xref: /linux/fs/btrfs/ordered-data.c (revision 67f49869106f78882a8a09b736d4884be85aba18)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/slab.h>
7 #include <linux/blkdev.h>
8 #include <linux/writeback.h>
9 #include <linux/sched/mm.h>
10 #include "messages.h"
11 #include "misc.h"
12 #include "ctree.h"
13 #include "transaction.h"
14 #include "btrfs_inode.h"
15 #include "extent_io.h"
16 #include "disk-io.h"
17 #include "compression.h"
18 #include "delalloc-space.h"
19 #include "qgroup.h"
20 #include "subpage.h"
21 #include "file.h"
22 #include "super.h"
23 
24 static struct kmem_cache *btrfs_ordered_extent_cache;
25 
26 static u64 entry_end(struct btrfs_ordered_extent *entry)
27 {
28 	if (entry->file_offset + entry->num_bytes < entry->file_offset)
29 		return (u64)-1;
30 	return entry->file_offset + entry->num_bytes;
31 }
32 
33 /* returns NULL if the insertion worked, or it returns the node it did find
34  * in the tree
35  */
36 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
37 				   struct rb_node *node)
38 {
39 	struct rb_node **p = &root->rb_node;
40 	struct rb_node *parent = NULL;
41 	struct btrfs_ordered_extent *entry;
42 
43 	while (*p) {
44 		parent = *p;
45 		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
46 
47 		if (file_offset < entry->file_offset)
48 			p = &(*p)->rb_left;
49 		else if (file_offset >= entry_end(entry))
50 			p = &(*p)->rb_right;
51 		else
52 			return parent;
53 	}
54 
55 	rb_link_node(node, parent, p);
56 	rb_insert_color(node, root);
57 	return NULL;
58 }
59 
60 /*
61  * look for a given offset in the tree, and if it can't be found return the
62  * first lesser offset
63  */
64 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
65 				     struct rb_node **prev_ret)
66 {
67 	struct rb_node *n = root->rb_node;
68 	struct rb_node *prev = NULL;
69 	struct rb_node *test;
70 	struct btrfs_ordered_extent *entry;
71 	struct btrfs_ordered_extent *prev_entry = NULL;
72 
73 	while (n) {
74 		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
75 		prev = n;
76 		prev_entry = entry;
77 
78 		if (file_offset < entry->file_offset)
79 			n = n->rb_left;
80 		else if (file_offset >= entry_end(entry))
81 			n = n->rb_right;
82 		else
83 			return n;
84 	}
85 	if (!prev_ret)
86 		return NULL;
87 
88 	while (prev && file_offset >= entry_end(prev_entry)) {
89 		test = rb_next(prev);
90 		if (!test)
91 			break;
92 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
93 				      rb_node);
94 		if (file_offset < entry_end(prev_entry))
95 			break;
96 
97 		prev = test;
98 	}
99 	if (prev)
100 		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
101 				      rb_node);
102 	while (prev && file_offset < entry_end(prev_entry)) {
103 		test = rb_prev(prev);
104 		if (!test)
105 			break;
106 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
107 				      rb_node);
108 		prev = test;
109 	}
110 	*prev_ret = prev;
111 	return NULL;
112 }
113 
114 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
115 			  u64 len)
116 {
117 	if (file_offset + len <= entry->file_offset ||
118 	    entry->file_offset + entry->num_bytes <= file_offset)
119 		return 0;
120 	return 1;
121 }
122 
123 /*
124  * look find the first ordered struct that has this offset, otherwise
125  * the first one less than this offset
126  */
127 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
128 					  u64 file_offset)
129 {
130 	struct rb_root *root = &tree->tree;
131 	struct rb_node *prev = NULL;
132 	struct rb_node *ret;
133 	struct btrfs_ordered_extent *entry;
134 
135 	if (tree->last) {
136 		entry = rb_entry(tree->last, struct btrfs_ordered_extent,
137 				 rb_node);
138 		if (in_range(file_offset, entry->file_offset, entry->num_bytes))
139 			return tree->last;
140 	}
141 	ret = __tree_search(root, file_offset, &prev);
142 	if (!ret)
143 		ret = prev;
144 	if (ret)
145 		tree->last = ret;
146 	return ret;
147 }
148 
149 /*
150  * Add an ordered extent to the per-inode tree.
151  *
152  * @inode:           Inode that this extent is for.
153  * @file_offset:     Logical offset in file where the extent starts.
154  * @num_bytes:       Logical length of extent in file.
155  * @ram_bytes:       Full length of unencoded data.
156  * @disk_bytenr:     Offset of extent on disk.
157  * @disk_num_bytes:  Size of extent on disk.
158  * @offset:          Offset into unencoded data where file data starts.
159  * @flags:           Flags specifying type of extent (1 << BTRFS_ORDERED_*).
160  * @compress_type:   Compression algorithm used for data.
161  *
162  * Most of these parameters correspond to &struct btrfs_file_extent_item. The
163  * tree is given a single reference on the ordered extent that was inserted.
164  *
165  * Return: 0 or -ENOMEM.
