1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/slab.h> 7 #include <linux/blkdev.h> 8 #include <linux/writeback.h> 9 #include <linux/sched/mm.h> 10 #include "messages.h" 11 #include "misc.h" 12 #include "ctree.h" 13 #include "transaction.h" 14 #include "btrfs_inode.h" 15 #include "extent_io.h" 16 #include "disk-io.h" 17 #include "compression.h" 18 #include "delalloc-space.h" 19 #include "qgroup.h" 20 #include "subpage.h" 21 #include "file.h" 22 #include "super.h" 23 24 static struct kmem_cache *btrfs_ordered_extent_cache; 25 26 static u64 entry_end(struct btrfs_ordered_extent *entry) 27 { 28 if (entry->file_offset + entry->num_bytes < entry->file_offset) 29 return (u64)-1; 30 return entry->file_offset + entry->num_bytes; 31 } 32 33 /* returns NULL if the insertion worked, or it returns the node it did find 34 * in the tree 35 */ 36 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset, 37 struct rb_node *node) 38 { 39 struct rb_node **p = &root->rb_node; 40 struct rb_node *parent = NULL; 41 struct btrfs_ordered_extent *entry; 42 43 while (*p) { 44 parent = *p; 45 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node); 46 47 if (file_offset < entry->file_offset) 48 p = &(*p)->rb_left; 49 else if (file_offset >= entry_end(entry)) 50 p = &(*p)->rb_right; 51 else 52 return parent; 53 } 54 55 rb_link_node(node, parent, p); 56 rb_insert_color(node, root); 57 return NULL; 58 } 59 60 /* 61 * look for a given offset in the tree, and if it can't be found return the 62 * first lesser offset 63 */ 64 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset, 65 struct rb_node **prev_ret) 66 { 67 struct rb_node *n = root->rb_node; 68 struct rb_node *prev = NULL; 69 struct rb_node *test; 70 struct btrfs_ordered_extent *entry; 71 struct btrfs_ordered_extent *prev_entry = NULL; 72 73 while (n) { 74 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node); 75 prev = n; 76 prev_entry = entry; 77 78 if (file_offset < entry->file_offset) 79 n = n->rb_left; 80 else if (file_offset >= entry_end(entry)) 81 n = n->rb_right; 82 else 83 return n; 84 } 85 if (!prev_ret) 86 return NULL; 87 88 while (prev && file_offset >= entry_end(prev_entry)) { 89 test = rb_next(prev); 90 if (!test) 91 break; 92 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 93 rb_node); 94 if (file_offset < entry_end(prev_entry)) 95 break; 96 97 prev = test; 98 } 99 if (prev) 100 prev_entry = rb_entry(prev, struct btrfs_ordered_extent, 101 rb_node); 102 while (prev && file_offset < entry_end(prev_entry)) { 103 test = rb_prev(prev); 104 if (!test) 105 break; 106 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 107 rb_node); 108 prev = test; 109 } 110 *prev_ret = prev; 111 return NULL; 112 } 113 114 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset, 115 u64 len) 116 { 117 if (file_offset + len <= entry->file_offset || 118 entry->file_offset + entry->num_bytes <= file_offset) 119 return 0; 120 return 1; 121 } 122 123 /* 124 * look find the first ordered struct that has this offset, otherwise 125 * the first one less than this offset 126 */ 127 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree, 128 u64 file_offset) 129 { 130 struct rb_root *root = &tree->tree; 131 struct rb_node *prev = NULL; 132 struct rb_node *ret; 133 struct btrfs_ordered_extent *entry; 134 135 if (tree->last) { 136 entry = rb_entry(tree->last, struct btrfs_ordered_extent, 137 rb_node); 138 if (in_range(file_offset, entry->file_offset, entry->num_bytes)) 139 return tree->last; 140 } 141 ret = __tree_search(root, file_offset, &prev); 142 if (!ret) 143 ret = prev; 144 if (ret) 145 tree->last = ret; 146 return ret; 147 } 148 149 /* 150 * Add an ordered extent to the per-inode tree. 151 * 152 * @inode: Inode that this extent is for. 153 * @file_offset: Logical offset in file where the extent starts. 154 * @num_bytes: Logical length of extent in file. 155 * @ram_bytes: Full length of unencoded data. 156 * @disk_bytenr: Offset of extent on disk. 157 * @disk_num_bytes: Size of extent on disk. 158 * @offset: Offset into unencoded data where file data starts. 159 * @flags: Flags specifying type of extent (1 << BTRFS_ORDERED_*). 160 * @compress_type: Compression algorithm used for data. 161 * 162 * Most of these parameters correspond to &struct btrfs_file_extent_item. The 163 * tree is given a single reference on the ordered extent that was inserted. 164 * 165 * Return: 0 or -ENOMEM. 