1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/slab.h> 7 #include <linux/blkdev.h> 8 #include <linux/writeback.h> 9 #include <linux/sched/mm.h> 10 #include "messages.h" 11 #include "misc.h" 12 #include "ctree.h" 13 #include "transaction.h" 14 #include "btrfs_inode.h" 15 #include "extent_io.h" 16 #include "disk-io.h" 17 #include "compression.h" 18 #include "delalloc-space.h" 19 #include "qgroup.h" 20 #include "subpage.h" 21 #include "file.h" 22 #include "super.h" 23 24 static struct kmem_cache *btrfs_ordered_extent_cache; 25 26 static u64 entry_end(struct btrfs_ordered_extent *entry) 27 { 28 if (entry->file_offset + entry->num_bytes < entry->file_offset) 29 return (u64)-1; 30 return entry->file_offset + entry->num_bytes; 31 } 32 33 /* returns NULL if the insertion worked, or it returns the node it did find 34 * in the tree 35 */ 36 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset, 37 struct rb_node *node) 38 { 39 struct rb_node **p = &root->rb_node; 40 struct rb_node *parent = NULL; 41 struct btrfs_ordered_extent *entry; 42 43 while (*p) { 44 parent = *p; 45 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node); 46 47 if (file_offset < entry->file_offset) 48 p = &(*p)->rb_left; 49 else if (file_offset >= entry_end(entry)) 50 p = &(*p)->rb_right; 51 else 52 return parent; 53 } 54 55 rb_link_node(node, parent, p); 56 rb_insert_color(node, root); 57 return NULL; 58 } 59 60 /* 61 * look for a given offset in the tree, and if it can't be found return the 62 * first lesser offset 63 */ 64 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset, 65 struct rb_node **prev_ret) 66 { 67 struct rb_node *n = root->rb_node; 68 struct rb_node *prev = NULL; 69 struct rb_node *test; 70 struct btrfs_ordered_extent *entry; 71 struct btrfs_ordered_extent *prev_entry = NULL; 72 73 while (n) { 74 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node); 75 prev = n; 76 prev_entry = entry; 77 78 if (file_offset < entry->file_offset) 79 n = n->rb_left; 80 else if (file_offset >= entry_end(entry)) 81 n = n->rb_right; 82 else 83 return n; 84 } 85 if (!prev_ret) 86 return NULL; 87 88 while (prev && file_offset >= entry_end(prev_entry)) { 89 test = rb_next(prev); 90 if (!test) 91 break; 92 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 93 rb_node); 94 if (file_offset < entry_end(prev_entry)) 95 break; 96 97 prev = test; 98 } 99 if (prev) 100 prev_entry = rb_entry(prev, struct btrfs_ordered_extent, 101 rb_node); 102 while (prev && file_offset < entry_end(prev_entry)) { 103 test = rb_prev(prev); 104 if (!test) 105 break; 106 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 107 rb_node); 108 prev = test; 109 } 110 *prev_ret = prev; 111 return NULL; 112 } 113 114 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset, 115 u64 len) 116 { 117 if (file_offset + len <= entry->file_offset || 118 entry->file_offset + entry->num_bytes <= file_offset) 119 return 0; 120 return 1; 121 } 122 123 /* 124 * look find the first ordered struct that has this offset, otherwise 125 * the first one less than this offset 126 */ 127 static inline struct rb_node *ordered_tree_search(struct btrfs_inode *inode, 128 u64 file_offset) 129 { 130 struct rb_node *prev = NULL; 131 struct rb_node *ret; 132 struct btrfs_ordered_extent *entry; 133 134 if (inode->ordered_tree_last) { 135 entry = rb_entry(inode->ordered_tree_last, struct btrfs_ordered_extent, 136 rb_node); 137 if (in_range(file_offset, entry->file_offset, entry->num_bytes)) 138 return inode->ordered_tree_last; 139 } 140 ret = __tree_search(&inode->ordered_tree, file_offset, &prev); 141 if (!ret) 142 ret = prev; 143 if (ret) 144 inode->ordered_tree_last = ret; 145 return ret; 146 } 147 148 static struct btrfs_ordered_extent *alloc_ordered_extent( 149 struct btrfs_inode *inode, u64 file_offset, u64 num_bytes, 150 u64 ram_bytes, u64 disk_bytenr, u64 disk_num_bytes, 151 u64 offset, unsigned long flags, int compress_type) 152 { 153 struct btrfs_ordered_extent *entry; 154 int ret; 155 156 if (flags & 157 ((1 << BTRFS_ORDERED_NOCOW) | (1 << BTRFS_ORDERED_PREALLOC))) { 158 /* For nocow write, we can release the qgroup rsv right now */ 159 ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes); 160 if (ret < 0) 161 return ERR_PTR(ret); 162 } else { 163 /* 164 * The ordered extent has reserved qgroup space, release now 165 * and pass the reserved number for qgroup_record to free. 166 */ 167 ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes); 168 if (ret < 0) 169 return ERR_PTR(ret); 170 } 171 entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS); 172 if (!entry) 173 return ERR_PTR(-ENOMEM); 174 175 entry->file_offset = file_offset; 176 entry->num_bytes = num_bytes; 177 entry->ram_bytes = ram_bytes; 178 entry->disk_bytenr = disk_bytenr; 179 entry->disk_num_bytes = disk_num_bytes; 180 