166  */
167 int btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset,
168 			     u64 num_bytes, u64 ram_bytes, u64 disk_bytenr,
169 			     u64 disk_num_bytes, u64 offset, unsigned flags,
170 			     int compress_type)
171 {
172 	struct btrfs_root *root = inode->root;
173 	struct btrfs_fs_info *fs_info = root->fs_info;
174 	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
175 	struct rb_node *node;
176 	struct btrfs_ordered_extent *entry;
177 	int ret;
178 
179 	if (flags &
180 	    ((1 << BTRFS_ORDERED_NOCOW) | (1 << BTRFS_ORDERED_PREALLOC))) {
181 		/* For nocow write, we can release the qgroup rsv right now */
182 		ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes);
183 		if (ret < 0)
184 			return ret;
185 		ret = 0;
186 	} else {
187 		/*
188 		 * The ordered extent has reserved qgroup space, release now
189 		 * and pass the reserved number for qgroup_record to free.
190 		 */
191 		ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes);
192 		if (ret < 0)
193 			return ret;
194 	}
195 	entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
196 	if (!entry)
197 		return -ENOMEM;
198 
199 	entry->file_offset = file_offset;
200 	entry->num_bytes = num_bytes;
201 	entry->ram_bytes = ram_bytes;
202 	entry->disk_bytenr = disk_bytenr;
203 	entry->disk_num_bytes = disk_num_bytes;
204 	entry->offset = offset;
205 	entry->bytes_left = num_bytes;
206 	entry->inode = igrab(&inode->vfs_inode);
207 	entry->compress_type = compress_type;
208 	entry->truncated_len = (u64)-1;
209 	entry->qgroup_rsv = ret;
210 	entry->physical = (u64)-1;
211 
212 	ASSERT((flags & ~BTRFS_ORDERED_TYPE_FLAGS) == 0);
213 	entry->flags = flags;
214 
215 	percpu_counter_add_batch(&fs_info->ordered_bytes, num_bytes,
216 				 fs_info->delalloc_batch);
217 
218 	/* one ref for the tree */
219 	refcount_set(&entry->refs, 1);
220 	init_waitqueue_head(&entry->wait);
221 	INIT_LIST_HEAD(&entry->list);
222 	INIT_LIST_HEAD(&entry->log_list);
223 	INIT_LIST_HEAD(&entry->root_extent_list);
224 	INIT_LIST_HEAD(&entry->work_list);
225 	init_completion(&entry->completion);
226 
227 	trace_btrfs_ordered_extent_add(inode, entry);
228 
229 	spin_lock_irq(&tree->lock);
230 	node = tree_insert(&tree->tree, file_offset,
231 			   &entry->rb_node);
232 	if (node)
233 		btrfs_panic(fs_info, -EEXIST,
234 				"inconsistency in ordered tree at offset %llu",
235 				file_offset);
236 	spin_unlock_irq(&tree->lock);
237 
238 	spin_lock(&root->ordered_extent_lock);
239 	list_add_tail(&entry->root_extent_list,
240 		      &root->ordered_extents);
241 	root->nr_ordered_extents++;
242 	if (root->nr_ordered_extents == 1) {
243 		spin_lock(&fs_info->ordered_root_lock);
244 		BUG_ON(!list_empty(&root->ordered_root));
245 		list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
246 		spin_unlock(&fs_info->ordered_root_lock);
247 	}
248 	spin_unlock(&root->ordered_extent_lock);
249 
250 	/*
251 	 * We don't need the count_max_extents here, we can assume that all of
252 	 * that work has been done at higher layers, so this is truly the
253 	 * smallest the extent is going to get.
254 	 */
255 	spin_lock(&inode->lock);
256 	btrfs_mod_outstanding_extents(inode, 1);
257 	spin_unlock(&inode->lock);
258 
259 	return 0;
260 }
261 
262 /*
263  * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
264  * when an ordered extent is finished.  If the list covers more than one
265  * ordered extent, it is split across multiples.
266  */
267 void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
268 			   struct btrfs_ordered_sum *sum)
269 {
270 	struct btrfs_ordered_inode_tree *tree;
271 
272 	tree = &BTRFS_I(entry->inode)->ordered_tree;
273 	spin_lock_irq(&tree->lock);
274 	list_add_tail(&sum->list, &entry->list);
275 	spin_unlock_irq(&tree->lock);
276 }
277 
278 static void finish_ordered_fn(struct btrfs_work *work)
279 {
280 	struct btrfs_ordered_extent *ordered_extent;
281 
282 	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
283 	btrfs_finish_ordered_io(ordered_extent);
284 }
285 
286 /*
287  * Mark all ordered extents io inside the specified range finished.
288  *
289  * @page:	 The involved page for the operation.
290  *		 For uncompressed buffered IO, the page status also needs to be
291  *		 updated to indicate whether the pending ordered io is finished.
292  *		 Can be NULL for direct IO and compressed write.
293  *		 For these cases, callers are ensured they won't execute the
294  *		 endio function twice.
295  *
296  * This function is called for endio, thus the range must have ordered
297  * extent(s) covering it.