166 */ 167 int btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset, 168 u64 num_bytes, u64 ram_bytes, u64 disk_bytenr, 169 u64 disk_num_bytes, u64 offset, unsigned flags, 170 int compress_type) 171 { 172 struct btrfs_root *root = inode->root; 173 struct btrfs_fs_info *fs_info = root->fs_info; 174 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree; 175 struct rb_node *node; 176 struct btrfs_ordered_extent *entry; 177 int ret; 178 179 if (flags & 180 ((1 << BTRFS_ORDERED_NOCOW) | (1 << BTRFS_ORDERED_PREALLOC))) { 181 /* For nocow write, we can release the qgroup rsv right now */ 182 ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes); 183 if (ret < 0) 184 return ret; 185 ret = 0; 186 } else { 187 /* 188 * The ordered extent has reserved qgroup space, release now 189 * and pass the reserved number for qgroup_record to free. 190 */ 191 ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes); 192 if (ret < 0) 193 return ret; 194 } 195 entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS); 196 if (!entry) 197 return -ENOMEM; 198 199 entry->file_offset = file_offset; 200 entry->num_bytes = num_bytes; 201 entry->ram_bytes = ram_bytes; 202 entry->disk_bytenr = disk_bytenr; 203 entry->disk_num_bytes = disk_num_bytes; 204 entry->offset = offset; 205 entry->bytes_left = num_bytes; 206 entry->inode = igrab(&inode->vfs_inode); 207 entry->compress_type = compress_type; 208 entry->truncated_len = (u64)-1; 209 entry->qgroup_rsv = ret; 210 entry->physical = (u64)-1; 211 212 ASSERT((flags & ~BTRFS_ORDERED_TYPE_FLAGS) == 0); 213 entry->flags = flags; 214 215 percpu_counter_add_batch(&fs_info->ordered_bytes, num_bytes, 216 fs_info->delalloc_batch); 217 218 /* one ref for the tree */ 219 refcount_set(&entry->refs, 1); 220 init_waitqueue_head(&entry->wait); 221 INIT_LIST_HEAD(&entry->list); 222 INIT_LIST_HEAD(&entry->log_list); 223 INIT_LIST_HEAD(&entry->root_extent_list); 224 INIT_LIST_HEAD(&entry->work_list); 225 init_completion(&entry->completion); 226 227 trace_btrfs_ordered_extent_add(inode, entry); 228 229 spin_lock_irq(&tree->lock); 230 node = tree_insert(&tree->tree, file_offset, 231 &entry->rb_node); 232 if (node) 233 btrfs_panic(fs_info, -EEXIST, 234 "inconsistency in ordered tree at offset %llu", 235 file_offset); 236 spin_unlock_irq(&tree->lock); 237 238 spin_lock(&root->ordered_extent_lock); 239 list_add_tail(&entry->root_extent_list, 240 &root->ordered_extents); 241 root->nr_ordered_extents++; 242 if (root->nr_ordered_extents == 1) { 243 spin_lock(&fs_info->ordered_root_lock); 244 BUG_ON(!list_empty(&root->ordered_root)); 245 list_add_tail(&root->ordered_root, &fs_info->ordered_roots); 246 spin_unlock(&fs_info->ordered_root_lock); 247 } 248 spin_unlock(&root->ordered_extent_lock); 249 250 /* 251 * We don't need the count_max_extents here, we can assume that all of 252 * that work has been done at higher layers, so this is truly the 253 * smallest the extent is going to get. 254 */ 255 spin_lock(&inode->lock); 256 btrfs_mod_outstanding_extents(inode, 1); 257 spin_unlock(&inode->lock); 258 259 return 0; 260 } 261 262 /* 263 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted 264 * when an ordered extent is finished. If the list covers more than one 265 * ordered extent, it is split across multiples. 266 */ 267 void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry, 268 struct btrfs_ordered_sum *sum) 269 { 270 struct btrfs_ordered_inode_tree *tree; 271 272 tree = &BTRFS_I(entry->inode)->ordered_tree; 273 spin_lock_irq(&tree->lock); 274 list_add_tail(&sum->list, &entry->list); 275 spin_unlock_irq(&tree->lock); 276 } 277 278 static void finish_ordered_fn(struct btrfs_work *work) 279 { 280 struct btrfs_ordered_extent *ordered_extent; 281 282 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 283 btrfs_finish_ordered_io(ordered_extent); 284 } 285 286 /* 287 * Mark all ordered extents io inside the specified range finished. 288 * 289 * @page: The involved page for the operation. 290 * For uncompressed buffered IO, the page status also needs to be 291 * updated to indicate whether the pending ordered io is finished. 292 * Can be NULL for direct IO and compressed write. 293 * For these cases, callers are ensured they won't execute the 294 * endio function twice. 