entry->offset = offset; 181 entry->bytes_left = num_bytes; 182 entry->inode = igrab(&inode->vfs_inode); 183 entry->compress_type = compress_type; 184 entry->truncated_len = (u64)-1; 185 entry->qgroup_rsv = ret; 186 entry->flags = flags; 187 refcount_set(&entry->refs, 1); 188 init_waitqueue_head(&entry->wait); 189 INIT_LIST_HEAD(&entry->list); 190 INIT_LIST_HEAD(&entry->log_list); 191 INIT_LIST_HEAD(&entry->root_extent_list); 192 INIT_LIST_HEAD(&entry->work_list); 193 INIT_LIST_HEAD(&entry->bioc_list); 194 init_completion(&entry->completion); 195 196 /* 197 * We don't need the count_max_extents here, we can assume that all of 198 * that work has been done at higher layers, so this is truly the 199 * smallest the extent is going to get. 200 */ 201 spin_lock(&inode->lock); 202 btrfs_mod_outstanding_extents(inode, 1); 203 spin_unlock(&inode->lock); 204 205 return entry; 206 } 207 208 static void insert_ordered_extent(struct btrfs_ordered_extent *entry) 209 { 210 struct btrfs_inode *inode = BTRFS_I(entry->inode); 211 struct btrfs_root *root = inode->root; 212 struct btrfs_fs_info *fs_info = root->fs_info; 213 struct rb_node *node; 214 215 trace_btrfs_ordered_extent_add(inode, entry); 216 217 percpu_counter_add_batch(&fs_info->ordered_bytes, entry->num_bytes, 218 fs_info->delalloc_batch); 219 220 /* One ref for the tree. */ 221 refcount_inc(&entry->refs); 222 223 spin_lock_irq(&inode->ordered_tree_lock); 224 node = tree_insert(&inode->ordered_tree, entry->file_offset, 225 &entry->rb_node); 226 if (node) 227 btrfs_panic(fs_info, -EEXIST, 228 "inconsistency in ordered tree at offset %llu", 229 entry->file_offset); 230 spin_unlock_irq(&inode->ordered_tree_lock); 231 232 spin_lock(&root->ordered_extent_lock); 233 list_add_tail(&entry->root_extent_list, 234 &root->ordered_extents); 235 root->nr_ordered_extents++; 236 if (root->nr_ordered_extents == 1) { 237 spin_lock(&fs_info->ordered_root_lock); 238 BUG_ON(!list_empty(&root->ordered_root)); 239 list_add_tail(&root->ordered_root, &fs_info->ordered_roots); 240 spin_unlock(&fs_info->ordered_root_lock); 241 } 242 spin_unlock(&root->ordered_extent_lock); 243 } 244 245 /* 246 * Add an ordered extent to the per-inode tree. 247 * 248 * @inode: Inode that this extent is for. 249 * @file_offset: Logical offset in file where the extent starts. 250 * @num_bytes: Logical length of extent in file. 251 * @ram_bytes: Full length of unencoded data. 252 * @disk_bytenr: Offset of extent on disk. 253 * @disk_num_bytes: Size of extent on disk. 254 * @offset: Offset into unencoded data where file data starts. 255 * @flags: Flags specifying type of extent (1 << BTRFS_ORDERED_*). 256 * @compress_type: Compression algorithm used for data. 257 * 258 * Most of these parameters correspond to &struct btrfs_file_extent_item. The 259 * tree is given a single reference on the ordered extent that was inserted, and 260 * the returned pointer is given a second reference. 261 * 262 * Return: the new ordered extent or error pointer. 263 */ 264 struct btrfs_ordered_extent *btrfs_alloc_ordered_extent( 265 struct btrfs_inode *inode, u64 file_offset, 266 u64 num_bytes, u64 ram_bytes, u64 disk_bytenr, 267 u64 disk_num_bytes, u64 offset, unsigned long flags, 268 int compress_type) 269 { 270 struct btrfs_ordered_extent *entry; 271 272 ASSERT((flags & ~BTRFS_ORDERED_TYPE_FLAGS) == 0); 273 274 entry = alloc_ordered_extent(inode, file_offset, num_bytes, ram_bytes, 275 disk_bytenr, disk_num_bytes, offset, flags, 276 compress_type); 277 if (!IS_ERR(entry)) 278 insert_ordered_extent(entry); 279 return entry; 280 } 281 282 /* 283 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted 284 * when an ordered extent is finished. If the list covers more than one 285 * ordered extent, it is split across multiples. 286 */ 287 void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry, 288 struct btrfs_ordered_sum *sum) 289 { 290 struct btrfs_inode *inode = BTRFS_I(entry->inode); 291 292 spin_lock_irq(&inode->ordered_tree_lock); 293 list_add_tail(&sum->list, &entry->list); 294 spin_unlock_irq(&inode->ordered_tree_lock); 295 } 296 297 static void finish_ordered_fn(struct btrfs_work *work) 298 { 299 struct btrfs_ordered_extent *ordered_extent; 300 301 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 302 btrfs_finish_ordered_io(ordered_extent); 303 } 304 305 static bool can_finish_ordered_extent(struct btrfs_ordered_extent *ordered, 306 struct page *page, u64 file_offset, 307 u64 len, bool uptodate) 308 { 309 struct btrfs_inode *inode = BTRFS_I(ordered->inode); 310 struct btrfs_fs_info *fs_info = inode->root->fs_info; 311 312 lockdep_assert_held(&inode->ordered_tree_lock); 313 314 if (page) { 315 ASSERT(page->mapping); 316 ASSERT(page_offset(page) <= file_offset); 317 ASSERT(file_offset + len <= page_offset(page) + PAGE_SIZE); 318 319 /* 320 * Ordered (Private2) bit indicates whether we still have 321 * pending io unfinished for the ordered extent. 