298  */
299 void btrfs_mark_ordered_io_finished(struct btrfs_inode *inode,
300 				    struct page *page, u64 file_offset,
301 				    u64 num_bytes, bool uptodate)
302 {
303 	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
304 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
305 	struct btrfs_workqueue *wq;
306 	struct rb_node *node;
307 	struct btrfs_ordered_extent *entry = NULL;
308 	unsigned long flags;
309 	u64 cur = file_offset;
310 
311 	if (btrfs_is_free_space_inode(inode))
312 		wq = fs_info->endio_freespace_worker;
313 	else
314 		wq = fs_info->endio_write_workers;
315 
316 	if (page)
317 		ASSERT(page->mapping && page_offset(page) <= file_offset &&
318 		       file_offset + num_bytes <= page_offset(page) + PAGE_SIZE);
319 
320 	spin_lock_irqsave(&tree->lock, flags);
321 	while (cur < file_offset + num_bytes) {
322 		u64 entry_end;
323 		u64 end;
324 		u32 len;
325 
326 		node = tree_search(tree, cur);
327 		/* No ordered extents at all */
328 		if (!node)
329 			break;
330 
331 		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
332 		entry_end = entry->file_offset + entry->num_bytes;
333 		/*
334 		 * |<-- OE --->|  |
335 		 *		  cur
336 		 * Go to next OE.
337 		 */
338 		if (cur >= entry_end) {
339 			node = rb_next(node);
340 			/* No more ordered extents, exit */
341 			if (!node)
342 				break;
343 			entry = rb_entry(node, struct btrfs_ordered_extent,
344 					 rb_node);
345 
346 			/* Go to next ordered extent and continue */
347 			cur = entry->file_offset;
348 			continue;
349 		}
350 		/*
351 		 * |	|<--- OE --->|
352 		 * cur
353 		 * Go to the start of OE.
354 		 */
355 		if (cur < entry->file_offset) {
356 			cur = entry->file_offset;
357 			continue;
358 		}
359 
360 		/*
361 		 * Now we are definitely inside one ordered extent.
362 		 *
363 		 * |<--- OE --->|
364 		 *	|
365 		 *	cur
366 		 */
367 		end = min(entry->file_offset + entry->num_bytes,
368 			  file_offset + num_bytes) - 1;
369 		ASSERT(end + 1 - cur < U32_MAX);
370 		len = end + 1 - cur;
371 
372 		if (page) {
373 			/*
374 			 * Ordered (Private2) bit indicates whether we still
375 			 * have pending io unfinished for the ordered extent.
376 			 *
377 			 * If there's no such bit, we need to skip to next range.
378 			 */
379 			if (!btrfs_page_test_ordered(fs_info, page, cur, len)) {
380 				cur += len;
381 				continue;
382 			}
383 			btrfs_page_clear_ordered(fs_info, page, cur, len);
384 		}
385 
386 		/* Now we're fine to update the accounting */
387 		if (unlikely(len > entry->bytes_left)) {
388 			WARN_ON(1);
389 			btrfs_crit(fs_info,
390 "bad ordered extent accounting, root=%llu ino=%llu OE offset=%llu OE len=%llu to_dec=%u left=%llu",
391 				   inode->root->root_key.objectid,
392 				   btrfs_ino(inode),
393 				   entry->file_offset,
394 				   entry->num_bytes,
395 				   len, entry->bytes_left);
396 			entry->bytes_left = 0;
397 		} else {
398 			entry->bytes_left -= len;
399 		}
400 
401 		if (!uptodate)
402 			set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
403 
404 		/*
405 		 * All the IO of the ordered extent is finished, we need to queue
406 		 * the finish_func to be executed.
407 		 */
408 		if (entry->bytes_left == 0) {
409 			set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
410 			cond_wake_up(&entry->wait);
411 			refcount_inc(&entry->refs);
412 			trace_btrfs_ordered_extent_mark_finished(inode, entry);
413 			spin_unlock_irqrestore(&tree->lock, flags);
414 			btrfs_init_work(&entry->work, finish_ordered_fn, NULL, NULL);
415 			btrfs_queue_work(wq, &entry->work);
416 			spin_lock_irqsave(&tree->lock, flags);
417 		}
418 		cur += len;
419 	}
420 	spin_unlock_irqrestore(&tree->lock, flags);
421 }
422 
423 /*
424  * Finish IO for one ordered extent across a given range.  The range can only
425  * contain one ordered extent.
426  *
427  * @cached:	 The cached ordered extent. If not NULL, we can skip the tree
428  *               search and use the ordered extent directly.
429  * 		 Will be also used to store the finished ordered extent.
430  * @file_offset: File offset for the finished IO
431  * @io_size:	 Length of the finish IO range
432  *
433  * Return true if the ordered extent is finished in the range, and update
434  * @cached.
435  * Return false otherwise.
436  *
437  * NOTE: The range can NOT cross multiple ordered extents.
438  * Thus caller should ensure the range doesn't cross ordered extents.
