten locations if we got an error either 417 * before submitting a bio or during IO. 418 * 419 * We have marked the ordered extent with BTRFS_ORDERED_IOERR, and we 420 * are queuing its completion below. During completion, at 421 * btrfs_finish_one_ordered(), we will drop the extent maps for the 422 * unwritten extents. 423 * 424 * However because completion runs in a work queue we can end up having 425 * a fast fsync running before that. In the case of direct IO, once we 426 * unlock the inode the fsync might start, and we queue the completion 427 * before unlocking the inode. In the case of buffered IO when writeback 428 * finishes (end_bbio_data_write()) we queue the completion, so if the 429 * writeback was triggered by a fast fsync, the fsync might start 430 * logging before ordered extent completion runs in the work queue. 431 * 432 * The fast fsync will log file extent items based on the extent maps it 433 * finds, so if by the time it collects extent maps the ordered extent 434 * completion didn't happen yet, it will log file extent items that 435 * point to unwritten extents, resulting in a corruption if a crash 436 * happens and the log tree is replayed. Note that a fast fsync does not 437 * wait for completion of ordered extents in order to reduce latency. 438 * 439 * Set a flag in the inode so that the next fast fsync will wait for 440 * ordered extents to complete before starting to log. 441 */ 442 if (!uptodate && !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) 443 set_bit(BTRFS_INODE_COW_WRITE_ERROR, &inode->runtime_flags); 444 445 if (ret) 446 btrfs_queue_ordered_fn(ordered); 447 } 448 449 /* 450 * Mark all ordered extents io inside the specified range finished. 451 * 452 * @page: The involved page for the operation. 453 * For uncompressed buffered IO, the page status also needs to be 454 * updated to indicate whether the pending ordered io is finished. 455 * Can be NULL for direct IO and compressed write. 456 * For these cases, callers are ensured they won't execute the 457 * endio function twice. 458 * 459 * This function is called for endio, thus the range must have ordered 460 * extent(s) covering it. 461 */ 462 void btrfs_mark_ordered_io_finished(struct btrfs_inode *inode, 463 struct page *page, u64 file_offset, 464 u64 num_bytes, bool uptodate) 465 { 466 struct rb_node *node; 467 struct btrfs_ordered_extent *entry = NULL; 468 unsigned long flags; 469 u64 cur = file_offset; 470 471 trace_btrfs_writepage_end_io_hook(inode, file_offset, 472 file_offset + num_bytes - 1, 473 uptodate); 474 475 spin_lock_irqsave(&inode->ordered_tree_lock, flags); 476 while (cur < file_offset + num_bytes) { 477 u64 entry_end; 478 u64 end; 479 u32 len; 480 481 node = ordered_tree_search(inode, cur); 482 /* No ordered extents at all */ 483 if (!node) 484 break; 485 486 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 487 entry_end = entry->file_offset + entry->num_bytes; 488 /* 489 * |<-- OE --->| | 490 * cur 491 * Go to next OE. 492 */ 493 if (cur >= entry_end) { 494 node = rb_next(node); 495 /* No more ordered extents, exit */ 496 if (!node) 497 break; 498 entry = rb_entry(node, struct btrfs_ordered_extent, 499 rb_node); 500 501 /* Go to next ordered extent and continue */ 502 cur = entry->file_offset; 503 continue; 504 } 505 /* 506 * | |<--- OE --->| 507 * cur 508 * Go to the start of OE. 509 */ 510 if (cur < entry->file_offset) { 511 cur = entry->file_offset; 512 continue; 513 } 514 515 /* 516 * Now we are definitely inside one ordered extent. 