322 * 323 * If there's no such bit, we need to skip to next range. 324 */ 325 if (!btrfs_page_test_ordered(fs_info, page, file_offset, len)) 326 return false; 327 btrfs_page_clear_ordered(fs_info, page, file_offset, len); 328 } 329 330 /* Now we're fine to update the accounting. */ 331 if (WARN_ON_ONCE(len > ordered->bytes_left)) { 332 btrfs_crit(fs_info, 333 "bad ordered extent accounting, root=%llu ino=%llu OE offset=%llu OE len=%llu to_dec=%llu left=%llu", 334 inode->root->root_key.objectid, btrfs_ino(inode), 335 ordered->file_offset, ordered->num_bytes, 336 len, ordered->bytes_left); 337 ordered->bytes_left = 0; 338 } else { 339 ordered->bytes_left -= len; 340 } 341 342 if (!uptodate) 343 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 344 345 if (ordered->bytes_left) 346 return false; 347 348 /* 349 * All the IO of the ordered extent is finished, we need to queue 350 * the finish_func to be executed. 351 */ 352 set_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags); 353 cond_wake_up(&ordered->wait); 354 refcount_inc(&ordered->refs); 355 trace_btrfs_ordered_extent_mark_finished(inode, ordered); 356 return true; 357 } 358 359 static void btrfs_queue_ordered_fn(struct btrfs_ordered_extent *ordered) 360 { 361 struct btrfs_inode *inode = BTRFS_I(ordered->inode); 362 struct btrfs_fs_info *fs_info = inode->root->fs_info; 363 struct btrfs_workqueue *wq = btrfs_is_free_space_inode(inode) ? 364 fs_info->endio_freespace_worker : fs_info->endio_write_workers; 365 366 btrfs_init_work(&ordered->work, finish_ordered_fn, NULL); 367 btrfs_queue_work(wq, &ordered->work); 368 } 369 370 bool btrfs_finish_ordered_extent(struct btrfs_ordered_extent *ordered, 371 struct page *page, u64 file_offset, u64 len, 372 bool uptodate) 373 { 374 struct btrfs_inode *inode = BTRFS_I(ordered->inode); 375 unsigned long flags; 376 bool ret; 377 378 trace_btrfs_finish_ordered_extent(inode, file_offset, len, uptodate); 379 380 spin_lock_irqsave(&inode->ordered_tree_lock, flags); 381 ret = can_finish_ordered_extent(ordered, page, file_offset, len, uptodate); 382 spin_unlock_irqrestore(&inode->ordered_tree_lock, flags); 383 384 if (ret) 385 btrfs_queue_ordered_fn(ordered); 386 return ret; 387 } 388 389 /* 390 * Mark all ordered extents io inside the specified range finished. 391 * 392 * @page: The involved page for the operation. 393 * For uncompressed buffered IO, the page status also needs to be 394 * updated to indicate whether the pending ordered io is finished. 395 * Can be NULL for direct IO and compressed write. 396 * For these cases, callers are ensured they won't execute the 397 * endio function twice. 398 * 399 * This function is called for endio, thus the range must have ordered 400 * extent(s) covering it. 401 */ 402 void btrfs_mark_ordered_io_finished(struct btrfs_inode *inode, 403 struct page *page, u64 file_offset, 404 u64 num_bytes, bool uptodate) 405 { 406 struct rb_node *node; 407 struct btrfs_ordered_extent *entry = NULL; 408 unsigned long flags; 409 u64 cur = file_offset; 410 411 trace_btrfs_writepage_end_io_hook(inode, file_offset, 412 file_offset + num_bytes - 1, 413 uptodate); 414 415 spin_lock_irqsave(&inode->ordered_tree_lock, flags); 416 while (cur < file_offset + num_bytes) { 417 u64 entry_end; 418 u64 end; 419 u32 len; 420 421 node = ordered_tree_search(inode, cur); 422 /* No ordered extents at all */ 423 if (!node) 424 break; 425 426 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 427 entry_end = entry->file_offset + entry->num_bytes; 428 /* 429 * |<-- OE --->| | 430 * cur 431 * Go to next OE. 432 */ 433 if (cur >= entry_end) { 434 node = rb_next(node); 435 /* No more ordered extents, exit */ 436 if (!node) 437 break; 438 entry = rb_entry(node, struct btrfs_ordered_extent, 439 rb_node); 440 441 /* Go to next ordered extent and continue */ 442 cur = entry->file_offset; 443 continue; 444 } 445 /* 446 * | |<--- OE --->| 447 * cur 448 * Go to the start of OE. 449 */ 450 if (cur < entry->file_offset) { 451 cur = entry->file_offset; 452 continue; 453 } 454 455 /* 456 * Now we are definitely inside one ordered extent. 457 * 458 * |<--- OE --->| 459 * | 460 * cur 461 */ 462 end = min(entry->file_offset + entry->num_bytes, 463 file_offset + num_bytes) - 1; 464 ASSERT(end + 1 - cur < U32_MAX); 465 len = end + 1 - cur; 466 467 if (can_finish_ordered_extent(entry, page, cur, len, uptodate)) { 468 spin_unlock_irqrestore(&inode->ordered_tree_lock, flags); 469 btrfs_queue_ordered_fn(entry); 470 spin_lock_irqsave(&inode->ordered_tree_lock, flags); 471 } 472 cur += len; 473 } 474 spin_unlock_irqrestore(&inode->ordered_tree_lock, flags); 475 } 476 477 /* 478 * Finish IO for one ordered extent across a given range. The range can only 479 * contain one ordered extent. 