439  */
440 bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode,
441 				    struct btrfs_ordered_extent **cached,
442 				    u64 file_offset, u64 io_size)
443 {
444 	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
445 	struct rb_node *node;
446 	struct btrfs_ordered_extent *entry = NULL;
447 	unsigned long flags;
448 	bool finished = false;
449 
450 	spin_lock_irqsave(&tree->lock, flags);
451 	if (cached && *cached) {
452 		entry = *cached;
453 		goto have_entry;
454 	}
455 
456 	node = tree_search(tree, file_offset);
457 	if (!node)
458 		goto out;
459 
460 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
461 have_entry:
462 	if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
463 		goto out;
464 
465 	if (io_size > entry->bytes_left)
466 		btrfs_crit(inode->root->fs_info,
467 			   "bad ordered accounting left %llu size %llu",
468 		       entry->bytes_left, io_size);
469 
470 	entry->bytes_left -= io_size;
471 
472 	if (entry->bytes_left == 0) {
473 		/*
474 		 * Ensure only one caller can set the flag and finished_ret
475 		 * accordingly
476 		 */
477 		finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
478 		/* test_and_set_bit implies a barrier */
479 		cond_wake_up_nomb(&entry->wait);
480 	}
481 out:
482 	if (finished && cached && entry) {
483 		*cached = entry;
484 		refcount_inc(&entry->refs);
485 		trace_btrfs_ordered_extent_dec_test_pending(inode, entry);
486 	}
487 	spin_unlock_irqrestore(&tree->lock, flags);
488 	return finished;
489 }
490 
491 /*
492  * used to drop a reference on an ordered extent.  This will free
493  * the extent if the last reference is dropped
494  */
495 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
496 {
497 	struct list_head *cur;
498 	struct btrfs_ordered_sum *sum;
499 
500 	trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry);
501 
502 	if (refcount_dec_and_test(&entry->refs)) {
503 		ASSERT(list_empty(&entry->root_extent_list));
504 		ASSERT(list_empty(&entry->log_list));
505 		ASSERT(RB_EMPTY_NODE(&entry->rb_node));
506 		if (entry->inode)
507 			btrfs_add_delayed_iput(BTRFS_I(entry->inode));
508 		while (!list_empty(&entry->list)) {
509 			cur = entry->list.next;
510 			sum = list_entry(cur, struct btrfs_ordered_sum, list);
511 			list_del(&sum->list);
512 			kvfree(sum);
513 		}
514 		kmem_cache_free(btrfs_ordered_extent_cache, entry);
515 	}
516 }
517 
518 /*
519  * remove an ordered extent from the tree.  No references are dropped
520  * and waiters are woken up.
521  */
522 void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode,
523 				 struct btrfs_ordered_extent *entry)
524 {
525 	struct btrfs_ordered_inode_tree *tree;
526 	struct btrfs_root *root = btrfs_inode->root;
527 	struct btrfs_fs_info *fs_info = root->fs_info;
528 	struct rb_node *node;
529 	bool pending;
530 	bool freespace_inode;
531 
532 	/*
533 	 * If this is a free space inode the thread has not acquired the ordered
534 	 * extents lockdep map.
535 	 */
536 	freespace_inode = btrfs_is_free_space_inode(btrfs_inode);
537 
538 	btrfs_lockdep_acquire(fs_info, btrfs_trans_pending_ordered);
539 	/* This is paired with btrfs_add_ordered_extent. */
540 	spin_lock(&btrfs_inode->lock);
541 	btrfs_mod_outstanding_extents(btrfs_inode, -1);
542 	spin_unlock(&btrfs_inode->lock);
543 	if (root != fs_info->tree_root) {
544 		u64 release;
545 
546 		if (test_bit(BTRFS_ORDERED_ENCODED, &entry->flags))
547 			release = entry->disk_num_bytes;
548 		else
549 			release = entry->num_bytes;
550 		btrfs_delalloc_release_metadata(btrfs_inode, release, false);
551 	}
552 
553 	percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes,
554 				 fs_info->delalloc_batch);
555 
556 	tree = &btrfs_inode->ordered_tree;
557 	spin_lock_irq(&tree->lock);
558 	node = &entry->rb_node;
559 	rb_erase(node, &tree->tree);
560 	RB_CLEAR_NODE(node);
561 	if (tree->last == node)
562 		tree->last = NULL;
563 	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
564 	pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags);
565 	spin_unlock_irq(&tree->lock);
566 
567 	/*
568 	 * The current running transaction is waiting on us, we need to let it
569 	 * know that we're complete and wake it up.
570 	 */
571 	if (pending) {
572 		struct btrfs_transaction *trans;
573 
574 		/*
575 		 * The checks for trans are just a formality, it should be set,
576 		 * but if it isn't we don't want to deref/assert under the spin
577 		 * lock, so be nice and check if trans is set, but ASSERT() so
578 		 * if it isn't set a developer will notice.