295 * 296 * This function is called for endio, thus the range must have ordered 297 * extent(s) covering it. 298 */ 299 void btrfs_mark_ordered_io_finished(struct btrfs_inode *inode, 300 struct page *page, u64 file_offset, 301 u64 num_bytes, bool uptodate) 302 { 303 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree; 304 struct btrfs_fs_info *fs_info = inode->root->fs_info; 305 struct btrfs_workqueue *wq; 306 struct rb_node *node; 307 struct btrfs_ordered_extent *entry = NULL; 308 unsigned long flags; 309 u64 cur = file_offset; 310 311 if (btrfs_is_free_space_inode(inode)) 312 wq = fs_info->endio_freespace_worker; 313 else 314 wq = fs_info->endio_write_workers; 315 316 if (page) 317 ASSERT(page->mapping && page_offset(page) <= file_offset && 318 file_offset + num_bytes <= page_offset(page) + PAGE_SIZE); 319 320 spin_lock_irqsave(&tree->lock, flags); 321 while (cur < file_offset + num_bytes) { 322 u64 entry_end; 323 u64 end; 324 u32 len; 325 326 node = tree_search(tree, cur); 327 /* No ordered extents at all */ 328 if (!node) 329 break; 330 331 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 332 entry_end = entry->file_offset + entry->num_bytes; 333 /* 334 * |<-- OE --->| | 335 * cur 336 * Go to next OE. 337 */ 338 if (cur >= entry_end) { 339 node = rb_next(node); 340 /* No more ordered extents, exit */ 341 if (!node) 342 break; 343 entry = rb_entry(node, struct btrfs_ordered_extent, 344 rb_node); 345 346 /* Go to next ordered extent and continue */ 347 cur = entry->file_offset; 348 continue; 349 } 350 /* 351 * | |<--- OE --->| 352 * cur 353 * Go to the start of OE. 354 */ 355 if (cur < entry->file_offset) { 356 cur = entry->file_offset; 357 continue; 358 } 359 360 /* 361 * Now we are definitely inside one ordered extent. 362 * 363 * |<--- OE --->| 364 * | 365 * cur 366 */ 367 end = min(entry->file_offset + entry->num_bytes, 368 file_offset + num_bytes) - 1; 369 ASSERT(end + 1 - cur < U32_MAX); 370 len = end + 1 - cur; 371 372 if (page) { 373 /* 374 * Ordered (Private2) bit indicates whether we still 375 * have pending io unfinished for the ordered extent. 376 * 377 * If there's no such bit, we need to skip to next range. 378 */ 379 if (!btrfs_page_test_ordered(fs_info, page, cur, len)) { 380 cur += len; 381 continue; 382 } 383 btrfs_page_clear_ordered(fs_info, page, cur, len); 384 } 385 386 /* Now we're fine to update the accounting */ 387 if (unlikely(len > entry->bytes_left)) { 388 WARN_ON(1); 389 btrfs_crit(fs_info, 390 "bad ordered extent accounting, root=%llu ino=%llu OE offset=%llu OE len=%llu to_dec=%u left=%llu", 391 inode->root->root_key.objectid, 392 btrfs_ino(inode), 393 entry->file_offset, 394 entry->num_bytes, 395 len, entry->bytes_left); 396 entry->bytes_left = 0; 397 } else { 398 entry->bytes_left -= len; 399 } 400 401 if (!uptodate) 402 set_bit(BTRFS_ORDERED_IOERR, &entry->flags); 403 404 /* 405 * All the IO of the ordered extent is finished, we need to queue 406 * the finish_func to be executed. 407 */ 408 if (entry->bytes_left == 0) { 409 set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); 410 cond_wake_up(&entry->wait); 411 refcount_inc(&entry->refs); 412 trace_btrfs_ordered_extent_mark_finished(inode, entry); 413 spin_unlock_irqrestore(&tree->lock, flags); 414 btrfs_init_work(&entry->work, finish_ordered_fn, NULL, NULL); 415 btrfs_queue_work(wq, &entry->work); 416 spin_lock_irqsave(&tree->lock, flags); 417 } 418 cur += len; 419 } 420 spin_unlock_irqrestore(&tree->lock, flags); 421 } 422 423 /* 424 * Finish IO for one ordered extent across a given range. The range can only 425 * contain one ordered extent. 426 * 427 * @cached: The cached ordered extent. If not NULL, we can skip the tree 428 * search and use the ordered extent directly. 429 * Will be also used to store the finished ordered extent. 430 * @file_offset: File offset for the finished IO 431 * @io_size: Length of the finish IO range 432 * 433 * Return true if the ordered extent is finished in the range, and update 434 * @cached. 435 * Return false otherwise. 436 * 437 * NOTE: The range can NOT cross multiple ordered extents. 438 * Thus caller should ensure the range doesn't cross ordered extents. 