480 * 481 * @cached: The cached ordered extent. If not NULL, we can skip the tree 482 * search and use the ordered extent directly. 483 * Will be also used to store the finished ordered extent. 484 * @file_offset: File offset for the finished IO 485 * @io_size: Length of the finish IO range 486 * 487 * Return true if the ordered extent is finished in the range, and update 488 * @cached. 489 * Return false otherwise. 490 * 491 * NOTE: The range can NOT cross multiple ordered extents. 492 * Thus caller should ensure the range doesn't cross ordered extents. 493 */ 494 bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode, 495 struct btrfs_ordered_extent **cached, 496 u64 file_offset, u64 io_size) 497 { 498 struct rb_node *node; 499 struct btrfs_ordered_extent *entry = NULL; 500 unsigned long flags; 501 bool finished = false; 502 503 spin_lock_irqsave(&inode->ordered_tree_lock, flags); 504 if (cached && *cached) { 505 entry = *cached; 506 goto have_entry; 507 } 508 509 node = ordered_tree_search(inode, file_offset); 510 if (!node) 511 goto out; 512 513 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 514 have_entry: 515 if (!in_range(file_offset, entry->file_offset, entry->num_bytes)) 516 goto out; 517 518 if (io_size > entry->bytes_left) 519 btrfs_crit(inode->root->fs_info, 520 "bad ordered accounting left %llu size %llu", 521 entry->bytes_left, io_size); 522 523 entry->bytes_left -= io_size; 524 525 if (entry->bytes_left == 0) { 526 /* 527 * Ensure only one caller can set the flag and finished_ret 528 * accordingly 529 */ 530 finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); 531 /* test_and_set_bit implies a barrier */ 532 cond_wake_up_nomb(&entry->wait); 533 } 534 out: 535 if (finished && cached && entry) { 536 *cached = entry; 537 refcount_inc(&entry->refs); 538 trace_btrfs_ordered_extent_dec_test_pending(inode, entry); 539 } 540 spin_unlock_irqrestore(&inode->ordered_tree_lock, flags); 541 return finished; 542 } 543 544 /* 545 * used to drop a reference on an ordered extent. This will free 546 * the extent if the last reference is dropped 547 */ 548 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry) 549 { 550 struct list_head *cur; 551 struct btrfs_ordered_sum *sum; 552 553 trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry); 554 555 if (refcount_dec_and_test(&entry->refs)) { 556 ASSERT(list_empty(&entry->root_extent_list)); 557 ASSERT(list_empty(&entry->log_list)); 558 ASSERT(RB_EMPTY_NODE(&entry->rb_node)); 559 if (entry->inode) 560 btrfs_add_delayed_iput(BTRFS_I(entry->inode)); 561 while (!list_empty(&entry->list)) { 562 cur = entry->list.next; 563 sum = list_entry(cur, struct btrfs_ordered_sum, list); 564 list_del(&sum->list); 565 kvfree(sum); 566 } 567 kmem_cache_free(btrfs_ordered_extent_cache, entry); 568 } 569 } 570 571 /* 572 * remove an ordered extent from the tree. No references are dropped 573 * and waiters are woken up. 574 */ 575 void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode, 576 struct btrfs_ordered_extent *entry) 577 { 578 struct btrfs_root *root = btrfs_inode->root; 579 struct btrfs_fs_info *fs_info = root->fs_info; 580 struct rb_node *node; 581 bool pending; 582 bool freespace_inode; 583 584 /* 585 * If this is a free space inode the thread has not acquired the ordered 586 * extents lockdep map. 587 */ 588 freespace_inode = btrfs_is_free_space_inode(btrfs_inode); 589 590 btrfs_lockdep_acquire(fs_info, btrfs_trans_pending_ordered); 591 /* This is paired with btrfs_alloc_ordered_extent. */ 592 spin_lock(&btrfs_inode->lock); 593 btrfs_mod_outstanding_extents(btrfs_inode, -1); 594 spin_unlock(&btrfs_inode->lock); 595 if (root != fs_info->tree_root) { 596 u64 release; 597 598 if (test_bit(BTRFS_ORDERED_ENCODED, &entry->flags)) 599 release = entry->disk_num_bytes; 600 else 601 release = entry->num_bytes; 602 btrfs_delalloc_release_metadata(btrfs_inode, release, false); 603 } 604 605 percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes, 606 fs_info->delalloc_batch); 607 608 spin_lock_irq(&btrfs_inode->ordered_tree_lock); 609 node = &entry->rb_node; 610 rb_erase(node, &btrfs_inode->ordered_tree); 611 RB_CLEAR_NODE(node); 612 if (btrfs_inode->ordered_tree_last == node) 613 btrfs_inode->ordered_tree_last = NULL; 614 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags); 615 pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags); 616 spin_unlock_irq(&btrfs_inode->ordered_tree_lock); 617 618 /* 619 * The current running transaction is waiting on us, we need to let it 620 * know that we're complete and wake it up. 621 */ 622 if (pending) { 623 struct btrfs_transaction *trans; 624 625 /* 626 * The checks for trans are just a formality, it should be set, 627 * but if it isn't we don't want to deref/assert under the spin 628 * lock, so be nice and check if trans is set, but ASSERT() so 629 * if it isn't set a developer will notice. 