579 		 */
580 		spin_lock(&fs_info->trans_lock);
581 		trans = fs_info->running_transaction;
582 		if (trans)
583 			refcount_inc(&trans->use_count);
584 		spin_unlock(&fs_info->trans_lock);
585 
586 		ASSERT(trans);
587 		if (trans) {
588 			if (atomic_dec_and_test(&trans->pending_ordered))
589 				wake_up(&trans->pending_wait);
590 			btrfs_put_transaction(trans);
591 		}
592 	}
593 
594 	btrfs_lockdep_release(fs_info, btrfs_trans_pending_ordered);
595 
596 	spin_lock(&root->ordered_extent_lock);
597 	list_del_init(&entry->root_extent_list);
598 	root->nr_ordered_extents--;
599 
600 	trace_btrfs_ordered_extent_remove(btrfs_inode, entry);
601 
602 	if (!root->nr_ordered_extents) {
603 		spin_lock(&fs_info->ordered_root_lock);
604 		BUG_ON(list_empty(&root->ordered_root));
605 		list_del_init(&root->ordered_root);
606 		spin_unlock(&fs_info->ordered_root_lock);
607 	}
608 	spin_unlock(&root->ordered_extent_lock);
609 	wake_up(&entry->wait);
610 	if (!freespace_inode)
611 		btrfs_lockdep_release(fs_info, btrfs_ordered_extent);
612 }
613 
614 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
615 {
616 	struct btrfs_ordered_extent *ordered;
617 
618 	ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
619 	btrfs_start_ordered_extent(ordered, 1);
620 	complete(&ordered->completion);
621 }
622 
623 /*
624  * wait for all the ordered extents in a root.  This is done when balancing
625  * space between drives.
626  */
627 u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
628 			       const u64 range_start, const u64 range_len)
629 {
630 	struct btrfs_fs_info *fs_info = root->fs_info;
631 	LIST_HEAD(splice);
632 	LIST_HEAD(skipped);
633 	LIST_HEAD(works);
634 	struct btrfs_ordered_extent *ordered, *next;
635 	u64 count = 0;
636 	const u64 range_end = range_start + range_len;
637 
638 	mutex_lock(&root->ordered_extent_mutex);
639 	spin_lock(&root->ordered_extent_lock);
640 	list_splice_init(&root->ordered_extents, &splice);
641 	while (!list_empty(&splice) && nr) {
642 		ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
643 					   root_extent_list);
644 
645 		if (range_end <= ordered->disk_bytenr ||
646 		    ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
647 			list_move_tail(&ordered->root_extent_list, &skipped);
648 			cond_resched_lock(&root->ordered_extent_lock);
649 			continue;
650 		}
651 
652 		list_move_tail(&ordered->root_extent_list,
653 			       &root->ordered_extents);
654 		refcount_inc(&ordered->refs);
655 		spin_unlock(&root->ordered_extent_lock);
656 
657 		btrfs_init_work(&ordered->flush_work,
658 				btrfs_run_ordered_extent_work, NULL, NULL);
659 		list_add_tail(&ordered->work_list, &works);
660 		btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
661 
662 		cond_resched();
663 		spin_lock(&root->ordered_extent_lock);
664 		if (nr != U64_MAX)
665 			nr--;
666 		count++;
667 	}
668 	list_splice_tail(&skipped, &root->ordered_extents);
669 	list_splice_tail(&splice, &root->ordered_extents);
670 	spin_unlock(&root->ordered_extent_lock);
671 
672 	list_for_each_entry_safe(ordered, next, &works, work_list) {
673 		list_del_init(&ordered->work_list);
674 		wait_for_completion(&ordered->completion);
675 		btrfs_put_ordered_extent(ordered);
676 		cond_resched();
677 	}
678 	mutex_unlock(&root->ordered_extent_mutex);
679 
680 	return count;
681 }
682 
683 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
684 			     const u64 range_start, const u64 range_len)
685 {
686 	struct btrfs_root *root;
687 	struct list_head splice;
688 	u64 done;
689 
690 	INIT_LIST_HEAD(&splice);
691 
692 	mutex_lock(&fs_info->ordered_operations_mutex);
693 	spin_lock(&fs_info->ordered_root_lock);
694 	list_splice_init(&fs_info->ordered_roots, &splice);
695 	while (!list_empty(&splice) && nr) {
696 		root = list_first_entry(&splice, struct btrfs_root,
697 					ordered_root);
698 		root = btrfs_grab_root(root);
699 		BUG_ON(!root);
700 		list_move_tail(&root->ordered_root,
701 			       &fs_info->ordered_roots);
702 		spin_unlock(&fs_info->ordered_root_lock);
703 
704 		done = btrfs_wait_ordered_extents(root, nr,
705 						  range_start, range_len);
706 		btrfs_put_root(root);
707 
708 		spin_lock(&fs_info->ordered_root_lock);
709 		if (nr != U64_MAX) {
710 			nr -= done;
711 		}
712 	}
713 	list_splice_tail(&splice, &fs_info->ordered_roots);
714 	spin_unlock(&fs_info->ordered_root_lock);
715 	mutex_unlock(&fs_info->ordered_operations_mutex);
716 }
717 
718 /*
719  * Used to start IO or wait for a given ordered extent to finish.