439 */ 440 bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode, 441 struct btrfs_ordered_extent **cached, 442 u64 file_offset, u64 io_size) 443 { 444 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree; 445 struct rb_node *node; 446 struct btrfs_ordered_extent *entry = NULL; 447 unsigned long flags; 448 bool finished = false; 449 450 spin_lock_irqsave(&tree->lock, flags); 451 if (cached && *cached) { 452 entry = *cached; 453 goto have_entry; 454 } 455 456 node = tree_search(tree, file_offset); 457 if (!node) 458 goto out; 459 460 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 461 have_entry: 462 if (!in_range(file_offset, entry->file_offset, entry->num_bytes)) 463 goto out; 464 465 if (io_size > entry->bytes_left) 466 btrfs_crit(inode->root->fs_info, 467 "bad ordered accounting left %llu size %llu", 468 entry->bytes_left, io_size); 469 470 entry->bytes_left -= io_size; 471 472 if (entry->bytes_left == 0) { 473 /* 474 * Ensure only one caller can set the flag and finished_ret 475 * accordingly 476 */ 477 finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); 478 /* test_and_set_bit implies a barrier */ 479 cond_wake_up_nomb(&entry->wait); 480 } 481 out: 482 if (finished && cached && entry) { 483 *cached = entry; 484 refcount_inc(&entry->refs); 485 trace_btrfs_ordered_extent_dec_test_pending(inode, entry); 486 } 487 spin_unlock_irqrestore(&tree->lock, flags); 488 return finished; 489 } 490 491 /* 492 * used to drop a reference on an ordered extent. This will free 493 * the extent if the last reference is dropped 494 */ 495 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry) 496 { 497 struct list_head *cur; 498 struct btrfs_ordered_sum *sum; 499 500 trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry); 501 502 if (refcount_dec_and_test(&entry->refs)) { 503 ASSERT(list_empty(&entry->root_extent_list)); 504 ASSERT(list_empty(&entry->log_list)); 505 ASSERT(RB_EMPTY_NODE(&entry->rb_node)); 506 if (entry->inode) 507 btrfs_add_delayed_iput(BTRFS_I(entry->inode)); 508 while (!list_empty(&entry->list)) { 509 cur = entry->list.next; 510 sum = list_entry(cur, struct btrfs_ordered_sum, list); 511 list_del(&sum->list); 512 kvfree(sum); 513 } 514 kmem_cache_free(btrfs_ordered_extent_cache, entry); 515 } 516 } 517 518 /* 519 * remove an ordered extent from the tree. No references are dropped 520 * and waiters are woken up. 521 */ 522 void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode, 523 struct btrfs_ordered_extent *entry) 524 { 525 struct btrfs_ordered_inode_tree *tree; 526 struct btrfs_root *root = btrfs_inode->root; 527 struct btrfs_fs_info *fs_info = root->fs_info; 528 struct rb_node *node; 529 bool pending; 530 bool freespace_inode; 531 532 /* 533 * If this is a free space inode the thread has not acquired the ordered 534 * extents lockdep map. 535 */ 536 freespace_inode = btrfs_is_free_space_inode(btrfs_inode); 537 538 btrfs_lockdep_acquire(fs_info, btrfs_trans_pending_ordered); 539 /* This is paired with btrfs_add_ordered_extent. */ 540 spin_lock(&btrfs_inode->lock); 541 btrfs_mod_outstanding_extents(btrfs_inode, -1); 542 spin_unlock(&btrfs_inode->lock); 543 if (root != fs_info->tree_root) { 544 u64 release; 545 546 if (test_bit(BTRFS_ORDERED_ENCODED, &entry->flags)) 547 release = entry->disk_num_bytes; 548 else 549 release = entry->num_bytes; 550 btrfs_delalloc_release_metadata(btrfs_inode, release, false); 551 } 552 553 percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes, 554 fs_info->delalloc_batch); 555 556 tree = &btrfs_inode->ordered_tree; 557 spin_lock_irq(&tree->lock); 558 node = &entry->rb_node; 559 rb_erase(node, &tree->tree); 560 RB_CLEAR_NODE(node); 561 if (tree->last == node) 562 tree->last = NULL; 563 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags); 564 pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags); 565 spin_unlock_irq(&tree->lock); 566 567 /* 568 * The current running transaction is waiting on us, we need to let it 569 * know that we're complete and wake it up. 570 */ 571 if (pending) { 572 struct btrfs_transaction *trans; 573 574 /* 575 * The checks for trans are just a formality, it should be set, 576 * but if it isn't we don't want to deref/assert under the spin 577 * lock, so be nice and check if trans is set, but ASSERT() so 578 * if it isn't set a developer will notice. 