630 */ 631 spin_lock(&fs_info->trans_lock); 632 trans = fs_info->running_transaction; 633 if (trans) 634 refcount_inc(&trans->use_count); 635 spin_unlock(&fs_info->trans_lock); 636 637 ASSERT(trans || BTRFS_FS_ERROR(fs_info)); 638 if (trans) { 639 if (atomic_dec_and_test(&trans->pending_ordered)) 640 wake_up(&trans->pending_wait); 641 btrfs_put_transaction(trans); 642 } 643 } 644 645 btrfs_lockdep_release(fs_info, btrfs_trans_pending_ordered); 646 647 spin_lock(&root->ordered_extent_lock); 648 list_del_init(&entry->root_extent_list); 649 root->nr_ordered_extents--; 650 651 trace_btrfs_ordered_extent_remove(btrfs_inode, entry); 652 653 if (!root->nr_ordered_extents) { 654 spin_lock(&fs_info->ordered_root_lock); 655 BUG_ON(list_empty(&root->ordered_root)); 656 list_del_init(&root->ordered_root); 657 spin_unlock(&fs_info->ordered_root_lock); 658 } 659 spin_unlock(&root->ordered_extent_lock); 660 wake_up(&entry->wait); 661 if (!freespace_inode) 662 btrfs_lockdep_release(fs_info, btrfs_ordered_extent); 663 } 664 665 static void btrfs_run_ordered_extent_work(struct btrfs_work *work) 666 { 667 struct btrfs_ordered_extent *ordered; 668 669 ordered = container_of(work, struct btrfs_ordered_extent, flush_work); 670 btrfs_start_ordered_extent(ordered); 671 complete(&ordered->completion); 672 } 673 674 /* 675 * wait for all the ordered extents in a root. This is done when balancing 676 * space between drives. 677 */ 678 u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr, 679 const u64 range_start, const u64 range_len) 680 { 681 struct btrfs_fs_info *fs_info = root->fs_info; 682 LIST_HEAD(splice); 683 LIST_HEAD(skipped); 684 LIST_HEAD(works); 685 struct btrfs_ordered_extent *ordered, *next; 686 u64 count = 0; 687 const u64 range_end = range_start + range_len; 688 689 mutex_lock(&root->ordered_extent_mutex); 690 spin_lock(&root->ordered_extent_lock); 691 list_splice_init(&root->ordered_extents, &splice); 692 while (!list_empty(&splice) && nr) { 693 ordered = list_first_entry(&splice, struct btrfs_ordered_extent, 694 root_extent_list); 695 696 if (range_end <= ordered->disk_bytenr || 697 ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) { 698 list_move_tail(&ordered->root_extent_list, &skipped); 699 cond_resched_lock(&root->ordered_extent_lock); 700 continue; 701 } 702 703 list_move_tail(&ordered->root_extent_list, 704 &root->ordered_extents); 705 refcount_inc(&ordered->refs); 706 spin_unlock(&root->ordered_extent_lock); 707 708 btrfs_init_work(&ordered->flush_work, 709 btrfs_run_ordered_extent_work, NULL); 710 list_add_tail(&ordered->work_list, &works); 711 btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work); 712 713 cond_resched(); 714 spin_lock(&root->ordered_extent_lock); 715 if (nr != U64_MAX) 716 nr--; 717 count++; 718 } 719 list_splice_tail(&skipped, &root->ordered_extents); 720 list_splice_tail(&splice, &root->ordered_extents); 721 spin_unlock(&root->ordered_extent_lock); 722 723 list_for_each_entry_safe(ordered, next, &works, work_list) { 724 list_del_init(&ordered->work_list); 725 wait_for_completion(&ordered->completion); 726 btrfs_put_ordered_extent(ordered); 727 cond_resched(); 728 } 729 mutex_unlock(&root->ordered_extent_mutex); 730 731 return count; 732 } 733 734 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr, 735 const u64 range_start, const u64 range_len) 736 { 737 struct btrfs_root *root; 738 LIST_HEAD(splice); 739 u64 done; 740 741 mutex_lock(&fs_info->ordered_operations_mutex); 742 spin_lock(&fs_info->ordered_root_lock); 743 list_splice_init(&fs_info->ordered_roots, &splice); 744 while (!list_empty(&splice) && nr) { 745 root = list_first_entry(&splice, struct btrfs_root, 746 ordered_root); 747 root = btrfs_grab_root(root); 748 BUG_ON(!root); 749 list_move_tail(&root->ordered_root, 750 &fs_info->ordered_roots); 751 spin_unlock(&fs_info->ordered_root_lock); 752 753 done = btrfs_wait_ordered_extents(root, nr, 754 range_start, range_len); 755 btrfs_put_root(root); 756 757 spin_lock(&fs_info->ordered_root_lock); 758 if (nr != U64_MAX) { 759 nr -= done; 760 } 761 } 762 list_splice_tail(&splice, &fs_info->ordered_roots); 763 spin_unlock(&fs_info->ordered_root_lock); 764 mutex_unlock(&fs_info->ordered_operations_mutex); 765 } 766 767 /* 768 * Start IO and wait for a given ordered extent to finish. 769 * 770 * Wait on page writeback for all the pages in the extent and the IO completion 771 * code to insert metadata into the btree corresponding to the extent. 