720  *
721  * If wait is one, this effectively waits on page writeback for all the pages
722  * in the extent, and it waits on the io completion code to insert
723  * metadata into the btree corresponding to the extent
724  */
725 void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry, int wait)
726 {
727 	u64 start = entry->file_offset;
728 	u64 end = start + entry->num_bytes - 1;
729 	struct btrfs_inode *inode = BTRFS_I(entry->inode);
730 	bool freespace_inode;
731 
732 	trace_btrfs_ordered_extent_start(inode, entry);
733 
734 	/*
735 	 * If this is a free space inode do not take the ordered extents lockdep
736 	 * map.
737 	 */
738 	freespace_inode = btrfs_is_free_space_inode(inode);
739 
740 	/*
741 	 * pages in the range can be dirty, clean or writeback.  We
742 	 * start IO on any dirty ones so the wait doesn't stall waiting
743 	 * for the flusher thread to find them
744 	 */
745 	if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
746 		filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end);
747 	if (wait) {
748 		if (!freespace_inode)
749 			btrfs_might_wait_for_event(inode->root->fs_info, btrfs_ordered_extent);
750 		wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
751 						 &entry->flags));
752 	}
753 }
754 
755 /*
756  * Used to wait on ordered extents across a large range of bytes.
757  */
758 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
759 {
760 	int ret = 0;
761 	int ret_wb = 0;
762 	u64 end;
763 	u64 orig_end;
764 	struct btrfs_ordered_extent *ordered;
765 
766 	if (start + len < start) {
767 		orig_end = OFFSET_MAX;
768 	} else {
769 		orig_end = start + len - 1;
770 		if (orig_end > OFFSET_MAX)
771 			orig_end = OFFSET_MAX;
772 	}
773 
774 	/* start IO across the range first to instantiate any delalloc
775 	 * extents
776 	 */
777 	ret = btrfs_fdatawrite_range(inode, start, orig_end);
778 	if (ret)
779 		return ret;
780 
781 	/*
782 	 * If we have a writeback error don't return immediately. Wait first
783 	 * for any ordered extents that haven't completed yet. This is to make
784 	 * sure no one can dirty the same page ranges and call writepages()
785 	 * before the ordered extents complete - to avoid failures (-EEXIST)
786 	 * when adding the new ordered extents to the ordered tree.
787 	 */
788 	ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
789 
790 	end = orig_end;
791 	while (1) {
792 		ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end);
793 		if (!ordered)
794 			break;
795 		if (ordered->file_offset > orig_end) {
796 			btrfs_put_ordered_extent(ordered);
797 			break;
798 		}
799 		if (ordered->file_offset + ordered->num_bytes <= start) {
800 			btrfs_put_ordered_extent(ordered);
801 			break;
802 		}
803 		btrfs_start_ordered_extent(ordered, 1);
804 		end = ordered->file_offset;
805 		/*
806 		 * If the ordered extent had an error save the error but don't
807 		 * exit without waiting first for all other ordered extents in
808 		 * the range to complete.
809 		 */
810 		if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
811 			ret = -EIO;
812 		btrfs_put_ordered_extent(ordered);
813 		if (end == 0 || end == start)
814 			break;
815 		end--;
816 	}
817 	return ret_wb ? ret_wb : ret;
818 }
819 
820 /*
821  * find an ordered extent corresponding to file_offset.  return NULL if
822  * nothing is found, otherwise take a reference on the extent and return it
823  */
824 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode,
825 							 u64 file_offset)
826 {
827 	struct btrfs_ordered_inode_tree *tree;
828 	struct rb_node *node;
829 	struct btrfs_ordered_extent *entry = NULL;
830 	unsigned long flags;
831 
832 	tree = &inode->ordered_tree;
833 	spin_lock_irqsave(&tree->lock, flags);
834 	node = tree_search(tree, file_offset);
835 	if (!node)
836 		goto out;
837 
838 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
839 	if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
840 		entry = NULL;
841 	if (entry) {
842 		refcount_inc(&entry->refs);
843 		trace_btrfs_ordered_extent_lookup(inode, entry);
844 	}
845 out:
846 	spin_unlock_irqrestore(&tree->lock, flags);
847 	return entry;
848 }
849 
850 /* Since the DIO code tries to lock a wide area we need to look for any ordered
851  * extents that exist in the range, rather than just the start of the range.
852  */
853 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
854 		struct btrfs_inode *inode, u64 file_offset, u64 len)
855 {
856 	struct btrfs_ordered_inode_tree *tree;
857 	struct rb_node *node;
858 	struct btrfs_ordered_extent *entry = NULL;
859 
860 	tree = &inode->ordered_tree;
861 	spin_lock_irq(&tree->lock);
862 	node = tree_search(tree, file_offset);
863 	if (!node) {
864 		node = tree_search(tree, file_offset + len);
865 		if (!node)
866 			goto out;
867 	}
868 
869 	while (1) {
870 		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
871 		if (range_overlaps(entry, file_offset, len))
872 			break;
873 
874 		if (entry->file_offset >= file_offset + len) {
875 			entry = NULL;
876 			break;
877 		}
878 		entry = NULL;
879 		node = rb_next(node);
880 		if (!node)
881 			break;
882 	}
883 out:
884 	if (entry) {
885 		refcount_inc(&entry->refs);
886 		trace_btrfs_ordered_extent_lookup_range(inode, entry);
887 	}
888 	spin_unlock_irq(&tree->lock);
889 	return entry;
890 }
891 
892 /*
893  * Adds all ordered extents to the given list. The list ends up sorted by the
894  * file_offset of the ordered extents.