579 */ 580 spin_lock(&fs_info->trans_lock); 581 trans = fs_info->running_transaction; 582 if (trans) 583 refcount_inc(&trans->use_count); 584 spin_unlock(&fs_info->trans_lock); 585 586 ASSERT(trans); 587 if (trans) { 588 if (atomic_dec_and_test(&trans->pending_ordered)) 589 wake_up(&trans->pending_wait); 590 btrfs_put_transaction(trans); 591 } 592 } 593 594 btrfs_lockdep_release(fs_info, btrfs_trans_pending_ordered); 595 596 spin_lock(&root->ordered_extent_lock); 597 list_del_init(&entry->root_extent_list); 598 root->nr_ordered_extents--; 599 600 trace_btrfs_ordered_extent_remove(btrfs_inode, entry); 601 602 if (!root->nr_ordered_extents) { 603 spin_lock(&fs_info->ordered_root_lock); 604 BUG_ON(list_empty(&root->ordered_root)); 605 list_del_init(&root->ordered_root); 606 spin_unlock(&fs_info->ordered_root_lock); 607 } 608 spin_unlock(&root->ordered_extent_lock); 609 wake_up(&entry->wait); 610 if (!freespace_inode) 611 btrfs_lockdep_release(fs_info, btrfs_ordered_extent); 612 } 613 614 static void btrfs_run_ordered_extent_work(struct btrfs_work *work) 615 { 616 struct btrfs_ordered_extent *ordered; 617 618 ordered = container_of(work, struct btrfs_ordered_extent, flush_work); 619 btrfs_start_ordered_extent(ordered, 1); 620 complete(&ordered->completion); 621 } 622 623 /* 624 * wait for all the ordered extents in a root. This is done when balancing 625 * space between drives. 626 */ 627 u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr, 628 const u64 range_start, const u64 range_len) 629 { 630 struct btrfs_fs_info *fs_info = root->fs_info; 631 LIST_HEAD(splice); 632 LIST_HEAD(skipped); 633 LIST_HEAD(works); 634 struct btrfs_ordered_extent *ordered, *next; 635 u64 count = 0; 636 const u64 range_end = range_start + range_len; 637 638 mutex_lock(&root->ordered_extent_mutex); 639 spin_lock(&root->ordered_extent_lock); 640 list_splice_init(&root->ordered_extents, &splice); 641 while (!list_empty(&splice) && nr) { 642 ordered = list_first_entry(&splice, struct btrfs_ordered_extent, 643 root_extent_list); 644 645 if (range_end <= ordered->disk_bytenr || 646 ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) { 647 list_move_tail(&ordered->root_extent_list, &skipped); 648 cond_resched_lock(&root->ordered_extent_lock); 649 continue; 650 } 651 652 list_move_tail(&ordered->root_extent_list, 653 &root->ordered_extents); 654 refcount_inc(&ordered->refs); 655 spin_unlock(&root->ordered_extent_lock); 656 657 btrfs_init_work(&ordered->flush_work, 658 btrfs_run_ordered_extent_work, NULL, NULL); 659 list_add_tail(&ordered->work_list, &works); 660 btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work); 661 662 cond_resched(); 663 spin_lock(&root->ordered_extent_lock); 664 if (nr != U64_MAX) 665 nr--; 666 count++; 667 } 668 list_splice_tail(&skipped, &root->ordered_extents); 669 list_splice_tail(&splice, &root->ordered_extents); 670 spin_unlock(&root->ordered_extent_lock); 671 672 list_for_each_entry_safe(ordered, next, &works, work_list) { 673 list_del_init(&ordered->work_list); 674 wait_for_completion(&ordered->completion); 675 btrfs_put_ordered_extent(ordered); 676 cond_resched(); 677 } 678 mutex_unlock(&root->ordered_extent_mutex); 679 680 return count; 681 } 682 683 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr, 684 const u64 range_start, const u64 range_len) 685 { 686 struct btrfs_root *root; 687 struct list_head splice; 688 u64 done; 689 690 INIT_LIST_HEAD(&splice); 691 692 mutex_lock(&fs_info->ordered_operations_mutex); 693 spin_lock(&fs_info->ordered_root_lock); 694 list_splice_init(&fs_info->ordered_roots, &splice); 695 while (!list_empty(&splice) && nr) { 696 root = list_first_entry(&splice, struct btrfs_root, 697 ordered_root); 698 root = btrfs_grab_root(root); 699 BUG_ON(!root); 700 list_move_tail(&root->ordered_root, 701 &fs_info->ordered_roots); 702 spin_unlock(&fs_info->ordered_root_lock); 703 704 done = btrfs_wait_ordered_extents(root, nr, 705 range_start, range_len); 706 btrfs_put_root(root); 707 708 spin_lock(&fs_info->ordered_root_lock); 709 if (nr != U64_MAX) { 710 nr -= done; 711 } 712 } 713 list_splice_tail(&splice, &fs_info->ordered_roots); 714 spin_unlock(&fs_info->ordered_root_lock); 715 mutex_unlock(&fs_info->ordered_operations_mutex); 716 } 717 718 /* 719 * Used to start IO or wait for a given ordered extent to finish. 