517 * 518 * |<--- OE --->| 519 * | 520 * cur 521 */ 522 end = min(entry->file_offset + entry->num_bytes, 523 file_offset + num_bytes) - 1; 524 ASSERT(end + 1 - cur < U32_MAX); 525 len = end + 1 - cur; 526 527 if (can_finish_ordered_extent(entry, page, cur, len, uptodate)) { 528 spin_unlock_irqrestore(&inode->ordered_tree_lock, flags); 529 btrfs_queue_ordered_fn(entry); 530 spin_lock_irqsave(&inode->ordered_tree_lock, flags); 531 } 532 cur += len; 533 } 534 spin_unlock_irqrestore(&inode->ordered_tree_lock, flags); 535 } 536 537 /* 538 * Finish IO for one ordered extent across a given range. The range can only 539 * contain one ordered extent. 540 * 541 * @cached: The cached ordered extent. If not NULL, we can skip the tree 542 * search and use the ordered extent directly. 543 * Will be also used to store the finished ordered extent. 544 * @file_offset: File offset for the finished IO 545 * @io_size: Length of the finish IO range 546 * 547 * Return true if the ordered extent is finished in the range, and update 548 * @cached. 549 * Return false otherwise. 550 * 551 * NOTE: The range can NOT cross multiple ordered extents. 552 * Thus caller should ensure the range doesn't cross ordered extents. 553 */ 554 bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode, 555 struct btrfs_ordered_extent **cached, 556 u64 file_offset, u64 io_size) 557 { 558 struct rb_node *node; 559 struct btrfs_ordered_extent *entry = NULL; 560 unsigned long flags; 561 bool finished = false; 562 563 spin_lock_irqsave(&inode->ordered_tree_lock, flags); 564 if (cached && *cached) { 565 entry = *cached; 566 goto have_entry; 567 } 568 569 node = ordered_tree_search(inode, file_offset); 570 if (!node) 571 goto out; 572 573 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 574 have_entry: 575 if (!in_range(file_offset, entry->file_offset, entry->num_bytes)) 576 goto out; 577 578 if (io_size > entry->bytes_left) 579 btrfs_crit(inode->root->fs_info, 580 "bad ordered accounting left %llu size %llu", 581 entry->bytes_left, io_size); 582 583 entry->bytes_left -= io_size; 584 585 if (entry->bytes_left == 0) { 586 /* 587 * Ensure only one caller can set the flag and finished_ret 588 * accordingly 589 */ 590 finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); 591 /* test_and_set_bit implies a barrier */ 592 cond_wake_up_nomb(&entry->wait); 593 } 594 out: 595 if (finished && cached && entry) { 596 *cached = entry; 597 refcount_inc(&entry->refs); 598 trace_btrfs_ordered_extent_dec_test_pending(inode, entry); 599 } 600 spin_unlock_irqrestore(&inode->ordered_tree_lock, flags); 601 return finished; 602 } 603 604 /* 605 * used to drop a reference on an ordered extent. This will free 606 * the extent if the last reference is dropped 607 */ 608 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry) 609 { 610 struct list_head *cur; 611 struct btrfs_ordered_sum *sum; 612 613 trace_btrfs_ordered_extent_put(entry->inode, entry); 614 615 if (refcount_dec_and_test(&entry->refs)) { 616 ASSERT(list_empty(&entry->root_extent_list)); 617 ASSERT(list_empty(&entry->log_list)); 618 ASSERT(RB_EMPTY_NODE(&entry->rb_node)); 619 if (entry->inode) 620 btrfs_add_delayed_iput(entry->inode); 621 while (!list_empty(&entry->list)) { 622 cur = entry->list.next; 623 sum = list_entry(cur, struct btrfs_ordered_sum, list); 624 list_del(&sum->list); 625 kvfree(sum); 626 } 627 kmem_cache_free(btrfs_ordered_extent_cache, entry); 628 } 629 } 630 631 /* 632 * remove an ordered extent from the tree. No references are dropped 633 * and waiters are woken up. 634 */ 635 void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode, 636 struct btrfs_ordered_extent *entry) 637 { 638 struct btrfs_root *root = btrfs_inode->root; 639 struct btrfs_fs_info *fs_info = root->fs_info; 640 struct rb_node *node; 641 bool