895  */
896 void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode,
897 					   struct list_head *list)
898 {
899 	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
900 	struct rb_node *n;
901 
902 	ASSERT(inode_is_locked(&inode->vfs_inode));
903 
904 	spin_lock_irq(&tree->lock);
905 	for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
906 		struct btrfs_ordered_extent *ordered;
907 
908 		ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
909 
910 		if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
911 			continue;
912 
913 		ASSERT(list_empty(&ordered->log_list));
914 		list_add_tail(&ordered->log_list, list);
915 		refcount_inc(&ordered->refs);
916 		trace_btrfs_ordered_extent_lookup_for_logging(inode, ordered);
917 	}
918 	spin_unlock_irq(&tree->lock);
919 }
920 
921 /*
922  * lookup and return any extent before 'file_offset'.  NULL is returned
923  * if none is found
924  */
925 struct btrfs_ordered_extent *
926 btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset)
927 {
928 	struct btrfs_ordered_inode_tree *tree;
929 	struct rb_node *node;
930 	struct btrfs_ordered_extent *entry = NULL;
931 
932 	tree = &inode->ordered_tree;
933 	spin_lock_irq(&tree->lock);
934 	node = tree_search(tree, file_offset);
935 	if (!node)
936 		goto out;
937 
938 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
939 	refcount_inc(&entry->refs);
940 	trace_btrfs_ordered_extent_lookup_first(inode, entry);
941 out:
942 	spin_unlock_irq(&tree->lock);
943 	return entry;
944 }
945 
946 /*
947  * Lookup the first ordered extent that overlaps the range
948  * [@file_offset, @file_offset + @len).
949  *
950  * The difference between this and btrfs_lookup_first_ordered_extent() is
951  * that this one won't return any ordered extent that does not overlap the range.
952  * And the difference against btrfs_lookup_ordered_extent() is, this function
953  * ensures the first ordered extent gets returned.
954  */
955 struct btrfs_ordered_extent *btrfs_lookup_first_ordered_range(
956 			struct btrfs_inode *inode, u64 file_offset, u64 len)
957 {
958 	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
959 	struct rb_node *node;
960 	struct rb_node *cur;
961 	struct rb_node *prev;
962 	struct rb_node *next;
963 	struct btrfs_ordered_extent *entry = NULL;
964 
965 	spin_lock_irq(&tree->lock);
966 	node = tree->tree.rb_node;
967 	/*
968 	 * Here we don't want to use tree_search() which will use tree->last
969 	 * and screw up the search order.
970 	 * And __tree_search() can't return the adjacent ordered extents
971 	 * either, thus here we do our own search.
972 	 */
973 	while (node) {
974 		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
975 
976 		if (file_offset < entry->file_offset) {
977 			node = node->rb_left;
978 		} else if (file_offset >= entry_end(entry)) {
979 			node = node->rb_right;
980 		} else {
981 			/*
982 			 * Direct hit, got an ordered extent that starts at
983 			 * @file_offset
984 			 */
985 			goto out;
986 		}
987 	}
988 	if (!entry) {
989 		/* Empty tree */
990 		goto out;
991 	}
992 
993 	cur = &entry->rb_node;
994 	/* We got an entry around @file_offset, check adjacent entries */
995 	if (entry->file_offset < file_offset) {
996 		prev = cur;
997 		next = rb_next(cur);
998 	} else {
999 		prev = rb_prev(cur);
1000 		next = cur;
1001 	}
1002 	if (prev) {
1003 		entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node);
1004 		if (range_overlaps(entry, file_offset, len))
1005 			goto out;
1006 	}
1007 	if (next) {
1008 		entry = rb_entry(next, struct btrfs_ordered_extent, rb_node);
1009 		if (range_overlaps(entry, file_offset, len))
1010 			goto out;
1011 	}
1012 	/* No ordered extent in the range */
1013 	entry = NULL;
1014 out:
1015 	if (entry) {
1016 		refcount_inc(&entry->refs);
1017 		trace_btrfs_ordered_extent_lookup_first_range(inode, entry);
1018 	}
1019 
1020 	spin_unlock_irq(&tree->lock);
1021 	return entry;
1022 }
1023 
1024 /*
1025  * Lock the passed range and ensures all pending ordered extents in it are run
1026  * to completion.
1027  *
1028  * @inode:        Inode whose ordered tree is to be searched
1029  * @start:        Beginning of range to flush
1030  * @end:          Last byte of range to lock
1031  * @cached_state: If passed, will return the extent state responsible for the
1032  *                locked range. It's the caller's responsibility to free the
1033  *                cached state.
1034  *
1035  * Always return with the given range locked, ensuring after it's called no
1036  * order extent can be pending.