720 * 721 * If wait is one, this effectively waits on page writeback for all the pages 722 * in the extent, and it waits on the io completion code to insert 723 * metadata into the btree corresponding to the extent 724 */ 725 void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry, int wait) 726 { 727 u64 start = entry->file_offset; 728 u64 end = start + entry->num_bytes - 1; 729 struct btrfs_inode *inode = BTRFS_I(entry->inode); 730 bool freespace_inode; 731 732 trace_btrfs_ordered_extent_start(inode, entry); 733 734 /* 735 * If this is a free space inode do not take the ordered extents lockdep 736 * map. 737 */ 738 freespace_inode = btrfs_is_free_space_inode(inode); 739 740 /* 741 * pages in the range can be dirty, clean or writeback. We 742 * start IO on any dirty ones so the wait doesn't stall waiting 743 * for the flusher thread to find them 744 */ 745 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags)) 746 filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end); 747 if (wait) { 748 if (!freespace_inode) 749 btrfs_might_wait_for_event(inode->root->fs_info, btrfs_ordered_extent); 750 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, 751 &entry->flags)); 752 } 753 } 754 755 /* 756 * Used to wait on ordered extents across a large range of bytes. 757 */ 758 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len) 759 { 760 int ret = 0; 761 int ret_wb = 0; 762 u64 end; 763 u64 orig_end; 764 struct btrfs_ordered_extent *ordered; 765 766 if (start + len < start) { 767 orig_end = OFFSET_MAX; 768 } else { 769 orig_end = start + len - 1; 770 if (orig_end > OFFSET_MAX) 771 orig_end = OFFSET_MAX; 772 } 773 774 /* start IO across the range first to instantiate any delalloc 775 * extents 776 */ 777 ret = btrfs_fdatawrite_range(inode, start, orig_end); 778 if (ret) 779 return ret; 780 781 /* 782 * If we have a writeback error don't return immediately. Wait first 783 * for any ordered extents that haven't completed yet. This is to make 784 * sure no one can dirty the same page ranges and call writepages() 785 * before the ordered extents complete - to avoid failures (-EEXIST) 786 * when adding the new ordered extents to the ordered tree. 787 */ 788 ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end); 789 790 end = orig_end; 791 while (1) { 792 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end); 793 if (!ordered) 794 break; 795 if (ordered->file_offset > orig_end) { 796 btrfs_put_ordered_extent(ordered); 797 break; 798 } 799 if (ordered->file_offset + ordered->num_bytes <= start) { 800 btrfs_put_ordered_extent(ordered); 801 break; 802 } 803 btrfs_start_ordered_extent(ordered, 1); 804 end = ordered->file_offset; 805 /* 806 * If the ordered extent had an error save the error but don't 807 * exit without waiting first for all other ordered extents in 808 * the range to complete. 809 */ 810 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) 811 ret = -EIO; 812 btrfs_put_ordered_extent(ordered); 813 if (end == 0 || end == start) 814 break; 815 end--; 816 } 817 return ret_wb ? ret_wb : ret; 818 } 819 820 /* 821 * find an ordered extent corresponding to file_offset. return NULL if 822 * nothing is found, otherwise take a reference on the extent and return it 823 */ 824 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode, 825 u64 file_offset) 826 { 827 struct btrfs_ordered_inode_tree *tree; 828 struct rb_node *node; 829 struct btrfs_ordered_extent *entry = NULL; 830 unsigned long flags; 831 832 tree = &inode->ordered_tree; 833 spin_lock_irqsave(&tree->lock, flags); 834 node = tree_search(tree, file_offset); 835 if (!node) 836 goto out; 837 838 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 839 if (!in_range(file_offset, entry->file_offset, entry->num_bytes)) 840 entry = NULL; 841 if (entry) { 842 refcount_inc(&entry->refs); 843 trace_btrfs_ordered_extent_lookup(inode, entry); 844 } 845 out: 846 spin_unlock_irqrestore(&tree->lock, flags); 847 return entry; 848 } 849 850 /* Since the DIO code tries to lock a wide area we need to look for any ordered 851 * extents that exist in the range, rather than just the start of the range. 852 */ 853 struct btrfs_ordered_extent *btrfs_lookup_ordered_range( 854 struct btrfs_inode *inode, u64 file_offset, u64 len) 855 { 856 struct btrfs_ordered_inode_tree *tree; 857 struct rb_node *node; 858 struct btrfs_ordered_extent *entry = NULL; 859 860 tree = &inode->ordered_tree; 861 spin_lock_irq(&tree->lock); 862 node = tree_search(tree, file_offset); 863 if (!node) { 864 node = tree_search(tree, file_offset + len); 865 if (!node) 866 goto out; 867 } 868 869 while (1) { 870 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 871 if (range_overlaps(entry, file_offset, len)) 872 break; 873 874 if (entry->file_offset >= file_offset + len) { 875 entry = NULL; 876 break; 877 } 878 entry = NULL; 879 node = rb_next(node); 880 if (!node) 881 break; 882 } 883 out: 884 if (entry) { 885 refcount_inc(&entry->refs); 886 trace_btrfs_ordered_extent_lookup_range(inode, entry); 887 } 888 spin_unlock_irq(&tree->lock); 889 return entry; 890 } 891 892 /* 893 * Adds all ordered extents to the given list. The list ends up sorted by the 894 * file_offset of the ordered extents. 