pending; 642 bool freespace_inode; 643 644 /* 645 * If this is a free space inode the thread has not acquired the ordered 646 * extents lockdep map. 647 */ 648 freespace_inode = btrfs_is_free_space_inode(btrfs_inode); 649 650 btrfs_lockdep_acquire(fs_info, btrfs_trans_pending_ordered); 651 /* This is paired with alloc_ordered_extent(). */ 652 spin_lock(&btrfs_inode->lock); 653 btrfs_mod_outstanding_extents(btrfs_inode, -1); 654 spin_unlock(&btrfs_inode->lock); 655 if (root != fs_info->tree_root) { 656 u64 release; 657 658 if (test_bit(BTRFS_ORDERED_ENCODED, &entry->flags)) 659 release = entry->disk_num_bytes; 660 else 661 release = entry->num_bytes; 662 btrfs_delalloc_release_metadata(btrfs_inode, release, 663 test_bit(BTRFS_ORDERED_IOERR, 664 &entry->flags)); 665 } 666 667 percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes, 668 fs_info->delalloc_batch); 669 670 spin_lock_irq(&btrfs_inode->ordered_tree_lock); 671 node = &entry->rb_node; 672 rb_erase(node, &btrfs_inode->ordered_tree); 673 RB_CLEAR_NODE(node); 674 if (btrfs_inode->ordered_tree_last == node) 675 btrfs_inode->ordered_tree_last = NULL; 676 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags); 677 pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags); 678 spin_unlock_irq(&btrfs_inode->ordered_tree_lock); 679 680 /* 681 * The current running transaction is waiting on us, we need to let it 682 * know that we're complete and wake it up. 683 */ 684 if (pending) { 685 struct btrfs_transaction *trans; 686 687 /* 688 * The checks for trans are just a formality, it should be set, 689 * but if it isn't we don't want to deref/assert under the spin 690 * lock, so be nice and check if trans is set, but ASSERT() so 691 * if it isn't set a developer will notice. 692 */ 693 spin_lock(&fs_info->trans_lock); 694 trans = fs_info->running_transaction; 695 if (trans) 696 refcount_inc(&trans->use_count); 697 spin_unlock(&fs_info->trans_lock); 698 699 ASSERT(trans || BTRFS_FS_ERROR(fs_info)); 700 if (trans) { 701 if (atomic_dec_and_test(&trans->pending_ordered)) 702 wake_up(&trans->pending_wait); 703 btrfs_put_transaction(trans); 704 } 705 } 706 707 btrfs_lockdep_release(fs_info, btrfs_trans_pending_ordered); 708 709 spin_lock(&root->ordered_extent_lock); 710 list_del_init(&entry->root_extent_list); 711 root->nr_ordered_extents--; 712 713 trace_btrfs_ordered_extent_remove(btrfs_inode, entry); 714 715 if (!root->nr_ordered_extents) { 716 spin_lock(&fs_info->ordered_root_lock); 717 BUG_ON(list_empty(&root->ordered_root)); 718 list_del_init(&root->ordered_root); 719 spin_unlock(&fs_info->ordered_root_lock); 720 } 721 spin_unlock(&root->ordered_extent_lock); 722 wake_up(&entry->wait); 723 if (!freespace_inode) 724 btrfs_lockdep_release(fs_info, btrfs_ordered_extent); 725 } 726 727 static void btrfs_run_ordered_extent_work(struct btrfs_work *work) 728 { 729 struct btrfs_ordered_extent *ordered; 730 731 ordered = container_of(work, struct btrfs_ordered_extent, flush_work); 732 btrfs_start_ordered_extent(ordered); 733 complete(&ordered->completion); 734 } 735 736 /* 737 * Wait for all the ordered extents in a root. Use @bg as range or do whole 738 * range if it's NULL. 739 */ 740 u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr, 741 const struct btrfs_block_group *bg) 742 { 743 struct btrfs_fs_info *fs_info = root->fs_info; 744 LIST_HEAD(splice); 745 LIST_HEAD(skipped); 746 LIST_HEAD(works); 747 struct btrfs_ordered_extent *ordered, *next; 748 u64 count = 0; 749 u64 range_start, range_len; 750 u64 range_end; 751 752 if (bg) { 753 range_start = bg->start; 754 range_len = bg->length; 755 } else { 756 range_start = 0; 757 range_len = U64_MAX; 