1037  */
1038 void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
1039 					u64 end,
1040 					struct extent_state **cached_state)
1041 {
1042 	struct btrfs_ordered_extent *ordered;
1043 	struct extent_state *cache = NULL;
1044 	struct extent_state **cachedp = &cache;
1045 
1046 	if (cached_state)
1047 		cachedp = cached_state;
1048 
1049 	while (1) {
1050 		lock_extent(&inode->io_tree, start, end, cachedp);
1051 		ordered = btrfs_lookup_ordered_range(inode, start,
1052 						     end - start + 1);
1053 		if (!ordered) {
1054 			/*
1055 			 * If no external cached_state has been passed then
1056 			 * decrement the extra ref taken for cachedp since we
1057 			 * aren't exposing it outside of this function
1058 			 */
1059 			if (!cached_state)
1060 				refcount_dec(&cache->refs);
1061 			break;
1062 		}
1063 		unlock_extent(&inode->io_tree, start, end, cachedp);
1064 		btrfs_start_ordered_extent(ordered, 1);
1065 		btrfs_put_ordered_extent(ordered);
1066 	}
1067 }
1068 
1069 /*
1070  * Lock the passed range and ensure all pending ordered extents in it are run
1071  * to completion in nowait mode.
1072  *
1073  * Return true if btrfs_lock_ordered_range does not return any extents,
1074  * otherwise false.
1075  */
1076 bool btrfs_try_lock_ordered_range(struct btrfs_inode *inode, u64 start, u64 end,
1077 				  struct extent_state **cached_state)
1078 {
1079 	struct btrfs_ordered_extent *ordered;
1080 
1081 	if (!try_lock_extent(&inode->io_tree, start, end, cached_state))
1082 		return false;
1083 
1084 	ordered = btrfs_lookup_ordered_range(inode, start, end - start + 1);
1085 	if (!ordered)
1086 		return true;
1087 
1088 	btrfs_put_ordered_extent(ordered);
1089 	unlock_extent(&inode->io_tree, start, end, cached_state);
1090 
1091 	return false;
1092 }
1093 
1094 
1095 static int clone_ordered_extent(struct btrfs_ordered_extent *ordered, u64 pos,
1096 				u64 len)
1097 {
1098 	struct inode *inode = ordered->inode;
1099 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1100 	u64 file_offset = ordered->file_offset + pos;
1101 	u64 disk_bytenr = ordered->disk_bytenr + pos;
1102 	unsigned long flags = ordered->flags & BTRFS_ORDERED_TYPE_FLAGS;
1103 
1104 	/*
1105 	 * The splitting extent is already counted and will be added again in
1106 	 * btrfs_add_ordered_extent_*(). Subtract len to avoid double counting.
1107 	 */
1108 	percpu_counter_add_batch(&fs_info->ordered_bytes, -len,
1109 				 fs_info->delalloc_batch);
1110 	WARN_ON_ONCE(flags & (1 << BTRFS_ORDERED_COMPRESSED));
1111 	return btrfs_add_ordered_extent(BTRFS_I(inode), file_offset, len, len,
1112 					disk_bytenr, len, 0, flags,
1113 					ordered->compress_type);
1114 }
1115 
1116 int btrfs_split_ordered_extent(struct btrfs_ordered_extent *ordered, u64 pre,
1117 				u64 post)
1118 {
1119 	struct inode *inode = ordered->inode;
1120 	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
1121 	struct rb_node *node;
1122 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1123 	int ret = 0;
1124 
1125 	trace_btrfs_ordered_extent_split(BTRFS_I(inode), ordered);
1126 
1127 	spin_lock_irq(&tree->lock);
1128 	/* Remove from tree once */
1129 	node = &ordered->rb_node;
1130 	rb_erase(node, &tree->tree);
1131 	RB_CLEAR_NODE(node);
1132 	if (tree->last == node)
1133 		tree->last = NULL;
1134 
1135 	ordered->file_offset += pre;
1136 	ordered->disk_bytenr += pre;
1137 	ordered->num_bytes -= (pre + post);
1138 	ordered->disk_num_bytes -= (pre + post);
1139 	ordered->bytes_left -= (pre + post);
1140 
1141 	/* Re-insert the node */
1142 	node = tree_insert(&tree->tree, ordered->file_offset, &ordered->rb_node);
1143 	if (node)
1144 		btrfs_panic(fs_info, -EEXIST,
1145 			"zoned: inconsistency in ordered tree at offset %llu",
1146 			    ordered->file_offset);
1147 
1148 	spin_unlock_irq(&tree->lock);
1149 
1150 	if (pre)
1151 		ret = clone_ordered_extent(ordered, 0, pre);
1152 	if (ret == 0 && post)
1153 		ret = clone_ordered_extent(ordered, pre + ordered->disk_num_bytes,
1154 					   post);
1155 
1156 	return ret;
1157 }
1158 
1159 int __init ordered_data_init(void)
1160 {
1161 	btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1162 				     sizeof(struct btrfs_ordered_extent), 0,
1163 				     SLAB_MEM_SPREAD,
1164 				     NULL);
1165 	if (!btrfs_ordered_extent_cache)
1166 		return -ENOMEM;
1167 
1168 	return 0;
1169 }
1170 
1171 void __cold ordered_data_exit(void)
1172 {
1173 	kmem_cache_destroy(btrfs_ordered_extent_cache);
1174 }
1175