772 */ 773 void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry) 774 { 775 u64 start = entry->file_offset; 776 u64 end = start + entry->num_bytes - 1; 777 struct btrfs_inode *inode = BTRFS_I(entry->inode); 778 bool freespace_inode; 779 780 trace_btrfs_ordered_extent_start(inode, entry); 781 782 /* 783 * If this is a free space inode do not take the ordered extents lockdep 784 * map. 785 */ 786 freespace_inode = btrfs_is_free_space_inode(inode); 787 788 /* 789 * pages in the range can be dirty, clean or writeback. We 790 * start IO on any dirty ones so the wait doesn't stall waiting 791 * for the flusher thread to find them 792 */ 793 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags)) 794 filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end); 795 796 if (!freespace_inode) 797 btrfs_might_wait_for_event(inode->root->fs_info, btrfs_ordered_extent); 798 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, &entry->flags)); 799 } 800 801 /* 802 * Used to wait on ordered extents across a large range of bytes. 803 */ 804 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len) 805 { 806 int ret = 0; 807 int ret_wb = 0; 808 u64 end; 809 u64 orig_end; 810 struct btrfs_ordered_extent *ordered; 811 812 if (start + len < start) { 813 orig_end = OFFSET_MAX; 814 } else { 815 orig_end = start + len - 1; 816 if (orig_end > OFFSET_MAX) 817 orig_end = OFFSET_MAX; 818 } 819 820 /* start IO across the range first to instantiate any delalloc 821 * extents 822 */ 823 ret = btrfs_fdatawrite_range(inode, start, orig_end); 824 if (ret) 825 return ret; 826 827 /* 828 * If we have a writeback error don't return immediately. Wait first 829 * for any ordered extents that haven't completed yet. This is to make 830 * sure no one can dirty the same page ranges and call writepages() 831 * before the ordered extents complete - to avoid failures (-EEXIST) 832 * when adding the new ordered extents to the ordered tree. 833 */ 834 ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end); 835 836 end = orig_end; 837 while (1) { 838 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end); 839 if (!ordered) 840 break; 841 if (ordered->file_offset > orig_end) { 842 btrfs_put_ordered_extent(ordered); 843 break; 844 } 845 if (ordered->file_offset + ordered->num_bytes <= start) { 846 btrfs_put_ordered_extent(ordered); 847 break; 848 } 849 btrfs_start_ordered_extent(ordered); 850 end = ordered->file_offset; 851 /* 852 * If the ordered extent had an error save the error but don't 853 * exit without waiting first for all other ordered extents in 854 * the range to complete. 855 */ 856 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) 857 ret = -EIO; 858 btrfs_put_ordered_extent(ordered); 859 if (end == 0 || end == start) 860 break; 861 end--; 862 } 863 return ret_wb ? ret_wb : ret; 864 } 865 866 /* 867 * find an ordered extent corresponding to file_offset. return NULL if 868 * nothing is found, otherwise take a reference on the extent and return it 869 */ 870 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode, 871 u64 file_offset) 872 { 873 struct rb_node *node; 874 struct btrfs_ordered_extent *entry = NULL; 875 unsigned long flags; 876 877 spin_lock_irqsave(&inode->ordered_tree_lock, flags); 878 node = ordered_tree_search(inode, file_offset); 879 if (!node) 880 goto out; 881 882 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 883 if (!in_range(file_offset, entry->file_offset, entry->num_bytes)) 884 entry = NULL; 885 if (entry) { 886 refcount_inc(&entry->refs); 887 trace_btrfs_ordered_extent_lookup(inode, entry); 888 } 889 out: 890 spin_unlock_irqrestore(&inode->ordered_tree_lock, flags); 891 return entry; 892 } 893 894 /* Since the DIO code tries to lock a wide area we need to look for any ordered 895 * extents that exist in the range, rather than just the start of the range. 896 */ 897 struct btrfs_ordered_extent *btrfs_lookup_ordered_range( 898 struct btrfs_inode *inode, u64 file_offset, u64 len) 899 { 900 struct rb_node *node; 901 struct btrfs_ordered_extent *entry = NULL; 902 903 spin_lock_irq(&inode->ordered_tree_lock); 904 node = ordered_tree_search(inode, file_offset); 905 if (!node) { 906 node = ordered_tree_search(inode, file_offset + len); 907 if (!node) 908 goto out; 909 } 910 911 while (1) { 912 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 913 if (range_overlaps(entry, file_offset, len)) 914 break; 915 916 if (entry->file_offset >= file_offset + len) { 917 entry = NULL; 918 break; 919 } 920 entry = NULL; 921 node = rb_next(node); 922 if (!node) 923 break; 924 } 925 out: 926 if (entry) { 927 refcount_inc(&entry->refs); 928 trace_btrfs_ordered_extent_lookup_range(inode, entry); 929 } 930 spin_unlock_irq(&inode->ordered_tree_lock); 931 return entry; 932 } 933 934 /* 935 * Adds all ordered extents to the given list. The list ends up sorted by the 936 * file_offset of the ordered extents. 