758 } 759 range_end = range_start + range_len; 760 761 mutex_lock(&root->ordered_extent_mutex); 762 spin_lock(&root->ordered_extent_lock); 763 list_splice_init(&root->ordered_extents, &splice); 764 while (!list_empty(&splice) && nr) { 765 ordered = list_first_entry(&splice, struct btrfs_ordered_extent, 766 root_extent_list); 767 768 if (range_end <= ordered->disk_bytenr || 769 ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) { 770 list_move_tail(&ordered->root_extent_list, &skipped); 771 cond_resched_lock(&root->ordered_extent_lock); 772 continue; 773 } 774 775 list_move_tail(&ordered->root_extent_list, 776 &root->ordered_extents); 777 refcount_inc(&ordered->refs); 778 spin_unlock(&root->ordered_extent_lock); 779 780 btrfs_init_work(&ordered->flush_work, 781 btrfs_run_ordered_extent_work, NULL); 782 list_add_tail(&ordered->work_list, &works); 783 btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work); 784 785 cond_resched(); 786 if (nr != U64_MAX) 787 nr--; 788 count++; 789 spin_lock(&root->ordered_extent_lock); 790 } 791 list_splice_tail(&skipped, &root->ordered_extents); 792 list_splice_tail(&splice, &root->ordered_extents); 793 spin_unlock(&root->ordered_extent_lock); 794 795 list_for_each_entry_safe(ordered, next, &works, work_list) { 796 list_del_init(&ordered->work_list); 797 wait_for_completion(&ordered->completion); 798 btrfs_put_ordered_extent(ordered); 799 cond_resched(); 800 } 801 mutex_unlock(&root->ordered_extent_mutex); 802 803 return count; 804 } 805 806 /* 807 * Wait for @nr ordered extents that intersect the @bg, or the whole range of 808 * the filesystem if @bg is NULL. 809 */ 810 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr, 811 const struct btrfs_block_group *bg) 812 { 813 struct btrfs_root *root; 814 LIST_HEAD(splice); 815 u64 done; 816 817 mutex_lock(&fs_info->ordered_operations_mutex); 818 spin_lock(&fs_info->ordered_root_lock); 819 list_splice_init(&fs_info->ordered_roots, &splice); 820 while (!list_empty(&splice) && nr) { 821 root = list_first_entry(&splice, struct btrfs_root, 822 ordered_root); 823 root = btrfs_grab_root(root); 824 BUG_ON(!root); 825 list_move_tail(&root->ordered_root, 826 &fs_info->ordered_roots); 827 spin_unlock(&fs_info->ordered_root_lock); 828 829 done = btrfs_wait_ordered_extents(root, nr, bg); 830 btrfs_put_root(root); 831 832 if (nr != U64_MAX) 833 nr -= done; 834 835 spin_lock(&fs_info->ordered_root_lock); 836 } 837 list_splice_tail(&splice, &fs_info->ordered_roots); 838 spin_unlock(&fs_info->ordered_root_lock); 839 mutex_unlock(&fs_info->ordered_operations_mutex); 840 } 841 842 /* 843 * Start IO and wait for a given ordered extent to finish. 844 * 845 * Wait on page writeback for all the pages in the extent and the IO completion 846 * code to insert metadata into the btree corresponding to the extent. 847 */ 848 void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry) 849 { 850 u64 start = entry->file_offset; 851 u64 end = start + entry->num_bytes - 1; 852 struct btrfs_inode *inode = entry->inode; 853 bool freespace_inode; 854 855 trace_btrfs_ordered_extent_start(inode, entry); 856 857 /* 858 * If this is a free space inode do not take the ordered extents lockdep 859 * map. 860 */ 861 freespace_inode = btrfs_is_free_space_inode(inode); 862 863 /* 864 * pages in the range can be dirty, clean or writeback. We 865 * start IO on any dirty ones so the wait doesn't stall waiting 866 * for the flusher thread to find them 867 */ 868 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags)) 869 filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end); 870 871 if (!freespace_inode) 872 btrfs_might_wait_for_event(inode->root->fs_info, btrfs_ordered_extent); 873 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, &entry->flags)); 874 } 875 876 /* 877 * Used to wait on ordered extents across a large range of bytes. 