895 */ 896 void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode, 897 struct list_head *list) 898 { 899 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree; 900 struct rb_node *n; 901 902 ASSERT(inode_is_locked(&inode->vfs_inode)); 903 904 spin_lock_irq(&tree->lock); 905 for (n = rb_first(&tree->tree); n; n = rb_next(n)) { 906 struct btrfs_ordered_extent *ordered; 907 908 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node); 909 910 if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags)) 911 continue; 912 913 ASSERT(list_empty(&ordered->log_list)); 914 list_add_tail(&ordered->log_list, list); 915 refcount_inc(&ordered->refs); 916 trace_btrfs_ordered_extent_lookup_for_logging(inode, ordered); 917 } 918 spin_unlock_irq(&tree->lock); 919 } 920 921 /* 922 * lookup and return any extent before 'file_offset'. NULL is returned 923 * if none is found 924 */ 925 struct btrfs_ordered_extent * 926 btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset) 927 { 928 struct btrfs_ordered_inode_tree *tree; 929 struct rb_node *node; 930 struct btrfs_ordered_extent *entry = NULL; 931 932 tree = &inode->ordered_tree; 933 spin_lock_irq(&tree->lock); 934 node = tree_search(tree, file_offset); 935 if (!node) 936 goto out; 937 938 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 939 refcount_inc(&entry->refs); 940 trace_btrfs_ordered_extent_lookup_first(inode, entry); 941 out: 942 spin_unlock_irq(&tree->lock); 943 return entry; 944 } 945 946 /* 947 * Lookup the first ordered extent that overlaps the range 948 * [@file_offset, @file_offset + @len). 949 * 950 * The difference between this and btrfs_lookup_first_ordered_extent() is 951 * that this one won't return any ordered extent that does not overlap the range. 952 * And the difference against btrfs_lookup_ordered_extent() is, this function 953 * ensures the first ordered extent gets returned. 954 */ 955 struct btrfs_ordered_extent *btrfs_lookup_first_ordered_range( 956 struct btrfs_inode *inode, u64 file_offset, u64 len) 957 { 958 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree; 959 struct rb_node *node; 960 struct rb_node *cur; 961 struct rb_node *prev; 962 struct rb_node *next; 963 struct btrfs_ordered_extent *entry = NULL; 964 965 spin_lock_irq(&tree->lock); 966 node = tree->tree.rb_node; 967 /* 968 * Here we don't want to use tree_search() which will use tree->last 969 * and screw up the search order. 970 * And __tree_search() can't return the adjacent ordered extents 971 * either, thus here we do our own search. 972 */ 973 while (node) { 974 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 975 976 if (file_offset < entry->file_offset) { 977 node = node->rb_left; 978 } else if (file_offset >= entry_end(entry)) { 979 node = node->rb_right; 980 } else { 981 /* 982 * Direct hit, got an ordered extent that starts at 983 * @file_offset 984 */ 985 goto out; 986 } 987 } 988 if (!entry) { 989 /* Empty tree */ 990 goto out; 991 } 992 993 cur = &entry->rb_node; 994 /* We got an entry around @file_offset, check adjacent entries */ 995 if (entry->file_offset < file_offset) { 996 prev = cur; 997 next = rb_next(cur); 998 } else { 999 prev = rb_prev(cur); 1000 next = cur; 1001 } 1002 if (prev) { 1003 entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node); 1004 if (range_overlaps(entry, file_offset, len)) 1005 goto out; 1006 } 1007 if (next) { 1008 entry = rb_entry(next, struct btrfs_ordered_extent, rb_node); 1009 if (range_overlaps(entry, file_offset, len)) 1010 goto out; 1011 } 1012 /* No ordered extent in the range */ 1013 entry = NULL; 1014 out: 1015 if (entry) { 1016 refcount_inc(&entry->refs); 1017 trace_btrfs_ordered_extent_lookup_first_range(inode, entry); 1018 } 1019 1020 spin_unlock_irq(&tree->lock); 1021 return entry; 1022 } 1023 1024 /* 1025 * Lock the passed range and ensures all pending ordered extents in it are run 1026 * to completion. 1027 * 1028 * @inode: Inode whose ordered tree is to be searched 1029 * @start: Beginning of range to flush 1030 * @end: Last byte of range to lock 1031 * @cached_state: If passed, will return the extent state responsible for the 1032 * locked range. It's the caller's responsibility to free the 1033 * cached state. 