937 */ 938 void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode, 939 struct list_head *list) 940 { 941 struct rb_node *n; 942 943 ASSERT(inode_is_locked(&inode->vfs_inode)); 944 945 spin_lock_irq(&inode->ordered_tree_lock); 946 for (n = rb_first(&inode->ordered_tree); n; n = rb_next(n)) { 947 struct btrfs_ordered_extent *ordered; 948 949 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node); 950 951 if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags)) 952 continue; 953 954 ASSERT(list_empty(&ordered->log_list)); 955 list_add_tail(&ordered->log_list, list); 956 refcount_inc(&ordered->refs); 957 trace_btrfs_ordered_extent_lookup_for_logging(inode, ordered); 958 } 959 spin_unlock_irq(&inode->ordered_tree_lock); 960 } 961 962 /* 963 * lookup and return any extent before 'file_offset'. NULL is returned 964 * if none is found 965 */ 966 struct btrfs_ordered_extent * 967 btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset) 968 { 969 struct rb_node *node; 970 struct btrfs_ordered_extent *entry = NULL; 971 972 spin_lock_irq(&inode->ordered_tree_lock); 973 node = ordered_tree_search(inode, file_offset); 974 if (!node) 975 goto out; 976 977 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 978 refcount_inc(&entry->refs); 979 trace_btrfs_ordered_extent_lookup_first(inode, entry); 980 out: 981 spin_unlock_irq(&inode->ordered_tree_lock); 982 return entry; 983 } 984 985 /* 986 * Lookup the first ordered extent that overlaps the range 987 * [@file_offset, @file_offset + @len). 988 * 989 * The difference between this and btrfs_lookup_first_ordered_extent() is 990 * that this one won't return any ordered extent that does not overlap the range. 991 * And the difference against btrfs_lookup_ordered_extent() is, this function 992 * ensures the first ordered extent gets returned. 993 */ 994 struct btrfs_ordered_extent *btrfs_lookup_first_ordered_range( 995 struct btrfs_inode *inode, u64 file_offset, u64 len) 996 { 997 struct rb_node *node; 998 struct rb_node *cur; 999 struct rb_node *prev; 1000 struct rb_node *next; 1001 struct btrfs_ordered_extent *entry = NULL; 1002 1003 spin_lock_irq(&inode->ordered_tree_lock); 1004 node = inode->ordered_tree.rb_node; 1005 /* 1006 * Here we don't want to use tree_search() which will use tree->last 1007 * and screw up the search order. 1008 * And __tree_search() can't return the adjacent ordered extents 1009 * either, thus here we do our own search. 1010 */ 1011 while (node) { 1012 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 1013 1014 if (file_offset < entry->file_offset) { 1015 node = node->rb_left; 1016 } else if (file_offset >= entry_end(entry)) { 1017 node = node->rb_right; 1018 } else { 1019 /* 1020 * Direct hit, got an ordered extent that starts at 1021 * @file_offset 1022 */ 1023 goto out; 1024 } 1025 } 1026 if (!entry) { 1027 /* Empty tree */ 1028 goto out; 1029 } 1030 1031 cur = &entry->rb_node; 1032 /* We got an entry around @file_offset, check adjacent entries */ 1033 if (entry->file_offset < file_offset) { 1034 prev = cur; 1035 next = rb_next(cur); 1036 } else { 1037 prev = rb_prev(cur); 1038 next = cur; 1039 } 1040 if (prev) { 1041 entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node); 1042 if (range_overlaps(entry, file_offset, len)) 1043 goto out; 1044 } 1045 if (next) { 1046 entry = rb_entry(next, struct btrfs_ordered_extent, rb_node); 1047 if (range_overlaps(entry, file_offset, len)) 1048 goto out; 1049 } 1050 /* No ordered extent in the range */ 1051 entry = NULL; 1052 out: 1053 if (entry) { 1054 refcount_inc(&entry->refs); 1055 trace_btrfs_ordered_extent_lookup_first_range(inode, entry); 1056 } 1057 1058 spin_unlock_irq(&inode->ordered_tree_lock); 1059 return entry; 1060 } 1061 1062 /* 1063 * Lock the passed range and ensures all pending ordered extents in it are run 1064 * to completion. 1065 * 1066 * @inode: Inode whose ordered tree is to be searched 1067 * @start: Beginning of range to flush 1068 * @end: Last byte of range to lock 1069 * @cached_state: If passed, will return the extent state responsible for the 1070 * locked range. It's the caller's responsibility to free the 1071 * cached state. 1072 * 1073 * Always return with the given range locked, ensuring after it's called no 1074 * order extent can be pending. 1075 */ 1076 void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start, 1077 u64 end, 1078 struct extent_state **cached_state) 1079 { 1080 struct btrfs_ordered_extent *ordered; 1081 struct extent_state *cache = NULL; 1082 struct extent_state **cachedp = &cache; 1083 1084 if (cached_state) 1085 cachedp = cached_state; 1086 1087 while (1) { 1088 lock_extent(&inode->io_tree, start, end, cachedp); 1089 ordered = btrfs_lookup_ordered_range(inode, start, 1090 end - start + 1); 1091 if (!ordered) { 1092 /* 1093 * If no external cached_state has been passed then 1094 * decrement the extra ref taken for cachedp since we 1095 * aren't exposing it outside of this function 1096 */ 1097 if (!cached_state) 1098 refcount_dec(&cache->refs); 1099 break; 1100 } 1101 unlock_extent(&inode->io_tree, start, end, cachedp); 1102 btrfs_start_ordered_extent(ordered); 1103 btrfs_put_ordered_extent(ordered); 1104 } 1105 } 1106 1107 /* 1108 * Lock the passed range and ensure all pending ordered extents in it are run 1109 * to completion in nowait mode. 1110 * 1111 * Return true if btrfs_lock_ordered_range does not return any extents, 1112 * otherwise false. 