878 */ 879 int btrfs_wait_ordered_range(struct btrfs_inode *inode, u64 start, u64 len) 880 { 881 int ret = 0; 882 int ret_wb = 0; 883 u64 end; 884 u64 orig_end; 885 struct btrfs_ordered_extent *ordered; 886 887 if (start + len < start) { 888 orig_end = OFFSET_MAX; 889 } else { 890 orig_end = start + len - 1; 891 if (orig_end > OFFSET_MAX) 892 orig_end = OFFSET_MAX; 893 } 894 895 /* start IO across the range first to instantiate any delalloc 896 * extents 897 */ 898 ret = btrfs_fdatawrite_range(inode, start, orig_end); 899 if (ret) 900 return ret; 901 902 /* 903 * If we have a writeback error don't return immediately. Wait first 904 * for any ordered extents that haven't completed yet. This is to make 905 * sure no one can dirty the same page ranges and call writepages() 906 * before the ordered extents complete - to avoid failures (-EEXIST) 907 * when adding the new ordered extents to the ordered tree. 908 */ 909 ret_wb = filemap_fdatawait_range(inode->vfs_inode.i_mapping, start, orig_end); 910 911 end = orig_end; 912 while (1) { 913 ordered = btrfs_lookup_first_ordered_extent(inode, end); 914 if (!ordered) 915 break; 916 if (ordered->file_offset > orig_end) { 917 btrfs_put_ordered_extent(ordered); 918 break; 919 } 920 if (ordered->file_offset + ordered->num_bytes <= start) { 921 btrfs_put_ordered_extent(ordered); 922 break; 923 } 924 btrfs_start_ordered_extent(ordered); 925 end = ordered->file_offset; 926 /* 927 * If the ordered extent had an error save the error but don't 928 * exit without waiting first for all other ordered extents in 929 * the range to complete. 930 */ 931 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) 932 ret = -EIO; 933 btrfs_put_ordered_extent(ordered); 934 if (end == 0 || end == start) 935 break; 936 end--; 937 } 938 return ret_wb ? ret_wb : ret; 939 } 940 941 /* 942 * find an ordered extent corresponding to file_offset. return NULL if 943 * nothing is found, otherwise take a reference on the extent and return it 944 */ 945 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode, 946 u64 file_offset) 947 { 948 struct rb_node *node; 949 struct btrfs_ordered_extent *entry = NULL; 950 unsigned long flags; 951 952 spin_lock_irqsave(&inode->ordered_tree_lock, flags); 953 node = ordered_tree_search(inode, file_offset); 954 if (!node) 955 goto out; 956 957 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 958 if (!in_range(file_offset, entry->file_offset, entry->num_bytes)) 959 entry = NULL; 960 if (entry) { 961 refcount_inc(&entry->refs); 962 trace_btrfs_ordered_extent_lookup(inode, entry); 963 } 964 out: 965 spin_unlock_irqrestore(&inode->ordered_tree_lock, flags); 966 return entry; 967 } 968 969 /* Since the DIO code tries to lock a wide area we need to look for any ordered 970 * extents that exist in the range, rather than just the start of the range. 971 */ 972 struct btrfs_ordered_extent *btrfs_lookup_ordered_range( 973 struct btrfs_inode *inode, u64 file_offset, u64 len) 974 { 975 struct rb_node *node; 976 struct btrfs_ordered_extent *entry = NULL; 977 978 spin_lock_irq(&inode->ordered_tree_lock); 979 node = ordered_tree_search(inode, file_offset); 980 if (!node) { 981 node = ordered_tree_search(inode, file_offset + len); 982 if (!node) 983 goto out; 984 } 985 986 while (1) { 987 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 988 if (range_overlaps(entry, file_offset, len)) 989 break; 990 991 if (entry->file_offset >= file_offset + len) { 992 entry = NULL; 993 break; 994 } 995 entry = NULL; 996 node = rb_next(node); 997 if (!node) 998 break; 999 } 1000 out: 1001 if (entry) { 1002 refcount_inc(&entry->refs); 1003 trace_btrfs_ordered_extent_lookup_range(inode, entry); 1004 } 1005 spin_unlock_irq(&inode->ordered_tree_lock); 1006 return entry; 1007 } 1008 1009 /* 1010 * Adds all ordered extents to the given list. The list ends up sorted by the 1011 * file_offset of the ordered extents. 