1034 * 1035 * Always return with the given range locked, ensuring after it's called no 1036 * order extent can be pending. 1037 */ 1038 void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start, 1039 u64 end, 1040 struct extent_state **cached_state) 1041 { 1042 struct btrfs_ordered_extent *ordered; 1043 struct extent_state *cache = NULL; 1044 struct extent_state **cachedp = &cache; 1045 1046 if (cached_state) 1047 cachedp = cached_state; 1048 1049 while (1) { 1050 lock_extent(&inode->io_tree, start, end, cachedp); 1051 ordered = btrfs_lookup_ordered_range(inode, start, 1052 end - start + 1); 1053 if (!ordered) { 1054 /* 1055 * If no external cached_state has been passed then 1056 * decrement the extra ref taken for cachedp since we 1057 * aren't exposing it outside of this function 1058 */ 1059 if (!cached_state) 1060 refcount_dec(&cache->refs); 1061 break; 1062 } 1063 unlock_extent(&inode->io_tree, start, end, cachedp); 1064 btrfs_start_ordered_extent(ordered, 1); 1065 btrfs_put_ordered_extent(ordered); 1066 } 1067 } 1068 1069 /* 1070 * Lock the passed range and ensure all pending ordered extents in it are run 1071 * to completion in nowait mode. 1072 * 1073 * Return true if btrfs_lock_ordered_range does not return any extents, 1074 * otherwise false. 1075 */ 1076 bool btrfs_try_lock_ordered_range(struct btrfs_inode *inode, u64 start, u64 end, 1077 struct extent_state **cached_state) 1078 { 1079 struct btrfs_ordered_extent *ordered; 1080 1081 if (!try_lock_extent(&inode->io_tree, start, end, cached_state)) 1082 return false; 1083 1084 ordered = btrfs_lookup_ordered_range(inode, start, end - start + 1); 1085 if (!ordered) 1086 return true; 1087 1088 btrfs_put_ordered_extent(ordered); 1089 unlock_extent(&inode->io_tree, start, end, cached_state); 1090 1091 return false; 1092 } 1093 1094 1095 static int clone_ordered_extent(struct btrfs_ordered_extent *ordered, u64 pos, 1096 u64 len) 1097 { 1098 struct inode *inode = ordered->inode; 1099 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 1100 u64 file_offset = ordered->file_offset + pos; 1101 u64 disk_bytenr = ordered->disk_bytenr + pos; 1102 unsigned long flags = ordered->flags & BTRFS_ORDERED_TYPE_FLAGS; 1103 1104 /* 1105 * The splitting extent is already counted and will be added again in 1106 * btrfs_add_ordered_extent_*(). Subtract len to avoid double counting. 1107 */ 1108 percpu_counter_add_batch(&fs_info->ordered_bytes, -len, 1109 fs_info->delalloc_batch); 1110 WARN_ON_ONCE(flags & (1 << BTRFS_ORDERED_COMPRESSED)); 1111 return btrfs_add_ordered_extent(BTRFS_I(inode), file_offset, len, len, 1112 disk_bytenr, len, 0, flags, 1113 ordered->compress_type); 1114 } 1115 1116 int btrfs_split_ordered_extent(struct btrfs_ordered_extent *ordered, u64 pre, 1117 u64 post) 1118 { 1119 struct inode *inode = ordered->inode; 1120 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; 1121 struct rb_node *node; 1122 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1123 int ret = 0; 1124 1125 trace_btrfs_ordered_extent_split(BTRFS_I(inode), ordered); 1126 1127 spin_lock_irq(&tree->lock); 1128 /* Remove from tree once */ 1129 node = &ordered->rb_node; 1130 rb_erase(node, &tree->tree); 1131 RB_CLEAR_NODE(node); 1132 if (tree->last == node) 1133 tree->last = NULL; 1134 1135 ordered->file_offset += pre; 1136 ordered->disk_bytenr += pre; 1137 ordered->num_bytes -= (pre + post); 1138 ordered->disk_num_bytes -= (pre + post); 1139 ordered->bytes_left -= (pre + post); 1140 1141 /* Re-insert the node */ 1142 node = tree_insert(&tree->tree, ordered->file_offset, &ordered->rb_node); 1143 if (node) 1144 btrfs_panic(fs_info, -EEXIST, 1145 "zoned: inconsistency in ordered tree at offset %llu", 1146 ordered->file_offset); 1147 1148 spin_unlock_irq(&tree->lock); 1149 1150 if (pre) 1151 ret = clone_ordered_extent(ordered, 0, pre); 1152 if (ret == 0 && post) 1153 ret = clone_ordered_extent(ordered, pre + ordered->disk_num_bytes, 1154 post); 1155 1156 return ret; 1157 } 1158 1159 int __init ordered_data_init(void) 1160 { 1161 btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent", 1162 sizeof(struct btrfs_ordered_extent), 0, 1163 SLAB_MEM_SPREAD, 1164 NULL); 1165 if (!btrfs_ordered_extent_cache) 1166 return -ENOMEM; 1167 1168 return 0; 1169 } 1170 1171 void __cold ordered_data_exit(void) 1172 { 1173 kmem_cache_destroy(btrfs_ordered_extent_cache); 1174 } 1175