1113 */ 1114 bool btrfs_try_lock_ordered_range(struct btrfs_inode *inode, u64 start, u64 end, 1115 struct extent_state **cached_state) 1116 { 1117 struct btrfs_ordered_extent *ordered; 1118 1119 if (!try_lock_extent(&inode->io_tree, start, end, cached_state)) 1120 return false; 1121 1122 ordered = btrfs_lookup_ordered_range(inode, start, end - start + 1); 1123 if (!ordered) 1124 return true; 1125 1126 btrfs_put_ordered_extent(ordered); 1127 unlock_extent(&inode->io_tree, start, end, cached_state); 1128 1129 return false; 1130 } 1131 1132 /* Split out a new ordered extent for this first @len bytes of @ordered. */ 1133 struct btrfs_ordered_extent *btrfs_split_ordered_extent( 1134 struct btrfs_ordered_extent *ordered, u64 len) 1135 { 1136 struct btrfs_inode *inode = BTRFS_I(ordered->inode); 1137 struct btrfs_root *root = inode->root; 1138 struct btrfs_fs_info *fs_info = root->fs_info; 1139 u64 file_offset = ordered->file_offset; 1140 u64 disk_bytenr = ordered->disk_bytenr; 1141 unsigned long flags = ordered->flags; 1142 struct btrfs_ordered_sum *sum, *tmpsum; 1143 struct btrfs_ordered_extent *new; 1144 struct rb_node *node; 1145 u64 offset = 0; 1146 1147 trace_btrfs_ordered_extent_split(inode, ordered); 1148 1149 ASSERT(!(flags & (1U << BTRFS_ORDERED_COMPRESSED))); 1150 1151 /* 1152 * The entire bio must be covered by the ordered extent, but we can't 1153 * reduce the original extent to a zero length either. 1154 */ 1155 if (WARN_ON_ONCE(len >= ordered->num_bytes)) 1156 return ERR_PTR(-EINVAL); 1157 /* We cannot split partially completed ordered extents. */ 1158 if (ordered->bytes_left) { 1159 ASSERT(!(flags & ~BTRFS_ORDERED_TYPE_FLAGS)); 1160 if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes)) 1161 return ERR_PTR(-EINVAL); 1162 } 1163 /* We cannot split a compressed ordered extent. */ 1164 if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes)) 1165 return ERR_PTR(-EINVAL); 1166 1167 new = alloc_ordered_extent(inode, file_offset, len, len, disk_bytenr, 1168 len, 0, flags, ordered->compress_type); 1169 if (IS_ERR(new)) 1170 return new; 1171 1172 /* One ref for the tree. */ 1173 refcount_inc(&new->refs); 1174 1175 spin_lock_irq(&root->ordered_extent_lock); 1176 spin_lock(&inode->ordered_tree_lock); 1177 /* Remove from tree once */ 1178 node = &ordered->rb_node; 1179 rb_erase(node, &inode->ordered_tree); 1180 RB_CLEAR_NODE(node); 1181 if (inode->ordered_tree_last == node) 1182 inode->ordered_tree_last = NULL; 1183 1184 ordered->file_offset += len; 1185 ordered->disk_bytenr += len; 1186 ordered->num_bytes -= len; 1187 ordered->disk_num_bytes -= len; 1188 1189 if (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags)) { 1190 ASSERT(ordered->bytes_left == 0); 1191 new->bytes_left = 0; 1192 } else { 1193 ordered->bytes_left -= len; 1194 } 1195 1196 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags)) { 1197 if (ordered->truncated_len > len) { 1198 ordered->truncated_len -= len; 1199 } else { 1200 new->truncated_len = ordered->truncated_len; 1201 ordered->truncated_len = 0; 1202 } 1203 } 1204 1205 list_for_each_entry_safe(sum, tmpsum, &ordered->list, list) { 1206 if (offset == len) 1207 break; 1208 list_move_tail(&sum->list, &new->list); 1209 offset += sum->len; 1210 } 1211 1212 /* Re-insert the node */ 1213 node = tree_insert(&inode->ordered_tree, ordered->file_offset, 1214 &ordered->rb_node); 1215 if (node) 1216 btrfs_panic(fs_info, -EEXIST, 1217 "zoned: inconsistency in ordered tree at offset %llu", 1218 ordered->file_offset); 1219 1220 node = tree_insert(&inode->ordered_tree, new->file_offset, &new->rb_node); 1221 if (node) 1222 btrfs_panic(fs_info, -EEXIST, 1223 "zoned: inconsistency in ordered tree at offset %llu", 1224 new->file_offset); 1225 spin_unlock(&inode->ordered_tree_lock); 1226 1227 list_add_tail(&new->root_extent_list, &root->ordered_extents); 1228 root->nr_ordered_extents++; 1229 spin_unlock_irq(&root->ordered_extent_lock); 1230 return new; 1231 } 1232 1233 int __init ordered_data_init(void) 1234 { 1235 btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent", 1236 sizeof(struct btrfs_ordered_extent), 0, 1237 SLAB_MEM_SPREAD, 1238 NULL); 1239 if (!btrfs_ordered_extent_cache) 1240 return -ENOMEM; 1241 1242 return 0; 1243 } 1244 1245 void __cold ordered_data_exit(void) 1246 { 1247 kmem_cache_destroy(btrfs_ordered_extent_cache); 1248 } 1249