1012 */ 1013 void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode, 1014 struct list_head *list) 1015 { 1016 struct rb_node *n; 1017 1018 ASSERT(inode_is_locked(&inode->vfs_inode)); 1019 1020 spin_lock_irq(&inode->ordered_tree_lock); 1021 for (n = rb_first(&inode->ordered_tree); n; n = rb_next(n)) { 1022 struct btrfs_ordered_extent *ordered; 1023 1024 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node); 1025 1026 if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags)) 1027 continue; 1028 1029 ASSERT(list_empty(&ordered->log_list)); 1030 list_add_tail(&ordered->log_list, list); 1031 refcount_inc(&ordered->refs); 1032 trace_btrfs_ordered_extent_lookup_for_logging(inode, ordered); 1033 } 1034 spin_unlock_irq(&inode->ordered_tree_lock); 1035 } 1036 1037 /* 1038 * lookup and return any extent before 'file_offset'. NULL is returned 1039 * if none is found 1040 */ 1041 struct btrfs_ordered_extent * 1042 btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset) 1043 { 1044 struct rb_node *node; 1045 struct btrfs_ordered_extent *entry = NULL; 1046 1047 spin_lock_irq(&inode->ordered_tree_lock); 1048 node = ordered_tree_search(inode, file_offset); 1049 if (!node) 1050 goto out; 1051 1052 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 1053 refcount_inc(&entry->refs); 1054 trace_btrfs_ordered_extent_lookup_first(inode, entry); 1055 out: 1056 spin_unlock_irq(&inode->ordered_tree_lock); 1057 return entry; 1058 } 1059 1060 /* 1061 * Lookup the first ordered extent that overlaps the range 1062 * [@file_offset, @file_offset + @len). 1063 * 1064 * The difference between this and btrfs_lookup_first_ordered_extent() is 1065 * that this one won't return any ordered extent that does not overlap the range. 1066 * And the difference against btrfs_lookup_ordered_extent() is, this function 1067 * ensures the first ordered extent gets returned. 1068 */ 1069 struct btrfs_ordered_extent *btrfs_lookup_first_ordered_range( 1070 struct btrfs_inode *inode, u64 file_offset, u64 len) 1071 { 1072 struct rb_node *node; 1073 struct rb_node *cur; 1074 struct rb_node *prev; 1075 struct rb_node *next; 1076 struct btrfs_ordered_extent *entry = NULL; 1077 1078 spin_lock_irq(&inode->ordered_tree_lock); 1079 node = inode->ordered_tree.rb_node; 1080 /* 1081 * Here we don't want to use tree_search() which will use tree->last 1082 * and screw up the search order. 1083 * And __tree_search() can't return the adjacent ordered extents 1084 * either, thus here we do our own search. 1085 */ 1086 while (node) { 1087 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 1088 1089 if (file_offset < entry->file_offset) { 1090 node = node->rb_left; 1091 } else if (file_offset >= entry_end(entry)) { 1092 node = node->rb_right; 1093 } else { 1094 /* 1095 * Direct hit, got an ordered extent that starts at 1096 * @file_offset 1097 */ 1098 goto out; 1099 } 1100 } 1101 if (!entry) { 1102 /* Empty tree */ 1103 goto out; 1104 } 1105 1106 cur = &entry->rb_node; 1107 /* We got an entry around @file_offset, check adjacent entries */ 1108 if (entry->file_offset < file_offset) { 1109 prev = cur; 1110 next = rb_next(cur); 1111 } else { 1112 prev = rb_prev(cur); 1113 next = cur; 1114 } 1115 if (prev) { 1116 entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node); 1117 if (range_overlaps(entry, file_offset, len)) 1118 goto out; 1119 } 1120 if (next) { 1121 entry = rb_entry(next, struct btrfs_ordered_extent, rb_node); 1122 if (range_overlaps(entry, file_offset, len)) 1123 goto out; 1124 } 1125 /* No ordered extent in the range */ 1126 entry = NULL; 1127 out: 1128 if (entry) { 1129 refcount_inc(&entry->refs); 1130 trace_btrfs_ordered_extent_lookup_first_range(inode, entry); 1131 } 1132 1133 spin_unlock_irq(&inode->ordered_tree_lock); 1134 return entry; 1135 } 1136 1137 /* 1138 * Lock the passed range and ensures all pending ordered extents in it are run 1139 * to completion. 1140 * 1141 * @inode: Inode whose ordered tree is to be searched 1142 * @start: Beginning of range to flush 1143 * @end: Last byte of range to lock 1144 * @cached_state: If passed, will return the extent state responsible for the 1145 * locked range. It's the caller's responsibility to free the 1146 * cached state. 1147 * 1148 * Always return with the given range locked, ensuring after it's called no 1149 * order extent can be pending. 1150 */ 1151 void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start, 1152 u64 end, 1153 struct extent_state **cached_state) 1154 { 1155 struct btrfs_ordered_extent *ordered; 1156 struct extent_state *cache = NULL; 1157 struct extent_state **cachedp = &cache; 1158 1159 if (cached_state) 1160 cachedp = cached_state; 1161 1162 while (1) { 1163 lock_extent(&inode->io_tree, start, end, cachedp); 1164 ordered = btrfs_lookup_ordered_range(inode, start, 1165 end - start + 1); 1166 if (!ordered) { 1167 /* 1168 * If no external cached_state has been passed then 1169 * decrement the extra ref taken for cachedp since we 1170 * aren't exposing it outside of this function 1171 */ 1172 if (!cached_state) 1173 refcount_dec(&cache->refs); 1174 break; 1175 } 1176 unlock_extent(&inode->io_tree, start, end, cachedp); 1177 btrfs_start_ordered_extent(ordered); 1178 btrfs_put_ordered_extent(ordered); 1179 } 1180 } 1181 1182 /* 1183 * Lock the passed range and ensure all pending ordered extents in it are run 1184 * to completion in nowait mode. 1185 * 1186 * Return true if btrfs_lock_ordered_range does not return any extents, 1187 * otherwise false. 1188 */ 1189 bool btrfs_try_lock_ordered_range(struct btrfs_inode *inode, u64 start, u64 end, 1190 struct extent_state **cached_state) 1191 { 1192 struct btrfs_ordered_extent *ordered; 1193 1194 if (!try_lock_extent(&inode->io_tree, start, end, cached_state)) 1195 return false; 1196 1197 ordered = btrfs_lookup_ordered_range(inode, start, end - start + 1); 1198 if (!ordered) 1199 return true; 1200 1201 btrfs_put_ordered_extent(ordered); 1202 unlock_extent(&inode->io_tree, start, end, cached_state); 1203 1204 return false; 1205 } 1206 1207 /* Split out a new ordered extent for this first @len bytes of @ordered. */ 1208 struct btrfs_ordered_extent *btrfs_split_ordered_extent( 1209 struct btrfs_ordered_extent *ordered, u64 len) 1210 { 1211 struct btrfs_inode *inode = ordered->inode; 1212 struct btrfs_root *root = inode->root; 1213 struct btrfs_fs_info *fs_info = root->fs_info; 1214 u64 file_offset = ordered->file_offset; 1215 u64 disk_bytenr = ordered->disk_bytenr; 1216 unsigned long flags = ordered->flags; 1217 struct btrfs_ordered_sum *sum, *tmpsum; 1218 struct btrfs_ordered_extent *new; 1219 struct rb_node *node; 1220 u64 offset = 0; 1221 1222 trace_btrfs_ordered_extent_split(inode, ordered); 1223 1224 ASSERT(!(flags & (1U << BTRFS_ORDERED_COMPRESSED))); 1225 1226 /* 1227 * The entire bio must be covered by the ordered extent, but we can't 1228 * reduce the original extent to a zero length either. 1229 */ 1230 if (WARN_ON_ONCE(len >= ordered->num_bytes)) 1231 return ERR_PTR(-EINVAL); 1232 /* We cannot split partially completed ordered extents. */ 1233 if (ordered->bytes_left) { 1234 ASSERT(!(flags & ~BTRFS_ORDERED_TYPE_FLAGS)); 1235 if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes)) 1236 return ERR_PTR(-EINVAL); 1237 } 1238 /* We cannot split a compressed ordered extent. */ 1239 if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes)) 1240 return ERR_PTR(-EINVAL); 1241 1242 new = alloc_ordered_extent(inode, file_offset, len, len, disk_bytenr, 1243 len, 0, flags, ordered->compress_type); 1244 if (IS_ERR(new)) 1245 return new; 1246 1247 /* One ref for the tree. */ 1248 refcount_inc(&new->refs); 1249 1250 /* 1251 * Take the root's ordered_extent_lock to avoid a race with 1252 * btrfs_wait_ordered_extents() when updating the disk_bytenr and 1253 * disk_num_bytes fields of the ordered extent below. And we disable 1254 * IRQs because the inode's ordered_tree_lock is used in IRQ context 1255 * elsewhere. 1256 * 1257 * There's no concern about a previous caller of 1258 * btrfs_wait_ordered_extents() getting the trimmed ordered extent 1259 * before we insert the new one, because even if it gets the ordered 1260 * extent before it's trimmed and the new one inserted, right before it 1261 * uses it or during its use, the ordered extent might have been 1262 * trimmed in the meanwhile, and it missed the new ordered extent. 1263 * There's no way around this and it's harmless for current use cases, 1264 * so we take the root's ordered_extent_lock to fix that race during 1265 * trimming and silence tools like KCSAN. 1266 */ 1267 spin_lock_irq(&root->ordered_extent_lock); 1268 spin_lock(&inode->ordered_tree_lock); 1269 1270 /* 1271 * We don't have overlapping ordered extents (that would imply double 1272 * allocation of extents) and we checked above that the split length 1273 * does not cross the ordered extent's num_bytes field, so there's 1274 * no need to remove it and re-insert it in the tree. 1275 */ 1276 ordered->file_offset += len; 1277 ordered->disk_bytenr += len; 1278 ordered->num_bytes -= len; 1279 ordered->disk_num_bytes -= len; 1280 ordered->ram_bytes -= len; 1281 1282 if (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags)) { 1283 ASSERT(ordered->bytes_left == 0); 1284 new->bytes_left = 0; 1285 } else { 1286 ordered->bytes_left -= len; 1287 } 1288 1289 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags)) { 1290 if (ordered->truncated_len > len) { 1291 ordered->truncated_len -= len; 1292 } else { 1293 new->truncated_len = ordered->truncated_len; 1294 ordered->truncated_len = 0; 1295 } 1296 } 1297 1298 list_for_each_entry_safe(sum, tmpsum, &ordered->list, list) { 1299 if (offset == len) 1300 break; 1301 list_move_tail(&sum->list, &new->list); 1302 offset += sum->len; 1303 } 1304 1305 node = tree_insert(&inode->ordered_tree, new->file_offset, &new->rb_node); 1306 if (unlikely(node)) 1307 btrfs_panic(fs_info, -EEXIST, 1308 "inconsistency in ordered tree at offset %llu after split", 1309 new->file_offset); 1310 spin_unlock(&inode->ordered_tree_lock); 1311 1312 list_add_tail(&new->root_extent_list, &root->ordered_extents); 1313 root->nr_ordered_extents++; 1314 spin_unlock_irq(&root->ordered_extent_lock); 1315 return new; 1316 } 1317 1318 int __init ordered_data_init(void) 1319 { 1320 btrfs_ordered_extent_cache = KMEM_CACHE(btrfs_ordered_extent, 0); 1321 if (!btrfs_ordered_extent_cache) 1322 return -ENOMEM; 1323 1324 return 0; 1325 } 1326 1327 void __cold ordered_data_exit(void) 1328 { 1329 kmem_cache_destroy(btrfs_ordered_extent_cache); 1330 } 1331